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Abstract

Differentially flat systems are underdetermined systems of (nonlinear) ordinary dif-
ferential equations (ODEs) whose solution curves are in smooth one-one correspon-
dence with arbitrary curves in a space whose dimension equals the number of equa-
tions by which the system is underdetermined. For control systems this is the same
as the number of inputs. The components of the map from the system space to the
smaller dimensional space are referred to as the flat outputs. Flatness allows one
to systematically generate feasible trajectories in a relatively simple way. Typically
the flat outputs may depend on the original independent and dependent variables
in terms of which the ODEs are written as well as finitely many derivatives of
the dependent variables. Flatness of systems underdetermined by one equation is
completely characterised by Elie Cartan’s work. But for general underdetermined
systems no complete characterisation of flatness exists.

In this dissertation we describe two different geometric frameworks for study-
ing flatness and provide constructive methods for deciding the flatness of certain
classes of nonlinear systems and for finding these flat outputs if they exist. We first
introduce the concept of “absolute equivalence” due to Cartan and define flatness
in this frame work. We provide a method of testing for the flatness of systems,
which involves making a guess for all but one of the flat outputs after which the
problem is reduced to the case solved by Cartan. Secondly we present an alterna-
tive geometric approach to flatness which uses “jet bundles” and present a theorem
which partially characterises flat outputs that depend only on the original variables
but not on their derivatives, for the case of systems described by two independent
one-forms in arbitrary number of variables. Finally, for the class of Lagrangian
mechanical systems whose number of control inputs is one less than the number of
degrees of freedom, we provide a characterisation of flat outputs that depend only
on the configuration variables, but not on their derivatives. This characterisation
makes use of the Riemannian metric provided by the kinetic energy of the system.
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Chapter 1

Introduction

Historically, determined systems of ordinary differential equations (ODEs), i.e. sys-
tems where the number of dependent variables equals the number of ODEs, have
been given a lot of attention and their properties have been studied in detail. How-
ever, in physics the equations governing any phenomenon are often underdetermined
in their original form mainly due to the fact that we isolate a system from its en-
vironment and model the effect of the environment by some forces external to the
system. For instance when one considers a particle moving in Buclidean space the
laws of motion give rise to second order ODEs

=P, i=1,2,3,

and this is an underdetermined system (three equations and six dependent variables)
until one assigns the forces P; to some known functions of time. This point becomes
important in control engineering where one considers the above system as a control
system where the variables F; are under the direct control of an engineer. The
purpose of analysis is to decide what functions should be assigned to these forces, in
other words the question is how to vary P; in order to achieve some desirable goals.

Underdetermined systems have been studied in the form of control systems by
control theorists of the past few decades. Control theorists often separate the de-
pendent variables into two natural groups, one being the “inputs” which are the
variables that can be directly varied and the rest as “states” whose evolution is
governed by a determined system of first order ODEs once the inputs are assigned
to some given functions of time. The study of control systems has led to a whole
set of complex properties that are only applicable to underdetermined systems. For
instance the notion of controllability roughly deals with being able to find a solu-
tion that would take the system from any given initial condition to any given final
condition in some given time. On the other hand for a typical determined system,
given an initial condition there is only one solution that satisfies it and hence it
can never be controllable in this sense. We refer to Sontag [38], Isidori [14] and
Nijmeijer and van der Schaft [26] for details on nonlinear control theory. The class
of underdetermined systems that are linear after an invertible (nonlinear) change of
the dependent variables have also been studied in the past decades and have been
classified with the aid of methods from differential geometry. Unlike determined



systems, a reasonably large class of real world underdetermined systems are “lin-
earisable” in the above sense and hence in principle, once the appropriate change
of variables has been made, methods of linear control theory can be applied to
control such systems. Unfortunately, the majority of control systems are still not
linearisable in this way. The control of such systems is still very much the subject
of research.

Another important property that an underdetermined system of ODEs may
possess is “differential flatness” (often referred to as “flatness”). Roughly speaking
differentially flat systems are systems whose entire set of solutions are in a smooth
one-one correspondence with arbitrary curves in a space of dimension p, equal to
the number of equations by which the system is underdetermined. This property
allows one to systematically generate solution trajectories in a relatively simple way
by translating the problem to the task of finding curves in the lower dimensional
space that need to satisfy some conditions only at their end points but are otherwise
free.

The notion of differential flatness has been around in some form or another
since the time of Cartan and Hilbert, see [6, 7, 13]. In fact Cartan has studied a
slightly more general version of the problem where the one-one correspondence may
involve a change of the dependent variable as well, where as in differential flatness
the independent variable is preserved, see [6]. The precise notion of differential
flatness in its current form as well as the terminology was introduced by Fliess and
coworkers. See [12, 10] and also Martin [20]. They have also introduced a more
general notion akin to the notion of Cartan, called “orbital flatness” which allows
change of the independent variable as well. In this thesis we shall only focus on
differential flatness and “flatness” shall stand for differential flatness throughout
this thesis.

A complete characterisation of flatness does not exist as yet for general class
of systems. Cartan’s work completely characterises flatness for the case of systems
underdetermined by one equation.

1.1 Differentially Flat Systems

Differential flatness is a concept that applies to underdetermined systems of ODEs.
A general underdetermined system of ODEs of order £ may be written as

Fit,z, 2, ... 2®y=0, j=1,....N-p, (1.1)
where FJ are assumed to be C*®-smooth functions, z = (z!,...,2") € RN are the
dependent variables, t is the independent variable (usually time), z(") stands for
the rth time derivative of z, and p (> 1) is the number of equations by which the
system is underdetermined.

As an example consider the planar rigid body controlled by two independent
forces that pass through a fixed point P in the body as illustrated in Figure 1.1.
The rigid body is assumed to move in the vertical plane in the presence of gravity
and that P is different from the centre of mass G. Some practical examples that



Figure 1.1 Planar rigid body controlled by two independent forces

may be approximately modelled by this system are the fan engine with flaps that
can be controlled by motors [40] and the VTOL aircraft [22].

If £; and z, are the horizontal and vertical coordinates of GG, 6 the angular
orientation, and Fj and F; are the components of forces as shown in Figure 1.1 then
the equations of motion can be written as

miy sin @ + miocosf — mgcosd = Fy
miycosf — miqgsind + mygsinfd = —F,
16 = -F\R (1.4)

where m is the mass, / the moment of inertia, g the acceleration of gravity and R
is the length PG. This is a system of ODEs in the dependent variables z1, 29, 8, F}
and F; and hence is underdetermined by two equations. Two is also the number of
independent control inputs. If we set any two of the variables to arbitrary functions
of time we obtain a fully determined system of ODEs. The set of solutions of this
resulting system may typically depend on a number of constants corresponding to
some initial conditions. For instance setting F} and F, to arbitrary functions we
obtain a system whose solutions depend on six constants, which are initial conditions
for 1,29 and @ and their first time derivatives. Thus we may regard the entire set
of solutions (z1(t), z2(t), 8(t), F1(t), F5(t)) as being parametrised by two arbitrary
functions (which specify Fj(t) and F5(t)) and six arbitrary constants (which specify
initial conditions for the resulting determined system of ODEs). It is clear that
the set of solutions must depend on two arbitrary functions since the system is
underdetermined by two equations, but an interesting question is whether the six
constants that are needed in addition are really necessary. From a mathematical
point of view there is no compelling reason why F; and F, should be the variables
that are assigned to the arbitrary functions. Any pair of variables may be chosen to
be the “free variables,” i.e. the ones that are to be assigned to arbitrary functions,



provided they are “differentially independent.” For instance Fj and 6 may not be
chosen as the free variables since they are related by the ODE (1.4), in which no
other variables are present. In other words they are “differentially dependent.”
However we may choose any pair of 2,29 and 6 as free variables and then
the number of constants needed is only two instead of six because some of the
ODEs become purely algebraic equations. In order to simplify the analysis we may
eliminate F from Equations (1.2) and (1.4) to obtain the following equation.

miy sin  + miq cos @ — mgcos 8 + (I/R)f = 0. (1.5)

This is also an underdetermined ODE in three dependent variables zy, 2z, and 8. Fur-
thermore it may be noted that the set of all solutions (21(t), z2(t), 6(t), Fi(t), F2(t))
of the system consisting of Equations (1.2), (1.3) and (1.4) is in smooth one-one
correspondence with the set of solutions (z1(t), z2(t), 8(t)) of the system consisting
of the single ODE (1.5). This is because given any solution of (1.5), F; and F;
are uniquely determined by the Equations (1.2) and (1.3). Hence we might as well
focus on the smaller system given by the single ODE (1.5). If we set any pair of
z1, %9 and @ to arbitrary functions then the resulting ODE has a set of solutions
that depend on two constants and hence it is also clear that the solution set of the
full system consisting of Equations (1.2),(1.3) and (1.4) can also be parametrised
by two arbitrary functions (which specify a pair of variables amongst 21, z2 and 6)
and two constants (which specify the initial conditions for the other variable in the
set {zy1, zq,0}).

A natural question is whether there is a clever choice of the two free variables (the
ones that are assigned to arbitrary functions) such that no constants are required
to parametrise the solution set. This will happen if and only if after these free
variables are assigned to some arbitrary functions the resulting determined system
of ODEs is degenerate, in the sense that it has only discretely many solutions as
opposed to the continuously many solutions for a nondegenerate system. For the
above system, no pair of variables from the set {1, 22, 8, F}, F5} would achieve this
property. However there is no reason to limit ourselves to these five variables. We
may more generally look for a pair of variables y; and ys that are functions of
zy, 29,0, Fy, Fy. In fact, the following choice works:

Y1 = 1 — —= cos b,
A (1.6)
Yo = &g + m—RsinH.

Two arbitrary functions assigned to y; and y; parametrise the entire set of solutions
without the need for additional constants. In order to see this we may rewrite
Equation (1.5) in the variables y;,y2 and 4. This in fact is given by

1 8in @ + o cosf + gcosf = 0. (1.7)

Once y; and y, are assigned to arbitrary functions the resulting equation for 4 is
a purely algebraic equation (does not have derivatives of §). This has only two



possible solutions which differ by .

The variables y; and y, in above example are called “flat outputs.” In the above
example the flat outputs were functions of the original variables zy, x4, 8, Fi, F5.
In general they are allowed to depend on finitely many derivatives of the original
variables. Not all systems possess flat outputs. We may define differential flatness
as follows.

Definition 1.1 The system given by (1.1) is said to be differentially flat or simply
flat if there exist variables y', ..., y? given by an equation of the form

y=h(t,z,2M, ... ™) (1.8)

such that the original variables 2 may be recovered from y (locally) by an equation
of the form

z=g(t,y,y",...,.y0). (1.9)
The variables y!, ..., y? are referred to as the flat outputs.

Flatness may be regarded as a (local) bijective correspondence between the solutions
z(t) of (1.1) and arbitrary curves y(t) in R? that is given by the maps h and g of
the Equations (1.8) and (1.9). It must be noted that the Equations (1.8) and (1.9)
are only required to hold locally. For instance in the planar rigid body example, 8 is
given implicitly in terms of j; and ij. Only locally, using implicit function theorem,
can we obtain explicit equations such as (1.9). Also singularities are often present
in the transformations (1.8) and (1.9). As an example, in the case of planar rigid
body, curves y(t) for which §; = § + ¢ = 0 do not map to unique (not even locally)
solutions z(t).

Remark 1.2 The flat outputs of the planar rigid body example were originally
discovered by Martin [22]. In that paper the system under consideration was a
VTOL aircraft which may be modelled by our planar rigid body system. The flat
outputs correspond to the coordinates of a special point on the body known as
the “centre of oscillation,” which arose historically in the study of pendulums by
Huygens.

1.2 Trajectory Generation

Given that the system (1.1) is differentially flat, the problem of generating so-
lution curves of (1.1) that pass through given initial and final conditions x(fg) and
z(t1), may be solved by translating the problem to the lower dimensional flat output
space. For simplicity suppose the flat outputs y depended only on t and z. In the
flat output space these conditions become conditions on y¥)(¢y) and y*)(¢;) for k
upto some finite number. We may choose any curve y(t) satisfying these endpoint
conditions and then using Equation (1.9) we can obtain trajectories z(t) that pass
through the initial and final conditions.
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Figure 1.2 Trajectory planning using flat outputs y

We shall illustrate the idea using the planar rigid body example. Suppose we
need to find a trajectory for the planar rigid body that starts from some given
initial values of configuration, velocity and forces and reaches some final values of
configuration, velocity and forces in some given time 7. In other words the task is
to find a solution (z(t), z2(t), 0(t), Fi(t), F»(t)) that satisfies some prescribed values
for a1, x9,8, 21, &2, é, Fi, Fy at time t = 0 and at time ¢ = T'. All such solutions can
be mapped to some curves on the flat output space with coordinates (y;, y2), which
are given by (1.6). It is instructive to write the derivatives of the flat outputs in
terms of the original variables z1, 9,6, Fy and F, and their derivatives. We obtain
the following equations.

(1 _ . I ..

Yy _:rl-i-r}ROsmH

vy _ . ;

Ys —ng;{————mRﬁcosﬁ
(2 _ _12 )2

Yy = mcosﬁ—}—mRO cos

(2 _ Fa o L 2o
y; " = sin mRe sinf — g



y§3) = —Gcosf+ gfsinb

yéB) = Gsinf + ofcosh

yfi) = —&cosf + 260 sinf + c6% cos b — —I;UF} sin @

ygl) = &sinf + 2660 cos § — c6?sin 0 — —I—UFl cosf

where 0 = %—-7—7}’}—%—9’2. It may be shown that the above relations are locally invertible,
i.e. there is a (local) diffeomorphism between the variables

1) 1 4) (4
917y2,3/§ }7y§ )77y1( )’yg)

and the variables
Ty, T2, 97 Ty, d;?’ 9) F17 F27 U,O

Given the prescribed values for zq, 22,8, 21, 229, 6, [y, F, at time t = 0 we may assign
some arbitrary values for & and & after which we obtain unique prescribed values
for y1,y2 and their first four derivatives at time ¢ = 0. The same may be done for
time t = T'. This leaves us with the problem of finding y(t) = (y1(t),y2(t)) that
satisfy these initial and final conditions on derivatives upto fourth order, but are
otherwise free. At this stage infinitely many possibilities exist. One may fit some
spline curves for instance. Once such a y(t) has been chosen then the corresponding
solution curve in the original space may be obtained by first solving for 8(¢) using
Equation (1.7), then finding z1(¢), z,(¢) from (1.6) and finally finding Fy(t), Fa(t)
from Equations (1.2) and (1.3). This solution curve will satisfy the prescribed initial
and final conditions.

Remark 1.3 It is clear from above, that a solution connecting any two generic
points in the original system space can be found. Thus flat systems are controllable.
We have not proven this but the above procedure contains the ideas for a proof.

Remark 1.4 For a detailed description of the numerical and computational issues
of using flatness to generate solution trajectories we refer to van Nieuwstadt and
Murray [41] as well as van Nieuwstadt [39].

1.3 Control Systems, Feedbacks and Differential Flat-
ness

In this section we shall give a brief description of some notions from nonlinear control
theory and describe their relation to flatness. For a detailed description of these
concepts we refer to [26] and [14]. Our description is fairly brief since we shall not
explore the relationship between flatness and feedbacks in this thesis. This link
has been explored by other researchers in the field and we shall only mention their
results.



Feedback System

Figure 1.3 Feedback of control systems

Control systems are engineering systems where some variables called “controls”
or “inputs” may be varied directly in order to effect changes in rest of the variables
of the system called “states.” Typically states evolve according to some dynamic
principles and this depends on the input variables. We are primarily concerned
with control systems whose dynamics are governed by systems of ODEs. The typ-
ical model of a nonlinear control system used by control theorists is the system of
equations

it = fi(t,w,u), i=1,...,n, (1.10)

where f* are assumed C®-smooth, ¢ = (z1,...,2") are the statesand u = (u!, ..., uP)
are the inputs. Typically p < n. Observe that this system is underdetermined by
p equations. In engineering practice as well as in analysis, this control system is
often modified by adding a “feedback.” This may be illustrated by a “block dia-
gram” as in Figure 1.3. The block marked f refers to the control system and the
outcome of the block are the states z. The block marked ¢ stands for the feedback.
This block may be thought of as an operator that maps a new set of control inputs
v = (vl,...,vP) and the states z to the old controls u = (u!, ..., u?). This feedback
is called a static feedback when the operator ¢ is given by a map v : RI*"+P — RP
in the form

u(t) - 7(t7 x(t)’ v(t))'

The feedback itself may involve some dynamics governed by some ODEs as in the
form
(t) = a(t, x(t), 2(1), v(1)),

ult) = B(t, (1), 2(1), v(1)), (L1)

where z = (z1,...,2™) are called the new states. The composite system may be



thought of as a control system with v as its p inputs and (z, z) as its n 4+ m states.
This kind of feedback is called a dynamic feedback. Observe that when m = 0 the
dynamic feedback becomes a static feedback and hence static feedback is just a
special case of dynamic feedback.

After a static feedback and a possible nonlinear transformation of the state
variables some control systems may be expressed in the linear form

£ = A¢ + Bo, (1.12)

where £ = F(z) are the new coordinates for the states. Such systems are said to
be feedback linearisable via a static feedback and have been completely classified in
literature, see [14] for instance. Systems that are not static feedback linearisable
may still be dynamic feedback linearisable in the sense that after a dynamic feedback
and a diffeomorphism of the states & = F(z, z) they take the linear form (1.12).
Classification of dynamic feedback linearisability is still an open problem though
classification results exist for special classes of systems. For instance in the case of
p = 1 dynamic feedback linearisability has been shown to be equivalent to static
feedback linearisability, see [8] and [34] for instance. Feedback linearisability is
a desirable property since at least in theory after the application of appropriate
feedback and coordinate changes the tools of linear control theory may be used to
control the system.

Fliess and coworkers have introduced the notion of an endogenous feedback which
is essentially a dynamic feedback of the form (1.11) with the added requirement that
z and v be uniquely determined as functions of ¢, z, u and finitely many derivatives
of u. They have shown that feedback linearisability via endogenous feedback is
equivalent to differential flatness, see [12). More recently, they have also shown
that dynamic feedback linearisability in a more general sense is still equivalent to
differential flatness [9].

In terms of control applications there are two ways to regard flatness. One view
is to emphasise the feedback linearisability property and develop control schemes
that make use of the appropriate feedback that linearises the system. The alterna-
tive view is to make use of the fact that flatness enables one to generate feasible
trajectories (at least theoretically) in a simple way. In this view point one may not
necessarily feedback linearise the system. See van Nieuwstadt and Murray [41] for
an example of the latter view point. Since the concern of this thesis is classification
of flatness rather than its applications we shall not elaborate on this topic.

1.4 Theoretical Tools and Results

A complete classification of flatness is not available as yet and is likely to require
some what sophisticated mathematical tools. For systems underdetermined by one
equation (p = 1) the classification is complete and the theory is essentially due to
Elie Cartan. His approach was to use differential geometry to study systems of
ODEs. In particular the use of differential forms to describe ODEs and the use of
the powerful tools of “exterior differential systems” developed by Cartan himself,
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see [4] and [35] for instance.

The notion of differential flatness was introduced to the control community by
Fliess and coworkers, originally in the language of “differential algebra”; see [12] for
a detailed description. Differential algebra is an area of mathematics which was pri-
marily developed by Ritt. It is essentially an attempt to develop a “Galois theory”
of differential equations, see [31] and [16] for instance. The differential algebraic
setting requires one to assume that the ODEs are polynomials or at least mero-
morphic functions of the variables and their derivatives. The theory does provide
an elegant setting and brings out some of the key concepts very clearly. However
this theory does not provide a convenient framework for local analysis nor does it
facilitate the study of singularities. A more geometric theory would be necessary in
order to rectify these shortcomings.

Differential flatness may be formulated in terms of the geometric notion of “ab-
solute equivalence” of Cartan which helped him solve the case of p = 1 and this is
presented in Chapter 2 of this thesis. Also see van Nieuwstadt et al. [42] and Sluis
[35] for details. But it is unclear whether the tools of Cartan that proved useful for
the case of p = 1 could also provide a theory for the general p > 1 case.

Alternative geometric approaches may be found in the works of Fliess and
coworkers [10, 12] and Pomet [27]. Fliess and coworkers as well as Pomet have in-
dependently proposed an “infinite dimensional jet bundle” approach to differential
flatness. These infinite dimensional spaces have the variables ¢, z and the derivatives
of z of all orders as their coordinates. They also reflect all the relations amongst the
derivatives (of all orders) of the variables # (in other words all the ODEs implied
by the original system of ODEs). These approaches are in some sense closer to
the differential algebraic view and differ from the absolute equivalence approach in
a number of ways. The notion of absolute equivalence primarily involves one-one
correspondence of solution curves (though the goal is to relate this notion to prop-
erties of systems of differential forms expressed in terms of the exterior differential
calculus of Cartan) whereas the infinite dimensional jet bundle approach directly
talks about transformations that depend on derivatives of variables and does not
necessarily use the tools of exterior calculus.

Though there is no general theory of flatness for the p > 1 case, several scattered
results exist. In addition to the results concerning feedback linearisation already
stated, we mention a few more. A known necessary condition for flatness of control
systems of the form & = f(z,u) (i.e. time independent control systems) is that at
every point = on the state space the set of tangent vectors f(z, u) for all u should be
a ruled submanifold of the tangent space at the point 2 and this is due to Rouchon,
see [32]. Rouchon also shows with the aid of this condition that flatness is not a
generic property of control systems.

Martin and Rouchon have shown that all controllable systems ¢ = f(z, u) where
f is linear in u (known as driftless systems) with n states and n — 2 controls are
differentially flat [21]. Recently Pomet has completely classified time independent
control affine systems (systems where f is affine in u) in 4 states and 2 inputs that
possess flat outputs that depend ouly on states (y = h(z)) as well as those which
possess flat outputs that depend only on states and controls but not on derivatives
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of control (y = h(z,u)), see [28].

1.5 Contributions

The main aim of this thesis is to provide results that classify differentially flat
systems and methods for finding flat outputs. The value of using the correct tools
to study a mathematical problem cannot be underestimated. In this thesis we shall
use two different geometric approaches to study flatness. Both approaches have
their merits.

We assume a basic knowledge of concepts from differential geometry such as
manifolds, tangent spaces, vector fields, differential k-forms, distributions, codistri-
butions, and pull backs of forms and codistributions. Suggested references for this
material are Nijmeijer and van der Schaft [26] and Abraham et al. [2].

In Chapter 2 we explain the differential forms approach to systems of ODEs. We
also explain the notions of “Cartan prolongations” and “absolute equivalence” as
well as other related concepts due to Cartan and present a definition of flatness in
terms of these concepts and relate it to the nominal definition 1.1. Cartan has com-
pletely solved the problem of flatness for systems underdetermined by one equation
(p = 1) and we summarise this result in terms of concepts from exterior differential
systems. We also propose a method of testing for the flatness of systems underde-
termined by more than one equation (p > 1) which involves making a guess for all
but one of the flat outputs after which the problem is reduced to the one solved
by Cartan. With the aid of the theory of absolute equivalence we demonstrate the
validity of this method. We illustrate the method by two examples one of which is
nontrivial and was not knowe to be flat before. In this chapter, we also point out
some drawbacks in the current version of the notion of a Cartan prolongation.

In Chapter 3 we present an alternative, geometrical framework for studying
differential flatness which does not have the drawbacks of the theory of Chapter 2.
This approach involves “jet bundles.” In other words we use a sequence of spaces
that have the independent variable t, the dependent variables z as well as finitely
many derivatives of z upto a certain order as their coordinates. This approach
is related to the approaches of Fliess and coworkers [10, 11] and of Pomet [27], a
major difference is that we work with finite dimensional spaces while these other
approaches use an infinite dimensional space. We introduce several concepts and
lemmas that are relevant for a clear understanding of these spaces and these also
help us define differential flatness. We also introduce the notion of “zero-flatness”
which is a restricted form of flatness where flat outputs are allowed to depend only
on the original variables ¢t and z but not on derivatives of z. In general the flat
outputs can depend on higher order derivatives of . It is not known whether there
is an upper limit (which may depend on the size of the system) such that for a flat
system it is always possible to find flat outputs that do not depend on derivatives
of order higher than this upper limit. We believe that studying zero-flatness may
be a useful first step towards understanding differential flatness in general. In this
chapter we present a theorem which characterises on an infinitesimal level the level
sets of the zero-flat outputs of a system that may be modelled by two independent
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one-forms. In other words we find necessary and sufficient conditions on the tangent
spaces of the level sets. Our theorem leads to PDEs to be solved for flat outputs
and these PDEs may not always have solutions. We do not provide any theory on
the existence of solutions to these PDEs.

In Chapter 4 we concentrate on Lagrangian mechanical control systems whose
number of control inputs is one less than the number of degrees of freedom. With
the aid of a jet bundle formulation we introduce the notion of “configuration flat-
ness” which is the same as flatness but where the flat outputs depend only on the
configuration variables ¢ but not on their derivatives, i.e. y = h(q). Under certain
assumptions on the nature of the kinetic energy and of the control forces we obtain
a result which completely characterises configuration flat outputs for systems with
one fewer controls than number of degrees of freedom. Our result gives a construc-
tive approach for finding configuration flat outputs and we illustrate the method by
two examples.

Finally in Chapter 5 we make some concluding remarks and discuss future di-
rections of research.
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Chapter 2

Absolute Equivalence and Differential Flatness

In this chapter we shall introduce the notions of Pfaffian systems, Cartan prolon-
gations and absolute equivalence and provide a definition of differential flatness in
terms of absolute equivalence.

The basic approach taken here is due to Elie Cartan. Cartan took a differential
forms approach to study systems of ODEs as well as PDEs. The powerful theory
of exterior differential systems primarily developed by Cartan provides an elegant
geometric theory of PDEs. See [4] and [5] for details. Using the same tools, Cartan
also undertook the study of systems of ODEs underdetermined by one equation and
solved the problem of absolute equivalence for such systems. See Chapter 2 of [35],
[6] and [7] for details. The thesis of Sluis [35] explores Cartan’s notion of absolute
equivalence for systems of ODEs underdetermined by arbitrary number of equations
(more than one).

In this chapter, with the aid of some important results due to Sluis [35], we
shall establish a definition of differential flatness in terms of absolute equivalence.
Our approach differs from that of Cartan’s in the following way. Cartan did not
distinguish between independent and dependent variables, since he was studying
very general change of variables of the form (t,z) — (7 = 9¥(t,z), X = é(t,z))
where the independent variable was not necessarily preserved (i.e. 7 # t). Since the
notion of differential flatness concerns transformations that keep the independent
variable unchanged, we shall impose a special notion of time (independent variable)
and our definitions of Cartan prolongations and absolute equivalence are accordingly
more restrictive. See van Nieuwstadt, Rathinam et al. [42] and Rathinam and Sluis
[30] for additional information.

We summarise the characterisation of flatness for systems of ODEs underde-
termined by one equation and present a method of testing for flatness of systems
underdetermined by more than one equation. This method involves making guesses
for all but one of the flat outputs, after which the problem is reduced to the one
solved by Cartan. We illustrate the method by a simple example and also provide
an additional example of two planar coupled rigid bodies controlled by three inputs.
We demonstrate the validity of this method using the definition of flatness in terms
of absolute equivalence.

Cartan prolongations provide a nice geometric way to visualise differentially flat
systems and the corresponding transformations. They also allow us to prove certain
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useful results such as the method of testing for flatness presented in this chapter.
However there are important drawbacks in this approach that basically stem from
an inadequate definition of Cartan prolongations. These are mentioned in remarks
2.9, 2.10 and 2.11. ,

Some of the results and examples in this chapter are joint work with Michiel van
Nieuwstadt and Willem Sluis. See [30] and [42] for additional information.

2.1 Differential Forms Approach to Systems of ODEs

Throughout this chapter, time ¢ denotes the standard coordinate on R. Maps be-
tween manifolds and objects such as forms, vector fields etc. on manifolds are as-
sumed to be C*°-smooth and submanifolds are assumed to be regular.

A Pfaffian system I on a manifold M is a submodule of the module (over the ring
of smooth functions on M) of all one-forms. We shall only consider finitely generated
Pfaflian systems, i.e. those for which local to any point on M a finite basis of one-
forms can be found. Since we are only interested in changes of coordinates that
preserve time, i.e. those of the form (¢,2) — (¢, X = 9(t,z)), we shall be dealing
with manifolds M equipped with a notion of time given by a map 7 : M — R which
is a submersion and we shall refer to the triple (M, n,I) as a system. The time
coordinate on M is 7#*t = t o 7, which we shall often write as ¢ for notational ease.
Also we may refer to I as a system, the underlying manifold M together with =
being understood from the context. For ¢ € M, the codimension at q of the system
is dim M — dim I(p). A system is trivial if [ = {0}.

Let S = (M, x, I) be asystem. A solution of S'is a curve ¢ : (a,b) — M such that
moc=1id (in other words c is a section of the bundle 7 : M — R) and ¢*(I) = {0}
(in other words (¢, %) = 0 for all forms a in 7). Since ¢ is a section it follows that ¢
is an immersion and that the image of the solution, ¢(a,b), is a submanifold of M.

To see the connection with systems of differential equations, let us consider a
coordinate system (¢, z",...,2") on an open set U C M. Suppose that {w',...,w"}
(n < N) is a set of linearly independent generators of I and in local coordinates let

N
W' = Za,‘,j(t, z)dz! + a;o(t,z)dt, i=1,...,n. (2.1)

i=1

A solution is given by functions (z1(t),..., 2™ (t)) that satisfy the following under-
determined system of differential equations (n < N):

N
> aij(t,2)i’ +aio(t,z) =0, i=1,...,n (2.2)

J=1

In general, this system cannot be put in the familiar form of a control system # =
f(t,z,u) by a coordinate change. However, I + span{dt} is locally integrable in the
sense of Frobenius if and only if in suitable local coordinates (¢, 2!, ..., 2™ !, ..., uP),

equation (2.2) take the form & = f(t,z,u) for a control system with p inputs; see
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[35]. Note that this system has codimension N —n+1=p+ 1.

Remark 2.1 If in some open set, dt € I, then there cannot be any solutions in
that open set, since by definition, for a section ¢, (dt, %) = 1. Suppose there exists
some function A, such that Adt € I in some open set, then clearly all solutions in
that open set lie on the subset given by A = 0. This corresponds to one of the ODEs

degenerating to an algebraic equation.

Thus we see that Pfaffian systems correspond to quasi-linear (linear in deriva-
tives) systems of ODEs. In fact it is possible to relate any nonlinear system of
ODEs to a Pfaffian system on a suitable manifold. Indeed any system of ODEs in
independent variable £ can be rewritten in the first order form as

FRt 2t 2N, 8t eN)=0 k=1,...,n < N.

In order to relate this to a system of differential forms one rewrites these as quasi-
linear ODEs by introducing extra variables p/ for j = 1,..., N which stand for 7.
Then we have the linear system of ODEs

=9, j=1,....N

together with algebraic equations F*(t, 2%, ..., 2N, p',...,p") = 0. Assuming the
set described by F = 0 is a manifold, which we shall denote by M, the Pfaflian
system to be studied is given by

span{dz’ — p’dt}, j=1,...,n

which should be restricted to manifold M. Finding suitable coordinates on M can
be tedious depending on functions F*, however. But since most systems of interest
(especially mechanical systems) are already in quasi-linear form we don’t have to
face this difficulty often.

Simple equivalence between two systems is achieved by diffeomorphisms. More
precisely two systems (My, 7y, [1) and (Ma, 7o, I2) are said to be equivalent if there
exists a diffeomorphism ¢ : My — Mj such that 7y = mp0¢ and ¢*(I2) = I;. The first
condition ensures that the notion of time is preserved by the diffeomorphism. Clearly
two systems can be equivalent only if they live in spaces of the same dimension.

2.2 Cartan Prolongations and Absolute Equivalence

Cartan prolongations give rise to a more general notion of equivalence between
systems that live in spaces of possibly different dimensions.

In order to explain Cartan prolongations we first introduce the notion of a mor-
phism (see also [30]). Let Sy = (My, 7y, I1) and Sy = (M, w2, I3) be two systems. A
morphism from Sy to S is a surjective submersion ¢ : My — My, with the following
properties:

1. myo ¢ =my,
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Figure 2.1 Morphism from S; to S;.

2. ¢*(I,) C I.

For a curve ¢ in My, a lift of ¢3 is a curve ¢; in Mj such that ¢; = ¢ o c;.

Since ¢ is a surjective submersion it follows that M is fibred over M;. We refer
to My as the full space, My as the base space, Iy as the full system and I, as the
base system. Condition 1 ensures that the notion of time is the same for both M;
and M,. Condition 2 says that the base system I5 is contained in the full system I;
after being pulled back to the full space. It also follows from the second condition
that the dynamics of S; projects into the dynamics of Sy in the sense that every
solution curve ¢; of S; projects via ¢ to a solution curve cg of S3. On the other
hand, a solution of S3 may have 0, 1 or many lifts to a solution of Sy, depending on
the solution and the morphism ¢. This is described in Figure 2.1.

Remark 2.2 Roughly speaking if one takes a system I, on manifold M, and adds
extra differential forms and extra coordinates one gets a bigger system I; living in a
space M that is fibred over M;. The corresponding projection is a morphism from
the bigger system to the smaller one. In terms of ODEs, this is equivalent to adding
extra quasi-linear ODEs and introducing extra variables.

Example 2.3 Consider the control system in one state z and single control u given
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by
= u.

This corresponds to a system I, = span{dz — udt} in coordinates (¢,z). Consider
adding a dynamic feedback given by

b= 22

32 = Gt

u = g(2)v
1.2

where g is a nonvanishing scalar function, z!, z* are additional new states and v the
new control input. The system including the feedback corresponds to the Pfaffian
system

I = span{dz — g(2)vdt,dz* — 2*dt, dz* + 2'dt}

in coordinates (¢, z,v, z!, 2%). (Note that v and u are not independent.)

Let ¢ be the projection that maps (¢, z,v, 2!, 2%) in the full space to (t,z,u =
g(z)v) in the base space. Then clearly we see that ¢ is a morphism from the full
system (with feedback) to the original base system. For any solution (z(t),u(t)) of
the system I there are infinitely many (in fact a two parameter family of) solutions
(z(t),v(t) = u(t)/g(2(t)), z1(t), 2%(t)) of I; that depend on z'(0) and 2%(0).

Definition 2.4 Let ¢ be a morphism from S; = (B,7p,J) to St = (M, 7, I).
Then Sy is a Cartan prolongation of Sy via ¢ if every solution ¢ of S7 has a unique
lift to a solution ¢ of Sy. We say Sy is a Cartan prolongation of Sy if there exists a
morphism ¢ from Sy to St such that Sy is a Cartan prolongation of S; via ¢. See
figure 2.2.

Example 2.5 Consider the same control system in the Example 2.3 given by I,
but instead add the following dynamic feedback:

U=z
Z=v.
In control engineering terminology we have added an integrator in front of the

control input u. Here we have turned u into a new state denoted by z and our new
control v is the derivative of u. The full system including feedback is given by

J = span{dz — zdt,dz — vdt}

in coordinates (¢, z, z, v). If ¢ is the projection that maps (¢, z, 2, v) to (¢, z) (same as
(t,u)), then firstly we see that ¢ is a morphism from the system J to I. Given any
solution (z(¢), u(t)) of system I, there is a unique solution (z(t), 2(t) = u(t),v(t) =



18
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c

Figure 2.2 A Cartan prolongation Sy of S;.

u(t)) of J that projects down to it. Hence we see that J is a Cartan prolongation
of Iy via ¢.

More generally, given a general control system
I =span{dz’ — fi(t,z,u)dt}, i=1,...,n (2.3)

in n states and p controls, “adding integrators” to a partial subset of inputs u!, ..., u*
(s < p) gives rise to the system

J = span{dxi - fi(t,;c,u)dt,duj - vjdt}, t=1,...,n,5=1,...,s,

which is a Cartan prolongation of I. This type of Cartan prolongation is termed
prolongation by differentiation. Let M denote the manifold on which I lives (M
has coordinates (¢,z,u)) and B denote the manifold on which J lives (B has coor-
dinates (t,z,u,v)). We see that B is fibred over M with (v!,...,v*) being a choice
of fibre coordinates. Notice that v’ for j = 1,...,s, correspond to time derivatives
of some coordinates on the base manifold M, namely uw’ for j = 1,...,s. This ex-
plains the terminology “prolongation by differentiation.” Repeating this procedure
by differentiating some of the v/, say j = 1,..., s (s1 < s) and so on also leads to
Cartan prolongations which are all referred to as repeated prolongations by differen-
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tiation. When one adds integrators to all inputs (i.e. s = p), the resulting Cartan
prolongation is called a total prolongation. Total prolongations have nice geomet-
ric properties. In fact any given system (M, n,I) has a unique total prolongation,
whereas its Cartan prolongations are not unique. In some of the literature these are
simply referred to as prolongations. In Chapter 3 we will be developing the language
of total prolongations where we will simply refer to them as prolongations.

Not all Cartan prolongations are prolongations by differentiation, as illustrated
by the following example (see also [35]).

Example 2.6 Consider the general control system I given by (2.3) on manifold M
with coordinates (¢,z!,...,2" ul,..., uP) and consider adding the differential form
du' — u?du® — vdt and the extra coordinate v. This results in a Cartan prolongation
since given any solution (z(t),u(t)) of the base system there is a unique lift to a
solution of the full system given by (z(¢), u(t), v(t) = 4! (¢) — u?(t)a>(t)). We shall
show by method of contradiction that this does not correspond to a prolongation by
differentiation. Suppose this does correspond to a prolongation by differentiation.
Then there exist a function f(¢,,u) on the base space and a choice of fibre coor-
dinate z = z(t, 2, u,v) (§ # 0) such that z is the derivative of f along solutions of
the full system. This means df — zdt belongs to the full system. Which is the same
as

df — zdt = A(du! — w*du® — vdt) + «,

where A(¢,z,u,v) is a nonzero function and « is in the span of I with coefficients
possibly functions on the full space. This implies

o= df + 6

where p = du! — w?du® and 3 € span{dt,dz!,. .., dz"} with coefficients that may
depend on (t,z,u,v). Taking d on both sides and the exterior product (wedge) with
1 we see that

Adp A p=dp A p.

Expanding 8 in terms of dt,dz!,...,dz" and p in terms of du', du® we see that the
above equation cannot be true since the right hand side has no term du! A du® A du?
where as the left hand does. Hence this is a Cartan prolongation which is not a
prolongation by differentiation.

In fact above reasoning shows that if we add the differential form y — vdt to the
system [ given by (2.3) where y is any form on M (i.e. is expressible in coordinates
(t,z,u)) and does not belong to I + span{dt} (in other words has some non trivial
du’ components) then we obtain a Cartan prolongation. Furthermore this is a
prolongation by differentiation only if

duAp=0 mod dt,dxl,...,d:c”,
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or equivalently
dp =0 mod dt,dz!,... dz", p.

(See Remark 2.7 for an explanation of this notation.) By applying Frobenius theo-
rem it can be seen that this condition is also sufficient.

Remark 2.7 In exterior algebra one often uses the “mod” notation which is defined
as follows. Let o and § be two differential k-forms, k being some integer. Let
wl ... ,w" be a set of differential forms with degrees ki, ..., k, (where k; < k for
each i) respectively. Then one writes

a=p moduw!, ... w"
to mean, that there exist forms vy, ..., v, with degrees k—ky, ..., k—k, respectively,
such that
o = B + 7 A wi’

where summation is implied.

The type of prolongations mentioned in Example 2.6 do not exhaust all the
possible Cartan prolongations where the fibre dimension is one, as illustrated by
the following example.

Example 2.8 Consider adding the one-form du'! — vdu? and the fibre coordinate v
to the general control system (2.3). Every solution (z(¢), u(t)) of the base system lifts
to the unique solution (z(t), u(t), v(t) = —Z—g—%%), provided %?(t) # 0. This corresponds
to a singularity.

Remark 2.9 In practice singularities of the type in Example 2.8 are common.
Strictly speaking, this example is not a Cartan prolongation according to our def-
inition since not all base solutions have a unique lift. Specifically those for which
#?(t) = 0, do not have a unique lift. But a “generic” solution has a unique lift.
However encooperating this idea into the definition of Cartan prolongations would
require addressing the difficult issue of genericity in the set of solution curves which
we shall avoid. It is also clear that singularities do not correspond to points on the
base space but to solution curves on the base space. In fact genericity and singu-
larities are easily addressed in the jet bundle formulation in Chapter 3. It is easier
in that formulation because jets of solution curves (equivalence classes of solution
curves that agree upto some finite number of derivatives) is a much nicer set to deal
with than the set of all solution curves or even the set of all germs of solution curves.

Remark 2.10 In practice base solution curves often have more than one lift, but
yet the lifts are all isolated, i.e. they are locally (in the full space) unique. For
instance adding the differential form du' — g(v)dt, where g : R — R is an arbitrary
smooth function, and the extra coordinate v to the control system (2.3) results in
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a Cartan prolongation where the fibre coordinate v of the lift of a base solution
(x(t), u(t)) satisfies g(v(t)) = @*(t). Hence v(t) is implicitly defined and typically
may have many solutions which are isolated. To make matters more complicated, for
some values of 4! (t) there may be no solutions at all. For instance if g(v) = (v)? then
there are two isolated lifts, a unique lift or no lifts at all, depending on whether 4! (¢)
is positive, zero or negative. Examples of this nature make it clear that a better
definition of Cartan prolongation should address these local issues. But in this
Chapter we shall work with the given definition and shall investigate an alternate
approach to flatness via jet bundles in chapter 3 where such local issues are dealt
with in a better way.

Remark 2.11 It must also be noted that we shall assume that Cartan prolonga-
tions preserve codimension. In other words a system and its Cartan prolongations
have the same codimension except at singular points where they may drop rank. We
are not aware of a proof of this and a better definition of Cartan prolongations may
be a prerequisite to prove this. Most developments in this chapter rely on some
important results due to Sluis [35], where codimension preservation is implicitly
assumed.

We need to define the notion of a derived system of a Pfaffian system before we
present a theorem due to Sluis.

Definition 2.12 Let I be a Pfaffian system on a manifold M. The derived systems
of I are I® = T and, for each k > 0,

I = (e I® : du=0 mod I®}.

Calculating derived systems only involves differentiation and linear algebra and
poses no problems for concrete examples.

If a system (B, 7g,J) is the total prolongation of some system (M, mpy, I), then
it follows that J() = ¢*I where ¢ is the projection from B to M. For a proof see
[35][Chapter 3]. Hence if a given system happens to be the total prolongation of
some other, taking derived system will help “strip off” that total prolongation. But
if a given system is not the total prolongation of some other system then taking
derived systems does not seem to provide much information.

For systems with codimension 2 (i.e. p = 1), there is a complete theory of Cartan
prolongations, due to Elie Cartan. For the general case of p > 1, not much is known
about Cartan prolongations except for an important result due to Sluis, which is
the Theorem 24 in [35], and our definition of flatness makes sense because of this
theorem. Before we restate it, we need the following notion of regularity for a
Pfaffian system I on some manifold M.

Definition 2.13 A Pfaffian system I on manifold M is degree-two-reqular if the
following conditions are satisfied.

1. The retraction space is maximal, i.e. one cannot find generators for I that are
expressible in fewer coordinates than a full coordinate system on M.
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2. The degree two part of the algebraic ideal of differential forms (of all degrees)
generated by [ () have constant rank for all 7.

Theorem 2.14 (Sluis) Suppose Sy = (B,wg,J) is a Cartan prolongation of Sy =
(M, 7ar, 1) and that Pfaffian systems I and J are degree-two-reqular. Then on an
open dense subset of B there exists a repeated prolongation by differentiation of Sy
that is also a repeated total prolongation of Sy, the upper bound on the number of
repeated total prolongations of Sy that are required being equal to the fibre dimension
of B over M. See diagram below.

(diff) s
S1 (total)

(Cartan) S,

Proof: See [35], Theorem 24. |
An immediate corollary is the following (see also [42]):

Corollary 2.15 Suppose S; = (B, 7g,J) is a Cartan prolongation of Sy = (M, war, I)
with I and J being degree-two-reqular. Then on an open and dense subset of B the
fibre coordinates of B over M are functions of coordinates on M and finitely many
derivatives of these coordinates, the upper limit on the order of derivatives being
equal to the fibre dimension of B over M.

Remark 2.16 Theorem 2.14 essentially says that the seemingly more general re-
quirement of Cartan prolongations having one-to-one correspondence at the level
of solution curves actually means that the prolongations are in local coordinates
given by differentiation and algebra. This enables us to define differential flatness
in terms of Cartan prolongations and relate them to the rough definition given in
Chapter 1 in local coordinates, i.e. Definition 1.1. The upper bound on the number
of derivatives is also a very important result and some results presented in chapter 3
rely on this. Even though this upper bound is not mentioned as part of the theorem
in [35] it is clear from the proof.

Remark 2.17 It is not clear whether the open dense subset is critical for the The-
orem 2.14 to be true. We believe it is partly due to the way in which Cartan pro-
longations are defined. Also the importance of the degree-two-regularity conditions
is not well understood.

There is a simple one-to-one correspondence between solutions of a system and
its Cartan prolongations, given by the unique lifting property. Hence a system is
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“equivalent” to any of its Cartan prolongations in this broader sense. The most
general notion of equivalence due to Cartan, called absolute equivalence is achieved
by combining simple (diffeomorphic) equivalence and Cartan prolongations together
and applies to systems that may live in different dimensional spaces.

Definition 2.18 Systems (Mj, mar,, I1) and (Mz, mag,, I) are absolutely equivalent
if there exist respective Cartan prolongations (By,7p,,J1) and (Bg,7p,,.J2) that
are equivalent,.

Remark 2.19 Note that the term equivalence is strictly reserved for equivalence
via diffeomorphisms.

2.3 Differential Flatness

In this section we present a definition of differential flatness that in local coordinates
corresponds to the Definition 1.1 of Chapter 1. Our definition makes use of the
concept of an absolute morphism (see [35]).

Definition 2.20 An absolute morphism from asystem Sy = (My, 7y, I1) to a system
Sy = (Mjy, 7, I) consists of a Cartan prolongation S3 = (M, 73, I3) of S; together
with a morphism ¢ from Ss to Ss.

Definition 2.21 Two systems Sy = (M, 71, 11) and Sy = (M2, 7o, I3) are said to
be absolutely morphic if there exist absolute morphisms from S; to Sy and from
S2 to Sy. Suppose two systems S; and Sy are absolutely morphic with S35 and Sy
being Cartan prolongations of Sy and S, respectively, via v¢; and 1y respectively.
Let ¢1 : S4 — 51 and ¢y : S5 — Sy be the corresponding morphisms. Then S; and
Sy are said to be invertibly absolutely morphic if the following inversion property
holds. Let ¢; be an integral curve of S; with & being its unique lift to an integral
curve of S3. Let ¢; = ¢2 0 &, be the projection of ¢; and let & be the unique lift of
¢y to a solution of S4. Then we require that ¢; o &, = ¢;. The equivalent condition
must hold for solution curves of S3 as well. See Figure 2.3.

We are now ready to give a definition of differential flatness.

Definition 2.22 (Differential Flatness) A system (M, mps, I)is differentially flat

if it is invertibly absolutely morphic to some trivial system (N, 7n, {0}). If (¢, 41, ..., y?)
are local coordinates on N then (y',...,y?) are a set of flat outputs.

In local coordinates (¢,z!,...,2") on M and local coordinates (t,yt,...,yP) on
N it follows, from Lemma 2.15 and above definition that (also see [42]) the one-one
correspondence between solutions is, on an open dense set, given by equations of
the form

w(t) = g(t,y(1), yV8), ...,y (1)),

y(t) = h(t, z(¢), at(l)(t)a .. .3:2:("1)({))_ (2.4)
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Conversely starting from a one-to-one correspondence (2.4) between solutions z(t)
of a system (M, mar, I) and arbitrary curves y(t) that are sections of some bundle
mn ¢ N — R, we see that the system (M, mas, I) is invertibly absolutely morphic to
the trivial system (N, mn, {0}), where the Cartan prolongation of (M, mas, I)is a m
times repeated total prolongation and the Cartan prolongation of (N,7n,{0}) is a
[ times repeated total prolongation.

Ss S4
€3
é2
¢
b1 &
by Py
S.
S 2
C3
Cy
Cy

Figure 2.3 Invertibly absolutely morphic systems.

The following theorem allows us to characterise flatness in terms of absolute
equivalence.

Theorem 2.23 Two systems are invertibly absolutely morphic if and only if they
are absolutely equivalent.

Proof: Sufficiency is trivial. We shall prove necessity. Let S; = (M, ny, 1) and
Sa = (Ma, 72, I) be invertibly absolutely morphic, with S3 = (By, 73, J1) and Sy =
(B2, T4, J4) being respective Cartan prolongations and ¢; : By — My and ¢, : By —
M being respective morphisms.

We now argue that S, is a Cartan prolongation of Sy (and hence S; and S; are
absolutely equivalent). Hence need to show that every solution ¢; of Sy has a unique
lift é; (on Bjy) which is a solution of Sy.
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To show existence of a lift which is a solution of Sy, observe that for any given
c1 which is a solution of S, we can obtain its unique lift & on By (which solves Jy),
and get its projection ¢y on My (which solves I3) and then consider its unique lift ¢;
on B, (which solves J3). The fact that &, is a lift of ¢, follows from the invertibility
property, which states that ¢; o ¢, = ¢4. In other words, é; projects down to ¢y and
hence is a lift of ¢;.

To see the uniqueness of this lift, suppose ¢; and ¢ which are solutions of
5S4 on Bg, both project down to ¢; on M. Consider their projections ¢, and c3
(respectively) on Mj. See Figure 2.3. When we lift ¢o or ¢3 to By and project down
to My we get ¢;. Which when lifted to B, gives, say é;. By the requirement of
the absolute morphisms being invertible & should project down to ¢y as well as ¢3
(via ¢2). Then uniqueness of projection implies that ¢y and c3 are the same. Which
implies é; and é; are the same. Hence Sy is a Cartan prolongation of S; as well.
Hence S and S, are absolutely equivalent. |

The following corollary is obvious.

Corollary 2.24 A system (M, mar, I) is differentially flat if and only if it is abso-
lutely equivalent to some trivial system (N,mwn,{0}).

Remark 2.25 Observe that the number of flat outputs is p where p + 1 is the
codimension of system (M, mas, I). If the system is a control system then p is also
the number of inputs. This follows from our assumption that Cartan prolongations
preserve codimension (see Remark 2.11). It must be observed that in the particular
instance when m = 0, i.e. the flat outputs only depend on (¢, z), the original system
is a Cartan prolongation of the trivial system (N, mx, {0}).

The absolute equivalence problem has been completely solved by Elie Cartan for
codimension 2 systems. See chapter 2 of [35], for instance. All Cartan prolongations
are locally equivalent to total prolongations. Starting with any system, taking
derived systems enables one to “strip off” prolongations and reach the “core” system,
which is not a total prolongation of any system. For differentially flat systems, the
core is trivial. See [35] for a detailed discussion.

The following result characterises flatness for codimension 2 systems and we refer
to [34, 35, 42] for details.

Theorem 2.26 A system (M, mar, ) of constant codimension 2 is flat if and only
of

1. dim I = dim 716G-Y) — 1, for i =0,...,n = dim I. This implies I(™) = {0}.

2. The system 1) + span{dt} is integrable for each i =0,...,n.
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2.4 Reduction of Higher Codimension Systems to Codi-
mension 2

Theorem 2.26 characterises flatness for systems with codimension 2. Although some
verifiable necessary conditions [32, 36] are known, no complete characterisation ex-
ists for systems with higher codimension, except for isolated results for special cat-
egories. Deciding whether such a system is flat involves making an educated guess
based on the special structure of the system and experience.

We will now describe a method that determines whether a system has flat out-
puts of a particular form. We will only look for flat outputs that depend on the
original variables (¢, z) of the system and not on the derivatives of z. In other words,
we will only check if the given system is a Cartan prolongation of a trivial system.
This may seem restrictive, but it is not. In fact, if we suspect that the flat outputs
depend on up to ¢ derivatives of z then we first prolong the given system by total
prolongation g times and then take the resulting system as our starting point.

Assume we have a system with p inputs. The first step of the method involves
making a guess for p — 1 flat outputs y!,...,4?~1. Often, this guess will involve
expressing the flat outputs as a parameterised family. A simple example will serve
to illustrate the idea. Consider the system of differential equations

1 3

— zti? = 23,

2td® = 2, (2.5)

%3

corresponding to a system (R5 7, I), where n(¢t,z) = ¢ and I = {22%d2! — 2'd2? —
z3dt, v'da® —2*dt}. We “guess” that one of the flat outputs is given by y = z' — \z?,
where A is constant.

The second step in the method sets the outputs to free functions of time:
yt = Yi(t),i = 1,...,p — 1. Solve for (some of) the variables z in terms of the
free functions Y (), and substitute them in the system equations. This leads to a
system, for which Theorem 2.26 applies. Note that the resulting system is often
time dependent. For the example, set y = Y(¢) for arbitrary ¥ : R — R. Then
z' = Y (t) + Az*, and substituting this into (2.5) yields,

Ae?it 4+ 22V (1) — (Y (1) + dah)2? = 25,
(Az* +Y(1)2® = «*. (2.6)

This system, which we call the reduced system, is underdetermined by 1 equation
as opposed to 2 in the case of the original system.

The third step of the method checks whether the conditions of Theorem 2.26
are satisfied. In the case that they are, a flat output z for the reduced system
can be calculated. In general, this flat output will depend on (¢,z) and the free
functions Y(t), but in order that z is the final flat output for the original system,
it is necessary that z = h(¢, z). For the example, the Pfaffian system of the reduced
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(restricted) system (2.6) is given by

I'={A2%dz* — (Y(t) + dat)da? — (23 — 22Y'(t))dt,
(Y (t) + Az*)de® — z*dt}. (2.7)

Calculations show that I + span{dt} is integrable and 7(}) drops rank by one, i.e.
dim ™) = dim I — 1. In fact, 1Y) = {a}, where

=-Y(t )de2 —AY (t)2tdz? + 202%Y (t)dz? + 20223t de®
+ A2?Y (t)da* — (222 + Y ()2 — Y ()Y (t)2?)dt. (2.8)

Since da = 2X\2z3dz® A dz* mod «, dt, it follows that A = 0 is the only value for
which T() + span{dt} is integrable. For this choice of X, it follows that I(?) = {0}.
Moreover, a = Y (t)(=Y (¢t)dz?+ (2Y'(t) — 23)dt), indicating that z is a flat output
for the reduced system. We have thus found z! and z2 to be a set of flat outputs.

In order to see the geometric meaning of this method, suppose we start with
a system S. We are interested in knowing if S is a Cartan prolongation of some
trivial system .Sy with a corresponding morphism ¢;. We consider a trivial system
Sy that corresponds to the subset of all but one flat output that we have guessed.
There is a morphism ¢ from S to S; that relates the flat outputs as functions of
coordinates (¢,z) of S. Thus in the above example, Sy = (R?, 73, {0}) and in local
coordinates (¢,y) on R%, ¢y : (t,z) = (¢,y = ! — Az?). If our guess is correct, then
there must be a morphism ¢; » from Sy to Sy which just picks out the subset of flat
outputs. This means, ¢y = ¢y 3 0 ¢1. See Figure 2.4.

Having decided on S; and ¢ our method involves choosing an arbitrary solution
c of Sy and looking at the restriction of S to the fibres of @2 over the image of
c. Proposition 2.28 (which is more general in that S; and S; need not be trivial
systems) asserts the validity of our approach. Also since the codimension of Sy is
one less than that of S and Sy, the restriction S]¢;1oc(a’b) has codimension 2. By
Theorem 2.26, it may then be verified whether S is a Cartan prolongation of some
trivial system.

Definition 2.27 Let .S = (M, ,I) be a system and suppose N C M is a subman-
ifold of M such that 7|y : N — R is a submersion. Then the restriction of S to N
is S|y = (N, w|n,i5(I)), where iy is the inclusion N — M.

Proposition 2.28 Let S = (M, 7, 1) and S; = (M, 7ar,, 1), 1 = 1,2, be systems.
Let ¢y and ¢y be morphisms from S to Sy and Sy respectively. Furthermore suppose
$1,2 s a morphism from Sy to S and that ¢1 5 0 ¢y = ¢s.

Then, S is a Cartan prolongation of Sy if and only if for every solution c :
(a,b) = My of So, SI¢;‘oc(a,b) is a Cartan prolongation OfSli¢;;oc(a,b) via ¢1‘¢2_loc(a,b)'
See Figure 2.4.

The proof reduces to a series of lemmas.

Lemma 2.29 Let S = (M,n,I) be a system and S|y = (N,n|n,i5(I)) be its
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Figure 2.4 Illustration of Proposition 2.28.

restriction to N C M. Let c: (a,b) - N be a curve such that # o ¢ = id. Then c is
a solution of S if and only if it is a solution of S|y.

Proof: Follows from (in o ¢)*(I) = c*(¢31). n

Lemma 2.30 Let ¢ be a morphism from S4 = (w4, Ma,I4) to Sp = (g, MB, IB).
Let Sg|n be a restriction of Sg to N C Mp. Then Salg=1(ny 18 a well defined
restriction of Sy to ¢71(N) and Plg-1(v) 18 a morphism from Saly—1(ny to SB|N-

Proof: Since ¢ is a submersion, ¢~!(N) is a submanifold and Blg-1(v) Is a surjective
submersion onto N. |

Remark 2.31 We need to make sure that the restricted systems in the statement of

the proposition are well defined. First note that Sg[c(a,b) is a well defined restriction

and hence from the Lemma 2.30 it follows that Sllé—-loc(a b) and S[¢-1oc(a py are well
1,2 ) 2 ’

defined and ¢1]¢2_1°c(a’b) is a morphism from SI¢;10C(a7b) to Sl]qbl‘;oc(a,b)'

Lemma 2.32 Let Sy = (74, Ma,14) be a Cartan prolongation of Sp = (v, Mg, Ip)
via ¢. Let Spin be a restriction of Sg to N C Mg. Then Squs—l(N) is a Cartan

prolongation of Sp|n via ¢|y—1(n)-
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Proof: Follows from Lemmas 2.29 and 2.30. ||

Proof: (of Proposition 2.28) Necessity follows from Lemma 2.32.

Sufficiency: Let ¢, be a solution of S;. First we show it has a lift. Let ¢ =
¢120ci. Then ¢ is a solution of Sy and hence S‘qb;‘oc(a b is a Cartan prolonga-
tion of Sl]qs;;oc(a,b) by assumption. But, by Lemma 2.29 above, c¢; is a solution
of 51[(15;%00(&,1)) and hence there is a unique lift ¢, which is a solution of S]qs;loc(a,b)
and hence a solution of S appealing again to Lemma 2.29. To show uniqueness of
lift, suppose ¢y is another lift of ¢;. Then it follows that é; is also a solution of
S]¢;10C(a7b), violating the unique lift of Sl(ﬁgloc(a,b) being a Cartan prolongation of

S1 lqs;;w(a,b)' u

So far, we have only discussed the scenario where the test succeeds for some
parameter value. The test fails if the reduced system is not flat. To illustrate this,
consider the same example and suppose we choose A = 1, i.e. we guess that z! — 2*
is a flat output. Our calculations show that the reduced system cannot be flat for
any choice of Y (¢). Hence Proposition 2.28 tells us that the system cannot be flat
with ' — 2% and a function of (¢,z1,...,2%) as the flat outputs. However, one may
wonder whether there exists a function of t,z* and finitely many derivatives of z’
that together with ¢! — z* forms a set of flat outputs. The following proposition
shows that this is not possible.

Proposition 2.33 Let S = (M, mpr, 1) and S; = (M;,mar, 1)t = 1,2, be systems.
Let ¢2 be a morphism from S to Sy and ¢15 be a morphism from Sy to Sy, and
suppose S is absolutely equivalent to Sy. Then, for every solution ¢ : (a,b) — M> of
Sa, Sl¢;loc(a’b) and Sl]qs;;oc(a,b) are absolutely equivalent. See Figure 2.5.

Proof: Since S and S; are absolutely equivalent there exists a systemNS’ = (B,7g,J)
which is a Cartan prolongation of S and S;. Let ¢ : B — M and ¢1~: B — My be
the corresponding morphisms. Then by the Lemmas 2.30 and 2.32 Sl&-loqs;loc(a,b)

is a valid restriction and is a Cartan prolongation of S| o ) But it is also the
2

oc(a,b

same as Siqu-lw;;oc(a’b)

and is a Cartan prolongation of Sl]qs;;oc(a,b)' n

When S; and S; are trivial and S, has codimension one less than S; the situation
corresponds to our method. Then the proposition says that S is flat with M,
providing all but one flat output, only if every restriction S[%-loc(a b is flat. In our
example, when A # 0 the reduced system (restriction) fails to be flat and hence

z! — 2% cannot be a flat output.

2.5 Example: Two Planar Coupled Rigid Bodies with
3 Inputs

Various mechanical systems have been found to be flat with coordinates of a body
fixed point providing a subset of the flat outputs; see [25] for some examples. With
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Figure 2.5 Illustration of Proposition 2.33.

the method developed in the previous section, one may systematically search for
such flat outputs. We demonstrate this for a mechanical control system.

The system we consider consists of 2 planar rigid bodies hinged at a point, O,
and moving under gravity, g (see Figure 2.6). Two of the inputs, fi, f, are body
fixed forces acting on the first body such that their lines of action intersect at a
point P on the line joining the point O and G, the center of mass of the first body.
The third input is a pure torque, 7, between the two bodies, i.e. equal and opposite
torques on the two bodies. Let OG; = r;, 0; = /J;/m; where J; and m; are the
moment of inertia and the mass of body i. Furthermore, assume OP = 1, the mass
of the first body m; = 1, and m2 = g in order to non dimensionalise the problem.
From a Lagrangian point of view, the system evolves on the configuration manifold
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Figure 2.6 Two coupled rigid bodies in R.

R? x S! x S1, with coordinates (z,y, 6y, 6,). The equations of motion are given by

(14 p)(&sin by — jcosby — gcosby) + r1512
. . . 2
+urgsin(fy — 01)0; + pracos(6y — 61)8; = fy
(1+ p)(Zcosby + §sinby + gsinby) — rib,
v R - ‘2
—prycos(fy — 61)02 + prasin(fy — 61)0;" = — f,
(r% -+ af)él —ricosbyd —rysinfyj — grisin; = fo + 1

(1(r2 + 02)y — prq cos 5% — prysin 03 — pgropsin by = —7. (2.9)

The system can be written as a Pfaffian system of codimension 4. The single second
order equation, obtained by eliminating f; and 7 from the last three equations, corre-
sponds to a Pfaffian system of codimension 4 in coordinates (¢, z, y, 8y, 82, , 7, 61, 02)
The full system is a Cartan prolongation of this latter system, because, given any
solution of the latter, there is a unique corresponding solution for the full system,
in which (z,y,8y,8s,&,, 61, éz) are the same, and (fi, f,7) are given by above
equations. We look for flat outputs that only depend on configuration and velocity
variables. In other words, check whether the simpler system is a Cartan prolongation
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of a trivial system. Our starting point is the following differential equation.

(rf 4 O’%)él —rycosb1% — rysin 81§ — grysin by
4+ u(r% + 0'%)52 — prgcos 8@ — presin 03§ — pgresin Gy

+ (1+ p)(Zcosby + ijsin by + gsinby) — r6;

— procos(fy — 61)8; + prysin (8, — 01)022 =0. (2.10)

This corresponds to a Pfaffian system,

{d8; — 6,dt, db; — 6, dt,
(7"‘1(2 + Uf)dél — rycos01dz — rysin 6ydy — grysin 6, dt
+ u(r2 + 02)dfy — prycos Bydi — pry sin Oydy — pgrosin fydt
+ (1 + p)(d cos 8; + dysin 6, + gsin 0;)dt — r1df;
— prg cos(fg — 01)d92 + puresin(f; — 01)622dt}.

We are looking for 3 flat outputs and to use the method we need to guess some

form for 2 of them. We test if the system is flat with 2 of the flat outputs given by

coordinates of a body fixed point in the second body (intuitively, the second body

is a more reasonable guess than the first body where the forces are applied.)
Coordinates (z1,y1) of a body fixed point are given by,

z1 =2 — A sin 92+Azc§802, (2.11)
Yy = Y+ Ay cos by + Agsin by,

where (A1, A2) are its coordinates in the body fixed frame and as such are constants.
Restricting the system to z; = X;(¢) and y; = Yi(¢) for arbitrary X;,¥; : R = R
corresponds to substituting

¢ = X1(t) + Arsin 6y — Az cos by,

_ (2.12)
Yy = Yl(t) - /\1 C0802 - )\2 Sin 02

in the Pfaffian system. We get a codimension 2 system I that has three forms in
coordinates (t, 6y, 8, 6y, 02)

All computations were carried out with the aid of symbolic manipulation soft-
ware, and we shall not show every step for brevity. Calculations reveal that the
derived system I(!) drops rank by 1, (dim /() = dim I — 1), and I + span{dt} is
integrable. Further calculations show that I(2) drops rank by one only if certain al-
gebraic relations amongst system parameters (4, r;, 0;) and A1, A hold. For generic
parameter values these relations are:

K2
A= o 2.13
Il e R (2.13)

For this choice all the necessary and sufficient conditions for flatness are satisfied.
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In other words, 1(?) and I®® drop rank by one and each 1) 4span{dt} is integrable.
Also a flat output can be obtained from the form dz — wdt that generates (2. It is
given by

z = (—7‘:13 + 27“% -7y -+ Uf,u + r%;z - a%rl —rip+ 0%)91

tu(=oiry + o2y — r2r; + o + rd)6,. (2.14)

Note that z is well-defined on the manifold of the original system. In particular, z
does not depend on f(t) or h(t). Therefore, the original system is indeed flat.

Observe that z,y,#; can be solved in terms of the flat outputs and #,. Substi-
tuting these in (2.10), we obtain an algebraic equation involving the flat outputs,
their derivatives and 8,, but no derivatives of f5. Since this equation is fairly messy
we shall not show it here. Hence 5 can be solved from this equation in terms of
the flat outputs and their derivatives. The solution, however, may not be unique,
but the set of solutions is discrete.

So we conclude that the system is differentially flat. Two of the flat outputs are
given by the body fixed point located on the line OG;, and a distance (in dimen-

sionalised form) ——2228 ___ from . The third output is a linear combination
(m1+m2)R~m1r1 P

of the angles, as given in equation (2.14).
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Chapter 3

Jet Bundle Approach to Differential Flatness

In this chapter we shall develop a framework for studying differential flatness that is
slightly different from Chapter 2. Given a space M with coordinates (t,2!,...,z")
(where t is regarded as special as in Chapter 2), one geometric approach is to
construct spaces J” (¢, M) that have the variables (t,2) and derivatives z(*) up to
k < r as coordinates. Such spaces are called the jet bundles associated with the
bundle t : M — R. We refer the reader to [33] for a discussion of jet bundles.
An ODE of the form F(t,z,...,2{")) = 0 may be regarded as a codimension one
submanifold of J"(t, M) given by the zero set of the function F. A system of
ODEs also corresponds to a submanifold of J”(t, M). When one starts with a
Pfaffian system I on M with coordinates (¢, z!,. .., 2"V) the corresponding first order
quasi-linear system of ODEs may be regarded as a submanifold E* C J'(t, M).
Differentiation of all the ODEs provides additional ODEs that are second order.
The combined system corresponds to a submanifold E? C J2(¢, M). This procedure
can be repeated and yields submanifolds E”™ C J" (¢, M). Instead of looking at the
full jet bundles J" (¢, M) one may only look at the submanifolds E” that describe the
system of ODEs. These spaces are the spaces of the repeated total prolongations
already introduced in Chapter 2.

We shall provide an intrinsic definition of (total) prolongations, introduce the
notion of a time derivative of functions and k-forms for all ¥ and formulate flatness
in terms of the time derivative operator. We believe this approach is better than
the one presented in Chapter 2 in that it allows for a local definition and also the
nature of the singularities become clearer. Our approach is closely related to those
of Fliess et al. [11, 10] and Pomet [27]. One difference is that these other approaches
work with infinite dimensional spaces while we work in a finite dimensional setting.

With the aid of the concepts introduced in this chapter we provide a theorem
that partially characterises zero-flatness of systems that consist of two independent
one-forms. We define zero-flat outputs to be those that only depend on the original
variables in which the one-forms are written, but not on their derivatives. The
theorem shows that it is possible to split the task of finding zero-flat outputs into
two parts. The first part deals with the “infinitesimal” aspects. The theorem
provides intrinsic geometric conditions that the tangent spaces to level sets (in M)
of the zero-flat outputs should satisfy. The second part deals with integrability
(piecing these tangent spaces together to form level sets of the flat outputs). The
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second part leads to PDEs and we do not provide any theory for the second part.
In other words we characterise zero-flatness on an “infinitesimai” level, but do not
deal with integrability. We illustrate the use of this theorem by two examples.

There are two reasons for studying zero-flatness. One is that this is relatively
simpler than the general case of differential flatness where so far it is not known
if there is an upper bound on the number of derivatives of @ that the flat outputs
y may depend on. Also conceptually this may prove to be a useful step towards
understanding the more general case. Secondly, generally speaking the lower the
number of derivatives that appear in the transformations between flat outputs y
and the original variables z the better the numerical aspects of generating feasible
trajectories. Hence there is a practical reason to look for outputs that depend on
as few z derivatives as possible,

3.1 Motivation

In order to motivate some of the abstract developments in this chapter let us consider
the example of a zero-flat system described by the two one-forms

wl = 2%dz! — 2ldz? — 23dt

3.1
w? = ztde® — 2idt. (8-1)
This corresponds to the quasi-linear system of ODEs E! = 0, E? = 0 where
F' =223t — pti? - 23
(3.2)

E2 — .’Bl.iS _ $4’

and the system has zero-flat outputs y' = 2! and y* = 2?%. Indeed given y = (3!, y?)
as a function of time 22 is obtained by z3 = y?y! —y!y? which involves differentiating
y once. In order to obtain z* a second differentiation is necessary. In other words z*
depends on two derivatives of y. In fact for any system of n one-forms the number
of zero-flat output derivatives required to express all the original variables in terms
of which the one-forms are written is n and this follows from the Corollary 2.15.

The process of obtaining z3 and z* from y involves a series of steps consisting of
differentiation and algebra. In order to develop a general approach it may be simpler
to separate the two operations. By first differentiating the ODEs sufficiently many
times we may introduce sufficiently many derivatives of y. For a system of n one-
forms this involves differentiating the ODEs n — 1 times. In our example since
n = 2 we need to differentiate the ODEs once to introduce two derivatives of all the
variables. Thus we obtain the system of four ODEs E' = 0, E? = 0, E'= 0, E? = 0,
where E' and F? are explicitly given below.

EY = 223 + 2230 — 2152 — 3132 _ 38

F? = 233 + 2133 — 24,

Having introduced sufficiently many derivatives (¢ and §) the condition that z°
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and z* be functions of ¢,y,7 and §j alone, becomes purely an algebraic matter. In
other words it must be possible to eliminate derivatives of ® and 2* from the four
equations to obtain two equations containing t, v, %, #, 2> and z* alone. Only then
we may solve for > and z* in terms of derivatives of y. This condition is equivalent
to

d(E, E)

k—"7 <2 3.3
R EE &
for points that satisfy E = 0, E = 0, where E = (E',E? and z = (2%,2%). In our
example it is easy to verify that the above condition is indeed satisfied. In addition
we need the regularity condition that the matrix

I(E, E)
0(z, %, %)

has full rank for points on E = 0,E = 0. This condition ensures that there are
no equations involving ¢,y,y and § only. In terms of one-forms, these conditions
together ensure that dz* for i = 1,2 are in the span of dt, dy, diy and dj.

At first glance these conditions seem to involve the separation of the variables
into two groups: y involving zero-flat outputs and z involving the rest. Hence
this may seem useless since our goal is to find y in the first place. However these
conditions are indeed useful in finding zero-flat outputs and this is seen by realising
that the Jacobian condition (3.3) provides conditions on the tangent spaces to the
level sets of the zero-flat outputs.

The submatrices % and %E;

the submatrix %—g— does not. However it may be shown (see Appendix A) that the
overall rank condition (3.3) does have an intrinsic interpretation. Firstly it must
be noted that the span of 5% for ¢ = 1,2 is intrinsic and equals ker T'(t,y). Hence
the rank condition (3.3) is really a condition on the distribution ker T'(¢,y). In fact
(3.3) is equivalent to the condition, ~

are the same and have an intrinsic meaning, but

mamdw Aw?) =0

(3.4)
mdng dd(w' Aw?) =0 mod I,
where 7y, 72 span ker T'(¢, 4, ..., yP) and w!,w? span I.
This result suggests that one may first solve for a distribution spanned by n;
and 72, two unknown vector fields. At this stage several possible solutions exist.
Then one must look for an integrable distribution from the set of solutions. If such
a distribution exists then leaves of its foliation will be the level sets of some zero-
flat outputs. We shall show in Section 3.7 how this approach may be used to find
zero-flat outputs.
Though these results are specific for systems of two one-forms our approach was
general enough to hope to obtain similar results for systems of arbitrary number
of one-forms. However this coordinate based approach becomes exceedingly messy
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even for systems of three one-forms since one has to consider a Jacobian matrix of
size 9 X 9. Hence a better approach may be to look for a more intrinsic proof of the
same results. The abstract notions developed in this chapter are precisely aimed at
capturing the geometry behind these rank conditions.

It is also important to note that the condition (3.4) makes sense even for non-
integrable distributions spanned by n; and 7 while the original Jacobian condition
makes sense only for the integrable case. Hence it may be useful to develop a no-
tion of “infinitesimal flat outputs” which correspond to a (possibly nonintegrable)
distribution or equivalently its annihilator which is a codistribution. The “infinites-
imal zero-flat outputs” may be thought of as one-forms o?,..., o expressible in
terms of original variables ¢+ and z such that for all the original variables z* the
one-forms da’ are in the span of dt,a',...,a? and finitely many (two in the case
of systems of two one-forms) derivatives of o’. But this requires a notion of time
derivative of one-forms. When dt,al,..., a? form an integrable (in the Frobenius
sense) codistribution then the system has zero-flat outputs.

The submanifolds corresponding to E = 0,..., E®) = 0 where E®*) is the kth
derivative of equations F, have an intrinsic meaning and are the same as the total
prolongations already encountered in Chapter 2. We shall develop the notion of
(total) prolongations and time derivatives of functions as well as forms in a com-
pletely intrinsic geometric way in the next two sections. Starting with a manifold
M equipped with special coordinate ¢ we will construct the prolongation manifolds
JE for k > 1. ‘

Some algebraic properties of the Jacobian of (3.3) that are exploited in Appendix
A reflect more general geometric properties of the spaces J* and the time derivative
operator. More specifically the properties of the “vertical spaces” of the bundles J*
over J*~1 have a role to play. We shall explore this in Section 3.4.

3.2 Prolongations

As in Chapter 2 our basic object of study is a Pfaffian system on a manifold equipped
with a special notion of time. But our viewpoint and notation are slightly different.
All objects such as manifolds, functions, vector fields, forms and codistributions are
assumed C'°°-smooth unless stated otherwise. In this section we shall define (total)
prolongations in an intrinsic geometric way.

Our starting point is a fibre bundle ¢ : M — R (which means M is a manifold, ¢ is
a surjective submersion and the bundle is locally trivial, see [33]) where ¢ corresponds
to time, and a constant dimensional and smooth codistribution 7 on M. Notice that
given any smooth codistribution there is a unique corresponding Pfaffian system,
i.e. a submodule of the module of all one-forms and vice versa. We shall often use
the same notation for both, the meaning being clear from the context. But generally
we regard I as a codistribution. We shall assume dt, ¢ I, for all ¢ € M (as seen
in Chapter 2, this ensures that locally around any point there are solution curves).
We refer to the triplet S = (¢, M, I) as a system. As in Chapter 2, a solution is a
local section ¢, i.e. a curve ¢ : (a,b) — M such that ¢ o ¢ is the identity map on R
and ¢*([) = {0}. Let N=dimM -1, n =dim7 and p= N — n.
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We have already seen in Chapter 2 that this system corresponds to a quasi-
linear system of ODEs in any local coordinates. We shall rewrite these ODEs here
in a slightly different way by splitting the coordinates (other than t) into two parts.
Locally around any point ¢ € M one can find independent functions u',...,u?
such that dt, I,du?,...,du? span T*U, where U is an open set containing ¢. Let
z',...,z" be local functions such that (dt,dz?,...,dz" du',..., duP) form a local
coframe (i.e. a basis of T*U). Then it is possible to find locally a basis w?,...,w"
for I and functions A* and Bj such that

w'=da' — A'dt — Bidv!, i=1,...,n. (3.5)
Hence in this coordinate system I corresponds to the system of ODEs
&' = A'(t, @, u) + Bi(t, @, u)idl. (3.6)

Notice that the splitting of the coordinates into # and u is not unique in general.
In the special case when B} = 0, the system takes the familiar control system form

&' = Al(t, z,u). (3.7)

Geometrically this is possible if and only if the codistribution span{dt}+ I is locally
integrable (in the Frobenius sense) (see [35]). Then ¢,z!,...,2" are independent
functions that “cut out” the leaves of the corresponding foliation.

kerdt, Nann(/,)

Jq1 \

V Lo ann(l,) C T,M !

Figure 3.1 The bundle J1S.
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We shall define the notion of an affine space before defining the prolongation of
the system S = (¢, M, I).

Definition 3.1 Let A be a manifold and V' be a vector space. Suppose further that
V regarded as a Lie Group acts on A freely and transitively. Then A is an affine
space modelled on V.

Note that the definition implies that dim A = dim V.

The collection of all one dimensional subspaces |, C TyM with the property
that {; C ann([,) and dt,(l,) # {0} is denoted by J;S and as ¢ “runs over” M the
collection is denoted J'S. Note that J}S is an affine space modelled on ann(I,) N
ker dt,. Often we shall denote J'S by J* and J} S by J}, the system S being obvious
from the context. We tend to use notation g¢; for points on J! and use [, when we
regard that point as a one dimensional subspace of T, M. Though strictly speaking
¢1 and [, are the same we believe it is less confusing to keep two separate notations
for the same object depending on how we regard it. See Figure 3.1, where the
subspaces [, and iq that correspond to two different points ¢; and §; of J'S that
project down to the same point ¢ € M are depicted. Let p}g’o : J1S — M denote
the map that takes a one dimensional subspace I, C ann(l;) to ¢ € M. We shall
often drop S and denote the map p'°.

Let U be an open neighbourhood of ¢ in which equation (3.5) is valid. Define
functions f7 : (p10)~1U ¢ J!' — R by the criterion that w!,...,w" together with
du? — fi(q1)dt for j = 1,...,p span the annihilator of I, for all ¢ € (p"°)~'U,
where ¢ = p19,; and [, is the one dimensional subspace corresponding to ¢;. It
is clear that the map (¢, 2, ..., 2" ul,... P, f} ..., fP) is a bijection of (p}0)~1U
onto t(U) x 2(U) x u(U) x RP. This can be used to give J! a fibre bundle structure
over M. In fact J! is an affine bundle over M. The fibre dimension of J! over M
is p. The functions f7 serve as fibre coordinates for the fibre of J! over M.

There is a canonical codistribution I; on J! defined as follows. Given ¢; € J!,
let I, C T,M be the corresponding one dimensional subspace, where ¢ = p'O¢;.
Then I ,, is simply the annihilator of (Tp')~1l,. See Figure 3.2. It follows that
dim I) = dim I 4+ p = n+ p. It also follows that locally

I = (PO I + span{du — fidt : j=1,...,p}. (3.8)

It can also be seen that span{(p!®)*dt} + I, is locally integrable (in the Frobenius
sense) with (¢,2%,...,2"% ul,... uP) “cutting out” leaves of the foliation. In fact
the leaves are the fibres of J! over M.

The total prolongation or the first prolongation or simply the prolongation of the
system S = (¢, M, I) is the system St = ((p!°)*¢,J1, I;). Very often we will abuse
the terminology and refer to J! or I; as the prolongation of M or I.

Remark 3.2 Total prolongation corresponds to introducing extra variables f7 and
extra ODEs which define f7 to be the derivatives of u’ as already seen in Chapter
2.



ann(/ly,,)

T,M

Figure 3.2 The codistribution I.

Higher order prolongations are defined iteratively. Hence S?%, the second pro-
longation of S consists of the manifold J'S! which we denote by J%S, and the
codistribution (I1); which is denoted by I;. The projection p;’lo from J2S to J1S is
denoted by pgv’l. Also define p%’ﬁ = p}g’o o pg’l. Again we may often drop S from the
notation and use J2, p?* and p?©°. The definition of J", 5™ and p™ where 0 <1 < r
is clear. It follows that S™ = ((p™%)*¢,J”,I.). It also follows that J” is an affine
bundle over J™~! for r > 1. The commutative diagram below depicts bundles J*, J!
and M where 0 < < k.

Remark 3.3 For a trivial system, i.e. a system of the form T = (¢, M, {0}), it
follows that the bundles J"T correspond to the familiar jet bundles J" (¢, M) of the
bundle ¢ : M — R (see Saunders [33] where he uses the notation J"(M)) . Also
the codistributions I, of the prolongations correspond to the contact codistributions
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on J"(t, M). For a general system S = (¢, M, I) the bundles J"S can be naturally
regarded as subbundles of J" (¢, M).

Remark 3.4 Throughout this chapter, when a function f or a form Q on J' is
pulled back to J” (r > [), we may still denote them by f or Q2 instead of (p™)*f or
(p™')*$ to avoid notational clutter. For instance we shall write ¢ instead (pm0)=t.

Given any solution ¢ of S = (t, M, I), its lift to J* denoted ¢ or ¢V, is a local
section of ¢ : J' — R and is defined by the criterion that ¢(1)(t) € J! correspond
to the one-dimensional subspace of ann(/y) spanned by ad;c(t). It follows that
¢V is a solution of S* = (t,J',I1). In fact the solutions of S' and S are in one-
to-one correspondence via this lifting operation and this is in accordance with the
developments in Chapter 2. In coordinates, if (z(¢),u(t)) is a solution of S then its
lift is given by (z(¢),u(t), f(t) = %u(t)) which is a solution of ST and furthermore
all solutions of S are of this form. The lift of a solution ¢ of S to J? denoted &
or 0(2), is defined as the lift of ¢{*) to J2 and is well defined since S2 is the total
prolongation of S' and ¢(1) is a solution of S1. Lifts of ¢ to J” for all r are defined
iteratively and it follows from the definition that a local section & of the bundle

t :J” — Ris a solution of S” if and only if it is the lift of solution ¢ of S, i.e.
&=l

3.3 Time Derivative

A notion of time derivative is achieved by “vector fields” F, : J* — TJ"~!. These
are defined as follows. Let ¢, € J", p"""!¢, = ¢._; and l,,_, C T,,_,J"™" be the
one dimensional subspace corresponding to g¢,. Then we require that F, (g-) € 1y, _,
and (dt,,_,,F.(¢q,)) = 1. This uniquely defines F,. See Figure 3.3 which shows
the value of F,. at two different points ¢, and §. of J" that project down to the
same point ¢._y € J™7'. Since (dt, £c(")(t)) = 1 by definition, it follows that
Fr(cD(1)) = 4 D(1) € Tyrmsy 7

Given any function f :J" — R, we define its time derivative denoted by f or
FW, to be the function on J"+! given by

f = (df, Fry1). (3.9)

Note that the above definition makes sense since df is a form on J" and for any
Gr41 € J, Fry1(gry1) lies in TJ”. Tt follows that for any solution () of §7 =
(t,J", 1),

(F o ™) (1) = (df, Bt (40(0)
=gﬁww
= 2 (f o)),

This justifies the term “time derivative.” Also it follows from the definition that
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Points v on which (dt,v) =1

J‘;r 1 N v ~
EFT(QY‘) E/'/ /lq’”_l
Jr . :
o (gr)
< : : lQr-—l
ann(l,—y, ) CT,_,J™

kerdt, _, Mann(l,—;, )

Figure 3.3 Vector field F,.

the time derivative f is a function that is affine in the fibres of J"*! over J. This
may be easier to see in coordinates, once we derive the formula for time derivative
in coordinates. Higher order time derivatives are defined in the obvious way and
are denoted by f("). The second order time derivative may be denoted by f as well.
Also when indices are present, as in f7, the time derivatives are denoted by ") to
avoid confusion.

Remark 3.5 Observe that the time derivative of ¢ : J* — R is 1, the constant
function on J™t! of value 1.

It turns out that given the coordinate system on M there is a corresponding
coordinate system on J” that is arrived at by taking time derivatives of some of the
coordinates on M. It can be seen that the functions f7 and u’ mentioned earlier are
in fact related by f? = 4. This is because by definition, (du/ — f7dt, F;) = 0. Hence
(du!, Fy) = fildt, Fi) = fI. But (du!, Fi) = 47 by definition and hence f/ = @/,
Hence 4/ for j = 1,...,p is a set of fibre coordinates for J'. In the coordinate
system (¢, z,u, ) for J*

Ilzspan{d:ci—(Ai+B§-iLj)dt,duj—djdt ci=1,...,n, j=1,...,p},

where the functions A* and B} are the same as those that appear in equation (3.6).
Since dt, Iy, dit, . .., duP form a local coframe on J', 4/ play the the role of w/ for
system S1. So i form a set of fibre coordinates for the fibres of J? over J!. It
also follows that u/(") are fibre coordinates for the fibres of J” over J"~!. Hence
if (¢,2',...,2™ u}, ..., uP) are local coordinates on M such that dt, I, dut,. .., du?
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span T*M locally, then (¢, z,u, uD, u(’”)) form a coordinate system on J". We
also see that for r > 1,

I, = span{dz’ — (A" + B}uj’(l))dt, dudF) — (k1) gy

) ) (3.10)
ci=1,...,n, j=1,...,p, k=0,...,r—1}.

The vector field F, is given in coordinates by

k=r
J 0

__ 7 ] ],(1 ey v
F. = _8t+<A + Bju +E ul ERACEE

where summation over ¢ and j is intended.

Remark 3.6 We shall frequently employ the collective notation as in above para-
graph where we have referred to (ul*m, . .,u”’U)) as ul) for j = 0,...,r and to
(zt,...,2") as z.

Remark 3.7 The time derivatives of coordinates z* are functions on J' and they
are given in terms of the coordinates (Z,,u, %) by the equations (3.6) which are
precisely the ODEs that I corresponds to. In fact all relations amongst the time
derivatives of all orders, of functions on J” correspond to the various ODEs “implied
by” the original system of ODEs (3.6). Thus the time derivative operator allows us
to bypass thinking in terms of solution curves and to think in terms of dependencies
of various functions (variables) and their time derivatives of various orders. This
allows us to get closer to the algebraic intuition offered by differential algebra and
to formulate a definition of flatness that closely resembles the differential algebraic
definition but yet provides a geometric setting where tools of geometric analysis can
be applied and unnecessary assumptions on analyticity can be avoided.

Remark 3.8 It follows from the definition that, in coordinates, given a function

flt,z,u,..., u(r)) on J" its time derivative is given by
k=r
f E)f i i J(l 3f Ak 9 of
=t A+ B g +Z du )’

where we have used the equation (3.6) to write @ in terms of the coordinates. Hence
it follows that f is affine in the fibre coordinates u?("+1).

We shall introduce the notion of a semibasic form which will be used frequently
in this chapter.

Definition 3.9 A form Q on J” is said to be semibasic with fespect to p"t where
0 <I<r, if Qlies in the pull back of 7*J! to J".

Remark 3.10 This means in coordinates € has no du®* terms for k > {. But
the coefficients of the terms may depend on u(*) for k < r. For example ub(")dz! +
u?(=Ddu? is a one-form on J” that is semibasic with respect to p™Y.
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A key step in the theory is to extend the time derivative operator to one-forms.
Later we shall see that this allows us to define flatness in terms of one-forms and their
time derivatives and deal with integrability (the one-forms being exact) separately.
In fact we may define the time derivative for arbitrary k-forms. The time derivative
of a k-form Q on J” is a k-form on J"+! denoted by Q and is defined by

Q= Foyy 1dQ+ d(Frpq 19Q) (3.11)

for £ > 0. The k£ = 0 case corresponds to functions and has already been dealt
with. Note that the above definition make sense since  and d2 are forms on J”
and image of F,y41 lies in TJ". Also note Fryy 1dQ2 and F,1j 1§ are semibasic
with respect to p"*1" but d(F,4 19) is generally not semibasic (with respect to
p" 7). The second derivative is denoted by 2. We will also use Q*) for the kth
time derivative. When there is an index as in €/, we shall denote the kth derivative
by Q%) to avoid confusion.

If fis a function on J” then it follows from the definition that (df)(") = d(f(")
and also that if « is a one form on J" then (foz)(l) = fMa + faM). These obser-
vations allow us to calculate time derivatives of one-forms in coordinates, which we
illustrate by the following example.

Example 3.11 Consider the system of two one forms

Wl =dz' — 2%dut — 2 dt
w? = dz? — z'du? — W dt,

in coordinates (¢, z', 2%, u!, %) on some manifold M. Let o = u'dz?+ 2?du'. Then

& = u'di® + 0'da® + 2?di’ + i*du’
= uld(z'a® 4+ u') + atda? + 2?dit + (214? + ub)dul
= u'zldu?® + uliPdat + wtdut 4+ atde® + 2 didt + (210 4 ut)du?,
2

which is a one-form given in terms of local coordinates (¢, 2!, 2%, u!, u?, 4!, 4?) on

JL.

Remark 3.12 The time derivative operator of forms defined here is exactly the
same as the Lie derivative along a Cartan vector field as defined Fliess et al. [10, 11]
and Pomet [27]. The major difference is that their approach involves working in
a space which in our notation might be called J*°. This space is not a manifold
however. Also the Cartan vector field in their work may be roughly thought of as
Fo, the limiting form of the “vector fields” F,.. Proper definition of J* and F,,
requires more mathematical tools which we shall avoid.

3.4 Vertical Spaces and Extended Codistributions

In this section we shall define certain “vertical bundles” that play an important
role in later developments. As mentioned in Section 3.1 some algebraic properties
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of the Jacobian of (3.3) that are exploited in Appendix A reflect more general
geometric properties of the spaces J* and the time derivative operator. Some of
these properties are concerned with the “vertical spaces” of the bundles J* over
J*=1. We shall investigate them in this section.

Also we shall introduce the notion of extended codistributions and distributions
which will later be used to define flatness.

Let V,(t, M) denote the “vertical space” at ¢ € M of the bundle t : M —
R. In other words, V,(t, M) = kerdt,. Then V(t,M) C TM will stand for the
corresponding bundle. Also let us define VQOS = kerdt, Nann(l,) and denote the
corresponding bundle by V9S. Clearly VS C V(¢, M) C TM. For 0 <[ < r and
a point ¢, € J” we shall define Vq’;’ZS = kerT,,p™. The corresponding bundle is
denoted by V™S, As usual we may drop S and just use V,V° and V",

Remark 3.13 In a coordinate system (t, z, u) on M with the property that (dt, du)

complement I to a local coframe, for all r > 1, vectors E%JTTQ forj=1,...,pform
a basis for Vq’;’r"l. It is also clear that é%fq + B;é%q for j = 1,...,p form a basis

for qu where B; are the functions that appear in (3.5).

We present a few important lemmas about these vertical spaces.

Lemma 3.14 Forall gy € J*, the space Vqll’o ts canonically isomorphid to V;O, where
1,0
q=p"q).

Proof: The fibre J; is an affine space modelled on ker dt, Nann(Z,) = V2 and hence
T,,(J}) is canonically isomorphic to V2. But V,;? is the same as Ty, (J2). |

Lemma 3.15 For all ¢,y € J™ with r > 0, qu;ﬁ’r s canonically isomorphic to

Vqrr,r~1) where qr = pr+1’r((b"+l)‘

Proof: 1t is clear from the definition that V;::’TS is the same as Vqlr’flS’". Also from
the equation (3.10) it is clear that span{dt} + I, is the annihilator of V;."'S. But
span{dt} + I, is also the annihilator of V;;:S’" and hence qusr and V;" 7S are the
same. Hence the proof follows from Lemma 3.14. |

The following corollary is immediate.

Corollary 3.16 Forallq, € J" andr > 1, V;;"™! is canonically isomorphic to vy,
where ¢ = p™%(q,).

Remark 3.17 In a coordinate system (¢,z,u) on M as in Remark 3.13, vectors
5%;(;—)% € V7"~ ! are mapped by the isomorphism to a—i—;q e V).
We can use this isomorphism to “lift” a vertical vector and we shall use the same

notation as the one for time derivatives to denote this. Thus given 5, € V"',

. 1 . . ) :
Tgrp: OF ngril denotes the corresponding vector in V; 1" where ¢,.; is any point
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such that ¢, = p Gr+1. The meaning of n(gi:lk is clear. Also given any vector field

(need not be smooth) 7 on J” that lies in V™" ~1  its lift to J"+*, a vector field n(*)
on J™tF that lies in V" +tA7+5=1 ig defined in the obvious way.

Though the same notation is used for time derivatives of forms as well as lifting
of vertical vector fields the two operations are quite different from each other since
the lifting of a vertical vector field is a pointwise operation that only depends on
the value of the vector field at a point but not on how it varies locally, whereas the
time derivative of a form depends on the first order derivative of a form. The reason
for adopting the same notation is evident from the following lemmas. Since there
is no notion of a time derivative for vector fields the notation does not cause any
confusion.

r4+1,r

Lemma 3.18 Let f be a smooth function on M and n a vector field in V°. Then

0 f] = nlf] (pull back implied).

Proof: Let g € M and ¢q; € Jql. By definition 7,, € Vqll’0 and

ﬁ‘h[f] = lim Flar + smg) = f(QI).

50 E)

Note that since Jq1 is an affine space modelled on qu, the sum ¢ + s, makes sense.
The right hand side of the equation can be rewritten as

lim (dfy, Fx(qu + smy)) — (dfy, Fl(q1)>.

50 8

Since F} is affine in the fibres of J! over M it follows that,

(dfgs Fi(qr + smg) — Fi(q1)) = (dfqs M)

Hence

ﬁql[f] = (dfy,nq) = Wq[f]a

completing the proof. |

Lemma 3.19 Let o be a one-form on J” that is semibasic with respect to p™° and
let n € V°. Here n may be regarded as o single vector or as a vector field that lies
in VO which need not be smooth. Then

<é"7?>:<a»77>' (3.12)

Proof: Choose a coordinate system (t,z) on M. Then o can be written as a =
a;dz* 4+ adt where a; and a are in general functions on J” and hence

& = a;dx’ + adt + a;dit.
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Since (dz*, ) = (dt, n) = 0,
(& i) = ai(di*, )
= ai(da’,n) = (a,7),
where we have used Lemma 3.18. ]
Remark 3.20 The above lemmas are still true if one replaces 0 by /, in other words

replace M by J!, p™% by p"! and VO by Vhi=! where 0 < [ < r. This is seen by
replacing system S with S*.

Remark 3.21 The above lemmas are generalisations of the fact that the subma-

trices 42 and 22 in the Jacobian of (3.3) are equal.

From above lemmas we obtain local coordinates formulae for the lift of appro-
priate vector fields. For the basis vector fields n; of V0 given by

G, .0
= ga T g

the corresponding lifts are given by

.0
= ga
For the basis vector fields EWAGH J y of V7= ! the lifts are given by m.

We present a few more lemmas that will be of use later.

Lemma 3.22 Let o be a one-form on M with & being semibasic (with respect to
p'?). Then « lies in span{dt} + I.

Proof: Since ¢ is semibasic it follows that for any v € V1.0
(&, v) = 0.
But then by Lemma 3.19 for any n € V°
(a,my = (&,7) =0
and hence it follows « lies in ann(V?°) = span{dt} + I. |

Lemma 3.23 If a is a one-form on M that lies in I then & lies in I;. In other
words I(yy C I1. The converse is true if we assume that the bottom derived system
of I is trivial. More precisely, suppose that the bottom derived system of I is trivial
and that o is a one-form on M such that ¢ lies in Iy. Then o lies in I.

Proof: Suppose « lies in I and let v,, € ann(ly, ). Suppose [, is the one dimensional
subspace corresponding to ¢; where g = p'%¢;. By definition of I; and F} it follows
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that T, p"%,, = AFi(q1), for some A € R. Also (o, F}) = 0 by definition of F.
Hence

(&, vg,) = do‘q(Fl(‘Il)aquPL%m) + (d({e, F1))) g
= dag (Fi(q1), AFi(q1)) = 0.

It follows that & lies in I4.

Conversely if ¢ lies in I; from Lemma 3.22 « lies in span{dt} + I, since forms
that lie in Iy are semibasic. Let oo = w + Adt, where w lies in I and X is a function
on M. Hence & = & + Adt. But & lies in I;. So it follows A = 0 and this is possible
only if dA € I. But since bottom derived system of I is trivial it follows A = 0
implying that « € 1. [ ]

Given a smooth codistribution P C T*M its extended codistribution is a codis-
tribution on J!, denoted by Py C T*J! and defined by
Pyy =span{a,é& : a € P}, (3.13)

where we have defined F(;) as a module of one-forms on J' and the span is over
smooth functions on J! and « are one-forms in the module P. Successive extended
codistributions are defined in the obvious way,

Py = span{a, &, ... Lal s ae P (3.14)
Remark 3.24 Codistribution P need not be constant dimensional for above defi-
nitions to make sense.
Given a constant dimensional and smooth distribution D C TM we define its
rth extended distribution Dy CTJ" by
D(,.) = ann(P(,)), (315)

where P = ann(D). Constant dimensionality of D ensures that P is smooth and
hence the definition makes sense.
The following is a consequence of above definitions.

rr—1 r
Ty.p D(r)qr C D(T“l)qr_l Vg, € J", (3.16)
where ¢,_; = p""lq,.
Finally we present a lemma that relates the dimensions of intersections of a

distribution and its extensions with the appropriate vertical spaces.
Lemma 3.25 Let D be a smooth constant dimensional distribution on M. Then
(DNVOM =Dy nve, (3.17)

where (DN Vo)(l) C V19 is the distribution obtained by lifting all the vectors in
DnVvo,
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Proof: Let n be a vector field in V0 (need not be smooth). Let o be a one-form
taking values in ann(D). Since (&, 7) = (o, 1), it follows 7 is in D if and only if 7 is
in D(l)‘ ]

The following corollary is obtained by replacing S with S7!.
Corollary 3.26

(DNVO") = Diynyrt, (3.18)

3.5 Differential Flatness

In this section we shall introduce the notion of a generator on M and provide a
definition of differential flatness. Roughly speaking a generator is a codistribution
P C T*M with the property that any one-form on J” for arbitrary r is in Py for
some large enough k. When integrable, a generator contains the differentials of flat
outputs that only depend on (t, z, u), i.e. zero-flat outputs.

Throughout this section unless stated otherwise the system under consideration
is S = (t,M,I) withdim I = n and dim M = 14 n + p.

Firstly we present a useful lemma which illustrates the nature of singularities
that occur along the fibres of J”.

Lemma 3.27 Let {a},...,a*} be a set of one-forms on M. Let {dy,...,d} be a
set of integers all less than or equal to r. Consider the set

7 = {al,..,,aly(d1)7 _“’ak’“"ak,(dk)}
of one-forms on J". The following are true.

1. If Z is linearly dependent in an open set U, of J” then it is linearly dependent
for all points in the open set (p™°)~1 o p™OU,..

2. If Z is linearly independent at a point q. € J" then there exists an open
neighbourhood U of ¢ = p™Yq, such that Z is linearly independent in an open
dense subset of (p™°)71§ for all G € U.

Proof: Choosing local coordinates (¢, #, ) on M and the corresponding coordinates
(t,z,u,..., u(’“)) on J" one can relate the linear dependence or independence of Z
to the rank of a certain matrix which is a function of (¢, z,u, .. .,u(r)). Since the
forms o’ are forms on M it follows that all the forms in Z and consequently the
above matrix depend on v, ... (") polynomially. Since the only polynomial that
is zero in an open set is the trivial one, Statement 1 follows. Statement 2 follows by
adding the continuity argument. |

Definition 3.28 Let Z = {a!,...,a*} be a set of one-forms on M. The set Z is
said to be differentially r-independent at g if the set {dt, a, (V) .. .,a(’”)} is linearly
independent in an open dense subset of points in (p™%)~'q. The set Z is said to



50

be differentially r-dependent around ¢ if there exists an open neighbourhood U of
g such that the set {dt, a, o .,a(r)} is linearly dependent for all the points in
(p9)~1U.

When Z = {dy',...,dy*}, differential r-dependence of Z around ¢ € M implies
that there exists an open neighbourhood U of ¢ such that around any point ¢, €
(p"°) U there exists a submersive function f such that

f(t7y7' "7y(r)) = 0
every where in an open neighbourhood of ¢,.

Remark 3.29 It follows from Lemma 3.27 that the set Z in above definition is
either differentially r-independent around ¢ or differentially r-dependent around ¢
for an open dense subset of points ¢ in M. Also the Lemma 3.27 implies that
differential independence at ¢ implies differential independence “around” q.

The differential 7-independence of a set Z is completely determined by the codis-
tribution spanned by Z and dt. This fact leads to the following definition.

Definition 3.30 Let P be a constant dimensional smooth codistribution containing
dt. Then P is said to be r-regular at ¢ € M if dim P,y = 1+ (r + 1)(dim P — 1)
(which is the maximum possible dimension) in an open dense subset of points of
() ~tg C T

It follows from the definition if
P =span{dt,o?, ..., o*},

then {al,...,a*} is differentially r-independent around ¢ € M if and only if P is
r-regular around ¢. Also if the codistribution P is r-regular at ¢ then it is also
s-regular at ¢ for 0 < s < r.

Definition 3.31 Let P be a constant dimensional smooth codistribution around
g € M that contains dt. Then P is an r-generator for the system S around ¢ if
P is r-regular at ¢ and there exists an open neighbourhood U C M of g such that
(p7°)*(T*M) C Py in an open dense subset of points in (p"%)~'U. If P is an
r-generator for some integer r then P is said to be a generator.

Remark 3.32 The notion of a generator is essentially the same as the “linearising
Pfaffian system” introduced by Pomet [27], except Pomet’s linearising Pfaffian sys-
tem could be a codistribution on J” for some r which according to our definition will
be a generator of S” instead of S. Also Pomet only considers time independent sys-
tems and hence does not have ¢ as coordinate on his space. It has been shown that
linearising Pfaffian systems always exist and one example is given by the Pfaffian
system constructed during the construction of the infinitesimal Brunovsky normal
form; see Aranda et al. [3]. Also it can be shown with the aid of module theory
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that any generator must have dimension p+ 1. See [12, 11, 27] as well. From here
onwards we shall use this fact.

Remark 3.33 It is clear from the definition that if P is an r-generator then it is
also an s-generator for s > r.

Now we can define zero-flatness of a system.

Definition 3.34 Let y',...,4"* be functions around ¢ € M and let
P = span{dt,dy", ..., dy"}.

Then y',. .., y* are (0,7)- flat outputs of the system S around ¢ if P is an r-generator
for the system S around ¢. If such y exist around ¢ then the system S is said to
be (0,r)-flat around g. If system S is (0,r)-flat around ¢ for some integer r then the
system S is said to be zero-flat around ¢ and corresponding y are zero-flat outputs
around gq.

It follows that in local coordinates (¢, 2, u) on M the zero-flat outputs are given
by some map h,

y=h(t,z,u)
in some open set U/ C M while z and « in turn are given by some maps g; and g¢o,

€ :gl(tvyv""y(r))a

, (3.19)
U= g?(ta Yyoony y(r))’

in an open dense subset of points in (p™%)~!U. It also follows that the number of
zero-flat outputs k£ equals p, where p = dim M — dim P — 1, by Remark 3.32.

Remark 3.35 Lemma 3.27 essentially implies that if Equation (3.19) holds in an
open subset of (p™?)7U then it holds in an open dense subset of (p™°)~1U. This
allows us to define the zero-flatness of a system S around a point ¢ € M without
having to mention points in J7.

Definition 3.36 The system S is said to be (I, r)-flat around ¢; € J* if S'is (0, r)-
flat around ¢;. The system S is differentially flat around ¢, € J' if S! is zero-flat
around ¢.

It follows that in local coordinates (¢,z,u) on M the flat outputs are given by
some map A,

y:h(t,x,u,...,u(l))

in some open set U; C J! while 2 and u in turn are given by some maps g; and g,
as in Equation (3.19) in some an open dense subset of (p'+"!)~1U;.

The following lemma is needed to prove an important lemma concerning gener-
ators.
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Lemma 3.37 Let P be a constant dimensional codistribution of dimension p+ 1
containing dt and suppose there exists a nonvanishing one-form in U C M that does
not lie in P but lies in Pyy for points in an open set Uy C (p"°)~1U. Then PN 1
is nontrivial for all points in p'°U; C U.

Proof: Let P = span{dt,a*,...,a”}. By assumption there exists a one-form § on
U C M that does not lie in P but is in the span of & for j = 1,...,p. Let § = fjdj
without loss of generality, where f; (not all vanishing at the same point) are in
general smooth functions on U; C J!. Then for points on U; C J*!

(fiad 0y =0, YoeVP°
= fi(&d, 1) =0, VoeV°
= fj(aj,v>:0, Yo e VO

where the expressions are all functions on Uy, where we have used Lemma 3.19. But
since (o7, v) is clearly a function only on M it is possible to find g; for j =1,...,p
(not all vanishing at the same point) that are functions only on M such that

gj<aj, v) =0, YveVO,

for all points on p*%U;. Choosing v = g;a’ (so that v lies in P) we also see that
{y,v) =0 for all v € VO implying that v lies in P N I for all points on p':°U;. But
7 is nonvanishing in p°Uj. |

Now we present an important lemma about generators.

Lemma 3.38 Let P be a constant dimensional codistribution of dimension p + 1
containing dt and suppose P is a generator of S = (t, M, I) around ¢ € M. Then
PN I and DNVY are both nontrivial around q.

Proof: Let D = ann(P) and recall V° = ann((/+span{dt})). So DNV° = ann(P+
I). From linear algebra

dim(PN1I)=dimP+dim I — dim(P + 1)

for all points on M and we also know that dim P+dim I = dim M. Hence it follows
that dim(P N 1) = dim(D N V) pointwise. It also follows that

dim(P(r) n [(T)) = dim(D(r) N Vf‘,r—l)’ Yr,

for all points on J".

Now since P is flat, there exists an open neighbourhood U of ¢ and an integer r
such that in an open dense subset W, C (p"%)~1U the codistribution F(,) spans all
the forms on M and hence by lemma 3.37 it follows that P, —1) N I,_1 is nontrivial
for all the points in p™"~1W,. But p""~'W, is an open dense subset of (pr~ 10U,
since the image under a submersion of an open dense subset is also an open dense
subset. Since F(y—1) and I,_; are smooth, it follows that if their intersection is trivial
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at a point in (p"~19)7U then it must also be trivial in an open neighbourhood of
that point, which violates the fact that the intersection is nontrivial in an open
dense subset of (p"~1%)~1U. Hence it follows that P—1yN 1,y is nontrivial for all
points in (p"~1:0)~1U/. But this is equivalent to Dg_yn V7=1r=2 being nontrivial
for all points in (p"~19)~1U, which in turn is equivalent to D N V? being nontrivial
for all points in U by (3.18). Hence it also follows that P N I is nontrivial for all
points in gq. |

The above lemma is a generalisation of the fact that any Cartan prolongation
of a trivial system contains at least one one-form that is semibasic (with respect to
the projection onto the manifold of the trivial system). (This statement is true even
for Cartan prolongations of nontrivial systems. See Sluis [35] for more details).

3.6 Zero-Flatness of a System of Two One-Forms

In this section we present a theorem that partially characterises zero-flatness of a
system of two one-forms. We need the following lemma before stating the theorem.

Lemma 3.39 Let 1 be a vector field in V C TM and w be a one-form in I. Then
(W, M) =0 < nddw=0 mod I.

(Note that from Lemma 8.23 it follows that & takes values in T*M and hence its
pairing with n makes sense and results in a function on J*.)

Proof: Since (w, Fi) = 0 by definition of F} it follows from the definition of time
derivative that w = F}| Jdw. Hence

<w777> = dw(FlyT]) - <anval>7

where all the expressions are functions on J!. By definition of F, for any one form
o on J', (o, Fi) = 0 if and only if « lies in I (after I has been pulled back to Jh)
The proof follows by substituting a = 5 Jdw in above. |

Theorem 3.40 Let S = (t,M,I) be a system with dim I = 2. Suppose locally
around g € M that I = span{w',w?}. Also suppose D C V is a two dimensional
distribution around q with D = span{m,ns} and that P = ann(D) is 2-regular
around q (note that D C V is equivalent to P containing dt). Then P is a 2-
generator for system S around q if and only if

mdng Jw Aw?) =0 (3.20)
and
mdneddw! Aw?) =0 mod I (3.21)

for poinis around q.
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Proof: Observe that the conditions (3.20) and (3.21) are independent of the choice
of basis for I and D and therefore it is reasonable to work with a special choice of
bases. The condition (3.20) is equivalent to the 2 x 2 matrix with entries (w*, n;)
being singular and hence (3.20) holds if and only if there exists a choice of w' and
n; such that

=1

2
1’ 27

<wi’ 771>

whn) (3.22)

0,
0,

il
Il

J
and this is equivalent to P N I being nontrivial. Hence P N I being nontrivial is
equivalent to (3.20) pointwise.

Necessity: Suppose P is a 2-generator around ¢. Then by Lemma 3.38 PN and
D NV are nontrivial around ¢q. Hence without loss of generality we can assume
that (3.22) holds around ¢. This also means w' € PN T and 5 € DNV? around g.

Let U be an open set containing ¢ such that P is a 2-generator in U and (3.22) is
valid in U. Since PN 1T is nontrivial in U, its dimension is either 1 or 2. Let W ¢ U
denote the open set in which dim P N Iis 1. Then n; spans DNV9 and w! spans PNI
in W. Since n; spans DN V? it follows that 7; spans Dyyn V190 and that #; spans
Diyn V21! at points that project down to W by Corollary 3.18. By 2-regularity of
P it follows that D(y) is two dimensional in an open dense subset of of (P9~ 1w.
Choose a smooth vector field 7 on (p?%) ='W that complements #j; to a basis for
D3y in this open dense subset. Then Ty, p?'7,, € D(1),q, for points g, € (p>9)~1W.
Since P is a 2-generator in U and hence in W C U, D(3y C V*° in an open dense
subset of (p*0)~!W. Since 7 is smooth and lies in D 2) it follows that 7 lies in
V29 for all points in (p2%)~1W. Hence for all points g, € (p>°)~'W it follows that
Ty, p*°7,, = 0 implying that Ty p?1n,, € Vqll’o where q; = p?!qy. Therefore for all
points ¢z € (p*O)7'W, T,,p>'7,, € Dyq 0 Vq];’O, where ¢, = p%lgy. Therefore
by a smooth rescaling we could redefine 7 such that 7,,p*'#,, = 7, for all points
g2 € (p*°)7'W and ¢ = p*lep.

Now, since &' € F(y) it follows that

& m = 0.

1

But since &' is semibasic with respect to p??

(@' 7) = (@', M)

where both sides of the equality are to be regarded as functions on (p?9)=1W C J2.
By Lemma 3.19 it follows that

<L;J1, 771) = 07
for points in (p*°)~!W. Then by Lemma 3.39 it follows that

n ddw' =0 mod I,
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for points in W. This and (3.22) together imply (3.21) for points in W.

For points in U but not in W, PN T is two dimensional and hence I C P which
implies (w*, ;) = 0 for 4,7 = 1,2 and therefore (3.21) follows at once.

Sufficiency : Let U be an open neighbourhood of ¢ in which (3.20) and (3.21)
hold and P is 2-regular. Then PN T is nontrivial for points in U. Choose w* and 7;
such that (3.22) holds in U.

Suppose PN is one dimensional in W C U. The set W is open. The equations
(3.20), (3.21) and (3.22) imply 7 Jdw' = 0 mod I, which is equivalent to (W', 7;) =
0 by Lemma 3.39. Let

P = span{dt,w',o?, ..., a"},
in U. Since P is 2-regular in W C U it follows that the set
A= {dt,w' a?, ... aP Ot}

is linearly independent in an open dense subset of W3 C (p?°)"!W and hence spans
a space of dimension p + 2. Also since all the forms in the set are semibasic with
respect to p?® by Lemma 3.23 and all of them annihilate 7, it follows that the set
spans the annihilator of 7;. Since (w? ) = 0 it follows that w? is in the span of
A for points in W5, and the coefficient of &! is nonvanishing in W,. Then it also
follows by time derivative operation that w? is in the span of B for points in Ws,
where

2

. 1 2 p -1 - ip el
B ={dt,w",a* ..., a",w" &% ... a0 0,

and the coefficient of &' is nonvanishing in W,. Hence it follows that the set C
defined by

12 2 .2 P 2
C={dt,w',a* ...,0P w* a* ... a" W’}

is linearly independent in Wy. Therefore the set {dt,w!,a?,..., a?,w?, &?} is linearly
independent in W, and also since all the forms in it take values in T7*M by Lemma
3.23 its span contains the pull back of any one-form in T*M for points in W,. But
the set ' is contained in F(y), implying P is a 2-generator in W C U.

For points in U — W, PN I is two dimensional implying 7 C P. Since P is
2-regular in U it follows that P + Iy C P1) has dimension 1+ p+ 2 in a dense
subset of (p10)~1(U = W). But I(1y and P lie inside T*M as codistributions making
P a 1-generator and hence a 2-generator on the interior of U — W. It is also clear
by continuity argument that P is a 2-generator around any point on the boundary
of U — W as well, completing the proof. |

Lemma 3.41 Suppose system S = (t, M,I) has zero-flat outputs y',...,y? in an
open set U C M. Then y are (0,dim I)-flat outputs.

Proof: Let V. = (t(U),y(U)) C RP*!. Then the system Sy = (¢,U,I) is a Cartan
prolongation of the trivial system T = (y, V, {0}), where 7, is the projection onto
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the first component. To see this, around any point ¢ € U choose a coordinate system
(t,y,2). Any two solution curves (y(t),z = 2z (¢)) and (y(t),z = 2,(t)) that project
down to the same solution curve y(t) of T are isolated by the requirement that z(¢)
is given locally uniquely by an equation of the form

Z(t) - f(tny(t)’ - '7y(r)(t))’

where 7 is a large enough fixed integer. Hence Sy is a Cartan prolongation of T in
this broader sense. Theorem 2.14 still holds for Cartan prolongations of this broader
sense and the result follows from the Corollary 2.15 of this theorem. ]

This lemma provides the following corollary of Theorem 3.40.

Corollary 3.42 Given system S = (t, M, I) with dim I = 2, let y', ..., y? be func-
tions around g that are differentially 2-independent around q. Let D be the annihi-
lator of the codistribution spanned by {dt,dy", ..., dyP} with basis {9y, ny} around ¢
and let {w',w?} be a basis for I around q. Then y are zero-flat outputs around q if
and only if (3.20) and (3.21) hold around q.

Remark 3.43 For a system with dim I = 2 that is zero-flat in an open neighbour-
hood U C M, the variables 2 and u can be given in terms of (¢,y,, i) only in an
open dense subset of points in (p"°)~'U. From the proof of Theorem 3.40 it is clear
that the singularities in (p"°)~1U occur precisely where y fail to be differentially
2-independent. '

Remark 3.44 The Corollary 3.42 was first proven using a coordinate based ap-
proach in [29]. For sake of comparison we include this proof in Appendix A. If
one were to extend these results to systems of arbitrary number of one-forms, the
coordinate approach becomes intractable and the more intrinsic approach of this
chapter may be more appropriate.

The Corollary 3.42 provides us with the following algorithm for finding zero-
flat outputs of a system with dim / = 2. Solve for a two dimensional distribution
D spanned by unknown vector fields 7;, 72 which satisfy the algebraic conditions
(3.20), (3.21) and such that dt annihilates D. (The last condition is equivalent to
(t,y!,...,yP) being independent functions.) This step involves (symbolic) differen-
tiation and algebra. Typically at each point ¢ € M there is a submanifold Sq (of
the manifold Go(T,; M) of all two dimensional subspaces of T, M) of possible solu-
tions for D,. The next step is to determine if it is possible to choose a smooth D
that satisfies these conditions (D, € S;) and in addition is integrable. This step
involves solving PDEs. Generally this results in a nonlinear system of PDEs and
typically this system does not have solutions. Unfortunately Theorem (3.40) does
not say anything about this and hence it must be regarded as a partial characterisa-
tion of zero-flatness. Fach solution gives an integrable D. Then one picks functions
y', ..., yP that together with ¢ cut out the foliations of D. Finally one needs to check
the differential 2-independence of y. If this is satisfied then y!,...,y? are zero-flat
outputs. If y',...,y? are not differentially 2-independent around ¢ then they are
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not flat outputs as they satisfy some ODE. One must pick another integrable D.
The whole algorithm is illustrated in the next section by examples.
Corollary 3.42 also helps us decide if a control affine system

a:l:f’(:v)—kgj(a:)u j=1,...,n=2, i=1,...,m,

in n states and n — 2 controls with g;- full rank has flat outputs that only depend
on the states z. This is because the u/ can be eliminated from the n equations and
this introduces two quasi-linear ODEs in z only. This corresponds to a system with
dim I = 2 and the zero-flat outputs of the latter system correspond to flat outputs
of the original system that only depend on the states z. From the flat outputs
and their derivatives z can be recovered and from z and & the controls u can be
recovered.

Remark 3.45 Systems consisting of a single one-form, i.e. I = span{w}, are always
zero-flat (locally) provided the system is not integrable in the Frobenius sense. In
fact it may be proven that any vector field 5 that spans the (one dimensional)
distribution that is tangent to the level sets of zero-flat outputs y, needs to satisfy
the condition 7 dw = 0. Note that this is similar to the condition (3.20). It may
also be shown that the outputs y being differentially 1-independent is equivalent to
the condition that 5 Jdw should not lie in /. This makes it clear that locally such
an n can always be found given w A dw # 0, in other words I is not integrable in
the Frobenius sense. This result for the single one-form case is not new however,
since this corresponds to an already known result which states that all control affine
systems in n states and n—1 controls are flat provided they are (locally) controllable,
see [8, 24].

3.7 Examples

3.7.1 Example 1 : Kinematic Car

Let us consider the example of “kinematic car” (see Figure 3.4). In this model
we ignore the dynamics and just consider the kinematics. The'system under con-
sideration is then a system of two one-forms (two constraints) in a 5 dimensional
space with coordinates (¢,z,y,8, #). The system [ is given by

I = span{w! = cosfdz + sin 8dy — [ cot ¢d#,
w? = sin fdz — cos fdy}.

This example is known to be flat with flat outputs z and y. In fact the system is
zero-flat. This may also be considered as a control system with controls u and w,
where u is the velocity of the vehicle (at the midpoint between rear wheels) and w
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Figure 3.4 Kinematic car.

the steering velocity. Then the control system is described by

&= ucosb

y=usinf

, 3.23
Hz%utanqb ( )
é=w.

The system I being zero-flat is equivalent to the above control system having flat
outputs that depend only on states. We shall apply the theory of previous section
to this example.

As outlined in Section 3.6, the first step is to solve for a two dimensional dis-
tribution D = span{n, 72} that annihilates dt and satisfies conditions (3.20) and
(3.21). It is easier to solve for the “2-vector field” N, which is the exterior product
of the two vector fields 7; and 7, in other words N = 1, A 15. Note that just as
for one-forms it is possible to define the exterior product of vector fields, see [4] for
instance. Furthermore, the interior product of a p-vector field ¢ with a g-form «
(p < q) is uniquely defined by following rules:

1. When p = 1 the definition is the usual one.
2. The product is linear in £.
3. (vi Avg)da = vy J(vg Ja).
Then conditions (3.20) and (3.21) can be written in terms of N as

N Aw?) =0
Nidw' Aw?) =0 mod I.
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Since D must annihilate dt, in coordinates (¢,z,y,6, ¢), N has the form

N:Nli/\g—!—Nz—a—-/\g"—!-Ngi/\ 9

dz Oy dz 06 dz 58
J d 0 0 0 0
+N45—Z;/\-8—6+N55—3;/\56+N655/\%.

Then conditions (3.7.1) give linear equations for components ;. In addition N must
be decomposable, in other words it should be the exterior product of two vector
fields. N is decomposable if and only if the components N; satisfy the “Pliicker
relations” which are always homogeneous quadratics, see [43] or [5]. In our case N
is a 2-vector in 4 variables (z,y,8, ¢) and the Pliicker relation is given by

N1N6 - N2N5 + N3N4 = 0. (324)

With the aid of Maple it is seen that the general solution depends on two arbitrary
parameters A and g and that Ny = Ny = Ny = 0, N3 = Acosf, N5 = Asinf and
Ng = U.

This corresponds to a two dimensional distribution D spanned by 7, and 7,
given by

d
=2 (3.25)
d . .0 J
N2 = pfcos 05—1: + sin 65}/_) - /\5&5. (3.26)

The next step is to find choices of A and p that lead to integrable D. This step
typically leads to solving PDEs as seen in the next example. However one may
sometimes find the solution by inspection without writing down PDEs, as in this
example. If A = 0 then this is clearly not integrable (as seen by calculating the Lie
bracket of 7, and 7). Hence we can take A = 1. Then the annihilator of D is given
by

ann(D) = span{dt, dz + p cos 8d¢, dy + psin de}. (3.27)

It is clear that this is not integrable unless 1 = 0 (cannot “wedge out” df). Hence
we are left with the only solution for ann(D)

ann(D) = span{dt, dz, dy}. (3.28)

Finally in order for # and y to be flat outputs we must verify that they are dif-
ferentially 2-independent. But instead one may directly verify that these are flat
outputs.

In this example we already know them to be flat outputs. This calculation shows
that these are the only zero-flat outputs up to a diffeomorphism involving time.
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3.7.2 Example 2

In this section we shall consider the following example of a control system in 4 states
and two controls due to Sluis [37].

&y = x2(l+v)
.’f2 = T3 4+ T3V
5&3:15

T4 = T3V.

This example is known to be flat with flat outputs that depend on inputs and
their derivatives. However we can eliminate inputs « and v to obtain two quasi-
linear ODEs in the state variables. These can be written as a Pfaffian system of
dimension 2 in coordinates (¢, zy,...,24). In fact we have

I = span{w! = ¢ dey — zadzy + x%dt,
w? = zodzy — x3dzy + Toxadt}.
Hence the theory of Section 3.6 can be applied to look for zero-flat outputs. If this
system [ is zero-flat then it means the original control system has flat outputs that
depend only on states.
As in the previous example we shall first solve for a 2-vector field N. Since D
must annihilate dt, in coordinates (¢,z1,...,24), NV has the form

i) 0 0 a 0 0
N = Ny—— A — + N, AN=—+Ng—A —
1(3.’13'1 8:132 + 83:1 85173 + 8:81 8%4

0 0 0 0 0 0

Ny—— A N, N,
MR P rF P P P Ty

As before conditions (3.7.1) give linear equations for components N;. In this case
also NV is a 2-vector in 4 variables (z1,...,24) and hence the Pliicker relation is the
same as in previous example and is given by (3.24). With the aid of Maple it is seen

that the general solution for N; depends on two arbitrary parameters A and p.

Ni=0
Ng = —zqzox3) + a:g)\ + l‘%l’z/\ - zlwgu
]Vg = .’L‘%.Z‘g/‘\
Ny = —.T%il‘g,/\ + a:lazg)\ + 93:;’)\ - x%;@u
N5 = .’L’1CE2$3)\
N@ = T1ToT3H.
Since any scalar multiple of N corresponds to the same two dimensional distribution

D the solution manifold S, C G2(T,M) is 1 dimensional for each ¢ € M. A possible
choice of 7; and 7 is as follows.



61

m = (T17223) — 25X — 2z + o:lozgu)—a—
81’1
+ (2fz3A — zy2iX — 23N + 2taqp) 6(2 (3.29)
2
7] o 7]
7y = $2£L’3/\8$ + zlngg,}\ax + $1$2$3M8 o (3.30)

The next step is to impose involutivity conditions on n; and 7. Requiring
[71, 2] € span{ny, 72} results in the following PDE for A and p as functions on M.

op
22,2 3. \2 2 2
—zizop” + xjT3N + 2jries A —

(’9302
-i—:c2x z2 ?i T2z Q/\— row i)\—
172 3“33;3 1Z2 3”83)3 122 3“8933
- 3x1m§x3)\2 -+ :z:‘;’wg,)\p + mlx“;’xg/\%
— 232302 4 222N - .’K%ZL‘:},CEZ#;)\
Zy
I IA 0
- :vlm%xg;ca—— - xlxgx&ua xlxzxy\aua
o du
e mlzzrzxgal)\a + xlxzz\,u + :clmza:gal)\axs
op
+x1w2)\u+z1x2x3)\0 =0. (3.31)
Z4

Since the PDE is independent of ¢ it is possible to seek solutions that are independent
of t. Also since the PDE is homogeneous, assuming p # 0 we may equivalently solve
for f = ’\ . The PDE for f is as follows.

2, .3, ¢2 3 2,2 ¢2 3
aias + 2lusf? — adesf — 22alf? — 2i23f

d
—afoaf +3makesf? + afadf? — afend 0L
3
af of
+ :vla:g’:cg,aw + a:lnggax + xlm%xga -
of af
+zy2irs Py +zy2 §x§6 o = 0. (3.32)

Since this is a single quasi-linear PDE it has solutions. Each solution will correspond
to an integrable D. One solution of the PDE is

F= 2122(24 — 2) . (3.33)

—:1:“;’ - xfa:z -+ :I:fm - .Z'2$L’§ + x%:u; + 2x12923 — X234
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This leads to an integrable D spanned by n; an 7, given by,

, .0 d
m = (z,22 — xga:%)gg + (zizy - .’6111325133)5?2-

3.2 2 2
+ (2z12923 — 2y — @iTy + 2iT4 — T2TE

+alzy — x1m3x4)5% (3.34)
, 0 0
m = (a524 — $%)5—£ + (12024 — 9611'%)5;2-
+ (2212273 — 75 — 2729 + 224 — Tyl
+ 2y — xlmgm)é%. (3.35)

A choice of first integrals of this distribution (other than t) is

Yy = x5 — 22 (3.36)
7 .2 PR
Y2 = 24y/73 — ] - Vs - o — arctan( ! . (3.37)
za(Ts —@1) w3z -m z3—a?

Finally we need to check if y; and y, are differentially 2-independent. But alterna-
tively one may directly verify that y!, y? are flat outputs. The following considera-
tions show that these are indeed flat outputs. Firstly observe that z4 can be solved
for in terms of y; and z;. Hence it follows 24 can be solved for in terms of y;, 2, 2,
and x3. The two one forms wy and w, correspond to the following ODEs.

TyTg4 — T3dg 4+ 25 =0 (3.38)
$2£i4 - :E3i‘1 + T3 = 0. (339)

These two equations imply
1'3(:L'2£i'2 - 1'13:'1) + T1Taely — 3325()% = 0. (340)

Substituting —3421— = Ty — 1% and zo = /y; + a;f in above and solving for z3 we
get

_avynt et 43 (3.41)
Vi + :17%

Hence we can express z3,23 and z4 in terms of 21,41, 9; and yo. Substituting for
z2,73 and z4 in equation (3.38) we get an equation involving @y, yy, 91, i1, y2 and
Y2, but no derivatives of z; (since this expression is too big we shall not show it
here). From this equation, z; can be solved for in terms of y; and y, and finitely
many of their derivatives. This establishes that y; and y, are a set of flat outputs
that depend only on states of the control system (3.7.2).

T3

Remark 3.46 The flat outputs y; and y, were not known before. This example
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illustrates how nontrivial flat outputs can be found systematically using the condi-
tions (3.20) and (3.21) and then solving for PDEs. This is different from the more
familiar approach of adding integrator chains to original inputs (in this example u
and v) of varying lengths and then applying the theory of static feedback lineari-
sation to the resulting system. The previously known flat outputs (see [37]) were
found by this dynamic extension approach and depend on inputs and their deriva-
tives. The technique provided in this chapter enables one to find all flat outputs
that depend only on original variables but no derivatives, provided one can find
solutions to the resulting PDEs.
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Chapter 4

Configuration Flatness of Lagrangian Systems

Many interesting examples of mechanical systems are differentially flat and in most
known examples flat outputs have been found that depend only on the configuration
variables but not on their derivatives. We refer to such flat outputs as “configura-
tion flat outputs” and systems possessing such outputs as “configuration flat.” For
instance, the example of kinematic car in Section 3.7.1 is configuration flat. All
Lagrangian systems that are fully actuated (number of controls equals number of
degrees of freedom) are configuration flat with all the configuration variables as flat
outputs. The planar rigid body example of Chapter 1 is also configuration flat. See
[12] and [25] for a catalogue of other examples. The reasons for studying configu-
ration flatness are as follows. Firstly it is a simpler case than the general case of
differential flatness and is possibly the first thing to study if one were to be able to
relate the mechanical structure with differential flatness. For instance configuration
controllability of mechanical systems has already been studied and related to the
mechanical structure (see Lewis and Murray [19]). Secondly the smaller the number
of derivatives of configuration variables the flat outputs depend upon the simpler the
numerical implementation of the transformations involved in trajectory generation.

In this chapter we completely characterise configuration flatness for a special
class of mechanical systems. The class under consideration involves systems whose
dynamics is described by Lagrangian mechanics with a Lagrangian function of the
form “kinetic energy minus potential.” Also the number of independent controls
is assumed to be one less than the number of degrees of freedom (the simplest
case next to fully actuated systems) and the possible range of control forces only
depends on the configuration and not on the velocity. We describe an algorithm
for deciding if such a system is configuration flat and if it is so, we describe a
procedure for finding all possible configuration flat outputs. We do not consider
systems with nonholonomic constraints. The kinematic car example hence does not
fall into the class of systems under our consideration. Similar to the characterisation
of zero-flatness of a system of two one-forms in Chapter 3, the characterisation of
configuration flatness also involves conditions on the tangent spaces to the level
sets of the flat outputs. Since the level sets are one dimensional for the case of
systems underactuated by one control, integrability always follows (locally). Hence
the theorem presented in this chapter is not as restrictive as the Theorem 3.40 of
Chapter 3.



65

The chapter is organised as follows. Firstly we present a formulation of flatness
that directly applies to higher order systems of ODEs. We introduce some concepts
from Lagrangian control systems theory and also provide a definition of configuration
flatness. Then we introduce some concepts from Riemannian geometry that are
necessary for our theory and also state and prove the main theorem and outline
an algorithm for coordinate calculations to check configuration flatness. We also
explore how system symmetries relate to symmetries of the flat outputs. Finally we
provide two examples to illustrate the theory.

4.1 Jet Bundle Approach to Higher Order Systems of
ODES

In this section we briefly present a formulation of flatness that is closely related to the
developments in Chapter 3, except that this formulation applies directly to a system
of higher order ODEs. This is useful when one wants to exploit the higher order
nature of the ODEs and in fact we shall use this to investigate configuration flatness
of Lagrangian mechanical systems which are governed by second order ODEs. As
before our manifold is equipped with a special notion of time and hence we start
with a fibre bundle ¢ : M — R as in Chapter 3. But we no longer consider a
Pfaffian system on M (which corresponds to first order quasi-linear system of ODEs).
Suppose we have an underdetermined system of kth order ODEs in some coordinate
system (¢,z',...,2") given by

Fit,z,...,2% =0, j=1,...,N—-p.

This system of ODEs may be regarded as the submanifold & C J*(t, M), which
is given by the common zero set of the functions F7 on the kth order jet bundle
JE(t, M). We refer the reader to [33] for a discussion of jet bundles.

In Chapter 3 we considered the bundles J¥(¢, M, I) that were associated to the
bundle ¢t : M — R and a codistribution I on M. As mentioned in Remark 3.3
by taking I = {0} we can apply the theory of Chapter 3 to derive properties of
the jet bundles J*(¢, M). More precisely J*(t, M) is the same as JE(t, M, {0}) in
Chapter 3 terminology. Sections ¢ of the bundle ¢ : M — R may be naturally lifted
to sections of J¥(¢, M). A section ¢ of t : M — R is called a solution of the system of
ODEs if and only if its lift to J* (t, M) lies in &. Denote by p}"\’j the projection from
J7 (¢, M) to J'(t, M) for r > I. A section ¢; of the bundle (pﬁ,’fo)*t s JRE, M) = R
that lies in & is a solution only if it is the lift of a section of ¢ : M — R and this
is true if and only if %’i annihilates the contact codistribution Q4 on J*(¢, M). If
one were to ignore the higher order nature of the ODEs then the starting point
will be the system S consisting of the manifold & with the time given by the pull
back of t on M and the codistribution on & will be the restriction of the contact
codistribution €, on J*(t, M) to &. In other words S = (to pﬁf o0ig, &, (1g)*U),
where ig is the inclusion of & into J*(¢, M). But since we want to exploit the higher
order nature the approach will be slightly different. From Chapter 3 it follows that
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we have a notion of time derivative of functions and differential forms. It can be
seen that the prolongation of above system S as defined in Chapter 3 is given
by a submanifold &' C J**+1(t, M) which is locally the common zero set of the
functions F7 and FJ for j=1,...,N — pand a codistribution on &' which is the
restriction of Q41 to &', Higher prolongations of S turn out to be given by the
submanifolds &' ¢ JEH(, M) which are locally the zero set of F7, Fi(1)  pi(D)
for j =1,..., N — p and codistributions on &' which are restrictions of Q4; to &.
The following definitions are in complete accordance with Chapter 3.

Definition 4.1 Consider the system of kth order ODEs on the bundle ¢t : M —
R given by & C J*(t, M). Let y',...,yP be functions defined around ¢ € M.
Then y are said to be differentially r-independent around ¢ if there exists an open
neighbourhood U of ¢ such that the set

{dt,dy, dy™, ... dy")}

is differentially independent when restricted to &" in an open dense subset of
( k+r) Uner.

Definition 4.2 Consider the system of k-th order ODEs on the bundle ¢ : M — R
given by & C J¥(t, M). Let y',...,y" be functions defined around g € M. Then
y are said to be (0, r)-flat outputs around ¢ if they are differentially r-independent
around ¢ and if there exists an open neighbourhood U of ¢ such that

kpﬁr) (T*M) C span{dt, dy, dy(V, r)}

when restricted to & C J¥*7 (¢, M) in an open dense subset of (p KTy UNé&T. The
functions y are said to be zero-flat outputs if they are (0, r)-flat outputs for some r.

Thus y being (0, r)-flat outputs means that y depend only on original variables
t and z but not on derivatives of z and that the variables z may be obtained as
functions of t,y, ..., y(" alone.

4.2 Lagrangian Control Systems and Configuration Flat
ness

Consider a Lagrangian system with configuration manifold @ of dimension n and
a Lagrangian L : TQQ — R. When no external (generalised) forces are applied, the
motion of this system satisfies the Euler-Lagrange equations, written in coordinates

(¢" .. q") as
d 0L oL .
5(5?]’7)_5?:0’ i=1,...,n. (4.1)

In a control situation external control forces are applied and it is natural to think
of forces as covectors on the manifold @. In other words, for a configuration ¢ € Q



the total external force acting on the system can be represented by an element of
T;Q. This is because forces naturally pair with velocities, which can be thought
of as elements of T,(), to give instantaneous power. The possible range of control
forces lies in a subspace of T, ; & which may depend on position ¢ as well as velocity
vg. In other words the control forces can be described by a horizontal valued codis-
tribution P C T*(T'Q), and p = dim P is the number of independent controls. For
an interesting and wide class of systems this subspace only depends on configuration
g and hence can be described by a codistribution P C T*Q of dimension p. For
the rest of the discussion we shall only consider this case. All feasible paths (solu-
tions) of such a system are characterised by the following underdetermined system

of second order ODEs in coordinates (¢!,...,¢"):
- d 0L oL
=) — —) = k=1,...,n— 4.2
a’k(dt(aqz) aqz) 01 y y— P ( )

where a}'ca%; for k=1,...,n — p span the annihilator of P, denoted ann(P).

As mentioned in the Section 4.1, the geometric object to consider is the associ-
ated submanifold & C J2(R, Q) of the second order jet bundle J?(R, Q). Note that
since we have a time independent system of ODEs our manifold is M = R x Q. The
time ¢ is the projection onto the first factor, and the bundle J*(t, M) = J*(R, Q).

The submanifold & has codimension n — p and in local coordinates (¢, g, ¢, §) is cut
out by the common zeroes of the functions

°L . L ., oL

¢ T - J T .' — kzl PR - .
ak(aq-zaqjq +aqzaq]q aqz)v 3 y P

Definition 4.3 A Lagrangian control system with configuration space Q is said to
be configuration flat around ¢ € Q if there exist zero-flat outputs y*,...,y? (in the
sense of Definition 4.2) that are functions on @ defined around q. (Note that y are
required to be time independent.)

We present the following lemma which will be of use later.

Lemma 4.4 Let g € Q, U an open neighbourhood of q, and y : U — RP be config-
uration flat outputs. Then generically the set of solutions ¢ : R — U that project
down to the same curve y o c are all isolated.

Proof: Choose local coordinates z that complement y to a full coordinate system.
It follows from flatness that along typical solution curves, z(t) is locally uniquely
given by an equation of the form

2(t) = ft,y(0), .,y ().
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4.3 Mechanical Systems with n Degrees of Freedom and
n — 1 Controls

Consider the mechanical system whose Lagrangian is given by
1
L{v) = ﬁg(v,v)——VorQ(v), (4.3)

where g is the Riemannian metric (assumed to be non degenerate) corresponding to
kinetic energy and V is the potential energy function on Q and 7o : TQ — Q is the
tangent bundle projection. Suppose the number of controls is p = n — 1, in other
words dim P = n — 1, where n = dim Q. In this section we shall present a method
for determining if this system is configuration flat. If the system is configuration
flat our approach provides us with a constructive method for finding all possible
(configuration) flat outputs. We assume that all the holonomic constraints have
been taken into account by the configuration manifold @ and that no nonholonomic
constraints are present.

Before proceeding further we present some concepts from Riemannian geometry.
Given a metric g we have a notion of differentiation of objects on the manifold
such as functions, vector fields, differential forms and tensors along a given vector
field Z. This is the covariant derivative V given by the Levi-Civita connection
(see [1]). Vz denotes covariant derivative along a vector field Z and is related to
parallel (with respect to metric) transport of objects along the integral curves of Z.
The covariant derivative of a function f along Z denoted Vzf is just the familiar
directional derivative Z(f) or the Lie derivative. But the covariant derivative of a
vector field X along Z denoted VzX is not the same as the Lie derivative [Z, X].
Some properties of V are

Vz(Xi+X2) = VzX1+VzX, (4.4)
Vz(fX) = VX +Z(H)X (4.5)
VizX = fVzX (4.6)

VzX ~-VxZ = [Z,X] (4.7)

where X, Xy, Xy, Z are arbitrary vector fields and f is an arbitrary function on
the manifold. In a coordinate system (¢',...,¢") on manifold @ the covariant
derivatives are calculated with the aid of Christoffel symbols Fék where 4,7,k =
1,...,n and Christoffel symbols are defined by

0 i

From the properties (4.7) of V it follows that F;-k = sz. The Christoffel symbols

ij can be computed from metric ¢ by the formula

o 1,0gs  Bgs  Bgk. .
. (gk Ggij gylc)g

* =3\ % T agk T By

, f5Lm=1,...,n, (4.9)
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where gikgkj = 5;- (g'F are components of the inverse of matrix gix). Then the

covariant derivative of vector field X = X ké—‘gg along Z = 77 5%7 is given by

: 9 9XFk 9
X = ZiXkr Zi
Vz + 90 O

For the mechanical system under consideration let us define an associated dis-
tribution D by

D =span{{,Vz¢ : 7 € X(Q)}, (4.11)

where £ is any vector field such that ann(P) = span{€} and X(Q) is the set of all
smooth vector fields on Q). It is easy to check that D doesn’t depend on the choice
of £ € ann(P). By the linearity of covariant derivative it follows that

D =span{¢,Vo & : 1=1,...,n} (4.12)

gt
where (¢%,...,¢") are any set of coordinates. Hence D is easily calculated using
equations (4.9), (4.10) and (4.12). The following theorem characterises configuration
flat outputs y', ...,y by conditions on ker Ty, which in coordinates is the null space

of the Jacobian of the map y.

Theorem 4.5 Let g be a point on Q, U an open neighbourhood of q and suppose
y:U CQ— RP isasubmersion. If y',...,yP are configuration flat outputs, then

g(kerTy, D) = 0. (4.13)

Conversely if glkerTy, D) = 0 and if certain regularity condition holds at g then
y', ..., yP are configuration flat outputs around q.

The regularity condition is that the ratios of functions in the following set should
not all be the same at q:

{Val9(6,2)) 1 9(6,2), Va(9(V2,22,€)) : 9(V 2,22, €), Vo (§(V)) :€(V)} (4-14)

where Z, 7y, Zy are arbitrary vector fields around q that are y-related to some vector
field on RP and &, are fized nonvanishing vector fields such that ann(P) = span{¢}
and ker Ty = span{n}.

Remark 4.6 Theorem 4.5 states the conditions for configuration flatness in in-
trinsic geometric terms. In coordinates the algorithm for deciding if the system
is configuration flat is as follows. Calculate D using equation (4.12). If D = TQ
then system is not configuration flat, since for any ¥y, one can finrd some vector field
Z € D =TQ, such that g(kerTy, Z) # 0. Suppose dim D < n — 1. Then choose
a one dimensional distribution, say spanned by a vector field 5, that is orthogo-
nal to D. Since a one dimensional distribution is integrable locally, one can find
independent functions y',...,y? (p = n — 1) around ¢ that “cut out” the leaves
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of the corresponding foliation. These will be flat outputs provided the regularity
conditions are met.

The regularity conditions can be checked in coordinates as follows. Choose a
function z that completes y',...,4? to a coordinate system. Then y!,...,y? will
be flat outputs if the following ratios of functions are not all identically equal in a
local neighbourhood:

0 0 d .
0 a 0
— e :g(V_ s —— , L k=1,..., 4.1
52007 5 55 €) 1 0(Y 2, 52,) j P ()
0
S (E(V)) ).
If these are all identically equal that means y!,...,y? are differentially dependent

and another one dimensional distribution must be tried.

Remark 4.7 It is readily seen that configuration flatness is determined primarily
by the kinetic energy metric g since the role of potential function V only enters via
the regularity conditions. This explains why in many known examples (see [25])
the presence or absence of gravity does not alter the configuration flat outputs but
only the solution curves where singularities occur. However, we present an example
in next section where the potential function plays a crucial role via the regularity
conditions.

Proof of Theorem 4.5: Given a submersion y :  — RP, one can choose a local
coordinate chart on @ such that y is the canonical submersion of R" onto RP. Let
the corresponding coordinates on @ be (¢,...,¢"). Then, 1/(q) = ¢’ for j =
1,...,p=n-—-1. Let £ = a”aaz span ann(P). Then all solutions of the system
Satlsfy the single ODE

d (?L oL

Suppose in these coordinates g is given by g;;. Then we can rewrite equation
(4.16) as

89219 ] ko 109jk ok av)

Using the formula (4.9) for the Christoffel symbols and using ¢/ =3/ forj =1,...,p
to separate the terms involving ¢* and ¢, we rewrite equations (4.17) as,

it i mm . i OV
a'(gi 5 + Ul gmit’ v* + 3 + 9ind" + 175 9mi () + TThgmit? ") =0 (4.18)

where range of summation of various indices is clear.
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Necessity: Suppose y are flat outputs. Then it follows that the coefficient of ¢" in
the above ODE must to be zero. Otherwise we can rewrite the equation as

dg
di

= f(:% v, ya qn, qn)

for some smooth function f, and by existence theorem of solutions to ODEs, given
any curve y(t) we get a 2-parameter family of solutions ¢(t) (parametrised by initial
conditions ¢"(tp), ¢"(tg)) that project to y(¢) and they are not isolated from each
other and hence by Lemma 4.4 y cannot be flat, contradicting our assumption. So
a'gin, = 0 and this leaves us with an ODE of the form

AW) ()2 + By, 9)§" + Cly, 9, §,4") = 0.

A similar reasoning tells us that the term ¢" should be absent, in other words
A(y) = 0 and B(y,y) = 0. Here A and B are given by,

A=dTTgmi B=daThgmi.

Observe that B is linear in terms g with coefficients that are functions only of (y, ¢").
Hence the condition B = 0 can be written as n— 1 equations that set the coefficients
of ¥’ to be zero. The equation A = 0 has the same form as these, and we get the
following n equations:

aif‘%gim =0, 7=1,...,n.
So all together flatness of y implies the following equations,

aigin
aifj";gim =0, j=1,...,n. (4.19)

If kerTy = span{n}, then in our choice of coordinates 1 = /\5% where X is some

nonvanishing function on Q. Hence, ¢(£, ) = a'g;, = 0 by the first condition, where
£E= azgj—; spans ann({P). Also since

R I DO
V= am g o

it follows that
g(v-é%naf) = Aazrﬁgim + ‘é?a gin = 0.
But, by derivation property,

Vz(9(&m) = (Vzg) (& n) 4+ 9(VzE ) + g(&, V)

and since Vzg = 0 for any Z € X(Q) (by the property of Levi-Civita connection)
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and since g(n,£&) = 0 it follows that
g(vi£>7])zov j=1L...,n
g7
By linearity of V it follows that

9(Vz&m) =0, VZeX(Q).

Hence, ker T'y is orthogonal to D.

Sufficiency: Conversely, if ker T'y is orthogonal to D, previous reasoning shows that,
in the same coordinate system the equations (4.19) hold. As seen before these imply
that the solution curves of the system are given by the ODE

E(q"y,49,9) =0,

where

; ~ ; ' OV

E=dgyi + ' giml T 079" + o' 9

This is not sufficient for flatness of y!,..., 4P since it is possible that y!,...,y? are
differentially dependent and this happens when E does not depend on ¢". More
precisely y%,...,yP are differentia,ﬂy dependent around q when there exists a neigh-
bourhood V ofq such that ££ is identically zero on (r;*(V)N{E = 0}) C JEHR,Q)

where 7 : JEH(R,Q) — Q is the standard projection. The functions E and g% are
both affine in §j and quadratic in § with the coefficients functions only of Ely,q“)

and E depends on § non trivially since metric g is non degenerate. Hence —gqﬁn

is either identically zero on m;'(¢) N {E = 0} or it is non zero in an open dense

subset of points on 7r2"1( )N {E = 0}. Further more g—% is identically zero on

(q) N {E = 0} if and only if it is a multiple of F as a polynomial i 1n y and §
for points on 5 1( ). Hence the regularity condition we impose is that is a not

a multiple of E as a polynomial in j and y for points on m, 1(q). Then it would
follow from continuity and implicit function theorem that for an open dense subset
of points on 7; ' (V) N {E = 0} where V is some neighbourhood of ¢, ¢" can be
locally solved for in terms of y, ¢, §j, implying flatness around g.

Rest of the proof is concerned with showing that this condition translates to
the regularity condition stated in the theorem. It is sufficient to show that 2 'a"ﬁ is
a multiple of E' as polynomials in §, § with the ratio being a smooth function on Q
is equivalent to the set of ratios of functions (4.14) all being identically equal in a
neighbourhood of g.

Let n span kerTy. Then n = /\ - for some nonvanishing function A. Also

let £ = a' 3 ; span ann({P). Suppose gﬁ— = fFE for some function f defined in a
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neighbourhood of ¢ on Q. Considering coefficients of jj’ terms we get

0 . _
o (d'e) = fd'g; j=1,...,p, (4.20)
dq

Algo observe that any vector field Z on Q is y-related if and only if it has the form
ZJ(y)-a—% + Z™(y, q“)g%. Hence

Val9(&, %)) = ,\%(Zjaigij)

=\ZJ (92 (a" gm) = )\va’a 9

where we have used a'g;, = 0 and equation (4.20). Hence equation (4.20) is equiv-
alent to

where Z is any arbitrary y-related vector field.
Considering coefficients of 77" we get

W(a giijk) = fa gimrjkv Lhk=1,...,p. (422)

Assuming equation (4.20), this is equivalent to

vﬂ(g(vzlz2’§)) = f/\g(VZIZ%f), (423)

where 7y, Z5 are arbltrary y-related vector fields. This is because substituting Z; =
ZJ()8 + Z7 (y, ”) = for 1 =1,2 we get

Ayl

; ;078 9
g(V21227§) :Z{Zé: ( ]ka m?f) 1 8y]29(5?;?7§)7

where we have used a'g;, = 0, a'T"™kng;, = 0 (since ker T'y is orthogonal to D) and
aZ
=0fork=1,...,p. Hence

VTI (Q(VZI Z27 6))

7] VAR
_ J J 2
= A7 Zz(9 (@' i ) A = 9 Oq “(a gk
(9 Ic
“)\fZJZQCLQ,m +>‘fZl 3 ]a'gzk

where we have used equations (4.20) and (4.22). This simplifies to

Vin(9(Vz,22,8)) = Afg(V 2,22, €). (4.24)
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Finally considering the coefficients of the terms independent of § and §j we get

o 0V ¥\

o “ o) = g

Clearly this is equivalent to
Vi (§(V)) = AfE(V), (4.25)

completing the proof. |

4.4 Systems with n Degrees of Freedom, n — 1 Controls
and Symmetry

In this section we shall consider systems of the type considered in last section that
also exhibit symmetries. We shall suppose that a Lie group G acts on our configu-
ration space () with action @} corresponding to h € G and that

¢rg =g, ®;P=P Vhed. (4.26)

In other words the kinetic energy of the system as well as the range of control forces
both are invariant under the group action. However we do not assume that V is
invariant under the group action. Many mechanical systems fall under this category.
Rigid body systems moving in Euclidean space actuated by body fixed forces are
typical examples where the group is G = SF(3), even though the equations of
motion often do not have SF(3) as a symmetry group since potential forces due to
gravity break the symmetry. But since V plays a very limited role in configuration
flatness we may expect that when the system is configuration flat that it would be
possible to find flat outputs that reflect this symmetry. We believe this to be true
and shall prove it for the case dim D = n — 1. The general case dim D < n — 1 has
not yet been resolved completely (see Remark 4.11).

Lemma 4.8 Consider a system satisfying (4.26). Let D be defined as in (4.11).
Then ®,,D = D.

Proof: Let £ span ann(P). Clearly ®;, (ann(P)) = ann(P). Hence ®;,& = Apé € D
where A, is some smooth function. Since ®p is an isometry by (4.26), it follows
that @5, (Vz€) = Vs, 2(®1,£) by properties of V (see, for example, [15] page 161).
Hence

4, VzE = Ve, 72(Mi&)
= AVa,, 26+ (Va,,z )€ € D. (4.27)

So we have ®,, D C D. Since @y is a diffeomorphism, the result follows by dimension
count. u
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Let y : Q@ — RP be a map defined locally around ¢ € Q. We shall say y!,...,y?
are G-equivariant if

by, ker Ty = ker T'y.
This means level sets of y are mapped to level sets by the group action.

Proposition 4.9 Consider a system satisfying (4.26). Suppose dim D = n —1 and
that the system is configuration flat. Then the flat outputs are G-equivariant.

Proof: Follows from the fact that ker Ty is the orthogonal complement to D and
Lemma 4.8. |

Remark 4.10 The case dim D = n—1 is not as restrictive as it may seem. Typically
dim D = n, implying that the system is not configuration flat. When the system
is configuration flat (dim D < n — 1), most likely dim D = n — 1. In fact many
examples of systems that are configuration flat fall into this category including the
first example in next section as well as the “ducted fan with stand” in [41] and the
“planar coupled rigid bodies” example in [30].

Remark 4.11 In the case when dim D < n — 1, given the system is flat with flat
outputs y : ¢ — RP around ¢ € @, it is possible to construct outputs 7 : Q — RP
around ¢ that are G-equivariant and satisfy g(ker7g, D) = 0. But it hasn’t been
resolved whether it is possible to construct ¢ in such a way that it also satisfies
the regularity conditions (4.14). But we suspect that at least in typical cases this
construction should work. The second example in next section falls into the case
dim D = n — 2 and we see that it possesses G-equivariant flat outputs.

4.5 Examples

In this section we shall consider some examples to illustrate the theory developed
in the previous section.

4.5.1 TUnderwater Vehicle

We shall study a simple model of an underwater vehicle that is controlled by a force
applied through a fixed point P on the body whose magnitude and direction can be
independently controlled.

Only the motion in the vertical plane is considered and hence our configuration
space is SE(2) = R% x S1. This is reasonable when the vehicle has symmetries
about 3 orthogonal planes. In addition if we assume that the centre of buoyancy is
coincident with centre of mass, the kinetic energy is given by

1 1 .
-2—(m + 6m) (@1 cosf — iy sin 6)% + -2—(m — dm) (21 sin 6 + 5 cos )% + %I(O)Q,
(4.28)
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Figure 4.1 Underwater vehicle in R?

where (z1,23) are horizontal and vertical coordinates of the centre of mass G, 6
is the orientation (measured clockwise) of line PG with respect to horizontal axis,
m = M+(m;+my)/2 and ém = (my—m3)/2 where M is the mass of the vehicle and
my and mg are added mass terms that take into account inertia of the fluid, and I
is the effective moment of inertia taking into account the fluid. This model assumes
an incompressible, irrotational flow and neglects viscosity effects. It is assumed that
the motion of the fluid is entirely due to that of the solid. The body and the fluid
together are considered to form a dynamical system and the kinetic energy is the
combined energy of body and fluid. See [17] and [18] for details. The analysis in [18]
assumes a neutrally buoyant model, but we need not make this assumption since
this only alters the form of the potential function but does not affect the kinetic
energy. In fact for the first part of the analysis we shall not assume any specific form
for potential V. If the vehicle is in air (strictly speaking vacuum) m; = my = 0, so
m = M and ém = 0 and the kinetic energy takes the familiar form

S(m(a)? + m(i2)? + 1))

where [ is the usual moment of inertia and the model is the same as that of VTOL
(see [23]).
The metric g in coordinates zy, x4, 8 is given by the matrix

m+odmcos20 —émsin20 0
—&msin 20 m—0mcos26 0
0 0 I

The control forces lie in the codistribution

P = span{d(z; + Rcos8),d(zy — Rsin )}
= span{dz; — Rsin 0d§, dzy — Rcosfdf}
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and £ = -38—9 + Rsin (98—?7; + RCOSQB—%; spans ann(P) where R is the length of PG.
The Christoffel symbols F;k can be computed from g using equation (4.9). Then
using formula (4.10) we see that

mém J om J
Va_gl_f = -mSin 205—‘;1— el m(ém-*_mCOSQG)B_@‘;
Rémcosf 0
15 % J )
m mom
Vg%gz —m<—5m+m(l0820)-6'x—1+ m2 — (5m) sin208$2
Rémsin8 0
]

mBRcosf & mBsind 0

T om 9z, m 6m 92y (4.29)

Vol=
o6
It can be seen by computation that the above vector fields together with £ span
the full tangent space for generic points and generic parameter values m,dm, I, R.
Since by equation (4.12)

D =span{V o &V o £,V 5§ £},
8y Swy o6

it follows that D = T'Q) for generic points on @) and for generic parameter values and
hence the system is not configuration flat for generic parameter values regardless of
the potential energy function.

However for the case dm = 0, we see that

0 0 0 0 0
D_span{Rcosﬂé—l-—RsmOa Bsm@a 1+Rcosé?8 39}

Hence dim D = 2 and 1 = 5% - —mI—Rsin 05% - -n%cos 05% spans the orthogonal

complement to D. Since D has codimension 1, up to a diffeomorphism there is at
most 1 set of flat outputs. One set of functions that “cut out” the foliation due to

718
I
Y1 =2y — ——=cosf, yy =29+ ——sinh.
mRi

mR

To ensure that y;, y; are indeed flat outputs we must check the regularity conditions
(4.15). Let us choose z = 6 as a complementary coordinate to y;, y,. Then,

o 9 9 _90

oy B oz’ 592_(%2’

0 I . J I . 0 0
= ———sginfo — ——sin o +

a9z mR 0x; mR dzy 06
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Hence
0 d 17 .
a2 (9(5,5&'1-0 29(5,5—3’71—) = —sinz:cosz
0 0 0 .
E (g(fa —3y2)> : g(f, 5?;;) = cosz :sin z. (4_30)

So at any point ¢ = (y1, Y2, z) these two ratios are unequal. This ensures that yq, ys
are indeed flat outputs everywhere.

When the vehicle is in air (strictly speaking vacuum) dm = 0, and in this case
the model is the same as the planar rigid body considered in Chapter 1 and it is
already known to be flat. We have just shown that up to a diffeomorphism these are
the only configuration flat outputs. Also we have covered the case of underwater
vehicle of spherical shape (since then m; = mg) and this result is independent of
any assumptions we make on the potential function V.

Now let us suppose the system is moving under gravity in air and the potential
energy is given by V = mgz, where g ~ 9.8 m/s? is the acceleration due to gravity.
Then the solutions of the system in coordinates y, yo, z satisfy the ODE

i1 sin z + fa cos z + g cos z = 0.

So along generic solution curves we get,

z(t) = tan™! yz:i-
n
or
z(t) = tan~1 w + 7
hn

The exception being the singularity at §i; = 0, J2+ g = 0. Note that this singularity
is not a point on () but corresponds to a submanifold in the jet space J(R, Q), the
space with coordinates (¢, ¢, ¢, §) and such singularities are very common in practical
examples. We still want to regard such systems as flat and this is the reason why
our definition of flatness refers to an open dense subset of points. Also note that
though potential V does not affect the flat outputs of the system it influences where
the singularities occur.

We also see that the general system (no assumptions on 6m) possesses an SFE(2)
symmetry when the potential function is ignored. If we consider translating and
rotating our spatial frame of reference the expression for kinetic energy as well as
the the expression for P are invariant. We may state this more precisely as follows.
Consider the following action of SE(2) on @ = SE(2). Given h = (a1, a9,0) €
SE(2) the action @}, corresponds to first rotating the spatial frame counter clockwise
by ¢ about its origin and then with respect to this frame translate the frame without
rotation by (—oq, —az). Hence if ¢ = (21, z2,8) € Q then

®h(g) = (21 cosd + zosin ¢ + oy, —zy sin ¢ + z9sin ¢ + ag, 0+ @).
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The corresponding tangent map T'®, is given by

9 a
(%1 ——>cosq§—$-+smdﬁa -
___Q_ — in _?_ + S(ﬁ—‘
81’2 5 Cbaazl €0 '(?:I)z
0 0

It is easy to verify this preserves g. Recalling that £ = 89 + Rsin 6 + Rcose
spans ann(P), we see that ®;.,¢{ = &, implying ®;P = P. In partlcu]ar these
statements are true for the dm = 0 case as well. Hence by Proposition 4.9 the

flat outputs are G-equivariant. This is indeed true since 5 = % mIR sin 0—-— -

IR Cosé? > spans ker Ty and ®p,7 = 7.

4.5.2 Particle in a Potential Field

This example does not necessarily correspond to an engineering example, but illus-
trates the regularity conditions. We consider a particle of unit mass moving in 3
dimensional Euclidean space in the presence of a potential field V = z525. Hence
the kinetic energy metric is given by the 3 x 3 identity matrix in orthogonal co-
ordinates z1, 3, z3. Suppose we control independently the forces along z; and z3
directions. Hence P = span{dz;,dzs} and £ = 81‘ spans ann(P). We see that
Christoffel symbols are all zero by (4.9) (which i 1s a feature of Euclidean space) and
using (4.10) and (4.12) we obtain D = span{z2- -} and hence the orthogonal com-

plement to D is span{axl, 8Is} which is two d1men81onal. Hence we have infinitely
many “candidates” for flat outputs that are not equivalent via a diffeomorphism.
But these “candidates” may not satisfy the regularity conditions (4.15). Following
the method outlined in Remark refremalg we pick some 7, say n = 5—?5— which is
orthogonal to D. Then y; = z1,y; = x5 are a possible choice of correspondmg

“candidates” for flat outputs (since they cut out the one dimensional foliation by
7). We may choose z = z3 to complete the coordinate system and then we see that
the ratio of functions %(f(V)) :§(V) in the set (4.15) is 1 : z3 where as the ratio of

é%(g(ﬁ, 552—2-)) is 0 : 1. Hence z;, 22 are configuration flat outputs (globally). But al-

ternatively another choice could have been 7 = 5% with corresponding candidates
Y1 = 2,y2 = z3. Choosing z = x; we see that all the ratios in (4.15) are zero
and hence equal. Hence 29, 23 are not flat outputs as they are differentially depen-
dent. This example is simple enough that the above conclusions can be reached by
inspecting the equations of motion for the system

.oV
. OV
Fq — v Fy (4.34)

(9373
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where F, F3 are the forces along 1, 3 directions. The equation (4.33) alone char-
acterises all solution trajectories of system and substituting V = z423 we obtain,

#y — 23 = 0. (4.35)

It is clear from the equation that zg, z3 are differentially dependent and hence are
not flat outputs. However it is also clear from the equations that z;,z, are flat
outputs since along solution curves,

d2$2(t)

#a() = =

and z1,z5 do not satisfy an ODE.

Also note that the system is globally controllable since it is globally flat. However
if V = 0 then the system is not configuration flat and not even locally accessible.

It is easy to see that translations by the group R3 leave g and P invariant. But
Proposition 4.9 does not apply since dimD = n — 2. However as mentioned in
Remark 4.11 we see that G-equivariant flat outputs exist. In fact y = (2, z,) are
G-equivariant, although not all (configuration) flat outputs are G-equivariant, since
§ = (f(z1,23),z2) where f is an arbitrary smooth function with % # 0, are not
G-equivariant for a typical f, but are configuration flat outputs.
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Chapter 5

Conclusions and Future Work

In this dissertation we have presented two different geometric approaches for study-
ing differential flatness and with the aid of these approaches we have obtained some
results which help find flat outputs for certain classes of underdetermined systems of
ODEs. We believe that though our results of Chapters 3 and 4 only apply to special
classes, the results themselves suggest that it may be possible to extend them to
include a wider class.

5.1 Geometric Approaches to Flatness

Our first approach to flatness was based on the notion of Cartan prolongations and
absolute equivalence. In this approach the locally one-one nature of the correspon-
dence of solution curves of a system with free curves in a lower dimensional space
is emphasised. The drawbacks in this approach primarily stem from the fact that
the definition of Cartan prolongation is global in nature. This makes dealing with
singularities and local issues rather clumsy. However this approach proved useful
in demonstrating the validity of a method that we proposed for testing for flatness
of systems underdetermined by more than one equation. This method involved
guessing all but one flat outputs and reducing the problem to the simpler case of
a system underdetermined by one equation which has been completely solved by
Cartan. If the guesses were correct the method provides the other flat output, and
if the guesses were incorrect the method reveals this fact. We illustrated how this
method can be used to find nontrivial flat outputs with the aid of the example of two
coupled planar rigid bodies controlled by two independent forces and a differential
torque between the rigid bodies.

The second approach to flatness was to use jet bundles and was presented in
Chapter 3. We constructed a sequence of spaces that had the independent variable
t, the dependent variables z, and derivatives of z up to some finite order as their
coordinates. This approach is closely related to the infinite jet bundle approaches
of Fliess and coworkers [10] and of Pomet [27]. The approach of Chapter 3 was also
a differential forms approach but differed from the absolute equivalence approach of
Chapter 2 in that we directly dealt with transformations that involve variables and
their derivatives and not so much with solution curves.
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Since the classification of differential flatness is far from being complete, it is
premature to decide which particular approach or tool is most suitable. We believe,
of the two approaches presented in this dissertation the jet bundle approach has
proven to be more useful. However the proof of Theorem 3.42 depended on using
the Corollary 2.15 which was proven in the absolute equivalence frame work. For
completeness we believe this should be proven in the jet bundle frame work. We
believe that it might be useful to extend the results of Theorem 3.42 to systems
of arbitrary number of one-forms. If this proves successful then it will be a good
indication that this is the appropriate frame work to study flatness. On the other
hand another possible line of investigation may be to improve on the definition of
Cartan prolongations in order to permit a local theory. Insights gained from the jet
bundle approach might help here.

5.2 Zero-Flatness

The jet bundle approach also enabled us to prove a theorem on zero-flatness of
a system consisting of two independent one-forms, where zero-flat outputs were
defined as flat outputs that depended only on ¢t and z but not on derivatives of z.
This theorem showed that it is possible to split the task of finding zero-flat outputs
into two parts. The first part deals with the “infinitesimal” aspects. We found
intrinsic geometric conditions that the tangent spaces of the level sets of zero-flat
outputs should satisfy. The second part deals with integrability (in other words
being able to piece these tangent spaces together to form smooth level sets) and
leads to a system of nonlinear PDEs and we did not provide any theory on the
existence of solutions for the second part. In other words we characterised zero-
flatness on an “infinitesimal” level, but did not deal with integrability. Dealing with
integrability is the subject of further research. Though this is a serious limitation we
believe that this approach is still useful for the following reasons. Firstly it provides
a way to write down PDEs to be solved for. But more importantly the simple and
elegant geometric conditions we have obtained suggest that there may be similar
conditions for the general case of arbitrary number of one-forms. We suspect that it
is possible to split the problem in this way for the general case of arbitrary number
of one-forms and to obtain “infinitesimal” conditions and that these may provide
useful insights into the general problem of differential flatness. We also believe that
the theory developed in Chapter 3 will prove useful in obtaining these infinitesimal
conditions (if they exist) for systems governed by arbitrary number of one-forms.

Most of the theory developed in nonlinear control applies to ideal systems. How-
ever, approximation and discretisation are inevitable in the engineering world. The
theory for zero-flatness of a system of two one-forms shows that the first part (in-
finitesimal part) of the problem always has solutions. The solutions are families of
two dimensional distributions. The second part involves PDEs to solve in order to
find an integrable distribution from the family of solutions to the first part. The
second part typically does not have solutions, but one may look for approximate
methods at this stage to find approximate solutions leading to “approximate flat
outputs”. We believe that this is a research direction worth exploring.
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5.3 Configuration Flatness of Lagrangian Systems

With the aid of jet bundle formalism we also presented a theorem which com-
pletely classified configuration flatness (this is a special case of flatness where the
flat outputs depend only on configuration variables and not on their derivatives) of
Lagrangian mechanical systems whose number of independent controls was one less
than the number of degrees of mechanical freedom (i.e. systems underactuated by
one control). This classification was also in terms of the tangent spaces of the level
sets of the flat outputs. But in this case integrability was not an issue since one
dimensional distributions are always integrable. The characterisation was in terms
of the covariant derivative corresponding to the Riemannian metric which corre-
sponds to the kinetic energy and gave rise to a constructive algorithm for finding
zero-flat outputs (if they exist). We illustrated the method by two examples. Our
characterisation also was able to explain why the potential energy typically did not
play a role in deciding the configuration flatness of mechanical systems. We were
also able to relate symmetries of mechanical systems with certain symmetries of the
flat outputs.

The success of the theory of configuration flatness for Lagrangian systems un-
deractuated by one control, suggests that there may be similar characterisations
for systems with arbitrary number of controls. However an intrinsic proof of the
configuration flatness result may be necessary in order to extend the theory. The
current proof is coordinate based and a similar approach for the general case will
be exceedingly clumsy. Also integrability becomes an issue in the general case. For
the case of one fewer controls integrability was not an issue as mentioned above. It
will also be interesting to extend the theory to include nonholonomic constraints as
well as certain friction models.
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Appendix A

An Alternative Proof of Two One-Forms Case

In this appendix we shall present an alternative jet bundle approach to a formula-
tion of zero-flatness and an alternative proof of Theorem 3.40. This is the original
approach which led to the result of Theorem 3.40 and we include it here for com-
pleteness. This is essentially an excerpt from the paper [29].

Let ¢ : M — R be a fibre bundle. In other words M is a (smooth) manifold, ¢ is
a surjective submersion (corresponds to time) and the bundle is locally trivial. Let
us denote the associated kth order jet bundle Jk(t, M) by J* for brevity and the
projection from J* to M by p*. We shall consider a constant dimensional Pfaffian
system (in other words a system of one-forms) I on M such that dt, ¢ I, for all
points ¢ € M. We shall always be concerned with coordinate systems on M of the
form (t,2',...,2"), where dim M = N + 1. A section ¢ of the bundle (i.e. a curve
¢ : R — M such that tocis the identity on R) is said to be a solution of I if ¢*(I) =
{0}. Let (t,2',...,2") be a coordinate system and let I =span{w® : i=1,...,n}
locally, where w' = a;dxj + a'dt and n = dim I. Then solutions of I satisfy

z‘dx‘?
b —

i +a' =0, t=1,...,n.

It is natural to consider the associated set of functions E* defined by,
Ei:ajd:j+ai, i=1,...,m,

which are functions on the first order jet space J'. Given a one-form ajdmj + adt
on M there is a corresponding function a;i7 + ¢ on J' which is affine in the fibre
coordinates i/. Conversely given an affine (in fibre coordinates) function a;i? +
a on J' there is a unique one-form ajdxj + adt on M. This correspondence is
intrinsic. The functions E* above that describe the ODEs are obtained from w* by
this correspondence. Hence there is an intrinsic subbundle &! C J! that corresponds
to I which is locally the zero set of the functions F*,

El={qeJ" : E(g)=0,i=1,...,n}

We refer to Section 4.1 for the notions of prolongations &% ¢ J*.
Let y',...,y? (where p = N —n) be a set of functions on M locally defined near
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a point ¢ € M. y*, ... yP are said to be (0,r)-flat outputs if for any function z on M
their exists a map g such that along “generic” solution curves ¢ in a neighbourhood
of ¢

(200 = g(t (ro o, W2, TR0,

and if y',..., y? never satisfy an ODE, in other words there exists no function F
such that

d(yoc)(t) ’ d"(y o o)(1)

F(t, (yoc)(t), I e o

) =0

along “generic” solution curves ¢ near q.

Note that we require these properties to hold only for “generic” curves. The
meaning of generic curves will be made precise by translating the above definition
into a more precise geometric statement involving the objects &% ¢ J*.

The time derivative operator defined in Chapter 3 also makes sense in this setup
and we shall make use of it.

Definition A.1 The functions y!,...,y? are (0,r)-flat outputs near ¢ € M if there
exists a neighbourhood U C M of ¢ so that for any function z on M

dz € span{dt,dy", ..., dy", ..., dy""), .. ., dyP ("} (A.1)
when pulled back to &" for all points on (p")~1(U) N &7, and
{dt,dy, ... dyP,... ,dy"") ... dy»()}

is linearly independent when pulled back to & for generic (open and dense subset
of ) points on (p")~H(U) N &".

Suppose {dt,dy?,...,dyP} is linearly independent around g¢. It is instructive to

choose a coordinate system that complements (¢, 5%, ..., yP). Let (¢,y%, ... 4P, 21, ..., 2")
be a coordinate system. Let I = span{w?,...,w"} locally. Suppose E’ is the affine
function on J! corresponding to w® for i = 1,...,n. Then & is locally the zero set

of %, ..., E"""V for i = 1,...,n. Then condition (A.1) is equivalent to

dz* € span{dt,dy’,....dyP, ..., dy""), ... dyP(},
i=1,...,n, (A.2)

when pulled back to & for all points on (p")~HU)N &
When pulled back to &7,

dEY®) =0, i=1,...,n, k=0,...,r—1. (A.3)
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Hence it follows that (0,r)-flatness of y!, ..., y? is equivalent to

A(E,EM, .. EU-1)
(1), ..., 20

rank < nr - n, (A.4)

for all points on zero set of E, E(), ... E(r=1) and

AE,EW, . Er-1)

(9(2, z(l), T z(”)) = nr (AO)

rank

(in other words full rank) for generic points on zero set of F, E®), ... E(r=1) The
rank condition (A.4) says that there are n independent relations amongst

{d2, ... d2" dt, dyt, ... dyP,. .., dy" (), . dyP (),

The rank condition (A.5) says that there are no relations (for generic points)
amongst

{dt7 dy17 ey dyp, .. .’dyl,(r)’ cee dyp’(r)}_

The two conditions together then imply (A.2).
Finally we have the notion of zero-flat outputs.

Definition A.2 Functions y!,...,y? are zero-flat outputs if they are (0,r) flat out-
puts for some integer r.

We shall consider the special case of n = dim 7 = 2. Hence dim M =p+3, p
arbitrary. In this case functions y',...,y? are zero-flat outputs if and only if the
following hold.

IE, E)
radnk————(‘}(é7 B <2 (A.6)

for all points on {E = E =0} C J? and

d(E, E)

a“nka(z, 2 2)

=4 (A.7)

for generic points on {F = E= 0} C J2. Here 2%, 2% are such that ¢, ¢!, ..., y?, 21, 22

are local coordinates. This follows by substituting n = 2 and using Lemma 3.41 to
substitute r = 2 into rank conditions (A.4) and (A.5).

We present a proposition which characterises (A.6) in an intrinsic geometric
sense and is essentially the same as Theorem 3.40. This characterisation is in terms
of kerT'(¢,y,...,yP), which in coordinates is the null space of the Jacobian of the
RPHL valued map (¢, y',...,yP).

Proposition A.3 Lety*,...,yP be functions such that {dt,dyl, ..., dyP} is linearly
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independent around g € M. Let 2', 2% be such that (y*,...,y?, 21, 2%) form a local
coordinate system near q. Then the rank condition (A.6) is satisfied around q if and

only if

m Ay J(W AW?) =0 (A.8)
m A dd(wW Aw?) =0 mod I (A.9)

where 1y, ng span ker T(¢t,y!, ..., yP) and wl,w? span I.

Remark A.4 Note that the conditions (A.8) and (A.9) are independent of the
choice of basis for I and ker T'(t,y?, ..., yP).

Proof: Choose functions 2!, 2? so that (¢,y',...,y?, 21, 2?) is a coordinate system.
Notice that ng = 5%; for 8 = 1,2 is a choice of basis for ker T'(¢,y!, ..., yP). Since
(A.8) and (A.9) are independent of choice of basis, it is sufficient to work with this
choice of 7. In coordinates (y,...,y?, 21, 2%), let

w = ajofdyj +b8dzF + e¥dt, a=1,2
be a basis for I. Then &' C J! is cut out by the zero set of
EY = a?‘g)j +b22F e, a=1,2. (A.10)
We shall also use the matrix notation
EF=ay+bz+c,

where a € R?*? b € R?X2 and ¢ € R?*! are the obvious matrices. From (A.10) it
follows that

" ﬁao‘
E~ _ay+bgz +8 P
50‘-1 obg abe | .. e 30/? dc”
T (Gak + g V2 + )N + (G + 57
aby  0c® ., Oc*
o tEt (A-11)
Let us define
e
Then it follows that
o 0a%  0b% . obs a6
8= (825 + 8y1) + (8zk + (92'5)
aba dec™
‘5‘(5{'4—5?) (A.13)
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Since ej is a function affine in the fibres of J1 there is a corresponding one-form €3
on M. This is given by

o ,8%0.‘ b a (%o‘ b2
& = (5o + gy W + (gp + gop)d
ab - O™
In matrix notation
E,E) [b 0
9,3 { e b ] (A.15)

Note that
g Jw® = bg.

From the properties of exterior product, exterior derivative and interior product it
follows that

3 1 3 1
1 2y B—le WJCU
mamo Awh) =) B T
= det b. (A.16)
Since
[) " 5(13‘ Gbg i
31)2 obg 0 fe
TG ~gR e Tl — gt (A-17)
it follows that
€3 = ng Jdw® + 2d(ng J0°). A.18
8 6 [é

Necessity: Suppose (A.15) has rank less than or equal to 2 on {E = 0, F = 0}.
Then by necessity rank b < 1, since rank of (A.15) is at least twice the rank of b.
Hence b is singular and det b = 0 for all points on {F = E = 0} C J?. But since b
are functions on M it follows detb = 0 holds on an open neighbourhood of ¢ € M.
Hence by (A.16) the condition (A.8) follows.

Suppose b = 0 (zero matrix). Then it follows ng Jw® = =bz=0fore,f =12
Hence (A.9) follows from properties of exterior product, exterlor derivative and
interior product. So let us assume b # 0. Since (A.15) has rank less than 3, it
follows that all of its 3 x 3 minors should vanish on {E = E = 0} ¢ J2. Slngulanty
of b implies that all 3 x 3 minors that do not contain e vanish. So we are left with
the four 3 X 3 minors that contain e. They all have the form bYW (after using the
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relation b}b% = bib?), where
W = bies + biel — ble? — blel. (A.19)

Since b # 0 it follows that W = 0 for points on {E = E = 0} ¢ J?. But W is a
function on J' and hence it is sufficient if it is zero for points on {E = 0} C J'. Also
since W is a function that is affine in the fibres of J! (since ej are) it corresponds

to a one-form /WAOH M. W being zero on {E =0} C J! (which is locally & C J1)
is equivalent to W =0 mod I. Since

W= bleZ + blel — ple? — p2el,

it follows (after using properties of exterior product, exterior derivative and interior
product) that

o~

W =y dmz dd(w Aw?) 4 2d(n; d12 (W' A w?)). (A.20)

Since we have already shown 7y 17 J(w! Aw?) = 0, equation (A.9) follows.
Sufficiency: Suppose conditions (A.8) and (A.9) hold. Then previous reasoning
shows that detb = 0 and that W = 0 for points on {E = 0,F = 0} C J2. As
explained before this means all 3 X 3 minors of (A.15) vanish for points on {E =
0, F =0} C J. This is the same as (A.6). |
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