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Abstract

This thesis deals with individual decision making under uncertainty and extends
standard economic and financial models with risk in order to model attitudes towards
ambiguity. Empirical violations of the leading theories of choice have pointed out
the relevance of ambiguity on individual choices. Much empirical evidence, inspired
by Ellsberg’s experiment, shows that people prefer bets whose odds of winning are
known, thus suggesting aversion to ambiguity:.

The relevance of uncertainty is pervasive in economic literature as well as in the
real world. Investment decisions and asset pricing, insurance contracts, voting in
elections, gambling, buying a car or planning a trip can all be thought as choices
under both risk and ambiguity.

The aim of this work is normative and descriptive. In the first part of the work,
I concentrate on a theoretical model of focused regret as an extension of the clas-
sical paradigm of choice theory. From the alternatives in this literature, I focus on
the multiple prior model, originally axiomatized by Gilboa and Schmeidler, where
ambiguity is formalized as a set of plausible probability distributions to represent
agents’ beliefs. Then T turn to economic and financial applications and challenge the
descriptive power of classical economic models when explaining, for example, asset
pricing or insurance contracting. Lastly, the most innovative part of this work is an
experimental investigation of the multiple priors model in a financial market, through
which I find evidence for both risk and ambiguity to affect individual decision making

and asset pricing.
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Chapter 1 Introduction

This thesis deals with individual decision making under uncertainty and extends
standard economic and financial models with risk in order to model attitudes towards
ambiguity. Decisions are made under risk when probabilities of a lottery are known,
under ambiguity when probabilities are unknown.

Empirical violations of the leading theories of choice, the Expected Utility theory
of von Neumann and Morgenstern and the Subjective Expected Utility theory of
Savage, have pointed out the relevance of ambiguity on individual choices. Much
empirical evidence, inspired by Ellsberg’s experiment, shows that people prefer bets
whose odds of winning are known, thus suggesting aversion to ambiguity.

The relevance of uncertainty is pervasive in economic literature as well as in the
real world. Investment decisions and asset pricing, insurance contracts, voting in
elections, gambling, buying a car or planning a trip can all be thought as choices
under both risk and ambiguity.

The aim of this work is normative and descriptive. In the first part of the work,
I concentrate on a theoretical model of focused regret as an extension of the clas-
sical paradigm of choice theory. From the alternatives in this literature, I focus on
the multiple prior model, originally axiomatized by Gilboa and Schmeidler, where
ambiguity is formalized as a set of plausible probability distributions to represent
agents’ beliefs. Then I turn to economic and financial applications and challenge the
descriptive power of classical economic models when explaining, for example, asset
pricing or insurance contracting. Lastly, the most innovative part of this work is an
experimental investigation of the multiple priors model in a financial market, through
which T find evidence for both risk and ambiguity to affect individual decision making
and asset pricing.

First, it is worth noticing that all of the applications deal with competitive mar-

kets, thus distinguishing this work from most of the known existing literature on
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game-theoretical applications for the model. Secondly, the common denominator for
all the different applications is the use of the same multiple priors model, extended
to capture different attitudes toward ambiguity. The reader is thus invited to cap-
ture the intuition behind the directions of the main results, as it follows through the
chapters to explain the historical equity premium, overinsurance and prices spreads

in financial experiments.

The present thesis contains six chapters, including the present introduction. The
object of Chapter 2 is to axiomatize a decision theoretic model where choices are made
under uncertainty and with respect to a non-fixed reference point. The model is an
extension of Gilboa and Schmeidler’s maximin expected utility with multiple priors
to include a reference point and study focused regret. Even though such an extension
may be valuable from a descriptive point of view, the concern in this first chapter is
normative as I mainly discuss the mathematical properties of the axiomatization and
its connection to the numerical representation of preferences. By defining prospects as
joint distributions over incremental consequences, I depart from the existing literature
for prospect theory, where the reference point is either given or is dependent on the
choice set, so that transitivity is usually lost.

In Chapter 3, I apply the multiple priors model to a simple, static version of Lucas
economy, and investigate the effects of incorporating ambiguity and heterogeneity into
a capital asset pricing model. Thanks to the model’s mathematical simplicity, I am
able to provide closed-form solutions for the equilibrium stock and bond prices, and
disentangle ambiguity effects from heterogeneity effects over the equity premium. One
of the main findings is that hheterogeneity leads to a higher ex-ante equity premium
than homogeneity. Moreover, this difference is a strictly increasing function of the
variance of expectations about the dividend. Comparable results can be found in the
existing financial literature, where a certain degree of pessimism is required in order
to match the historical data. To my knowledge, all of the existing contributions share
this ex-ante perspective and only partially solve the equity premium puzzle. Instead of

proposing calibration exercises to compare the extent of my findings, I include an ex-
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post perspective and compare the predictions under ambiguity to the true (historically
observed) realizations of the equity premium. The second and original finding in this
chapter is that the ex-post equity premium will always be higher than its ex-ante
prediction under ambiguous beliefs, thus providing an interestingly different, but still
“rational,” resolution of the equity premium puzzle.

In Chapter 4, I study equilibrium prices and allocations in a simple financial
market where the dividend distribution of Arrow-Debreu securities is not known.
First, I derive equilibrium prices and allocations using a parameterized version of
the multiple priors model, which includes both MinMax and MaxMax EU models
as extreme cases. As in Lucas, I assume a single investor with ambiguity parameter
a, and leave the interesting case of heterogeneity for future investigation. The main
departure from the previous experimental financial literature is the assumption that
the investor does not know the probability distribution for tomorrow’s states of the
world. Second, T test the model in experimental financial markets and find evidence
for both risk and ambiguity aversion. This result is not surprising from a decision-
theoretic point of view, given the large volume of studies replicating the Ellsberg
experiment and its variations. However, its relevance in the economic experimental
literature is twofold: first, it sheds a different light on previous financial experiments
testing the Capital Asset Pricing model under risk. Secondly, my results are in sharp
contrast to what recently found for experimental first-price auctions, where ambiguity
aversion is rejected in a pure game-theoretical setting. While a deeper understanding
of the differences in the theoretical and experimental setups is required, the mixed
nature of the results suggests that ambiguity attitudes might be context-dependent.

In Chapter 5, I study extrinsic uncertainty in complete markets as modeled in
Cass and Shell’s seminal paper on sunspot economies. By allowing for agents to hold
multiple beliefs about the probability of a sunspot occuring, I confirm their result
that sunspots cannot matter in equilibrium and extend it to the case of heterogeneous
beliefs. Robustness follows from non-differentiability properties of ambiguity-averse
preferences. However, when at least one agent in the economy is ambiguity-loving,

then sunspots matter in equilibrium even in complete markets.
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Finally, in Chapter 6, I apply the generalized multiple prior model to an insur-
ance competitive market. By including the optimism-pessimism index to represent
attitudes towards ambiguity, I investigate optimal insurance from a decision-theoretic
perspective and provide results which call for interesting empirical investigations. At
fair odds, some risk averse agents might not buy full insurance, whilst even at unfa-
vorable odds there are agents buying full coverage. Following Rothschild and Stiglitz
model in competitive markets, I then study existence and welfare properties of equi-
librium contracts and show that, whenever a separating equilibrium exists, ambiguity
aversion benefits low risk consumers in the insurance market. Under the assumption
that, due to data gathering, insurance companies have more precise information on
the probability of loss across the population, ambiguity aversion implies a rather un-
intuitive social welfare result, that is, it is not beneficial to ask insurance companies
to reveal their information.

The thesis is presented as a collection of articles. While making the notation
sometimes repetitive, its advantage is self-contained chapters which the reader may

pick to best fit his/her interests.



Chapter 2 Reference choice and multiple priors

Empirical violations to the leading theories of choice, the Expected Utility theory of
von Neumann and Morgenstern [10] and the Subjective Expected Utility theory of
Savage [7], have pointed out the relevance of ambiguity effects and reflection effects
in individual decisions. Much empirical evidence, inspired by Ellsberg [2], shows
that people prefer bets whose odds of winning are known, thus suggesting aversion

! Kahneman and Tversky [23]

to ambiguity (i.e., uncertainty about probabilities).
report a variety of experiments in which subjects tend to exhibit a reflection effect
(they are risk averse in the gains and risk seeking in the losses with respect to their
initial wealth), suggesting a utility representation based on a reference point. The
existing literature offers several formal models to accommodate mainly the ambiguity
effect or the reflection effect.

This chapter attempts to axiomatize a decision theoretic model where choices
are made under uncertainty and with respect to a non-fixed reference point. The
model we use is an extension of Gilboa and Schmeidler’s [4] maximin expected utility
with multiple priors. We characterize preference relations over prospects that have
a numerical representation by the functional J(f) = min{[wo (f — ¢)dP|P € C},
where f is an act, ¢ is a given reference point, v is a von Neumann-Morgenstern
utility over outcomes and C is a closed and convex set of finitely additive probability
measures on the states of nature.

By defining prospects as joint distributions over incremental consequences, 1 de-
part from the existing literature for prospect theory, where the reference point is either
given, e.g. the status quo, or is dependent on the choice set, e.g. the optimal conse-
quence, so that transitivity is lost. In my model, the reference point is only required

to be any state-dependent act, which can be interpreted as a subjective aspiration

IFor a comprehensive review of the empirical evidence about uncertainty and ambiguity in deci-
sion making, see Camerer and Weber [4].
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level of the decision maker. Due to the new construction of prospects, the proof of
the maximin representation needs to be checked for the existence of a mathematical
representation of preferences (Lemma 1 and 2). Also, the proof of Lemma 5 is kept
in the main body of the chapter as an interesting theoretical note per se.?

The chapter proceeds as follows. The first four sections discuss the existing lit-
erature and provide the rationale for extending the SEU model to include multiple
priors and a reference point. The following sections offer the theoretical development

(theorem and proof). Concluding remarks and suggestions for future research are

contained in Section 7.

2.1 The challenged paradigm

2.1.1 Subjective expected utility (SEU)

The most compelling justification for representing beliefs about uncertain outcomes
through a unique (subjective) prior probability was proposed by Savage [7].> The
decision maker has to compare different acts in terms of their consequences that de-
pend on which of several states of the world will occur. His preferences over outcomes
are characterized by a utility function, assigning each outcome a real number (a la
von Neumann-Morgenstern). The criterion of choice is to maximize expected utility,
where expectation is carried out with respect to a prior probability derived from the

decision maker’s preferences over acts.

Formally, let €2 be the state space, X the set of possible consequences, and F
the set of possible acts. Acts are defined as maps from states into consequences (so

F C X%). an SEU maximizer chooses the act f € F that maximizes

2See [19].

3As defined by Kreps, Savage’s model is “the crowning glory of choice theory.” Its elegance comes
from the fact that it combines the von Neumann-Morgenstern Expected Utility approach with the de
Finetti’s calculus of subjective probabilities, thus restoring the unitary nature of the decisionmaking
problem. In other words, preferences simultaneously reveal beliefs about the probability of events
and the utility of the consequences of events.



U(f) E/Qu(f(w))P(dw), (2.1.1)

where P € A(), the set of all the finitely additive probability measures on (£2,29).
The measure P is derived from the decision maker’s preferences among bets on subsets
of Q (events), so that it represents his subjective confidence (a la de Finetti) on the

plausibility of each event happening.

2.1.2 The Ellsberg paradox

One of the first objection to Savage’s paradigm as a descriptive theory was raised by
Ellsberg [2]. In one of the “mind experiments” he proposed, subjects are shown an
urn containing 90 balls, of which 30 are red while 60 are blue and yellow with no
additional information about their relative proportion. Subjects are then asked to
compare the following four bets about the color of one ball randomly drawn from the

urn:

either Bet 1: win $100 if the ball is red, $0 otherwise;

or Bet 2: win $100 if the ball is blue, $0 otherwise;

either Bet 3:  win $100 if the ball is either red or yellow, $0 otherwise;

or Bet /: win $100 if the ball is either blue or yellow, $0 otherwise.

Typically people express the following preferences:
Bet 1 > Bet 2 and Bet 4 > Bet 3.

So people prefer acts with a known, i.e., objective probability of winning. This is

clearly inconsistent with the sure-thing principle of SEU (Savage’s P2), as it requires



8
the ranking between acts to be independent of states in which acts yield the same

consequence. In the paradox, such a state is the event “the ball is yellow.”

More formally, it is easy to see that there is no probability measure supporting
these preferences through SEU maximization. Let P(r), P(b), and P(y) be respec-
tively the probabilities that the ball drawn is red, blue, or yellow. Then under SEU:

Bet 1 > Bet 2 < P(r)u(100) + P(bU y)u(0) > P(b)u(100) + P(r Uy)u(0)
& P(r) > P(b)
but:
Bet 4 > Bet 3 < P(bUy) > P(rUy)
and by the additivity of P:
P(b) + P(y) > P(r) + P(y) < P(b) > P(r),

a contradiction. So SEU cannot rationalize these preferences.

The idea that cannot be captured by the standard approach is that the decision
maker can be averse to the ambiguity associated with events, or more precisely to
the uncertainty about their likelihood, which informally depends on the quality and
quantity of information at his disposal.* As defined by Ellsberg, ambiguity is the
“quality depending on the amount, type, reliability, and ‘unanimity’ of information.”
The major limit of SEU is that it assumes preferences well-specified enough to derive
a unique additive probability measure so that an SEU maximizer, by construction,

does not mind ambiguity.

4This ambiguity aversion can be informally related to some dose of pessimism, as embodied in
the so-called “Murphy’s laws” (e.g., “if anything can go wrong, it will,” or “when it rains it pours;”
in the Ttalian tradition, “Fortune is blind, but bad luck can see pretty well”).
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2.2 Why multiple priors? A model for ambiguity

The task is then to construct a plausible model of behavior that allows for the pos-
sibility that the ambiguity associated with events affects behavior. There are two
alternatives in the literature to capture this same idea.

Kahnemann and Tversky [23] first suggested that, under uncertainty, a lottery
f is perceived by the decision maker in a “distorted” way as a ¢ = G o f, where
G :[0,1] — [0, 1] is a strictly increasing and continuous transformation. So the spirit
of this first approach, later formalized by Schmeidler [23], is to retain the uniqueness
of the probability measure representing beliefs, whilst relaxing its additivity (that is,
possibly P(AU B) # (P(A) + P(B) — P(AN B)).> The more non-additive the belief,

the less confident the decision maker is about his beliefs.

Example 1 This approach can be used to explain the empirical evidence for the Ells-
berg’s experiment. Consider for example the following non-additive beliefs: v(r) = %,
v(b) =% v(y) =5 v(Uy) =32, v(rub) =3, v(ruy) =3 v(rubuy) = 1.

Then, after renormalizing u such that «(0) = 0 and »(100) = 1, we can compute

the expected utility of each bet by applying the finite version of the Choquet integral:®
EU(Bet 1) = u(100)3 + u(0)(5 — 3) +u(0)(1 — 3) = 3
EU(Bet 2) = u(100) § +u(0)(3 — §) +u(0)(1 = 3) = §
EU(Bet 3) = u(100)5 + u(0)(1—3) =1

EU(Bet 4) = u(100)% + u(0)(1 — 3) = 2.
O

®More formally, a set-function v on (€, ) is called a capacity if it is normalized and monotone,
that is, v : ¥ — [0, 1] is such that: v(0) =0, v(1) = 1; and for A,B € X, AC B = v(A) <v(B).

6This method allows to compute expected utilities with respect to a non-additive prior. For
lotteries f with finitely many outcomes, first rank the states w; € 2 (where i = 1,...,n) based on
u(f(w;)). Then compute the Choquet Expected Utility for act f as CEU(f) = u(f(w1))v(w1) +

Sy ulf(wi) p(Ujmywy) — p(Uj=1w))]-
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The alternative is the multiple priors model, as axiomatized by Gilboa and Schmei-
dler [4], where people are assumed to have probabilities that are additive but not
unique and to choose according to a minimax decision rule.” This idea was not new
in the literature. Hurwicz [22] showed an example of statistical analysis where some
degree of ignorance prevents the statistician from forming a unique prior, but still
does not lead him to apply Wald’s decision rule with respect to all the priors.

Since the decision maker has not enough information to confidently form a single
probability distribution, he uses a set of priors C, that is, all the priors “compatible”
with his limited information. In order to rank acts, he calculates each act’s expected

utility for every probability distribution in C and then, being uncertainty averse,

chooses the act that gives the largest minimum of these expectations:®
U(f) = i P(dw). 2.2.1
max U(f) = i in | u(7()) P(d) (2.21)

The larger the set C, the less confident the decision maker is about his information,

i.e., the more ambiguity there is in the decision problem.”

Example 2 In the Ellsberg’s experiment, consider the following beliefs. The proba-
bilities for the unambiguous events are equal to the known odds of winning: P(r) = %,
PbUy) = %, P(rubUy) = 1. In the case of the colors whose proportion in the
urn is unknown, the subject has too little information to form a prior. Hence he

considers a set of priors as possible: P(b) = [0,2], P(y) = [0,2], P(rub) = [3,1],

7 As stated by Wald [34], “a minimax (loss) solution seems, in general, to be a reasonable solution
of the decision problem when an a priori distribution in  does not exist or is unknown to the
experimenter.” Given the equivalence of the minimax loss criterion to the maximin utility criterion,
Gilboa and Schmeidler consider their result as an axiomatic foundation of Wald’s criterion.

8Notice that the use of the minimum reflects a cautious, or better pessimistic, attitude of the
decision maker. This pessimism captures the ambiguity aversion needed to explain behavior in
situations & la Ellsberg.

91n order to capture ambiguity within an SEU context, it has been proposed to express ambiguity
over probabilities as a second order probability (SOP) distribution. That is, the decision maker has
a belief as to which of his multiple (first order) priors is more correct. The main criticism to this
approach is that it might not capture ambiguity anymore, as it reduces (if not eliminates) vagueness
in beliefs. The principle of “reduction of compound lotteries” (for which compound lotteries can be
reduced to the equivalent single-stage lotteries) implies that the decision maker behaves as if he had
a precise belief, that is, as if he was an SEU maximizer. However this principle is often violated in
experiments, so that the SOP approach may not be able to distinguish between violations of the
reduction principle and ambiguity effects.
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P(ruy) = [3

3, 1]. Then the observed preferences are compatible with the maximin
expected utility decision rule: the unambiguous bets, bet 1 and 4, have respectively

1
3

2

and z, whilst the ambiguous bets 2 and 3

a (minimum) expected utility equal to

have minimum expected utility of 0 and 3. O

Notice that these two approaches capture the uncertainty of beliefs in a similar
fashion and in many situations yield the same behavioral predictions. As shown in
Schmeidler [23], the two approaches coincide when the set of possible priors is the

core of a convex capacity.!? But neither approach is nested in the other.!!

We have chosen the multiple priors minimax expected utility model mainly be-
cause of its more immediate mathematical representation, which allows for some

straightforward comparative statics and possibly a dynamic extension:

1. it is straightforward to interpret the extreme cases: when C is a singleton, the
decision maker is actually an SEU maximizer; when C = -(®), we would define

him “completely ignorant” about the plausibility of any event.

Example 3 Consider a simple dichotomous event (such as it will or will not
rain tomorrow). an SEU decision maker would summarize his beliefs by a
probability, e.g., p = 1; a less informed decision maker could summarize his
beliefs by an interval, say between % and 1; if completely ignorant, his belief set

would be the whole [0, 1]. O]

2. it is straightforward to extend this model to a dynamic choice problem, where

dynamics are captured by possible different levels of information: C = C(information).

0The core of a capacity v is defined as the (possibly empty) set of all finitely additive probability
measures that dominate v pointwise. A capacity v is said to be convex (or supermodular) if for
A, BCQu(AUB)+v(ANB) > v(A) +v(B).

1 As pointed out in Gilboa [3], relaxing the additivity of probability creates some problems. For
example, maximizing u(z) does not necessarily coincide with minimizing —u(x); and some appealing
properties of standard conditional probabilities are violated. According to Gilboa, these problems
might be interpreted as normative reasons to prefer approaches with additive probabilities.
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However, as this requires a model for the process of acquiring information and

translating it into beliefs, it goes beyond the purposes of this work.

2.3 Why a reference point?

One of the most common assumptions about choice behavior is risk aversion. How-
ever there are some serious difficulties in reconciling this assumption with empirical
evidence. As first shown by Friedman and Savage [11], a person’s well-being seems
to depend not only on his current consumption of goods, but also on how his current
consumption compares to his past consumption and (expected) total income.!? In
order to deal with this evidence, Markowitz [27] first suggested that risk attitudes are
based upon deviations in consumption from a reference point.

This intuition of reference-dependent preferences was revived and consistently
documented by Kahneman and Tversky [23]. In experiments on individual’s choices
between monetary gambles, most agents exhibit the so-called reflection effect: they
are risk averse in terms of gains and risk seeking in terms of losses with respect to

13 Kahneman and

their reference point (in this case, the current level of wealth).
Tversky showed how this evidence may be accounted for by a utility function defined
on deviations from the status quo (called “prospects”), concave for gains and convex
for losses.!4

An open question is thus whether these reference-dependent preferences have a
normative justification. A partial answer is offered by the literature of regret theory.
This approach models the desire of decision makers to avoid consequences in which
they will appear (when the real state w is known) to have made the wrong decision,

even if in advance it appeared correct given the information available at the time. In

the case of “full regret” (a la Savage), an action is thus judged to be a mistake if it

12For a comprehensive survey of this empirical evidence, see Kahneman and Tversky [24] and
Camerer [5].

130ther closely related effects well documented in the literature are the framing effect (see Kahne-
man and Tversky [23]), the status quo bias (see Samuelson and Zeckhauser [21]), and the endowment
effect (see Kahneman, Knetsch and Thaler [16]).

“For a more formal extension of prospect theory, see Tversky and Kahneman [25], and Wakker
and Tversky [27].
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is not ex-post optimal, so that the reference point is the most preferable outcome for
each state of the world.!®

In line with this approach, the case in which a given (not necessarily optimal)
action seems to be a more appropriate reference point might be interpreted as a
model of focused regret.’® So an action is ex-post considered a mistake only if it fares
worst than the reference point (alternatively, only if it yields a worse result than what
would be obtained by sticking to the reference point, i.e., not deciding). This way of
modeling a reference point can then capture the intuition that there exists a cost to

make decisions, as illustrated in the following application.

2.3.1 An application of focused regret

In order to explain the so-called “roll-off” phenomenon, i.e., selective abstention in
multiple elections, Ghirardato and Katz [12] introduce information costs as generated
by differences in ambiguity about electoral outcomes. In their model, abstention
is chosen as a reference choice ¢ and the payoff to each act f is renormalized to

f(w) — ¢(w) for every state w.'"

Formally, their model assumes that the decision maker’s preferences are repre-
sented as follows: there exist a reference choice ¢ and a non-empty, closed and convex

set of positive finitely additive measures such that he chooses among acts in order to

fer feF PeC

max U(f) = max min/g[f(w) — ¢(w)] P(dw). (2.3.1)

Notice that the model captures the idea of people caring more about losses than

15For an axiomatization of regret in decision making, see Bell [2]. He postulates a multiattribute
utility function (as a function of both monetary assets and quantity of decision regret) and uses it
to explain behavior anomalies such as the reflection effect, coexistence of insurance and gambling,
and preference reversals.

16 As an example for this case, consider the status quo in prospect theory. See also the discussion
in the following sections.

17 An intuitive justification for this choice of ¢ comes from the “anedoctal observation that absten-
tion is viewed by most people as an option that is “safe”: it does not entail the same costs as voting
for a candidate, which could lead to a situation of discomfort (“regret”), if one’s vote determines
the election and the candidate turns out to be the wrong person.”
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gains, as it allows the decision maker to use different beliefs in evaluating different
actions. The most pessimistic probability distribution from C will assign relatively
higher weight to states where the difference between any act and the reference point

is negative and lower when positive.

Remark 1 Renormalization by itself (without multiple priors) is not sufficient to
capture the decision cost argument. If the decision maker is an SEU maximizer, then

he forms a belief P € A(Q2) and chooses f € F that maximizes

U(f) = / /(@) — 6(w)] P(dw). (2.32)

By linearity of the integral, for any two acts f and g,

U(F) > Ulg) /Q F(w) P(dw) > /Q g(w) P(dw), (2.3.3)

that is, an SEU maximizer’s preferences are not affected at all by the existence of a

reference point.

Remark 2 On the other extreme, consider a completely ignorant decision maker, in
the sense that his beliefs are represented by C = -(®). This implies that, for every
state w € Q, there is a P € C such that P(w) = 1. So by applying equation 2.3.1:

max U(f) —max/ flw) — P(dw), (2.3.4)

ferF ferF

where P is the prior assigning probability one to the state w that minimizes f (w) —
¢(w). Thus the completely ignorant DM behaves according to the Wald’s maximin

criterion.
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2.4 Which reference point?

For now, think of the reference point as exogenous to the problem. This is equivalent
to assume that the decision maker has a yardstick in his mind, which might be

interpreted in many different ways, such as:

e threshold interpretation: ¢ is the situation the decision maker considers “nor-
mal” for the kind of choice problem he is facing (for example, the status quo

18 Similarly from a computational point of view, the

or prior expectations).
decision maker may think of ¢ as a particularly desirable (aspiration level) or

undesirable situation.

e decision cost interpretation: ¢ is the (aleatory) value for dropping out of the

choice problem.

The only thing that matters is that the decision maker considers a reference point ¢
in order to compare and rank acts. The meaning he assigns to ¢ is in his head and is

somehow irrelevant to our attempt to describe how he orders acts (“as-if” model).

Remark 3 If ¢ is a constant act (so that it comes out of the integral and cancels out
when comparing two acts), then we are back to SEU. The introduction of a reference
point is thus meaningful only if ¢ is a non-constant, i.e, state-dependent act. In
this way, we allow for the case in which the decision maker does not know exactly
his aspiration level. Alternatively, we allow for “not fixed” (i.e., not independent of

action and information) decision costs.

2.5 Axiomatizing prospects

The empirical violations discussed in the previous sections provide a challenge to

adapt standard models in order to incorporate ambiguity aversion and feelings of

18This provides a clearer (at least to me) meaning to the concept of utility. If asked “what is
u($10) to you?”, I would not know what to answer. If T could set the question in a more familiar (or
“normal”) problem, such as a return rate from investing $100 on the security market, then I know I
am unhappy of my $10 if, even in the worst possible (according to my evaluation) contingency, my
reference investment plan would (more often or more likely) fare better than them.
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regret. Even though such an extension may be valuable from a descriptive and pre-
scriptive point of view, our main concern is normative, as we are interested in the
mathematical properties of the axioms and their connection to the numerical rep-
resentation of preferences. The model we present is an extension of Gilboa and
Schmeidler’s [4] maximin expected utility, where the preference relation is defined
over prospects (instead of acts).

As in Gilboa and Schmeidler, we use a simplified version of Savage’s [7] model.
The simplification consists of assuming the existence of objective probabilities, or
equivalently, of an independent randomizing device such as a roulette wheel. Such a
model containing both objective and subjective probabilities was first suggested by
Anscombe and Aumann [1]. In their setup, an act f is defined as a “horse” lottery that
associates a consequence to each possible event, where the set of events is not assigned
a given probability distribution. Each consequence can be a “roulette” lottery ys(w)
over outcomes with objective probabilities. So the final outcome depends first on
which state w occurs, then on which outcome the (second-stage) lottery yields.

This lottery-act formulation relies on the distinction between two kinds of random-
ness: one that the decision maker feels he can “dominate” by assigning probabilities
(as on a roulette wheel); in the other case, instead, it may not be clear “what the
odds are,” so that there is no obvious probability distribution to confidently capture
randomness (as in horse races). Notice that the distinction between objective and
subjective probabilities is not necessary for Anscombe and Aumann’s result to work:
what matters is that second-stage lotteries can be constructed of additive unique
probabilities.® These probabilities can be subjectively derived upon (& la Savage).
Anscombe and Aumann’s result is thus a way to assess complicated probabilities from

people’s preferences over simpler lotteries, in which probabilities are already known.

19This gives meaning to objective mixtures of acts or prospects (defined as eventwise convex
combinations) and to our definition of prospect (as joint distribution over incremental consequences).
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2.5.1 Some notation

Let X be a (non-empty) space of consequences, which we will assume to be a compact

interval [a,b] in R, and Y the set of distributions over X with finite supports:

Y={y: X —10,1] | y(z) # 0 for finitely many x’s in X and Zy(a:) =1}
reX
so that X can be identified with the subset {y € Y | y(z) = 1 for some
x € X} of Y.

Let €2 be a (non-empty) state space and ¥ be an algebra of subsets of 2 (events).
Denote by Fy the set of all ¥-measurable (finite) step functions from 2 to ) and
denote by F, the constant functions in Fy.2° Let F be a convex subset of Fy that
includes F..>! Elements of ) can thus be interpreted as (roulette) lotteries, while

elements of F are acts (or horse lotteries).

Given a ¢ € F, denote by X the set of all possible incremental consequences, that
is, all the possible differences between the outcomes of any act f and the outcomes
of the reference point ¢. So X C [a — b,b — a]. Define a prospect f =f—¢asa
function from €2 into the set of joint distributions Y over X and denote by F the set
of all prospects. We find it helpful to illustrate our definition of prospects with an

example.

Example 4 For a given w € ) let f and ¢ induce the following lotteries over X

20Notice that any act f € F induces a probability distribution ys(w) over X for every w € Q,
whilst any constant act f. € F. induces the same y; for every w € Q.

2lConvex combination in Fy € Y® are performed pointwise: for f and g in Fq and « in [0, 1]
af + (1 — a)g = h, where h(w) = af(w) + (1 — a)g(w) for w € Q.
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o.f| -1 0 1 2
1 [1/6 1/6 0 1/61/2
0|0 0 0 010
1 [1/6 1/6 0 1/6|1/2
200 0 0 010
1/3 1/3 0 1/3

Table 2.1: Joint distribution yy 4

—1 with probability 1/3
f(w)=4¢ 0  with probability 1/3
2 with probability 1/3

—1 with probability 1/2
1 with probability 1/2.
Then, given w, f and ¢ induce a joint distribution Pf4 over X x X as shown in

Table 2.1, so that f = f — ¢ induces the following probability distribution over X'

(

—2 with probability 1/6
—1 with probability 1/6
(f —¢)(w) =14 0  with probability 1/6
1 with probability 1/3

3 with probability 1/6. O

\

This way of defining prospects seems to be the most natural, within a model of
focused regret, as it captures the idea of how likely an act is to perform relatively to

the reference point.

More formally, denote by z¢(w) = {x € X : yp(w)(z) # 0}. Then for every w € 2

f induces a distribution y F(w) = yje(w) over X such that
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yp(w)(@) = > yro(w) (s, z4).

{zf(W),xg(w):zp(w)—zg(w)=0}

Let F. denote the set of prospects f such that, for each state w, f’s final outcomes
differ from ¢’s by the same constant.?? So constant prospects map €2 into a subset of
37 that we will denote by 370.

Finally let P denote the set of all finitely additive probability measures P : ¥ —
[0, 1], endowed with the product topology (i.e., the weak™ topology), so that P is

compact.

2.5.2 The axioms

The primitive of the model is a binary (preference) relation = over F.2 We are going

to assume the following properties of the preference relation:

A.1 Weak Order.

(a) Forall fand gin F, f =gorg> f.

(b) For all f,g and hin F, if f = g and g = h then f = h.

A.2 Continuity. For all f,g and h in ]:", if f > g and g > h, then there are a and (3
in (0,1) such that:

af +(1—a)h>=gand g > Bf+ (1 — B)h.

22We find this is the most natural way to define “constant” prospects, given that the decision maker
uses ¢ as a reference point. Just observe that g% = ¢ — ¢ induces for each state a joint probability
distribution such that, when we prove the existence of a state-dependent EU representation u, it
will turn out that u(é(w)) = 0 for each w. Similarly, given a constant prospect f,, for all w € Q
u( fc(w)) = ¢ for some consequence c.

23 As usual, > and ~ denote respectively the asymmetric and symmetric parts of >. Notice that
the relation > on F induces a relation also denoted by > on 5) Let f, denote the prospect such
that fz(w) =z for all w € Q, where z € Y. Then z > y < fo = fy-
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A.3 Monotonicity. For all f and ¢ in F, if f(w) = g(w) on Q then f > g.

A4 Uncertainty Aversion. For all f,g € F and a € (0,1), f ~ g implies of + (1 —

a)g = f.

A5 C-Independence. For all f,g in F, hin F, and a in (0,1):

f=geaf+(1—a)h>ag+ (1 —a)h.

A.6 Non-degeneracy. There exist f and ¢ in F such that f=g.

Notice that weak order, continuity and the weakened version of independence are
essentially the von Neumann-Morgenstern axioms. C’—Independence is weaker than
(standard) independence, as it restricts h to constant prospects (rather than any
prospect in F ). By recalling our definition of constant prospects, this is equivalent to
restricting independence to mixtures with prospects with “sure” outcomes.?* Viola-
tions of independence can happen, for instance, when the decision maker sees hedging
opportunities in mixing prospects. C’—independence does not suffer this problem since
constants do not allow hedging.

Uncertainty aversion states that “objective mixtures” make the decision maker
better off.?

Finally, monotonicity is equivalent to state-independence of preferences (Savage’s
P5) and non-degeneracy is a purely structural axiom that makes the representation

nontrivial.

24Constant prospects in fact have the same u for each w, that is, the same EU for any probability
distribution over ). So mixing any prospect f with a constant prospect does not affect which
probability distribution minimizes EU(f).

25Notice that this is consistent with the use of a maximin rule, as minimizing EU of a mixture of
prospects can be no worst than minimizing EU of each prospect separately.
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2.5.3 The representation theorem

Theorem 1 Let = be a binary relation on F. = satisfies assumptions A.1-A.5 if
and only if there exist an affine function u : Y — R and a non-empty, closed and

convex subset C of P such that for all f, jeF:

ftﬁﬁmin/uo(f—@dpzI}geig/uO(g—qb)dP. (2.5.1)

pPeC

Furthermore, the function u is unique up to a positive affine transformation and the

set C is unique if and only if > satisfies A.6, too.

2.6 Proof of the theorem

The crucial part of the proof is the “if” part. Notice first that if A.6 does not hold,
then any constant v and any subset C will satisfy 2.5.1. Hence from now on we are
going to assume A.1-A.6.

The proof consists of the following several lemmata.

Lemma 1 There exists an affine u : Y — R such that forall y, z € Y
y = z<uly) > u(z).

Furthermore u is unique up to a positive linear transformation.

Proof: The lemma holds on V. as an immediate consequence of the von Neumann-

Morgenstern theorem, as C’—independence implies the independence axiom for F.
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By standard arguments for extensions of the von Neumann-Morgenstern theorem,
we can extend u to ). Take Ye: Y, € V. such that Yez Y=y, for any given y € V.
By the continuity axiom there exists a unique « € [0, 1] such that y ~ ay + (1—a)y,.
Define u(y) = u(ay, + (1 — @)y.). So by construction u satisfies the condition in the

lemma. [ |

Lemma 2 Givenu:) — R from Lemma 1, then there exists a unique

J:F — R such that

(i) forall f.g € F., f =g & J(f) > J(9):

(ii) for all f € F such that f(w) =1y for allw € Q, J(f) = u(y).

Proof: On the subset of F defined in (ii), J is uniquely determined by (ii) and lemma
1.

Analogously to the extension of u of lemma 1, we can extend J to all F. Take 7,
y € Y such that g = f > y for any given f € F. By the continuity axiom there exists
a unique a € [0, 1] such that f ~ ay + (1 —a)y. Define J(f) = J(ay + (1 —a)y). By

construction J satisfies (i) and is unique. |

Since u represents = on Y up to a positive linear transformation, from now we
will consider u such that there are y,,y* € Y for which u(y.) < —1 and u(y*) > 1.
Such a choice of u is possible thanks to the nondegeneracy axiom (for which there
exist f,, f* € Fy with f* = f+) and the monotonicity axiom (so that there exists a

state w € Q such that f*(w) = y* = fi(w) = ys).
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Let By denote the set of ¥-measurable real-valued simple functions on €2 and B
the closure of By with respect to the supnorm || - ||.2¢ Intuitively, one can think of
every b € B as the composite function uw o f, i.e., the “evaluation of prospect f.” For

c € R, let ¢* € By be the constant function on € with value ¢.27?

Lemma 3 There exists a functional I : By — R such that

(a) I is the normalized representation operator: for all f € F, H(uo f) = J(f)
(hence 1(1*) =1);

(b) I is monotonic: for all a,b € By, a = b= I(a) > I(b);
(¢) I is superlinear, i.e.:

— superadditive: for all a,b € By, I(a+b) > I(a) + 1(b);

— homogeneous of degree 1;

(d) I is C-independent: for all a € By and ¢ € R, I(a+ ¢*) = I(a) + I(c*).

Lemma 4 There exists a unique continuous extension of I to B. Furthermore, this

extension is monotonic, superlinear and C-independent.

Lemma 5 Let [ : B — R satisfy:

261.e., b € B iff there exists a sequence {b,,},>1 C By such that || b— b, [|— 0 as n — co. So B is
the space of all bounded Y-measurable real-valued functions on €.

2TNotice that each constant prospect f. € ,7:'6 is evaluated ¢ for every w, so that it is mapped
(through u) into the corresponding c*.

28The proofs for the following two lemmata can be found in the appendix. Instead, we keep the
proof of lemma 5 in the main body of the chapter, as it constitutes an interesting theoretical note
per se.
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(a’) 1(0*) =0 and I(1*) = 1;

(b) for all a,be B, a>b=1(a) > 1(b);
(c’) for all a,b € B, I(a+0b) > I(a) + I(b);*
(d’) forallbe B, a >0, and 3 >0, I(ab+ 1*) = al(b) + 5.

Then there exists a conver and w*-compact set C C P such that for all b € B:

I(b) = min/de. (2.6.1)

PeC

Uniqueness follows from standard separation results. The proof of existence is
directly based on the classical Hahn-Banach theorem.
Proof: Let L be the set of all linear functionals on B and let C be defined as
C={Le€L|L(b)>1(b) for all b € B and L(1*) = I(17)}.

Notice that by (a’) and (b), C is the set of all positive linear functionals on B. Let
b € B and denote by B; the linear subspace spanned by 5, that is,

B; = {b|b = ab + B1* for some a, 3 € R}.
Denote by L; the linear functional on B; defined by:
Li(ab+ B1%) = ol (b) 4 BI(1*) for a, § € R.

Notice that Lj; satisfies the following:

(i) Li(ab+ B1*) = I(ab+ 1) if a > 0,3 > 0;

29 Notice that 1(b) < —I(—b) for all b € B since, by applying (c’) and then (a’), I(b) + I(—b) <
I(b—0b)=1(0*)=0.
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(i) Ly(ab+ B1*) > I(ab+ B1*) otherwise;

where (i) follows from (d’) and (ii) from the fact that:
—Li(—ab— B1%) = —I(—ab — B1*) > I(ab + 51%).

Thus L;(b) > I(b) for all b € B;. Then by the Hahn-Banach theorem there exists a

linear functional L on B such that
L(b) = Ly(b) for all b € B;

and

L(b) > I(b) for all b € B

so that L € C and I(b) = L(b) = min e L(D). |

Lemmas 1 through 5 prove the “if” part of the theorem. To prove the “only
if,” assume the existence of u and C as stated in the theorem and define /(b) =
min{ [ bdP|P € C}. Then it is immediate to verify that I is monotonic, superlinear,
é—independent and continuous. So the preference relation defined in 2.5.1 satisfies

axioms 1 through 5.

In order to conclude the proof, we need to prove the uniqueness properties of u
and C. Lemma 1 implies the uniqueness of u up to a positive linear transformation.

Notice that, if axiom A.6 does not hold, then u can be any constant function. This
implies that K, the range of u, is a singleton and C can be any non-empty, closed and
convex set.

So we need to show that, if A.6 holds, then C is unique. Suppose the contrary:
there exist C; # Co, both non-empty, closed and convex such that > is represented

by both the following functions defined on Fo:



Ji(f) = min{ / u(f)dP|P € ¢}

Jo(f) = mln{/u(f) dP|P € Cy}.

Take P, € C;\Cs. By a separation theorem, there exists b € B such that

/bdpl < m1n{/de|P€C2}

Assume without loss of generality that b € By(K). So there exists f € Fy such that
Ji(f) < J2(f). Let y € Y be such that y ~ f, then

J(y) = L(f) < Jo(f) = J2(y),

a contradiction.

2.7 Concluding remarks

Instances of systematic violations of standard models’ axioms are worthy of study for
the insight they may give in improving decision analysis. In particular, when faced
with complex decision problems involving ambiguity or reference-dependence (such as
framing in terms of gains or losses), people are very poor intuitive statisticians and use
procedures that bias their choices in ways that cannot be captured by the standard
models. Furthermore, when their choices are illustrated to be “paradoxical” when
confronted with the EU axioms, people commonly agree with the step-by-step logic
but nonetheless feel uncomfortable with the conclusions. This common observation
led us to believe that aversion to ambiguity and feelings of regret play a role in informal
evaluation of alternatives by decision makers and provided us with the rationale for

building a utility model that incorporates both these effects.

Even though this extension may be desirable for descriptive or prescriptive pur-
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poses, our main interest is in the mathematical properties of axioms and their connec-
tion with the numerical representation of preferences. So, at a cost of a too extreme
simplification, we would like to point out the role of the axioms for the representation

properties:

e weak order, continuity, é—independence = state-dependent EU representation;

e monotonicity = restricts u to be the same for all states (so that if f has a

higher “evaluation” than g in each state, then f will be preferred to g);

e uncertainty aversion = “min” functional in the representation (i.e., superaddi-

tivity of the representation operator);

e non-degeneracy =- uniqueness properties.

Notice that, given the correspondence between acts and prospects, it is straight-
forward to extend the axioms to the case in which the primitive of the model is a
preference relation on F (instead of F). An important extension would be to find ax-
ioms that endogenize the reference point, so that ¢ can be part of the representation
theorem.

As future research, we would like to look more closely at some alternatives that

hopefully will provide us with insights for endogenizing the reference point:

e keep a static framework but use a setup a la Savage. All the axiomatizations
of regret theory we found in the literature (see Bell [2], Loomes and Sudgen
[18], and Fishburn [10]) are restricted to pairwise comparisons of prospects
and abandon the transitivity axiom. By extending their axioms, it might be
possible to consider richer choice sets (thus getting closer to our purposes of a
weak order representation) and restore transitivity at least within any choice

set (but probably not across choice sets).
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e use a dynamic framework. In an intertemporal setting, it is possible to endoge-
nize the reference point and make it depend on the outcomes of past choices.?
It might also be interesting to study in depth the information processing people
do when making decisions under ambiguity. An alternative might be a revealed
preference approach.®' Illustrating a pattern of choice which is compatible with

our model might be the most fruitful way to get further insights on preferences’

properties.

3ONotice that some care is needed when choosing the assumptions about how the reference point
changes over time. As proved in DellaVigna and LiCalzi [8], for given adjustment rules the choice
behavior in the long-run converges to EU maximization.

31See Border [3] for this approach applied to the EU hypothesis.
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2.8 Appendix

A

Proof of lemma 3: Let K = u()) and let By(K) C B denote the subset of functions
with values in K. We first define I on By(K) by (a). Notice that [ is welldefined

thanks to lemma 2 and the monotonicity axiom.

Next we show that I is homogeneous of degree 1 on By(K). So we need to show
that, for a,b € By(K) such that a = ab with a € (0, 1], I(a) = I (b).
Define:
f=ag+(1=a)h

where g € Fy is such that wo g = b and h € Y, is such that J(h) = 0. Then
uof=auog+ (l—a)uoh=ab=a,

so that I(a) = J(f). Let y € Y, satisfy y ~ g, so that J(y) = J(g) = I(b). By
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é—independence,

ay+(l—a)h~ag+(1—a)h=f

and this implies the result:

I(a)=J(f) =J(ay+ (1 —a)h) =aJ(y) + (1 —a)J(h) = aJ(y) = al(b).

Next we extend [ to all of By by homogeneity. So I is monotone and homogeneous

of degree 1 on By.

Next we show that [ is é—independent. Assume without loss of generality (thanks
to homogeneity) that *a, 2=c* € By(K) and define 3 = I(Za) = L1(a).

Let f € Fy satisfy uo f = éa, yey satisfy w oy = #* and f, € F. satisfy
uo f,= ﬁ By the definition of 8, it follows that f ~ y. Applying C-independence
of =,

af+(1—a)fe~ray+ (1 —a)f.

So, I is é—independent, as

Ia+c)=Iaf"+c)=af+c=1(a) +c.

Finally we prove that I is superadditive. Take a,b € By. Without loss of generality
(thanks to homogeneity), we can assume that a,b € By(K) and all that we need to

prove is that

1 1
I(za+ <b) >

50T 5 I(a) + < 1(b).

1
2 2
Take f,g € Fo such that uo f=aand uog =b. We need to distinguish two possible

cases:
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o If I(a) = I(D), then f ~ g and, by uncertainty aversion,

1 1
“f4 g
2f+29_f
which implies
1(1 +1b)>f()—11()+11(b)
g Tl = = AT

o If I(a) > I(b), let § = I(a) — I(b) and ¢ = b+ 6*. Note that, by C-independence
of I,

Using I'’s é—independence, superadditivity (for the case above) and é—independence,

respectively, we get

1 1 1 1 1 1 1 1 1
I(= —b)+ =0 =1I(= —c) > =1 —I(c)==1I —I(b) + =d
(2a—|—2)+2 (a+2c)_2(a)+2(c) 2(a)+2()+
which completes the proof. .
Proof of lemma 4: First recall that B is a Banach space with the supnorm || - || and

By is a norm-dense subspace of B. To show existence of a unique continuous extension

of I we need to show that for each a,b € By, | I[(a) — I(b) <[ a—10b]. As
a=b+a—-b<bt+|a—-0b]"
then, by monotonicity and é—independence of I,
I{a) < I(b+[[a=b ") = 1(b)+ [la—b]l.

This implies the existence of a unique continuous extension of I from By to its closure
B. And this extension mantains the same properties, i.e., superlinearity, monotonicity

and (f—independence. |
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Chapter 3 Asset pricing and multiple priors

3.1 Introduction

In this chapter, I investigate the effects of incorporating ambiguity and heterogeneity
into a capital asset pricing model. The model is a simple, static version of Lucas’
economy where agents hold different multiple beliefs about the realization of next
period’s dividend. Thanks to mathematical simplicity, I am able to provide closed-
form solutions for the equilibrium stock and bond prices, and disentangle ambiguity
effects and heterogeneity effects over the equity premium. First, heterogeneity per
se (to be thought as a mean-preserving spread in the cross-sectional distribution of
beliefs) leads to a higher risk-free rate and ex-ante equity premium than homogeneity.
Thus heterogeneity per se can only explain part of the puzzle, as posed by Mehra
and Prescott. However, the result is interesting as the extent of the underestimation
of the equity premium under homogeneity is a strictly increasing function of the
variance of expectations about the dividend. The cross-sectional variance of beliefs
thus represents a well-defined measure of an “heterogeneity premium,” that can be
easily estimated and tested in an experimental setting.

Second, ambiguity aversion always leads to a lower interest rate and a “generally”
higher equity premium than in the classical case. But the findings about the ex-ante
equity premium only hold for either high values of the subjective risks or low values of
the subjective means, as it would be the case when there is “enough” ambiguity in the
economy. Comparable results can be found in the existing financial literature, where
uncertainty increases the equity premium and decreases the risk free rate. Similarly,
a certain degree of pessimism is required in order to match the historical data. To our
knowledge, all of the existing contributions share this ex-ante perspective and only
partially solve the equity premium puzzle.

Instead of proposing calibration exercises to compare the extent of my findings,



35
I include an ex-post perspective and compare the predictions from the ambiguity
model to the “true” (historically observed) realizations of the equity premium. In
terms of my model, and more generally for the class of models incorporating subjec-
tive ambiguity-averse beliefs, this distinction is crucial as people act on the basis of
“incorrect” beliefs in the sense of being consistently biased towards the worst case. I
find that the ex-post equity premium will always be higher than its ex-ante prediction
under ambiguous beliefs, thus providing an interestingly different, but still “rational,”

resolution of the equity premium puzzle.

In what is considered one of the classical models for capital markets, Lucas [26]
studies the stochastic behavior of equilibrium asset prices in a dynamic one-good, pure
exchange economy with a single consumer, to be interpreted as a “representative”
agent for a large number of identical consumers. When assuming that productivity
fluctuates stochastically over time, his model predicts fluctuations for equilibrium
asset prices as well, and is aimed at understanding the relationship between such
movements. Under his assumptions, there is only one way for the economy to be in
competitive equilibrium: all the output is consumed, all asset shares are held, and
the asset price function (solving the dynamic problem of choosing investment and
consumption over time) is unique. The great simplicity, and possible weakness, of
Lucas’ model stems from the “assumption” that agents know a great deal about the
structure of the economy, and they all agree about the available information. When
discussing the stability of the equilibrium, Lucas himself doubts whether agents may
know the distribution of the price shocks.

In this light, it may not come as a surprise that, when empirically tested, Lucas’
model may fail to predict actual asset prices. In their famous paper, Mehra and
Prescott [28] study a variation of Lucas’ pure exchange economy, as constructed to
display equilibriumn consumption growth rates with the same mean, variance and

serial correlation as those observed for the US economy between 1889 and 1978.1

IThey assume that the growth rate of endowment, rather than endowment levels, follows a
Markov process. This extension attempts to capture the non-stationarity in the consumption series
associated with the large increase in per capita consumption over the period under study.



36
They find that for such economies the predicted average real annual yield on equity is
a maximum of 0.35 percent higher than that on short-term debt, in sharp contrast to
the six percent premium observed. So the puzzle is twofold: a low risk-free rate, and
a high average equity premium. They conclude that the restrictions that this class
of general equilibrium models places upon the average returns of equity and treasury
bills are strongly violated by the US data in the 1889-1978 period. Among the
many plausible relaxations of Lucas’ assumptions, Mehra and Prescott posit agents’
heterogeneity, non-time-additivity separable preferences, and other frictions and/or

features making certain types of intertemporal trades among agents infeasible.

In this chapter, I incorporate heterogeneity of agents in a simple version of Lucas’
economy by allowing agents to hold different beliefs about the risky dividend. Also,
my model incorporates another interesting aspect of the economy, that is, the presence
of uncertainty, or equivalently the vagueness of information available to investors.

This distinction between uncertainty and risk, as first pointed out by Knight [24],
affects the observed behavior of traders and institutions in a way that is qualitatively
different than Savage rationality would suggest. Savage’s independence, or sure-thing
axiom, implies that preferences should not depend on the source of the risk. In a
financial context, this means that traders should not distinguish between uncertainty
about the correctness of their beliefs or their pricing model and the risk inherent in
the assumed stochastic prices.

However, in experimental settings, decision makers consistently violate the inde-
pendence axiom. Much empirical evidence, inspired by Ellsberg [2], shows that people
prefer bets whose odds of winning are known, thus revealing aversion to ambiguity,
that is, uncertainty about probabilities. 2 In the context of financial markets, not
knowing the realization of an asset payoff (consumption risk) and not knowing the
probability measure for its dividend (model uncertainty) have different behavioral
implications.

Portfolio selection thus seems a natural context for ambiguity averse behavior

2For a comprehensive review of the empirical evidence about uncertainty and ambiguity in deci-
sion making, see Camerer and Weber [4].
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because of the enormous amount of information, both direct (financial statements,
corporate spending plans, and so on) and indirect (market prices of investments,
yielding information about other investors’ beliefs), that an investor must incorporate
into his belief. Plausible sources for ambiguity are differences in 1) the information
available to each individual; 2) the way information is processed and incorporated in
probability judgements; or 3) attitudes towards model uncertainty. For the purposes
of my static model, it is not relevant whether these differences relate to opinions or
information, as they can commonly be represented by modeling each investor’s beliefs
as a set of priors.

If information is missing, the investor can not confidently assess a single distri-
bution for dividend. Alternatively, under model uncertainty, an investor forms, by
one means or another, a probability distribution P for the risky dividend. How-
ever he feels uncomfortable acting on its basis, as he recognizes that, because of the
difficulties involved in properly using all the available information, his probability
distribution might not be exactly right. In either case, this is formalized by assuming
that agents consider multiple priors as plausible description of their beliefs about the
risky dividend.

The model I use is Gilboa and Schmeidler’s [4] maximin expected utility with
multiple priors. Each investor evaluates a portfolio z according to the functional
V(z) = min{[uo (2)dP|P € N}, where u is a von Neumann-Morgenstern util-
ity and N is a closed and convex set of normal probability distributions over the
states of nature, that is, the realizations of next-period dividend. The investor then
chooses his portfolio so as to provide the highest guaranteed level of expected utility:
an investment-consumption plan is preferred to another if and only if it has larger
minimum expected utility, where the minimum is computed over the set of plausible
priors.

The use of the maxmin criterion captures the discomfort that many decision mak-
ers feel when forced to make choices based on a subjective probability distribution,
particularly when this distribution was formed on the basis of vague information. In

such cases, it is not surprising if a decision maker, cautiously or pessimistically, seeks
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to protect himself against the possibility his distribution is incorrect.

In a simple, static version of Lucas’ economy, extended to allow for multiple pri-
ors, I characterize equilibrium returns for the risky and riskless assets, and show that
the presence of uncertainty and heterogeneity generates predictions for equilibrium
holdings and prices different from the classical case. Under subjective beliefs about
the variance of the dividend, heterogeneity “disappears” and we are back to the rep-
resentative agent model. Under subjective expectations, instead, heterogeneity and
ambiguity enter the equilibrium conditions in an almost “additive” way and thus al-
low to separate their effect on the equilibrium interest rate and the equity premium.
Heterogeneity per se leads to a higher interest rate and equity premium, and is only
partially able to solve the puzzle. The effect of ambiguity instead goes in the “right”
directions, that is, a lower interest rate and a higher equity premium. Despite of the
descriptive appeal of including both heterogeneity of agents and aversion to lack of
information, these differences in predictions call for a test of my model, both empir-
ically and experimentally. The main interest of this chapter is theoretical: however,
by keeping the model simple and sufficiently general, I provide closed-form solutions
for the unique equilibrium conditions, which provide a promising setting for both
calibration exercises and experimental investigation.

The chapter proceeds as follows. The related literature is informally summarized
in the next subsections, after a brief outline of non-expected utility models. A simple
version of the capital asset price model is formally described in Section 3.2. Section
3.3 applies ambiguity and heterogeneity to this model and solves for equilibrium prices
under two different specifications for the information about the risky dividend. In
the last part of this section, I show how these extensions affect the equity premium.

Concluding remarks and suggestions for future research are contained in Section 3.4.

3.1.1 Decision theoretical literature

The most compelling justification for representing beliefs about uncertain outcomes

through a unique subjective prior probability was proposed by Savage [7]. The de-
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cision maker has to compare different lotteries in terms of their consequences that
depend on which of several states of the world will occur. His preferences over out-
comes are characterized by a utility function, assigning each outcome a real number
(a la von Neumann-Morgenstern). The criterion of choice is to maximize expected
utility, where expectation is carried out with respect to a prior probability derived

from the decision maker’s preferences over lotteries.

Formally, let €2 be the state space, X the set of possible consequences and F' the
set of possible lotteries, defined as maps from states into consequences (so F' C X%).
A Subjective Expected Utility (SEU) maximizer chooses the lottery f € F that

maximizes

U(f) = / ulf(w)) P(dw).

where P € A(Q), the set of all the finitely additive probability measures on (2, 2%).
The measure P is derived from the decision maker’s preferences among bets on subsets
of Q (events), so that it represents his subjective confidence (a la de Finetti) on the

plausibility of each event happening.

One of the first objections to Savage’s paradigm as a descriptive theory was raised
by Ellsberg [2]. In one of the “mind experiments” he proposed, subjects are shown
an urn containing 90 balls, of which 30 are red while 60 are blue and yellow with no
additional information about their relative proportion. There is a widely exhibited
preference to bet on drawing red over any other color, and blue and yellow over other
combinations. So people prefer lotteries with a known, i.e., objective probability of
winning. Even though intuituve, these rankings are clearly inconsistent with the sure-
thing principle of SEU, as it requires the ranking between acts to be independent of
states in which lotteries yield the same consequence.

The idea that cannot be captured by the standard approach is that the decision
maker can be averse to the ambiguity associated with events, or more precisely to

the uncertainty about their likelihood, which informally depends on the quality and
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quantity of information at his disposal. As defined by Ellsberg, ambiguity is the
“quality depending on the amount, type, reliability, and ‘unanimity’ of information.”
The major limit of SEU is that it assumes preferences wellspecified enough to derive
a unique additive probability measure so that an SEU maximizer, by construction,

does not mind ambiguity.

The task is then to construct a plausible model of behavior that allows for the
possibility that the ambiguity associated with events affects behavior. There are two
alternatives in the literature to capture this same idea.

Kahnemann and Tversky [23] first suggested that, under uncertainty, a lottery f is
perceived by the decision maker in a “distorted” way as a g = Go f, where G : [0, 1] —
0, 1] is a strictly increasing and continuous transformation. So the spirit of this first
approach, later formalized by Schmeidler [8] and known as Choquet Expected Utility
(CEU), is to retain the uniqueness of the probability measure representing beliefs,
whilst relaxing its additivity (that is, possibly P(AUB) # (P(A)+ P(B)—P(ANB)).
The more non-additive the belief, the less confident the decision maker is about his
beliefs.

The alternative is the multiple priors model, as axiomatized by Gilboa and Schmei-
dler [4], where people are assumed to have probabilities that are additive but not
unique and to choose according to a minimax decision rule.® Since the decision
maker has not enough information to confidently form a single probability distribu-
tion, he uses a set of priors (', that is, all the priors “compatible” with his limited
information. In order to rank lotteries, he calculates each lottery’s expected utility
for every probability distribution in C' and then, being uncertainty averse, chooses

the lottery that gives the largest minimum of these expectations:

max V(f) = max gleucl/ﬂu(f(w)) P(dw).

The larger the set C', the less confident the decision maker is about his information,

3This idea was not new in the literature. Hurwicz [22] showed an example of statistical analysis
where some degree of ignorance prevents the statistician from forming a unique prior, but still does
not lead him to apply Wald’s minimax decision rule with respect to all the priors.
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i.e., the more ambiguity there is in the decision problem.

Notice that these two approaches capture the uncertainty of beliefs in a similar
fashion and in many situations yield the same behavioral predictions. As shown in
Schmeidler [8], the two approaches coincide when the set of possible priors is the core
of a convex capacity. But neither approach is nested in the other.* I have chosen
the multiple priors Minimax Expected Utility (MEU) model mainly because of its
more immediate mathematical representation, which allows for some straightforward
comparative statics and possibly a dynamic extension. Furthermore, in most cases
the nexus between information and beliefs is easy to interpret, and this will turn out

to be helpful in experimental settings.?

3.1.2 Related literature

Krasker [25] first proposes minimax portfolios as an alternative to traditional theory
of portfolio selection, assuming that investors choose their portfolio so as to provide
the highest guaranteed expected utility, with the true distribution lying in an e-
neighborhood of their belief P. He characterizes the optimal portfolio by proving
that it corresponds to the minimax portfolio, and it cannot feature shortsales. The
reason is that the problem is set up as a zero-sum game in which the investor chooses
a portfolio in his budget set and Nature chooses a distribution for the risky asset
values, and these values are assumed to lie in the non-negative orthant. If the investor
then sells an asset short, even low-probability events can greatly lower his expected
utility. According to Krasker, this explains why the apparent diversity of traders’
beliefs does not lead to observe an otherwise reasonably extensive use of short-sales
in real markets. The results of his paper, showing that minimax behavior leads to

reasonable (broadly diversified) portfolios of the sort we observe in practice, then lend

4As pointed out in Gilboa [3], relaxing the additivity of probability creates some problems. For
example, maximizing u(z) does not necessarily coincide with minimizing —u(x); and some appealing
properties of standard conditional probabilities are violated. According to Gilboa, these problems
might be interpreted as normative reasons to prefer approaches with additive probabilities.

®As an illustration, consider a simple dichotomous event (such as it will or will not rain tomorrow).
an SEU decision maker would summarize his beliefs by a probability, e.g. p = 1; a less informed
decision maker could summarize his beliefs by an interval, say between % and 1, if he just knows
that rainy is more likely than sunny; if completely ignorant, his belief set would be the whole [0, 1].
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some support to minimax hypothesis.

Dow and Werlang [1] consider a portfolio choice problem, and show that there
is an interval of exogenously given prices at which a CEU agent holding a riskless
position neither buys nor sells short a risky asset. Epstein and Wang [13] extend
this partial equilibrium indeterminacy result to a CEU version of Lucas’ asset pricing
model. Despite the strong incentives to insure in the CEU model (due to pessimism),
price indeterminacy and no trade may be features of equilibria in economies without
aggregate risk.

Rigotti and Shannon [6] use a different approach, as in Bewley [2|, where the
distinction between uncertainty and risk is formalized by assuming agents have in-
complete preferences over state-contingent consumption bundles. Individual decision
making still depends on a set of probability distributions, but now a bundle is pre-
ferred to another if and only if it has larger expected utility for all probabilities in
the set. In this setting, the presence of uncertainty generates robust indeterminacies
in equilibrium prices and allocations for any initial endowment.

The robust control framework of Hansen, Sargent, and Tallarini [21] is similar to
the Epstein and Wang’s approach. They use the recursive intertemporal formulation
of uncertainty aversion, and this specification facilitates dynamic programming and
preserves dynamic consistency. Maenhout [27] includes model uncertainty and port-
folio rules’ robustness along the lines of Hansen, Sargent, and Tallarini, but for a
methodological modification, namely homotetic robustness. Robustness dramatically
decreases the demand for equities and is observationally equivalent to stochastic dif-
ferential utility, the continuous-time version of recursive preferences in the sense of
Epstein and Wang. Robustness can thus be interpreted as increasing risk-aversion
without changing the preference for intertemporal substitution. Furthermore, when
deriving equilibrium asset pricing implications, robustness increases the equity pre-
mium and lowers the risk-free rate. However, in order to match the historically
observed equity premium and risk-free rate, an excessive degree of pessimism is re-
quired, as the endogenous worst-case scenario turns out to be the equilibrium equity

premium under expected utility. Thus the equity premium puzzle shows up again,
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even though in a different form.

Another partial solution to the puzzle is proposed by Epstein and Zin [15], where
they integrate a different nonexpected utility model (Rank-Dependent EU) into a
multiperiod representative agent model and examines its implication on the equity
premium. The relevant property of such preferences is that they exhibit “first-order”
risk aversion, so that the risk premium for small bets is proportional to the standard
deviation rather than the variance. Given the smoothness of aggregate consumption
data, the growth rate’s standard deviation is considerably larger than its variance,
and the model is able to predict both a small risk-free rate (2.6) and a moderate
equity premium (1.6). Thus their model only partially resolves the puzzle.

Routledge and Zin’s [30] setup is the closest to my model, but their approach
is very different. Similarly to my work, they use Knightian uncertainty to describe
model uncertainty, and use MEU preferences to characterize investors’ aversion to
this uncertainty. Their approach, though, is mainly computational, and as closed-
form solutions for the optimal policies of their dynamic program are unavailable, they
offer a computational algorithms that can be used to solve numerical versions of this
model. In a specific case, where traders’ beliefs differ only about the variance of
the distribution for future consumption and there are only two possible values for
it, they show that an increase in uncertainty can lead to a reduction in liquidity as
measured by the bid-ask spread set by a monopoly market maker. In addition, “hedge
preferences” for the market maker can look very different from those implied by a

model without Knightian uncertainty.

3.2 The classical model as a benchmark

Consider a two-period version of Lucas [26] economy. Output is produced only by
capital and is completely perishable. Production is stochastic and entirely exogenous,
in the sense that no resources are utilized and there is no possibility of affecting the
output of any unit at any time. The total capital stock z is assumed to be constant

over time and so is the per capita Z. Ownership in these productive units is determined
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each period in a competitive stock market, at the price p. Each unit has outstanding
one perfectly divisible equity share, which entitles its owner of all of the unit’s output
in the same period. Also, risk-free bonds b are traded in the market at a (normalized)
price of 1.

Each investor is firstly endowed with some amount of the risky capital z;, and each
unit of capital produces d; units of the consumption good. During the first period,
both the capital and the consumption good are traded in the market. Wealth, as
represented by (p+ di) z1, can be allocated to consumption in period 1 ¢y, risky

capital zo or risk-free bonds b:

(p+di)z=c1+pn+b (3.2.1)

In period two, resources are represented by the capital income plus the value of
bonds, as given by the interest rate r. All the available wealth is now allocated to

consumption cs:

Coy = dQZQ + b (322)

The “classical” economy has a single representative household, which orders its
preferences over consumption plans by the following additive (across periods) utility

function:

U=u(c)+ BE [u(c)]

where u is the current period utility function, 3 is the subjective time discount factor
and the expectation E is taken with respect to the distribution of dy. Along with the
literature, I assume that v’ > 0, v’ < 0, and 0 < 8 < 1.

In period 1, each agent chooses c;, b and 2o which maximize U subject to the

constraints 3.2.1 and 3.2.2, that is

max U = u(c;) + BE [u(deza +710)] st (p+di)z =c1 +pza+b

c1,b,22
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Assume further that w exhibits constant absolute risk aversion: u(z) = —e "
where «, measuring the curvature of the utility function, is the coefficient of risk
aversion. For notational simplicity, I assume that « is the same for every agent, even
though I will show how this restriction can be easily relaxed. For now, I also assume
just risk and no ambiguity, that is, dy «~ N (i, 0%).

Under these last two assumptions, the maximization problem becomes

max —e ' + BE [—e =] st (p+dy)z =1 +pzo+ b (3.2.3)

c1,b,22

In the appendix I solve for the optimal holding of risky assets and consumption,

and find

pr=p—aotz (3.2.4)

yielding the following result as a special case of Lucas’ model:

Lemma 6 The demand functions for each agent j in the classical economy are given

by

e (.25

ao?

ac?z3?

2

1
cij = - InBr+rb+ pz; — (3.2.6)

Equation 3.2.5 shows that the optimal amount of risky capital is an increasing
function of the expected value for the dividend and a decreasing function of the price
of the risky asset, the risk-free rate of return, the variance of the risky payoff and the
coefficient of risk aversion.

When the capital market is in equilibrium, p and r are such that the sum of the

net demands over the population is equal to 0:
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Z (Z;j — le) =0 and Z (b; — blj) = Z b;k =0
J J

J

thus implying the following equilibrium conditions for the average demands:

Lemma 7 The equilibrium conditions for average demands in the classical economy

are

R (3.2.7)

b =0 (3.2.8)

ao?z?
2

1
[ - InBr + pz — (3.2.9)

Notice that in this case Z; = zp; as everyone is equal (so far). When allowing
for different coefficients of risk aversion for each agent, Equation 3.2.4 becomes pr =
p — @o?z5 and the results that follow can be easily generalized in a similar way in
order to account for different «a;’s. Given this correspondence with the case of a
representative agent with a properly weighted coefficient «;, from now on I keep a to

be the same for every agent and gain notational simplicity.

Also, given the assumption that the consumption good is perishable, in the first
period the average (and aggregate) consumption for the population is equal to the

average (respectively, aggregate) output of the consumption good:

¢ =diz (3.2.10)

Substituting Equation 3.2.10 into Equation 3.2.9 and solving for the equilibrium

interest rate and price, I obtain
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Lemma 8 The equilibrium interest rate and price in the classical economy are given

by
1 20222
rt = Beaz(“*dl)* 2 (3.2.11)
2-9 1 = d a2o222
pr=(u—aoz )Be*az(“* DA (3.2.12)

Notice that, in the special case when ¢ = 0 (no risk) and p = d; (that is, the
agents expect the same dividend over time), the equilibrium interest rate is equal to
1

the rate of time preference: r* = 3 So Equation 3.2.11 indicates that under risk

r* £ % because of two distinct reasons:

e i # dy: when p > dy people (on average) expect to consume more in period 2
than in period 1. So they try to borrow in order to increase ¢y, thus driving r
up.

a?o?z?

° , reflecting precautionary savings. As riskiness of the future income in-

creases, savings in period 1 tend to increase and r decreases.

3.3 Introducing ambiguity

I introduce ambiguity in this capital market framework as modeled in Gilboa and
Schmeidler’s multiple priors model. When an agent does not have enough information
to confidently form a single probability distribution for the risky dividend, he uses a
set N, of all the priors compatible with his limited information. In this case, I assume
that the lack of confidence about mean and variance of the dividend distribution
induces an agent to think of intervals as possible ranges for such values. So assume

dy ~~ N (,uj, 0?), with support m; < p; < M;, s? < 0]2- < S?, so that Nj; is a rectangle
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in the mean-variance space. Heterogeneity of agents is modeled by allowing different
agents to have different supports for the dividend distribution.
As in Gilboa and Schmeidler, I assume ambiguity aversion. When computing his
expected utility from a given investment and consumption plan, an agent uses the
prior minimizing such an expectation: V (z) = ]{%{}J [ u(z) N (dz). The optimization

problem then becomes

max —e 4+ gV [—efa(dﬂﬁrb)] st (p+di)z =c1+pzo+b

c1,b,22

where

174 [_e—a(d222+Tb)] _ e—arb min / _e—adQZQN (ddg)

NEN;
—arb_ —adaz 1 _(d%l;jf
= e 1131(11]%/—6 2 2\/2_7%6 ioddy  (3.3.1)
Notice that a minimizing solution exists, as the correspondence is continuous and,
by assumption, N; is closed and convex. Also, it is simple to check that the last
integral in Equation 3.3.1 is minimized at m;, S]?. Such values for mean and variance

correspond to the dividend distribution that is second-order stochastically dominated

by all the other distributions in the support N;. So Equation 3.3.1 becomes

1% [_e—a(dgzz—i-rb)} _ _e—a(rb—i—mjzg—%sjzz%)

The problem then collapses from multiple priors to a unique, though possibly

different among agents, prior distribution. So the model can be interpreted as a model

6In this section there is no need to impose any restriction on agents’ supports. However, when
comparing my results to the empirical findings about the equity premium, I will need to impose
some kind of structure, which I model in a general and economically intuitive way. That is, I will
assume that, whenever a “true” distribution exists (else, an objective distribution, as assumed in the
classical model), it belongs to the intersection of all the agents’ supports. This guarantees that no
one is ever “so wrong” as not to include the true distribution among his possible beliefs. Notice also
that this assumption is quite general, in the sense that any point in the intersection of the supports
share the same properties as needed for the comparative exercises proposed later, that is, they all
have higher mean and lower variance than agents’ subjective beliefs.
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of heterogeneous beliefs: differences in information, as captured by different supports
for the plausible dividend distributions, turn into different beliefs. Ambiguity plays
a role in the sense that, among all the plausible beliefs, agents act on the basis of the
worst one, that is, they compute expectations with respect to the most pessimistic,
or cautious, probability distribution in their beliefs’ support.
All the first-order conditions as computed above are the same, but for replacing

g with m; and o® with S7. I thus obtain

Lemma 9 Under heterogeneous, ambiguity-averse beliefs, the individual demand func-
tion for the risky capital is given by
. mj — pr
2y = ———— 3.3.2
2j OZS? ( )
As noted earlier, it is possible to compare the optimal demand under ambiguity
to the classical case only when assuming the existence of an objective distribution
N(u,a?) for the dividend and some restriction about agents’ information (that is, the
objective mean and variance are always included in the everyone’s support). Then, it
is always the case that zy < z5. For this section only, I keep a completely subjective

probability framework, but will turn to this assumption in later sections.

Along with the analysis in Section 3.2, I study capital market equilibrium con-
ditions by considering the equilibrium averages for all the decision variables. Let n

denote the number of agents in the economy. I incur in the following difficulty:

_— 1 n B 1 n % _E n i B
2= EJZ aS? _omj_l(Sg) an“ (Sz)_
Sl 0S
J i#] j

j
an HSJQ pr HS]Q
j j

so that it is not straightfoward to provide any simple closed form solution or compara-

tive static results. This computational difficulties are not uncommon in this literature
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(see, for example, Routledge and Zin [30]).
In order to simplify the analysis and be able to say more about the equilibrium
conditions, I split the problem and assume that agents lack relevant information
about either the variance or the mean of the dividend distribution, thus holding

(respectively) subjective risk or subjective expectation beliefs.

3.3.1 Subjective risk

Let us start assuming that all investors have identical subjective expectations, but
different risk assessments: dy «~ N (u, 032.), with support 3? < 0]2 < SJ2 The demand

function as of Equation 3.3.2 then simplifies to

p—pr

T}S‘? (3-3-3)

Zgj =

Let av <$> = %Z% Under subjective risk only, heterogeneity does not play a
J ] J

role anymore and we are back to a representative (but still ambiguity averse) agent

economy:

Theorem 2 Under ambiguity about the variance of the risky assets, the equilibrium

demand for risky asset and consumption are respectively:

_ s
w (%)
- 1 1
¢ =——1Inpr+pz— N (3.3.5)
a

2Z 1
@ (%)

that s, av (é) 1s a sufficient statistic for the cross-sectional distribution of subjective

J
risk beliefs.

Proof: Computing the equilibrium average condition for risky investment yields



so that in equilibrium

pr=p——7—
o (3)

Substituting for pr in Equation 3.3.3 I find that the demand for risky capital is a

decreasing function of the subjective risk assessment:

ol

~ z _
295 = = z

() = (3

Similarly, computing the equilibrium average consumption yields

aS77;
2

1 ~
¢ = ——Inpfr+av(pz) —av (
a

1 o«
= —alnﬁr+pz—§av(?5]2)

Asset prices in this case will then correspond to the homogeneous economy where

1

all investors have identical risk assessments equal to 02 = . The introduction of
av 52>
J

heterogeneity of o does not allow then for interesting departures from the traditional
representative agent model. Ambiguity still plays a role in the sense that consumption
in the first period will always be smaller than what predicted in the classical model,
thus driving the equilibrium interest rate down as well. Also, the ex-ante equity
premium will be higher than the classical prediction, but only for larger values of the

subjective variance assessment.”

"More precisely, the ratio of the ex-ante ambiguity-averse and classical equity premia is equal to
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However, the equilibrium allocations only depend on the first moment of the cross-
sectional distribution of subjective risk beliefs, and the economy can be summarized
by a representative ambiguity-averse agent. For this reason, in the following sections I
ignore cross-sectional variation in o2 , and separately analyze the effects of ambiguity

and heterogeneity over equilibrium allocations for the case of subjective expectations.

3.3.2 Subjective expectation

Let us turn to the case of identical subjective risk assessments, but different subjective
expectations. So assume dy «~ N (p;,02), with support m; < p; < M;. The demand
function for this case simplifies to

m; — pr

Ty = L (3.3.6)

ao?
Denote by m and o2, respectively the mean and the variance of the cross-sectional

distribution of m;. Homogeneity with ambiguity aversion simply corresponds to the

2

case in which m; = m for every j, and thus o7,

= 0. Furthermore, homogeneity

without ambiguity is obtained whenever the support is degenerate: p; = m; = m,

and we are thus back to the classical case.® In this context, heterogeneity can be

thought simply as a mean preserving spread on the cross-sectional distribution of the

mean of the dividend. Under heterogeneity, capital market equilibrium requires that
= m — pr

22:7222
ao

yielding:

the weighted ratio of the equilibrium prices for the risky asset: ggz = %, where the_equilibrium
price is a decreasing function of S? whenever S? is large enough (precisely for S? > %;22)

8Notice that it is not necessarily the case that p; = my, all that matters is that the support is
degenerate: p; = v; = U. However, in the first part of this section the notation is kept simpler on
purpose, so to induce to think of heterogeneity just as a mean-preserving spread, no matter whether
the mean is subjective or objective.

Keeping this in mind, all the following comparative results relating only to the presence of
heterogeneity (o2, > 0) hold with either of the homogeneous cases, with or without ambiguity. We

will turn to ambiguity per se by the end of this section.
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pr=m — ac’z (3.3.7)

The equilibrium condition for pr to be positive is a condition on the distribution

Tae
of m;’s:

pr>0&m> a0’z (3.3.8)

In other words, for the risky capital to have a positive price, on average investors
have to believe that the expected payoff to z, is sufficiently large. Notice that this does
not imply that everyone will have a positive demand for risky capital in equilibrium.
Pessimistic investors, that is, investors with the lowest m;’s, will sell short. On
average, though, there will be a positive demand for z,. Except for condition 3.3.8, 1
do not assume any other restriction on the cross-sectional distribution of m;.

Substituting for pr in Equation 3.3.6 I find the equilibrium optimal holding of z:

m; —m

By = e 7 (3.3.9)

Two facts about Equation 3.3.9 are worth noticing. Firstly, 2, is a decreasing

29

m:*

function of the subjective average expectation m whilst it does not depend on o
Secondly, it differs from both the classical and the homogeneous ambiguity-averse
optimal holding. Moreover, the extent of such difference is an increasing function of
the difference between the subjective expectation assessment and the average over
the population:

m; —m —

32—5:?2—,2;:?20@7@2771

We thus proved the first part of the following:

Theorem 3 Under heterogeneous beliefs about the mean of the risky dividend, and

9This is an immediate result of the fact that the equilibrium pr is a function of 7 whilst it does
not depend on o2,. Notice then that if r is exogenous to the model, the equilibrium price for the
risky capital p would only depend on the first moment of the cross-sectional distribution of beliefs,

and not be affected by a mean-preserving spread in the beliefs.
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condition 3.3.8, the equilibrium risky holding and average consumption are given by

_ 1 2 2 (=\2
c1=——Inpr+mz+ L C)
« 2002 2

Proof: Turning to the equilibrium condition for consumption:

_ 1 222
¢ =——Inpfr+a (mz*) — av <oz0222> (3.3.10)
a
where
P m; (m; —m) =)
cw(mjz) = av T+mjz =
o2
and
ac’zs e o2 (m; —m)° o_Mj — T
Cw( 2 > B §av< a?ot +0%(7) +20%7 ao -
—\2
_ oo f(m—m)" (m; —m) \ _
B §av< a?o? To(E) 2 o B
2
Q Om 2 /=\2 o
= 5( 3,7 T O (2) +O>—
o2 ao? (z)°
= n 3.12
2002 * 2 (3:3.12)

Substituting for these expressions into Equation 3.3.10, the equilibrium average con-

sumption becomes

~ 1 o2 ao? (z)*
| m_ 31
1 - n Br +mz + g2 5 (3.3.13)
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Notice that the introduction of heterogeneity into the economy leads to greater
consumption and thus higher interest rate, than in the traditional, homogeneous
case. More formally, recall that in equilibrium it is the case that ¢, = d;Z, given the
assumption that the consumption good is completely perishable. By substituting this

into Equation 3.3.13, and solving for the equilibrium risk free rate:

2 2222
7 leai(mfd1)+;—;ng*%

8

By letting r° denotes the homogeneous equilibrium interest rate, it is always the

(3.3.14)

case that

Theorem 4

2
Im
2

7 =re20? (3.3.15)

Notice that the effect of o2, > 0 on the equilibrium interest rate comes from
two different, opposite sources, as it can be seen in Equations 3.3.11 and 3.3.12,
respectively. Firstly, an increase in 02, increases the average of the subjective expected
value of dy ’s income, increasing the current consumption. Secondly, an increase in
o2 increases the average value of the variance of dy’s income, decreasing c¢; because
of precautionary savings. With constant absolute risk aversion, as in my case, the
first effect dominates the second one. The total effect will then be an increase in the
current consumption, thus raising r relative to what predicted under homogeneity.
Thus heterogeneity per se cannot explain the risk-free rate puzzle.

As for the equilibrium price for risky capital I find that

o o2, | a?o2(z)?
P = (M — ao’z)=e @M= 3+

so that p is a decreasing function of the cross-sectional variation in the m;’s. Despite
of the fact that an increase in o2, increases both the expected returns on bonds and
stocks, I will compare these effects in the next section and show that they sum up to

a well-specified prediction about the effect of heterogeneity on the equity premium.
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On the contrary, when disregarding heterogeneity (2, = 0), the effect of ambiguity
per se is to decrease the first-period consumption relative to the classical model, and
thus predicting a lower interest rate in equilibrium. Also, in a similar spirit to what
I found under subjective risk, the ex-ante equity premium will be higher than the
classical one, with a caveat: this is true only for 7 small enough.'® More interestingly,
though, under the assumption of the existence of a “true” distribution (as of historical
realizations), the effect of ambiguity aversion on the equity premium is well-specified
for any value of the parameters, thus allowing a discussion about the difference in

predicted and realized values of the equity premium.

3.3.3 Equity premium

The introduction of ambiguity and heterogeneity in beliefs has important implica-
tions for the so-called equity premium puzzle as discussed by Mehra and Prescott
[28]. The equity premium is the excess rate of return on equities relative to risk-free
bonds. When computing the implied equity premium for the representative agent
asset pricing model calibrated to the US economy, they predicted that the equity pre-
mium was less than 35 basis points. However, the observed value for the US economy
over the period 1889-1978 was slightly more than 600 basis points. This failure of
the asset pricing model to predict an empirically plausible equity premium has been

held as evidence against it.

Mehra and Prescott’s model assumed homogeneous beliefs across agents. In the
first part of this section I show how introducing heterogeneous beliefs can increase
the equity premium.

The ex-ante equity premium is defined as Ex = % — r. With subjective het-
erogeneous expectations, the equity premium for agent j is given by E7 = % -,
whilst the cross-sectional ex-ante average equity premium is ET = % — 7. Recall the

equilibrium relation for p and r as in Equation 3.3.7: pr = m — ao?z. Substituting

10More precisely, the ratio of the ex-ante ambiguity-averse and classical equity premia is equal to
the ratio of the equilibrium prices for the risky asset: ZE- = L_ . where the equilibrium price is an

Ex* — P
1+a®0°%> )
= .

increasing function of T whenever T is small enough (precisely for ™ <
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for r in the expression for E7 yields

oo’z

p

E7 =

For the case of homogeneous beliefs (that is, when m; = m for every j, 02, = 0),

denote by p°® and 7° respectively the equilibrium price for risky capital and the equity

2

premium. Recall that, in a similar fashion, p°r° = m — a0’z and E7° = O‘;—OE. The

relationship between the homogeneous and heterogeneous equilibrium interest rates

2
Im

is given by Equation 3.3.15: 7 = r*e22. It immediately follows that

2

Corollary 1 The equity premium is greater under heterogeneous beliefs than under

homogeneity:

Ex > E7°

that is, a mean-preserving spread in the cross-sectional distribution of beliefs leads to

a higher ex-ante equity premium.

This means that, whenever the equity premium is calculated by assuming homo-
geneous beliefs, it will be underestimated. Moreover, the extent of such an underes-

timation is a strictly increasing function of the variance of expectations.

The results presented so far are not uncommon in the existing literature, where
departures from standard assumptions are used to predict a greater ex-ante equity
premium. However they do not explicitly solve the equity premium puzzle: strictly
speaking, the puzzle concerns the spread of observed returns on equity portfolios
over the observed returns of a riskless security, and should thus be analyzed from an

ex-post perspective.

HMaenhout [27] also investigates an ex-post perspective, by comparing the ex-post equity premium
to the model that the decision maker uses to determine optimal investment in stock, which includes
an assessment of the ex-ante risk premium. He finds that, in order to explain the ex-post equity
premium, the ex-ante risk premium should have been extremely low (0.03. His analysis of the ex-
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In terms of my model, and more generally for the class of models incorporating
subjective beliefs and aversion to ambiguity, this distinction is crucial as people act
on the basis of “incorrect” beliefs in the sense of being consistently biased towards
the worst case. That is, we should compare the predictions for the ambiguity model
to the true (historically observed) realizations of the equity premium.

So consider the ambiguous, homogeneous case. People’s beliefs are represented
by a common N(m,o?), and they trade at equilibrium prices p® and 7% So they

expect the equity premium to be equal to E7* = 1% —re

However, the realized
(ex-post) equity premium will always be higher: under the assumption that a true
distribution exists, and people are averse to ambiguity, the “true” distribution will
be N(u,0?) with g > m. By thinking of u as the realized historical mean for the
stock price, it would always be the case that the realized equity premium is higher
than what investors could predict on the basis of their beliefs and thus trading prices.
Whenever consistently biasing their priors due to aversion to not knowing the “true”
probabilities (that is, the ones that they would be able to measure ex-post), investors

(and empiricists) may have been “surprised” by the equity returns they receive: this

provides a different, still rational resolution of the equity premium puzzle.

3.4 Some concluding remarks

Some of the model’s restrictions call for appealing extensions, mainly to introduce
multiplicity of periods and/or risky assets. T am also interested in different ways to
think about the priors’ support, by modeling some relation between beliefs about
the mean and beliefs about the variance. Multiplicity of periods with heterogeneous
ambiguity-averse beliefs can be problematic, as it poses questions about updating
(still an open debate in the related decision theoretical literature) and about the

t.12

appropriateness of the equilibrium concep This is strictly related to the distinction

post equity premium is thus close in spirit to the results that follow, but do not share our model’s
mathematical simplicity and a solid axiomatic foundation.

12See Bossaerts [4], proving that rational expectations equilibrium is debatable as an equilibrium
concept when people disagree.
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whether differences in beliefs are explained by different information or different beliefs.
The origin of differences in beliefs does not matter whenever investors do not learn
from prices, which is the case when they simply hold different opinions (rather than
information) about the distribution of the dividend. Under this specification, the
multiperiod extension could be straightforward, and plausibly confirm and strenghten
the results of this work.

This direction would be fruitful in light of the calibration exercises and experi-
ments I plan to perform soon on my model. The equity premium and risk-free rate
puzzles are quantitative puzzles, and require an investigation whether the model’s
predicted order of magnitude is close to what had been historically documented, or
at least closer than what has been proposed by the theoretic literature so far. As
for calibration exercises, the direction is promising: even though heterogeneity per
se is not enough, '3 some help might come from the proposed extensions and/or the
introduction of a random, positive ex-dividend price in period 2 as a further source of
ambiguity. The effects of aversion to the lack of relevant information about the econ-
omy go in the “right” directions and call for both an empirical and an experimental
test of whether any plausible degree of ambiguity could predict sizeable risk premia

for low levels of risk aversion.

13To attribute the observed equity premium to heterogeneous beliefs would require an increase in
the risk-free rate by a factor of approximately 17.
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3.5 Appendix

The maximization problem in Section 3.2 is given by
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max —e ! + GF [—e‘a(d222+Tb)] st (p+di)zr=c1+pzn+bd

c1,b,22

where

2,2
ac”zy

E [—e_a(d2z2+7”b)} — emorbp [_e—adzzz] _ _e_a rbtpzr——;

Thus the Lagrangean function for the problem is given by

2.2
o " z¢
—a rhpzy——52

L(cy, b, 29, \) = —e” ! — Be

and the first-order conditions for the problem are computed as:

oL _
801_

2.2
L —a ZQ*QU z§
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By setting 3.5.1 equal to 3.5.3 and 3.5.2 respectively, I obtain

2,2
ao”zy
2

Y o e
p

2
Uw— ao 2’2)6

2.2
— rb+uzg—a0222
e

—Qc
e " =

Dividing 3.5.5 by 3.5.6:

2
1—pr(u aazQ)

+ Aer +pze+b— (p+dy) ]

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)
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that is,

pr=p— ac’z

as claimed in Section 3.2.
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Chapter 4 Financial markets with ambiguity: an

experimental approach

4.1 Equilibrium prices and ambiguity

This section develops the theoretical model which I will use as a benchmark for my
experimental design and data analysis. I used an a-MEU framework to allow for a test
of ambiguity attitude, where a = 0 indicates ambiguity aversion (MinMax EU, as ax-
iomatized in Gilboa and Schmeidler) and a@ = 1 indicates ambiguity loving (MaxMax
EU). The original model was conceived under the assumption of risk-neutrality. Given
evidence of some degree of risk aversion in the financial experiments, I extended the
model as to include a generic functional form for the utility function.! The quadratic
specification will be assumed only for calibration purposes in the experimental data

analysis.

Formally, suppose there are three states of the world X, Y, and Z, and three Arrow-
Debreu securities denoted z,y, and z after the states of the world, for notational

Y and the per capita capital

simplicity. Each investor’s initial endowment is 2°, 1, z
stock is denoted by 7,7, and Z. Given his budget constraint, every investor chooses

a portfolio of securities that maximizes his expected utility:

maxEU (x,y, z) subject to p,x + pyy + p,z < ez’ + pyyo +p,2°

T,y,z
where p; represents the market price for security ¢, the expectation operator E is
taken with respect to the probability distribution over states of the world, and U is
additive, separable and strictly increasing.

As in Lucas, I assume a single investor with ambiguity parameter «, and leave

the interesting case of heterogeneity for future investigation.

!See Berg, Dickhaut, and Rietz [1] for induced risk-neutrality experiments.
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The main departure from the previous experimental financial literature is the as-
sumption that the investor does not know the probability distribution for tomorrow’s
states of the world II = (m,,m,,1 — m, — m,). This assumption can be modeled in
many different ways, but for the purposes of testing experimental data I opted for a
mathematically simple and flexible model, such as Gilboa and Schmeidler’s EU with
multiple priors. The investor’s lack of information is represented by a set of priors,
capturing his beliefs about the plausibility of each event occurring. To make it even
simpler, assume that the investor knows the probability of X occuring, e.g., 7, = T,
but knows nothing about either Y or Z. In this case, the set of priors representing his
beliefs is simply the interval m, = [0,1 — 7| (with 7, = 1 — 7 — 7, ). Assuming ambi-
guity aversion, the investor evaluates each portfolio by its minimum (i.e., guaranteed)

expected utility, where the minimum is computed over his belief set:

max min  wu(z) + mu(y) + (1 — 7 — m,)u(z)
,Y,2 my€l0,1—m]

After few computations the problem reduces to:

max mu(z) + (1 — 7) min{y, 2}
x,Y,z

A second departure from previous models is a tractable generalization of Minimax
EU so as to include a parameter that captures attitude towards uncertainty. In this
model, the investor evaluates a portfolio using a times the maximum and (1 — «)

times the minimum expected utility over the set of priors:

max  {mu(z) +a max [mu(y)+ (1 —7—m,)u(z)] +
,Y,2 my€[0,1—7]

+(l—a) min [mu(y)+ (1 -7 —m)u(2)]}

Ty €[0,1—7]

which is equivalent to
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max {mu(z)+ (1 —7) minfy, z] + a(1 — 7)|u(y) — u(2)|}

I’y’z

From now on, I will refer to strict ambiguity aversion for the case of a = 0, and

ambiguity aversion for o < 3 (where @ = % corresponds to EU or neutrality to

ambiguity).? First-order conditions give the following equations for relative prices:?

~—

b, 1-muly |
p—z = i llw<s ta sign(y — 2)]

(
P _ 1wy o —a signy— 2)]

IS

~— ——

Pe T ()
where
+1 if y> =z
sign(ly—z)=19 0 if y=z¢
-1 if y<z

Given the usual condition of net excess demand being equal to zero, equilibrium
prices are computed under further assumptions about the ranking for the endowment
of y versus z across the population. As in my experimental setup, by setting the total
(and therefore average) endowment of y greater than the one of z, equilibrium prices

are such that

Py _ ozl — 7 u/(7)

b p— (4.1.1)
p: Ca 1 —7mu(Z)

p -~ TV e

2This holds true only in our setting, where the support for ambiguity is linear as there are only
two ambiguous states.

3Closed form solutions for optimal demand can easily be derived when imposing more structure on
the utility function. Also, second-order conditions for a maximum are satisfied whenever u'7(z) < 0,
which is true for the specific quadratic utility function assumed in the next sections.
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In general, whenever the optimal quantity of y exceeds that of z, equilibrium prices

need to satisfy

Py a

— < 4.1.2

0. a (4.1.2)
and conversely, whenever the optimal holding of z is larger,

Py a

— > 4.1.3

P o (4.1.3)

If the optimal holdings of y and z are equal, then neither inequality holds. Equi-
librium prices in my setting need to satisfy the first inequality, that is, some agents
need to be compensated for holding an unequal number of ambiguous state securities,
and in particular a greater number of y. This hypothesis over equilibrium prices is

only ordinal and will be tested in later sections.

4.2 Experimental design

The experiments are set up as a replication of four markets over time, where each
replication is called period. Each of the two sessions I ran (henceforth labelled 020529
and 020619) involved 23-25 subjects and eight periods. At the beginning of every
period, subjects are allocated a certain number of three state securities and cash, as
working capital. During the period, subjects can trade assets in four continuous open
book markets on the web (called Marketscape) for up to fifteen minutes, after which
the dividends were paid according to final holdings.

With the exception of Notes, each asset provides a stochastic dividend. The
dividend is determined at the end of the period by a random drawing of a state out
of three possible states, referred to as X, Y, and Z. Each asset is labelled according
to the state in which it pays 100, and it would pay 0 otherwise. The fourth asset,

called Notes, is riskfree, is in zero net supply and can be sold short up to four units.
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Risky assets can not be sold short. The dividend table is reported in the experiment
instruction in the Appendix. Also notice that markets are complete.

Subjects were given cash at the beginning of each period, and could hold more
cash by selling risky assets or borrow through shortsales of Notes. At the end of the
period though they have to pay their ‘loan’ back to the experimenter, and it is thus
possible for some subjects to make negative earnings. Subjects who incurred losses in
more than two periods in a row were excluded from further trading and would earn
nothing.*

Earnings were computed at the end of each period by using an experiment cur-
rency, called francs, and converted to dollars at the end of the experiment according

to a pre-announced exchange rate.

The experiments are conducting using a trading system, called Marketscape, de-
veloped at Caltech.> Tt had been successfully used in the past for a wide range of
experiments including tests of competitive equilibrium theory, and it provides with a
rich dataset including bids/asks prices and quantities, trading prices and quantities,
portfolio holdings and traders’ identity.%

Subjects are recruited through a database made available by the Caltech Exper-
imental Economics and Political Science Laboratory, and mainly includes Caltech
undergraduate students in the sciences and engineering. Most of the students are ex-
perienced, in the sense that they took at least one class at the Department of Social
Science and already participated in market experiments beforehand.

The main departure from previous financial experiments is the nature and range

of information about the randomness of the states. Subjects are given precise and

4This bankruptcy rule induces risk aversion, due to potential gains in future trading periods,
up to the second last period. This incentive diminishes over time, and so does the induced risk
aversion, thus increasing the effect of ambiguity aversion and the power to discriminate between the
two effects over time.

°To try out the trading system, the reader could visit http://eeps3.caltech.edu/market-demo/ .

6 All this information is publicly disclosed in the open book market, except for subjects’ holdings
and identity. ID numbers are assigned instead, in order to keep anonimity and prevent subjects from
revealing their own parameters and endowments. This is part of the experimental design: in order
to test a model, it is necessary to prevent subjects from deducing the aggregate parameters and
using any of the standard models to price securities. Also, this setup is the closest to real markets,
where most of the available information is limited to market prices.
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common information about the probability of state X, but no information about Y
or 7. The experiment starts with a bin with 18 balls, 6 of which are marked X.
Each of the remaining 12 is marked either Y or Z. Balls are drawn randomly without
replacement, as detailed in the instructions.
Two things are worth noticing. First, the composition of the bin (number of
Y balls versus Z balls) is randomly determined before the experiment. By using a
random device each of the 12 unknown balls is assigned either a Y or a Z, and this
labelling is preserved throughout the whole experiment. Second, none of the subjects
is told the composition of the bin or the random device used, so that no subject has
better information, and no hints are given during the experiment. All the information
about the bin is common, and restricted to what is disclosed in the instructions.
This experimental design is essential and enables me to use the parameterized
multiple priors model for data analysis, and to calibrate the parameters in a controlled
and effective way. Given the information provided to subjects, the set of priors
1

as T, — = and

available to subjects at the beginning of the experiments is m, € [0 2 3

) 5}
for notational simplicity I will refer to it for the next section only. When estimating
data, m, is updated accordingly to the actual draws observed in each experiment and

the information available at each period.

4.2.1 Predictions

The following predictions hold when average endowments are ranked as in 020529

and 020619, that is, y >z > T:

1. EU with risk aversion: p, < p. < p,.

2. MEU with strict ambiguity aversion and risk neutrality: 0 = p, < p, < p. = %,

1

with p, equal to its expected value m = 3

and in between p, and p..

3. MEU with ambiguity aversion and risk neutrality: %a =py < Pr < Py =

2(1 — a), with p, equal to ™ = %

3 and in between p, and p..
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4. MEU with ambiguity aversion and small risk aversion: rankings are preserved
as in the previous case, but shrunk in a way proportional to marginal rates of
substitutions: p, close to 7 = 1 and in between p, and p,, and g—i =2(1 -

3
a)2 G < 2(1 — ).

()

Different types of risk-averse utility functions have been studied and applied to
financial studies, and even though my model does not impose any restriction, I chose
the quadratic function u(w) = w — %wQ to be able to estimate a coefficient b and
capture attitudes toward risk. © Apart from its analytical tractability, this assump-
tion serves two purposes: it allows to separate risk effects from ambiguity effects
over prices; and it allows for comparisons with different financial experiments, whose
estimates can then be used as a benchmark and stress test for my model.

The model provides indeterminate predictions for final allocations, as the following

types and portfolios are possible:

e Ambiguity averse agents hold an equal number of ambiguous state securities;

e Ambiguity lovers hold all of one ambiguous state security, and none or little of

the other;

e Expected utility maximizers hold a mix of ambiguous state security, with more

y than z to compensate for the excess supply.

4.3 Results

4.3.1 Data patterns

Conclusion 5 Models 1-3 are rejected, whilst there is support for Model 4.

7Other functional forms can be assumed and tested to find the best fit to experimental data.
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Standard risk aversion seems supported by the finding of p, as the highest price,
but the prevalence of p, > p. is inconsistent with it, as illustrated in Figures 4.1 and
4.2. As of Figures 4.3 and 4.4, ambiguity averse preferences plus risk-neutrality can
be rejected as well, as p, > m,.

When plotting the ratio of prices over probabilities with initial uniform probabil-
ities T, = m, = %, there is support for risk averse and ambiguity averse preferences.®
For example, in the experiment 020529, as reported in Figure 4.5, p, is always above
its probability; p, follows its probability and drops from period 5 on; and p, is above
its probability from period 4 on, and dramatically above it in periods 7 and 8. In
Figure 4.6 for the experiment on 020619, this trend is even more dramatic when con-
sidering that state 7/ was drawn 5 times out of 8 periods. Still ¥ did not become
too expensive and z remains relatively expensive, thus excluding speculation. Also,
standard expected utility with uniform priors and risk aversion is violated by the fact
that the state price density for z is less than that for z. In particular, when updated

by 7., p. is often above the other prices, and consistently above after period 6.

In conclusion, the state price density is eventually much bigger for z than for x.
This fact has never been reported in the experimental literature on financial markets,
as previous setups always included known probability distributions (thus accounting
for risk only, and not ambiguity). Also, the state price density of y is consistently
below the one for z, so that state price densities are ranked exactly as predicted under
ambiguity aversion.

Lastly, the data confirms the predictions on indeterminacy of final allocations.
Some trends are worth noticing though. First, very few subjects held highly un-
balanced portfolios. Most of the subjects’ final portfolio were consistent with either
ambiguity aversion or expected utility maximization. Secondly, the subjects’ behav-

ior tended to be consistent across periods, and only 9 subjects out of a total of 46

8A justification for the use of the uniform prior is twofold: the uniform prior is a focal point
(and also a natural choice for a EU maximizer who is neutral to ambiguity); and it complies with
Bernoulli’s “principle of insufficient reason.” Furthermore, in a recent experimental study by Chen,
Katuscak, and Ozdenoren [5], when asked to report their beliefs subjects predominantly reported
the uniform prior.
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Figure 4.1: Prices in the experiment on May 29th, 2002.
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Figure 4.2: Prices in the experiment on June 19th, 2002.
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Figure 4.3: Price and probability of = in the experiment on May 29th, 2002.
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Figure 4.5: State prices in the experiment on May 29th, 2002.
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switched from ambiguity aversion to ambiguity loving or viceversa. While confirming
predictions on final holdings, these observations call for the introduction of hetero-
geneity of attitudes toward ambiguity across subjects, in order to capture some of

this complexity.

4.3.2 Statistical analysis

Since the directional effects of ambiguity aversion on asset prices are similar to the
ones of risk aversion, it is important to separate the two effects. In my setting,
ambiguity does not play any role on the pricing of asset X since subjects know the
probability distribution over outcomes {0,100}. So I can first compute the smallest
risk aversion coefficient b that explains the observed p,. Then, by using b to calibrate

u, I estimate a for the observed p, and p,.

Conclusion 6 There is support for both risk aversion and ambiguity aversion. The
estimated parameters are b = 0.0026 and @ = .0319 for the first experiment, and

b=0.0024 and & = .0415 for the second one.

In order to estimate attitudes toward risk, I use the observed prices for the asset

involving no ambiguity and regress the following:

Dz
100

— T, = a— bm,T

where p, is the price of x normalized due to experiment currency, T is the market
portfolio, and b is the estimate for the risk aversion coefficient b. Table 4.1 summarizes

the results.

Notice that the estimated risk parameters are consistent with the estimates of
previous literature in financial experiments. In the subsequent analysis, T will use the

estimated b’s to isolate the effects of ambiguity.
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‘ Expm ‘ 020529 ‘ 020619 ‘ 020529 ‘ 020619 ‘

Beta .0026 .0024 .0007 .0007
(.0003) (.0007) (.0001) (.0000)

Constant | —.1830 | —.1555 || restr=0 | restr=0
(.0295) (.0708)

Standard errors in parentheses.

Table 4.1: Risk coefficient estimates.

| Expm [ 020529 [ 020619 [ 020529 [ 020619 |

Alpha 0873 8158 .0105 0111
(.2432) (.2892) (.0001) (.0002)

Constant || —8.4507 | —439.583 | restr=0 | restr=0
(24.1666) (28.7812)

Standard errors in parentheses.

Table 4.2: Ambiguity coefficient estimates for relative prices.

I ran two different regressions to test for attitudes toward ambiguity, both involv-
ing relative prices as in Equation 4.1.1 where u/(w) = 1 — bw. The first regression

involves prices for the two “ambiguous” assets:

py -~ Al - bg
— =c+d
D 1—-0bz
where d is the estimate for the ratio 12—, so that in the following table o = %:

The regression results are poor, especially for the second experiment, due to lack
of variability in the regressor. Next, I use relative state prices densities (instead of
relative prices) and regress, for example:

1-bx p, ~TyUz

=

so that fcan be directly interpreted as a. The next table reports the estimates.

The estimated ambiguity parameters are always less than %, whenever significant,

thus suggesting ambiguity aversion. This result is not surprising from a decision-
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| Expm | 020529 | 020619 |

Alpha .0319 .0415
(.0039) (.0041)
Constant || —.2112 | —.7425
(.0100) (.0136)

Standard errors in parentheses.

Table 4.3: Ambiguity coefficient estimates for weighted relative prices.

theoretic point of view, given the large volume of studies replicating the Ellsberg
experiment and its variations. However, its relevance in the economic experimen-
tal literature is twofold: first, it sheds some light on previous financial experiments
testing the Capital Asset Pricing model under risk. However, I would like to run an
experiment involving my parameters and risk only, in order to make the comparison
more direct and the calibration exercises more effective. Secondly, my results are in
sharp contrast to what found by [5], who reject ambiguity aversion in experimental
first-price auctions. While a deeper understanding of the differences in the theoreti-
cal and experimental setups is required, the mixed nature of the results suggests that

ambiguity attitudes might be context-dependent.
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4.4 Appendix

[. OVERVIEW

The notes given here are examples. The actual number of securities and number

of states may be different.

1. The markets

Your version of Marketscape consists of four different markets that will be con-
ducted in a sequence of trading periods. In three of these markets securities will
be traded. These three securities, SECURITY X, SECURITY Y, and SECURITY
7, have a one period life. That is, the SECURITIES pay a single dividend and are
removed from the system at the end of the period. In the fourth market instruments
called NOTES will be traded. The NOTES are very special instruments that allow
you to borrow and loan money. The currency used in all markets is called francs.

Each franc is worth ______ (possibly sent to you by email).

2. Timing of events

At opening of each period you will be given, as ”working capital”, a portfolio of
units of SECURITY X, units of SECURITY Y, units of SECURITY Z and some
francs (cash). The time remaining in the period will be shown at the top of the
main page in Marketscape. You will be able to trade in the markets while the period
is open. At the end of the period all markets will be closed. The dividend levels
will be determined randomly and distributed according to the portfolio you hold at
the close of the period. Your income for the period consists of the dividends on the
securities you hold at the close, as well as the cash you hold at that point, minus a
predetermined payment (a "loan” repayment) for the working capital you were given
at the beginning of the period. This income will be recorded as your earnings for
the period. Your working capital will be automatically refreshed and a new period
will open. That is, there is no carryover of Securities, Notes, or francs from period to
period. You are free to purchase and sell as many securities as you want within the

limits imposed by your working capital. Marketscape will not allow you to purchase
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securities if you do not have the francs to pay for them. Furthermore, Marketscape
will not allow you to sell securities unless you actually have them in inventory. That is,
you cannot go short in securities and you cannot purchase securities beyond the limits
of your francs. However, as will be explained below, you will be able to undertake

limited borrowing in addition to the working capital.

3. Dividend Determination and Trading Of Notes (Borrowing)

The actual dividends paid by Security X, Security Y and Security Z will depend
on a randomly drawn STATE. There are three possible states, referred to as X, Y,
and Z. The likelihood of these states will be detailed below. Securities are named
after the state in which they pay 100, and they pay 0 in the other two states. The
dividend that a security pays in each state is uniquely determined from the table that

follows. Notes have a special status as will be explained.

Dividend Table

X Y Z
Security X 100 0 0
Security Y 0 100 0
Security Z 0 0 100
Notes 100 100 100

For example, if the state is X for some period, then the holder of Security X will
receive 100 francs for each unit held at the end of that period and the holder of
Security Y will receive 0 francs for each unit held at the end of that period. If the
state drawn for the period is Y then the numbers are 0 and 100 respectively, and if

the state is Z they are both 0.

Notes are like bonds or IOUs that allow you to borrow and loan francs. Selling
a Note is like borrowing the amount of the sale price. Buying a Note is like loaning
the amount of the sale price. For each Note you sell you must pay the holder 100
francs at the end of the period. This payment will automatically be deducted from

your francs and dividend payments at the end of the period. That is, if you sell a
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Note for 75 francs you have borrowed 75 francs and for this loan you repay a total of
100 at the end of the period. Effectively “you repay the loan” of 75 francs plus a 25
franc “interest” payment. If you buy a note for 75 francs then you have loaned the
seller 75 francs until the end of the period and for this loan you will be repaid a total
of 100 francs, in essence the 75 francs plus a 25 franc “interest” payment. Clearly
no one should buy a Note for more than 100 francs because it means that the buyer
loaned more than would be repaid. At the beginning of the period you will be given
no Notes. If you sell Notes your inventory will be listed as negative, indicating that
you must pay 100 francs on each of these, and if you buy Notes your inventory will
become positive indicating that you will be paid 100 francs for each Note you hold.
However, Marketscape will not allow you to sell over four (4) Notes (net) in any given

period.

4. Determination of States

There are 3 possible states: X, Y, and Z. We start with a bin with 18 balls, 6 of

which are marked X. Each of the remaining 12 balls is marked either Y or Z.

Two things to notice about the bin: first, the composition of the bin is randomly
determined BEFORE the experiment. By using a random device, each of the 12
unknown balls was assigned either a Y or a Z, and this labeling will not change
throughout the experiment. Second, none of the participants in todays experiment
was told about the composition of the bin, and no hints will be given at any point of
the experiment. All the information is common, and restricted to the bin as illustrated

above.

States are drawn RANDOMLY WITHOUT REPLACEMENT, as follows. After
the first period, we draw one of the balls at random. Imagine that the draw is X.
The next draw, after the second period, is from the same bin, but now with 17 balls
left, namely, 5 of X, and 12 of Y and Z in unknown proportions. This means that
the likelihood that we draw X is smaller than before (that is, 5/17<6/18), and the
likelihood of drawing either Y or Z is bigger (that is, 12/17>12/18) but no information

is gained about the likelihood of Y alone or Z alone. Now imagine that we draw 7
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from the bin. The draw after the third period will be from a bin that contains 16 balls,
5 of which are marked X, and 11 of which are marked either Y or Z. The likelihood of
drawing X now improved, and the likelihood of drawing either Y or Z worsened, but

once again no information is gained about the likelihood of Y alone or Z alone. Etc.

5. Initial Portfolio and Working Capital

At the beginning of each period you will be given working capital, consisting of
shares of Security X, shares of Security Y, shares of Security Z, and francs cash. You
will not be given any Notes. The working capital you receive can be different from
the working capital received by others. For this working capital you must repay a
predetermined number of francs (a “working capital loan” repayment) at the end of
the period. An illustration of how to compute the payoff of your working capital is

provided below (see example 1).

II. HOW YOU MAKE MONEY

The following examples will help you understand the various possibilities.

Example 1. Do nothing.

Suppose you start and end with 4 units of Security X, 2 units of Security Y, and 3
units of Security Z. At the end of the period, if the state is X, Y, or Z, your dividends
would be 400, 200, 300 respectively. Including your cash holding, say 200 francs, and
subtracting the required working capital loan repayment for the capital advance, say
300 francs, your earnings would be 300, 100, 200 francs respectively. Suppose you
start and end instead with 2 units of Security X and 7 units of Security Z (and no Y)
plus 200 francs cash, for which you are asked to pay 300 francs at the end. A similar
calculation will demonstrate that your earnings would be 100, -100 (loss), 600 francs

respectively.

Example 2. Play it safe.

This means that you sell all of your securities and loan out the money (buy Notes)
you receive in payment. Of course, in this case your earnings depend upon the prices

at which you transact. Assume that you are given a working capital of 5 Securities X,
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5 Securities Y, 1 Security Z, and 200 francs cash. Assume your working capital loan
is 300 francs. That is, you are required to repay 300 francs for the working capital at
the end of the period. Assume that you are able to sell all securities at 33 francs for
Securities X, at 17 for Securities Y, and at 50 for Securities Z. This would produce
300 francs revenue. Adding the 200 francs cash with which you started gives you a
total of 500 francs. This guarantees you an income of 200 francs (500 cash, minus the
300 francs repayment for working capital). Now, these 500 francs can be invested in
Notes. You could buy 5 Notes if you paid the full repayment value of 100 each (of
course you would make no profit in this case), but if you purchase at less than 100
you make the difference on each Note you buy. Suppose you could buy 5 Notes at 90
each (a total investment of 450 francs of your 500). Each repays 100 so you make 10
on each for a profit of 50. Your period earnings would be 200+50 = 250 francs for
the period. Of course this calculation makes important assumptions about the prices

you received for the securities and the prices that you paid for the Notes.

Example 3. Speculate on price changes.

Anything you buy can be resold. If you sell at a price higher than you paid you
make the difference. This difference is in the form of increased francs which you can

then invest in either Securities or Notes and receive the returns.

Example 4. Leveraging.

Sell all of your Securities and use the francs to purchase one Security only. In
addition use your initial francs to purchase the same Security. Finally, sell all the
Notes you are able and use the francs to purchase the same Security. As an exercise
assume that prices are at 33 francs for X, 50 for Y, and 17 for Z, and that the price
of Notes is 90. Suppose you have 2 Securities X, 3 Securities Y, and 2 Securities Z
initially, and that you were given 200 francs cash. You are required to pay 300 francs
at the end of the period, as compensation for the working capital. Selling all of Y
and 7 generates 184 francs; selling 2 Notes generates 180 francs. Together with the
initial cash allocation, you now hold 564 francs in cash. With it, you can purchase 17

Securities X, at a cost of 561 francs, leaving you with 3 francs cash. At the end of the
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period, you will be holding 19 Securities X and 3 francs in cash. You will be required
to pay 200 francs for the (short) sale of the 2 Notes, in addition to the 300 francs
you pay for the working capital. If the state is X, Y, or Z, your dividends would be
1900, 0, 0, respectively; including your cash holdings of 3 francs, this would become
1903, 3, 3, respectively; the corresponding period earnings would be 1403 (gain), 497
(loss), 497 (loss), respectively.

Example 5. Partially invested hedge.

Security Y pays 100 when state Y occurs, but its likelihood is not known. Similarly
for Z. However the likelihood of either Y or Z is known (as it equals 1 minus likelihood
of X, which is known throughout the experiment). By purchasing and/or selling Y
and/or Z so as to hold an equal number of each of these Securities will allow you
to compute expected payoffs for your working capital. That is, if in the first period
you have 2 Securities X, 3 Securities Y, and 3 Securities Z, your expected earnings
would be 33 for each Security X (=1/3*(100+040)) and 67 for each pair of Y and Z
(=2/3*(04+1004-100)). Your total earning is 267 (on average). By not doing anything,
your realized earnings will be 200, 300, 300 respectively. Example 6. Fully invested
hedge. You might use your francs cash to purchase an equal number of X, Y, and Z,
and also sell Notes and use the proceeds to purchase even more securities. Since each
security pays dividends in a different state, and the three securities together cover
for all the possible cases, by buying an equal number of X, Y, and Z your overall
variability of returns is eliminated. That is, the period earnings from each triplet (1
Security X, 1 Security Y, and 1 Security Z) are 100, 100, 100, respectively, that is,

100 no matter which state is drawn.

III. HIGHLIGHTS OF PAGES AND FORMS

Order Form:

Found in the Market Summary page. Details will be found below.

Cancellations:
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By clicking on the My Offers link for the appropriate markets in the Market
Summary page you can cancel orders.
The Book:

Click on the name of the security and you will view all buy orders and all sell

orders in that market.
Inventory Page:

This page lists your current holdings of Securities, Notes, and francs. It also

displays your cumulative earnings.
History:
These links provide lists of all trades, or exclusively your trades.
Graphs:
These links provide graphs of the historical trading prices.
Dividend Summary:

This page provides the dividend payoff table for each security and detailed infor-
mation of the actual state, personal end-of-period holdings and income for all previous
periods.

Announcements:

Check this for messages.

IV. GLOSSARY OF IMPORTANT MARKET ELEMENTS

These are generic definitions and concepts used in Marketscape. Some of this
language might not apply to the markets that are currently operating.

ORDERS—orders are accompanied by a price. When you submit an order you
are saying that “you are willing to trade at the price stated or at some better price.”
(more)

If you submit a SELL ORDER, you are saying that you are willing to sell to

anyone at the price you state, or at a higher price.
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By submitting a BUY ORDER you are saying that you are willing to buy from
anyone at the price you state, or at a lower price.
If no one accepts the order, it goes unfilled. Your unfilled order remains in the
order book until it expires, is canceled by by you, or until it is taken by another

person.

An order LIMITS the amount you receive or the amount you pay by the price you

state.

ORDER QUANTITIES—You may place orders for any number of units. The
computer will automatically fill orders if possible. If your order is for more units
than can be bought or sold at your price, the computer will partially fill your order.
Partially filled orders will remain on the order book until they are completely filled,

canceled, or the market terminates.

THE SELL ORDER BOOK-—is a listing of the sell orders. The orders are listed
from highest order at the top of the page, down to the lowest. The lowest is the
BEST sell order from the buyers’ points of view and it is found at the bottom of the
sell order book. Buyers will examine this book when deciding whether or not to buy.
Selling always starts at the bottom of the book (the BEST) and then moves up. The
market automatically matches the cheapest existing order in the sell order book with

an incoming buy order to determine if a trade is possible. (more)

THE BUY ORDER BOOK—is a listing of the buy orders. The orders are listed
from lowest at the bottom of the page, up to the highest. The highest is the BEST
buy order from the sellers’ points of view and it is found at the top of the buy
order book. Sellers will examine this book when deciding whether or not to sell.
Buying always starts at the top of the book (the BEST) and then moves down. The
market automatically matches the highest existing order in the buy order book with

an incoming limit sell order to determine if a trade is possible. (more)

Should you send a SELL ORDER with a price lower than the best buy order in
the buy order book, then a trade will occur and your order will be filled at the buy

price, which is to your favor. For example, the best buy order is 600, and you send
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in a sell order for 500. You will sell at 600 (instead of sell at 500). The situation is

analogous if you send a buy order. If the best sell order is 500 and you send a buy

order for 600, you will buy at 500 (instead of buy at 600).
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Chapter 5 Sunspots and multiple priors: a note

In this chapter, I study the effect of sunspots in a rational expectation equilibrium
model, as first modeled in Cass and Shell [1], and extend the results to a more
general setup by modeling attitudes towards uncertainty. My interest in the subject

was initially raised by the welfare analysis in Cass and Shell:

“The upshot of this analysis is that in a rational expectations, general
equilibrium world, the presence of extrinsic uncertainty—sunspots, waves
of pessimism/optimism, and so forth—may well have real effects. The
lesson for macroeconomics is that, even if one assumes the most favor-
able informational and institutional conditions imaginable, there may be
a role for the government to stabilize fluctuations arising from seemingly

noneconomic disturbances.” (p. 196)

The subsequent literature on sunspots concentrated either on uniqueness of mar-
ket equilibrium or on extensions to Cass and Shell’s results.t 2 Most of the extensions
explore nonconvexities in the agents’ preferences, as Cass and Shell results rely on
the strict concavity of the utility functional which represents preferences. My ap-
proach is different, as I model pessimism/optimism of agents as being separate by
their risk attitudes. That is, while keeping concavity of the utility index, I introduce
nonconvexities and non-differentiability by allowing agents to hold multiple beliefs
about tomorrow’s states of the world. The set of plausible beliefs captures informa-
tional conditions in the economy, while the use of a Min/Max EU operator reflects

aversion/loving for uncertainty. The model in this paper is an extension of Gilboa

!For an example of either stream of research, see Hens [4] and Guesnerie and Laffont [3].

2 Although in writing this chapter I was initially unaware of earlier work in this direction, I recently
became aware of work of Tallon [6]. Even though the spirit of the model and the main results look
similar, the proofs include some technical differences due to choices for modelling behavior towards
ambiguity. Choquet EU (as in Tallon) and Minimax EU coincide when the set of possible priors is
the core of a convex capacity, but neither approach is nested in the other.
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and Schmeidler’s [4] where a parameter a is introduced to capture agents’ attitudes
towards uncertainty, including optimism and pessimism as the extreme cases.

The results in this paper are mixed news for rational expectation equilibrium and
its pareto optimality: the good news is that, whenever agents are pessimistic, sunspots
do not matter. Furthermore, the (pareto optimal) certainty equilibrium is robust to
heterogeneity in beliefs. However, whenever there exists at least one optimistic agent,

then sunspots are bound to matter even in complete markets.

5.1 The model

Consider a standard, two-period, competitive exchange economy. There are H agents
who can consume two goods at period ¢t = 1 and in each of the s = 1,...,.S possible
states of the world which may occur at ¢ = 2. Furthermore, they can trade all the
possible contingent claims at ¢ = 1, so that markets are assumed to be complete.
Let zp, = [2,(0), z,(1),...,24(S)] denote the consumption vector, where xj(s) =
[z} (s), 22(s)] for good 1 and 2 in state s. Similarly, let wy(s) and p(s) denote the
endowment and price for every s.

Assume uy, : R2 — R to be differentiable, strictly increasing, and strictly concave.
Every agent h chooses a consumption plan z; as to maximize his (time-additive)

utility:

max V(zp) = u(zp(0)) + Eu(zp(l),...,2,(9))

Th
where the expectation operator E is computed with respect to h’s beliefs on tomor-
row’s states of the world. As in Gilboa and Schmeidler, I allow for agent h to hold
different plausible beliefs, that is, £ can be computed with respect to any belief
7, € Cp, a closed and convex set of probability distributions over 2. Assuming

uncertainty aversion is equivalent to the agent choosing the most pessimistic belief,

3The assumption about the number of commodities can be easily generalized. I will restrict my
analysis to two goods only for notational simplicity.
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that is, the m, that minimizes Fu(xp(1),...,2,(S)). This reflects a pessimistic or
cautious attitude, as the minimum EU can be interpreted as the guaranteed level of
utility for ¢ = 2. In order to allow for a more general setup and capture attitudes

towards uncertainty, I use a parameterized version:

V(zp) = u(zp(0)) + a max Zﬂ'h (s)) + (1 — @) min th(s) u(zp(s))

ThECH

so that o = 0 corresponds to the case of ambiguity aversion. Let then Vi (V*)
represent preferences under pessimism (respectively, optimism). Next, I introduce

“extrinsic uncertainty” in the economy, as modeled by Cass and Shell:

Definition 1 A sunspot economy is defined as an economy without aggregate uncer-

tainty, that is > wp(s) = > wn(s') Vs, .
I h

Definition 2 A Rational Expectation Equilibrium is defined as a vector of prices
p* = [p*(0),p*(1),...,p*(S)] such that
1) given p*, Vh:

xy = arg max Vi(xp,) subject to Zp zp(s) —wp(s)] =0 and z, > 0
5=0

2) Vs:
S fon(s) — wnls)] = 0

h

Definition 3 Sunspots matter if there exist s, s’ > 0 and h such that x(s) # xp(s').

Cass-Shell’s (henceforth CS) results correspond to the case of Cj, being a singleton:

Lemma 10 (CS1) In complete markets, sunspots do not matter in equilibrium.
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The assumption of common beliefs about the probability of sunspots is critical.

Differing beliefs motivate trading in contingent claims:

Lemma 11 (CS2) In complete markets, when beliefs differ across individuals, sunspots

matter in equilibrium.

In this paper I show that, whenever agents are pessimistic, CS1 is robust to
heterogeneity in beliefs (which is “good news” for REE). However, whenever there
exists at least one optimistic agent, then sunspots may matter even in complete

markets.

5.2 Results

All the following results hold whenever markets are complete, and each agent holds
multiple beliefs about tomorrow’s state of the world. Also, in order to keep the
notation simple and to help intuition, I will restrict attention to two states s = 1, 2,

but the results can be easily generalized.

5.2.1 The pessimistic case

Theorem 7 If C,, = C for every h, then sunspots do not matter at equilibrium.

Proof: (Similarly to CS) By contradiction: suppose that at equilibrium there exists
an agent h such that x;(1) # x;(2). In particular, without loss of generality let

x5 (1) < x5(2). Let Cy = {7 > m > 1}, with 7 > 7. Then:

Vizy) = min upy(2;,(0)) + mun (e, (1)) + (1= m)un(z;,(2)) =

71 E€CH

= un(},(0)) + Fun(a}, (1)) + (1 - Fun(a},(2))

Now let T, = > k(s)z;(s) , where kK € C}, such that x(2) > 0. The existence of
s=1,2
such k is guaranteed by the assumption that C}, is not a singleton. Notice that @, is
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feasible, that is, Vs,

D El(s) = YD wls)ails) =D w(s)D ai(s)]

s=1,2 s=1,2

IN
2
o

N
&
S

|

N
&
“

as x, is feasible and > wp(s) = > wp(s’) Vs, s’. Furthermore:
h D

Vi(@n) = erneighuh(fh(o)) + mup(Tn(1)) + (1 — m)un(@n(2)) =
= wp(2}(0)) + un(@n) = un(27(0) + un( Y _ K(s)}(s))

By strict concavity and uncertainty aversion:

un( Y K()73(s)) > Tup (5, (1)) + (1 = T)up(2;(2))

s=1,2

so that V.(zy) > Vi(x}), a contradiction. |

The basic intuition is that ambiguity aversion works in the same direction as risk
aversion. More precisely, concavity of u implies that the utility of a lottery is better
than the same lottery of utilities; uncertainty aversion involves computing the utility
of an even better lottery, as the weights implied by k are always “more favorable”
than the ones implied by 7, the most pessimistic belief. Under ambiguity aversion,
finding “better lotteries” is always possible as for any given lottery, every prior in
C), first-order stochastically dominates 7. So, as long as ('}, is a non-degenerate set,
ambiguity aversion adds some bite to CS1. Furthermore, it is immediate to find the

conditions that make the result robust to heterogeneity of beliefs:

Theorem 8 If NC}, # 0, then sunspots do not matter at equilibrium.

Proof: In order to extend the previous proof to this case, all that is needed is 1) to

use the same prior k Vh, as required by feasibility; and 2) that k € C},, for it to first-
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order stochastically dominate the most pessimistic belief 7. These two conditions

are immediately satisfied whenever NCy, # (). |

Robustness of the result CS1 to heterogeneity stems from non-differentiability of
the EU functional in our case. Whenever a # % (corresponding to the standard EU
model), the indifference curves have a kink at the certainty line. Then, as long as
the intersection of beliefs (and thus supporting prices) is non-empty, sunspots do not
matter and the endowment is an equilibrium for a continuum of prices, rather than

one price only.*

5.2.2 Allowing for optimism

On the other hand, optimism, or uncertainty loving, implies dislike for reduction of
uncertainty. Axiomatically, preferences are such that “objective lotteries” make the
decision maker worst off. In a sunspot economy, the presence of at least one such

optimistic agent is enough to make sunspots matter at equilibrium:

Theorem 9 If there exists an equilibrium and if at least one agent is ambiguity lov-

ing, then sunpots matter at equilibrium.

Proof: By contradiction: suppose that at equilibrium z7(s) = 7, for every s,h
(including the ambiguity loving agent denoted by a) and p* = [p*(1),p*(2)]. Let
Co = {7 > n{ > x}, with T > m. The optimistic agent a chooses as to maximize her
expected utility given by

Vi(#a) = u(2a(0)) + max mju(za(1)) + (1 — 1) u(za(2))

T €C,

At equilibrium, V*(z*) = V*(T,) = u(z%(0)) + u(Z,). Now construct the alternative

p*(1)
p*(2)

by ¥.Notice that 2/, sastisfies a’s budget constraint. Its expected utility

allocation 2/, such that z/ (1) = T, + ¢, 2/ (2) = T, — 255, For simplicity of notation,

(1)
p*(2)

4In the extreme case of strict ambiguity aversion, indifference curves correspond to the ones for
Leontief preferences, and certainty equilibria are the only equilibria for any price vector.

denote
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can be computed as

Tu(xl (1)) + (1 =7)u(2)(2)) fore >0
ru(x! (1)) + (1 —m)u(2)(2)) fore <0

Optimality of 2% implies V*(z}) > V*(x}), that is
e when ¢ > 0:

= u(Ta) 2 Tu(z, (1)) + (1 = Tu(ze(2))

= Tu(T,) + (1 = T)u(T,) > 7u(Ty +¢) + (1 — T)u(T, — )

= ﬂ'w > (1-— )ww (taking limit for e — 07)
== —TU(Ta) > —(1 = T)¢u'(T)

=1 > =

e when ¢ < 0:

= u(Ta) = mu(rg (1) + (1 = mu(r;(2))
= mu(Ta) + (1 = m)u(Ta) = mu(Ta + ) + (1 — D)u(To — ¢))
— EU(Ea)f_E(fﬁf) > (1— E);{;—“(Ea’iﬂp’“@“) (taking limit for e — 07)

3

= 1/ (Ta) > (1 — m)Yu(Ta)

In the limit, the two inequalities imply that © > 7, a contradiction. |

Notice that, due to nonconvexities of preferences, the existence of equilibrium is
not guaranteed. Starr [5] investigates more general non-convex preferences and finds
that divergence from equilibrium is bounded in a fashion independent of the number
of trades. Thus, with a sufficiently large number of traders and at least one ambiguity

loving agent, the equilibrium is such that sunspots always matter.
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Chapter 6 Insurance contracts and multiple

priors

In the adverse selection literature, a well-known result is that the market achieves a
second-best. In an effort to separate different types, the “bad type” is guaranteed
his optimal outcome, whilst the “good type” has to get content with his second-
best.! This result was first applied to competitive insurance markets by Rothschild
and Stiglitz [6]. From the point of view of a consumer, the optimal contract would
offer fair and full insurance, where fairness is guaranteed by free entry for insurance
companies. However, full insurance is hampered by the presence of asymmetric in-
formation. Under Rothschild and Stiglitz definition of equilibrium (Cournot-Nash),
only high risk types receive their optimal contract. In order to satisfy incentive com-
patibility constraints, low types are offered fair but partial insurance. The cost of
asymmetric information is thus borne by low type agents only, as they cannot be
distinguished ex-ante from high type agents.

This chapter shows that, in the presence of ambiguity, low types may benefit from
ambiguity aversion of high types. By overestimating their chance of incurring a loss,
high types are less willing to misrepresent themselves, so that the low types can now
be guaranteed a better second-best outcome. The less information is available, the
better for the low types, as “looseness” of the incentive compatibility constraints in-
creases with ambiguity. Under the assumption that, due to data gathering, insurance
companies have more precise information on the probability of loss across the popu-
lation, ambiguity aversion implies a rather unintuitive social welfare result, that is, it
is not beneficial to ask insurance companies to reveal their information.

In order to shed light on the individual behavior behind the model, I also in-

vestigate the optimal insurance from a decision-theoretic perspective, and find that

'TIf he had to receive his first-best, then there would be an incentive for the “bad” type to
misrepresent himself



101
ambiguity averse agents may buy full insurance even at unfavorable odds. Differently
put, they perceive any possible odds ratio as relatively more favorable, which leads
high types to be less likely to imitate low types in equilibrium, makes the incentive

compatibility constraints “looser,” and thus explains the game-theoretic findings.

Rothschild and Stiglitz (henceforth RS) assume that all consumers are identical,
except for their probability of accident. An implicit assumption is the existence of an
objective (or commonly agreed) probability, that is, both consumers and insurance
companies base their decisions about buying and selling contracts on the same odds.
I use RS’s model as a benchmark, and show how subjective variations in consumers’
beliefs affect the properties of optimal contract, and the nature and existence of equi-
librium. In my model, subjective variations are the result of subjective uncertainty,
rather than risk, where uncertainty stems from informational and cognitive limits.

The main justification is, people may find it difficult to assess small probabilities
such as the occurence of any kind of accident. So they may overstimate its chances as
a result of two behavioral facts: 1) ambiguity aversion, as found in the experimental
literature; 2) difficulties in assessing small numbers.? However, these observations rest
on behavioral assumptions that require experimental or empirical investigation. So I
chose not to assume ambiguity aversion and use a more general framework by extend-
ing Gilboa and Schmeidler’s [4] multiple prior model to include a pessimism-optimism
index a. Different values of a captures different attitudes towards uncertainty, in-
cluding the optimism of smokers underestimating their probability of cancer.

On the other hand, in my model insurance companies all agree on the probability
assessment for accidents, and are assumed to be right on average. The idea behind
this assumption is that in reality insurance companies have enough experience and
data to assess the “objective” probability of accident, for any type of risk and for
any class of consumers. Or at least they can do so more accurately than any single
consumer. “Objective” probability in this context can be thought as the empirical

frequency of accident across the population. Notice that, despite companies’ better

2That is, what is a small probability? It is hard to think that people would come up with numbers
like .0000327. Rather they know what 1/1000 is.
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accuracy in probability estimates, asymmetry of information is not eliminated from
the RS model. That is, insurance companies most likely cannot determine the type

of consumer they are facing when offering their contracts.

6.1 Optimal insurance

Consider an individual with income of size W, which may be subject to a random
loss L = {0, D}. His income is thus (W, W — D) in the two states, no accident and
accident, respectively. The individual can insure himself against the accident and
purchase a contract (—rk1, ke — k1), which involves paying a premium x; and being
paid compensation K, in case of an accident. With insurance, income is given by

(W — k1, W — D + Ry), where kg = Ry — K is the net compensation.

6.1.1 Demand for insurance

In general let (Wi, W3) be the final wealth in case of no accident and in case of
accident, respectively, where W; > 0 for ¢ = 1,2. A consumer’s preferences for

income in the two states are represented by the expected utility functional:

EU(p;, Wi, Wa) = (1 — pi)u(Wh) + piu(Ws)

where u represents the utility of money income and p; the subjective probability of
an accident. All consumers are identical in all respects, except for their probability of
having an accident, and wu is assumed to be increasing and (unless differently stated)
strictly concave. For simplicity, assume u(0) = 0.

Without insurance, a consumer is endowed with income E = (W, W — D). Al-
ternatively, he can purchase at most one insurance contract Kk = (—k1, k2), which is
worth V(p;, k) = EU(p;, W — k1, W — D + Kg). Among all the contracts offered, the
individual chooses the one yielding maximum expected utility, given his individual

rationality constraint:
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maxV (p;, k) s.t. V(pi, k) > V(p;,0)

Notice that W; = W; corresponds to full insurance (no risk and no uncertainty).
Given that % is the marginal rate of substitution of wealth across states along the
full insurance line, “fair odds” from the insured’s point of view correspond to the case
of the insurance company making no profits ex-ante, that is % = z—f, the individual

T

return on insurance.

6.1.2 Information and ambiguity

Ambiguity is formalized by a set of priors p; € C' = []_oi,]_?i] to represent the insured’s
beliefs. While studying individual choice for insurance, I can drop the index ¢ and
keep notation simpler for the next section. In order to capture attitudes towards
ambiguity, I use a parameterized version of Gilboa and Schmeidler’s multiple priors

model, by including Hurwicz’s « index for pessimism:

MFEU,(C, Wy, W) = {amin+ (1 — a)max} o {EU(p, W1, W)} =
peC peC

= omin[(1 —p)u(Wh) + pu(W)] + (1 — c)max((1 — pju(W1) + pu(W2))

peC
EU(ap + (1 —a)p, Wi, Ws) Wy < W,

= u(Wh) Wy = W,
EU(ap + (1 —a)p, Wi, Wa) Wy > W,

For the natural case of W7 > Wy, @ = 1 (a = 0) corresponds to ambiguity aversion
(resp. loving), as among all the plausible beliefs it assigns the highest (resp. lowest)
probability p to an accident occuring. Under the assumption that the objective
probability p of accident belongs to the priors support, there exists some degree
of pessimism-optimism & whose representing belief corresponds to p. Just to keep

1

things simple, I will assume that the support is symmetric around p so that a = 3.
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Furthermore, a corresponds to EU, to be interpreted as absence of ambiguity or

neutrality to ambiguity.

optimism pessimism
a=0 a=1

| |

| |

| ~ |

. P

0 P ' P 1
|
|
& EU

Figure 6.1: Ambiguity and attitudes for Wy > Wj.

From now on, I will refer to the case of & > £ as ambiguity aversion, as any a > 1

implies a higher probability of loss than p.

6.1.3 The benchmark model

I will use RS model as a benchmark. Denote the fair odds by ¢ = %ﬁ . At fair odds,
it is optimal to fully insure, which corresponds to contract F in Figure 6.2. If the
contract is offered at odds better (worse) than fair, that is, if £2 > ‘%’7 (resp. <
), then it is optimal to overinsure (resp. underinsure), as illustrated by contract O

(resp. U) in Figure 6.2.

6.1.4 Optimal insurance under ambiguity

This section assumes ambiguity aversion, that is, a > % This can be done without
loss of generality as the case of a < % simply obtains symmetric results. For notational

simplicity, define p. = ap+ (1 — a)p and p* = ap + (1 — a)p, so that

EU(pe, Wi, W) Wy < W,
MEUQ>%(O7 WI; WQ) - U(Wl) W1 = W2
EU(p*,Wl,WQ) W1 > W2
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Figure 6.2: Optimal contract F' in the benchmark model.

Since it is always the case that p, < p < p*, it is optimal to fully insure at fair odds

and furthermore at any odds between I;f’* and %. This result intuitively follows

from the shape of the indifference curves under MEU, and in particular from the kink
along the certainty line. Indifference curves are flatter (resp. steeper) than EU ones
for any point below (resp. above) the certainty line, as illustrated in Figure 6.3 where
the thick line refers to MEU and the dotted line to EU.

Also, this result is similar in spirit to the analysis of Segal and Spivak [9], as

uncertainty aversion as modeled here implies their notion of first-order risk aversion.

6.1.5 Maximal premium and optimal coverage under
ambiguity
In this section I formalize the considerations made so far on individual behavior and

characterize the choice of optimal insurance in a decision theoretic setup that follows

Mossin [5]. Assume for this section Wy > Wy, so that for any a:
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fair
odds

Figure 6.3: Optimal contract I’ under ambiguity aversion.

MEUL(C, Wi, W,) = EU(p", Wy, W,) =

= [1—ap—(1—a)plu(W) + [ap+ (1 — a)plu(W2)

As above, final income for an individual is either W or W — L, in case of a loss L.
Let us now assume that, when buying insurance, a consumer can specify the desired
amount of coverage C' or, equivalently, the desired proportion of coverage c. In the
terminology of the previous sections, ¢ = 0 is the default option of no insurance,
while ¢ = 1 corresponds to buying full insurance. I assume that ¢ € [0, 1], which is
not necessary for the following results but sensible.

Both the premium and the company’s compensation in case of loss will now be in
proportion to ¢. That is, if 7 is the premium rate, the individual’s final wealth after

buying an insurance contract is given by

W —mcL with probability 1 — p*

Wio =
W — L+ (1 —m)cL  with probability p*

where mwcL is the insurance premium, and ¢l the compensation from the company.
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Also, as defined in previous sections, the premium is actuarially fair iff 7 = p. Notice
the one-to-one correspondence between income pairs (Wi, Ws) (the domain of EU

functional) and insurance linear contracts (¢, ) (the domain of V functional).

Theorem 10 For a risk-neutral consumer, the maximal premium T for full insurance

18 p*.

Proof: By definition, the maximal premium 7 is the maximum premium a consumer
is willing to pay for the insurance, that is, the premium that makes him indifferent

between insuring or not:?

V(1,7) = V(0,7)

where

V(l,7) = (1=puW —=nL)+pu(W —7L) =u(W —7L)
V(0,7) = (1=p)u(W —L)+puW)

Under risk-neutrality, we can explicitly solve for 7, which gives the result: 7 = p*.

Under risk-aversion all that can be said is T > p*, unless a specific functional form
for u is specified (see Figure 6.4). The results in Mossin thus easily translate to my

setup when substituting subjective beliefs for the objective ones.
Theorem 11 Optimal coverage is

o full insurance whenever p* > 7;

! (W) def

e no insurance whenever p* < T e Do =

e partial insurance for the cases in between, that is v < p* < 7.

3Existence of such premium is one of the axioms of von Neumann-Morgenstern Expected Utility
theory.
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u(W-rtL)=
P*U(W-L)+(1-p*)u(W)

7L

W-L W-rTL W

Figure 6.4: Maximal premium under risk aversion.

Proof: The optimal coverage is a solution to the problem:
max(l — p*)u(W — weL) + p*u(W — L+ (1 — m)cL) subject to 0 < ¢ <1

SOC: satisfied by strict concavity of u, which guarantees a unique maximum
FOC:
0
5= p* (1 — ) Lu' (W) — (1 — p*)mLu/(Wy) =0
c
For full insurance to be optimal:

— g >
6c|6_1_0

that is
p" (1 —m)Lu/ (W — L) — (1 = p*)nLu/ (W — L) > 0

implying, as u is increasing and L > 0:
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Similarly, for no insurance to be optimal:

0
— g <
Bc|c_0_0

which is equivalent to:
p"(1—m) L' (W —L)— (1 —p")nLu' (W) <0

implying, as L > 0:

mu' (W def
o) )

P S AW = L) & m (W)

Partial coverage is optimal for the cases in between, that is, whenever v < p* < 7.

no partial full

Y T p*
Figure 6.5: Optimal insurance and subjective beliefs.

Notice that v can be interpreted in relation to perceived contract prices. More
precisely % is equal to one plus the marginal rate of substitution according to the

price implicit in he insurance contract.

Some interesting lessons from this exercise call for empirical investigations:

e cven at unfair price m > p, there are some consumers who are pessimistic enough
to buy full insurance. An example would be consumers who purchase insurance

on flight accidents.
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e at fair price m = p, there exist risk-averse agents who optimistically do not fully
insure. An example might be smokers and their optimism in underestimating

their probability of getting cancer.

6.2 Market equilibrium

6.2.1 Supply of insurance

As in RS, I assume that insurance companies are risk-neutral and maximize their

profits, that is, they offer contracts in order to:

maxI1(p, %) = (1~ p)y — pra

When markets are competitive, in the sense that there is free entry, the solution
to maximization problem is given by
1-— K
M=0es —L_22
p K1
so that, whenever consumer types can be observed, each type would receive full and

fair insurance.

6.2.2 Information

Next, T model ambiguity as before, by assuming that each individual knows p; €
[Bﬂ_?i]' On the other hand, the insurance company knows p, to be thought as the
empirical frequency (alternatively, the objective distribution) of accident. The reason
behind this asymmetry in precision of information is that the insurance company can
collect statistical data about the occurrence of accidents across the population, and
thus come up with a more precise estimate for the objective probability of accident.
An example would be to estimate the average probability, so that the insurance is
right on average, but not necessarily so. A more general and reasonable assumption is

for p to be admissible, in the sense that it belongs to each consumer’s support. This
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implies that no agent is ever “too wrong” as not to include the empirical frequency
of accident among his plausible beliefs.

As in RS, there are two types of agents, distinguished by their probability of
having an accident: the low type ¢ = L, and the high type ¢ = H. To extend this
assumption to my model, all that is needed is to make sure the labelling of types is
consistent, that is, P, <Py PL <DPu- Notice that this condition implies that, for any
fixed a, p; < pj,p; < pj;. Finally, let A denote the proportion of high types in the

population.

6.2.3 Rothschild and Stiglitz’s equilibrium under ambiguity

The benchmark model corresponds to the beliefs support being a singleton: []_92,7@] =

{p:}, for i = H, L. Just for reference, I report RS main results:

e RS1. There cannot be a pooling equilibrium.

e RS2. The set (k7 k"), as illustrated in Figure 6.6, is the only possible equilib-

riuim.

e RS3. There may be no equilibrium.

For now, assume the existence of a separating equilibrium and ambiguity aversion,
that is, a < % Indifference curves for both types are kinked at the certainty line as
in Figure 6.3. Notice first that ambiguity aversion for low types does not affect the
equilibrium, as x;, is determined by the intersection of high types’ indifference curves
with low types’ fair odds line. For high types, kg is still an equilibrium, but ambiguity
aversion makes incentive compatibility constraints a bit “looser,” so that k; moves
up along the fair odds line. Even though low types are still far from their optimal
full insurance, they are better off by the presence of ambiguity in the economy.

Under the assumption of o being the same across the population, RS1 still holds

true. For a pooling equilibrium to exist, low types need to be more ambiguity averse
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Figure 6.6: Equilibrium in Rothschild and Stiglitz.

than high types to the point that their indifference curves are flatter than the high
type’s ones at any point below the certainty line. Even thought there is no support
for any assumption about relative differences across types, the opposite case (the high
types being more averse) might seem more reasonable when considering the width of
the support as a measure of ambiguity.

RS2 is true, but its validity is inversely related to the amount of ambiguity in
the economy. The more ambiguity, the less likely the separating equilibrium to exist.
The intuition stems from the limit case of maximum ambiguity: p = 0 and p = 1.
In this case, indifference curves are shaped as for Leontief preferences, and it always

pays to pool.
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