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ABSTRACT

A discussion of thé general equations for steady motion of a viscous in-
compressible fluid from the poiét of view of & minimum or variation princi-
‘ple has, as far as the writer is aware, never been given, Helmholtz, in a
classical paparl) " On the Theory of a Stationary Flow in Viscous Fluids ",
has sheown thet if the guadrabic berms in velocity be neglected, if the vel-
ocities at thé_boundariss of a singly-connected region be kept constant, and
il the external forces have a single-valued poltential, then the motion is such
that the variastion of the energy dissipation in the region under consideration
is zero,  We shall refer to this work in more detail later, Korteweg sub-
sequently showed that under the above conditions the steady motion which is set
up is unique and is stable, i.,s, the dissipation for this motion is an absoluts
minimun, Rayleighs) atill later showed that the dissipation is an abéolute
minimunm whenever

v'g=vH

where q is the vector velocity of the fluid, and H is a single-valued func-

tion subject to the condition
L7
vefA/=o0
In this case there is no restriction upon the magnitude of the veloclty,

As far as the author is aware this represents practically the entire extent

of the work to date on the application of a minimum principle to the steady

motion of a viscous fluid,
In the present work we discuss the following problem: given an incompress—

ible, viscous fluid with fixed { 1f any ) bouzsldaries)to find a function L, such

that if we set

3:}2/7':0
7



'ﬁhe Eulériaa,equations carrespcnding 1o this condition are exactly the
Navier-Stokes equations for fhe motion of the fluid, The integral is
{ for three~dimensional cases-)‘a volume integral andx/7vrepresents the vol—~
ume element, We impose, of course, the cusiomary restriction that the varia-
tion of the Velocity is taken to be zero at the boundaries of the region con-
sidered,  We shall for simplicity refer té such function Z as a LaGrangian
function, in spite of the fact that the term is not strictly accurate,

In the first section we set up a Lalrangian funciion by generelizing the
gansiderationsvof Helmholtz relative to slow motion, and from the resulting
Eulerian equations are led to a proof of the following theorem:

" If L be restricted to be a funciion of the velocity componenis and their
first order space derivabtives only; then it is impossible to find any such L
which will give the general equations for steady flow of an incompressible
fluid through the application of the variation principle described above”,

"The conditions which must be imposed on the motion in order that it may cor-
respond 1o & variation principle, involving a Lagrangien function of this typs,
are discussed, and it is shown that all the cases of steady moition which have
thus fer been discovered satisfy these conditions, The possible physical con-
sequences reolative Ho0 the exiastence of sbesdy motion are mentioned,

In the second section the LaGréngian functions are found for the cases of
plane laminar motion, snd Poiseuille flow through a circular tube,

The third and fourth sections do not stricily form a part of the general
variation problem, but the resulis obiamined in them are used in the subge~
quent section, and have slso a certain amouni of interest on their own account,
Tn the third section formulas are given fao the fransformation of certain sx-
pressions from vector to curvilinear coordinate form, and a vector expression
independent of coordinate sysiems is deduced for ths dissipation function,

In the fourth section a new proof is given of a result obtained by Hamel in
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,g very beautiful paperé) recently published, This psper deals with the two-
‘dimensional flow of an incompreésible viscous fluid where the sireamlines
coincide withvlogarithmiﬁ spirals, and thepresent considerations appear to be
a little simpler than those uset.:l by Hamel,

In the fifih section the variation problem for logarithmic spiral flow is
discussed, and the LaGrangien function is exhibited,

Tﬁe.vector method is used whenever it appears convenient, and in guch casges
the notation ié that of Gibbs, involving the operator V' , Vector quantities
are dsnoted by a bar placed above the symbol, The magnitude of a vector is
denoted by omitting the bar, We shall throughout consider no body forces,
since, if such forces do occur.and have a single-valusd potenmtial, them they
may be taken account of in the pressure lerms, wilhout in any way altering the

form of the equations,
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SECTION 1
We have,”for steady motion of an incompressible, viscous fluid, the

Navier~Stokes equations of motion, which mey be combined into the single

vector equation

FFTF =T E

| where § represents the vector velocity of the fluid, p the pressure,/o the

density, and “4the coefficient of viscosity, 1In addition we have the equa-
tion of continuity
17.%:0
Following Helmholtz we define P as the rate at which work is done by the

external forces ( in our case pressure and viscosity forces ) upon the fluid
in the particular volume region we haégen to discuss, and Q as the rate of
dissipation of energy by friction inside the region, We introduce a new
quantity B which we deiine to be the rate at which kinetic energy is carried
out of the region across the boundary, e wish later to discuss the values

of the above quantiiies per unit volume, and hence define the " demnsity fumc-

tions "é?ﬁﬁ £ a5 follows
7= [T 7™
v
7= RIT
7
VESEXZa
Y

where V is the wvolume region considered, and 77 is the volume element, £ is

usually called the " dissipation function " and is given by (see Lamb,V,p.549)

— 243\ v \E prat o\ eV, Sy
(0B = 4 [ 2GR 142 (2 B B B e (5 32)

where Xx,y,2, are Cartesian coordinates and u,v,w, are the corresponding vel-

ocity components, This is the general sxpression forj?nfor axny viscous
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fluid; the cpndition of incompressibility has not been introduced in its
derivation,

In Helmholtz' case of slow motion, squares of velocity are neglected
and hence R=0, Hence in this case the equation of conservation of energy
. : .

F—q =0

Haelmholtz showed that in this case, even if there are immersed bodies in the

fluid go that the boundary conditions are less specified than ours, if one

writes

S(P7F@)=0

one is led to the equations of motion with quadratic terms omitted

VE=cevig

In our more general case the equation of conservation of energy becomes

(5) ' 751‘6?"7?>==¢9

and one ig led to try as a variaiion principle

(6) ;/F”Ziy"rﬁj)sa

where ¢ is a numerical coefficient to be empirically delfermined later,

Yo remark first that P may be written as a surface integral extended over the
boundary of the region, Hence after performing the variation we get f;om
this term snother surface integral with components of {}f as multiplying fac-
tors, But in Helmholtz' case if we rule oubt immersed bodies, and in our casse,
the variation of velocity is assumed to be zero at the boundary, Hence the
term P contributes nothing to ithe Hulerian equations and may be entirely omid-
ted in the evaluation of (6), Ve remark next thalt our varistion is o be

taken subject to the resiriction given by the continuity equation (2).
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We imtroduce this restriction in the customary manner, namely through the use

of a Lalrangian undetermined multiplier, In view of these remsrks and using

emc:ta,ons (3) we may write equation (6) in the fcllowing form

gﬁ45¢xw,n737 @Q T

where /\ is the LaGremglan undetermined multlp}.:ter.,

In ’e?aluati'ng this expression it is convenient to use Certesian coordin-
ates x,y,z; with the corresponding velocity components u,v,w,. The expression
for jé? is then given by equation (4) and /R remains to be evaluated, From
the definition of R we have, where S is the bounding surface of the region V,

ds is the surface element, and T is a unit vector in the direction of the out-

wardly drawnm nermal to ds,

A= j;”;né.— ji! /;;)/5'

and applying the dlvergcncs theorem

= Z’oj@'/itﬁ/fa ;{75??17-?4»% V2 A7

-
and hencse because of tha ccrtlnulty squation

r= —fj F 7

K= 777"

In Cartesian geordinates this gives :

= 2 Y
/ox",'—u #x"“’ ;,9? ;/21/7,/‘,,

2 B f—w*”@w?—”/;.wzgw

4

= /a{a ia%)?‘i“ﬁw;); "”“"6” ey Ty /’ZQ” o8 #ce0; “/—VW‘D” i

77 oy ’“Ej
Pe“ce the function L' defined in (7) baccmes
2
4!4(/ 24, v, siu S\ /} Kwy W Ty v
) 7y 7 fl x5 57 s
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The Eulerien equétions which are given by equation (7) are
> /oL '
Pl —31} }’L ( ! )L
2X1| D5« Jfg 9 oz 99?

with two anslogous equations for v and w, Substituting our expression for

=0

L' into this eguation we have

{5 2% 2% Yy .y
/%}z ,s'f;"’;j'},;‘;:‘j;-;f-?z . j‘
2.Z* 22X

or

] Vs /77,)}+i’f{u17; 4 QF—” —2A_

and introducing the continuity equation

Z /! Do
AT — L — 2 _
AVU—IT 5 — 25 =0
and finally,combining with the iwo analogous equations deduced from ihe other

two Fulerian equations,we have the vector equation

(9) VI ver + VA= wviZ
If now we change notation and write p for A end if we tage our numerical
coefficient Y to be 1, then eguation (9) is just the Navier-Stokes-squa~-
tion (1) except that ( j?: ¥ ) q is replaced byié'V;;L.
- Hence whenever conditions are imposed on the motion, of such a nature
that the terms ( Z - ¥ )T are replaced byé V;" , then in such cases the
equations of moition may be deduced from the variation principle given in

equation (6), Since we have the general vector relation

/2_‘3»” 7)%: 3 7}’:—;,« Mf—

we see that the condition just mentioned is satisfied in the more or less
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(10)

(11)
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4trivial case in %hicﬁ}?kﬁW”iéi=éa which implies either that the vorticity
is everywheré_zero, or that it is everywhere parallel to fhe velocity, We
shall latér discuss several other mofe interesting cases in which the condi-
tion‘is satisfied, Al present we wish to continue with our more general
considerations,

If we express/ﬁ?‘?ﬁj? in Cariesian form we have

7 oee A= 7 2
(TP =#3* VIS rwIE

(similarly for y and z components); and hence it appears that the terms in

the equations of motion which the variation principle does not give are

;AV

7

We are therefore led to & consideration of the possibility of obtaining

V%‘?) W,JZ/ and w2 Lyl w2, vt
torms of‘this form from any LaGrangian funciion involving the velocity com=
ponents and their first order space derivatives, It will suffice to discuss
only one of the terms mentioned, together with the single Fulerian equation
corresponding to it, Then by cyclic substitution our results can be extend-
ed to all of the other terms, We state the problem as follows,

((Given the Eulerian equation

% Qz{ ) //ng /JAQ 4949 _
[ /= ;x T )q(52 / gz(wau dee =9

where we shall call the lefi side of this equation the " Hulerian Func-

tion , and denole it for convenience by E,F, To find a function

Ju Su 24 v st v QPO’ Sw
/ét ’V’ijgy’??/?gx/?j/“%/ X ﬁ/?i'

such that if we introduce this function into the Eulerian squation, we get

[FV £ =0

whers é}’ is a sum of any of the other terms in the x component of the
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Navier-Stokes equation {1},

. . . o4 " "
It is obvicus at once, since - can not be obizinsed from any sxvres-
R 3 0'7 X3 3t

2F 2F

gion of ‘He form 5x 9F ,5—;‘ »2’5’!51‘6 i, &;d fa are any fuvnctions of the veloci-

£

.ies and their space derivatives, that for the present purpose ths IZulerian

(,
o]

function may be simplified and writien
7

o | I '9&-
Dd 53
Dongider firet
iy . . Z & ) ¥
4 T e S oo T o e o

= 2« 2 pa " Ik
L, “Vw/axa-ﬁ{é‘,;*z,xzy/?-??x?‘ff’j%

whevs s ,gx/fa/rgfzzls aZvs an) Vo V4 S0 rrs,

The computation of the Eulerismn funetion for this L, is given symboliecally

s
=
]

W

in the asccompanying Table, | Referring to it we see that there are four

3 » o »
prossible combinations of velues af,,,,f and @Gvhich could give V’aj o

1} A,j:-‘-' ’(z =/ In this case the terms in the bracket multiplying
2 s . . R u .
V 2‘”’3 cazwe_l and %the entire term inveolving Vv L vanishes,
3 — e Sa 5 Foobep Sk _o1bi.7.s
1/_?,_ / Xy =3 In this cass there is & fecler S multipiying
P . \ s - . t s
V ;' which caunnot be made to diseppear, Hence this combinsticrn does

ot give us an expression of the form of {11)

3) S= x, = 4 I'eve the edditional counditions that we get a term of

dv-)’f"(:wa(sm,fff’/ﬁ;:%’:"’i;;g’o o H==/
Hence
24
2
, . YV (ex
£y Y
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+| o3 <3 ~f 22
+| s B ~/ 2v/ax 2y
1 X2 -l 31‘// 331
t] a3 .5 =/ 2y oyam
+] ea ¥ - | /ooy
+1 oaxy -/ P2 y>
+| s = | P%/oyor ¢
+ -2 {| =alxz~D L2yl 4
+l-t | A s ) + ] |

The symollc method of indicating the computation is very simple. The ex=~
sregsions for the varlious functions listed in the first column are to ve read
like oriinary algebrale espressions. However, instead of the individual terms,
only the sxponents are llsted. The varlanle in question is glven at the top of
B anlumn., alas, ingteud of tha complete exponent being written every time,
lottor roforring to the exponent is placad in tha sacond line, and
,,,,,, cor snaw term tha amount to pe added to or subtracted from this gquantity
13 l1igted. In the fourth and last colusns tne actual value of the multinlica-
tiva 2un3taat ana second derlvative are written explicitly. For esanple, the

1f written in full, would we

fyirty 1ina af ZoF., R
BTy o u " T 2™ Ao or P ow™ aw "t gw Pu
o ox  °Ff 98 OF 2Z 2K 3Y Hz 2x09
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snd the Eulerian function becomes

) @ V. s7 52

L= ‘/’I/ 7 L+ 250 '3:17/ Sy -z QV){ ,271/
The last two terms of this éxp:ession do not appear in t}}e equztions of
motion, Hence we must find a second funclion LLtc be subtracted
frem Ly, where Inlgives these extraneous terms, But both of these terms
ha#s second derivatives as multiplicative factors, and referring to Table I
we see ’ths:t any such term J.nvolv:.n'* second derivatives cocurs in the Bu-~
lerian function in a single, unique manner; i,s, the only function L,
leading to either of these terms is precisely the function L, which we
have already found, Therefore, in this third case also, it is impossible
to get an Eulerian function of the required form (11),

4) //452=/ o€y = 2 The additiongl conditions are here

= oy = ~ 3 :3//‘_—;//4;},’73 _—;)I/.::);_—;a /::/ };_:”""/
Fence
s Die
;o VhV ?3@j
L, = f’l’_‘/
2y
and
I’MV W 2% 't/'ggg 2
P _ 45 ! ,,Z DW VW 2% 24 24
£ = :ZVj Fa ) f—,a,,ng,_,Lz—m,&

| °9
Here we have three extraneous terms, To the first two we apply the same
argument as we did in case 3) and conclude that in this case alsc it is im-
possible to get an Bulerian function of the form (11),

Collecting the results of the four possible cases we mey conclude that with a

LaGrangien function of the form (12) it is impossible to get anm Eulerian function

of the form (11),
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This result can st once be somewhal generalized as follows, It is ob=
yious that 1t’is ;mp0351ﬁle to get an Fulerian function of the form (11) from
8 L&Grangian function composed of any sum of terms of the form (12), If now

we define a new variabls
< & 2 oG -
24  u 2 2K 2k v T2 : -
Z= « v W ¢ oy 52 5x 57 TX 7y 7

&
X,
Q‘\\L
W
Q‘\g
nY
‘d‘p\“m

then for any function

.

==
5- 5o

can be found which converges uniformely to the function L, inside the region,

. ~ £ . o
But we have seen thal no LalGrangian function of the fongiﬁ satis{ies our
Furnctiol]
condition of leading to an Zulerian of the form (11), Uence no LaGrangian

function of form (10 which has no singulerities in the region considered
3 o> 3

csn be found which satisfies our condition, But Lalreanglan functions involv-

ii

ing singularities inside the rezion in which the fluid on is taking place
are ruled ecut for physical reasona, Tinally by eyelic subsiitution we find
that all of the above vesults zre ?Llld when any of the terug of {57) are sub=

stituted for Vj—;% if only ve u
statsd

Hence the theorem in the Abst

. . 2z d B e e AT O QPR . vomrdk 3 s L w e e g
it in & differest form emploving the conditions mendicned in the Absiract,

coppressible fluid from a varistion principle invelving as Lalranglan lunc-

.
R e

=t order space de~-

©n
et
ek
L]
fobe
e}
-y
[
]
&

ticr sn expressicrn in the velocity components and

rivatives, unless conditions sre imposed on these velocod componsnts such that
: De 2 2¥ v 2w 2w

211 of ths fterns — Z % 2= 24 e ¥

all of 14 taerns V’{) : ) W -}) Sz ) L&?x ) > x ) l/ ‘2/‘



digappaarvfrém their pogitions in the Eavlerw;uukss eguations”, This dig~
eppearance may arise either Lecause the terms venish identically or beczuse
they are replaced ( according o the imposed conditions )} by other expressicns
not sé i;z*trac'ha,ble,_ e shall refer to cases in which such conditions arse
satisfied as " excepiional cases ", It should be noticed that the equations
cf motion mey etill be deduced from our variatian principle even though the
intraetable terms appear, if the latter oceccur in other of ﬁﬁe component Navier~
' Stékes eéuatioﬁs from those which they occupy in general, For example, if
our imposed conditions al’owed us 10 replace V 'j ﬁle?X in the x compo-~
nent Navier-Stokes equation; then the functlonzﬂ*zty,ax substituied in the
Eulerian function corresponding to this x component, i,e, ¢#
L\ Y /oL )L

Daw) jt )?1 +’;;(<5En S
Wbuld give thé " intraciable " term “’ax o« However, such cases still fall
under the class of " exceptional cases ", for some imposed condition on the vel-
ocities is necessary in order 1o iransform the equations of moition into a form
in which they may be deduced from our varietion principle,

Tne above theorem may &also he formulated from the point of view of a mine
imum instead of a variablion principle,

" Except in the * excepitional cases ' there is no funciion of the velocity
oempdnexzts, thoir firet oérder space derivatives, { and possibly the space COw=
ordinates ) which is a minimum for the steady motion of a viscous, incompres—
gible fluid,

The conclusions which may be drawn from this thecrem are of an edmittedly
speculative nature, However it may be well to present them in view of their
considerable interest, The question of the possible existence of steady mo-

tion in the cass cf the general flow of a viscous incompressible fluid has ex-
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ercised many mathematiclans and physicisis, Korteweg, in the paper referred to
makes ?he étatement. " YWhen, on the contrary, the squares and higher powers
of the velocity are taken inte account, I have my reasons for supposing that,
even ih the case of a sphere moving with uniform velocity, no state of steady
motion can be reached, and the motion must finally become unsiable ", As
farras the present writer is aware, neither Korteweg nor enyone else has amp-
lified or explained this statement, although other authors have expressed sim-
~ilar opinions as to the possibility of steady sclutions, The theorem just
proved would seem to furnish at least an indication of a possible basis for
such beliefs. If the theorem could be shown to hold for La@rangian funciions
involving any order derivatives, the nou-existence of steady motion except in
$he " exceptional cases " would be reasonably certain, It has as yeit, however,
not beeﬁrpossible to make this generalization; in faci it is 1o be expected
that such an extension would not be irue, On the other hand there are gome
physical reasons for resiricting the considerations to LaGrangian funcilons
involving enly first order derivatives, Among these is the fact thai all ex-
pressions of the nature of flux or diséipation of energy, or rate of doing work,
are expressions involving only firsi order space derivatives, and it is out of
guch termé that one should expect a ™ minimum funciion " to be constructed,

In.any event we may say that it appears probable, on the basis of this the~
orem, that except im the " exceptional cases " described above, there is no
possible steady motion of a viscous, incompressible fluid,

We proceed with s discussion of various examples of the " exceptional

cases " for which steady solutions haeve been found, There are esgsentially only

three such cases existing, One ig motion in which the entire flnid moves as a

rigid body with uniform rotation, In this case we may wrile

lc———('j v=—Cx
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“and we have the particuler example of am " exceptional case " discussed ex-
plicitly oh page 13, The second case includes plane laminar flow, and
Poiseuille flow in a tube of uniform cross-section, In both of these cases
ﬁe can chgose a éet of rectangular axes such that two componenis of velocity
vanish throughout the fluid, Hence we have the " exceptional case " in which
the intractable terms vanish identically, Finally there is Hamel's case of
flow in logarithmic spirals, whichwill be considered in detail in Sectioms

4 and 5, Here there is only one non~vanishing component of vslociﬁy rela-
tive to a set of orthogonal curvilinesr coordinates, amd in the one component
Navier-Stokes equation which remains to determine this velocity, ihe component
of /jf7[§%jf is replaced by the correaponding‘component cfifo;?l', Hence
all of the cases of general steady motion thus far discovered belong to the

class of " exceptional cases " and , to this extent at leasi, our theorem is

vorified,
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SECTIO}I 2
In this ségﬁtion we shall give the explicit form of ths Lafrangian function
for plane laminar flow and Poisegillé flow in a tube of circular cross-section,
Lot ué cox;sider first plane laminar flow,

We choose Cartesian coordinates and assume two-dimensional motion, writing

= 2. =
W——?-/’z—-&

In general it will be convenient when talking of iwo-dimensional motion to re-
tain the three dimensional language as 0 volume and surface elements, introe

ducing a unit length in the z direciion to give the three dimensions i,e,

A7 = /Xd’j'/

j:ls = line imbegral in the x, y plans,

We consider flowﬁ’;etween two parallel walls x= X, and x = X, and take a
region bounded by these two walls and any two perpendicular planes y = y, end
y= y, ( end by two planes z = z, , 3 =z ,unit distance apart )

Then, introducing the usual restriction on the motion
g=u v= 20

and the continuity equation gives

pr — S
“2"‘;;*557 ur “""/L/(jd

The Btokes~Navier equations reduce to the following single equation for ithe de~

termination of u in terms of the pressure gradient

~2
'13) “.;ré"; ‘;Xé =  where s = 4/:?/1

In this case the flux of kinetic energy out of our volume region is zero i,s.

Fi=0

Yence the squation of conservation of energy takes Helmholisz' simplified form
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{ see egquation (5) )
and we expect Helmholtz® result to hold, namely

HP-#0)=5¢=0
This equéﬁicu ig found to be valid, in fact Rayleigh3) has shown that Q is an
absolute minimum, However if we take the dissipation funcition j§— as Lagrangm
ian function we do not get the equation of motion (13) from a variation prin-
ciple,

In order to find ths.prOPsr LaGrangian function we must somewhat alter the
procedure followed in Section 1, The difficuliy is ihat here we have already
introduced the continuity eguation explieiily, and consequently can not intro-
duce an arbitrary multiplier ,k into the yariaiion squation, which multiplier
is later to be identified with the pressure p, We must find some other way of
introducing p into the LagGrangian function, The method adopted appears to bhe
the orfle which must be employed in general, whenever the continuity equation hes

besn explicitly used to restrict the naiture of the velocity componenis, The

method is the following,
N4

Instead of considering P as a surface integrel as having, therefore, no
sffect on ihe variabion problem, we transform P to a volume inbegrel, just as we
previously transformed R, and incprpcraie the " density f nction * /P in the
LeQrangien function, Since at the walls the velocity is zero, according to
 the customary assumption of mo slip, there is no work done on the fluid in our
region due to viscous forces acting across these boundaries, Obviously ne
work is done by any tractions aﬁross the planes z= 3, and 2= 3z, ( bounding the
%egiﬂn in the z directiog}. Since the velocity is normal to the other boundarie
Y= ¥, aﬂd‘y;= Yz o the only work done on the region is due to pressure

forces and we may write, { @ = outwardly drawn normal )
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and applying the divergeuce theorem

»—:_jfv.,;;aﬁ“: -J’is% (fe)dT
o v

and finally since u= uly)

= vfa, ??.)éa/?"
7—

= -« 2t
2X
From equation (4)
_ >\’
B =3
and hence the variation principle (6) becomes for this case
S(P-#&)=0
[T 2 y2uy? 247 -
| {ﬂ[z‘/va) + w3k | dndy =0

The Eulsrian equation gives

(12)

which is exacily the equation of motion (13),
Hence for plane/m/'/lah flow we have verified the fact that the correct

LaGrunglean function, giving the equations of wobion by a variation principle,

.
18
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(25) | L= FE-K

in sgreement with eguation (6), In this particular case sincs K=0 wo rave

| /
e L plane leminar ==z

THe ¢ase of Poiseuille flow in a tube is cbvicusly exactly the seame in
principle as the above, The imposed conditions imply that all bul one com~

ponsut of veloeity venish, so that if the x axis be psrellel with the axis of

= = L
Vv
Then the csnt;.‘zmty gquation imposes the additional restriction thet u is
independent cf x and is a functiom of & single parameter representing some-
thing of the nature of the distance from the axis, so that the Havier-Stokes
equations reduce to & single ons determining u as a function of this para=—

meter, R vanishes exactly as above, and ] hes obviously the same value

. _ . 2£
V=-«55

»

so that the only problem in finding L is to express _,;{ in the proper oo~
ordinates, In the case of a circular itube, for example, where we defins r

as the disbtance from the axias,

@w =y w)
P=«
apd Z{::;ZZZ,_ZjFZ_-— ul)avf;;i) f—dﬂJ&é,

22X 7
J
Hence the variation prir 1}1 ;a cos the form

1{}15/ 7= “’Cé / Z’z /4/ ]Y*Jw:///é =0

where r = radius of the tubs

o
J



or z;r( X)Sf[/aw léyu_é S — jfZ/w=

vhere §,==;Zﬂ7y 'K)'”[

The Eulerlaa ecﬁatlon
gives
or

which'is exactly the Navier-Stckes equetion for u(r).

Herice the resulis for this case are ddentical with thoge for the previcus
one as far zs the form of the Lafrangien function is concerned. A new slement
which has appeared, however, is one vhich we shall find again in Sectian‘ﬁz
nemelys *f curvilinear coordinates are employed then, in writing‘the Zuler-
ian equations, the functions of coordinates iniroduced through the tfamsfcrmm
gtion frem a Cartesian to a curvilinesr system, must be taken into account,

The results of this section have been to verify,for some special cases,ths
sorroctness of the variation principie givern in (6), and to demonstrate the
fact that if the continuity ecuation be introduced to give an explicii limi-
tation on the velocity components, then in geiting the Lalrongion funetion, P
must be congidered as a volume integral end must be included in performing the

variations,



(17)

AR

SECTION 3
* In this éecﬁim we shall be dealing with crihogonal curvilinear coordin-
ates,so that it will be convenient to list certain formulae connected with such
systems before proceeding with the analysis, We shall change our nomenclature
end dencts the orthogonal curvilinear cocrdinates by u, v, w, ( We shall refer
to velocily components as q s 9y » Q, s ©%Cs } Hence in terms of Cartesian

coordinates we have

u= u(x,y,z)
7= v(x,y,8)
w = w(x,y,2)
Then,if ds represents the line element,we define the guantiiies U,V,V, by

z 2 @ b N z. 2. N
ds = Udu+V dv + W dw

where

U = u(u,v,w)

V= ¥{u,v,w)

W= Wu,v,w)
Then the volume element becomes

47 = UVWdudvdw
For convenience we list the expressions in curvilinear coordinates for

the most common vector and scaler guantities ncrmelly occuring in potential
theory{ where :u) Z-V) LT-W represent unit vectors in the direction of increas-~

ing u,v,w respectively, at any point u,v,w in the space):

LT v T L 2T
V‘f"a,_,aubu—‘f‘?s’g'bv*‘"w?wbﬂ/

P = b (T S (WA 2 (TA)
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2, . L VI

}f pr“zrVW‘L%(zz é':if} W(;@';_zr /’ (/ )j
| L ‘ ’
(N A= e 5 Sa s w
. | mA VA whv |

In addition to these we shall require the expressions in terms of
By the following

curvilinear coordinates for V"A— and (A- v)A

simple vector tramsformations these can be obtained from the expressions

(17) |
VA= (V) - vx (v A)

(A E = Ly A* = Ax(vxA)

The resulting expressions, which the writer has not been able to find in

any published work wiih which he is acquainted,are

V4= ng(VA)+ { Ef}_ﬂ)}_ﬁ ( VAy »m@jﬁ
Vw > fd) W};u {W (am ger } {W mw zVA)zi}

(auf/lw WA { azm BWAi

| W‘aw(VA)J'rVEV{V‘V W
(18) a.hd‘
{4 2A* _ Ay s aTAY_ 2&3}4— AW/QZZA«, ﬂw)‘a;
WZZ'( W 24 j“'

(A V) A—_ ﬁjﬂ' U gy
R

!_,. Z‘AL (QW_AW }VA
%ZV Ll W
?ﬁj_ /4u 2ZZ’AA. ZWA')_I,_/K_/)}VAW JVAV){[

s

+ ‘g j}?w WE



(4)

(19)

(19%)

Using the- above formulas {17) and (18) it ‘is possible tc express very
sasily the Navier-Stokes equations ih terms of any orthogonel curvilinear co-
ordinetse sysﬁeﬁ, However in searching for LeGrangian funciions we must have
the dissipabion function ¥ exp:;r'es‘sed in a similer way, The simplest mebhod
of accomplishing this, in view of oﬁr nomencla:ture, appears to be to firgt obw
tain an expression for &€ involving only vectors, and hence entirely inde-

pendent of coordinate systems, and them to use (17) and (18) to get the final

form desired, There is also some interest per se in having an expression for

% independent of any coordinate system, The transformation of £ as
given in (4) to such a form is not al once apparent, so that it may be worth

while to indicate the method used, We have (4) (using our earlier nomencla-

ture)
Foaf e 24 ) (2 e 3 ) (2]

o2/ 2, WY pow 2V _ pRmeW _ y 0V du
_,_/«,L 2x 7 %y 92—) lfézag ¢9x 2 %"ﬁ(g}?

{—/ OV _ 2 2w Dy 2 ey
raj ?Z V2Z X +(‘ax 9; *’7_97 52t iEsR t4 ;;—j‘?-j
¢ —_— :m %2 —3 Z
é——/&[ 2/7‘3) + (V’x;)
FYLREL 2N, s sy nw 2;;/_» oy ”uz,“u

end the problem now becomes: to transform the last parenthesis, Sinée the
calculations are laborious we shall carry them out for the two dimensional
case: W= 2 = O . The method for the general case is identical and

2Z
the results for the general case can be at once inferred from the simplified

ease. In the two-dimensicnal case the parenthesis becomes:
4_{ DV 4&4
2X 97 f; /

Consider the expression . R
v T

/”‘/ e 54 oK

Qe
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where as mentioned earlisr, we retain thre-e-dimenéimml language, i,e,
¢J73:.gQ'4<7 iéra two_dimensi§nal volume element and V is a two dimensional
volume, Similarly we define S as the surface enclosing V, so that dsg is a
nnenﬁimensional_surface slement, Then if we should go 40 the three-dimen~
sional cass the nomenclature would remain unaltered, With these con#entisns,

then

= 2V 24 2
I;‘r]/’? X'Zj 22;2;"—2;;%&:— Zgg 'a)(

and integrating the first two terms with respect to x and the second two with

55) dhdy

respect to y, we have, where 1l,m represent the components of n, the outwardly

drawn normal to ds:

I=‘Sf[2/l/,§ -2l 2¥ 'j +2I;4¢¢ ~ZmVy 9;(745

= ﬁr”i’/%* ) ama( 3 - B2 2 4 a2

— ., 2 2w 3:/ e 2,,,,,_1 7
o o ’Qf/) 2’}:41/{ +57 + 24 2 57 jj/Jj

If for simplicity we write J4 = VX2 , them

f-—-; [~20tr Rz -mad) —g//w T ol o g@%

=j{”z’7'/ﬁ"4) —‘ZFI'-;T(V.;') + 7 V;zjc/_s
Aﬂ :
and by the divergence theorem:

I—“—ZTV} —Zv /;:«JZ)— 29~ {f‘z’v-i)ffd?’

But by elementary vector irangformations

V'(;"sz): Jzz-‘;—V(V’E 1“?' \72_



1 T

and

AT =y [P g B 2 g 7 T
7 _
and finally

L WEE R ) Ay A R

In thres dimensions the analysis is identical and leads to this same egqua-
tion where the left-hand member is replaced by the complete paremthesis of
equation (19), TIntroducing this result into (19) and cancelling where possible
ws have finally ‘.

(21) - 2 y"7
; 2 = > j
F = [Tt DT F
which is the expression we set oul to obtain, It is interesting to note thai
Lamb { V, p., 549, equation 11 ) gives an expression for ithe dissipation of an

incompressible fluid which can be shown io be identical with this general ex-

pression in which incompressibility has not been assumed,



(24

1.

SECTION 4
- Tn ths recéﬁt paparé)_referfed to, Hamel haa given a very elegant discusg-
sion of a new general type of steady mbtion of an incompressible fluid, He
cansidérs a two dimensional moltion in which the streamlines ars restricted to
coincide with an isometric femily of curves, He then proves that this family
must necessarily be a set of logerithmic spirals, He works with Stokes' siream-

function, and his proof is quite absiruse, Ossen,in hig laker paper5) on the

same general subject has generalized somewhai Hamels® considerations, bul his

nsthod is very similar to that of the earlier paper, In this section we shall

give an entirely different proof of Hameole' rosuli,in which the rsaconing ceems

g little less abstract,

We use the curvilinear coordinate notation explained in the first part of

gsction 3, and since we ars dealing wilh two-dimensional motion take

2=0 W=/ g,=0
We definse
wHiv= T (x + iy)= T (z)
where T is a function of the complexX veriakle z= x 4+ iy, This im?eses the
restriciion:
v=—1

Then u, v form a seb of orthogonal curvilinear coordinates such that

Vi = iy =20

Hence u = constant end v= constant constitute two orthogonal families of is~

ometric curves, We assume that the velocity of the fluid is everywhere tan-

gent to the family = constant, i,e, the sireamlines goincide with this fam-

ilva



2T

The continuity equation for an incompressible fluid zives, from (17) and (23)

V;:a
-tﬁ%(flzzfj =0

e
—

Under these conditions, writing

@ Y

f’§ ?’E f.‘z//; ?/EL fll;: ZE .ifé".

4 . oV rY 4

(17) and (19) give

(f V)f’ "g‘fzw ZZ” “""—{zw(y)— —_ gt,’f'“‘*:.y—

n—gw/ﬁq)é“’ -”a":z"’/‘”z‘

_ L Z Az 3
V%"f?w ZZ‘?VéV

f7V/y&)“~M ’“/ﬁ y

and the Navier-Stokes equations (1) become

T o P Wi
D ose zf su(7) tes ()
(26)
% h_
Yow differentisting the first with respect to v and the second with respsct io

u and subiracting we get

R R



or expanding and factoring q‘f’z out,
A1 ’ > SH_2 "y
B[t () F (3 S TR TR o

z . .
And since U” (which is the Jacobean of the transformation x,y—>u,v)

* cannot vanish, and remembering
_) ‘462?47‘ sZe

we have the equation of motion with pressure eliminated:

‘(2‘7) fFF 2 Ao i /‘{F[” AREILL A /aﬂz;f-ﬂf ‘& loq f'fﬂ;?z 0

p
Since the last term, f » is a function of v only and since (27) is an idenw

4+ity holding for ell valuss of u and v , therefore the entire left hand mem-~
ber is a function of v only, Then, since the first term is the only one con-

taining £ , it is a function of v only,

.2 L =
(271) c = /aj”z j,(l/) (say)
The coefficients of £’ and £ may either be individually functions of v only,

or the expression

j 2 "f (Sa
Fl T3+ T3l w2 F Ao v/
may be a function of v only, while the separate coefficienis are mixed functions,
We shall show that the first mentioned condition is the one which must actually

. o . 5 o 4 5 " .
be satisfied, For if the coefficients of f and £ are functions of u we may

, . . < I 2 .

expand them in power series of the ferden 174 where the &y s are functions
of v, Then combining the coefficients of like powers of u, the condition that
T be s function of v alone implies thet the coefficient of each power of u van-

d

ishes, lHence we are led to a series of total differential equations giving f

ss & funchion of v, which must be eatisfied simultanecusly, We remark that
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Set?

(29")

(30)

vhere @, - is obtained by replacing i by =i throughout @~ ,

Also
Tr= Driat i) 2 «-<¥)
:7//{7 a z=/éj Qf/uﬂ)/) f’%j @,‘/a,-d‘l/)

= ,(v/ét/-z‘//) vy _—a‘lj /sa))
where k,bears the same relation to k as & does to @ ,
in our czse, therefore, we have from (23)

Aa + j/V)': ko roerey) # A, fot-¥)

Using primes tg denote differentiation with respeet 1o the complex variasbles
indicated in (29), we have, differentiating with respect to u

k'+ k= A

47 h=0

while differentiating with respect to v

gl g
4 u(j-a,r

Hence combining {29') and { 29°*)

7T _,
av®
. 5] = Z?P’f‘43 ((54)5
Hence we may write (from 28)
N Aw + 5V
7= e

where A, B, C are real coustants, Subgtituting this expression in the co-
he condition that this

efficient of f' in (29) ws see that it does satisfy

coafficient is a funciion of v only, and does not contain u,
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fandilies of log urlthnl spirals,
if = povatreived to heave
» 2 L] i 2 - P Sy . 3 & 4 7 o
its stresmlines coinclde with =z fanily of isowmetric curves, t1is family must be-

passing cu to section 5 , it may be well to discuss briefly one or

two points connected with this type of motion, The limiting cases, vhere the

2

gtresmlines coincide with u = gonslavt, 1,8, ¢= (y BTE:

1} Tlow in concentriec circles, usuelly called Joueitte flow, which is cblained

i X
setting b= 0
3)  Pleno radial flow which is given vhere a={,

Hamel has discussed both of these cases al length in the paper referred to,

-3

ifferential equation for f, which might be called the equation of mo-

ia

jeh

he ¢
. ; s o T . - . - . s
tion, iz obtained by introducing the expression for U™ (30), intc the equation

of motion with pressure eliminated (27)

%Ay g2 = %L/ZTZ)
=B

F L (F)= B

L
s 17 7>
A FEF + ] (4 BIF-2BF"+ F*]=0

or integrating once and writing ’7;<= Z/= coefficient of kinematic viscog-

@

ity
f”’- 25;1_/_ (/AL"‘BJ)F‘}‘Z"%FJ:K

where < is an arbitrary counstani of integrationm,
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SECTION

.

In this section we wish %o apply the results of the lirsb Lwo sections
to the case of flow in logarithmic spirals, I% is very easy %o see that this
case belongs to the class of " exceptional cases " defined in section 1, For
referring to equation (18), if we have two dimensional flow such that

=55, =9 w=/
and if the velocity is assumed to be such thail the stresmlines always coincide
with one family of orthogonal curvilinear coordinsates, i,e,
w= 9 4y =0 (say)
—_ ;. 22*

then the u component of(’ );Z becomes 77 a4 5 which is identical with

Lo

‘the u component of }% V}; o But the Navier-Stokes equations in such a

cage reduce to the single u~component equation fer the detormination of gy =

A/L 2-
Hence the Vavier-Stokes eﬂuaxlous(h'vj g may be repleced by 4 V7 ¢ whersver

the former occurs, Bui this is exactly the " excepiional case " mentioned
explicitly in the discussion following equation (9),

Having settled this point we pass on to a consideration of the variation
problem: to find a LaGrangian function which will give the " equalion of mo-

tion " {34) throu§h the applica ation of a veriation principle, For ths rezion

over which to integrate we make a similar clolce to thet of section (2}, i,e,

we bake the z bounderies unit distance apart, e concider flow between fixed

a1ls which coincide with twe membsers of the chosen fanily of logarithmic

o

srirzls and taks these tvo walls,u= u, and u = U, , as Lowndariss of our

of the orthe

oy

rezion, The other +vo houndsriesz zre formed by auy twe members
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1 3G e

v=1yv, Js  As in that section we retain the three dimensionzl nomenclature

but omit the z variable as having no effect on the equetions, Hence

/ﬁ:—j?z?;/s; S FAIT
Ry T

. — Wy
< = -F Zz; = "'4?2‘ar”94c

(37) : £ 2/
°r = T gioa
In the cass we are considering the pressure p has been eliminated from the
equation of motion (34) which we are trying to obtain, end an arbitrary con~
stant o has been introduced, Hence in (37) we must replace See by an ex~
pression involving the velocity, its first derivatives, and < , To do this
ve go back to the equetions of motion as given inm (26), Here 5, is given in

termg of £ and £'', The £'' is eliminated by using the equaition of molion

2
(34), Using the expression for Z given in (30) end eliminating f'* we get.

%= -2 [0aB)F- BF=]

so that finally

L : 2 7
(s8) 7= Jof(A+E)F = BFF'-=F]
The general expressicn for ZK? given in (8) holds in this case, so that
K=z f vz ’Zj’zwc(yz/}'zzr?—’g%u ﬂ"‘/}

(39) | R=-7iLAF



=36~
The vector expression for'jg is given ig (21)
: 3 r ) B .
(21) ff/“llv:?z“(wi)iz;z'v’;&;
Dut from (17) and (18)
. sz = E’”LF ‘CV")’Lf BV"(/IJ—’J’LFF (El*ngf‘f‘ sz
(VXE)T= 7 Fr-

w2z =L eps ), FE"
FUPTaL sl t S

12
et s L), X L) 1> 1) g Lo
. E = ;71-1{}: iﬂl‘(??‘ ’L5;3—/ZTfo F2EF 55 (7% 7L27-l

CF= Z?;[m’wﬂf =’ 5Ff’*-F’7

(40) -

lence using the expression (35) for L?

,,2/,4:@4-3!/ 2
o g=e [ e N FJ v ¥ PAF

e remarked in section 2 (Poiseuille Flow) that it was necessary o form a fune-
ticn L,abtained by multiplying L by the Jacobesan of ithe iransformation from Car-
tesian to curvilinesr coordinafes, and thal it was necsssary o forﬁ the Kuler~
ian equatiog using L,instead of L, This is a general rule for carrying out

variation principles in any curvilinear coordinates, In our case we have

Y ar= S{L T Audy = 5[] L, ddr =
Jy)i/,ic/f V[/ 4 5 y=e

Then the Bulerisn equation is:

/‘)‘L’ 2L,
2V(DF’/ 5?;0



3T

or 2 /ATy el
wlop /7 o =9

If we take L=1" as defined in (41) this does not give the equation of mo-

tion (34), eand it appears that in order o0 get the result we are seeking we

nust set

; s
(42) / i
Thes L, = W= 1/

and the Zulerisn equation becomes

> 24y
v /'DF’ T 5F 7Y

which givoes:
F'-2BF"+ A+ BIF + 25 AF'= <

which is exactly the equation of mobion (34) if

Y=+

Hence as we suspecied, the imtrcduction of a particular coordinate system may
alter the general expression for L, 1In the case of logarithmic spiral flOE}
this alteration congists in changing the wvalue of ¥ from 1 to-é-and in chang-
ing L from the invariant funcfion

Z:F—ff‘y%

to0 the expression depending on the coordinate sysiem

(43) [ (T-EE-IR) L

whers U%is the Jaccbean of the trameformation from Cartesian %o logarithmic

spiral coordinales,
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CONCLUSIONS

The finel conclusions of ﬁhis'thesis, ingofar as they relate to a varia-

tion principle are as follows:

1)

?)

3)‘

4)

It appears probable that excépt in certain " exceptional cases " steady

motion of a viscous incompressible fluid cannot exist,

‘All of the cases of such motion which have yet been discovered.dc belong

to the class of " exceptional cases ", as we have defined this class,
The equations of motion of all known cases of steady motion may be de-

rived from a variation prinecipls,

The LaGrengian functions for all these cases are exhibited and it is seen

that the corresponding variaiion principle is
LA _
S(P-+4-yFR)=o0

except for functions of the coordinates, which may be introduced through

the imposing of restirictions on the velociiy by the coordinate system

chosen to describe the motion,

In conclusion the author wishes to express his deep appreciation of the

continued assistance and inspiretion of Dr, H, Bateman, who originally suggesied

the preblem, as well as his gratitude Lo olher members of the staffl of lthe -

lorman Bridge Laboratory, ‘oo numerous to mention, who were always ready 4o dis-

cugs difficuliies and to offer valuable suggestions for their golution,
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