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Abstract

We study Poisson and Lie-Poisson structures on the diffeomorphism groups with a

smooth metric spray in connection with dynamics of nonlinear PDEs. In particular,

we provide a precise analytic sense in which the time t map for the Euler equations

of an ideal fluid in a region of Rn (or on a smooth compact n-manifold with a bound-

ary) is a Poisson map relative to the Lie-Poisson bracket associated with the group of

volume preserving diffeomorphisms. The key difficulty in finding a suitable context

for that arises from the fact that the integral curves of Euler equations are not dif-

ferentiable on the Lie algebra of divergence free vector fields of Sobolev class Hs. We

overcome this obstacle by utilizing the smoothness that one has in Lagrangian repre-

sentation and carefully performing a non-smooth Lie-Poisson reduction procedure on

the appropriate functional classes.

This technique is generalized to an arbitrary diffeomorphism group possessing

a smooth spray. The applications include the Camassa-Holm equation on S1, the

averaged Euler and EPDiff equations on the n-manifold with a boundary. In all cases

we prove that time t map is Poisson on the appropriate Lie algebra of Hs vector fields,

where s > n/2 + 1 for the Euler equation and s > n/2 + 2 otherwise.
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Chapter 1

Introduction

Hamiltonian structures play a fundamental role in mathematical physics. It’s enough

to recall a few examples: classical mechanics, electrodynamics, quantum mechanics,

hydrodynamics and general relativity. However, when applying the classical methods

and technics of symplectic geometry to PDEs, one faces significant difficulties, both

analytical and conceptual.

Part of the problem is that symplectic forms that arise in many applications are

weak symplectic forms on infinite dimensional manifolds. More importantly, often

the integral curves of PDEs are not differentiable in time in the function spaces one

would normally use; in the linear case, this corresponds to the fact that the opera-

tors involved are unbounded. Stock examples include the Euler and Klein-Gordon

equations. When dealing with such systems, one has to pay careful attention to the

domains of definitions as many standard formulae become only formal relationships.

Their justification is often cumbersome and requires some ad hoc methods.

The goal of this research is to contribute to the development of techniques that are

useful for the treatment of nonlinear PDEs with non-differentiable (in time) solutions

and build a framework that allows a systematic and rigorous study of such systems

and is applicable to the broad range of physical phenomena. Previous work in this

vein is Chernoff and Marsden [1974].

The application that provided the main inspiration and motivation for our re-

search is the Euler equation for an ideal fluid on a compact manifold. While the

work of Chernoff and Marsden developed the Hamiltonian dynamics for unbounded
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vector fields in a very general context, the assumptions built into the theory are too

restrictive to allow its application to the Euler equation (and many other important

PDEs).

Specifically, our goal was to understand in what exact sense (if any) the flow

generated by the Euler equation consists of Poisson maps. It has been known since

the classic work of Arnold [1966] (see also Arnold and Khesin [1998]; Marsden and

Ratiu [1999]) that formally the Euler equation of an ideal fluid could be viewed as

a Hamiltonian system. Later Ebin and Marsden [1970] showed that in appropriate

functional spaces (groups of volume preserving diffeomorphisms of Sobolev class Hs

with s > n/2 + 1 to be precise) the flow of the Euler equation in the Lagrangian

representation is generated by a smooth vector field. This work also shows that

one can perform a reduction to the Eulerian representation to rigorously derive that

solutions obtained this way satisfy the Euler equation, however, there is a derivative

loss due to the reduction procedure.

While a Poisson nature of the flow of the Euler equation was clear from the results

in Ebin and Marsden [1970], it was not so clear that there is a well-defined Poisson

context for that. In fact, the works of Lewis et al. [1986] (and many subsequent

papers by other authors) show that in the Poisson context this derivative loss is a

nontrivial issue in defining a good sense in which one has a Poisson manifold and in

which the Euler equations then define a Hamiltonian system.

In the thesis we fill this gap by means of a non-smooth Lie-Poisson reduction

procedure on the appropriate classes of functions. The Euler equation in its classical

(Eulerian) form is the equation of the geodesic motion of L2 metric on the group of

volume preserving diffeomorphisms translated to the identity of the group via the

map

π(η̇, η) = η̇ ◦ η−1.

To justify the formal insight that the flow of Euler equation is Poisson due to the

theory of Lie-Poisson reduction, one has to overcome two difficulties. The first hurdle

is that the group of volume preserving diffeomorphisms is only a weak symplectic
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manifold and therefore does not carry a Poisson bracket in any obvious sense without

special ad hoc hypotheses, such as “the needed functional derivative exists,” which

have long been recognized as awkward at best.

The second hurdle is that the groups of diffeomorphisms are not Lie groups in

the usual sense (left multiplication is not smooth). This results in the fact that

the reduction map π is not smooth, it is not even of class C1. Therefore, the well-

developed theory of Poisson and Lie-Poisson reduction is not directly applicable.

We overcome these difficulties by constructing the Poisson bracket on the tangent

bundle of the diffeomorphism group in a particular way and exploiting the special

form of the reduction map π.

The key technical ingredient that allows this idea to work is the result proved in

the Chapter 3. There we show that the tangent bundle of a weak Riemannian man-

ifold carries a Poisson structure in an appropriate sense, provided that the manifold

possesses a smooth Riemannian connection. This structure, defined on the subalge-

bra of the smooth functions, retains the essential dynamical properties of a ”true”

Poisson bracket, including the Jacobi identity and the fact that flows of Hamiltonian

vector fields are Poisson maps, and, of course, the energy is conserved. Moreover, the

bracket is related to the canonical weak symplectic form in the way that one would

expect.

The next important step is to introduce a Poisson structure on the Lie algebra

itself. As one would expect from the bracket derived via a type of Lie-Poisson reduc-

tion, this bracket is closely related to the formal Lie-Poisson bracket on the dual of

the Lie algebra.

Further, we extend this technique from the group of volume preserving diffeo-

morphisms equipped with L2 metric to the general diffeomorphism groups and right-

invariant metrics with the smooth spray. This allows us to provide the precise ana-

lytical sense in which the time t map for the several important PDEs associated with

diffeomorphism groups is Poisson relative to the Lie-Poisson bracket on the appropri-

ate space of vector fields.

We consider the following equations:
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1. The Euler equation on a smooth compact n-manifold M with the boundary

∂M :
∂ut
∂t

+∇utut = − grad pt,

where div u = 0 and u is parallel to ∂M .

The map u0 → ut is Poisson on the space of Hs (s > n/2 + 1) divergence free

vector fields.

2. The Camassa-Holm (CH) equation on S1—see Camassa and Holm [1993]:

ut − utxx = −3uux + 2uxuxx + uuxxx.

The map u0 → ut is Poisson on the space of Hs (s > 5/2) vector fields.

3. The averaged Euler equations (or the LAE-α equations)—see Holm, Marsden,

and Ratiu [1998a,b]:

∂t(1− α2∆)u+ (u · ∇)(1− α2∆)u− α2(∇u)T ·∆u = − grad p ,

where div u = 0 and u satisfies appropriate boundary conditions, such as the

no-slip conditions u = 0 on ∂M .

The map u0 → ut is Poisson on the space of Hs (s > n/2 + 2) divergence free

vector fields.

4. The EPDiff equation for the H1 metric (also called the averaged template

matching equation) on a compact manifold M—see Holm and Marsden [2003]

and Hirani et al. [2001]:

∂t(u− α2∆)u+ u(div u)− α2(div u)∆u+ (u · ∇)u

− α2(u · ∇)∆u+ (Du)T · u− α2(Du)T ·∆u = 0,

with appropriate boundary conditions, such as the no-slip conditions u = 0 on

∂M . The EPDiff equations reduce to the CH equations in the case M = S1.



5

The map u0 → ut is Poisson on the space of Hs (s > n/2 + 2) vector fields.

These equations may be derived as the reduction to the identity of the geodesic

motion on the appropriate diffeomorphism group (see, for example, Camassa and

Holm [1993], Khesin and Misiolek [2003] and Misiolek [1998, 2002] for the case

of the CH equations), and the preceding references for the other equations. In the

case of the averaged Euler equation ”appropriate” is the group of volume preserving

diffeomorphisms equipped with the right-invariant H1 metric and the whole group of

diffeomorphisms with the right-invariant H1 metric for the EPDiff and CH equations.

The smoothness of the spray for the CH, EPDiff and LAE-α equations on the regions

with no boundary is due to Shkoller [1998] and for the regions with a boundary to

Marsden et al. [2000]. The similar result for the Euler equation goes back to Ebin

and Marsden [1970].

It is essential that in all cases we introduce a Lie-Poisson bracket directly on the

Lie algebra and prove that the flow that the equation generates on the Lie algebra

is Poisson. This is an important difference with the usual Lie-Poisson reduction

performed on the cotangent bundle of the group.

While the reduction procedure itself is more natural and easier to carry out on the

cotangent bundle, the flows in question are not well-defined there since the necessary

existence and uniqueness theorems are missing and there is very little hope to establish

them. For example, in order to rigorously apply the Lie-Poisson reduction on the

cotangent bundle to the PDEs that we consider, one would need to prove the existence

and uniqueness theorems in negative Sobolev spaces, which is quite unlikely. The

situation might be different for the KDV equation, where the existence was shown in

class H−3/10+ε (see Colliander et al. [2001]).

It should be noted that our results apply directly to the regular solutions (i.e., the

ones that are obtained as a reduction of the geodesic motion on the Lie group). It

is known that the solutions of the above PDEs may lose regularity in finite time (see

Camassa and Holm [1993] for the case of the CH equation). It is an important open

question whether one could carry out a similar reduction procedure for these singular
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solutions.

This work is organized as follows. In Chapter 2 we collect various background

material that we will use. These facts are common knowledge and we omit the

proofs. In Chapter 3 we carry out our programm for the Euler equation. The material

contained in this chapter is the subject of the article by Vasylkevych and Marsden

[2003]. The construction of the Poisson bracket on a Riemannian manifold with the

smooth spray is also included here in Section 3.3. This result is important to all the

applications that we consider. It is included in Chapter 3 to make it self-contained. In

Chapter 4 we generalize the results of the Chapter 3 to general diffeomorphism groups.

In the Chapter 5 we consider the Camassa-Holm, Euler-α and EPDiff equations and

prove that the flows they generate are Poisson. This is the direct application of the

general theory developed in Chapter 4 and Section 3.3. We conclude with a short

discussion of the results in Chapter 6.
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Chapter 2

Background

In this chapter we collect the background material that will be extensively used in

this work. The majority of the results is a common knowledge about Riemannian

manifolds and diffeomorphism groups. This is certainly not a complete exposition,

but rather a list of formulae and definitions to be used later. In Section 2.1 we recall

the basic facts and concepts of Riemannian geometry, paying special attention to the

differences that one encounters dealing with the weak Riemannian metrics on infinite

dimensional manifolds. Most of the results here could be found in Sakai [1996]; Do

Carmo [1992]; Lang [1985]. In Section 2.2 we recall how the operators of vector

calculus are defined in a manifold setting and their basic properties. In particular

we remind the construction of Laplace de Rham operator and Bohner’s formula. In

this section we follow Abraham, Marsden and Ratiu [1988] and Rosenberg [1997].

In Section 2.3 we define groups of diffeomorphisms used throughout this thesis and

describe their Lie group structure. These results are from Ebin and Marsden [1970]

and Marsden et al. [2000].

2.1 Riemannian manifolds

Let M be a Banach manifold., i.e., a manifold modelled on a Banach space E. The

tangent space to M at a point x is denoted TxM and T ∗
xM is the dual of TxM .
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A weak Riemannian structure on M is a smooth assignment

x→ 〈·, ·〉x

of a nondegenerate inner product (not necessarily complete) to each tangent space

TxM . Here, the smoothness means that in the local charts the map

x ∈ U ⊂ E → 〈·, ·〉x ∈ L2(E × E,R)

is smooth, where L2(E × E,R) is the Banach space of bilinear maps;

nondegeneracy of an inner product means that

〈v, u〉x = 0 ∀u ∈ TxM

if and only if v = 0.

A weak Riemannian manifold is a manifold endowed with a weak Riemannian

structure.

A Riemannian manifold (or strong Riemannian manifold) is a weak Rieman-

nian manifold for which the map TxM → T ∗
xM , given by

v → 〈v, ·〉x ,

is a surjection.

The distinction between weak Riemannian and Riemannian manifolds is important

only in infinite dimensional case.

The Riemannian connection. The weak Riemannian metric defines a unique

Riemannian connection (also called Levi-Civita connection) ∇ on M by the identity

2 〈∇XY, Z〉 = X 〈Y, Z〉+ Y 〈X,Z〉 −Z 〈X, Y 〉+ 〈Z, [X, Y ]〉 − 〈X, [Y, Z]〉 − 〈Y, [X,Z]〉

(2.1)

for arbitrary vector fields X, Y, Z on M . In equation 2.1 X 〈Y, Z〉 means differentia-
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tion of a function x → 〈Y (x), Z(x)〉x by a the vector field X and [Y, Z] is the usual

bracket of the vector fields Y, Z.

The Riemannian connection satisfies the following properties:

∇XY −∇YX = [X,Y ], (2.2)

X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 . (2.3)

The vertical lift. Let u, v ∈ TxM . The vertical lift of u with respect to v is

defined as ulv ∈ TvTxM , such that

ulv =
d

dt
(v + tu).

In local coordinates

ulv = (x, v, 0, u).

The geodesic spray. Let τ : TM → M be a natural projection. The geodesic

spray on M is a vector field on TM , the tangent bundle of M , satisfying the equation

d

dt
γ̇t = S(γ̇t),

where γt is a geodesic on M and γ̇t is its velocity vector.

The Christoffel map Γx : E ×E → E is defined in a chart U around x ∈M by

the relationship

∇ZY (x) = DY · Z(x) + Γx(Z(x), Y (x)). (2.4)

In finite dimensions one defines the Christoffel symbols by the formula

ΓkijZ
iY j ∂

∂xk
= Γx(Z, Y ),

where Z = Zi ∂
∂xi and Y = Y i ∂

∂xi are vector fields on M (as usually, the summation

on repeated indexes is understood here and below).

If connection is Riemannian, the Christoffel map is symmetric.
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The connector map (see Eliasson [1967]; Dombrovski [1962]). The connection

∇ on M defines a map K : T 2M → TM such that in a chart U around x ∈M

K(x, z, y, w) = (x,w + Γx(y, z)) ∀z, y, w ∈ E. (2.5)

Conversely, the connector K uniquely defines the connection ∇ on M by the formula

∇ZY = K[TY · Z]. (2.6)

We call the connection on M smooth if the corresponding connector map is a smooth

bundle map.

The relationship between the geodesic spray and the connection is given by equal-

ity

S(Y ) = TY · Y − (∇Y Y )lY (2.7)

for any vector field Y on M . In a chart U around x ∈ M , the geodesic spray can be

expressed in terms of Christoffel map in the following way:

S(x, v) = (x, v, v − Γx(v, v) ∀v ∈ E. (2.8)

Due to Formulae 2.5, 2.8 the following statements are equivalent:

1. The spray S on M is smooth;

2. The connection ∇ on M is smooth;

3. For every chart U in M , the Christoffel maps Γ : U × E × E → E are smooth.

It should be noted that the Levi-Civita connection of a weak Riemannian metric

is not automatically smooth.

The Riemannian curvature tensor R on M is defined by the equality

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2.9)
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for arbitrary vector field X, Y, Z on M . It is easy to show that, in fact, R depends

only on point values of X,Y, Z and the following holds:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0, (2.10)

〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉 , (2.11)

R(X, Y )Z = −R(Y,X)Z, (2.12)

〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉 . (2.13)

These are called Bianchi identities.

The Ricci curvature tensor is well-defined on a finite dimensional manifold as

a trace of Riemannian curvature tensor, i.e.,

Ric(y, z) = Tr(w → R(w, y)z).

2.2 Vector calculus on Riemannian manifolds

In this section we assume that M is a compact orientable Riemannian manifold of

finite dimension n. The metric is defined by a symmetric metric tensor g via

〈Y, Z〉x = gij(x)Y
iZj.

for arbitrary vector fields Y = Y i ∂
∂xi , Z = zi ∂

∂xi on M .

The flat operator [ : Y → Y [ maps a vector field Y on M to a 1-form Y [, where

Y [(v) = 〈Y (x), v〉x ∀v ∈ TxM.

The sharp operator ] : β → β] maps a 1-form β on M to a vector field satisfying

the equality 〈
β], v

〉
x

= β(v) ∀v ∈ TxM.
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The flat and sharp operators provide a natural isomorphism between the spaces of

vector fields and 1-forms on M .

In coordinates,

u[ = giju
jdxi

β] = gijβj
∂

∂xi
,

where gijgjk = δik and δik is a Kronecker’s symbol.

The volume form is a nowhere vanishing n-form on M . Such form is guaranteed

to exist on an orientable manifold. On a Riemannian manifold there is a canonical

volume form µ defined by the metric. In a chart, µ is given by the expression

µ = |det[gij]|1/2dx1 ∧ · · · ∧ dxn, (2.14)

where dx1 ∧ dx2 is a wedge product of the forms dx1 and dx2. Further we assume

that the volume form µ is chosen to be canonical, i.e., given by 2.14.

The pullback operator. Suppose ψ : M → N is a C1 map from a manifold M

to a manifold N . The pullback operator ψ∗ maps a k-form β on N to a k-form ψ∗β,

where

(ψ∗β)(x)(v1, . . . , vk) = β(ψ(x))(Tψ · v1, . . . , Tψ · vk) ∀v1, . . . , vk ∈ TxM.

The Lie derivative. Let Λk denotes the bundle of k-forms on M . For a vector

field Y on M with a flow Ft, the Lie derivative LY : Λk → Λk is defined by

LY β = d/dtt=0F
∗
t β ∀β ∈ Λk.

The divergence of a vector field Y on M is a function div Y , such that

LY µ = (div Y )µ.
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By properties of the Lie derivative, for a function f : M → R

LY (fµ) = (Y f)µ+ (f div Y )µ. (2.15)

The gradient of a function f is a vector field on M , given by the formula

∇f = grad f = (df)],

where d denotes the exterior derivative.

The metric tensor induces the scalar product on the space of k-forms in the fol-

lowing way:

〈α, β〉 =
∑

i1<···<ik

αi1...ikg
i1j1 . . . gikjkβj1...jk

for all α, β ∈ Λk.

The codifferential δ : Λk+1 → Λk is defined as an adjoint of d, that is,

∫
M

〈dα, β〉µ =

∫
M

〈α, δβ〉µ (2.16)

for all α ∈ Λk, β ∈ Λk+1, (k > 0) and δ ≡ 0 on functions.

The divergence and codifferential are related by formula

div Y = −δY [.

The covariant derivative. The Riemannian connection onM defines a covariant

derivative also denoted ∇, given on 1-forms by the formula

Y (β(Z)) = (∇Y β)(Z) + β(∇YZ) (2.17)

for arbitrary vector fields X, Y and a 1-form β. Hence, in coordinates

∇Y β = −ΓijkY
jβidx

k, (2.18)
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where Y = Y i ∂
∂xi , β = βidx

i.

Let Y be a vector field. Define the contraction operator iY : Λk → Λk−1 by

iY β = β(Y, · , · · · , · ) ∀β ∈ Λk.

We will write ∇β for a 2-form, given by the equality

iY β = ∇Y β.

The Laplace de Rham operator ∆R : Λk → Λk on a k-form β is defined as

∆Rβ = δdβ + dδβ. (2.19)

Taking into account the isomorphism between the 1-forms and vector fields, the For-

mula 2.19 also defines the Laplacian operator ∆R on vector fields via

∆RY = (∆R(Y [))].

Notice, that δY [ = 0 for a divergence free vector field Y , hence, in that particular

case,

∆RY = δdY [.

The Rough Laplacian ∆̂ : Λ1 → Λ1 is defined on 1-forms by the equality

β̂ = −gij∇ ∂

∂xi
∇ ∂

∂xj
β. (2.20)

The Ricci operator Ric : Λ1 → Λ1 on 1-forms is induced by Ricci curvature in

the following way:

Ric(β) = Ric(β], ·).

For a vector field Y ,

Ric(Y ) = [Ric(Y []] = [Ric(Y, ·)]].
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It’s easy to see that Ric is a self-adjoint operator on the vector fields with respect to

the Riemannian metric. Indeed,

〈Ric(Y ),W 〉 = Ric(Y,W )

= Ric(W,Y )

= 〈Ric(W ), Y 〉 .

It is rather troublesome to calculate the Laplace de Rham operator in coordi-

nates directly from definition. The following theorem simplify this task by expressing

Laplace de Rham operator in terms of the rough Laplacian and Ricci curvature.

Theorem 2.1. Bohner’s formula (see Rosenberg [1997]). For 1-form β

∆Rβ = ∆̂β + Ric(β).

2.3 Review of diffeomorphism groups

In this section we sketch the construction of diffeomorphism groups and manifolds

of mappings following Ebin and Marsden [1970] and recall some of the important

properties of these groups.

The manifold structure of diffeomorphism groups. Let M be a compact

oriented smooth n-dimensional manifold, possibly with C∞ boundary ∂M . Let τ̃ :

E →M be a vector bundle over M . Then, one can define in the usual way a Hilbert

space Hs(E) of section of E of Sobolev class s.

The Sobolev embedding theorem states that if k > 0 and s > n/2 + k, then

there is a continuous inclusion Hs(E) ⊂ Ck(E). Hence, for s > n/2, it makes

sense to talk about Hs maps from one manifold to another. Given a Riemannian

metric on a manifold N without a boundary and its associated exponential map

exp : TN → N , there is a natural way to construct the charts for Hs(M,N). For a
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function f ∈ Hs(M,N) we define

TfH
s(M,N) = {g ∈ Hs(M,TN)| τN ◦ g = f},

where τN : TN → N is the canonical projection on N . The exponential map expMN :

TfH
s(M,N) → Hs(M,N) is defined by

expMN(g) = exp ◦ g.

It’s easy to check that this is indeed a chart from a neighborhood of 0 in TfH
s(M,N)

to a neighborhood of f in Hs(M,N). This construction defines a manifold structure

on Hs(M,N) independent of the metric chosen.

Suppose M is a compact without boundary. The set C1D of C1 diffeomorphisms

of M is open in C1(M,M) and it is a topological group. For s > n/2 + 1 one can set

Ds = Hs(M,M) ∩ C1D.

Then, (see Ebin [1966])

Ds = {η ∈ Hs(M,M)| η is bijective and η−1 ∈ Hs(M,M)} (2.21)

is open in Hs(M,M) and is a topological group.

If M has a boundary, one cannot form a smooth manifold Hs(M,M) as above.

However, one can still define Ds by Formula 2.21, modifying the argument in the

following way. Embed M in a compact manifold M̃ without a boundary, so that the

interior and the boundary of M are submanifolds of M̃ . For example, one can take

M̃ to be the double of M . Then Hs(M, M̃) is a smooth manifold as above and we

set

Ds = C1D ∩Hs(M, M̃).

Formula 2.21 is still true in that case as shown in Ebin and Marsden [1970].

Ds as a right Lie group. Ds is a topological group with a group operation being
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a composition. The right multiplication

Rη : Ds → Ds,

Rη(ξ) = ξ ◦ η

is a smooth map for each η ∈ Ds. The tangent map of Rη, TRη : TDs → TDs is

given by the expression

TRηX = X ◦ η.

The left multiplication Lη : Ds → Ds,

Lη(ξ) = η ◦ ξ

is not smooth. Lη is of class C l as a map Ds+l → Ds (l ≥ 0) and its tangent is given

by

TLηX = Tη ◦X.

The inverse map η → η−1 is continuous on Ds and is of class C l as a map Ds+l → Ds.

If ηt is a C1 curve in Ds+l, l ≥ 1, then

d

dt
η−1
t = −Tη−1

t ◦
[
d

dt
ηt

]
◦ η−1

t .

As left multiplication is not smooth, Ds is not a Lie group. However, one can still

define a Lie algebra structure at the identity of Ds using right-invariant vector fields.

The identity of the group is the map e : M → M , e(m) = m. The tangent space

at the identity is

TeDs = {u ∈ Hs(M,TM) | τ ◦ u = e and u‖∂M},

where τ : TM → M is a canonical projection. This is the space of Hs vector fields

on M that are parallel to the boundary (the later requirement is dropped if M does

not have a boundary).
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The tangent space at η is defined by a similar relationship:

TηDs = {u ∈ Hs(M,TM) | τ ◦ u = η and u‖∂M}.

For u ∈ TeDs, we define the right-invariant vector field Xu on Ds as follows:

Xu(η) = TRηu = u ◦ η.

The bracket of vector fields on Ds induces a Lie bracket [·, ·]L on TeDs in the usual

way:

[u, v]L ≡ [Xu, Xv](e) ∀u, v ∈ TeDs.

It’s easy to check that

[Xu, Xv](e) = [u, v], (2.22)

where [u, v] is a usual bracket of vector fields u, v on M .

Subgroups of Ds. We will mention several subgroups of Ds that are impor-

tant for the treatment of PDEs with constraints, such as boundary conditions or

incompressibility.

Let µ be the volume form on M . The group of volume preserving diffeomorphisms

Ds
µ = {η ∈ Ds| η∗µ = µ}

is a closed submanifold of Ds and a right Lie subgroup. Its Lie algebra Xs
div is a space

of Hs divergence free vector fields, i.e,

Xs
div = TeDs

µ = {u ∈ TeDs| div u = 0}.

The other important subgroups are

Ds
µ,0 = {η ∈ Ds

µ| η(m) = m for m ∈ ∂M}
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with the Lie algebra

TeDs
µ,0 = {u ∈ Xs

div|u = 0 on ∂M};

Ds
0 = {η ∈ Ds| η(m) = m for m ∈ ∂M} (2.23)

with the Lie algebra

TeDs
0 = {u ∈ TeDs|u = 0 on ∂M}.



20

Chapter 3

Euler equation of an ideal fluid

This chapter is the content of the article by Vasylkevych and Marsden [2003]. Here

we study the Euler equation of an incompressible fluid. We establish that the flow

generated by this equation on the space of divergence free vector fields is Poisson.

This is the Theorem 3.25. Another key result is the Theorem 3.4 in Section 3.3.

It has the following structure. In Section 3.1 we establish the connection between

the Euler equation and manifolds of diffeomorphisms. Then, we recall the basic ideas

of Poisson reduction in Section 3.2. Our results are presented in next two sections.

In Section 3.3 we prove that tangent bundle of a weak Riemannian manifold carries

a Poisson structure in an appropriate sense, provided that the manifold possesses a

smooth Riemannian connection. The later requirement is fulfilled on the groups of

diffeomorphisms according to the work of Ebin and Marsden [1970]. In Section 3.4 we

utilize this result to show that the flow of Euler equation is Poisson in an appropriate

sense.

3.1 Solutions of the Euler equation

In this section we present some classical results concerning the Euler equation that

motivated our study. The notation and exposition follows Ebin and Marsden [1970].

The Euler equations on compact manifold are traditionally formulated in the

following way. Let M be a compact Riemannian n-manifold possibly with boundary

∂M . Find a time dependent vector field u, (which has an associated flow denoted ηt)
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such that

1. u0 is a given initial condition with div u0 = 0

2. The Euler equations hold:

∂ut
∂t

+∇utut = − grad pt (3.1)

for some scalar function pt : M → R (the pressure),

3. div ut = 0, and

4. u is parallel to ∂M .

It is standard that above equation can be formally rewritten as an ODE on the

space of divergence free vector fields with a derivative loss. But it was discovered

by Ebin and Marsden [1970] that this is literally true with no derivative loss in

Lagrangian representation. We recall how this proceeds. Let µ be a volume form on

the manifold M . Let Hs(M,N) denote the space of mappings of Sobolev class s from

an n-manifold M to a manifold N . For s > n/2 + 1, let

Ds = {η ∈ Hs(M,M) | η is bijective and η−1 ∈ Hs(M,M)} and

Ds
µ = {η ∈ Ds | η∗µ = µ}.

Then both Ds,Ds
µ are smooth infinite dimensional manifolds and topological groups,

moreover Ds
µ is a closed submanifold and a subgroup of Ds.

Let τ̃ : TDs
µ → Ds

µ and τ : TM → M be the canonical projections and let

e : M →M, e(m) = m be the identity element of the groups Ds
µ,Ds. Then

TηDs = {u ∈ Hs(M,TM) | τ ◦ u = η and u‖∂M},

TeDs
µ = Xs

div(M) = {u ∈ Hs(M,TM) | τ ◦ u = e, div u = 0 and u‖∂M},
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where Xs
div(M) denotes the space of Hs divergence free vector fields on M that are

parallel to the boundary.

A given Riemannian metric on M induces a right-invariant weak Riemannian

metric on Ds
µ given by

〈X, Y 〉η =

∫
M

〈X(m), Y (m)〉η(m) µ(m) (3.2)

for X, Y ∈ TηDs
µ where scalar product under the integral sign is taken in M .

As was shown in Ebin and Marsden [1970], Ds
µ possesses a smooth Riemannian

connection and, as a consequence, a smooth spray, which we will denote S.

Proposition 3.1. (Ebin and Marsden [1970]) For s > (n/2)+1, the weak Riemannian

metric (3.2) has a C∞ spray S : TDs
µ → TTDs

µ. Let Ft : TDs
µ → TDs

µ be the (local,

C∞) flow of S. Let vt = Ft(u0) (the material velocity field) and ηt = τ̃(vt) (the

particle position field). Then the solution of the Euler equation with initial condition

u(0) = u0 is given by

ut = vt ◦ η−1
t .

From the properties of the diffeomorphism group, one sees that this result shows

that the Euler equations (3.1) are well posed in Hs in Eulerian representation.

3.2 Motivation: the Poisson reduction theorem

First, recall the following basic and simple result about Poisson reduction (see, for

example, Marsden and Ratiu [1999]).

Suppose that G is a Lie group that acts on a Poisson manifold P and that for

each g ∈ G the action map Φg : P → P is a Poisson map. Suppose that the quotient

P/G is a smooth manifold and the projection π : P → P/G is a submersion. Then,

there is a unique Poisson structure {·, ·} on P/G such that π is a Poisson map. It is

given by

{f, k} ◦ π = {f ◦ π, k ◦ π}P ∀k, f ∈ F(P/G),
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where {·, ·}P is a Poisson bracket in P and F(P/G) is a set of smooth functions on

P/G.

If XH is a Hamiltonian vector field for a G-invariant Hamiltonian H ∈ F(P ),

then π also induces reduction of dynamics. There is a function h ∈ F(P/G) such

that H = h ◦π. Since π is a Poisson map it transforms XH on P to Xh on P/G, that

is, Tπ ◦XH = Xh ◦ π. Denoting the flow of XH by Ft and the flow of Xh by F̃t we

obtain commutative diagram

P
Ft−−−→ Pyπ

yπ

P/G
F̃t−−−→ P/G

Our strategy is to apply the above procedure to the context of fluids. To do so,

define the map π : TDs
µ → Xs

div via

π(η, v) = v ◦ η−1,

where η ∈ Ds
µ; (η, v) ∈ TηDs

µ; τ ◦ v = η. Let F̃t : Xs
div → Xs

div be given by

F̃t(v) = π ◦ Ft(v)

for v ∈ Xs
div. By Proposition 3.1, F̃t is the flow of Euler equation on Xs

div, i.e., ut =

F̃t(u0) satisfies the Euler equations (3.1).

It is clear from the preceding developments that Ft (as a flow of a spray) is a flow

of Hamiltonian vector field on TDs
µ. The following commutative diagram

TDs
µ

Ft−−−→ TDs
µyπ

yπ

TeDs
µ

F̃t−−−→ TeDs
µ

suggests that the flow of Euler equation itself, which is obtained from Ft via Poisson

reduction, should be a Hamiltonian flow in the sense of Poisson manifolds and this is

certainly formally true (see, for instance Lewis et al. [1986] for both the case considered
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here as well as the case of free boundary problems).

However, as noted in this reference and elsewhere, there are difficulties in finding

the right class of functions so that one gets a Poisson structure in a precise sense. To

justify the formal insight in precise function spaces, one has to overcome two hurdles.

The first hurdle is that TDs
µ is only a weak symplectic manifold, and therefore

does not necessarily carry a Poisson bracket in any obvious way without special ad

hoc hypotheses such as “the needed functional derivatives exist,” which have long

been recognized as awkward at best.

The second hurdle is that TDs
µ is not a Lie group in the usual sense (left multi-

plication is not smooth), and π is not a smooth map (inversion in Ds
µ is not smooth).

Therefore, the well-developed theory of Poisson and Lie-Poisson reduction is not di-

rectly applicable in this case, even though the loss of derivatives one suffers from

these transformations is well understood.

The main point of this paper is to resolve these difficulties in what we believe is

a satisfactory way. We do this in the following sections.

3.3 Poisson structures on weak Riemannian man-

ifolds

Let Q be a weak Riemannian manifold modelled on Banach space E with metric 〈·, ·〉.

Then TQ possesses a canonical weak symplectic form that is given in charts by the

following standard formula (see, e.g., Marsden and Ratiu [1999]):

Ω(η, e)((e1, e2), (e3, e4)) = 〈e1, e4〉η − 〈e2, e3〉η +Dη 〈e, e1〉η · e3 −Dη 〈e, e3〉η · e1,

where η ∈ Q, e, e1, e2, e3, e4 ∈ E.

For a smooth function f : M → R on a (strong) symplectic manifold (M,Ω1), let

Xf denote its Hamiltonian vector field. Then

{f, g} = Ω1(Xf , Xg) (3.3)
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makes (M, {·, ·}) into a Poisson manifold.

Since Ω is weak, Formula 3.3 does not automatically define Poisson bracket {f, g}

for arbitrary functions f, g ∈ F(TQ) since Xf ,Xg may fail to exist and even if they

do, one has to make additional hypotheses to obtain the Jacobi identity.

However, under the two additional hypotheses:

1. Q has smooth Riemannian connection;

2. The inclusion TηQ→ T ∗
ηQ (the literal dual space) via

v(u) = 〈v, u〉η ∀u ∈ TηQ

is dense,

it will be shown that one can define a Poisson bracket on the subalgebra

K(TQ) =

{
f ∈ FTQ

∣∣∣∣∂f∂η , ∂f∂v ∈ C∞(TQ, TQ)

}

of F(TQ). Here ∂f
∂η
, ∂f
∂v

are covariant partial derivatives on TQ, the definition of

which will be given below.

This newly defined bracket makes K(TQ) into a Lie algebra and retains essential

dynamical properties of a “true” Poisson bracket, including the Jacobi identity and the

fact that flows of Hamiltonian vector fields are Poisson maps and, of course, energy is

conserved. Moreover, we will show that the bracket indeed is related to the canonical

weak symplectic form in the way that one would expect. In the following we assume

that conditions (1) and (2) are satisfied.

Covariant partial derivatives. First, we introduce covariant partial derivatives

on TQ. Let τ : TQ → Q and τ1 : TTQ → TQ be natural projections, Γ : Q ⊃

U × E × E → E be a Christoffel map and K : TTQ→ TQ be a connector map. In

local representation,

K(η, v, u, w) = (η, w + Γ(η)(v, u)).
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Define Θ : TTQ→ TQ
⊕

TQ
⊕

TQ by

Θ = (τ1, T τ,K).

It is standard that Θ is a diffeomorphism (see Eliasson [1967]). For H : TQ→ R we

set
∂H

∂η
(V ) ·W = dH ·Θ−1(V,W, 0) ∀V,W ∈ TqQ,

∂H

∂v
(V ) ·W = dH ·Θ−1(V, 0,W ) ∀V,W ∈ TqQ.

In local representation, this reads

∂H

∂η
(η, v) · (η, u) = dH ·Θ−1((η, v), (η, u), (η, 0))

= dH · (η, v, u,−Γ(η)(v, u)),

and

∂H

∂v
(η, v) · (η, w) = dH ·Θ−1((η, v), (η, 0), (η, w))

= dH · (η, v, 0, w)).

Similarly, for φ : TQ→ TQ1 we define ∂φ
∂η
, ∂φ
∂v

: TQ→ L(TQ, TTQ1) (here L(TQ, TTQ1)

is the space of linear maps TQ→ TTQ1) by

∂φ

∂η
(V ) ·W = Tφ ·Θ−1(V,W, 0) ∀V,W ∈ TqQ,

∂φ

∂v
(V ) ·W = Tφ ·Θ−1(V, 0,W ) ∀V,W ∈ TqQ.

The following lemmata are readily verified.

Lemma 3.2. Let X be a vector field on TQ, Y be a vector field on TQ1, φ : TQ1 →

TQ. Then
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dH ·X =
∂H

∂η
· Tτ(X) +

∂H

∂v
·K(X),

∂(H ◦ φ)

∂η
· Y = dH ·

(
∂φ

∂η
· Y

)
,

∂(H ◦ φ)

∂v
· Y = dH ·

(
∂φ

∂v
· Y

)
.

Lemma 3.3. For H ∈ C1(TQ,R), we have

∂H

∂η
(η, v) · (η, u) =

d

dt

∣∣∣∣
t=0

H(ηt, vt),

∂H

∂v
(η, v) · (η, w) =

d

dt

∣∣∣∣
t=0

H(η, v + tw),

where (ηt, vt) is the parallel translation of (η, v) along the curve ηt with η′t(0) = u.

Let

Kk(TQ) =

{
f ∈ Ck+1(TQ,R)

∣∣∣∣ ∂f∂η , ∂f∂v ∈ Ck(TQ, TQ)

}
.

Now we can define the bracket {·, ·} via

{f, g}(η, v) =

〈
∂f

∂η
(η, v),

∂g

∂v
(η, v)

〉
η

−
〈
∂f

∂v
(η, v),

∂g

∂η
(η, v)

〉
η

. (3.4)

Preliminaries on the Poisson Structure. The following is the first main result.

Theorem 3.4. The bracket (3.4) maps Kk×Km into Kmin(k,m)−1 and also maps K×K

into K.

Remark 3.5. By definition of the covariant partial derivatives, ∂h
∂η
, ∂h
∂v

: TηQ →

T ∗
ηQ for h : TQ → R. The theorem asserts that if h = {f, g} then, in fact,

∂h
∂η

(η, v), ∂h
∂v

(η, v) ∈ TQ, i.e., there are Z(η, v), Y (η, v) ∈ TηQ such that

∂h

∂η
(η, v) ·X = 〈Z,X〉 , ∂h

∂v
(η, v) ·X = 〈Y,X〉 ∀X ∈ TηQ

and the maps (η, v) → Z(η, v), Y (η, v) have appropriate smoothness.
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Proof. Define operator D
dt

= K ◦ d
dt

. This definition extends the usual notion of

covariant derivative from vector fields along curves on Q to arbitrary curves on TQ.

Let f, g : TQ→ R and h = {f, g}. Choosing (ηt, vt) as in Lemma 3.3, we obtain

∂h

∂η
(η, v) · (η, u)

=
d

dt

∣∣∣∣
t=0

〈
∂f

∂η
(ηt, vt),

∂g

∂v
(ηt, vt)

〉
ηt

− d

dt

∣∣∣∣
t=0

〈
∂f

∂v
(ηt, vt),

∂g

∂η
(ηt, vt)

〉
ηt

=

〈
D

dt

∣∣∣∣
t=0

∂f

∂η
(ηt, vt),

∂g

∂v
(η, v)

〉
η

+

〈
∂f

∂η
(η, v),

D

dt

∣∣∣∣
t=0

∂g

∂v
(ηt, vt)

〉
η

−
〈

D

dt

∣∣∣∣
t=0

∂f

∂v
(ηt, vt),

∂g

∂η
(η, v)

〉
η

−
〈
∂f

∂v
(η, v),

D

dt

∣∣∣∣
t=0

∂g

∂η
(ηt, vt)

〉
η

=

〈
K
∂

∂η

∂f

∂η
(η, v) · (η, u), ∂g

∂v
(η, v)

〉
η

+

〈
K
∂

∂η

∂g

∂v
(η, v) · (η, u), ∂f

∂η
(η, v)

〉
η

−
〈
K
∂

∂η

∂g

∂η
(η, v) · (η, u), ∂f

∂v
(η, v)

〉
η

−
〈
K
∂

∂η

∂f

∂v
(η, v) · (η, u), ∂g

∂η
(η, v)

〉
η

.

To proceed further, we need to calculate the quantity

〈
K
∂

∂η

∂f

∂η
(η, v) · (η, u), (η, w)

〉
η

,

where (η, w) is an arbitrary element of TηQ. Let (ηts, vts) be a parametric surface in

TQ with the following properties:

1. d
dt

∣∣
t=0

ηt0 = u, (η00, v00) = (η, v);

2. (ηt0, vt0) is a parallel translation of (η, v);

3. (ηt0, wt) is a parallel translation of (η00, w0) = (η, w);

4. d
ds

∣∣
s=0

ηts = wt for all t;

5. (ηts, vts) is a parallel translation of (ηt0, vt0) for all s.

Then, keeping in mind Lemmata 3.2, 3.3 and symmetry of Riemannian connection,
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one checks the following:

〈
K
∂

∂η

∂f

∂η
(η, v) · (η, u), (η, w)

〉
η

=

〈
D

dt

∣∣∣∣
t=0

∂f

∂η
(ηt0, vt0), (η, w)

〉
η

=
d

dt t=0

〈
∂f

∂η
(ηt0, vt0), (ηt0, wt)

〉
ηt

=
d

dt

∣∣∣∣
t=0

d

ds s=0
f(ηts, vts) =

d

ds s=0

d

dt t=0
f(ηts, vts) =

d

ds s=0
df · d

dt

∣∣∣∣
t=0

(ηts, vts)

=
d

ds

∣∣∣∣
s=0

[
∂f

∂v
(η0s, v0s) ·K

d

dt t=0
(ηts, vts) +

∂f

∂η
(η0s, v0s) · Tτ

d

dt t=0
(ηts, vts)

]

=
d

ds

∣∣∣∣
s=0

[〈
∂f

∂v
(η0s, v0s),

D

dt t=0
(ηts, vts)

〉
η0s

+

〈
∂f

∂η
(η0s, v0s),

d

dt t=0
ηts

〉
η0s

]

=

〈
D

ds s=0

∂f

∂v
(η0s, v0s),

D

dt t=0
(ηt0, vt0)

〉
η

+

〈
∂f

∂v
(η, v),

D

ds s=0

D

dt

∣∣∣∣
t=0

(ηts, vts)

〉
η

+

〈
D

ds s=0

∂f

∂η
(η0s, v0s),

d

dt t=0
ηt0

〉
η

+

〈
∂f

∂η
(η, v),

D

ds

∣∣∣∣
s=0

d

dt t=0
ηts

〉
η

.

Lemma 3.6. (see Do Carmo [1992]). Let R denote the Riemannian curvature tensor.

Then
D

ds

D

dt
(ηts, vts) =

D

dt

D

ds
(ηts, vts) +R(

d

dt
ηts,

d

ds
ηts)(ηts, vts),

D

ds

d

dt
ηts =

D

dt

d

ds
ηts.

By construction of (ηts, vts), we have D
dt

∣∣
t=0

(ηt0, vt0) = 0. Applying Lemma 3.6 we

obtain

D

ds s=0

D

dt

∣∣∣∣
t=0

(ηts, vts) = R
(
d

dt

∣∣∣∣
t=0

ηt0,
d

ds

∣∣∣∣
s=0

η0s

)
(η, v) = R((η, u), (η, w))(η, v),

D

ds s=0

d

dt

∣∣∣∣
t=0

ηts =
D

dt t=0
(ηt0, wt) = 0.
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Thus,

〈
K
∂

∂η

∂f

∂η
(η, v) · (η, u), (η, w)

〉
η

= 0 +

〈
∂f

∂v
(η, v),R((η, u), (η, w))(η, v)

〉
η

+

〈
K
∂

∂η

∂f

∂η
(η, v) · (η, w), (η, u)

〉
η

+ 0

=

〈
K
∂

∂η

∂f

∂η
(η, v) · (η, w), (η, u)

〉
η

−
〈
R((η, v),

∂f

∂v
(η, v))(η, w), (η, u)

〉
η

by Bianchi’s identity. Similar calculations yield

〈
K
∂

∂v

∂f

∂v
(η, v) · (η, u), (η, w)

〉
η

=

〈
K
∂

∂v

∂f

∂v
(η, v) · (η, w), (η, u)

〉
η

,

〈
K
∂

∂η

∂f

∂v
(η, v) · (η, u), (η, w)

〉
η

=

〈
K
∂

∂v

∂f

∂η
(η, v) · (η, w), (η, u)

〉
η

.

Substituting this into the formulae for ∂h
∂η

and using Bianchi’s identity once again,

we get

∂h

∂η
(η, v) · (η, u) =

〈
K
∂

∂η

∂f

∂η
(η, v) · ∂g

∂v
(η, v) +K

∂

∂v

∂g

∂η
(η, v) · ∂f

∂η
(η, v), (η, u)

〉
η

−
〈
K
∂

∂η

∂g

∂η
(η, v) · ∂f

∂v
(η, v) +K

∂

∂v

∂f

∂η
(η, v) · ∂g

∂η
(η, v), (η, u)

〉
η

+

〈
R(

∂f

∂v
,
∂g

∂η
) · (η, v), (η, u)

〉
η

.

Similarly,

∂h

∂v
(η, v) · (η, u) =

〈
K
∂

∂η

∂f

∂v
(η, v) · ∂g

∂v
(η, v) +K

∂

∂v

∂g

∂v
(η, v) · ∂f

∂η
(η, v), (η, u)

〉
η

−
〈
K
∂

∂η

∂g

∂v
(η, v) · ∂f

∂v
(η, v) +K

∂

∂v

∂f

∂v
(η, v) · ∂g

∂η
(η, v), (η, u)

〉
η

.

As K is smooth, the statement of the theorem follows.
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Hamiltonian Vector Fields. The smoothness structure of Hamiltonian vector

fields is given as follows.

Proposition 3.7. The vector field XH is a Ck Hamiltonian vector field (with respect

to canonical weak symplectic form) on TQ of class Ck if and only if H ∈ Kk(TQ).

Moreover,

XH(η, v) =

(
η, v,

∂H

∂v
,−∂H

∂η
− Γ(η)(v,

∂H

∂v
)

)
. (3.5)

Proof. In local representation, we have

Ω(η, e)((e1, e2), (e3, e4)) = 〈e1, e4〉η − 〈e2, e3〉η + 〈Γ(η)(e, e3), e1〉η − 〈Γ(η)(e, e1), e3〉η .

(3.6)

Indeed,

Dη 〈e, e1〉 · e3 = 〈Γ(η)(e3, e1), e〉η + 〈Γ(η)(e3, e), e1〉η .

Substituting this expression into the formula for Ω and using the symmetry of Γ we

obtain the desired result.

Let XH = (η, v, e1, e2) be a Hamiltonian vector field, Z = (η, v, u, w) ∈ T(η,v)TQ

be arbitrary. Then

Ω(XH , Z) = 〈w + Γ(η)(v, u), e1〉 − 〈e2 + Γ(η)(v, e1), u〉 .

On the other hand, by Lemma 3.2

Ω(XH , Z) = dH · Z =
∂H

∂η
· TτZ +

∂H

∂v
KZ =

∂H

∂η
· (η, u) +

∂H

∂v
· (η, w + Γ(u, v)).

Setting u = 0 and comparing the above expressions we see that ∂H
∂v

(η, v) · (η, w) =

〈e1, w〉 ∀w ∈ E. Similarly, setting w = 0 yields

∂H

∂η
(η, v) · (η, u) = −〈e2 + Γ(η)(v, e1), u〉 ∀u ∈ E.

Thus, H ∈ Kk.
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Conversely, let H ∈ Kk. Defining a vector field XH by Formula 3.5 and substitut-

ing into Formula 3.6 one obtains for arbitrary vector Z ∈ T(η,v)TQ

Ω(XH , Z) =

〈
∂H

∂v
,KZ

〉
+

〈
∂H

∂η
, TτZ

〉
= dH · Z.

Proposition 3.8. Let f, g ∈ Kk be arbitrary. Then

{f, g} = Ω(Xf ,Xg).

Proof. By Proposition 3.7, the vector fields Xf ,Xg are defined whenever {f, g} is.

Then

Ω(Xf ,Xg) = df ·Xg =
∂f

∂η
· TτXg +

∂f

∂v
KXg =

∂f

∂η
· ∂g
∂v

− ∂g

∂η
· ∂f
∂v

= {f, g}.

Theorem 3.9. The bracket {·, ·} is antisymmetric, bilinear, derivation on each factor

and makes K into a Lie-algebra.

Proof. Antisymmetry, linearity and derivation property follows directly from the def-

inition of the bracket. By Theorem 3.4 {·, ·} leaves K invariant. Then, Jacobi identity

follows from Proposition 3.8 in the usual way, for example as in Marsden and Ratiu

[1999].

Now, TQ has both symplectic and Poisson structures, and therefore two generally

different definitions of Hamiltonian vector fields. We need to check that in our case

these coincide. To do so, let XP
f temporarily denote the Hamiltonian vector field with

respect to Poisson structure {·, ·} and Xf denotes the Hamiltonian vector field with

respect to canonical symplectic form corresponding to function the f . Recall, that

XP
f is defined as a vector field such that

XP
f [h] = {h, f} ∀h ∈ K.
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Thus, for all h ∈ K,

XP
f [h] =

∂h

∂η
· ∂f
∂v

− ∂h

∂v
· ∂f
∂η

= dh ·XP
f =

∂h

∂η
· TτXP

f +
∂h

∂v
·KXP

f

and therefore, TτXP
f = ∂f

∂v
and KXP

f = −∂f
∂η

. Comparing this with Formula 3.5, we

see that Xf ≡ XP
f . Finally, from the coordinate expression, it is easy to see that Xf

is a well-defined Ck vector field for any f ∈ Kk.

Previously we established that classes Kk are preserved under bracketing. Unfor-

tunately, for f ∈ Kk and a diffeomorphism ψ : TQ → TQ the composition f ◦ ψ

does not have to be in any class Km. One can, however, compose with symplectic

diffeomorphisms.

Proposition 3.10. Let ψ be a symplectic Ck+1 diffeomorphism, f ∈ Kk. Then

f ◦ ψ ∈ Kk.

Proof. We have

Xf◦ψ = ψ∗(Xf ),

and so by Proposition 3.7, f ◦ ψ ∈ Kk.

Proposition 3.11. Let Ft be a flow of a smooth Hamiltonian vector field on TQ.

Then Ft is a Poisson, i.e., for all f, g ∈ K

{f ◦ Ft, g ◦ Ft} = {f, g} ◦ Ft.

Proof. Ft is symplectic with respect to the weak Riemannian form. Since Ft preserves

class K, the statement follows from Jacobi identity by the usual argument.
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3.4 Geometric properties of the flow of the Euler

equations

As we stated earlier, in Ebin and Marsden [1970] it is shown that Ds
µ carries a smooth

Riemannian connection, and therefore the results of the previous section apply. There-

fore, by those results, the space TDs
µ carries a Poisson structure (in the precise sense

given there) which we denote {·, ·}. Let K, K̂, K̃ stand for the corresponding con-

nector maps on the underlying manifold M , on Ds and Ds
µ, respectively, while ∇, ∇̂,

∇̃ are the corresponding connections and Γ, Γ̂, Γ̃ are the corresponding Christoffel

maps. In the following 〈·, ·〉 denotes the Riemannian metric on M , Ds, Ds
µ and an

induced scalar product on Xs
div = TeDs

µ depending on the context. The relationship

between these metrics is given by 3.2.

Recall the notation from Section 3.2. Namely, let Ft be the flow of the spray on

TDs
µ, F̃t denote the flow of Euler equation on Xs

div and π : TDs
µ → Xs

div, π(η, v) =

v ◦ η−1. Recall also that we have the commutative diagram.

Proposition 3.12. The following diagram is commutative:

TDs
µ

Ft−−−→ TDs
µyπ

yπ

Xs
div

F̃t−−−→ Xs
div

Now we prepare and recall from Ebin and Marsden [1970] some useful lemmata.

Lemma 3.13. Let ξ ∈ Ds
µ. Define Rξ : Ds

µ → Ds
µ via Rξ(η) = η ◦ ξ, ∀ξ. Then

TRξ ◦ Ft(v) = Ft ◦ TRξ(v) ∀v ∈ TDs
µ.
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Proof. Indeed, notice that

d

dt
(ηt ◦ ξ, η̇t ◦ ξ) = (ηt ◦ ξ, η̇t ◦ ξ, η̇t ◦ ξ, η̈t ◦ ξ)

= TTRξ(ηt, η̇t, η̇t, η̈t) = TTRξS(Ft(v))

= S(TRξFt(v)) = S(ηt ◦ ξ, η̇t ◦ ξ)

by right invariance of the spray. Thus, TRξFt(v) = (ηt◦ξ, η̇t◦ξ) is an integral curve of

S. Since TRξF0(v) = TRξ(v), the statement of the Lemma follows from uniqueness

of integral curves.

Recall that by definition, F̃t(V ) = π ◦ Ft(V ) for all V ∈ TeDs
µ = Xs

div. Let

V = (η, v) ∈ TDs
µ. Then, using the preceding Lemma, we obtain

F̃t ◦ π(V ) = π ◦ Ft(π(V ))

= π ◦ Ft ◦ TRη−1(V ) = π ◦ TRη−1 ◦ Ft(V ).

Notice, that π ◦ TRξ = π for any ξ ∈ Ds
µ. Indeed,

π ◦ TRξ(η, v) = π(η ◦ ξ, v ◦ ξ) = (e, v ◦ ξ ◦ (η ◦ ξ)−1)

= (e, v ◦ ξ ◦ ξ−1 ◦ η−1) = (e, v ◦ η−1) = π(η, v).

Thus π ◦ TRη−1 = π and the Proposition is proved.

A Poisson Structure on the Lie Algebra. Now, we construct a Poisson bracket

{·, ·}+ on Xs
div so that π is a Poisson map. For f, g : Xs

div → R such that df, dg :

Xs
div → Xr

div define

{f, g}+ (v) =
〈
dg(v),∇df(v)v

〉
−

〈
df(v),∇dg(v)v

〉
.
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As in Section 3.3, define

Kk,s = {f ∈ Ck+1(Xs
div,R) | df ∈ Ck(Xs

div,X
s
div)}

and

Kk,s
r,t = {f ∈ Ck+1(Xs

div,R) | df ∈ Ck(Xr
div,X

t
div)}.

Theorem 3.14. Let s > n/2+1. Then {·, ·}+ is a bilinear map Kk,s×Kk,s → Kk−1,s
s+1,s−1

and a derivation on each factor. Moreover, it satisfies Jacobi identity on Xs+1
div , that

is for all f, g, h ∈ Kk,s, and v ∈ Xs+1
div ,

O(v) :=
{
f, {g, h}+

}
+

(v) +
{
h, {f, g}+

}
+

(v) +
{
g, {h, f}+

}
+

(v) = 0.

Proof. Let f, g ∈ Kk,s. Recall, that for r > n/2, Hr(M,R) is an algebra. Thus,

(u, v) → ∇uv is a bilinear bounded map Xs
div×Xs

div → Xs−1 (and Xs
div×Xs+1

div → Xs),

hence smooth. This implies that

z = {f, g}+ ∈ C
k(Xs

div,R).

Bilinearity and derivation property of {·, ·}+ trivially follows from properties of

d,∇ and 〈·, ·〉.

Now we calculate dz. Let v, u ∈ Xs+1
div . Since z ∈ Ck(Xs

div,R), the Fréchet deriva-

tive of z exists and coincides with its Gateaux derivative. Thus, by bilinearity of

scalar product and ∇,

dz(v) · u =
d

dt

∣∣∣∣
t=0

z(v + tu)

=
〈
Ddg(v) · u,∇df(v)v

〉
+

〈
dg(v),∇Ddf(v)·uv

〉
+

〈
dg(v),∇df(v)u

〉
−

〈
Ddf(v) · u,∇dg(v)v

〉
−

〈
df(v),∇Ddg(v)·uv

〉
−

〈
df(v),∇dg(v)u

〉
.

Lemma 3.15. Let X ∈ Xs
div, s > n/2 + 1, and let Y,W be Hs vector fields on M.
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Then

〈Y,∇XW 〉 = −〈∇XY,W 〉 .

Proof. By the Sobolev theorems, X is a C1 vector field on M . By properties of the

Riemannian connection, for all m ∈M

〈Y,∇XW 〉m = −〈∇XY,W 〉m +X 〈Y,W 〉m .

Thus,

〈Y,∇XW 〉 = −〈∇XY,W 〉+

∫
M

X 〈Y,W 〉m µ.

Let Gt be a flow of X on M . Since X is divergence free, µ is Gt invariant, i.e.,

G∗
t (µ) = µ, where G∗

t denotes a pullback by Gt. Then

∫
M

X 〈Y,W 〉m =

∫
M

d

dt t=0
〈Y,W 〉Gt(m) µ

=
d

dt t=0

∫
M

〈Y,W 〉Gt(m)G
∗
t (µ)

=
d

dt t=0

∫
M

G∗
t (〈Y,W 〉m µ)

=
d

dt t=0

∫
M

〈Y,W 〉m µ = 0.

Lemma 3.16. Let df ∈ Ck(Xs
div,X

t
div), s, t ≥ 0. Then for all u, v, w ∈ Xs

div

〈Ddf(v) · u,w〉 = 〈Ddf(v) · w, u〉 .

Proof. We compute as follows:

〈Ddf(v) · u,w〉 =
d

dt t=0
〈df(v + tu), w〉

=
d

dt t=0

d

ds s=0
f(v + tu+ sw)

=
d

ds s=0

d

dt t=0
f(v + tu+ sw)

= 〈Ddf(v) · w, u〉 .
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Lemma 3.17. (The Hodge Decomposition; see Ebin and Marsden [1970]). Let X be

an Hs vector field on M , s ≥ 0. There is an Hs+1 function θ and an Hs vector field

Y with Y divergence free, such that

X = grad θ + Y.

Further, the projection maps

Pe(X) = Y

Q(X) = grad θ

are continuous linear maps on Hs(M,TM). The decomposition is orthogonal in L2

sense, that is for all Z ∈ Xs
div

〈Z,X〉 = 〈Z, Y 〉 = 〈Z, PeX〉 (3.7)

Lemma 3.18. There is a bilinear continuous map B : Xs
div ×Xs+1

div → Xs
div (s > n/2)

such that for all Z ∈ Xs
div,W ∈ Xs+1, Y ∈ C(M,TM)

〈Z,∇YW 〉 = 〈B(Z,W ), Y 〉

Proof. Fix coordinate system {xi} on M and let gij denote components of metric

tensor, Zi denote components of vector field Z in the chosen system. Let gijg
jk = δki

(as usually, the summation on repeated indexes is understood). Then

〈Z,∇YW 〉 =

∫
M

gijZ
i

(
∂W j

∂xk
Y k + ΓjkrY

kW r

)
µ

=

∫
M

gsmg
mkgijZ

i

(
∂W j

∂xk
+ ΓjkrW

r

)
Y sµ

= 〈V, Y 〉 ,

where

V m = gmkgijZ
i

(
∂W j

∂xk
+ ΓjkrW

r

)
.
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Since Hs is an algebra for s > n/2 it follows that V is an Hs vector field. Now we set

B(Z,W ) = PeV

and use 3.7.

By Lemmata 3.15-3.18, we have

dz(v) · u =
〈
Ddg(v) · Pe∇df(v)v, u

〉
+ 〈Ddf(v) ·B(dg(v), v), u〉 −

〈
∇df(v)dg(v), u

〉
−

〈
Ddf(v) · Pe∇dg(v)v, u

〉
− 〈Ddg(v) ·B(df(v), v), u〉+

〈
∇dg(v)df(v), u

〉
.

Thus for any v ∈ Xs+1
div ,

d {f, g}+ (v) = Pe[∇dg(v)df(v)−∇df(v)dg(v)]

+Ddf(v) ·B(dg(v), v)−Ddg(v) ·B(df(v), v)

+Ddg(v) · Pe∇df(v)v −Ddf(v) · Pe∇dg(v)v,

and hence d {f, g}+ ∈ Ck−1(Xs+1
div ,X

s−1
div ) and {f, g}+ ∈ K

k−1,s
s+1,s−1.

Now we prove the Jacobi identity. To simplify notation, we set

Bf (v) = B(df(v), v), ∇f (v) = Pe∇df(v)v.

Moreover, since in the following argument all functions are evaluated at the same

point v ∈ Xs+1
div , we will write Bf ,∇f , df instead of Bf (v), etc. By Lemmata 3.16-

3.18, we obtain
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Ofgh(v) =
{
f, {g, h}+

}
+

(v)

=
〈
d {g, h}+ ,∇f

〉
−

〈
Bf , d {g, h}+

〉
=

〈
d {g, h}+ ,∇f −Bf

〉
= 〈Pe[∇dhdg −∇dgdh],∇f −Bf〉+ 〈Ddg · (Bh −∇h),∇f −Bf〉

+ 〈Ddh · (∇g −Bg),∇f −Bf〉

= 〈[dh, dg],∇f −Bf〉+Dghf −Dhfg,

where Dghf = 〈Ddg · (Bh −∇h),∇f −Bf〉 and [·, ·] is a Lie bracket of vector fields

on M . Notice that Lie bracket of divergence free vector fields is divergence free.

For s > n/2 + 2

〈[dh, dg],∇f −Bf〉 = 〈[[dh(v), dg(v)] , df(v)] , v〉 .

Since terms of type Dfgh cancel out in the Jacobi cycle

O(v) = Ofgh(v) +Ohfg(v) +Oghf (v),

and so the Jacobi identity for bracket {·, ·}+ follows from the Jacobi identity for vector

fields. However, for n/2 + 1 < s ≤ n/2 + 2 Lie bracket of dh(v) and dg(v) is an Xs−1
div

vector field, hence merely continuous and therefore [[dh(v), dg(v)] , df(v)] may fail to

exist. Therefore, in this case more care is needed.

Let

Afgh = 〈df,∇dg∇dhv〉 ,

Cfgh =
〈
df,∇[dg,df ]v

〉
.

With this notation in mind, by Lemma 3.15 and the Hodge decomposition

〈[dh, dg],∇f〉 = 〈∇dhdg −∇dgdh,∇dfv〉 = −Aghf + Ahgf .
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Similarly, by definition of B

〈[dh, dg], Bf〉 = Cfhg.

By a well-known formula for Riemannian connection,

∇X∇YZ −∇Y∇XZ = ∇[X,Y ]Z,

for all sufficiently smooth vector fields X, Y, Z. Thus,

Afgh − Afhg = 〈df,∇dg∇dhv −∇dh∇dfv〉 =
〈
df,∇[dg,dh]v

〉
= Cfgh.

Thus, {
f, {g, h}+

}
+

= −Aghf + Ahgf − Cfhg +Dghf −Dhfg,

and so

{
f, {g, h}+

}
+

+
{
h, {f, g}+

}
+

+
{
g, {h, f}+

}
+

= −Aghf + Ahgf − Cfhg +Dghf −Dhfg

− Afgh + Agfh − Chgf +Dfgh −Dghf

− Ahfg + Afhg − Cgfh +Dhfg −Dfgh

= (Agfh − Aghf − Cgfh) + (Afhg − Afgh − Cfhg)

+ (Ahgf − Ahfg − Chgf ) = 0.

Remark 3.19. If df(v), dh(v) ∈ Xs
div, s > n/2 + 1, then by Lemma 3.15

{f, h}+ (v) = 〈[dh(v), df(v)], v〉 .

This shows that bracket {·, ·}+ is naturally related to Lie-Poisson bracket on (Xs
div)

∗.

Now we establish the relationship between Poisson bracket {·, ·}+ on Xs
div that we
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just introduced and Poisson bracket {·, ·} on Ds
µ. For f, h : Xs

div → R define

fR = f ◦ π.

Theorem 3.20. Define the function spaces

Ck
r (X

s
div) =

{
f ∈ Ck(Xs

div,R)
∣∣ df(v) ∈ Xr

div∀v ∈ Xs
div

}
, (3.8)

and

Ck
r (TDs

µ) =

{
f ∈ Ck(TDs

µ,R)

∣∣∣∣∂f∂η (v),
∂f

∂v
(v) ∈ TDr

µ ∀v ∈ TDs
µ

}
. (3.9)

Then fR ∈ Ck
r (TDs+k

µ ) for f ∈ Ck
r (X

s
div) (r, s > n/2 + 1, k ≥ 1) and for all

f, h ∈ C1
r (X

s
÷), v ∈ Xs+1

div

{f, h}+ (v) = {fR, hR} (v) = {f ◦ π, h ◦ π} (v).

Proof. Without loss of generality s ≥ r. Since π is not even a C1 function TDs
µ → Xs

div

it is not obvious that {fR, hR} is defined. However, differentiating fR and hR as

functions TDs+k
µ → TDs

µ one obtains the required result.

Lemma 3.21. Under the assumptions of the Theorem,

∂fR
∂v

(η, v) = TRηdf(π(η, v)).

Proof. It is well-known (Ebin and Marsden [1970]) that π ∈ Ck(TDs+k
µ , TDs

µ). Notice,

that for (η, u) ∈ TDs+k
µ ,

∂π

∂v
(η, v) · (η, u) =

d

dt t=0
π(η, v + tu) = (e, v ◦ η−1, 0, u ◦ η−1)

where time derivative is taken in TDs
µ. By Lemma 3.2

∂fR
∂v

= df · K̃ ∂π

∂v
.
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Thus, by right invariance of the metric on Ds
µ

∂fR
∂v

(η, v) · (η, u) = df(v ◦ η−1) · K̃(e, v ◦ η−1, 0, u ◦ η−1)

= df(v ◦ η−1) · (u ◦ η−1)

=
〈
df(π(η, v), u ◦ η−1

〉
e

= 〈TRηdf(π(η, v)), (η, u)〉η .

Lemma 3.22. Under the assumptions of the Theorem

∂fR
∂η

(η, v) · (η, u) = −
〈
df(v ◦ η−1), K̃[T (v ◦ η−1) ◦ (u ◦ η−1)]

〉
e
,

that is,
∂fR
∂η

(η, v) = −TRηBf (π(η, v)).

Proof. First, we calculate ∂π
∂η

. Let (η, u) ∈ TDs+k
µ , (ηt, vt) be a parallel translation of

(η, v) with d
dt t=0

ηt = u. Recall that

d

dt
ηt
−1 = −Tηt−1 ◦ d

dt
ηt ◦ ηt−1.

Then, by Lemma 3.3,

∂π

∂η
(η, v) · (η, u) =

d

dt t=0
π(ηt, vt) =

d

dt t=0
vt ◦ ηt−1

= Tv0 ◦
d

dt t=0
ηt
−1 +

(
d

dt t=0
vt

)
◦ η−1

0

= −Tv ◦ Tη−1 ◦ u ◦ η−1 +

(
d

dt t=0
vt

)
◦ η−1.

Since connection on Ds
µ is right-invariant, i.e.,

K̃ ◦ TTRξ = TRξ ◦ K̃ ∀ξ ∈ Ds
µ
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we have

K̃

[
d

dt t=0
vt ◦ η−1

]
=

[
K̃
d

dt t=0
vt

]
◦ η−1 = 0.

By Lemma 3.2
∂fR
∂η

= df · K̃ ∂π

∂η
.

Combining above equalities together, we get

∂fR
∂η

(η, v) · (η, u) = −df · K̃
[
T (v ◦ η−1) ◦ (u ◦ η−1)

]
.

= −
〈
df(v ◦ η−1), K̃[T (v ◦ η−1) ◦ (u ◦ η−1)]

〉
e
.

We claim that for all X, Y, Z ∈ Xs
div

〈
Z, K̃[TX ◦ Y ]

〉
= 〈Z,∇YX〉 . (3.10)

Recall that by construction (see Ebin and Marsden [1970]),

K̃ = P ◦ K̂,

P = TRη ◦ Pe ◦ TR−1
η ,

K̂(Y ) = K ◦ Y,

By a well-known formula of differential geometry, we have

K ◦ TX ◦ Y = ∇YX,

and hence

K̃[TX ◦ Y ] = Pe[∇YX].

By the Hodge decomposition

〈
Z, K̃[TX ◦ Y ]

〉
= 〈Z,∇YX〉 = 〈B(Z,X), Y 〉 .
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By the above developments and right invariance of metric on Ds
µ, we have

∂fR
∂η

(η, v) · (η, u) = −
〈
Bf (v ◦ η−1), u ◦ η−1

〉
= −〈TRηBf (π(η, v)), u〉η .

Calculating {fR, hR} at v ∈ Xs+1
div by Lemmata 3.21,3.22, we obtain

{fR, hR} (v) = −〈Bf (v), dh(v)〉+ 〈Bh(v), df(v)〉

= −
〈
df(v),∇dh(v)v

〉
+

〈
dh(v),∇df(v)v

〉
= {f, h}+ (v).

Proposition 3.23. Map π : TDs
µ → Xs

div is a Poisson map, i.e., for all f, h ∈

C1
r (X

s
div) pointwise in TDs+1

µ (r, s > n/2 + 1)

{f ◦ π, h ◦ π} = {f, h}+ ◦ π.

Proof. Since π is the identity on Xs
div, the statement follows immediately from The-

orem 3.20.

Proposition 3.24. Let v ∈ TDr
µ and f, g ∈ C1(TDr

µ,R) are such that ∂f
∂v

(Ft(v)) ,

∂f
∂η

(Ft(v)),
∂g
∂v

(Ft(v)),
∂g
∂η

(Ft(v)) ∈ TDs
µ, r, s > n/2 + 1. Then

{f ◦ Ft, g ◦ Ft} (v) = {f, g} (Ft(v)).

In particular, Ft preserves C1
s (TDr

µ) and for f, h ∈ K1,s pointwise in TDs+1
µ

{f ◦ π ◦ Ft, h ◦ π ◦ Ft} (v) = {f ◦ π, h ◦ π} (Ft(v)).

Proof. Without loss of generality r ≥ s. First, we notice that covariant partial

derivatives of f ◦ Ft, g ◦ Ft at v are elements of TDs
µ. Indeed,

∂

∂η
(g ◦ Ft)(v) · u =

〈
∂g

∂η
(Ft(v)), T τ̃

∂Ft
∂η

(v) · u
〉

+

〈
∂g

∂v
(Ft(v)), K̃

∂Ft
∂η

(v) · u
〉
.
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There is a function g̃ ∈ K(TDs
µ) such that

∂g

∂v
(Ft(v)) =

∂g̃

∂v
(Ft(v)),

∂g

∂η
(Ft(v)) =

∂g̃

∂η
(Ft(v)).

Thus,
∂

∂η
(g ◦ Ft)(v) · u =

∂

∂η
(g̃ ◦ Ft)(v) · u.

However, by Proposition 3.10 g̃ ◦ Ft ∈ K(TDs
µ) for any g̃ ∈ K(TDs

µ), hence there is

Zg ∈ C∞(TDs
µ, TDs

µ) such that for all u,

∂

∂η
(g ◦ Ft)(v) · u =

∂

∂η
(g̃ ◦ Ft)(v) · u = 〈Zg(v), u〉 .

In a similar sense, one shows that ∂
∂v

(f ◦ Ft)(v) ∈ TDs
µ.

Thus, {f ◦ Ft, g ◦ Ft} (v) is well-defined and depends only on values of ∂f
∂v
, ∂f
∂η
, ∂g
∂η
, ∂g
∂v

calculated at point Ft(v). However, {f, g} ◦ Ft(v) also depends only on values of

covariant partial derivatives at Ft(v). Then, we choose f̃ , g̃ ∈ K(TDs
µ) such that

∂f

∂v
(Ft(v)) =

∂f̃

∂v
(Ft(v)),

∂f

∂η
(Ft(v)) =

∂f̃

∂η
(Ft(v)),

∂g

∂v
(Ft(v)) =

∂g̃

∂v
(Ft(v)),

∂g

∂η
(Ft(v)) =

∂g̃

∂η
(Ft(v)).

The equality {
f̃ ◦ Ft, g̃ ◦ Ft

}
(v) =

{
f̃ , g̃

}
◦ Ft(v)

follows from Proposition 3.11. By the preceding arguments, the same holds if we

replace f̃ , g̃ with f, g. This concludes the first part of the Proposition. The second

part then follows.

Theorem 3.25. The map F̃t is Poisson with respect to the bracket {·, ·}+.
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Proof. Let f, h ∈ Kk,s. Then f ◦ π ∈ C1
s (X

s+1
div ). By Proposition 3.24.

f ◦ F̃t = f ◦ π ◦ Ft ∈ C1
s (X

s+1
div )

and we have pointwise in Xs+2
div :

{
f ◦ F̃t, h ◦ F̃t

}
+

(Theorem 3.20)

=
{
f ◦ F̃t ◦ π, h ◦ F̃t ◦ π

}
(Proposition 3.12 )

= {f ◦ π ◦ Ft, h ◦ π ◦ Ft} (Proposition 3.24)

= {f ◦ π, h ◦ π} ◦ Ft (Proposition 3.23)

= {f, h}+ ◦ π ◦ Ft = {f, h}+ ◦ F̃t.
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Chapter 4

Reduction on general
diffeomorphism groups

In this chapter we will adapt the reduction technique developed in Section 3.4 for the

group of volume preserving diffeomorphisms to the more general setting. Considering

other subgroups of diffeomorphism group or choosing a different Riemannian structure

on the group, one obtains an appropriate configuration space for various important

PDE’s that will be presented in the next chapter. Here we keep the exposition as

general as possible in order to treat these applications simultaneously rather than on

case by case basis.

Such generalization is possible since in all cases the difficulties arise from the

non-differentiability of the reduction map

π(η, v) = v ◦ η−1, (4.1)

which is the same for all subgroups and metrics, hence could be treated uniformly.

Similarly to the case of the Euler equation, we assume that the subgroup (or the

whole group) of Ds is equipped with a weak right-invariant Riemannian metric, which

possesses a smooth spray. This ensures the existence of the Poisson bracket on the

tangent bundle of the subgroup by Theorem 3.9.

We will show that one can carry out the reduction procedure and obtain a well-

defined bracket on the Lie algebra of the subgroup, provided the weak Riemannian
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connection is transposable (see definition 4.3). The bracket is given by

{f, g}+ = {f ◦ π, g ◦ π}

for members of an appropriate functional class on the Lie algebra. The reduction of

dynamics also follows.

It turns out that natural L2 and H1 metrics on the diffeomorphism groups in-

duce transposable connections, hence this restriction is not significant for practically

important applications.

4.1 Construction of the reduced bracket

Here and further in this chapter we will denote by Qs a Lie subgroup of a right Lie

group Ds (s > n/2 + 1) and let Xs be a Lie algebra of Qs.

Given a subgroup Qs, for r ≥ s we define Qr = Qs ∩ Dr and endow Qr with

the topology induced from Dr. Trivially, Qr is a subgroup and a submanifold of

Qs. The Lie algebra of Qr will be denoted as Xr. Since for any u ∈ Xs ∩ Hr(TM)

the vector field Xu(η) = u ◦ η is a right-invariant vector field on Qr, it’s clear that

Xr = Xs ∩Hr(TM).

Moreover, we suppose that Qs carries a weak right-invariant Riemannian metric,

which we denote 〈·, ·〉 (not necessarily given by 3.2), and the metric defines a smooth

spray on Qs. The smoothness of the spray is equivalent to the smoothness of the

connector map K̃.

Recall, that the map π mapping the tangent bundle of Qs to its Lie algebra is

continuous, but not differentiable. However, it is a Ck as a map Qs+k → Xs. Similarly

to Chapter 3.4 define functional spaces Ck
s (X

r) and

fR = f ◦ π
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for f : Xr → R. Define a Poisson bracket on Xr by

{f, g}+ (v) =
∂fR
∂η

(e, v) · ∂gR
∂v

(e, v)− ∂gR
∂η

(e, v) · ∂fR
∂v

(e, v). (4.2)

We will call this bracket the reduced bracket.

Proposition 4.1. Let f, g ∈ C1
s (X

r). Then {f, g}+ is a well-defined function on Xr+1

Proof. Note that fR is a C1 function on TQr+1. Calculating as in Lemmata 3.21,3.22,

one readily obtains the following two results:

∂fR
∂v

(η, v) = TRηdf(v ◦ η−1), (4.3)

∂fR
∂η

(η, v) · (η, u) = −
〈
df(v ◦ η−1), K̃[T (v ◦ η−1) · (u ◦ η−1)]

〉
. (4.4)

By above, for any v ∈ Xr+1 the covariant partial derivatives ∂fR

∂v
(e, v), ∂gR

∂v
(e, v),

are the elements of Xr, hence Formula 4.2 makes sense and

{f, g}+ (v) =
〈
dg(v), K̃[Tv · df(v)]

〉
−

〈
df(v), K̃[Tv · dg(v)]

〉
. (4.5)

Since the weak metric on Qs defines a smooth spray, it also defines a Poisson

bracket {·, ·} by Formula 3.4. Rewriting the expression 3.4 as

{fR, gR} (η, v) =
∂fR
∂η

(η, v) · ∂gR
∂v

(η, v)− ∂gR
∂η

(η, v) · ∂fR
∂v

(η, v)

we extend the bracket on Qs to the functions fR, gR.

Theorem 4.2. The function π(η, v) = v ◦ η−1 is a Poisson map with respect to the

brackets {·, ·} and {·, ·}+. Precisely, let f, g ∈ C1
s (X

r), v ∈ Xr+1. Then

{f ◦ π, g ◦ π} (v) = {f, g}+ ◦ π(v).

Proof. The bracket {f ◦ π, g ◦ π} is defined as above. The statement follows from the

definition 4.2 and the fact that π is an identity on the Lie algebra.
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4.2 Properties of the reduced bracket

In order to obtain the Jacobi identity and the desired dynamical properties of the

reduced bracket, one has to assume some additional hypotheses on the weak Rieman-

nian connection on the right Lie group Qs.

Definition 4.3. We will call a connector K̃ on Qs (r, s)-transposable if there is a

bounded bilinear operator B : Xs × Xr → Xs such that for all w, u ∈ Xs v ∈ Xr

〈
w, K̃[Tv · u]

〉
= 〈B(w, v), u〉 .

In this case we will also say that the connection on Qs is (r, s)-transposable.

Remark 4.4. The above condition is equivalent to the equality

〈
Xw, ∇̃XuXv

〉
(e) = 〈B(w, v), u〉 ,

where Xw, Xu, Xv denote the right-invariant vector fields corresponding to w, u, v,

respectively and ∇̃ is a weak Riemannian connection on Qs.

Define the spaces

Kk,s = {f ∈ Ck+1(Xs,R) | df ∈ Ck(Xs,Xs)}

and

Kk,s
r,t = {f ∈ Ck+1(Xs,R) | df ∈ Ck(Xr,Xt)}.

The following is the analog of Theorem 3.14.

Theorem 4.5. Suppose the connector K̃ is (r, s+1)-transposable. Let r0 = max(s+

1, r). Then {·, ·}+ is a bilinear map Kk,s+1 ×Kk,s+1 → Kk−1,s+1
r0,s

and a derivation on

each factor. Moreover, it satisfies the Jacobi identity on Xr0.

Proof. Bilinearity and derivation property are trivial. Without loss of generality
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r ≥ s+ 1 and r0 = r. Let, f, g ∈ Kk,s+1. Denote

z(v) = {f, g}+ (v).

From Formula 4.5 it’s clear that z ∈ Ck(Xs+1,R). Differentiating this expression, one

obtains

dz(v) · u =
〈
Ddg(v) · u, K̃[Tv · df(v)]

〉
+

〈
dg(v), K̃[Tu · df(v)]

〉
+

〈
dg(v), K̃[Tv · (Ddf(v) · u)]

〉
−

〈
Ddf(v) · u, K̃[Tv · dg(v)]

〉
−

〈
df(v), K̃[Tu · dg(v)]

〉
−

〈
df(v), K̃[Tv · (Ddg(v) · u)]

〉
.

Lemma 4.6. For all x, y ∈ Xs+1, w ∈ Xs

〈
x, K̃[Ty · w]

〉
= −

〈
y, K̃[Tx · w]

〉
.

Proof. Recall that

∇̃XwXy(η) = K̃[T (y ◦ η) · (w ◦ η)].

Hence, 〈
x, K̃[Ty · w]

〉
=

〈
Xx, ∇̃XwXy

〉
(e). (4.6)

However, by properties of Riemannian connection and right invariance of metric

〈
Xx, ∇̃XwXy

〉
= Xw 〈Xx, Xw〉 −

〈
Xy, ∇̃XwXx

〉
= −

〈
Xy, ∇̃XwXx

〉
.

Repeating the argument of Lemma 3.16, we obtain for any w ∈ Xs

〈Ddf(v) · u,w〉 = 〈Ddf(v) · w, u〉 . (4.7)

Thus, taking into account Lemma 4.6, Formula 4.7 and the fact that connection
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is (r, s+ 1)-transposable, we get

dz(v) =Ddg(v) · K̃[Tv · df(v)]−Ddf(v) · K̃[Tv · dg(v)]

+ K̃[Tdf(v) · dg(v)− Tdg(v) · df(v)]

+Ddf(v) ·B(dg(v), v)−Ddg(v) ·B(df(v), v).

From the above expression is clear that dz ∈ Ck−1(Xr,Xs), hence z ∈ Kk−1,s+1
r,s .

Formula for dz could be simplified.

Lemma 4.7. For x, y ∈ Xs+1

K̃[Tx · y − Ty · x] = [x, y].

Proof. By identities 4.6 and 2.22 we have

K̃[Tx · y − Ty · x] = ∇̃XyXx(e)− ∇̃XxXy(e)

= [Xy, Xx](e)

= [x, y].

Define

Bf (v) = B(df(v), v),

∇̃f (v) = K̃[Tv · df(v)].

Then, after applying Lemma 4.7, we rewrite the expression for dz as

dz(v) = Ddg(v) · (∇̃f (v)−Bf (v))−Ddf(v) · (∇̃g(v)−Bg(v)) + [df(v), dg(v)]. (4.8)

Now, the proof of Jacobi identity repeats the argument of Theorem 3.14.

It’s easy to show that the bracket {·, ·}+ is related in a natural way to the canonical

Lie-Poisson bracket on the dual of the Lie algebra.
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Proposition 4.8. If v, df(v), dg(v) ∈ Xs+1, then

{f, g}+ (v) = 〈[df(v), dg(v)], v〉 .

Proof. We apply successively Lemma 4.6 and Lemma 4.7 to the identity 4.5.

4.3 The reduction of dynamics

Here we study the flows on the Lie algebra which are the reduction of the Hamiltonian

flows on the Lie group Qs. These flows describe the evolution in the spatial or

Eulerian representation of the partial differential equations that we discuss. They

are (in general) non-differentiable both in time and initial conditions, however, as we

show below, these flows are Poisson with respect to the Poisson bracket on the Lie

algebra. As we mentioned earlier, our methods yield results provided the Riemannian

connection is transposable.

Let Ft be a flow of a right-invariant vector field X on TQs. Define a mapping on

the Lie algebra by

F̃t(v) = π(Ft(v)).

The main result of this section is that F̃t is a Poisson map ifX is a smooth Hamiltonian

vector field. First we establish an analog of proposition 3.12.

Proposition 4.9. Let X be C1. Then the flow Ft commutes with the reduction map

π, i.e., for all v ∈ TQs.

F̃t ◦ π(v) = π ◦ Ft(v).

Proof. The proof is based on the fact that Ft commutes with right shifts because of

the right invariance of its generator.

Lemma 4.10. Let Ft be a flow of a C1 right-invariant vector field on a tangent bundle

of a (right) Lie group Q. Then for all ξ ∈ Q, v ∈ TQ

TRξ ◦ Ft(v) = Ft ◦ TRξ(v)
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Proof. Fix v ∈ TQ and let

c(t) = TRξ ◦ Ft(v).

Differentiating c at t = 0 and using the right invariance of X we obtain

c′(0) = TTRξ

[
d

dt
|t=0Ft(v)

]
= TTRξX(v)

= X(TRξ(v)).

Hence, c is an integral curve of X through v, starting with velocity TRξ(v). The

claim of the lemma follows from the uniqueness of integral curves.

Now, the argument found after Lemma 3.13 completes the proof of proposition

4.9.

The following analog of proposition 3.24 holds:

Proposition 4.11. Let v ∈ TQr and there are TQs-neighborhoods U of v and V of

ψ(v) such that ψ : U → V is a symplectic diffeomorphism. Suppose f, g ∈ C1(TQr �

V,R) are such that ∂f
∂v

(ψ(v)) , ∂f
∂η

(ψ(v)), ∂g
∂v

(ψ(v)), ∂g
∂η

(ψ(v)) ∈ TQs. Then ∂(f◦ψ)
∂v

(v) ,

∂(f◦ψ)
∂η

(v), ∂(g◦ψ)
∂v

(v), ∂(g◦ψ)
∂η

(v) ∈ TQs and

{f ◦ ψ, g ◦ ψ} (v) = {f, g} (ψ(v)).

Proof. Same as the proof of proposition 3.24, where TDr
µ is replaced with TQr and

TDs
µ is replaced with TQs.

Corollary 4.12. Suppose X is a smooth Hamiltonian vector field. Then Ft pre-

serves the classes C1
s (TQ

r). Moreover, if the weak Riemannian connection is (r, s)-

transposable then for f, g ∈ K1,s, v ∈ Xr0+1

{f ◦ π ◦ Ft, g ◦ π ◦ Ft} (v) = {f ◦ π, g ◦ π} (Ft(v)),

where r0 = max(r, s+ 1).
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Proof. The flow Ft is a symplectic diffeomorphism of TQs, hence the first part trivially

follows from proposition 4.11. Without loss of generality r ≥ s+1 and r0 = r. Taking

into account the assumption that K̃ is (r, s)-transposable and equalities 4.3, 4.4,

∂(f ◦ π)

∂v
(η, v) = TRηdf(v),

∂(f ◦ π)

∂η
(η, v) = TRηB(df(v), v).

Hence f ◦π, g ◦π ∈ C1
s (TQ

r). Now, we may apply proposition 4.11 to f ◦π, g ◦π.

Theorem 4.13. Suppose Ft is a flow of a smooth right-invariant Hamiltonian vector

field on TQs. Moreover suppose the weak Riemannian connection on Qs is (r, s)-

transposable. Then the reduced flow F̃t is Poisson with respect to the bracket {·, ·}+.

Precisely, for f, h ∈ K1,s, v ∈ Xr0+1

{
f ◦ F̃t, h ◦ F̃t

}
+

(v) = {f, h}+ ◦ F̃t(v),

where r0 = max(r, s+ 1).

Proof. Let f, h ∈ K1,s. Then f ◦ π ∈ C1
s (X

r0). By Proposition 4.11.

f ◦ F̃t = f ◦ π ◦ Ft ∈ C1
s (X

r0)

and we have pointwise in Xr0+1:

{
f ◦ F̃t, h ◦ F̃t

}
+

(proposition 4.1)

=
{
f ◦ F̃t ◦ π, h ◦ F̃t ◦ π

}
( 4.9 )

= {f ◦ π ◦ Ft, h ◦ π ◦ Ft} (Corollary 4.12)

= {f ◦ π, h ◦ π} ◦ Ft (Theorem 4.2)

= {f, h}+ ◦ π ◦ Ft = {f, h}+ ◦ F̃t.
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Chapter 5

Applications

In this chapter we will apply the general methods developed in Section 3.3 and Chap-

ter 4 to the several partial differential equations. The equations that we consider are

given by the geodesic flow on a suitable group of diffeomorphisms in the same sense

as the Euler equation is given by the geodesic flow on the group of volume preserv-

ing diffeomorphisms. Essential for the technique that we employ is the fact that the

weak Riemannian metric on the group defines a smooth spray. Because of that, the

methods are not applicable to the KDV equation.

For each application we introduce an appropriate Lie-Poisson bracket directly on

the Lie algebra and prove that the flow, generated by the equation, on the Lie algebra

is Poisson. This is an important difference with the usual Lie-Poisson reduction

performed on the cotangent bundle of the group.

While the reduction procedure itself is more natural and easier to carry out on the

cotangent bundle, the flows in question are not well-defined there since the necessary

existence and uniqueness theorems are missing and there is a very little hope to

establish them. For example, in order to rigorously apply the Lie-Poisson reduction

on the cotangent bundle to the PDEs that we consider, one would need to prove

the existence and uniqueness theorems in negative Sobolev spaces, which is quite

unlikely. The situation might be different for the KDV equation, where the existence

was shown in class H−3/10+ε (see Colliander et al. [2001]).

Further, we consider the following applications:
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• The Camassa-Holm (CH) equation on S1—see Camassa and Holm [1993]:

ut − utxx = −3uux + 2uxuxx + uuxxx, (5.1)

where ut and ux denote, respectively, time and spacial derivatives of an unknown

function u.

The equation is generated by the geodesic flow of the right-invariant H1 metric

on the whole group Ds(S1) of Hs diffeomorphisms.

• The averaged Euler equations (or the LAE-α equations)—see Holm, Marsden,

and Ratiu [1998a,b]:

∂t(1− α2∆)u+ (u · ∇)(1− α2∆)u− α2(∇u)T ·∆u = − grad p , (5.2)

where div u = 0 and u satisfies appropriate boundary conditions, such as the

no-slip conditions u = 0 on ∂M .

The equation is generated by the geodesic flow of right-invariant L2 metric on

the Ds
µ. The map u0 → ut is Poisson on the space of Hs (s > n/2+2) divergence

free vector fields.

• The EPDiff equation for the H1 metric (also called the averaged template

matching equation) on a compact manifold M—see Holm and Marsden [2003]

and Hirani et al. [2001]:

∂t(u− α2∆u) + u(div u)− α2(div u)∆u+ (u · ∇)u

− α2(u · ∇)∆u+ (Du)T · u− α2(Du)T ·∆u = 0,

with the appropriate boundary conditions, such as the no-slip conditions u = 0

on ∂M . The EPDiff equation reduces to the CH equations in the case M = S1.

The equation is generated by the geodesic flow of the right-invariant H1 metric

on the whole group Ds(S1) of Hs diffeomorphisms. The map u0 → ut is Poisson
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on the space of Hs (s > n/2 + 2) vector fields.

In all cases, the smoothness of the spray plays a crucial role. First it guarantees

that the flow maps are well-defined both on the Lie group and Lie algebra. What is

even more important, it guarantees the existence of the Poisson structure on the Lie

group in the sense of Section 3.3. Hence, in order to apply Theorem 4.13 to each of

the applications, we only need to show that the appropriate Riemannian connection

is transposable.

5.1 Camassa-Holm equation

The Camassa-Holm (CH) equation was derived by Cammassa and Holm (see Camassa

and Holm [1993]) as an approximation to the Euler equation in the shallow water

regime. In the same article also was given a formal Lie-Poisson description of the

equation. Since then the equation has been studied extensively (for example, Misiolek

[1998]; Danchin [2001]; Kouranbaeva [1998]; Khesin and Misiolek [2003], and found

to possess many remarkable properties.

In a sense, CH combines features of the Euler equation and the Korteveg de Vries

equation

ut + uux + uxxx = 0.

Like KDV, Camassa-Holm equation is a completely integrable system, has a bi-

hamiltonian structure, the same symmetry group (the Bott-Virasoro group or Ds(S1),

depending on the form in which equations are formulated), solitons and infinitely

many first integrals. From the other side, similarly to Euler equation (and contrary

to KDV), CH is generated by the smooth spray on the diffeomorphism group, yet the

solutions of CH may lose regularity in finite time (Camassa and Holm [1993]).

Our goal in this section is to establish in what sense the map F̃t : u0 → ut, which

maps the initial condition u0 to the solution of equation 5.1 at time t, is a Poisson

map.

First, we establish the relationship between the solutions of Cammassa-Holm equa-
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tion and the geodesic flow on Ds(S1), following Misiolek [1998]; Kouranbaeva [1998].

Let s > 3/2, so that Ds ≡ Ds(S1) is an infinite dimensional manifold. It is a right

Lie group and its Lie algebra is the space of all Hs vector fields, that we will denote

Xs.

Define the weak Riemannian structure at the identity of Ds by

〈v, u〉e =

∫
S1

(uv + uxvx)dx

and extend it to the right-invariant metric on the group. That is, for V,W ∈ TηDs

〈V,W 〉η = 〈TRη−1 · V, TRη−1 ·W 〉
e

(5.3)

=
〈
V ◦ η−1,W ◦ η−1

〉
e
. (5.4)

Theorem 5.1. (see Kouranbaeva [1998], Theorem IV.1). Let t → ηt be a curve in

the diffeomorphism group Ds. Then ηt is a geodesic of the metric if and only if the

time-dependent vector field ut = η̇t ◦ η−1
t satisfies the CH equation 5.1.

The smoothness of the spray on the Ds is due to Shkoller.

Theorem 5.2. (see Shkoller [1998], Remark 3.5). For s > 3/2 the spray of the metric

5.3 is smooth on Ds.

The Theorem 5.2 guarantees the existence of a local flow Ft of the right-invariant

H1 spray on the diffeomorphism group. Together with Theorem 5.1, it shows that the

solutions of Camassa-Holm equations are well-defined in Hs spaces (for short time).

Hence, there is a well-defined local flow

F̃t : Xs → Xs,

given by

F̃t(u0) = ut = π ◦ Ft(u0),
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where ut is a solution of CH equation 5.1 with uo as an initial condition and π is

given by 4.1.

As we explained above, the Theorems 5.2 and 5.1 provide all the existence and

uniqueness theory for Camassa-Holm equation that we need. More detailed exposition

of this subject can be found in Misiolek [2002]; Himonas and Misiolek [2001]; Danchin

[2001] and references therein.

In order to apply the Theorem 4.13, we need to show that the connection on Ds

is transposable.

Theorem 5.3. For s > 5/2 the Riemannian connection of the weak right-invariant

H1 metric 5.3 on Ds is (s, s)-transposable.

Proof. Let K̃ be a connector map of the metric 5.3, ∇̃ be the corresponding connection

and Γ̃ be the Christoffel map. Let u, v, w be the vector fields on S1 and Xu, Xw, Xw

be the corresponding right-invariant vector fields on the diffeomorphism group, e.g.

Xu(η) = u ◦ η

and similarly for Xw, Xv. First we calculate

〈
v, K̃[Tw · u]

〉
=

〈
Xv, ∇̃XuXw

〉
(e).

Recall, that for the right-invariant Riemannian connection

2
〈
Xv, ∇̃XuXw

〉
(e) = −〈v, [u,w]〉+ 〈u, [w, v]〉+ 〈w, [u, v]〉 . (5.5)

However, on S1

[u,w] = uwx − uxv.

Substituting that into expression 5.5 and integrating by parts, we obtain

〈
Xv, ∇̃XuXw

〉
(e) =

∫
[wx − vxw +

1

2
(vxwxx + vxxwx)]u. (5.6)
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Define operator

Λ = 1− ∂2

∂x2
.

Then, Λ is a linear isomorphism Hs(S1) → Hs−2(S1) (see Rosenberg [1997]).

Thus, for u ∈ Hs, z ∈ Hs−2. ∫
uz =

〈
u,Λ−1z

〉
.

With that in mind, Formula 5.6 implies

〈
v, K̃[Tw · u]

〉
= 〈B(v, w), u〉 ,

where

B(v, w) = Λ−1[wx − vxw +
1

2
(vxwxx + vxxwx)].

For s > 5/2 the functions vxwxx are the elements of Hs−2, hence B(v, w) ∈ Hs.

Theorem 5.4. The flow F̃t is Poisson with respect to the Lie-Poisson bracket given

by Formula 4.2. Precisely, for f, g ∈ K1,s(Ds(S1)), s > 3/2, v ∈ Xs+2

{
f ◦ F̃t, g ◦ F̃t

}
+

(v) = {f, g}+ ◦ F̃t(v).

Proof. Follows immediately from Theorems 5.4 and 4.13.

5.2 Averaged Euler equations

The averaged Euler equations, also known as Lagrange averaged Euler equations or

Euler-α equations, were introduced by Holm, Marsden, and Ratiu [1998a] as a new

class of models for ideal incompressible fluids. These models provided a nonlinear

filtering mechanism below the length scale α, which enhanced the stability and reg-

ularity of the solutions without compromising conservation laws and the large scale

behavior of the fluid.

Interestingly, Euler-α equations can be derived directly by appropriately averaging

the Lagrange-d’Alambert principle. Another description of averaged Euler equation
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is that of the geodesic motion of H1 metric on the group of volume preserving diffeo-

morphisms. As such, the solutions of Euler-α equations preserve H1 metric, unlike

the Euler equation, which preserves L2 metric.

The geometry of the diffeomorphism groups with right-invariant H1 metric was

studied by Shkoller [1998]. In the same article was established the smoothness of

the H1 spray on the group of volume preserving diffemorphisms. This result was

extended in Marsden et al. [2000] to the groups required to treat various boundary

conditions, such as no-slip and free slip.

Consider the equation

∂t(1− α2∆)u+ (u · ∇)(1− α2∆)u− α2(∇u)T ·∆u = − grad p , (5.7)

div u = 0, (5.8)

u = 0 on ∂M (5.9)

on the compact, orientable n-dimensional manifold M with a boundary ∂M . In

equation 5.7 α is a real number, (∇u)T denotes the transposition of matrix ∇u (we

will give an invariant geometric interpretation of this operator later on), operator ∆

denotes the negative of Laplace-de Rham operator, i.e.,

∆ = −∆R = −(dδ + δd).

Let 〈·, ·〉m be the Riemannian metric on TmM and g(·, ·) be the metric tensor, i.e.,

〈u, v〉m = g(u, v) = giju
ivj ∀u, v ∈ TmM

and µ be the associated volume form.

The diffeomorphims groups relevant for the system 5.7-5.9 are

Ds = {η ∈ Hs(M,M)|η−1 ∈ Hs(M,M), η(x) = x for x ∈ ∂M},
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Ds
µ = {η ∈ Ds|η ∗ µ = µ}.

Their respective Lie algebras are

Xs = {u ∈ Hs(TM)|u = 0 on ∂M},

Xs
div = {u ∈ Xs| div u = 0}.

Set

Λ = 1− α2∆

and define a weak Riemannian metric at identity of Ds by

〈u, v〉e =

∫
M

〈Λu, v〉m µ. (5.10)

This metric extends by right invariance to the whole diffeomorphism group, hence

restricts to the right-invariant H1 metric on the submanifold Ds
µ and defines a smooth

orthogonal projection Pη : TηDs → Ds
µ given by

Pη(V ) = (Pe(V ◦ η−1)) ◦ η ∀V ∈ TηDs,

where Pe is the H1 orthogonal projection defined by the Hodge decomposition.

The spray S of Riemannian metric 〈·, ·〉 on Ds
µ is smooth. We refer the reader to

Shkoller [1998] for the proofs of smoothness of 〈·, ·〉, P and S.

Theorem 5.5. (see Marsden et al. [2000]) For s > n/2 + 1, let ηt be the geodesic of

the right-invariant H1 metric on Ds
µ. Then ut = η̇t◦η−1

t is a vector field which satisfies

the system 5.7-5.9, where the pressure pt is determined by the Hodge decomposition

and

(Du)T · v(m) ≡ [
〈
v,∇(·)u

〉
m

]]

(here and thereafter ∇ is the Riemannian connection on M .)

By proposition 5.6, the flow Ft of S is Poisson with respect to the bracket 3.4 on
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Ds
µ. By above Theorem 5.5, the flow F̃t of Eulear-α equation is given by

u0 → ut = F̃t(u0) = π ◦ Ft(u0),

where π is given by 4.1 as usually.

In order to establish the Poisson nature of the flow F̃t, we need to verify that the

Riemannian connection ∇̃ of a weak H1 metric is transposable on Ds
µ.

Proposition 5.6. For s > n/2 + 2 the connection ∇̃ is (s, s)-transposable on Ds
µ.

Proof. Let K̃ be the connector map that defines ∇̃. Then, for arbitrary u, v, w ∈ Xs
div

〈
v, K̃[Tw · u]

〉
= −〈v, [u,w]〉+ 〈u, [w, v]〉+ 〈w, [u, v]〉

= 〈v,∇uw −∇wu〉+ 〈u, [w, v]〉+ 〈w,∇uw −∇vu〉 .

Let P 0 be the L2 Hodge decomposition projector and B0 be defined as in Lemma

3.17, i.e., ∫
M

〈B0(Z, Y )(m),W (m)〉m µ =

∫
〈Z(m),∇YW (m)〉m µ

for sufficiently smooth vector fields W,Y and divergence free vector field Z.

Then, we obtain on Xs+1
div

〈
v, K̃[Tw · u]

〉
=

∫
M

〈
u,B0(P

0Λv, w)−B0(P
0Λw, v)

〉
m
µ

+

∫
M

〈u,∇vΛw −∇wΛv + Λ[w, v]〉m µ.

Consider an operator

A(v, w) = ∇vΛw −∇wΛv − Λ[w, v]. (5.11)

We claim that A extends to the bounded bilinear operator Xs×Xs → Xs−2. Even

though the individual terms defining A involve the partial derivatives of the third
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order, the terms of the highest order cancel each other out. First we notice, that

A(v, w) = ∇v∆
Rw −∇w∆Rv + ∆R[w, v].

Then, recall that for vector field Z.

∆RZ = (∆̂Z[)] + Ric(Z),

where ∆̂ is a rough Laplacian and Ric is the Ricci curvature tensor on M .

Let

β = βidx
i

be a 1-form on M . Calculating ∆̂β in coordinates by Formula 2.20, we get

∆̂β = −gij∇∂/∂xi∇∂/∂xjβkdx
k

= −gij
[
∂2βk
∂xi∂xj

− ∂βl
∂xi

Γljk
∂βl
∂xj

Γlik + βlΓ
l
imΓmjk − βl

∂Γlik
∂xj

]
dxk,

where Γkij are the Christoffel symbols on M . Hence, for a vector field Z = Zi ∂
∂xi

∆̂(Z) = −gij ∂2zk

∂xi∂xj
∂

∂xk
+ A1(Z),

where A1 is a bounded linear operator Ds → Ds−1 , in fact differential operator of

the first order.

Then,

∇vΛw = −vl ∂
∂xl

(
gij

∂2wk

∂xi∂xj

)
∂

∂wk
+ Γmlkg

ij ∂
2wk

∂xi∂xj
∂

∂xm
+∇vA

1(Z)

= −gij ∂3wk

∂xi∂xj∂xl
vl + A2(w, v),

where A2 : Ds × Ds−2 → Ds−2 is bilinear and bounded (here we used the fact that
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Hs−2 is a Schauder ring). Similarly,

∇wΛv = −gij ∂3vk

∂xi∂xj∂xl
vl + A2(v, w)

and

∆̂[w, v] = −gij ∂
∂xi

∂

∂xj

(
wl
∂vk

∂xl
− vl

∂wk

∂xl

)
∂

∂xk
+ A1([w, v])

= −gij
(

∂3vk

∂xi∂xj∂xl
wl

)
∂

∂xk
+ gij

(
∂3wk

∂xi∂xj∂xl
vl

)
∂

∂xk
+ Ã2(w, v),

where Ã2 : Ds ×Ds → Ds−2 is bounded bilinear operator.

Therefore,

A(v, w) = A2(w, v)− A2(w, v) + Ã2(w, v) +∇v Ric(w)−∇w Ric(v) + Ric([w, v])

extends to the bounded bilinear operator Ds ×Ds → Ds−2.

Hence, 〈
v, K̃[Tw · u]

〉
= 〈u,B1(v, w)〉 ,

where B1 : Xs
div × Xs

div → Xs
div is defined by

B1(v, w) = PeΛ
−1

[
B0(P

0Λv, w)−B0(P
0Λw, v) + A(v, w)

]
.

Theorem 5.7. For s > n/2 + 2 the flow map generated by Euler-α equation on the

space of divergence free vector fields is Poisson with respect to the bracket {·, ·}+ given

by 4.2, i.e., for any v ∈ Xs+2
div and f, h ∈ K1,s(Xs+2

d iv)

{
f ◦ F̃t, h ◦ F̃t

}
+

(v) = {f, h}+ ◦ F̃t(v).

Proof. Follows immediately from Theorem 4.13 and proposition 5.6.
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5.3 EPDiff equation

EPDiff equation is the equation of the geodesic motion of H1 metric on the whole

group of diffeomorphisms. Due to its applications to the computer vision and medi-

cal imaging, it’s also called the averaged template matching equation. See Mumford

[1998] for the derivation of template matching equation using Euler-Poincare reduc-

tion. The version of template matching equation that we study here is derived in

Hirani et al. [2001] from Lagrange-d’Alembert principle on the diffeomorphism group.

Consider the following PDE on the compact manifold M (dim(M) = n) with the

boundary ∂M :

∂t(u− α2∆u) + u(div u)− α2(div u)∆u+ (u · ∇)u

− α2(u · ∇)∆u+ (Du)T · u− α2(Du)T ·∆u = 0,

with the no-slip boundary conditions

u = 0 on ∂M.

Here, we using the same notation as in the previous section for operators ∆, ∇ and

(Du)T .

Let the diffeomorphism group Ds be defined by 2.23 and the weak right-invariant

metric 〈·, ·〉 on Ds be given by 5.10. The geodesic spray S of 〈·, ·〉 on Ds is smooth by

the argument found in Shkoller [1998], hence defines a smooth local flow Ft : TDs →

TDs.

Theorem 5.8. Let ut be a solution of EPDiff equation with no-slip boundary condi-

tions. Then

ut = π ◦ Ft.

Proof. Let

F̃t = π ◦ Ft.

Similarly to Ebin and Marsden [1970], we get the following result:
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Lemma 5.9. The map F̃t : Xs → Xs is a local flow generated by Y , where

Y (v)lv = S(v)− Tv · v.

Conversely, if vt is an integral curve of Y , then

vt = π ◦ Ft(v0).

Proof. Let v ∈ TeDs and ηt be the projection of Ft(u) to the diffeomorphism group,

i.e.,

vt = Ft(v)

ηt = τ̃(vt).

It’s easy to check that F̃t is a flow. Then,

d

dt
F̃t(v) =

d

dt
vt ◦ η−1

= −TFt(v) ◦ Tη−1
t ◦ dηt

dt
◦ η−1

t + S(v) ◦ η−1
t .

Evaluated at t = 0, this expression yields

d

dt
F̃t|t=0 = −Tv · v + S(v) = Y (v).

Since
dηt
dt

= vt

by the properties of geodesic flow, the rest of the lemma follows from the uniqueness

of integral curves.

Now we show that SPdiff equation can be rewritten as

∂ut
∂t

= Y (ut).
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First, we notice that by Formula 2.7

Y (u) = −K̃[Tu · u],

where K̃ is a connector map of the weak Riemannian metric on Ds. By Formula 5.5

for arbitrary v ∈ Ds 〈
K̃[Tu · u], v

〉
= 〈u, [u, v]〉 . (5.12)

In Euclidean coordinates the expression 5.12 yields (after integration by parts)

〈
K̃[Tu · u], v

〉
=

∫
M

(Λu)i(uj
∂vi

∂xj
− vj

∂ui

∂xj
)µ

= −
∫
M

uj
∂

∂xj
(Λu)iviµ−

∫
M

(div u)(Λu)iviµ−
∫
M

∂ui

∂xj
(Λu)jµ

= −
∫
M

〈
(u · ∇)Λu+ div uΛu+ (Du)T · Λu, v

〉
m
µ.

Hence,

Y (u) = Λ−1
[
(u · ∇)Λu+ div uΛu+ (Du)T · Λu

]
. (5.13)

If M is not flat, more care is needed.

Lemma 5.10. For an arbitrary C1 function f : M → R,

∫
M

Lu(fµ) = 0

(Lu denotes a Lie derivative).

Proof. Let ψt be a flow generated by u on M . Since u vanishes on ∂M , ψt maps the
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interior Ṁ of M into itself. Therefore, by the change of coordinates formula

∫
M

Lu(fµ) =

∫
Ṁ

d

dt
ψ∗t (fµ)

=
d

dt

∫
Ṁ

ψ∗t (fµ)

=
d

dt

∫
ψt(Ṁ)

fµ

= 0.

Keeping in mind this lemma and the formula

Lu(fµ) = (u · f)µ+ (f div u)µ,

we obtain from 5.12

〈
K̃[Tu · u, v

〉
= 〈u,∇uv −∇vu〉

=

∫
M

〈Λu,∇uv〉m µ−
∫
M

〈Λu,∇vu〉m µ

=

∫
M

u(· 〈Λu, v〉m − 〈∇uΛu, v〉m)µ−
∫
M

〈
(Du)T · Λu, v

〉
m
µ

=

∫
M

Lu(〈Λ, µ〉)−
∫
M

div u 〈Λu, v〉m µ−
〈
Λ−1

[
∇uΛu+ (Du)T · Λu

]
, v

〉
= −

〈
Λ−1

[
div uΛu+∇uΛu+ (Du)T · Λu

]
, v

〉
.

Hence, again, Formula 5.13 holds.

Comparing the expression 5.13 with the EPDiff equation, we see that

Λ
∂ut
∂t

= −Y (ut)

as desired.

Proposition 5.11. The weak Riemannian connection on Ds is (s, s)-transposable for

s > n/2 + 2.
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Proof. Let u, v, w ∈ Ds be arbitrary. Calculating as in proposition 5.6 we obtain

〈
v, K̃[Tw · u]

〉
=

∫
M

〈Λv,∇uw〉m µ−
∫
M

〈Λw,∇uv〉+ 〈A(w, v), u〉

=
〈
Λ−1B1(Λv, w), u

〉
−

〈
Λ−1B1(Λw, v), u

〉
+

〈
Λ−1A(w, v), u

〉
,

where A, given by 5.11, is a bilinear bounded operator Xs × Xs → Xs−2, B1 is given

in coordinates by

B1(Z,W ) = gmkgijZ
i(
∂W j

∂xk
+ ΓjklW

l) ∀Z,W ∈ Xs.

It’s clear that B : Xs × Xs → Xs,

B(v, w) = Λ−1 [B1(v, w)−B1(w, v) + A(v, w)]

is bounded.

Theorem 5.12. The flow F̃ generated by EPDiff equation on the space Xs (s >

n/2 + 2) is Poisson with respect to the Lie Poisson bracket 4.2, i.e., for all v ∈ Xs+2,

f, h ∈ K1,s(Xs) {
f ◦ F̃t, h ◦ F̃t

}
+

(v) = {f, h}+ ◦ F̃t(v).

Proof. As we showed above,

F̃t = π ◦ Ft,

where Ft is a flow of the smooth geodesic spray on Ds. Since the connection on Ds is

(s, s)-transposable, the claim follows from the Theorem 3.24.
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Chapter 6

Conclusions

In the thesis we successfully implemented the non-smooth Poisson reduction technique

for the study of the equations that, in the Lagrangian representation, are generated by

the smooth spray on the various groups of diffeomorphisms. This enabled us to find

a precise sense in which the flows generated by these equations on the corresponding

Lie algebras are given by Poisson maps. The existence of such Poisson structures is

quite remarkable since the flows under the investigation are not differentiable both in

time and initial conditions (on the functional spaces natural for the problem).

An important point is that we study the flows directly on the tangent bundle,

where there are existence and uniqueness theorems for the corresponding PDEs.

Hence, the results presented in this work translate directly into the statements on

the behavior of integral curves of the equations. This might be very useful for the

study of the global behavior and in particular stability of the PDEs (see Mielke

[2002]).

We develop the non-smooth reduction theory for the right action of a diffeomor-

phism group on itself, utilizing the special form of the reduction map. There is a

hope to generalize the results to the cases where a diffeomorphism group acts on an

arbitrary Riemannian manifold by right composition. That would allow applications

to the free boundary problems, a notoriously difficult case for infinite dimensional

Poisson structures even at the formal level.

An interesting system for which our results are not applicable directly is the KDV

equation on S1. It’s a known fact (Ovsienko and Khesin [1987], Khesin and Misiolek
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[2003]) that the KDV equation is a reduction to the identity of the geodesic flow of the

right-invariant L2 metric on the Bott-Virasoro group. Unfortunately, the Levi-Civita

connection of this metric is not smooth.

The solutions that we study are, in a sense, regular. Even though they are not

differentiable, the energy remains finite at all times. One issue which need to be

addressed in the future is that of singular solutions. For example, the solutions of

Camassa-Holm equation do lose regularity in finite time (Camassa and Holm [1993]),

which is related to the fact that diffeomorphism groups are not geodesically complete

manifolds. Even for the ideal Euler equations, this is interesting because of the

singular solutions, such as point vortices, vortex filaments and sheets. They clearly

have themselves an interesting Poisson structure, as was investigated by Marsden and

Weinstein [1983] and Langer and Perline [1991]. There are similar singular solutions

for the EPDiff equations, whose geometry is investigated in Holm and Marsden [2003].

It would be very interesting if the smooth spray property still holds (on the spaces

appropriate for these classes of singular solutions), and, if that is the case, whether

or not one could then carry out the program in this thesis.
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