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Abstract

Ion channels are integral membrane proteins found in all cells that mediate the

selective passage of specific ions or molecules across a cell membrane.  These channels

are important in a diverse range of physiological processes, including signal transmission

in the nervous system, sensory perception, and regulation of vital systems, such as

circulation.  This thesis discusses the use of computational chemistry methods, such as

molecular dynamics (MD) and ab initio calculations, and experimental biochemical

techniques, such as site-directed mutagenesis, in vivo bacterial assays, chemical cross-

linking, and circular dichroism spectroscopy, in tandem to elucidate ion channel

structure-function relationships.  This research was catalyzed by the solving of atomic

resolution crystal structures of the mechanosensitive channels of large and small

conductance (MscL and MscS) by the Rees group.  Although interesting themselves,

these bacterial channels also provide good model systems for considering more complex

eukaryotic channels.

MscL is an ion channel gated only by membrane tension.  Initial studies of MscL

verified the relevance of the crystal structure conformation under physiological

conditions and compared different MscL homologues.  Other work began to elucidate

potentially unique structural and functional roles of the M. tuberculosis MscL C-terminal

helical bundle.  As well, interactions between the MscL channel protein and surrounding

lipid and the potential relevance of helical kinking in MscL gating pathways were

investigated.  MscS is also gated by membrane tension, but its gating can be modulated

by changes in transmembrane potential.  Thus, studies on MscS began to identify the
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specific amino acid residues that are responsible for giving the channel its voltage

sensitivity.  Finally, computations predicting the conformation of nicotine in different

solvent environments are discussed.  Nicotine is a small molecule ligand that binds to and

gates nicotinic acetylcholine receptors, and a thorough understanding of nicotine

structure could aid efforts to elucidate receptor structure-function relationships and

design new pharmaceuticals.
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