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CHAPTER IV  
 
Characterization Studies of High Poisson’s Ratio BMGs 

 

 

 

Abstract 

  

Au-Ag-Pd-Cu-Si and Pt-Cu-Ni-P are two recently developed families of high 

Poisson’s ratio bulk metallic glass. Both possess Poisson’s ratios above 0.4 which are 

among the highest values recorded for any BMGs. Many recent studies on BMG’s 

plasticity have shown that high Poisson’s ratio value is indeed the common requirement 

for ductile BMGs.  

There was much anticipation that these two alloys would have very good 

mechanical properties, especially ductility. Indeed, these two families of alloy display 

improved mechanical properties over their crystalline counterparts in many aspects. 

However, the Pt-based alloys were the only family that exhibits exceptional ductility 

while the Au-based alloys only show limited ductility similar to many other metallic 

glasses.    

This thesis chapter focuses on the key investigations conducted on the two alloys. 

Hopefully, the results will lead us to understand why these two high Poisson’s ratio 

alloys behave differently.   
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1. Introduction 

 

Limited plasticity at room temperature is known to be the Achilles’ heel for many 

bulk metallic glasses (BMGs). For instance, the iron-based BMG [1] discovered by 

researchers at University of Virginia was not found to be a useful material for 

engineering applications because of its brittle nature. 

There are only a limited number of BMG compositions that exhibit good ductility. 

Perhaps the most striking example of plasticity would be the platinum-rich glass 

developed by Schroers and Johnson [2] which exhibited 20% bending plasticity in thick 

rods – a level never previously observed in any BMGs. Chen et al. also reported ductile 

BMGs that displayed “extraordinary plasticity” [3]. Their high-resolution electron 

microscope (HREM) observation suggested that the localized shear softening was 

prevented by in situ stress-induced nanocrystallization that arrests the shear band and 

prevents the material from catastrophically failure from one or a few shear banding 

events. This mechanism could potentially be a key for developing monolithic BMGs that 

have both high strength and excellent ductility [3]. However, such phenomenon is not an 

intrinsic property of such material and has only been observed in a small handful of 

systems [4, 5]. The relationship between intrinsic ductility and shear softening behavior 

can be explained using the Cooperative Shear Model (CSM) proposed by Johnson and 

Samwer [6]. The model compellingly suggests possible linkage between G/B ratio 

(Poisson’s ratio) and plasticity.   

Recent study of the brittle-to-ductile transition by Lewandowski et al. [7] shows 

that there is a strong correlation between plasticity and elastic modulus ratio, G/B, when 
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G is the shear modulus and B is the bulk modulus. The value of G/B of 0.41-0.43 is 

found to be a maximum for a bulk metallic glass to exhibit plasticity. The relationship 

between G, B, and Poisson’s ratio, υ, can be given as: 
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=υ     [equation IV-1] 

For simplicity, G and B can be combined as G/B ratio and equation IV-1 could be recast 

as:  
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Based on Lewandowski’s finding, to achieve good plasticity in BMG, the G/B 

value of less than 0.41-0.43 is equivalent to the υ of more than 0.31-0.32. This concept 

was recently further supported by Gu and colleagues at the University of Virginia [8] 

who doped Fe65Mo14C15B6 bulk amorphous steel with lanthanide metals to modify the 

value of υ. They demonstrated that there existed a brittle-to-ductile transition in that 

particular Fe-based BMG system – when υ is less than 0.32, specimens tend to be brittle.  

 The Poisson’s ratios for Au-BMGs and Pt-BMGs were found to be 0.406 and 

0.43 respectively. These are among the highest values reported for BMGs. The high value 

of υ for Au-BMG, although not quite as high as anticipated [9], suggests excellent 

mechanical properties, especially good ductility. However, experimental results suggest 

that this is not the case. 

Many detailed investigations are certainly needed to better understand these two 

high Poisson’s ratio glasses.   
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2. Poisson’s Ratios Study 

 

 The Poisson’s ratios for Au-BMGs and Pt-BMGs were found to be 0.406 and 0.43, 

respectively. These are among the highest values reported for BMGs. However, the 

intrinsic Poisson’s ratio for crystalline Au and Pt are 0.42-0.44 and 0.37-0.39 (from 

various sources). Table IV-1 summarizes Poisson’s ratios for various forms of Au, Pt, 

and Pd. 

Au Alloys (crystalline)  Pt and Pd Alloys (crystalline) 

Pure gold 

Pure gold 

0.42A,B 

0.44C 

Pure Platinum 

Pure Palladium 

0.39D,E, 0.396[10] 

0.39F 

18 karat gold alloys 0.31-0.36 Pt-Ir alloy [10] 

(10%Ir, 20%Ir, 30%Ir) 

0.378, 0.368,0.346

Au-Pd (dental) 0.33[11] Pt-Rh alloys [10] 

(10%Rh, 20%Rh, 30%Rh) 

0.365,0.342,0.324 

Au-BMG (experimental values) Pt-BMG / Pd-BMG (experimental values) 

Best glass former 

OK glass former 

Cast in Liquid N2 

Partially crystalline 

0.406 

0.417 

0.433 

0.385 

Pt57.5Cu14.7Ni5.3P22.5 

Pt57.5Cu14.7Ni5.3P22.5  

Pd40Ni10Cu30P20 

 

0.42[12] 

0.430 

0.411 

Table IV-1: Poisson’s ratio values for Au, Pt, and Pd BMGs are compared with  

         crystalline counterparts in pure and alloyed forms. 

                                                 
A According to World Gold Council (www.gold.org) 

B According to Y.M.Savitskii, Handbook of Precious Metals  

C According to Wikipedia (en.wikipedia.org/wiki/Gold) 

D According to Edelmetall-taschenbuch. Degussa. (annealed condition) 

E According to A.S.Darling, Journal of the Institute of Metals, 1966. 

F According to Y.M.Savitskii, Handbook of Precious Metals  
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Figure IV-1: Poisson’s ratios values are plotted for different alloying elements and  

        different compositions. The open hollow symbols represent fully amorphous  

        BMG specimens and pure elements. The solid symbols represent crystalline  

       alloys. Half-filled triangles represent partially amorphous gold sample. 

 

For the crystalline alloys (denoted by all “solid” symbols in Figure IV-1), the 

values of Poisson’s ratio will decrease when the precious metals are mixed with alloying 

elements (e.g., Ir, Rh, Pd, Ni, Cu, etc). The rate of decrease is rather significant for Au 

crystalline alloys – for instance, υ drops 0.10 when Au is alloyed with Pd up to 30%. The 

drop in Pt Poisson’s ratio is less pronounced at 0.07 drop per 30% Ir addition. In 
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summary, Poisson’s ratio values decrease with increasing alloying element content in 

crystalline precious metal alloys. 

    The change in Poisson’s ratios for bulk metallic glasses is rather curious. For 

Pt- and Pd-based BMGs, the υ values increase when compared to the crystalline metals in 

pure form. The trend is shown by solid lines linking hollow shapes in Figure IV-1. The 

same trend has also been observed for most BMGs (e.g. Cu-based, Zr-based, etc). This is 

not the case for Au-BMGs, however. Their Poisson’s ratios tend to decrease when 

compared to the crystalline gold in pure form, as shown by open symbols connected by 

dashed lines.  

It must be noted that, when the Au-BMG is cast into a liquid-nitrogen-chilled 

copper mold, the υ value increases, which suggests that υ value greatly depends on the 

processing history of the alloy. For all other Au-BMG cases studied, υ values always 

decrease, but not to the same extent as in their crystalline counterparts. If the υ values are 

compared within the Au-BMG family, the alloys with better glass forming ability show 

lower υ values. The alloy that is partially crystalline exhibits significant drop in υ, as 

shown by the half-filled triangles in Figure IV-1.    

The origin of this drop in Poisson’s ratios is not clearly understood. Perhaps a 

possible explanation could be found in the following chart (Figure IV-2). Poisson’s ratio 

values (full table can be found in [6]) were collected only from reliable sound velocities 

measurement for 32 bulk metallic glasses. The υ values are subtracted by the υ values of 

the pure metal which is the main constituent. The differences between the Poisson’s 

ratios, Δυ = υ(BMG)- υ(pure), are plotted in descending order (top = largest increase and 

bottom = largest decrease). Our best Au-BMG displays the highest decrease in υ value. 



 IV-7

The second highest decrease is found in the Fe61Mn10Cr4Mo6Er1C15B6 BMG [13]. And 

the third highest decrease is the Au55Cu25Si20 alloy which has critical casting thickness of 

0.5 mm [14]. As demonstrated in Figure IV-2, only three BMGs at the bottom of the plot 

are showing negative Δυ values. All other Δυ values are positive suggesting that the υ 

values of BMGs tend to be higher than that of pure crystalline metals. 
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Figure IV-2: The differences between the Poisson’s ratios of BMGs and pure metals are  

calculated using Δυ = υ(BMG)- υ(pure). Δυ  for 32 BMGs are plotted in        

descending order (top = largest increase, bottom = largest decrease). 

Located at the bottom, Au-BMG exhibits the most negative change in Δυ 

value. Alloy index on the right is sorted in the same descending order as 

shown in the bar chart.  
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To better understand this curious υ behavior of Au-BMGs, a close investigation 

into Fe61Mn10Cr4Mo6Er1C15B6 BMG could give a plausible explanation. The composition 

is the most heavily alloyed BMG to date. A total of seven constituents were added to 

form bulk glass with exceptional glass forming ability. This leads to the hypothesis that 

both Au49Ag5.5Pd2.3Cu26.9Si16.3 and Fe61Mn10Cr4Mo6Er1C15B6 have relatively high atomic 

density when compared to other BMGs. Efficient atomic packing in these super saturated 

BMGs could lead to increased atomic packing efficiency and decreased interatomic 

distances. The glass forming ability of these supersaturated alloys is improved because of 

the resulting increase in the fragility of the glass forming liquids when elements with 

strong bonding are added. The driving force for crystallization is reduced because of the 

sluggish atomic mobility, which is a common nature of kinetically stabilized bulk 

metallic forming liquids. Therefore a detailed study on density may reveal the super-

saturated nature of these BMGs. 

 

3. Density Study 

 

To confirm the density effect of Au49Ag5.5Pd2.3Cu26.9Si16.3 and 

Fe61Mn10Cr4Mo6Er1C15B6 BMGS on Δυ, the experimental values of the density for 25 

BMGs are plotted against the calculated values based on the molar-volume calculation in 

Appendix A. The calculation shows accurate predicting power, as shown in Figure IV-3 

where only a few P-containing BMGs were excluded. The slope of the diagonal line is 

unity, which represents the perfect prediction. The measured densities for both 
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Au49Ag5.5Pd2.3Cu26.9Si16.3 and Fe61Mn10Cr4Mo6Er1C15B6 BMGs agree well with the 

prediction, which may suggest the alloys do not have unusually high density. 

For most BMGs, we do not see any divergence from the norm except for all the 

phosphorus-containing BMGs (strictly, Pt-based and Pd-based.) These values are 

intentionally excluded from Figure IV-3, but included in Figure IV-4 as represented by 

open hexagons. The calculated prediction underestimates the density of these Pt-BMGs 

and Pd-BMGs. We believe the deviation from the norm is the effect of high phosphorus 

content, and the tendency for molar volume of phosphorus to “shrink” when the nature of 

bonding is changing from covalent to metallic. This effect is not pronounced in alloys 

containing Be, Si, or other small radii elements. 

The Pd-BMG is known [15] for its small Gibbs free energy difference between 

the undercooled liquid and the crystal (ΔGl-x). Such small driving force shows that Pd-

BMG is a thermodynamically stable glass. Further investigations are needed for Au- and 

Pt-based BMGs.   
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Figure IV-3: Calculated density of 25 BMGs were plotted against the experimental  

values. The calculation shows accurate predicting power for all alloys 

except the P-containing alloys, which data points are intentionally excluded. 

The solid diagonal line has the slope of unity (X = Y), representing an ideal 

prediction. 
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Figure IV-4: Calculated density of 31 BMGs were plotted against the experimental  

values. The calculation shows accurate predicting power for all alloys 

except the P-containing alloys, which are represented by the hexagons. The 

prediction always underestimates the densities of phosphorus-containing 

BMGs (Pt-based and Pd-based). The dotted diagonal line has the slope of 

unity (X = Y), representing perfect prediction. The solid trend line 

represents the linear fit. 
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4. Thermodynamic Study 

 

4.1 Heat Capacity Measurements 

 

We followed the experimental methods for heat capacity measurement as outlined 

in [16]. The absolute value of the specific heat capacity was obtained for the glassy, 

crystalline, and liquid state of Au-BMG (Au49Ag5.5Pd2.3Cu26.9Si16.3) and Pt-BMG 

(Pt57.3Cu14.6Ni5.3P22.8) using a power-compensated Perkin Elmer DSC 7. Experiments 

were repeated systematically at small temperature increments near Tg for the glassy 

specimen to obtain better resolution of Cp near glass transition. The specific heat capacity 

measurements for both BMGs are shown in Figure IV-5. According to Kubaschewski et 

al. [17], the experimental data for liquid can be fitted using the relationship 

2
, /3 TbaTRC liquidP ++= ,             (equation IV-1) 

where Cp,liquid is the heat capacity of the liquid at temperature T (K), well above Debye 

temperature, a and b are fitting parameters, and R is the gas constant (8.314 J/g atom*K). 

Similarly, for the crystalline mixture, the experimental data can be fitted using the 

relationship [17] 

2
, 3 dTcTRC crystalP ++= ,             (equation IV-2) 

where Cp,crystal is the heat capacity of the crystallized alloy (of the same composition), 

while c and d are fitting parameters. Experimental results are shown with the 

Kubaschewski fits in Figure IV-5. The solid lines represent the fitting for Au-BMG 

systems and dashed lines for Pt-BMG.  
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Figure IV-5: Specific heat capacities measured for Au49Ag5.5Pd2.3Cu26.9Si16.3 (circles) and  

Pt57.3Cu14.6Ni5.3P22.8 (squares). Solid-colored shapes represent liquid, hollow, 

or opened shapes for crystalline, and half-filled shapes for glass.  

 

4.2 Thermodynamic Functions Calculation 

 

From the measured Cp data and fitted functions, it is possible to calculate various 

thermodynamic functions from ΔCp(T)l-x. The fitting parameters for Cp as well as other 

experimental values are summarized in Table IV-2. The values for Au- and Pt-based 

alloys are fitted to the Cp values from our experiments. The Mg and Pd values are from 
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experiments conducted by Busch et al. [16] and Kuno et al [18]. In comparison, these 

values were used in the calculations for enthalpies, entropies, and Gibbs free energies. 

Key Parameters Au49Ag5.5Pd2.3Cu26.9Si16.3 

[present work] 

Pt57.3Cu14.6Ni5.3P22.8 

[present work] 

a (see eq. IV-1) 5.990 x 10-3 5.512 x 10-3 

b (see eq. IV-1) 5.676 x 106 5.699 x 106 

c (see eq. IV-2) -1.636 x 10-2 -4.573 x 10-3 

d (see eq. IV-2)  3.776 x 10-5 1.133 x 10-5 

Tg (K) 403 K 508 K 

Tf (K) 632 K 772 K 

ΔHf (J/g.atom) 6.5 kJ/g.atom 11.6 kJ/g.atom 

 Mg65Cu25Y10 [16] Pd43Cu27Ni27P20 [18] 

a (see eq. IV-1) 0.0137 0.012 

b (see eq. IV-1) 1.8 x 106 4.9 x 106 

c (see eq. IV-2) - 3.82 x 10-3 5.4 x 10-3 

d (see eq. IV-2)  1.02 x 10-5 1.9 x 10-5 

Tg (K) 425 K 577 K 

Tf (K) 730 K 815 K 

ΔHf (J/g.atom) 8.65 kJ/g.atom 5 kJ/g.atom 

Table IV-2: Values of the key parameters used for Cp fittings and calculations of  

       enthalpies, entropies, and Gibbs free energies are summarized. The values  

       a,b,c, and d are fitting parameters. Tg, Tf, and ΔHf are experimental values.   

 

 



 IV-15

Utilizing the fitted Cp function, the enthalpy and entropy are calculated using the 

following equations:  

(i)                   ( ) ( )
fT

l x
l x f p

T

H T H c T dT−
− ′ ′Δ = Δ − Δ∫                            (equation IV-3) 

where ΔHf is the heat of fusion, Tf is the fusion temperature which is generally taken as 

the peak temperature during melting and ΔCpl-x(T) = Cp,liq – Cp,crystal which are fitted 

using equation IV-1 and equation IV-2; 

 (ii)  
( )

( )
fT l x

p
l x f

T

c T
S T S dT

T

−

−

′Δ
′Δ = Δ −

′∫                            (equation IV-4) 

where ΔSf is the entropy of fusion. The results are plotted in Figure IV-6 (ΔH) and Figure 

IV-7 (ΔS) accordingly. 

 It is known that a Gaussian distribution profile could be used to explain the 1/T2 

dependence of specific heat. If the enthalpy is taken as the integration of the Gaussian 

distribution heat capacity (equation IV-3) then the enthalpy difference could be expressed 

[19] using the form ΔH = Hinfinity – σ2/T. The basic Gaussian fits are also shown in Figure 

IV-6 as a comparison to the more complicated Kubaschewski model, which also contains 

the 1/T term.   

 The Gaussian fits were done using the relationship ΔH = Hinfinity – kσ2/T and the 

fitting parameters are: 

(i) k = 8.305, σ = 751 K, and Hinfinity=17243 J/g.atom for Au55Pd22.5Sb22.5 , and  

(ii) k = 8.305, σ = 850 K, and Hinfinity=15580 J/g.atom for Au49Ag5.5Pd2.3Cu26.9Si16.3. 
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Figure IV-6: ΔH for Au49Ag5.5Pd2.3Cu26.9Si16.3 is plotted using Kubaschewski Fit (solid  

thin line) and Gaussian fit [ΔH = Hinfinity – σ2/T] (dashed line). ΔH for 

Pt57.3Cu14.6Ni5.3P22.8 (thick solid line) is also plotted using Kubaschewski fit. 

 

 Figure IV-6 shows the enthalpy of the undercooled liquid with respect to the 

crystal as a function of temperature. The horizontal line ΔH=0 represents the enthalpy of 

the crystal as a baseline. During cooling liquid undercools to a certain temperature and 

undergoes a glass transformation. The two open circles represent the Au-BMG’s heat of 

crystallization at Tx and heat of fusion at Tf. The models predict the heat of fusion quite 

accurately, however the actual heat of crystallization is slightly more than the predictions.     
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 Figure IV-7: ΔS for Au49Ag5.5Pd2.3Cu26.9Si16.3 and Pt57.3Cu14.6Ni5.3P22.8 are plotted. The x- 

intercepts correspond to the temperature where liquid and crystals have the 

same entropy. This temperature is known as the Kauzmann temperature, Tk. 

The curve indicates the improbable. Tk for Au-BMG is higher than Tg, 

which is around 403 K. 

 

 ΔS, the entropy differences between liquid and crystal, are plotted for both Au-

based and Pt-based BMGs. The Kauzmann temperature, Tk, is the theoretical temperature 

at which the entropy difference vanishes. Angell and Tucker [20] suggested that an “ideal 

glass” could be obtained if a liquid is deeply undercooled down to a temperature near 
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Kauzmann temperature, Tk. Experimental results also show that all bulk metallic glasses 

are vitrified at temperatures Tg above Tk.   

In the present work, the Kubaschewski model predicts (Figure IV-7) Platinum’s 

Kauzmann temperature to be around 393.7 K, while the experimental Tg value is around 

508 K. The difference between Tk and Tg of Pt -BMG is in line with the reported values 

in other BMG systems. However, the gold BMG is showing the improbable trend. Gold’s 

Kauzmann temperature is predicted at 410.2 K while the actual value of Tg is observed at 

403 K (using 20K/min heat scans). This Tg<Tk peculiarity suggests that the 

Kubaschewski model used for Cp fittings does not work well at low temperatures near 

glass transition temperature where the distribution is no longer Gaussian. An improved 

energy landscape model that offers a better treatment near the “wing” of the phonon 

distribution is required. 

 

4.3 Generalized Sinusoidal Random Field Model 

  

The shortcoming of the 1/T2-type heat capacity models (e.g., Kubaschewski 

model), manifests from the poor treatment of the liquid landscape in the low temperature 

region near Tg. Johnson et al.[19] recently proposed a potential energy landscape model 

based on Generalized Sinusoidal Random Fields (GSRF) which offers prudent treatment 

of the energy landscape near the “tail” of the distribution: 

The average potential energy <e> = V0*tanh(-W/T), where -V0 is the energy of an 

ideal glass, W is the width of the logarithmic landscape and T is the temperature. At high 

temperatures T>W, the energy corresponds to V0W/T, which agrees with the Gaussian 
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distribution. The derivative of <e>, Cv
dT

ed
V

=
>< , is the specific heat, which takes the 

form Cv = (VoW/T2)sech2(W/T). Similarly, Cv displays the expected 1/T2 Gaussian 

dependence at high temperatures T>W.   

 To test the validity of the GSRF model, the ΔH for the Au49Ag5.5Pd2.3Cu26.9Si16.3 

was recalculated using only reliable data points. The experimental Cp values for both 

liquid and crystalline mixture (Figure IV-5) were extrapolated to only a few degrees. The 

experimental values of ΔCp (= Cp,liquid-Cp,crystal) were chosen from only the 550-750K 

temperature range because the total extrapolation of both Cp,liquid and Cp,crystal did not 

extend beyond 100 K of measured data points. The values for Cp,crystal near Tg shall be 

excluded, based on our recent findings that the Kubaschewski model could not accurately 

describe the glass behavior near Tg.      

  The calculated ΔH profile based on GSRF model is shown in Figure IV-8. The 

GSRF model generates an enthalpy profile that tracks the 1/T trend following the 

Gaussian model at high temperatures. While at low temperatures (around Tg and beyond) 

the GSRF model shows a well-defined “tail” that eventually plateaus to a certain value 

(Vo).  

 Figure IV-9 is a version of Figure IV-8 magnified to show only the laboratory 

temperature range. The corresponding experimental data points agree well with the GSRF 

model. Open circles represent ΔH values, which were calculated directly from 

Kubaschewski-fitted heat capacity data points that were chosen with minimal 

extrapolations. The GSRF model could explain the experimental data points well over all 

temperature ranges. The Gaussian fit could not capture the enthalpy data point near Tg as 
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expected. The error bars are set at 5% for all enthalpy values, which is comparable to the 

5.67% real experimental error obtained near Tg.    
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 Figure IV-8: The generalized sinusoidal random field (GSRF) model offers good  

prediction of ΔH over all temperatures. At high temperatures (T>W) the 

Gaussian contribution dominates, which gives rise to the 1/T term, which 

also agrees well with the original Gaussian fit. At lower T, ΔH takes the 

logarithmic form Votanh(-W/T).  The open circles represent calculated 

experimental results that have been extrapolated at most 100 K beyond the 

measured experimental values. The open boxes represent the heat of 

crystallization and heat of fusion measured experimentally.   
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Figure IV-9: Experimental data points are selected between 550-750K, which is the  

temperature range where the measured experimental values are 

extrapolated no more than 100 K. The ability to capture the trend of  ΔH 

during crystallization Tx up to Tf shows that the GSRF model offers a 

reliable mean to predict ΔH over a large temperature spectrum. Both 

Gaussian and Kubaschewski models only offer dependable results near Tf. 
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The fitting parameters for GSRF are Vo= 16000 J/g.atom (or 1924.5 K in 

temperature unit) and W=425 K. The value of Vo should agree with the Hinfinity fitting 

parameters used in Gaussian’s approximation (found on page IV-15) because these two 

values are high-temperature energy bounds. As summarized in Table IV-3, the value of 

Vo is 16000 J/g.atom while Hinfinity is 15580 J/g.atom. 

Moreover, VoW can be compared to the value σ, which refers to the standard 

deviation of the Gaussian landscape. From GSRF, VoW is 425x1924.5 ~ 818000 K2 in 

energy unit. The value for σ2  on the other hand is equal to 8502 ~ 723000 K2. All fitting 

parameters from the two models are in good agreement. These values are summarized in 

Table IV-3. 

 

Key Parameters GSRF Model Gaussian Model 

High temperature’s 

maximum energy bounds 

Vo = 16000 kJ/g.atom 

Vo = 1924.5 K 

Hinfinity = 155800 kJ/g.atom 

Width of the distribution VoW = 817913 σ2 = 722500, σ=850 

Energy barrier W = 425 W = 358 

 From W = σ2/Vo 

Table IV-3: Summary of key fitting parameters used in GSRF model and Gaussian model 
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Figure IV-10: The derivative of <e>, Cv
dT

ed
V

=
>< , is the specific heat which takes the  

form Cv = (VoW/T2)sech2(-W/T). Here, Cv calculated from the GSRF 

model is compared with the experimental heat capacity of the liquid (open 

squares) and Kubaschewski model (dash line).    

 

To further check the validity of the GSRF model, the heat capacity values Cv = 

(VoW/T2)sech2(W/T) are plotted using the values of Vo and W which were determined in 

an earlier enthalpy calculation (Figure IV-9). A constant 2.5kB is added to the Cv 

calculation as a baseline offset parameter for Cp-Cv difference (1kB) and kinetic energy 

contribution (1.5kB), which was not accounted for in the GSRF model. In Figure IV-10, 

the result (solid line) is shown comparing to Kubaschewski model (dashed line) and real 

experimental values (□).        
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 Our final validity check is the entropy difference (ΔS) calculation. We have 

demonstrated that the Kubaschewski model could not accurately describe the entropy 

change near Tg. As a result, the Kubaschewski model predicted the Kauzmann 

temperature (Tk) for Au-BMG to be higher than observed glass transition temperature 

(Tg) (as shown earlier in Figure IV-7). As shown in Figure IV-11, ΔS values calculated 

using the GSRF model and Kubaschewski model are plotted with respect to time. 
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Figure IV-11: ΔS calculated using GSFR and Kubaschewski models are plotted against  

temperature. Both models predict different values for Kauzmann 

temperature, where the entropy difference between liquid and crystal 

vanishes. The GSFR model shows a better approximation of ΔS near glass 

transition, which is confirmed by the fact that the experimental value of Tg 

is higher than Tk.      
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4.4 Gibbs Free Energy Comparison 

 

 We have now demonstrated that the Kubaschewski approximation remains 

accurate between temperatures within 100-200 K of Tm. Many authors have been using 

the same thermodynamic exercise to develop the thermodynamic driving force 

comparison among different glass forming liquids. The difference between Gibbs free 

energy of liquid and crystal can readily be obtained using the thermodynamic 

relationship: 

∫ ∫
−

−
−

Δ
+Δ−Δ−Δ=Δ

Tf

T

Tf

T

xl
pxl

Pfffxl dT
T

TC
TdTTCTSHTG '

'
)'(

')'(.)(      (equation IV-5) 

where ΔHf and ΔSf are the enthalpy and entropy of fusion respectively, Tf is the melting 

temperatures, generally taken as the temperature where the maximum of the first melting 

peak in DSC is located [21]. ΔCpl-x can be directly derived from the Kubaschewski fitting 

parameters of various BMGs, which can be readily found in various published articles. 

We have recently developed the Kubaschewski fits for both Au- and Pt-based BMGs and 

the following plot shows how Gibbs free energy differences in gold and platinum BMG 

are compared with other published alloys (Figure IV-12). 
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Figure IV-12: Gibbs free energy difference between the supercooled liquid and the  

crystalline mixture for different glass forming liquids. There is no obvious 

correlation between glass forming ability and ΔG projections.     

 

Busch et al. [16] demonstrated that the Gibbs free energy difference can be used 

as a tool to determine the GFA of the liquids. The best glass former should have the 

lowest driving force for crystallization (ΔGl-x) and therefore should be located at the 

bottom of the diagram illustrated in Figure IV-12. They found the correlation based on 

four metallic glass alloys. However, when the ΔGl-x values for Au-BMG and Pt-BMG are 

compared with other bulk glass forming liquids, the trend is violated. According to Busch 
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et al., the ΔG curve for Pt-BMG should have been located near the Vitreloy series, and 

the ΔG curve for Au-BMG should have been moved up the ΔG “ladder” to near Mg-

BMG because the critical casting thickness of both alloys is between 5-7 mm. Both 

deviations suggest that the ΔG comparison alone is not sufficient to explain glass forming 

ability. For example the correlation observed in Figure IV-12 is strongly affected by 

differences in the heat of fusion (ΔHf), which could range from 5 kJ/g.atom (Pd-Ni-Cu-P 

BMG) to 11.6 kJ/g.atom (Pt-Cu-Ni-P BMG).       

We propose the Gibbs free energies should be compared using the free energy 

change framework developed by Turnbull in his seminal paper in 1969: 

V
dT

T
dTC

TTHG r

Tr Tr

r

rp
mrmv

1)(
1 1 ⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ Δ
+ΔΔ−=Δ ∫ ∫ .       (equation IV-6) 

In equation IV-6, ΔHm is the molar heat of fusion, Tr is the reduced temperature (T/Tm), 

ΔTr is (Tm-T/Tm), ΔCp is the molar difference in heat capacity between the crystal and 

the liquid, and V is the molar volume of the crystal. [22] By rearranging equation IV-6 

using Tr=T/Tm substitution, the expression can be simplified into two contributing terms:   
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m

m m

/ /
1 .        (equation IV-7) 

Using equation IV-7, both contributing terms were quantitatively analyzed for all four 

BMGs investigated. As an example, the first and second term of equation IV-7 are plotted 

for comparison in Figure IV-13. The first term is represented by a line connected by open 

triangles, the second term by a solid line, and the resulting ΔG by a solid line connected 

by solid squares.     
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Figure IV-13: The Gibbs free energy differences are plotted using equation IV-7.  

Each of the two contributions is plotted separately. The double integral 

term is negligible near Tm which causes the ΔG values to be almost 

identical to ΔHm values near Tm. This finding also suggests that the 

second integral term could be neglected where T is near Tm.  
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As illustrated in Figure IV-13, the contribution from dT
T

dTCTmT

T

TmT

T

p∫ ∫ ⎥
⎦

⎤
⎢
⎣

⎡ Δ/ /
is 

negligible near the melting temperatures (+/- 100 K). Therefore Gibbs free energy could 

be further approximated as 

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ−=Δ

m
m T

THG 1 .              (equation IV-8) 

The final result gives a simple relationship between two unit-less entities:   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Δ
Δ 1

mm T
T

H
G .             (equation IV-9) 

 Equation IV-9 suggests that the normalized Gibbs free energies (ΔGl-x/ΔHm) 

could be used as a benchmark tool to compare the free energy differences between 

undercooled liquid and crystalline mixture among the different alloys. ΔGl-x for all four 

alloys were calculated using the equation IV-5 and then plotted using the relationship 

shown in equation IV-9. The term “-1” in equation IV-9 will be dropped for simplicity. 

Figure IV-14 shows the correlation between (ΔGl-x/ΔHm), T/Tm, and dc. 

 The correlation between ΔG/ΔHm and T/Tm between four vastly different alloy 

families appears to be universal. There is only one linear relationship, which suggests that 

there is only one universal ΔG/ΔHm for bulk metallic glass forming liquids. The finding 

is in contrast with previous findings that the difference in Gibbs free energy between 

liquid and crystal should be an indicator of GFA [16, 18, 23-26]. At temperatures near the 

melting point, our finding is in agreement with Turnbull’s approximation and Richard’s 

rule.  
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Figure IV-14: Normalized ΔG/ΔHm function is plotted against normalized temperature  

(T/Tm)  to show the comparison of  the Gibbs free energy difference 

between liquid and crystals among four bulk glass forming alloys. The dc 

values in parentheses indicate the maximum casting thickness of each 

alloy. 
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5. Discussions 

 

5.1 Heat Capacity and Its Relationship to Energy Landscape 

 

 To date, one of the most acceptable and handy frameworks for interpreting and 

understanding glass and glass forming liquid is the energy landscape which describes the 

potential energy function using topology of the potential energy hypersurface. Such 

concept has been introduced, developed, discussed, improved, and disputed over the past 

40 years[27-35]. Figure IV-15 (i) shows sections through the 3N+1 dimensional energy 

hypersurface of (a) strong and (b) fragile liquids where Z* represents a collective 

configuration coordinate[34]. As illustrated for both strong and fragile liquids, the 

deepest and the sharpest energy wells represent the lowest energy configuration which is 

crystal. All other minima (or wells) represent the mechanically stable (or meta-stable) 

arrangements of the particle in space or the configurational microstates which are glass. 

Figure IV-15 (ii), (iii) and (iv) represent respectively the level of excitation, 

configurational heat capacity and immediacy of Kauzmann’s crisis. The configurational 

entropy is related to the number of minima accessible to it at a given temperature. The 

ΔCp at Tg is the heat capacity increment due to gaining access to the configurational 

states and its value should scale with the height of the energy barriers. It is commonly 

found that fragile liquids have large changes in heat capacity at their Tg, implying highly 

degenerate landscapes[36] even quite close to Tk which is shown in Figure IV-15 (b). 

Angell argued that fragile liquids lack such specific bonding constraints and can therefore 

sample a greater variety of inherent structures[34].    
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The fact that our gold BMG alloy is showing the value of Tk very close to Tg and 

its abrupt change of ΔCp at Tg implies that our alloy system is very fragile. During 

cooling, the high density of minima can be found trapped near the “ideal glass” well 

which is believed to be the lowest (and most stable) energy well, comparable to that of 

crystal. Unlike other metallic glasses, gold BMG alloy presents the opportunity to study 

the glassy states near “ideal glass” state which was never before possible.  

The ideal glass, as shown in Figure IV-15 (i), corresponds to the lowest energy 

minima accessible by glassy configurons. The ideal glass state has been under heavy 

debates. Stillinger analytically presented that substances with molecules of bounded size 

interacting with physically reasonable potentials, an ideal glass transition is not 

possible[37]. Speedy and Debenedetti argued that this ideal state could be reached using 

infinitely slow densification[35, 38]. Angell and Rao believed that the ideal glass could 

be approached at 0 K[39] despite the fact that linear extrapolation, as shown in Figure IV-

15 (ii), suggests otherwise[34].  

It is important to note that as the temperature is increased, both vibrational and 

configurational contributions of a supercooled liquid’s heat capacity should be considered. 

A recent study by Johari shows that vibrational parts of the heat capacity can be 

determined using dynamic measurement as outlined in reference [40]. He found that there 

is no discontinuity in the vibrational parts of Cp on structural unfreezing in the Tg range 

and the change in Cp at Tg is entire due to change in the configurational parts[40]. In fact, 

the change in the vibrational parts of Cp and thermal expansivity (α) at Tg is both 

negligible, and the anharmonic contribution to α of glass and liquid is almost the same.   
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Figure IV-15: Sections through the 3N+1 dimensional energy hypersurface(i) of a strong 

          (a) and fragile (b) liquids. Z* is configuration coordinate. (ii),(iii), and (iv) 

           show level of excitation, configurational heat capacity, and immediacy of 

           Kauzmann entropy crisis. (Reproduced after [36] and [34])  
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6. Summary 

 

Poisson’s ratio values in BMGs tend to be higher than that of their crystalline 

counterparts. There are only three BMGs in two alloy families that behave differently and 

show drop in Poisson’s ratios in amorphous state. The common feature of these two 

systems may be that they are kinetically stabilized glasses. The GFA of these alloys is the 

direct result of increased Tg, which is accomplished by adding solute elements with a 

strong bonding nature into the melt. In particular, the Fe-BMG has seven constituents and 

the alloy is super-saturated with solutes. For the Au-BMG, Cu is added into alloy to 

primarily raise Tg from 40 ºC to 130 ºC while the liquidus temperature only changed 

from 363 ºC to 381 ºC.  

Both Fe-BMG and Au-BMG show the expected density values as calculated using 

molar volume-weighted average. Topologically, Au-BMG in particular is similar to that 

of Pt-BMG when atomic radii of each constituent are compared.     

Plasticity in BMGs may be related to the value of Poisson’s ratio. However, there 

is no universal value that determines the brittle-to-ductile transition for all BMG systems. 

Poisson’s ratios vary significantly with alloy systems and the correlation of Poisson’s 

ratios to plasticity can only be applied within the same alloy family. 

The Kubaschewski model for fitting Cp values is good for thermodynamic 

approximation near Tf. The model could not describe the behavior of Au-BMG near glass 

transition temperature. Generalized Sinusoidal Random Field theory offers better 

thermodynamic correlation over all temperature ranges. 
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The Gibbs free energy difference may not be the key to determining GFA of bulk 

glass forming alloys. The value of the ΔG/ΔHm ratio is universal for all liquids near Tm, 

which suggests that all metallic glass forming liquids may be the same 

thermodynamically near Tm. We have also found that the difference in Gibbs free energy 

alone could not explain the difference in GFA in different alloys. Most careful analysis is 

needed to fully understand the thermodynamic functions and their roles in determining 

glass forming ability.   
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