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Abstract

What neural codes does the brain use to represent and process sensory

information?  Stimulus-evoked oscillatory synchronization of neuronal activity has

been observed in many systems, yet the possible functions of such rhythmic

synchronization in neural coding remain largely speculative.  In the locust, odors

appear to be represented by dynamic ensembles of transiently synchronized

neurons.  The experiments described here explored the design and function of

the locust olfactory system, focusing on projection neurons in the antennal lobe.

The first goal was to characterize, by means of intracellular and multiple extracel-

lular recordings, the oscillatory synchronization and slow temporal patterns in PN

odor responses in vivo.  After the system had been characterized, specific coding

hypotheses were tested.  The results demonstrated that the cycle-by-cycle firing

patterns across ensembles of PNs encode odor identity information, but that

other response features (such as phase or frequency) do not.  Finally the mecha-

nisms for the generation of these dynamics were addressed.  Odors do not

evoke oscillatory synchronization in the population activity of olfactory receptor

afferents, and non-specific, temporally unpatterned electrical stimulation of recep-

tor axons can evoke both oscillatory synchronization and slow temporal patterns

in PNs, similar to those evoked by natural stimulation with odors. Oscillatory

synchronization of olfactory neurons therefore originates in the antennal lobe,

and slow temporal patterns in projection neurons can arise in the absence of

temporal patterning of the afferent input.
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Chapter 1:  Background and significance

The experiments described in this thesis explore the design and function of the

locust olfactory system.  I chose a twofold approach to investigating odor-evoked

oscillatory synchronization in this neural system.  First, I sought to understand the

functional significance of these dynamics—in other words, I wished to know what

the system was doing, and what use it could be for information processing (Chap-

ters 2 and 3).  Second, I sought to understand the mechanisms underlying the

generation of these dynamics—in other words, how the system works (Chapter 4).

The backdrop for these explorations can be broadly divided into two areas.  The

first issue is how information is encoded into spike trains in nervous systems—

neural coding.  This area is relatively theoretical and benefits from comparison of

different sensory systems, animals, and theoretical models.  The second issue is

olfactory information processing, which has been extensively studied in a variety of

animals over the last 50 years.  This review begins with an overview of olfaction,

and then covers neural coding.

Olfaction

The nature of olfaction

The detection and analysis of an animal’s chemical environment is so crucial

to its survival that almost all animals, from nematodes to bloodhounds, have olfac-

tory systems.  The molecules floating though the air or water in which animals live

provide a large amount of often very specific information about food, danger, and

conspecifics interested in mating or defending their territory.  Odorants are small,
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generally volatile, organic compounds with molecular weights less than 300 Daltons.

The number of different odorant molecules has been estimated at 400,000 (Mori

and Yoshihara, 1995); yet most odors in the natural world are complex blends of

these compounds, leading to an astronomical number of possible smells.  Still,

each odor, whether monomolecular or a blend, generally evokes a singular per-

cept.  The ability of the olfactory system to memorize, recognize, and discriminate

such a vast array of molecules is rivaled only by the immune system, which recog-

nizes peptides, carbohydrates, or other antigen molecules or epitopes.  Animals

can detect odorants at extremely low concentrations, yet still discriminate between

different odors.  Slight alterations in the structure of an odorant molecule can have

profound effects on its perceived odor quality.

Odors can evoke powerful emotions and behavioral reactions, and form asso-

ciative memories that last a lifetime.  Odor-evoked memories are well described

anecdotally and in literature, with Proust’s madeleine being perhaps the most fa-

mous example.  Experimental efforts to characterize odor-evoked associative memo-

ries in humans have demonstrated that they tend to be highly emotional, vivid,

specific, rare, and relatively old (Herz and Cupchik, 1992).  For example, after

associative pairing of a painting with either an odor or a verbal label, memories

elicited by an odor cue were more emotional than those cued with verbal cues on a

variety of measures (Herz and Cupchik, 1995).  While the designs of these experi-

ments leave much to be desired from the perspective of a neurophysiologist, it

appears that cognitive psychology has at least partly confirmed the conventional

wisdom of folk psychology.

Olfactory bulbectomy has been proposed as a working model for depression,

which may be related to the extensive coupling of the olfactory system to the limbic
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system in vertebrates.  Many of the behavioral effects of bulbectomy in rats are

similar to those observed in depressed patients, and many of these behavioral

changes are ameliorated by chronic treatments with antidepressants such as the

tricyclics and selective serotonin reuptake inhibitors (Kelly et al., 1997).

Odor-mediated behavior

Odor-evoked and odor-mediated behavior has been studied in a wide variety

of species.  Detection of food odors elicits stereotyped antennal scanning behavior

in the cockroach (Periplaneta americana), a nocturnal scavenger.  This olfactory

scanning, observed in total darkness with an infrared camera, consisted of circular

antennal movements at ~1.5-7 Hz , after which both antennae point in the direction

of the odor source for 1-2 seconds.  The animal then orients toward and approaches

the source (Chee-Ruiter and Laurent, 1995).

Detection of female sex pheromone by a male sphinx moth (Manduca sexta)

elicits stereotypical mate-seeking behavior.  Male moths zigzag upwind through the

pheromonal odor plume, approach and contact the source, and attempt to copulate

with it (Willis and Arbas, 1991).  The structure of an odor plume several cm from the

source consists of packets of odor interspersed with regions of clean air, which

create corresponding temporal fluctuations in concentration for the moth as it flies

upwind (Murlis et al., 1992).  Controlled presentation of temporal fluctuations in

pheromone concentration elicit orientation and counterturning behavior in moths

(Mafro-Neto and Cardé, 1994).

Olfactory guided behavior has been studied in numerous other species.  Ol-

factory tracking by dogs has long been of practical use to humans.  Characteriza-
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tion of olfactory tracking behavior in dogs has demonstrated their remarkable abil-

ity to correctly determine the heading direction of a trail of 20-minute-old footsteps

within 3-5 seconds after encountering it (Thesen et al., 1993).  Sockeye salmon

use a combination of visual and olfactory cues to return straight to their natal area

from open water (Ueda et al., 1998).  Adult toads (Bufo japonicus) migrate to their

home pond for breeding up to three years after metamorphosis, and can exclu-

sively use olfactory cues to do so (Ishii et al., 1995).

Convergent evolution?

There are striking parallels between the olfactory neural circuits of animals,

across several phyla.  The olfactory systems of insects, crustaceans, and most

vertebrates feature glomeruli, discrete structures of neuropil which have been de-

scribed as one of the most distinctive structures in the brain (Shipley and Ennis,

1996).  In addition, mollusks, arthropods, and chordates exhibit odor-evoked oscil-

lations, whose functions have remained enigmatic for over half a century.  These

anatomical and physiological parallels, to be described in detail below, suggest

fundamental principles underlying the circuit design and processing function of ol-

factory systems in general.  These parallels in design and function are thought to

be the result of convergent evolution.  The divergence of mollusks, arthropods, and

chordates occurred in the mid-Precambrian (roughly 1,000 million years ago), be-

fore animals had evolved hard parts (such as shells or bones), and the fossil record

is therefore impoverished.  Conclusions about Precambrian paleontology are based

on trace fossils (body impressions in the mud) and are thus speculative and subject

to much debate (Glaessner, 1984).  It is generally agreed that mollusks and arthro-

pods diverged from an acoelomate (no body cavity) metazoan ancestor, probably

Platyhelminthes (flatworms, the first bilaterally symmetric organisms and also the
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first organisms with a central nervous system [Gustafsson and Reuter, 1990]).  Ar-

thropods and deuterostomes, which later split into echinoderms (e.g., starfish, ur-

chins) and hemichordates, likely shared a coelomate, archiannelid wormlike com-

mon metazoan ancestor (Clark, 1979).  Very little is known about those metazoan

animals, and the synaptic organization of modern Platyhelminthes nervous sys-

tems has not been studied in detail (Reuter, 1990).  Ultrastructural analysis has

demonstrated that at least one species of flatworm (Stenostomum leucops) con-

tains a neuropilar region with conventional synapses (Reuter and Palmberg, 1990),

in contrast to previous reports that Platyhelminthes neurons were capable only of

nonsynaptic release into extracellular space (i.e., neuroendocrine), and communi-

cated by means of electrotonic junctions (Moraczewski et al., 1977).  They have

ciliated sensory receptor neurons, some of which are presumably chemosensory,

but no reported glomerular organization (Reuter and Palmberg, 1990).  They do,

however, possess a structure reminiscent of the insect mushroom body (N Straus-

feld, unpublished observations).  The nervous system of modern nematodes, a

pseudocoelomate phylum also likely to have appeared in the acoelomate radiation,

is well-studied and may shed light on the metazoan nervous system.  The nervous

system of the hermaphrodite nematode Caenorhabditis elegans contains only 302

neurons, and a single sensorimotor neuropilar region called the nerve ring.  The

chemosensory system of this animal contains only 4 olfactory neurons and 2 inter-

neurons, with limited synaptic processing and certainly no glomerular organization

(White et al., 1986; Bargmann, 1993).  Taken together, these observations from

paleontology and modern comparative neurology suggests that the similarity in

olfactory circuitry across phyla are the result of convergence, rather than conserva-

tion from a common ancestor, although these conclusions should not be seen as

set in stone.
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Olfactory information processing

Perireceptor events

Before odorant molecules are recognized by olfactory receptors, they must

first cross an aqueous interface.  In vertebrates, the olfactory epithelium is covered

by the nasal mucosa, which is about 5-30 µm deep depending on the species and

living environment (Menco, 1980).  In insects, the sensillar lymph is situated be-

tween olfactory receptor neuron (ORN) dendrites and the cuticular walls of the

sensilla.  The functions of this aqueous environment between ORNs and the exter-

nal environment are largely speculative at this point, but there are a few readily

apparent functions, and others which are the subject of ongoing investigation.  First,

the aqueous layer certainly protects the delicate ORNs.  It also provides the aque-

ous environment required for the biochemistry of ligand binding.  However, olfac-

tory mucosa are present in fish, and even bacteria have a periplasmatic space,

while neither of these organisms require such a layer to provide an aqueous envi-

ronment.  The function of this layer may therefore be more complex.

Olfactory binding proteins (OBPs)

 The presence of a large variety of proteins in both olfactory mucosa and sen-

sillar lymph suggests that they may have biochemical functions.  Proteins have

been described in both vertebrates and insects that interact directly with odorant

molecules.  These can be divided into olfactory binding proteins (OBPs), and odor-

ant degrading enzymes (ODEs).  OBPs have been described in numerous verte-

brate and insect species (bovine: Pelosi et al., 1982; Bignetti et al., 1985; Pevsner

et al., 1985; rat: Pevsner et al., 1986, 1988; rabbit: Dal Monte et al., 1991, mouse:



7

Pes et al., 1992; Pes and Pelosi, 1995; pig: Dal Monte et al., 1991; boar: Marchese

et al., 1998; porcupine: Felicioli et al., 1993; insect (Lepidoptera): Vogt and Riddiford,

1981; Gyorgyi et al., 1988; Krieger et al., 1991, 1993; Raming et al., 1990; Vogt et

al., 1991; Pelosi and Maida, 1995).  OBPs are soluble, low molecular weight pro-

teins which reversibly bind to odorant molecules.  On the basis of amino acid se-

quence, OBPs can be assigned to the superfamily of soluble proteins called lipocalins

(Sansom et al., 1994), which typically function as carrier proteins for hydrophobic

ligands in aqueous media.  A single species can contain several types of OBP

(Pelosi, 1994).  These are not isoforms, because their amino acid sequences have

low similarity.  In fact, OBPs from different species can be more closely related than

OBPs from the same species (Pelosi, 1994).

In insects, OBPs and pheromone-binding proteins (PBPs) are highly concen-

trated in the sensillar lymph, constituting almost the entire lymph protein content.

Their amino acid sequences bear no homology to vertebrate OBPs (Pelosi and

Maida, 1995).  Although there is no direct evidence that PBPs bind to pheromones,

immunocytochemical methods have localized them in trichodeal sensilla (known to

sense pheromones) in Lepidoptera, whereas general OBPs were localized to the

generalist basiconic sensilla (Kaissling, 1986; Steinbrecht et al., 1992; Maida et al.,

1993; Laue et al., 1994).

Interestingly, the expression of a protein significantly similar to Lepidoptera

and Drosophila OBPs has been reported in the antenna, tarsi, and labella of the fly

Phormia regina  (Ozaki et al., 1995).  This suggests that a single protein may serve

the same function in both transduction of volatile airborne compounds and contact

chemoreception of aqueous compounds.
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Olfactory degrading enzymes (ODEs)

Degrading enzymes distinct from OBPs are also present in olfactory mucosa

and sensillar lymph, with very high activity.  Olfactory forms of cytochrome P-450, a

degrading enzyme of broad specificity first described in the liver, have been identi-

fied and cloned (Dahl, 1988; Ding and Coon, 1988; Ding et al., 1991; Nef et al.,

1989).  Enzymes which further detoxify the products of cytochrome P-450 have

also been reported in the olfactory system, such as UDP-glucuronosyl transferase

and glutathion S-transferase (Longo et al., 1988; Lazard et al., 1990; Rama-Krishna

et al., 1992).  The activity of these olfactory degrading enzymes (ODEs) is as high

or even higher than in the liver.  Clearly, one function of these enzymes is to protect

against toxic odorants.  After all, the olfactory system is the only part of the nervous

system directly exposed to the external environment.  A further potential function of

ODEs is the termination of the sensory message.  The temporal fluctuations of odor

concentration in an odorant plume contain important information about the source.

The search strategy used by male moths, for example, strongly depends on the

intermittency of pulsed female sex pheromones.  Persisting compounds in the

perireceptor space could reduce the temporal fidelity of olfactory transduction.  ODEs

may therefore remove odorant molecules in order to prevent reactivation of the

receptors.  A similar function has also been proposed for OBPs.

Functional roles of olfactory binding proteins

Although the functions of the olfactory mucosa and sensillar lymph are poorly

understood, some of their effects are evident from first principles.  Because odor-

ants are typically hydrophobic, an aqueous layer would hinder their access to re-

ceptors, thereby reducing the sensitivity and speed of ORN response (Getchell et
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al., 1984).  While hydrophobic compounds might be presumed to reach lower con-

centrations in an aqueous layer than in air, calculation of partition coefficients shows

that concentrations are actually higher in the aqueous layer by two orders of mag-

nitude (Amoore and Buttery, 1978).

Despite their ubiquity in olfactory systems, the function of OBPs remains largely

speculative.  For most odorants, the concentrations of OBPs in vertebrates are too

low by an order of magnitude to affect odorant concentrations around receptors.  In

insects, however, because OBP concentrations are much higher and sex phero-

mones typically have low solubility in water, the presence of OBP in the sensillar

lymph does increase the concentration of pheromone around receptor dendrites.

Apart from this concentrating effect, which is only potentially relevant in some spe-

cies and for certain specific odorants, the possible functional roles of OBPs are

only conjectural (Pelosi, 1996).

OBPs could act as passive, nonspecific odorant carriers through the aqueous

layer, although the presence of several classes of OBPs, even in the same animal,

suggests that their functions may be more complex and specific.  They may be

involved in recognition, analogous to chemoreception mechanisms used by bacte-

ria (Koshland, 1981; Mowbray and Cole, 1992).  There, soluble proteins in the

periplasmatic space bind to sugars, and the complex is then recognized by recep-

tors in the plasma membrane.  In this way receptors need not be directly exposed

to potentially hazardous compounds.  Pelosi (1994) has even proposed that mul-

tiple, broadly tuned OBPs could support a role in discrimination.  Kim and Smith

(1997) showed that Drosophila  mutants lacking LUSH, an OBP expressed in tri-

choid sensilla, display normal olfactory behavioral responses to a wide range of

odorants (including a range of alcohols), but exhibit a defect in avoidance of high
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ethanol environments.  In addition, expression of a moth pheromone binding pro-

tein (not normally present in Drosophila ) in the same sensilla, under control of the

LUSH promoter, causes transgenic flies to be repelled by even minute amounts of

moth pheromone.  These remarkable, though preliminary, results suggest first of all

that trichoid sensilla contain ORNS specific for avoidance behavior.  The implica-

tion for odorant binding protein function is that OBPs alone are sufficient to deter-

mine the chemical specificity of olfactory neurons within a sensillum. In contrast, as

discussed below in greater detail, olfactory receptors are known to be seven trans-

membrane domain, G-protein coupled receptors, which typically recognize small

organic ligands rather than proteins.  This suggests that recognition interactions

between OBPs and receptors are unlikely (Pelosi, 1996).

The high concentration of OBPs in the perireceptor space of all olfactory sys-

tems, combined with their rapid turnover—complete replacement within two days

in the sensillar lymph (Vogt et al., 1989)—represents a huge expenditure of energy.

Despite this cost, which must be balanced by some great benefit to animal species,

the functional role of OBPs in olfaction remain an open question.

Olfactory receptors

The vertebrate olfactory epithelium contains three types of cells: supporting

cells, basal cells, and olfactory receptor neurons (Retzius, 1892).  Basal cells are

precursors of olfactory receptor neurons.  ORNs continually turn over and have a

lifetime of about 2 weeks in humans (Graziadei and Monti-Graziadei, 1979).  ORNs

are small, bipolar neurons with apical cilia which protrude into the nasal mucosa

(Retzius, 1892).  Olfactory receptor proteins and the associated transduction ma-

chinery are located in these cilia (Menco, 1980).  The binding of odorant molecules
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to these receptors is the first step in the process of olfactory perception.

In insects, ORNs are located in sensilla, cuticular structures on the antennal

flagellum which can take a variety of forms.  Each sensillum type contains a char-

acteristic set of receptor cells, typically including ORNs along with mechanosen-

sory receptor neurons, and often other receptors such as contact chemoreceptors,

thermoreceptors, and hygroreceptors (Boeckh et al., 1984).  Typically a group of 4-

6 (up to 20) of these receptor neurons are closely associated with 3 non-neural

auxiliary cells.  The cuticular structure of sensilla vary widely and form the basis for

their classification.  For example, the sensilla trichodea in moths have hairlike ex-

tensions which can reach 500 µm in length (Kaissling, 1986).  Odorant molecules

penetrate the cuticular walls of the sensilla via pore tubules, and then must pass

through the sensillar lymph before reaching the olfactory receptors presumably

located on the outer dendrites of ORNs.

Mammalian olfactory receptors are members of a superfamily of G-protein

coupled receptors with seven transmembrane domains which includes rhodopsin,

dopaminergic, adrenergic, muscarinic, and other receptor types (Dohlman et al.,

1991)—which is in fact the basis for the strategy by which they were discovered

(Buck and Axel, 1991).  These proteins are expressed in ORNs () and are therefore

olfactory receptors, but have yet to be conclusively demonstrated to function as

odorant receptors— and so should properly be termed ‘putative’ odorant receptors.

However, much evidence suggests their role as odorant receptors— in the words

of Firestein (1991), “After all, it is hard to imagine what else they might do.”  Indirect

evidence that these proteins are in fact odorant receptors comes from the great

number and diversity of olfactory receptor genes—by far the largest gene family in
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the genome!  Although they could in principle subserve axonal guidance roles with-

out functioning as odorant receptors, this seems unlikely given the amount of ‘real

estate’ they occupy in the genome.  The cost of this genetic investment must be

balanced by a great benefit, perhaps the same adaptive value for which all animal

species have had chemoreceptory systems since before the Cambrian.

More direct evidence for a role of these genes as functional odorant receptors

is given by their expression in the sensory epithelium, as shown by in situ hybrid-

ization with probes for multiple subfamilies (Ressler et al., 1993; Vassar et al., 1993).

Furthermore, use of a recombinant adenovirus vector to drive expression of a par-

ticular receptor gene in an increased number of sensory neurons led to greater

EOG response to a very small subset of the 74 odorants tested (namely, to 7-,8-,

and 9- carbon aldehydes!) in the rat (Zhoa et al., 1998).  Other evidence that these

gene products function as odorant receptors comes from the study of Raming et al.

(1993), who demonstrated odor responses in a heterologous expression system.

Olfactory receptor genes with expression localized to rat ORNs were introduced

into an insect cell line using recombinant baculovirus.  Odors stimulated the pro-

duction of the second messenger inositol trisphosphate (IP
3
) in membrane prepa-

rations from these transfected cells, presumably by activating the host phosphati-

dylinositol system, but no IP
3
 increase was seen if a wild-type baculovirus control

was used.  No increase in the second messenger cyclic adenosine monophos-

phate (cAMP) was seen for any odor.  This demonstrates that olfactory receptor

genes can be functionally expressed, at least in the insect cells used, and that the

receptors interact with odor ligands to generate second messenger responses.  The

fact that odors increased IP
3
 but not cAMP in this heterologous expression system

reveals nothing about the second messenger pathways that these receptors utilize

in rat ORNs.  Other groups have so far failed to replicate these findings, which may
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be due to the speed of IP
3
 responses and the rapid quenching technique required

to measure them.  IP
3
 increases were seen to varying extents for 5 of 13 odor

mixtures tested, suggesting that olfactory receptors are broadly tuned yet have

some selectivity.  The combination of broad tuning and selectivity also character-

izes the response profiles of ORNs, as discussed in greater detail below.  Although

the results of Raming et al.  (1993) suggest that this broad tuning could originate at

the level of the receptor protein, an alternative hypothesis is that receptors are

narrowly tuned, and that ORNs express multiple receptors.  The latter hypothesis

has not yet been disproven, but the number of different receptors expressed by an

individual ORN has been estimated, using statistical arguments, to be one or at

most a few (Ressler et al., 1993; Chess et al., 1994).

The mammalian olfactory receptor gene family probably has 500-1000 mem-

bers, which could account for the remarkable ability of mammals to recognize and

discriminate a vast number of different odorants with great specificity and sensitiv-

ity.  The highest degree of diversity is in the transmembrane domains, which may

be involved in ligand binding (Buck and Axel, 1991).  Putative olfactory receptor

genes have now been identified in rat (Buck and Axel, 1991), mouse (Ressler et al.,

1993), catfish (Ngai et al., 1993), salamander (Zhao et al., 1995), and human

(Parmentier et al., 1992).  Seven-transmembrane-domain gene families that are

expressed in chemosensory neurons have been identified in C.  elegans (Troemel

et al., 1995).  These receptors are not homologous to mammalian olfactory recep-

tors.  One receptor, Odr-10 (Sergupta et al., 1994) has been directly shown to be

an odorant receptor using heterologous expression in human cells.  Odr-10 binds

to diacetyl (2,3 butadione), and produces IP
3 
elevation via activation of a human G-

protein (Zhang et al., 1997).  In mouse, receptor genes have been located at mul-

tiple loci in the genome (on at least seven different chromosomes), which suggests
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that their diversification may have occurred largely through duplication and modifi-

cation (Sullivan et al., 1996).  In mammals, finally, two other families of vomerona-

sal (pheromonal) olfactory receptor genes (with no homology between them, or

with general olfactory receptor genes) have recently been identified (Dulac and

Axel, 1995; Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba and

Tirindelli, 1997).

Second messenger cascades in olfactory receptor neurons

Binding of odorant molecules to receptors in the cilia of ORNs is thought to

activate G-proteins, which are likely coupled to the receptors and in turn activate

adenylyl cyclase or phospholipase C, to produce cAMP or IP
3
.  The G-protein me-

diating cAMP production is likely to be G
olf

 (Bakalyar and Reed, 1990), which is

localized to the olfactory cilia (Jones and Reed, 1989), but the G-protein involved in

IP
3
 production in ORNs remains unknown (Restrepo et al., 1996).  In rat, catfish,

and insect, odorant stimulation has been shown to rapidly and transiently stimulate

the formation of either cAMP or IP
3
 in isolated cilia (Boekhoff et al., 1990; Breer et

al., 1990; Breer and Boekhoff, 1991; Restrepo et al., 1993a).  While cAMP is widely

agreed to be involved in odor transduction, the role of IP
3 
is controversial.  Knock-

out of the cyclic nucleotide-gated channel or G
olf

 produces totally anosmic mice,

which is inconsistent with a role for IP
3 
as a primary mediator of excitatory olfactory

signal transduction (Brunet et al., 1996; Belluscio et al., 1998).  IP
3
 may instead

modulate cAMP-mediated odorant responses.  However, some odors lead to pro-

duction of IP
3 
without measurable production of cAMP (Boekhoff et al., 1990; Breer

and Boekhoff, 1991; Restrepo et al., 1993a), which is inconsistent with a modula-

tory role for IP
3
.  In addition, IP

3 
signalling has been implicated in pheromone trans-

duction in rat vomeronasal neurons (Inamura et al., 1997).  Despite this contro-



15

versy, the fact that both second messenger systems are seen across phyla sug-

gests that dual pathways, like the many other phylogenetically conserved features

in olfactory systems, play a fundamental role in olfaction (Boekhoff et al., 1994).

The fact that both messengers are activated within 50 ms of odor stimulation sug-

gests that these pathways work in parallel rather than sequentially (Boekhoff et al.,

1994).  Second messenger formation is known to be guanine nucleotide depen-

dent (Boekhoff et al., 1990; Restrepo et al., 1993a).  Production of cAMP or IP
3
 is

differentially sensitive to toxins which affect G-proteins, suggesting that different G-

proteins are responsible for the two pathways (Boekhoff et al., 1990).  In lobster

ORNs, IP
3
 and cAMP have been demonstrated electrophysiologically to activate

opposing ionic conductances (Fadool and Ache, 1992; Michel and Ache, 1992).

Similarly, different odors have been shown to have excitatory or inhibitory effects

on a given ORN in mudpuppy (Dionne, 1992), toad (Morales et al., 1995), catfish

(Ivanova and Caprio, 1992), and squid (Lucero et al., 1992).  Cyclic AMP activates

a cyclic nucleotide gated (CNG) nonspecific cation channel, which allows Ca++ en-

try (Nakamura and Gold, 1987).  This in turn activates a Ca++-dependent Cl- chan-

nel (Zhainazarov and Ache, 1995; not the same channel as in vertebrates) which is

probably depolarizing because of reversed [Cl-] gradients across the ciliar mem-

brane, at least in vertebrate ORNs (Zhainazarov and Ache, 1995).  Conflicting re-

ports from different investigators may stem from the sensitive dependence of these

conductances on [Cl-] and [Ca++].  IP
3
 also activates a nonspecific cation channel

(Restrepo et al., 1990), and leads to Ca++ entry, either through this channel or pos-

sibly an independent Ca++ channel.  Intracellular Ca++ opens an outward Ca++-de-

pendent K+ conductance in the cilia (Morales et al., 1995; Restrepo et al., 1993a).

In rat, different odors (at 1µM concentration) exclusively stimulated either cAMP

or IP
3
 formation (Boekhoff et al., 1990; Breer et al., 1990).  In lobster, 1µM odorant
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concentrations also stimulate the formation of either one or the other second mes-

senger, whereas at high concentrations (1mM), both pathways are stimulated

(Boekhoff et al., 1994).  It is possible that similar results would have been obtained

in rat, had higher odorant concentrations been presented, although it is difficult to

compare concentrations between terrestrial (airborne) and aqueous odorants.  In

both species, peak second messenger concentrations are reached within 50 ms,

which is certainly fast enough to account for odor response latencies of ORN ax-

onal recordings, which are approximately 100 ms (Schmitt and Ache, 1979).  In

lobster, furthermore, whole-cell recordings demonstrate that ORNs vary in their

pattern of sensitivity to odors.  ORNs tested with two amino acids (which are rel-

evant odorants for lobster) were either excited by one odor, inhibited by one odor,

or excited by one and inhibited by the other (Boekhoff et al., 1994).  This suggests

that, at least in lobster, the dual stimulation of second messengers by a given odor

can occur within a single ORN.  This possibility is particularly relevant to the work

described in this thesis, because if multiple second messengers can be activated

within a given ORN, and if these second messengers can activate opposing (i.e.,

inward and outward) membrane conductances, then odors could evoke complex

temporal response patterns in ORNs.  The complex slow temporal patterns seen

downstream, in projections neurons or mitral cells, might therefore be driven by

ORN response dynamics.  An alternative hypothesis is that the slow temporal pat-

terns seen in projection neurons (which will be examined in detail throughout this

dissertation) are generated by the intrinsic circuitry of the antennal lobe.

Gaseous second messengers, such as nitric oxide (NO) and carbon monoxide

(CO), are likely to be involved in olfactory transduction, although their precise roles

are not yet clear (Broillet and Firestein, 1996a).  NO has the highest diffusion coef-

ficient of any biological molecule, and is estimated to diffuse 500 µm in tissue
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(Dawson and Snyder, 1994).  NO may not be the only active form; other redox

states such as nitrosothiols (R-SNO) are comparatively stable compounds (with up

to 40 minute half-lives) and are known to occur under physiological conditions

(Stamler et al., 1992, Pryor et al., 1982).  Staining for neuronal nitric oxide synthase

(nNOS) is widely distributed throughout the mammalian brain, and is particularly

high in the olfactory epithelium and olfactory bulb (Bredt et al., 1991; Bredt and

Snyder, 1994).  Both NO and CO can directly activate guanylyl cyclase, probably

by binding to the iron moiety in the heme group.  Odor-evoked cGMP formation is

increased upon application of CO or the NO donor nitroprusside, and abolished by

hemoglobin or the NOS inhibitor L-N-nitroarginine (Breer et al., 1992, Leinder-Zufall

et al., 1995).  Cyclic GMP can activate the same cyclic nucleotide gated channel

normally thought to be activated by cAMP, leading to Ca++ entry and depolariza-

tion.  NO donors can also directly activate this CNG channel, through a different

pathway not involving guanylyl cyclase or cyclic nucleotides (Broillet and Firestein,

1996b).  This activation appears to result from the binding of NO (or R-SNO) to an

intracellular cysteine residue of the CNG channel known to be involved in channel

gating (Gordon and Zagotta, 1995).  CO effectively depolarizes ORNs through tonic

activation of the CNG channel, leading to a delayed and sustained modulation of

neuronal excitability (Leinder-Zufall et al., 1995).  Thus the physiological role of NO

and CO could be modulatory.  For example, NO could rapidly diffuse through a

volume of tissue, and then produce a long-lived nitrosothiol which might have a

general effect on the gain of olfactory transduction (e.g., olfactory adaptation).  NO

and CO may also play a role in development and regeneration, especially in the

olfactory epithelium, where NOS is expressed transiently by newly developing ORNs

and is absent by postnatal day 7 (Roskams et al., 1994).
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Odor responses in olfactory receptor neurons

Electrophysiological studies of ORN odor responses in a number of species

(both vertebrate and arthropod) indicate that in general, ORNs respond to more

than one odorant, but with different (overlapping) response profiles.  Thus each

odor tends to activate a unique, though overlapping, set of ORNs.  Selectivity is

greater at lower concentrations; as concentration is increased, ORNs respond to

additional odorants, although some odorants cannot evoke responses in some ORNs

at any concentration (Gesteland et al., 1965; O’Connell and Mozell, 1969; Getchell,

1974; Revial et al., 1978; Sass, 1978, 1980; Selzer, 1981; Sicard and Holley, 1984;

Sicard, 1985; Firestein and Werblin, 1987, 1989; Dionne, 1992; Firestein et al.,

1993; Kang and Caprio, 1995; Hansson et al., 1996).  Odors can either excite or

inhibit ORNs (Dionne, 1992; Michel and Ache, 1992; Fadool and Ache, 1992; Kang

and Caprio, 1995; Hansson et al., 1996).  In newt ORNs, odors can also cause

suppression of odorant responses by an unknown mechanism which is neither

excitation, inhibition, nor adaptation (Kurahashi et al., 1994).

A unifying concept for ORN function is that they serve as high-gain detectors

(Trotier and Dφving, 1996a).  Second messenger cascades impart much of this

gain, such that an activated receptor protein can generate about 106 second mes-

senger molecules (Lancet, 1986).  The high surface area of olfactory cilia increase

the probability that odorant molecules are captured, and their small volume allows

rapid increases in second messenger concentration to activate the nucleotide-gated

cation channels, which in turn leads to the opening of calcium-activated chloride

channels (Breer et al., 1990; Trotier and Dφving, 1996a).  ORNs have a high input

resistance and are thus sensitive to small depolarizing currents (Trotier et al., 1993).

ORNs have multiple voltage and calcium-activated conductances which shape their
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firing properties; accordingly, their firing properties are strongly dependent on mem-

brane potential (Trotier et al., 1993).  In frogs, ORNs typically have resting mem-

brane potentials more negative than -80 mV.  They are unusual in that no potas-

sium channels are open at rest, and the membrane potential appears to be set

mainly by the sodium pump (which has a reversal potential of -140 mV) and an

inward rectifier current, I
h
 (Trotier and Dφving, 1996b).

Extracellular unit recordings show that the number of action potentials in an

odor response does not encode concentration information (Holley and Dφving, 1977).

Similarly, in current clamp recordings, no clear relationship was seen between  in-

jected current and spike count (Firestein and Werblin, 1987).  Typically, only a single

spike was evoked at low currents, and repetitive firing was only evoked within a

narrow range of current amplitudes, above which only a transient burst of spikes

was evoked (Trotier and Dφving, 1996a).  If spike count is taken as the encoding

scheme, then the very narrow dynamic range of these cells suggests that they

function as high-gain detectors, signalling the presence of a suprathreshold con-

centration of odorant, rather than precisely encoding the actual concentration of

the stimulus (Trotier and Dφving, 1996a).  However, more information about con-

centration could be extracted with decoding schemes other than simple spike counts.

For example, by comparing different epochs of the response, the different firing

properties seen at different intensities could be easily discriminated, providing a

wider dynamic range than provided by spike count alone.  The conclusion reached

by Trotier and Dφving (1996a) that ORNs are high-gain detectors, adapted to signal

the presence or absence of a threshold concentration of odorant, is a classic ex-

ample of a potentially misleading conclusion drawn about neural function when the

implicit assumption of a spike count code is made.
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Zonal epithelial topography

In other sensory systems, the physical location of receptor cells (neural space)

imparts information about stimuli.  In the eye, for example, the lens allows the vi-

sual field to be spatially sampled by the retina in a topographic manner; that is,

neighborhood relations are preserved across the transformation from stimulus to

initial neural representation.  Objects near each other in the visual field are repre-

sented by neurons near each other in the retina.  This topographic map is pre-

served and elaborated as visual information is processed at successive levels of

the visual system.  The question of the existence of topography in the olfactory

system has a long history.  In the olfactory epithelium, many studies have com-

bined focal odorant application and electro-olfactograms (EOG, an extracellular

field potential technique), demonstrating that some regions of the epithelium were

reliably more sensitive to particular odorants than other regions (Mustaparta, 1971;

Kauer and Moulton, 1974; Moulton, 1976; Thommesen and Dφving, 1976; MacKay-

Sim et al., 1982; Mozell et al., 1987; MacKay-Sim and Kesteven, 1994; Ezeh et al.,

1995; Scott et al., 1996).  Differential distribution of odor responses across the

epithelium has also been shown by voltage-sensitive dye recordings (Kent et al.,

1996; Youngentob et al., 1995).  Both EOG and optical techniques show consis-

tency across animals.

The discovery of a mammalian superfamily of putative odorant receptor genes

by Buck and Axel in 1991 allowed a new approach to the question of topography in

the olfactory system.  In situ hybridization studies have revealed a spatial pattern of

receptor expression in the rodent olfactory epithelium (Ressler et al., 1993; Vassar

et al., 1993).  ORNs expressing a given receptor are restricted to one of four zones

in the epithelium.  Within each zone, cells expressing a given receptor appear to be
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randomly dispersed throughout the zone.  These distinct spatial zones run longitu-

dinally from anterior to posterior in the nose, are bilaterally symmetric, and are

invariant across animals.  Homologous genes appear to be expressed within the

same zone.  Naturally, the hybridizations have only been done with a subset of the

superfamily of olfactory receptors, leaving open the possibility of future discovery

of novel expression patterns.  The significance of these expression zones for infor-

mation processing is not clear.  In catfish, in which only about 100 olfactory recep-

tor genes have been identified, no distinct expression zones have been found (Ngai

et al., 1993).  One evolutionary interpretation of these results is that the adaptation

to terrestrial existence included wholesale duplication and modification of the epi-

thelium and the receptor gene family that existed then, which in mammals remain

segregated both in the nose and in the genome (Ngai et al., 1993; Vassar et al.,

1993).

How do these expression zones relate to the regions of differential sensitivity

to odors previously investigated with EOGs? To address this question, Scott and

coworkers (1997) reinvestigated the distribution of odor sensitivity in rat epithelium

across the longitudinally oriented stripe-shaped expression zones described by

Ressler et al. (1993) and Vassar et al. (1993).  By placing an array of EOG elec-

trodes across the four gene expression zones, they found regions of differential

sensitivity to different odors which roughly corresponded to the zones.  When they

instead oriented the array parallel to the zones, sensitivity for a given odor was

similar across all the electrodes.  These results suggest that the expression zones

may account for the regions of differential EOG response first reported twenty years

before the discovery of the olfactory receptor gene superfamily.
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Axonal convergence from olfactory receptor neurons  to glomeruli

In vertebrates, ORN axons project to the olfactory bulb, where they ramify

within discrete glomeruli.  Mitral and tufted cell apical dendrites arborize within a

single glomerulus in mammals and in one to several glomeruli in lower vertebrates.

The massive convergence of ORNs to second order neurons is a common feature

across phyla.  The convergence ratio is about 1,000 to one in mammals (Allison

and Warwick, 1949) and fish (Gemne and Dφving, 1969).  While many investigators

searched for topography in the projections from epithelium to bulb, until recently

essentially all that was known was that restricted regions of the bulb receive input

from large regions of the epithelium, and conversely, a restricted region of the epi-

thelium projects widely across the bulb (Le Gros Clark, 1951; Adrian, 1956; Land,

1973; Costanzo and O’Connell, 1978; Greer et al., 1981; Saucier and Astic, 1986;

Schowba and Gottlieb, 1986; Stewart and Pedersen, 1987; Schwarting and Crandall,

1991; Schoenfeld et al., 1994).

With the revolution enabled by the cloning of odorant receptor genes (Buck

and Axel, 1991), axonal convergence from ORNs to glomeruli was discovered to

be precise and orderly.  Axonal projections from ORNs expressing a given receptor

converge on two glomeruli, one in the medial olfactory bulb, and one in the lateral

bulb (Ressler et al., 1994; Vassar et al., 1994).  While the in situ hybridization tech-

niques used by Ressler, Vassar, and colleagues allowed the detection of sites of

convergence in the bulb, the elegant tau-lacZ homologous recombination method

of Mombaerts et al. (1996) allowed visualization of single axons as they course

towards the bulb and finally converge onto individual glomeruli.  The stunning im-

ages produced by this technique confirmed that ORNs expressing a given receptor

project to a stereotypical pair of glomeruli, suggesting that the olfactory bulb con-
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tains a topographic map of receptor activation in the epithelium.  The glomeruli

targeted by a given receptor type are invariant across animals, suggesting a wiring

strategy which does not depend on environmental cues or the experience of the

animal (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al.  1996).  If ORNs

expressing a given receptor are experimentally manipulated to express an anoma-

lous substitute receptor protein, their axons project to a new pair of glomeruli dis-

tinct from those targeted by either the wild-type or substitute ORNs.  These recep-

tor swap experiments demonstrate that the receptor actually expressed by an ORN

plays an instructive, but not determining, role in axon guidance.

In insects, the axons of ORNs terminate in glomeruli of the ipsilateral antennal

lobe.  The molecular biological techniques that elucidated glomerular convergence

in vertebrate olfactory bulb have not yet been applied in insects, but certainly will be

as soon as insect olfactory receptors are cloned.  In the generalist olfactory sys-

tem, attempts to label individual sensilla or receptor neurons have failed to reveal

special projection areas for given types of sensilla or receptor neurons (Boeckh et

al., 1984).  In the pheromonal system, however, specific receptor neurons respond

selectively to one or the other component of the pheromone blend (Kaissling et al,

1989).  Each of these project to a distinct region of the specialized macroglomeru-

lar complex (Hansson, 1992; Christensen et al., 1995).

The glomerulus: a module?

The vertebrate olfactory bulb contains a highly ordered synaptic organization.

The microcircuitry among the ORN axons, projection neurons, local interneurons,

and centrifugal feedback is one of the best characterized in the brain, and has led

to the concept of the “canonical microcircuit” (Shepherd, 1972, 1979; Mori, 1987;
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Powell and Price, 1971; Pinching and Powell, 1971).  The olfactory bulb is a lay-

ered structure, which is commonly divided into 5 layers.  The outermost is the olfac-

tory nerve layer, occupied by the converging receptor axons described above.  The

glomerular layer is composed (eponymously) of glomeruli, the sites of massive

synaptic input from receptor axons onto dendrites of mitral, tufted, and periglomerular

cells.  Numbers of glomeruli range from roughly 2000 in rodents to 100 in fish

(Baier and Korsching, 1994).  Glomeruli are enclosed by a glial wrapping which

give them the anatomical appearance of individual functional units, as noted by

early anatomists (Golgi, 1875; Cajal, 1890; Retzius, 1892).  With typical prescience,

Adrian (1951) proposed that the glomerulus served as a functional unit, integrating

information from its afferents.  This idea has experimental support, as described

below.

The projection neurons of the olfactory bulb are mitral and tufted cells.  Mitral

cell bodies form the mitral cell layer, while tufted cell bodies are located in the

external plexiform layer.  These cell types are similar in many ways, and thus are

often lumped together as mitral/tufted cells.  In mammals, both send their primary

dendrite to a single glomerulus, whereas in amphibians, fish, and reptiles, mitral

cells can have multiple apical dendrites that enter several glomeruli (Herrick, 1931).

The basal dendrites of both mitral and tufted cells branch in the external plexiform

layer, and both cell types are excitatory and project axons to the piriform cortex via

the lateral olfactory tract.  Periglomerular cells have their cell bodies in the glom-

erular layer, outside of the glomeruli.  They send a primary dendrite into a glomeru-

lus, where they receive direct inputs from receptor afferents.  Their dendrites also

make reciprocal dendrodendritic synapses with mitral/tufted cells in that glomeru-

lus.  Periglomerular cell axons ramify in other glomeruli and in the external plexi-

form layer.  These cells are GABAergic and are therefore often presumed to be
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inhibitory, providing feedforward as well as lateral inhibition.  However, electro-

physiological evidence using intracellular (Nowycky et al., 1981) as well as evoked

potential and current-source density techniques (Gonzalez-Estrada and Freeman,

1980; Martinez and Freeman, 1984) suggest that periglomerular cells have an ex-

citatory action on each other and on mitral/tufted cells.  GABA-mediated excitation

has been reported elsewhere in the CNS (e.g., in neonatal CA3 hippocampal neu-

rons, Cherubini et al., 1991; in hilar neurons, Michelson and Wong, 1991) and is

presumably due to reversed [Cl-] gradients across postsynaptic cell membranes.

Typically, [Cl-] is greater extracellularly, and ionotropic GABA
A
 channels thus gener-

ate an outward (hyperpolarizing) current.  Histochemical evidence that [Cl-] is high

in some periglomerular cell bodies and dendrites, and is very low in certain parts of

the glomerular neuropil including the intercellular clefts, suggests that reversed

chloride gradients may be responsible for excitatory GABA effects on periglomerular

and/or mitral cells (Siklos et al., 1995).

The deepest layer of the bulb is the granule cell layer, where granule cell so-

mata lie.  Granule cells are inhibitory, GABAergic cells whose dendrites arborize in

the external plexiform layer.  There, granule cells and mitral/tufted cells reciprocally

inhibit and excite each other via dendrodendritic synapses (Jahr and Nicoll, 1982).

These interactions take place on the basal dendrites of mitral/tufted cells, which

can extend laterally for up to a millimeter in rat (Orona, 1984), thus providing both

local and lateral inhibitory feedback of mitral/tufted cells.  A small population of

often overlooked short axon cells is distributed throughout the external plexiform,

mitral, and granule cell layers.

The insect antennal lobe is remarkably similar to the vertebrate olfactory bulb

(Boeckh et al., 1984; Flanagan and Mercer, 1989; Kanzaki et al., 1989; Laurent
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and Davidowitz, 1994; MacLeod and Laurent, 1996).  As in the bulb, the number of

glomeruli varies 10-fold by species, ranging from roughly 1000 in the locust to 156

in the honeybee and even less in Drosophila.  Cell bodies of projection neurons

(PNs), the analogs of mitral/tufted cells, line the outer surface (cortex) as is the rule

in invertebrate central nervous systems.  In some species, such as moth, cock-

roach, and honeybee, projection neurons can project to one or multiple glomeruli,

whereas in locust only the latter has been seen.  As in the bulb, inhibitory GABAer-

gic local neurons (LNs) provide feedforward and feedback inhibition via reciprocal

dendrodendritic synapses in the glomeruli, but unlike vertebrate local neurons ar-

borize globally throughout the lobe.  In honeybee and cockroach, local neurons fire

action potentials, but in locust they are strictly non-spiking.  Locust LNs do, how-

ever, exhibit possibly regenerative TTX-resistant spikelets of variable amplitude

which are most likely calcium-mediated (Laurent and Davidowitz, 1994).  Projec-

tion neurons send axons via the antennoglomerular tract (AGT) to the mushroom

body, where they make en passant synapses before terminating in the lateral

protocerebral lobe, a region whose function is as yet not clearly determined.

Activity mapping of the vertebrate olfactory bulb and the insect antennal lobe

has demonstrated that different odorants activate overlapping yet unique sets of

glomeruli.  Consistent results have been obtained with 2-deoxyglucose uptake in

the shrew (Skeen, 1977), rat (Stewart et al., 1979; Sallaz and Jourdan, 1993; Jourdan

et al., 1980; Guthrie et al., 1993), and guinea-pig (Astic and Saucier, 1983), volt-

age- and calcium-sensitive dyes in the salamander (Kauer and Cinelli, 1993; Cinelli

et al., 1995), zebrafish (Friedrich and Korsching, 1997), and honeybee (Joerges et

al., 1997), and immediate early gene (namely c-fos) induction in the rat (Onoda,

1992; Sallaz and Jourdan, 1993; Guthrie et al., 1993).  Individual glomeruli typically

respond to many odors, and each odorant typically activates many glomeruli.  Yet
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the pattern of activated glomeruli is unique and specific for a given odor and is thus

capable of representing odor identity information.

Similar to results described above for ORNs, increased concentration increases

the number of activated glomeruli, and thereby increase the degree of overlap be-

tween patterns evoked by different odors.  Nonetheless, general properties of the

response patterns for each odorant remain similar across concentrations and across

animals.  Concentration response functions of different glomeruli can have various

shapes and thresholds.  Thus odorant concentration as well as quality could be

encoded combinatorially by patterns of activated glomeruli (Friedrich and Korsching,

1997; Cinelli et al., 1995; Joerges et al., 1997).

These demonstrations that odorants activate overlapping but unique sets of

glomeruli support the hypothesis that the glomerulus serves as a functional unit for

processing or even coding of olfactory information.  In moths, however, Willis et al.

(1995) have shown that normal glomerular organization of the antennal lobes is not

necessary for odor-modulated flight.  Glomerular development in Manduca sexta

females was altered by partial deafferentation during development.  Adult moths

with mostly aglomerular antennal lobes (including a few abnormal, glomerulus-like

structures) were nevertheless able to fly upwind to the source of a host-plant odor

in a wind tunnel, showing flight behavior similar to normal moths.  This suggest

either that even a few abnormal glomeruli are sufficient to mediate this behavior, or

that glomerular organization per se is not necessary for this behavior.
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Response profiles of projection neurons in the vertebrate olfactory bulb and

insect antennal lobe

In general, both vertebrate mitral/tufted cells and arthropod PNs respond to

multiple odors, and a given odor can activate multiple neurons (Kauer, 1974; Hamilton

and Kauer, 1989; Macrides and Chorover, 1972; Mathews, 1972; Tanabe et al.,

1975; Mair, 1982; Harrison and Scott, 1986; Wilson and Leon, 1988; Wellis et al.,

1989; Waldow 1977; Wachowiak and Ache, 1998; Laurent and Davidowitz, 1994;

Laurent et al., 1996, Wehr and Laurent, 1996).  This broad tuning seen in output

cells agrees with the glomerular activity mapping results discussed above, sug-

gesting that odor quality information is processed in a parallel, distributed fashion

(Hildebrand, 1996).  The degree to which neighboring mitral/tufted cells respond

similarly to a given odor depends on the distance between the cells, with those

further apart displaying opposite responses (Buonviso and Chaput, 1990, Meredith,

1986; Wilson and Leon, 1987).  Potentially, cells very near each have similar odor

response profiles because they innervate the same glomerulus, and cells further

apart show complementary responses because they reciprocally inhibit each other

via interneurons (Scott et al., 1993).  Mitral cells can have non-monotonic intensity

response functions (Meredith, 1986, Harrison and Scott, 1986).  For example, a

cell might be excited at intensities just above threshold, then inhibited at intermedi-

ate concentrations, and excited by higher concentrations.  One explanation for such

a result is that cells in a neighboring glomerulus, with a higher threshold for the

given odorant, mediate lateral inhibition at intermediate intensities, but are domi-

nated by local excitatory afferent input at higher concentrations (Meredith, 1986).

In addition to broad tuning that can include excitatory or inhibitory responses,

both mitral/tufted cells and PNs display complex temporal patterns which can con-
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tain multiple epochs of excitation, inhibition, and periods of silence in a single odor-

evoked response (Kauer, 1974; Meredith, 1986; Hamilton and Kauer, 1989; Wellis

et al., 1989; Christensen and Hildebrand, 1987, 1988;  Waldrop et al., 1987; Waldrow,

1977; Sun et al., 1993; Wachowiak and Ache, 1998; Laurent and Davidowitz, 1994;

Laurent et al., 1996, Wehr and Laurent, 1996; MacLeod and Laurent, 1996).  The

functional significance of these slow temporal response patterns is, in part, the

subject of this thesis.  Because temporal patterns differ for different odors and neu-

rons, they contain odor information (Harrisson and Scott, 1986; Scott, 1990; Lau-

rent and Davidowitz, 1994; Wehr and Laurent, 1996).  It remains unknown, how-

ever, whether this information is involved in odor coding by the olfactory system.

The role of such temporal coding in vision, for example, remains controversial

(McClurkin et al., 1991; Shadlen and Newsome, 1998).  The slow temporal pat-

terns in the locust olfactory system are odor- and neuron-specific, and thereby

shape the population of activated, rhythmically synchronized projection neurons

into an evolving sequence of synchronized oscillatory assemblies which contains

information about the odor presented (discussed below, Laurent and Davidowitz,

1994; Laurent et al., 1996; Wehr and Laurent, 1996).  Odors thus appear to be

encoded by dynamic neural ensembles, whose components and update are both

stimulus-specific (Laurent, 1996).

The mechanisms by which odor-evoked slow temporal patterns are generated

in projection neurons and mitral/tufted cells are poorly understood.  Although they

are thought to involve lateral synaptic interactions (Christensen et al., 1993; White

et al., 1992; Meredith, 1986, 1992) the details of these interactions are unknown

and only rarely have been the subject of speculation.  Interestingly, the slow tempo-

ral patterns evoked by odors in locust PNs persist in the presence of picrotoxin, an

antagonist of vertebrate GABA
A
 and insect ionotropic GABA receptors (MacLeod
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and Laurent, 1996).  This suggests that the mechanisms which generate them are

distinct from those which generate synchronous oscillations (discussed in detail

elsewhere in this and other chapters).  One hypothesis is that the slow temporal

patterns seen in PNs are driven by slow temporal patterns in the afferent input.  For

example, olfactory receptor neurons could respond with different time courses to

different ligands due to perireceptor events (Pelosi, 1996), competitive binding in-

teractions at receptors, combinations of multiple odor-activated membrane con-

ductances (Restrepo et al., 1996), or differential activation of (possibly interacting)

second messenger cascades (Restrepo et al., 1996).  Alternatively, these temporal

patterns could be generated by complex dynamics resulting from intrinsic antennal

lobe circuitry.  These (nonexclusive) hypotheses are addressed directly by the ex-

periments described in Chapter 4.

Mori and coworkers have for a number of years investigated the relationship

between chemical structure of odorant molecules and mitral/tufted cell responses.

Many studies that address this question are difficult to interpret, because mitral

cells respond to multiple odors, and the relationship between those odors is not

always evident.  A unifying concept introduced by Mori is the “molecular receptive

range” of a bulbar neuron (Mori et al., 1992; Imamura et al., 1992).  The molecular

receptive range of a neuron is its “olfactory tuning,” defined as the range of odor

molecules that excite or inhibit it, and is analogous to the spatial receptive field of a

visual neuron or the frequency tuning curve of an auditory neuron.  When tested

with a large panel of molecules which systematically vary in structure, the receptive

ranges of mitral/tufted cells appears to consist of odor molecules with similar con-

formations.  All compounds that activate a given mitral/tufted cell contain at least

one common structural feature.  With aliphatic (open chain) hydrocarbons, for ex-

ample, at least three systematic variables are well correlated with response speci-
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ficity: chain length, functional group (e.g., -COOH, -CHO, -OH, or -H), and the po-

sition of the functional group within the molecule (Mori et al., 1992; Imamura et al.,

1992).  For example, a mitral cell might respond to 3-, 4-, and 5-carbon aldehydes

and carboxylic acids, but not to any alcohols or alkanes.  For aromatic (ring-con-

taining) hydrocarbons, additional features such as isomer configurations (ortho,

meta, or para) play a systematic role in response selectivity (Katoh et al., 1993).

This successful demonstration of systematic molecular receptive ranges is all the

more remarkable in that Mori and his colleagues analyzed odor responses solely

with spike counts (from anaesthetized rabbits).  While there is no consensus for

how to extract odor information from temporal response patterns, that information

would likely make the molecular receptive ranges of bulbar and projection neurons

more complex.

Systematic differences are seen in the molecular receptive ranges of mitral/

tufted cells from different regions of the bulb (Katoh et al., 1993; Mori and Yoshihara,

1995).  Mitral/tufted cells sensitive to aliphatic acids are mostly concentrated in the

dorsomedial bulb, whereas cells responsive to alkanes are exclusively located in

the ventral bulb.  Cells responsive to aliphatic alcohols tended to be concentrated

in the ventromedial region, and cells sensitive to aliphatic aldehydes were distrib-

uted throughout the bulb.

Mitral/tufted cells can also be inhibited by odors, as might be expected from

their reciprocal circuitry with granule and periglomerular cells.  The molecules that

inhibit a neuron tend to share conformational features.  Moreover, conformations of

molecules that inhibit a cell can be slightly different from, but relatively similar to,

conformations of excitatory molecules (Yokoi et al., 1995).  With the above ex-

ample of a cell that was excited by 3-, 4-, and 5-carbon aldehydes, 2- and 6-carbon
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aldehydes might inhibit it.  This suggests to Yokoi et al.  (1995) that the local cir-

cuitry in the bulb may serve to enhance contrast in the response specificity of bul-

bar neurons, much as lateral inhibition enhances spatial contrast in the retina (Yokoi

et al., 1995).  Neighboring glomeruli may even participate in ‘odor opponency’,

analogous to color opponency in the visual system.  Enhanced contrast is only

meaningful if molecules can be related in some systematic way.  Ideally those rela-

tions would be metric, so that tuning curves could be constructed along a coding

dimension.  Conformational similarity, while not a metric space, can at least support

a rank ordering of relative distances between molecules.  It is this approach which

renders the data of Mori and coworkers interpretable, and allows conclusions to be

drawn about both the molecular receptive range of mitral cells and information pro-

cessing in the olfactory bulb.  Further advances will depend on a deeper under-

standing of the stimulus space; with knowledge of the specificity of interactions

between odorant molecules and olfactory receptors, olfactory stimuli may some-

day move out of the organic chemistry stockroom and into a true metric space.

An alternative approach to introduce order into the olfactory stimulus space is

to appeal to the behavioral significance of an odorant molecule—what it means to

the animal.  For general odors, this approach entails conditioning an animal to

associate an odor with a positive or negative reinforcement.  The odor thereby

becomes meaningful to the animal.  While some interesting results have been ob-

tained with this approach, the difficulty of recording from awake behaving animals

has largely limited investigators to techniques such as the EEG.  In rabbits trained

to discriminate between two odors, odor-specific spatial patterns of oscillatory EEG

amplitude across the bulb were seen using electrode arrays.  Odor-specific infor-

mation was not localizable to subsets of array locations, suggesting that the output

of the bulb involved the entire structure (Freeman and Baird, 1987).  Factor analy-
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sis of spatial EEG patterns could be used to correctly classify the odor 75-90% of

the time.  These patterns persisted across recording sessions, yet changed when

the stimulus-response contingencies change.  These results suggest that stable

spatial patterns of bulbar activity can be recorded for as long as odors are mean-

ingful to the animal (Freeman and Viana Di Prisco, 1986; Freeman and Grajski,

1987).

While the behavioral significance of general odors is difficult to assess without

recording in a behaving animal, a class of odorants exists with precise and well

understood meaning to the animal.  Pheromones are used by most if not all species

as a means of chemical communication.  In some insects, the use of sex phero-

mones as behaviorally relevant olfactory stimuli has helped elucidate the functional

organization of this specialist olfactory subsystem (Hildebrand, 1996).  These stud-

ies, primarily using the moth, take advantage of the olfactory control of behavior by

specific molecules.  Female sex pheromone (a specific blend of known composi-

tion), when detected by male moths, triggers and sustains a complex yet stereo-

typed mate-seeking behavior: zigzagging upwind, approaching and contacting the

source, and attempting to copulate with it (Willis and Arbas, 1991).  Specific olfac-

tory receptor neurons on the antenna selectively respond to one or the other com-

ponent of the pheromonal blend (Kaissling et al., 1989), and they each project their

axons exclusively to a distinct region of the specialized macroglomerular complex

(MGC, Hansson et al., 1992; Christensen et al., 1995).  Projection neurons that

respond selectively to one or the other pheromone component arborize exclusively

in the corresponding MGC compartment, while PNs that respond to the blend ar-

borize throughout the MGC.  These latter PNs can respond similarly or oppositely

to each component, so that their response to the blend can be excitatory or a mixed

inhibitory-excitatory (-+-) response.  These neurons have a precise and narrow
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molecular receptive range, and the connectivity in this pathway therefore repre-

sents a classical ‘labeled line.’ The macroglomerular complex therefore appears to

be a functionally significant unit (Hildebrand, 1996).  Although generalist PNs are

more broadly tuned and use combinatorial coding, study of the pheromone system

may reveal common principles of organization and function used by the olfactory

system in general, which are exaggerated in the specialist subsystem to ensure

reproductive success (Hildebrand, 1996).

The mushroom body and piriform cortex

Mammalian mitral/tufted cells project to pyramidal cells in piriform (olfactory)

cortex via the lateral olfactory tract.  Piriform cortex is thus unique among sensory

cortical areas; sensory information from all other modalities is first relayed through

the thalamus before reaching cortex.  Piriform (also termed prepyriform, prepiriform,

or anterior piriform) cortex is a three layered structure similar to reptilian cortex and

described as paleocortex (because of its presumed phylogenetic age), in contrast

to the six layered neocortex forming all other primary sensory cortices in mammals.

The superficial layer, or layer 1, consists of apical dendrites of pyramidal cells,

afferent fibers from the lateral olfactory tract, and intrinsic associative cortico-corti-

cal collaterals.  The afferents and association fibers are segregated, with the affer-

ents superficial to the association fibers.  Layer 2 contains pyramidal cell bodies,

and layer 3 contains basal dendrites of pyramidal cells, deep pyramidal cell bodies,

and multipolar neurons.  The association fiber pathway has been likened to the

recurrent feedback characteristic of artificial neural network models (Haberly, 1985;

Ketchum and Haberly, 1991).

Projection neurons in insects project to Kenyon cells in the mushroom body
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via the antennoglomerular tract (AGT).  There they make en passant synapses in

the neuropil of the calyx before continuing to the lateral protocerebral lobe, where

they ramify and make terminal synapses.  The mushroom body, like piriform cortex,

apple, 1s

10 mV

LFP

KC

LN

PN

Figure 1.  The locust olfactory system.  Receptor afferents project from the antenna (not shown)

to the antennal lobe (AL).  The AL consists of projection neurons (PNs) which are spiking, excita-

tory cells with discrete glomerular arborization patterns, and local neurons (LNs) which are

nonspiking, inhibitory cells with global arborization patterns.  Both cell types, as well as Kenyon

cells (KC), experience odor-evoked membrane potential oscillations as shown in representative

intracellular recordings at left in response to apple odor (each cell recorded separately in different

animals and aligned to the 1s odor pulse, indicated by solid bar).  Projection neurons project to

the mushroom body, where odors evoke oscillations in the  local field potential (LFP, here low-

pass filtered at 50 Hz). Cobalt fills courtesy of G. Laurent.
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has an orderly, repeating structure.  Extrinsic mushroom body neurons form poten-

tial recurrent feedback pathways (Mobbs, 1982; Gronenberg, 1987; MacLeod and

Laurent, 1997).  Kenyon cells, like pyramidal neurons, have dendritic spines, and

the mushroom body has been implicated in learning and memory in a variety of

insect species.  In flies, the genes responsible for several olfactory learning mu-

tants encode enzymes in the cAMP pathway, and are preferentially expressed in

the mushroom body (Davis, 1993).  Chemical ablation of the mushroom body leads

to a total loss of olfactory learning (de Belle and Heisenberg, 1994).  The honeybee

displays a robust olfactory learning known as proboscis extension response (PER)

conditioning.  Cooling the brain induces retrograde amnesia for this olfactory memory

trace, and cooling the mushroom body calyx induces a similar amnesia, while cool-

ing other brain regions (e.g., the lateral protocerebral lobe) do not (Menzel and

Muller, 1996).

Concise overview of locust olfactory system anatomy

Although details of the locust olfactory are provided in numerous locations

elsewhere in this chapter, below is a self-contained and concise overview of locust

olfactory system anatomy (shown in Figure 1), chiefly for those not familiar with it.

Olfactory receptor neurons (ORNs) are found in small groups in sensilla on the

antenna.  They project to the ipsilateral antennal lobe, where they synapse onto

both local neurons (LNs) and projection neurons (PNs) (Leitch and Laurent, 1996).

LNs are local, axonless, non-spiking inhibitory neurons which make graded, den-

drodendritic GABAergic synapses onto PNs.  They arborize globally throughout the

antennal lobe and number about 300.  PNs are excitatory, spiking neurons, which

number about 830, and each arborizes discreetly in 10-20 glomeruli.  They send

their axons via the antennoglomerular tract (AGT) to the mushroom body, where
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they make en passant synapses onto Kenyon cells before continuing on to termi-

nate in the lateral protocerebral lobe.  The mushroom body is so named because of

its shape; the cap or calyx contains the 50,000 Kenyon cell bodies, which send

dendrites down into the neuropilar region of the calyx where they receive synapses

from PNs.  Kenyon cells project axons down the stalk, or pedunculus, of the mush-

room body, where they are coupled by axo-axonic synapses (Schürmann, 1974;

Leitch and Laurent, 1996).  Each axons bifurcates and sends a branch to both the

alpha- and beta-lobe, where each contacts extrinsic mushroom body neurons.  These

extrinsic neurons can have discreet arborization patterns in the lobes, pedunculus,

or both, often branching densely within a ‘slab’ across the entire axon tract (Mobbs,

1982; Gronenberg, 1987; MacLeod et al., 1998).  They can also send processes to

the lateral protocerebal lobe, forming additional pathways for recurrent feedback.

Odor-evoked oscillations in the vertebrate olfactory system

Fast oscillations were first reported in the hedgehog olfactory bulb by Lord

Adrian (1942), and have since been described in a large number of vertebrate

species, from fish to humans.  These oscillations range widely in frequency: 50-60

Hz in small mammals, ~40 Hz in large mammals, 5-15 Hz in fish, and 5-30 Hz in

amphibians and reptiles.  Odor-evoked oscillations have been reported in the olfac-

tory bulbs of fish, including rainbow trout (Hara et al., 1973), himé salmon (Satou

1974), chum salmon (Kaji et al., 1975), and char (Dφving and Belgaugh, 1977); in

amphibians, including frog (Otoson, 1959; Takagi and Shibuya, 1960; Hobson, 1967),

and toad (Takagi and Shibuya, 1960; Segura and De Juan 1966; Graystone et al.,

1970); in reptiles, including iguana (Graystone et al., 1970), caiman (Verlander and

Huggins, 1977), coachwhip snake (Graystone et al., 1970), bullsnake (Graystone

et al., 1970), and turtle (Boudreau and Freeman, 1962; Lam et al., 1998), in birds,
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including albatross (Wenzel and Sieck, 1972), duck (Wenzel and Sieck, 1972),

shearwater (Wenzel and Sieck, 1972), vulture (Wenzel and Sieck, 1972), and pi-

geon (Sieck and Wenzel, 1969), in mammals, including rat (Bressler and Freeman

1980), rabbit (Hughes and Hendrix, 1967; Moulton, 1963; Bressler and Freeman

1980; Bressler, 1984), hedgehog (Adrian 1942, 1950), cat (Gault and Leaton, 1963;

Bressler and Freeman 1980), dog (Domino and Ueki, 1960), monkey (Domino and

Ueki, 1960, Hughes and Mazurowski, 1962), and human (Hughes et al., 1969).

Fast oscillations have also been reported in piriform cortex in rat (Woolley and

Timiras, 1965; Bressler and Freeman, 1980), cat (Freeman, 1959, 1968; Boudreau,

1964; Bressler and Freeman, 1980), and rabbit (Bressler and Freeman, 1980).

Fast odor-evoked oscillations in the olfactory epithelium, as measured by the EOG,

have been reported in frog (Ottoson, 1956; Delaney and Hall, 1996) and salamander

(Hamilton and Kauer, 1989; K Dorries and J Kauer, unpublished observations).

Odor-evoked oscillatory activity originates in the olfactory bulb and propagates

to olfactory cortex via the lateral olfactory tract (Adrian, 1942, Boudreau, 1964).

EEG oscillations are primarily generated by granule cells (Rall and Shepherd, 1968).

The firing of mitral/tufted cells is oscillatory and phase-locked to the EEG oscilla-

tions, with a 90° phase lead (Eeckman and Freeman, 1990).  This is consistent with

a model in which bulbar oscillations are generated by negative feedback interac-

tions between granule cells and mitral/tufted cells (Freeman, 1975).  Inspiration

evokes EEG oscillations in the olfactory bulb even when isolated from the CNS.

Reversible isolation of the bulb by cryogenic blockade increases the amplitude and

decreases the frequency and variance of these oscillations, and increases the co-

herence of mitral/tufted cell firing with the EEG (Gray and Skinner, 1988).  How-

ever, oscillations can also be generated independently in piriform cortex even after
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ablation of the olfactory bulb (Freeman, 1968; Bressler and Freeman, 1980).  Os-

cillations at the same frequency as those evoked by odors can also be evoked by

electrical stimulation, in both olfactory bulb and piriform cortex, in response to shock

of either the olfactory nerves or lateral olfactory tract (Freeman, 1968, 1972, 1974).

Shock-evoked oscillations last only a few cycles, and have been described as a

damped sinusoid.  Thus the vertebrate olfactory epithelium, olfactory bulb, and

piriform cortex are each capable of generating oscillations in isolation, suggesting

that these structures share a matched resonant capability, rather than any one

driving the other (Freeman, 1962, 1968; Ottoson, 1956; Delaney and Hall, 1996; K

Dorries and J Kauer, unpublished observations).

The oscillatory response of the piriform cortex to a volley of action potentials in

the lateral olfactory tract is not synchronous, but rather consists of waves that spread

across the cortex from ventroanterior to dorsoposterior cortex (Scott, 1981).  These

waves are due to the tangential distribution of lateral olfactory tract axons and their

collaterals, such that the afferent action potentials reach ventroanterior cortex be-

fore dorsoposterior cortex.  This is in contrast to thalamocortical afferents in other

cortical areas, from which action potentials arrive at all regions of the cortical area

simultaneously.

The spatial and temporal ordering of synaptic events in piriform cortex has a

well-defined relationship to the oscillatory waves of activity.  Shock stimulation of

the LOT evokes a sequence of synaptic events in pyramidal cells, consisting of an

initial monosynaptic EPSP from the afferents, closely followed by a disynaptic EPSP

from association fibers (Haberly and Bower, 1984; Haberly and Shepherd, 1973;

Satou et al., 1983), and finally a long lasting IPSP with an early chloride-mediated

phase and a late potassium mediated phase (Satou et al., 1983; Tseng and Haberly,
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1988).  Because the conduction velocities of LOT collaterals and association fibers

are similar, the interval between these events is constant across central and poste-

rior piriform cortex.  Oscillatory responses to weak shock stimuli consist of repeated

cycles of this sequence of synaptic events (Ketchum and Haberly, 1988).

Current-source density analysis has been used to show that the early mono-

synaptic afferent EPSP occurs on the distal apical dendrites of pyramidal cells, and

the later disynaptic association EPSP occurs on deeper dendrites (Rodriquez and

Haberly, 1989).  These results suggest that the afferent and association fiber EPSPs

converge in adjacent dendritic segments during each cycle of the oscillation.  Fol-

lowing this excitatory pairing, IPSPs in the cell body region reset the membrane

potential before the start of the next cycle.  In addition to this juxtaposition of EPSPs

within each cycle, the possibility exists that afferent volleys of action potentials

could overtake association fiber volleys from the previous cycle in the posterior

piriform cortex, allowing the juxtaposition of EPSPs between cycles (Ketchum and

Haberly, 1991).  This pairing of recurrent feedback with the spatially distributed

inputs evoked by odors forms the basic architecture of a recurrent neural network.

Because models of recurrent neural networks with modifiable synapses demon-

strate features such as content-addressable memory and pattern recognition and

completion (e.g., Anderson, 1972; Hopfield, 1982), the piriform cortex has been

postulated to possess these properties as well.  NMDA-dependent long term po-

tentiation (LTP) has been demonstrated in piriform cortical slices, in both the affer-

ent and associative pathways (Kanter and Haberly, 1990), which demonstrates

that these synapses are modifiable.  Incorporation of time delays (Fukushima, 1973;

Hopfield and Tank, 1987) or asymmetrical connections combined with fast and slow

feedback systems (Kleinfeld, 1986; Sompolinsky and Kantor, 1986) can imbue re-

current networks with the capability to store and recognize spatiotemporal patterns.
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Thus the oscillatory dynamics in piriform cortex have been proposed to subserve

the storage and recall of spatiotemporal patterns of inputs from the olfactory bulb.

Using the framework of Sompolinksy and Kantor (1986), Ketchum and Haberly

(1991) have argued that the functional significance of within- and between-cycle

pairings of afferent and associative inputs are to store and recall sequences of

spatial patterns using the interplay of fast and slow feedback systems.  The pairing

of afferent inputs and recurrent signals within each cycle would serve as a fast

feedback system, causing the piriform cortex to converge to a stable, recognized

spatial pattern on each cycle.  The slower pairing of afferent and recurrent associa-

tive inputs between cycles would serve as the slow feedback system, causing a

transition from one spatial pattern to the next, as a stored sequence is recalled.

Odor evoked oscillations in the insect olfactory system

Odor-evoked oscillations in insects are best understood in the locust, where

they were first described, but have also been reported in the moth (Wu et al., 1995;

Heinbockel et al., 1998), honeybee (Stopfer et al., 1997, 1998), wasp, and cock-

roach (Stopfer et al., 1998).  Odors evoke 20-30 Hz oscillations in the local field

potential (LFP) recorded with a blunt extracellular electrode inserted into the calyx

of the locust mushroom body.  The frequency and envelope of these oscillations

can vary slightly from odor to odor, but one cannot discern from the LFP response

which odor was presented (Laurent and Naraghi, 1994).  The LFP oscillations are

thought to be generated by the synaptic current loops of Kenyon cell dendrites,

which summate constructively in the extracellular space due to the orderly dendritic

orientation in the calyx.  Since these synaptic currents are due to incoming EPSPs

from antennal lobe PNs, Laurent recorded odor responses intracellularly from PNs

and LNs (Laurent and Davidowitz, 1994).  The results showed that odors evoke 20-
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30 Hz membrane potential oscillations in both PNs and LNs, which consist of se-

quences of alternating EPSPs and IPSPs out of phase with each other.  Paired

intracellular recordings showed that these membrane potential oscillations in PNs

and LNs are phased locked to each other and to the LFP oscillations.  When PNs

fired action potentials during an odor response, they were often phase-locked to

the oscillation.  These findings have been replicated by paired recordings from

antennal lobe neurons in the honeybee (Stopfer et al., 1997).  Because of the broad

tuning of PNs, an odor will activate an ensemble of them.  Many of these will dis-

play oscillations, thus synchronizing their action potentials and generating volleys

of synchronous spikes travelling up the AGT.  These in turn will generate volleys of

synchronous EPSPs in Kenyon cell dendrites, and the resulting extracellular cur-

rents produce the field potential oscillations recorded in the calyx.

The slow temporal patterns evoked in PNs by odors add an additional layer of

complexity to antennal lobe dynamics.  These slow temporal patterns, which con-

sist of epochs of excitation, inhibition, and periods of silence, continually change

the oscillatory ensemble of PNs.  As PNs are excited or inhibited, they join or drop

out of the synchronous ensemble at each cycle.  Thus the membership of the en-

semble changes over time, such that the odor response consists of a sequence of

synchronized, oscillatory ensembles.  These results are examined in depth in Chap-

ters 2 and 3.

The LNs are known to be GABAergic and to synapse directly onto PNs (Leitch

and Laurent, 1996), and are responsible for the fast IPSPs seen in odor-evoked

membrane potential oscillations (Laurent and Davidowitz, 1994; MacLeod and Lau-

rent, 1996).  Injection of picrotoxin (PCT), a vertebrate GABA
A
 receptor antagonist

and invertebrate ionotropic GABA receptor antagonist, into the antennal lobe abol-
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ished odor-evoked LFP and PN membrane potential oscillations in locust (MacLeod

and Laurent, 1996) and honeybee (Stopfer et al., 1997).  This indicates that the

inhibitory synapses of LNs onto PNs are necessary for their odor-evoked oscilla-

tory synchronization.  Interestingly, the slow temporal patterns persisted after PCT

injection, suggesting that they arise by a distinct mechanism.  This result provided

a unique tool with which to investigate the functional significance of oscillatory syn-

chronization for encoding of odors, because PNs could be selectively desynchro-

nized without altering their slow temporal patterns or the spatial pattern of activated

PNs.  This investigation was then carried out in honeybees (Stopfer et al., 1997).

Honeybees were taught to discriminate between three odors using the PER

conditioning paradigm.  Bees could easily discriminate between molecularly dis-

similar odorants such as an aliphatic alcohol and the monoterpene geraniol.  They

discriminated nearly as well between molecularly similar odorants (hexanol and

octanol), but generalized somewhat more than between the structurally different

molecules.  After PCT injection, which desynchronizes the odor responses of an-

tennal lobe neurons, bees could still discriminate between dissimilar odors but could

no longer discriminate between two similar odors.  These results demonstrate that

desynchronization selectively impairs fine odor discrimination, namely that between

structurally similar molecules (Stopfer et al., 1997).  One interpretation of these

results is that the spatial pattern of activated glomeruli is different for molecularly

different odors, and is thereby sufficient to support discrimination between them.

For similar odors, i.e., hexanol and octanol, the spatial pattern of activated glom-

eruli may be highly overlapping, as suggested by the results of Mori and colleagues

discussed above.  With such a highly overlapping spatial representation, the addi-

tional information carried by oscillatory synchronization of PNs appears to be nec-

essary for discrimination.  These results demonstrate that the oscillatory synchroni-
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zation seen in the insect olfactory system is no artifact nor epiphenomenon, but

rather participates in odor encoding.  That is, the odor-specific information con-

tained in oscillatory synchronization is available not just to the experimenter, but is

used by the animal for olfactory discrimination.  It seems likely that oscillatory syn-

chronization in other olfactory systems may similarly be involved in information

processing.

Odor evoked oscillations in the molluscan olfactory system

Oscillations in the olfactory system of the terrestrial mollusc, Limax maximus,

have been investigated by Gelperin and colleagues.  As with arthropods and verte-

brates, oscillatory activity can be recorded in the second order neuropil (namely

antennal lobe in insects, olfactory bulb in vertebrates) which in the molluscan brain

is the procerebral (PC) lobe.  The PC lobe in Limax contains about 105 local inter-

neurons and receives direct input from olfactory receptors (Chase, 1985; Chase

and Tolloczko, 1993; Gelperin et al., 1996), although the existence of a parallel

pathway through the tentacle ganglion (a glomerular synaptic region with ultra-

structural similarity to mammalian olfactory bulb) suggests that the PC lobe may be

more akin to the mushroom body than to the antennal lobe in insects (Chase and

Tolloczko, 1993).  At rest, the PC lobe is continuously traversed by spontaneous

travelling field potential waves (Gelperin and Tank, 1990).  These waves originate

at the distal tip of the PC lobe and propagate to its base, with a frequency of about

0.7 Hz, as determined by multiple simultaneous field potential recordings both in

vitro and in vivo (in awake behaving animals), and by imaging studies in vitro using

voltage-sensitive dyes (Delaney et al., 1994; Kleinfeld et al., 1994).  Odor stimula-

tion causes a transient collapse of this phase gradient, so that for a few cycles the

entire lobe oscillates coherently.  No difference in the evoked response was seen
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for different odors, whether appetitive or aversive.  These results are similar to

those seen in vertebrates and insects, in that all odors evoke similar field potential

oscillations which are spatially coherent.  However, the presence of the spontane-

ous travelling wave is apparently unique to the molluscan olfactory system.  In

addition to L.  maximus, these oscillations have also been seen in Helix (Schütt and

Basar, 1994) and L.  flavus (Kimura et al., 1993).  Furthermore, no odor-specific

spatial patterns were seen in the oscillatory PC responses, in contrast to the spatial

patterns of oscillatory EEG amplitude seen by Freeman and Viana Di Prisco (1986)

and the spatial patterns seen in voltage-sensitive dye recordings from honeybee

antennal lobe (Joerges et al., 1997) and salamander olfactory bulb (Cinelli et al.,

1995).  However, the spatiotemporal resolution of the optical recording techniques

may not have been sufficient to resolve spatial patterns, and this issue will thus

require further investigation (Gelperin et al., 1996).

The involvement of the gaseous neurotransmitter nitric oxide (NO) in mollus-

can olfaction was suggested by intense diaphorase staining in the olfactory path-

way of the snail Helix (Cooke et al., 1994; Sánchez-Alverez et al., 1994).  Reduc-

tion of NO production in Limax, by either quenching with oxyhemoglobin or inhibit-

ing nitric oxide synthase with the false substrate L-N-nitroarginine methyl ester (L-

NAME), causes a transient and reversible decrease in oscillation frequency.  This

decrease is dose-dependent; at high concentrations of L-NAME the oscillations are

reversibly abolished.  Application of NO, by either photorelease of caged NO or

evolution by diethylamine/NO, increases oscillation frequency by up to 20% (Gelp-

erin, 1994).  Photorelease of caged carbon monoxide similarly increases oscillation

frequency (Gelperin et al., 1996).  Nitric oxide could play a role in synaptic plasticity

in the PC lobe, as has been shown in mammalian brain structures (Schuman and

Madison, 1994, Kantor et al., 1996).  The fact that NO is necessary for odor-evoked
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oscillations may provide a link between oscillatory activity and synaptic plasticity in

an animal whose olfactory learning capabilities are well-established (Sahley et al.,

1992).

Neural coding

The issues of neural coding, information transmission, and neural computa-

tion are central to an understanding of sensory information processing.  Sensory

systems evolved to extract relevant information from the environment, and process

it for appropriate behavioral decisions to be made.  Thus one characterization of

sensory information processing is the transmission of information from the environ-

ment centrally towards sensorimotor areas.  Our everyday conception of informa-

tion is often influenced by implicit assumptions about how this information is, or

should be, represented.  The revolution that Shannon (1948) brought to communi-

cations theory was the mathematical framework for quantifying information in a

representation-independent way, by expressing it in terms of entropy.  Thus the

information which a neuronal spike train can transmit to postsynaptic neurons can

be quantified, in bits/second, without having to worry about the neural code.  This

approach has been enormously useful in demonstrating that many sensory neu-

rons operate near the physical limits of signal detection imposed by Brownian mo-

tion or spontaneous rhodopsin isomerization in photoreceptors (e.g., Bialek and

Owen, 1990).  However, neural function has ends other than the faithful transmis-

sion of information centrally.  Computation is the transformation of information from

one representation to another, and is thus fundamentally representation-depen-

dent.  Computation is essentially a coordinate transformation, from one frame of
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reference to another, and necessarily includes a loss (or preservation at best) of

information.  ‘Reading-out’ a code is precisely this transformation, from one repre-

sentation into another.  Quantification of representation-independent information

transmission by a neuron reveals nothing about the computation performed by that

neuron, which depends on how that information is encoded.  Similarly, the demon-

stration that a given code conveys information about a stimulus does not establish

that the code is used by that system for neural computation.  Some representations

may make certain computations easy, as illustrated by the question ‘is 3630225

divisible by 7?’ The answer requires long division, unless the number is in base 7,

in which case the answer merely requires inspection of the last digit (Hopfield,

1995).  One might expect that the nervous system has evolved to encode informa-

tion in representations that allow useful computations to be effortlessly performed

by the biophysical mechanisms available to neurons.  In the words of van de Grind

(1988), “If one chooses to do so, it is hard to see why an old-fashioned balance or

a windmill should not be called an ‘algorithm’ or why the bending of a tree in the

wind should not be called a computation.”

As a case in point, the demonstration of spatial maps in the vertebrate olfac-

tory bulb does not establish that neural space encodes odor quality information

(except to the investigator).  How such a code could be read is unclear; in other

words, the neural space representation (map) may not provide any advantage for

the computation of odor identity.  Odor identity discrimination is likely a holographic,

pattern recognition computation, which in principle could function equally well if the

map were scrambled.  For example, heading direction can be determined by pool-

ing the activity of hippocampal place cells in rats, despite a lack of topography and

the scrambling of the map for each different spatial environment.  Other computa-

tions, however, clearly benefit from the existence of a map.  Contrast enhance-
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ment, for example, can be achieved by lateral inhibition of neurons with similar

stimulus selectivity.  Within a topographic map, lateral inhibition is easily imple-

mented by simple local connectivity rules.  Synaptic integration to enhance signal-

to-noise can also be easily and locally implemented within a map representation.

Thus a map (i.e., a neural space code) may aid some computations but not others;

which representations are used for which computations is an empirical question.

The code used by a neural system like the locust olfactory system may there-

fore reveal much about the computations it is designed to perform, and conversely,

an understanding of and appreciation for the relevant computations and ethological

role of olfaction may help us understand the purpose of an otherwise arcane neural

code.  The oscillatory synchronization seen in PN odor responses, from the per-

spective of information theory, is redundant and decreases the efficiency with which

PNs transmit odor-related information.  In other words, the same information could

be transmitted with fewer neurons if a different (less correlated) code was used.

Why, then, did the locust olfactory system evolve to use an inefficient representa-

tion? It is tempting to speculate that this oscillatory synchronization reflects a neu-

ral code optimized for relevant olfactory computations, such as discrimination,

memorization, or recognition, and that the adaptive value of easily performing such

computations outweighs the cost of a redundant code.  This assumes, however, an

evolutionary pressure for coding efficiency.  If the evolutionary cost of simply add-

ing more PNs was low, a redundant code might persist without adaptive value.

This seems unlikely given the metabolic cost of neurons, and the penalty for in-

creased mass in a flying insect.  Moreover, the antennal lobe is an information-

processing bottleneck in the insect olfactory system, and this pattern of conver-

gence and divergence is common across phyla.  A bottleneck suggests a pressure

for coding efficiency, which underscores the redundancy in rhythmic odor responses
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and the speculation that this representation is optimized for some neural computa-

tion.

Rate coding versus temporal coding

Fifteen years before his pioneering recordings from the hedgehog olfactory

bulb, Adrian (1926) first demonstrated that changes in the firing rate of a neuron

encoded information about the stimuli he presented to the animal.  Those results,

made possible by the recent invention of the vacuum tube, showed that the firing

rate of a stretch receptor in a frog leg muscle was proportional to the force applied

to the leg.  This idea that neurons use a rate code to transmit information was a

powerful one, and was soon generalized to other sensory systems, and eventually

to the entire nervous system.  The estimation of firing rate by counting spikes dur-

ing a response period has been enormously successful in advancing our under-

standing of sensory information processing.  From the functional mapping of the

visual system by Hubel and Weisel to the demonstration of systematic molecular

receptive ranges in mitral/tufted cells by Mori, spike counts have revealed meaning

in the brain.  However, this approach is not without its problems.

The use of a spike count measure to explore brain function entails the as-

sumption that what is being measured reflects the neural code.  Few would argue

that postsynaptic neurons construct peristimulus time histograms, or count spikes

for 1 second following a stimulus.  Many do assume, however, that postsynaptic

neurons integrate inputs over some window of time, and that the spike count or

firing rate code reflects this to some degree.  If this is true, then an animal must be

able to estimate firing rates of its own neurons in real time in order to function in the

environment.  In many cases, the speed with which real nervous systems process
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information precludes the use of an integration window long enough to estimate

firing rates.  For example, the courtship behavior of male flies (e.g., Calliphora )

includes high speed aerial pursuit of the female.  The ability of males to follow the

maneuvers of the female place an upper limit of 30 ms on the total visual process-

ing time required for course corrections (Land and Collet, 1974).  Neurons in pri-

mate superior temporal sulcus can respond selectively to faces with latencies of

100 ms (Oram and Perrett, 1992).  Moreover, event related potentials which corre-

late with high-level categorization decisions (i.e., “is there an animal in this image

or not?”) occur within 150 ms in humans, suggesting that visual object recognition

is completed within this time (Thorpe et al., 1996).  Given the number of intervening

synapses between retina and infratemporal cortex (at least ten), even at peak firing

rates there would only be enough time for one or possibly two spikes to be inte-

grated.  This precludes a neural code which integrates spike rates over time (Thorpe

and Imbert, 1989).  If a rate code is used, then, it must integrate instead over a pool

of neurons to encode an analog signal.  Whether a spike count recorded from one

neuron estimates in some way the instantaneous activity of such a pool is un-

known.  Evidence for integration over pools of neurons has come from the work of

Georgopoulos (1982), who has shown that vector averaging over pools of sequen-

tially recorded motor cortical neurons can accurately reconstruct movement trajec-

tories in monkeys.  These vector averages are from neuronal responses integrated

over the entire duration of the movement (~500 ms), which does not demonstrate

that population coding can obviate temporal integration.  However, vector averages

computed over much shorter integration windows (10-20 ms) can accurately pre-

dict the directional time course of dynamic movements such as spiral drawing

(Schwartz, 1994).  Whether this is also true for information processing in sensory

systems remains to be seen.  A more sophisticated way in which spikes might be

integrated over pools of neurons was proposed by Thorpe and Gautrais (1997).
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This theoretical neural code uses the temporal order of spikes in an ensemble to

convey analog information.  The temporal order (or relative pattern of latencies, in

a related formulation) can be read out by the latency of a simple integrate-and-fire

neuron, thus allowing an output ensemble to transform one pattern of spike orders

into another.

Further skepticism about the use of a firing rate code arises from the response

dynamics seen in many neural systems.  Synchrony and oscillations were first re-

ported by Berger (1929) and have since been recorded in many brain areas and

species, for example those described above for olfactory systems.  Oscillations in

macroscopic recordings such as field potentials or the EEG indicate synchronized

oscillatory activity in a large population of neurons—if desynchronized, the EEG

signal would be relatively flat.  The presence of such coherent activity is function-

ally inexplicable from a rate coding viewpoint.  If information is only contained in

mean firing rates, this widespread oscillatory synchronization could only be epiphe-

nomenal.

If information is encoded not just in the mean number of spikes within a re-

sponse window, but instead (or in addition) in the distribution of spikes within that

window, then by definition the system is using a temporal encoding scheme

(Theunissen and Miller, 1995).  Several hypotheses have been put forward propos-

ing such temporal encoding schemes.  Many of these are inspired by experimen-

tally observed oscillatory synchronization, and speculate how it might convey infor-

mation.  Some encoding schemes have been addressed experimentally, while oth-

ers are purely theoretical.  None have been thoroughly tested, and all are contro-

versial.  Here I review several of the foremost encoding schemes, as a prelude to

Chapter 3, which experimentally tests alternative temporal encoding schemes in
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the locust olfactory system.

The temporal correlation hypothesis

In the mammalian visual system, enormous progress has been made in un-

derstanding how an image is analyzed by single neurons with diverse feature se-

lectivities.  The mechanisms with which these visual features are integrated for

global computations such as figure-ground segmentation and object recognition

are essentially a mystery.  Different aspects of a visual object may be represented

as distributed activation patterns in different cortical areas, which must be identified

as belonging to the same object and integrated without interfering with coexisting

activity patterns corresponding to other visual objects.  These problems of figure

segmentation and feature binding cannot be flexibly solved using only a rate code,

because relationships between features cannot be encoded along with the fea-

tures themselves.  The only way to integrate specific combinations of features us-

ing a rate code is with dedicated connections to a downstream neuron.  This hard-

wired integration is unfeasible because of the combinatorial explosion of possible

complex patterns of features which constitute any ordinary visual scene.  That we

effortlessly recognize objects anywhere in the visual field, whether behind a branch

or rolling towards us, suggests that visual features are integrated with a dynamic,

flexible mechanism.  The temporal correlation hypothesis suggests that synchroni-

zation may provide this mechanism (Milner, 1974, von der Malsburg, 1981; von der

Malsburg and Schneider, 1986; Gray, 1994; Singer and Gray, 1995).

According to the temporal correlation hypothesis, the firing patterns of neurons

responding to features of the same object should be synchronized.  Since objects

have spatial extent, this coherent firing should extend within a cortical area, as well
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as between extrastriate areas representing higher order features such as motion or

color, and even between hemispheres.  Synchronous oscillatory activity in the gamma

(20-70 Hz) frequency range has been recorded at all of these spatial scales in the

cat and monkey visual cortex (Gray and Singer, 1989; Gray et al., 1989; Eckhorn et

al., 1988; Gray and DiPrisco, 1997; Livingstone, 1991).  Moreover, the degree of

synchronization depends on global stimulus properties.  For example, separate

bars swept through the non-overlapping receptive fields of neurons with similar

preferred orientations elicited oscillatory synchronization, which was strengthened

dramatically if a single long bar was used instead (Gray et al., 1992).  The only

difference in the two types of stimuli was the connecting region of the long bar,

which lay outside of the classical receptive fields of the two cells.  This suggests

that long-range lateral connections are involved in generating this synchrony.

The tendency of oscillations to accompany synchronization is not directly rel-

evant to the temporal correlation hypothesis.  Rhythmicity may be a rapid and effi-

cient means for synchronizing neurons.  The mechanisms for oscillatory synchroni-

zation are not well understood in most systems, but recent reports of a novel class

of fast rhythmic intrinsically bursting neurons in cat visual cortex may provide clues

(Calvin and Sypert, 1976; Gray and McCormick, 1996; also reported in sensorimo-

tor cortex by Steriade et al., 1998).  These pyramidal cells, termed ‘chattering cells,’

fire short repetitive bursts at 20-70 Hz in response to current injection, and display

membrane potential oscillations in response to visual stimulation.  By bursting (a

potentially effective way to drive postsynaptic cells), these neurons may be able to

recruit large populations of cells into synchronously firing assemblies.  This mecha-

nism, if true, would contrast with the mechanism by which oscillatory synchroniza-

tion is believed to be generated in the olfactory bulb, which relies on inhibitory

feedback from granule cells (a network property) rather than intrinsically rhythmic
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neurons.  Brainstem modulation may play an important role in the mechanisms for

oscillatory synchronization.  Electrical stimulation of the brainstem reticular forma-

tion, which has an activating effect on the EEG characteristic of arousal (Moruzzi

and Magoun, 1949), enhanced the stimulus-specific synchronization of neuronal

spike responses in cat visual cortex (Munk et al., 1996).

Oscillatory synchronization in the gamma range has also been reported in

retinal and thalamic neurons (Ghose and Freeman, 1972; Neuenschwander and

Singer, 1996).  This input is unlikely to drive synchronized oscillations in cortex,

because its stimulus dependence differs from that in cortical neurons, and thalamo-

cortical projections do not diverge enough to synchronize widely separated regions

of cortex (Gray, 1994).  The visual system thus resembles the olfactory system in

that oscillatory synchronization is seen at many levels, from sense organs to cor-

tex, and appears to be generated independently in each area, potentially allowing

inter-area locking of activity by matched resonance properties.

Other examples of temporal coding

The introduction to neuroscience of the analytical technique of reverse corre-

lation or stimulus reconstruction by Bialek (1991) has demonstrated the impor-

tance of the timing of single spikes for encoding dynamic stimulus information.  The

stimulus reconstruction paradigm quantifies the information about the stimulus (in

the sense of Shannon, 1948) contained in a spike train by finding the optimal filter

with which to reconstruct the stimulus from the spike train.  This technique has

most successfully been applied to motion-sensitive neurons in the fly optic lobe,

wind-direction sensitive neurons in the cricket cercal system, as well as the

electroreception system in weakly electric fish (Bialek et al., 1991; Theunissen et
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al., 1996; Gabbiani et al., 1996).  The amount of information transmitted by single

action potentials is generally high.  For example, the H1 neuron in the Calliphora

visual system can transmit up to 90 bits/s, within a factor of 2 of the physical limit

set by the entropy of the spike train itself (Strong et al., 1998).  However, in most

cases, the linear filter term recovered all significant information about the stimulus

(Bialek, 1991; Bialek and Reike, 1992; Warland et al., 1991), indicating the opera-

tion of a rate code (Theunissen and Miller, 1995), albeit one with a relatively short

integration window.  Nevertheless, these results suggest that an organism could

accomplish real-time stimulus estimation, if it were desirable to do so.  In the con-

text of olfaction, the application of the stimulus reconstruction technique is not

straightforward.  As yet the quantification of mutual information depends on it being

contained in the time variations of a dynamic stimulus, such as horizontal motion of

a bar.  The mathematics for quantification of odor quality information have not been

worked out, but in principle could be addressed within a broader interpretation of

the stimulus reconstruction paradigm (W Bialek, personal communication).  The

essential difficulty lies in quantifying the entropy of the stimulus.  A post hoc quan-

tification of the entropy of the set of odors used in an experiment is certainly possi-

bly—it is just log n, if n different odors were presented an equal number of times,

and     ΣP(i)logP(i),    if  P(i) is the probability of odor i being presented—but I find this

approach unsatisfying given the virtually infinite number of odors that could have

been applied.  For the quantification of stimulus entropy, the set of stimuli pre-

sented ought to span the stimulus space—which is practically impossible in olfac-

tion.  The ability of olfactory neurons to transmit information about the temporal

dynamics of an odor stimulus is a different question.  Temporal fluctuations in phero-

mone concentration can be faithfully transmitted by some MGC projection neurons

in Manduca sexta males (Christensen and Hildebrand, 1988), and have dramatic

effects on their orientation and counterturning behavior as they zigzag through an
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odor plume (Mafro-Neto and Cardé, 1994).  How faithfully this information is trans-

mitted has not yet been quantified.

Neurons in frontal cortex have been shown to dynamically modulate the co-

herence of their firing in a systematic relationship to behavioral events in awake

behaving monkeys (Vaadia et al., 1995).  This loosely correlated firing (within 70

ms) of neurons can evolve within a fraction of a second, and can emerge without

modulation of firing rates.  The suggestion is that synchronization enables neurons

to rapidly and flexibly associate into functional groups, which are distinct from other

concurrently active groups.  More precise coincidences have also been seen among

frontal cortical neurons (Abeles et al., 1993a, 1993b, 1994).  Most interesting are

repeating and precise (+1 ms) patterns of spikes at long intervals (up to several

hundred ms) among a group of neurons.  These patterns, which are found in the

data by ‘brute force’ searching, occur more often than would be expected by chance

(although estimates of ‘chance’ vary among investigators).  Patterns can be prefer-

entially associated with a certain behavioral event, and different patterns can be

associated with different behavioral conditions (e.g., Go vs. No-Go).  One interpre-

tation of these results is that they reflect the operation of a neural code (or cortical

processing mode) created by what Abeles (1991) terms the ‘syn-fire chain’.

The syn-fire chain concept is based on the prediction that, given typical corti-

cal connectivity, firing rates, and synaptic strengths, synchronous inputs are likely

to drive postsynaptic cells more effectively than asynchronous inputs (Abeles 1991).

One might imagine, then, a group of a hundred neurons which converge and di-

verge such that when they fire synchronously, a second group of neurons are all

driven to fire synchronously.  A chain of such groups would propagate synchronous

activity, at intervals of about one synaptic delay: this is a syn-fire chain.  Diverging,
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converging, and reverberating syn-fire chains could be the basis for information

processing and computation in the cerebral cortex.  The recordings of accurate

spatiotemporal patterns described above are taken as evidence of the syn-fire chain

concept, although the analysis required to extract these patterns from the data, and

the statistics used to provide significance values, have produced skepticism.  Clearly

more evidence is needed, from different laboratories and animals, to support this

provocative view of cortical function.

Possible temporal encoding in the primate visual system has been demon-

strated independent of oscillatory synchronization (McClurkin et al., 1991; Rich-

mond et al., 1987; Richmond and Optican, 1987; Optican and Richmond, 1987).

Ganglion cells, LGN neurons, V1 and IT cortical neurons convey stimulus-related

information not just by the number of spikes they produce, but also by the distribu-

tion of those spikes within the response period.  This conclusion is based on princi-

pal component analysis of spike trains to a complete set of black-and-white images

based on Walsh functions.  The first principal component (the mean spike count)

contained information about the stimuli, but inclusion of the second, third, and fourth

principal components conveyed more information.  The relative gain in information

due to higher order components increased in the higher visual areas.  This tempo-

ral code could thus increase the efficiency of information transmission.  Further-

more the higher principle components are independent and could thus keep sepa-

rate information which a single component code would confound.

In the somatosensory and motor areas of thalamus and cortex, oscillatory syn-

chronization appears to play a role in attentive behavior and movement planning.

EEG oscillations in the 35-45 Hz range in cat and ~15 Hz in monkey can be re-

corded during periods of attentive immobility, for example as a cat watches a mouse
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(Rougel et al., 1979; Bouyer et al., 1981, 1987).  These oscillations are synchro-

nized between sensorimotor regions of thalamus and cortex (Bouyer et al., 1981,

1987).  Oscillations in monkey motor cortex performing a repetitive task are syn-

chronized over 10 mm in cortex, and are present only during preparation of a planned

motor act, vanishing upon initiation of movement (Murthy and Fetz, 1992; Sanes

and Donoghue, 1993).  Both the amplitudes of the oscillations and the probability of

recording them were greater if the tasks were untrained exploratory movements, or

extraction of raisins from a hiding place, tasks which engage the monkey’s atten-

tion (Murthy and Fetz, 1992, 1996a, 1996b).  While the functional significance of

these oscillations is still unknown, they appear to be a correlate of attention and

planning of movements, rather than being directly involved in the execution of move-

ments.

In the vertebrate auditory system, the timing of action potentials conveys infor-

mation about the phase of sound pressure waves arriving at the ear.  Cochlear

afferents can show phase-locking to frequencies far higher than those at which any

individual neuron can respond; phase information must then be represented across

the population of responding cells.  This phase-locking is a clear example of a code

in which the precise timing of spikes conveys information, and the mean firing rate

is clearly an inadequate measure of stimulus-related information.  Auditory phase

locking is not strictly an example of temporal encoding, in the sense used by

Theunissen and Miller (1995), in that the precise spike timing encodes temporal

aspects of a dynamic stimulus—and are thus consistent with a rate code which

uses a very short integration window.  In contrast, temporal encoding as defined by

Theunissen and Miller would require that the precise timing of spikes within the

encoding window (which must be shorter than or equal to the integration window)

convey information about the stimulus.  This is true in auditory cortex, where syn-
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chronization between neurons can convey information about features (e.g., the

presence of a pure tone) even when the firing rates do not change (deCharms and

Merzenich, 1996).

A novel encoding scheme proposed by Hopfield (1995) proposes that en-

sembles of neurons—e.g., mitral/tufted cells in the olfactory bulb—encode infor-

mation by virtue of their pattern of spike times relative to the global odor-evoked

oscillation.  If the population exhibited synchronous subthreshold membrane po-

tential oscillations, then exponential increases in stimulus strength would be en-

coded by a linear time advance in the spikes, while the relative pattern of spike

times remained  invariant with respect to intensity.  This multiplexing of identity and

intensity information could be transmitted quickly (within one cycle) and decoded

easily by a recurrent network incorporating time delays (the same architecture dis-

cussed above in the context of decoding mitral cell temporal patterns by the piri-

form cortex: Tank and Hopfield, 1987).  The applicability of this coding scheme to

the locust olfactory system, given the presence of global synchronous membrane

potential oscillations, is addressed directly in Chapter 3.

Specific aims

The following chapters describe a natural progression of experiments explor-

ing the design and function of the locust olfactory system, focusing on projection

neurons in the antennal lobe.  The experiments in Chapter 2 attempt to character-

ize the responses of PNs to odors.  These results (Laurent et al., 1996) build on

previous results by Laurent and Davidowitz (1994).  The goal of these experiments

was to confirm and extend, by means of multiple simultaneous extracellular record-

ings, the oscillatory synchronization and slow temporal patterns in PN odor re-
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sponses.  A related goal was to quantify slow temporal patterns, which are in gen-

eral only described anecdotally.

Only after the system had been characterized could specific coding hypoth-

eses be tested.  In Chapter 3, predictions of two alternative coding schemes were

tested by paired extracellular recordings from PNs.  These results (Wehr and Lau-

rent, 1996) demonstrated that the cycle-by-cycle firing patterns across ensembles

of PNs encode odor identity information, but that other response features (such as

phase or frequency) do not.  These results also showed that odor responses in PNs

could be more precise than was previously thought.  This observation refined our

understanding of the relationship between oscillatory synchronization and slow tem-

poral patterns, by demonstrating that these patterns can evolve on a cycle-by-cycle

basis.

Finally, the experiments in Chapter 4 address the mechanisms underlying the

generation of these dynamics.  Previous work had shown that oscillatory synchro-

nization in PNs and local neurons persists after ablation of the mushroom body, but

is abolished after injection of picrotoxin (a GABA
A
 receptor antagonist) into the an-

tennal lobe (Laurent and Davidowitz, 1994; MacLeod and Laurent, 1996).  This

suggests that the antenna and antennal lobe are sufficient for generation of odor-

evoked oscillatory synchronization.  Slow temporal patterns in PNs persist after

picrotoxin injection, suggesting that the mechanisms which generate them are dis-

tinct from those that generate synchronous oscillations.  The goal of the experi-

ments described in Chapter 4 was to investigate the role of temporal patterns in

primary receptor afferents in the generation of both oscillatory synchronization and

slow temporal patterns in PNs.  These results (Wehr and Laurent, 1998) showed

that odors do not evoke oscillatory synchronization in the population activity of ol-

factory receptor afferents, and that nonspecific, temporally unpatterned electrical

stimulation of receptor axons can evoke both oscillatory synchronization and slow

temporal patterns in PNs, similar to those evoked by natural stimulation with odors.
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Chapter 2: Temporal representations of odors in an olfactory network

Abstract

The responses of projection neurons in the antennal lobe of the locust brain

(the functional analog of mitral/tufted cells in the vertebrate olfactory bulb) to natu-

ral blends and simple odors were studied with intracellular and multiple extracellu-

lar recordings in vivo.  Individual odors evoked complex temporal response pat-

terns in many neurons.  These patterns differed across odors for a given neuron,

across neurons for a given odor, but were stable for each neuron over repeated

presentations (separated by seconds to minutes) of the same odor.  The response

of individual neurons to an odor was superimposed on an odor-specific coherent

oscillatory population activity.  Each neuron usually participated in the coherent

oscillations during one or more specific epochs of the ensemble activity.  These

epochs of phase-locking were reliable for each neuron over tens of repeated pre-

sentations of one odor.  The timing of these epochs of synchronization differed

across neurons and odors.  Correlated activity of specific pairs of neurons hence

generally occurred transiently during the population response, at times that were

specific to these pairs and to the odor smelled.  This progressive transformation of

the synchronized ensemble over the course of the odor response is not revealed

by the field potential oscillations.  We propose that (1) odors are represented by

spatially and temporally distributed ensembles of coherently firing neurons and (2)

the field potential oscillations which characterize odor responses in the olfactory

system occur, at least in this animal, in parallel with a slower dynamic odor repre-

sentation.
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Natural odors (such as plant fragrances for example) are usually complex blends

of many volatile compounds.  The percept that a natural fragrance evokes in us,

however, is usually singular (e.g., jasmine, onion or a skunk).  Our brains, there-

fore, most likely form a unique internal representation of each specific blend, from

which individual components (such as amyl acetate or heptanone, for example) are

difficult or impossible to segment.  This specific odor representation must, in addi-

tion, be sufficiently inclusive to allow like-odors (e.g., roses of distinct varieties, or

roses smelt in different climatic conditions) to be ‘recognized’ as the same.  Finally,

this representation must be stable over time— odor memories are generally very

long lasting (Hildebrand, 1995).

A major challenge in the study of olfaction is to understand the computational

rules or algorithms used by the brain to encode, store and retrieve these complex

and multidimensional stimuli.  Recent remarkable developments in the molecular

biology of vertebrate olfaction have shed light on some crucial aspects of the ‘map-

ping’ of odor-signals in the olfactory bulb (Axel, 1995;  Buck and Axel, 1991; Vassar

et al., 1994; Sullivan et al., 1995).  These results complement physiological and

imaging studies of odor processing that indicate broad, distributed stimulus repre-

sentation schemes (Kauer, 1991;  Cinelli et al., 1995).  Other recent results from

physiological studies of molluscan and insect olfaction indicate that the olfactory

nervous system of several invertebrates generates oscillations (Gelperin and Tank,

1990; Delaney et al., 1994; Laurent and Naraghi, 1994), a macroscopic feature

similar to one described previously in the olfactory brain of vertebrates (Libet and

Gerard, 1939; Adrian, 1942; Freeman, 1975; 1978; Satou, 1990; Gray, 1994; Gray

and Skinner, 1988).  These results, combined with anatomical evidence that arthro-
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pod, molluscan and vertebrate olfactory circuits have very similar designs, suggest

that the computational rules used by olfactory systems may be similar (or con-

served) across animal phyla.

We focus here on odor processing in the olfactory nervous system of an in-

sect, the locust Schistocerca americana, and examine the properties of individual

and ensembles of neurons in response to odor presentation in vivo, continuing the

studies of Laurent and Naraghi (1994) and Laurent and Davidowitz (1994).  These

neurons are the antennal (or olfactory) lobe projection neurons whose signals are

sent to the mushroom body, a center for learning and memory (Davis, 1993;  Ham-

mer and Menzel, 1995).  The projection neurons are thus the functional analog of

the mitral/tufted cells in the vertebrate olfactory bulb.  In this paper, we examine in

detail the potential role of time as a variable in the combinatorial representation of

sensory stimuli by this part of the brain.  We focus on processing of odors to which

the animal has been exposed, i.e., we do not consider here the responses evoked

by the first 1 to 3 presentations of an unfamiliar odor.  We find that the temporal

firing patterns of individual neurons, as well as the synchronization of firing across

groups of neurons, are stimulus-specific.  In other words, each odor appears to be

represented not simply by an ensemble of synchronized neurons but by a progres-

sive and odor-specific transformation of that ensemble, so that each neuron syn-

chronizes with several others only during one or more precise epochs of the en-

semble response.  We thus propose that oscillations in the olfactory nervous sys-

tem occur, at least here, in parallel with a slower code which is distributed both in

time and across many neurons.
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Methods

The preparation.  Adult locusts were immobilized and dissected as described

in Laurent & Naraghi (1994) and Laurent & Davidowitz (1994). The following modi-

fications were applied to the experimental protocol used for experiments in Figs. 1,

13-19.  The gut was left intact, and the head was only intermittently (rather than

continuously) superfused with locust physiological saline (mM: 140 NaCl, 5 KCl, 5

CaCl
2
, 4 NaHCO

3
, 1 MgCl

2
, 6.3 Hepes, pH 7.0).

Olfactory stimulation.  The open ends of a set of up to 24 glass capillaries or

stainless steel tubes (0.5 mm inner diameter) were placed 2.5 to 5 cm from the

antenna, angled so that they converged onto the antenna.  The other end of each

capillary was connected via polyethylene tubing to a 5 ml odorant-containing sy-

ringe body.  Each chamber contained a 1 cm2 piece of filter paper, on which was

deposited 20 µl of one of the following odors: artificial cherry flavor (Bell Fragrances),

iso-amyl acetate (iaa), citral, cineole, benzaldehyde, geraniol (Aldrich), pure spear-

mint oil (Flavco), apple blossom, strawberry, or vanilla potpourri oils  (Gilbertie’s

Herb Gardens), lavender oil (Nuit Unlimited), eugenol, n-pentanol, n-hexanol, n-

octanol, α-pinene (Sigma), crushed wheat grass, crumbled rat chow, or no odorant

(air control).  The chambers were connected to an air pressure injection system via

a set of valves, so that electronically controlled gentle pressure pulses (insufficient

to visibly bend the antenna) could be delivered to the animal.  For three of the odor

lines, pressure pulses were individually regulated.  Pressure-actuated check valves

were interposed between the odorant chamber and the animal, to prevent passive

diffusion of odorant.  For the other odor lines, a common pressure line was con-

nected to each odor chamber in parallel. Odors were mixed by applying a simulta-

neous pressure pulse to each one of the selected odor lines.  For these experi-
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ments, pulses of variable duration were delivered at a minimum interval of 10 s.

Although odor delivery to the antenna was always delayed relative to the command

pulse to the air valves (due to the physical nature of the stimulus), the delay be-

tween command and delivery was constant from trial to trial.  This could be demon-

strated simply by averaging successive local field potential traces evoked by the

delivery of an odorant and locked on the stimulus pulse.  In all cases, this produced

a clear average field potential signal (one to several oscillation cycles) at a time

corresponding to the onset of the response of any one of the successive trials.

(Because the field potential is not a pure and constant periodic signal, however, the

average calculated from the oscillation cycles occurring after the first or second

one was often flat.)  The delay between command and delivery was also shown to

be constant with the use of a particle velocity microphone.

Intracellular recordings (Figs. 3-12).  100-300 MΩ glass microelectrodes pulled

with a horizontal puller (Sutter Instr.) and filled with 0.5 M K acetate were used to

record from the somata of projection neurons in the antennal lobes, using estab-

lished techniques (Laurent and Davidowitz, 1994).  The antennal lobe contains two

types of neurons: local and projection neurons.  The antennal lobe local neurons in

locust produce no conventional action potentials but rather TTX-resistant ‘spike-

lets’ of variable amplitudes, probably caused by voltage-dependent calcium cur-

rents (Laurent and Davidowitz, 1994; Laurent and Naraghi, 1994).  Neurons could

thus easily be identified as local or projection neurons from physiological record-

ings.

Extracellular recordings (Figs. 1, 13-19).  Extracellular recordings were per-

formed using 2-6 glass microelectrodes pulled with a horizontal puller (Sutter In-

str.).  Electrodes for local field potential (LFP) recordings had ~2 µm tips with a DC
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resistance of <1 MΩ.  Electrodes for single-unit extracellular recording had 0.5-1

µm tips with a DC resistance of 1-2 MΩ.  Both types of electrodes were filled with

locust physiological saline.  LFP signals were differentially amplified, band-pass

filtered (1 - 500 Hz), “notch-filtered” at 60 Hz (A-M Systems 1700), and stored to

digital audio tape (DAT, Micro Data Instr.) (5.5 kHz cut off).  The DAT recorder

included an analog Nyquist frequency low-pass filtering stage before analog-to-

digital conversion.  Some single-unit extracellular signals were amplified and stored

in this manner, with band-pass filtering at 10 Hz - 5 kHz. Other single-unit extracel-

lular signals were amplified using an Axoclamp 2A amplifier (Axon Instr.) before

storage to DAT.  Each projection neuron (PN) recording was obtained with an indi-

vidual extracellular electrode (up to five simultaneously), as was the LFP.  No spike

sorting was carried out with any of the extracellular single unit data presented here.

Off-line Analysis.  The data analyzed and presented here were obtained from

animals already exposed to the odors tested.  In other words, we do not consider

here the first one to three responses of neurons to unfamiliar odors.  Data were

redigitized from DAT at 5 kHz (National Instruments: LabVIEW software and

NBMIO16L hardware) after AC amplification and low-pass filtering at 3 kHz (Brown

Lee Precision  210A amplifier).  LFPs were digitally band-pass filtered (5 - 50 Hz)

using MATLAB (The MathWorks, Inc.) on a Macintosh (Power Computing Corp.).

Single-unit extracellular signals were converted to lists of spike times (rounded to

the nearest ms) using a threshold discriminator algorithm, and confirmed by visual

inspection (LabVIEW).  Peri-stimulus-time histograms (PSTHs) were constructed

by averaging blocks of trials aligned on the odor pulse command, and using bins of

25-150 ms.  All intracellular traces are displayed with action potentials clipped.

Phase analysis (Fig. 14).  PN spike times were converted to a phase represen-
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tation with respect to the odor-induced LFP oscillations.  Raw LFP traces were

band-pass filtered (10-50 Hz) using a digital noncausal (i.e., no phase distortion) 5-

pole Butterworth filter.  Peaks, troughs, and zero-crossings of the LFP signal were

used as phase reference points as follows: peaks of the LFP were assigned a

phase of 0 or 2π, troughs a phase of π, and zero-crossings a phase of      or      . The

time of a PN spike (tPNspike) was then compared to the nearest peak (tLFPpeak), trough,

and/or zero-crossing in the simultaneously recorded LFP, and assigned a phase by

linear interpolation.  The phase was calculated by interpolating either between peaks

(whole cycle), between nearest peak and trough (half cycle), or between nearest

zero-crossing and nearest peak or trough (quarter cycle).  For example, using the

whole-cycle method, the phase of a PN spike was given by

                             tPNspike - t lastLFPpeak

    tnextLFPpeak - t lastLFPpeak
 PNspike = 2π.φ (                         )

Phase histograms obtained using these three methods did not differ qualita-

tively from each other.

Sliding window cross-correlation analysis (Figs. 15-17, 19).  Cross-correlation

analysis was performed using MATLAB.  After converting simultaneously recorded

PN traces to rasters, pairwise cross-correlation analysis was performed on the ras-

ters on 300 ms windows beginning 1 s before the onset of the odor pulse and

ending 3 seconds after the end of the odor pulse (10 ms bins).  The first 300 ms

window was then slid forward by 100 ms, and a new cross-correlation analysis was

performed on the new (overlapping) window.  This procedure was carried out with

the entire data set.  The cross-correlation calculated on each window could thus be

represented as a row in a matrix, in which each column represents a specific time-

 π
 2

3π
 2
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lag of the cross-correlation and each row a successive time-window around the

odor pulse.  Odors were presented several times [at 10 s (or more) intervals], this

analysis was performed for each trial, and the cross-correlation matrices calculated

for all the trials were aligned to the odor pulse and added together.  The magnitude

of the cross-correlation was then represented using a cool-to-warm color scale,

normalized over the entire data set.  Thus, a dark blue region (Figs. 15,16,19)

indicates that there were no spikes in either PN at that time and time-lag.  A red

region indicates that, over all the trials, spikes coincided often at that time-lag and

time of the trial.  The actual number of coincident spikes encoded by a red color is

indicated in the figure legends.  This number (e.g., 15) indicates that each PN fired,

e.g., 15 spikes in the corresponding bin.  In an initial attempt to test the significance

of periodic patterns in the cross-correlograms, we divided the data for each experi-

ment in several subsets (e.g., from an experiment containing 26 trials: odd trials 1,

3...25 in one subset and even trials 2, 4...26 in another, or 2 complementary sub-

sets of 13 randomly selected trials in the entire set) and calculated the cross-corre-

lation on each subset independently, as described above.  Any spurious correlation

between the two cells analyzed appeared as non-matching cross-correlations pat-

terns in the different subsets.  By contrast, any pair of cells with consistent cross-

correlation patterns from subset to subset was considered to show a significant

degree of stimulus-induced correlation.  In all cases where this occurred, the cross-

correlograms indicated a periodicity identical to that of the corresponding local field

potential.  Cells displaying such cross-correlations were considered synchronized

(although it is clear that synchrony does not require periodic firing).  In a second

series of tests, synthetic data sets were produced to mimic the experimental data,

except for periodicity and correlation.  Trains of ‘spikes’ were synthesized, whose

timing was described by Poisson statistics and whose average frequency (as a

function of time) matched precisely the experimental data.  These synthetic data
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were then processed in a manner identical to the experimental data, and periodic

cross-correlation patterns were sought.  Never did any periodic pattern such as

those described for the experimental data emerge from these synthetic data sets.

The existence of periodic cross-correlations patterns in the data are thus not the

result of coincident increase in the firing rates of the neuron pairs.  A rigorous analy-

sis of the statistics of the experimental data using spectral techniques (namely

coherence analysis) is presented in Chapter 3.

Pairwise sliding window cross-correlation analysis was also performed between

the rasters of each PN and the simultaneously recorded LFP in the mushroom

body (Fig. 17).  Raw LFP traces were band-pass filtered (10-50 Hz) using a

‘noncausal’ (no phase distortion) digital 5-pole Butterworth filter.  The sliding win-

dow cross-correlation analysis was identical to that described above for pairs of PN

rasters.  A dark blue region (Fig. 17) indicates that, on average, there was, at that

time of the trial, a trough in the LFP at that time-lag relative to a PN spike.  Similarly,

a red region indicates that, on average, there was, at that time of the trial, a peak in

the LFP at that time-lag relative to a PN spike.  A light blue region indicates that, on

average, the LFP was in between peak and trough at that time-lag relative to a PN

spike.  A light blue band spanning all time-lags at a given time of the trial indicates

that no PN spike occurred at that time of the trial.  Note that the magnitude of the

cross-correlation function assigned to a given color (e.g., red) is here a product of

both the LFP amplitude and the coherence between PN spikes and the LFP oscil-

lations.  Note also that the magnitude of the cross-correlation between a PN raster

and the LFP signal can be positive (red) or negative (dark blue), with zero correla-

tion represented by light blue (Fig. 17).  This is in contrast to the cross-correlation

calculated between two PN rasters (Fig. 15,16,19), which was never negative.
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Principal components analysis (Figs. 7-9).  Principle components analysis was

performed on intracellularly recorded responses of one PN to 134 presentations of

18 odors (including air).  Each trace was digitally low-pass filtered at 50 Hz (as

above) and the covariance matrix was computed from all resulting traces.  The

eigenvectors and eigenvalues of this matrix were extracted by standard linear alge-

bra methods.  The principle components (Fig. 7) are these eigenvectors ranked by

the magnitude of their associated eigenvalues.  Projections of the mean responses

to each odor onto these components (i.e., inner products) were then calculated

(Figs. 8-9) resulting in a set of coefficients for all components for each mean odor

response.  Euclidean distances between these sets of coefficients (truncated to the

first 10) were calculated according to the distance formula, and used to rank the

neighborhood relations of all mean odor responses (Fig. 9).  These relations were

displayed in similarity tree, built by starting with the closest pairs of responses, and

iteratively adding a branch to each successively more distant response or group of

responses.

Results

Temporal response patterns in projection neurons

The presentation of any odor to the antenna of an animal in vivo typically led to

a change in the firing behavior of many projection neurons in the ipsilateral anten-

nal lobe.  The response of each neuron to a stimulus, however, differed from that of

other neurons by its duration, its timing relative to the odor delivery and its temporal

structure.  Figure 1 shows simultaneous extracellular recordings from three differ-

ent projection neurons and their responses to an apple+cherry mixture.  While one

neuron (PN 1) responded with a short burst of high frequency action potentials, PN

2 responded to the same odor by a period of suppression preceding delayed spik-
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ing.  PN 3 displayed a complex mixed response containing successive epochs of

high frequency firing, suppression, sustained excitation, and prolonged suppres-

sion. This indicates that, if individual odors are represented by an ensemble of

neurons, this ensemble is dynamic and that all participating neurons do not partici-

pate simultaneously.

The temporal structure of the response of individual projection neurons to a

given odor was consistent and reliable.  Figure 2 shows the response of an intrac-

ellularly recorded neuron evoked by 1 second pulses of cherry and octanol.  Re-

cordings were obtained up to 15 min. apart and aligned on the odor pulse.  For both

cherry presentations, the PN’s response consisted of a short initial burst of action

200 ms

10 Hz

052196c

apple+cherry, 1s

PN1

PN2

PN3

{
{

{
Figure 1.  Range of temporal patterns

of response to a single odor across

neurons.  Temporal response patterns

of three simultaneously recorded an-

tennal lobe projection neurons in re-

sponse to the odor apple+cherry.  Dot

rasters (top) from the extracellular re-

cordings were aligned to the odor pulse

and averaged (50 ms bins) to form the

PSTH (below).  Note the distribution of

response patterns, from short and brisk

(PN1), to inhibitory (PN2), to

multiphasic (PN3).  Note also the con-

sistency of the response patterns over time (see also Fig. 2).  Not all neurons that responded to this

odor, therefore, were active at the same time.  Rather, the ensemble response was distributed in

time.  (Note: PN3 is the same neuron as PN2 in Chapter 3, Figures 5-6,  although recorded earlier

and with different simultaneously recorded PNs.)
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100 ms

cherry octanol

t+14 min t+15 min
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potentials (riding on a oscillatory subthreshold pattern), a ~1 s period of silence and

a final period of inhibition.  Similarly, the response to octanol, on both occasions,

consisted of two bursts of action potentials separated by a period of silence.

Whereas the overall temporal structure of individual neurons’ responses was

consistent from trial to trial (in identical stimulus conditions), the very fine detail of

the response was not.  The response to cherry (Fig. 2), for example, consisted of

an action potential at cycles 3 and 4 of the subthreshold oscillatory pattern during

the first presentation, but at cycles 2, 3 and 4 of the next presentation, 14 minutes

later.  The same variability can be observed in the responses of simultaneously

recorded neurons in Fig. 1.  There, knowing the exact sequence of action potentials

Figure 2.  Consistency of response patterns and odor-specificity.  Intracellular recording of a projec-

tion neuron.  A pulse of artificial cherry odor was presented once (t), and presented again 14 min-

utes later (t + 14 min).  The recordings obtained for these two responses have been aligned on the

odor pulse.  They demonstrate the consistency of the temporal response patterns over repeated

presentations.  The response to octanol was also consistent over repeated presentations (15 min-

utes later), but the temporal response pattern was clearly and reliably different than the response to

cherry.  (Note that these and other odors were presented during the 14/15 minute intervals).  Projec-

tion neurons usually respond to multiple odors, generally with different (i.e., odor-specific) temporal

patterns (see Figs. 3-6).
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octanol

pinene

apple

iaa

pentanol

hexanol

cineole

rat chow

strawberry

geraniol

cherry

citral

benzaldehyde

mint

vanilla

lavender

eugenol

air

odor, 1s 100 ms
10 mV

Figure 3.  Odor specific slow tem-

poral response patterns.  PNs usu-

ally respond to multiple odors.  The

response patterns evoked by these

multiple odors, however, are gen-

erally different.  Here is shown an

intracellular recording of a PN

whose membrane potential was af-

fected by 14 of 18 odors presented.

The responses ranged from inhibi-

tion (e.g., benzaldehyde) to com-

plex successions of excitation and

inhibition (e.g., octanol). Excitatory

“bursts” do not necessarily overlap

in time, and are therefore not simple

onset or offset reponses (e.g., com-

pare cineole, hexanol).  Membrane

potential oscillations and/or rhyth-

mic firing are evoked by several odors (e.g., cherry, cineole, hexanol) but the epochs of oscillations

can vary.

in one neuron did not allow one to predict what the exact sequence of action poten-

tials in the second neuron would be:  The responses of PN 3 at the onset of the

odor pulse were remarkably similar in all trials, while they were not for PNs 1 and 2.

Two neurons can therefore be transiently ‘synchronized’ over episodes of fifty to

several hundreds of ms, but the occurrence of spiking events during these epi-

sodes often remained probabilistic.  (The fine structure of the synchronization will

be further addressed below.  The predictive value of one PN’s firing about another

PN’s firing during the same trial will be explored in detail in Chapter 3.)
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10mV

200 ms

air

eugenol

lavender

vanilla

mint

benzaldehyde

citral

 cherry

geraniol

strawberry

rat chow

cineole

hexanol

pentanol

iaa

apple

pinene

octanol

Figure 4.  Consistency of odor specific slow

temporal response patterns.  Here three

responses to each given odor are over-

laid, for the same PN (responding to the

same odors) as shown in Fig. 3.  The peri-

ods of excitation and inhibition reliably

overlap over repeated presentations.  This

indicates that the typical traces shown in

Fig. 3 are representative of the PN’s  re-

sponse profile.

The temporal activity patterns observed in a given neuron in response to an

odor stimulus were odor-dependent.  Individual neurons usually responded to many

of the 20 test odors that could be presented to an animal.  An example is given in

Fig. 3 of a neuron that responded to 14 of 18 odors tested (including air).  As can be

seen, the response patterns were markedly different for the different odors.  For

example, while the neuron’s response to strawberry consisted of an initial burst of

activity, then a plateau period, followed by deep inhibition, the response to octanol

contained two “bursts” of spikes separated by a plateau period.  Note that bursts of

spikes evoked by some odors occurred exactly at the time when the neuron would

have been inhibited during its response to other odors (e.g., cineole vs. hexanol).

The remarkable complexity, diversity, and reliability of these temporal patterns, even
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octanol, n=12

pinene, n=5

apple, n=9

iaa, n=11

pentanol, n=26

hexanol, n=12

cineole, n=7

rat chow, n=4

strawberry, n=9

geraniol, n=7

cherry, n=6

citral, n=3

benzaldehyde, n=5

spearmint, n=5

vanilla, n=3

lavender, n=4

eugenol, n=4

air, n=5

odor, 1s
10 mV

100 ms

in a single PN, is impossible to convey in a single figure or with a single represen-

tation of neural activity.  Figures 3-9 compare several approaches to displaying and

quantifying different aspects of these complex responses.  The typical trials shown

in Fig. 3 demonstrate membrane potential and firing patterns, but cannot address

trial-to-trial reliability.  These different slow temporal response patterns were stable

over repeated presentations of each odor, as can be seen in Fig. 4.  Here three

responses to each odor are plotted over each other, to demonstrate the reliable

overlapping of the response features across trials.  In Fig. 5, the membrane poten-

tial features (epochs of excitation and inhibition) which are stable across trials can

be seen clearly in the mean membrane potential taken over all presentations of a

given odor.  This representation emphasizes reliable membrane potential features,

but does not provide information about regions of variance across trials.  The mean

membrane potential also obscures firing patterns, which can be most clearly seen

using dot rasters and peri-stimulus time histograms (PSTHs) as shown in Fig. 6.

Figure 5.  Slow temporal patterns can be

seen from the mean.  The mean membrane

potential across all responses to a given

odor demonstrates the reliability of the ep-

ochs of excitation and inhibition across tri-

als.  This representation of the response

profile, for the same PN (responding to the

same odors) as shown in Fig. 3, has the

advantage of clearly showing consistent pe-

riods of excitation and inhibition with a mini-

mum of complexity.  However, response vari-

ance is excluded, and firing patterns are ob-

scured.
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The diversity of these firing patterns, and their consistency across trials, are dem-

onstrated by the tight vertical banding of the dot rasters.  “Bursts” evoked by differ-

ent odors do not necessarily overlap (e.g., cherry vs. strawberry, pentanol vs. iaa).

The similarity of these firing patterns to the membrane potential patterns indicates

that the output of PNs to higher structures preserves much of the slow temporal

structure seen in the membrane potential.

How many different temporal patterns can be evoked in a given projection

neuron? How similar or different are these patterns from each other? The high

dimensionality of intracellularly recorded odor responses in these neurons greatly

hinders any approach to exploring these important questions.  In principle, intracel-

lular recordings are continuous waveforms and are thus infinite-dimensional.  Even

octanol, n=12

apple, n=9

pinene, n=5

iaa, n=5

pentanol, n=25

hexanol, n=11

cineole, n=7

rat chow, n=4

strawberry, n=9

geraniol, n=7

cherry, n=6

citral, n=3

benzaldehyde, n=5

mint, n=5

vanilla, n=3

lavender, n=4

eugenol, n=4

air, n=5

odor, 1s

10 Hz
200 ms

Figure 6.  Odor specific firing patterns.

The slow temporal response patterns

can be seen in PN spike trains as well

as the membrane potential.  Here this

is demonstrated by dot rasters and

PSTHs from the same PN (respond-

ing to the same odors) as shown in

Fig. 3.  The consistency of these fir-

ing patterns over numerous  repeated

presentations indicates that the out-

put of PNs to higher structures pre-

serves much of the slow temporal

structure seen in the membrane po-

tential.
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when sampled in practice (e.g., at 5 kHz), tens of 10 s trials generate an odor

response profile of order 106 dimensions.  Moreover, the features which are likely

relevant to comparisons between responses (such as bursts of firing or epochs of

inhibition) form a much smaller subspace and are not available by inspection in

such a 106 dimensional vector.  As discussed in Chapter 1, the right representation

may make certain computations easy.  For the computation in question (compari-

sons among odor responses), the representations presented in Figs. 3-6 differ in

their suitability, but all remain high dimensional and thus hinder quantitative com-

parisons.  Many dimensionality reduction techniques have been developed for such

purposes, such as Fourier analysis, linear discriminant analysis, and principal com-

ponent analysis.  All of these are linear transforms of data onto a particular basis

set, chosen to provide insight into the data structure.  The ideal basis set (i.e.,

analytical technique chosen) corresponds to the underlying features one wishes to

reveal in the data—in this case, epochs of excitation and inhibition.  While many

techniques would be suitable (e.g., wavelet transforms, linear discriminant analy-

sis), principal components analysis offers a straightforward approach to quantifying

neuronal temporal response patterns which has been successfully applied in the

mammalian visual system (Richmond and Optican, 1987).

Principal components analysis uses an ordered set of basis vectors (the prin-

cipal components) which represent decreasing proportions of the total variance

across the data.  These principal components are just the eigenvectors of the cova-

riance matrix of the data, ranked by eigenvalue magnitude.  This transform is opti-

mal (in the least-squares sense) for representing data with a truncated set of basis

vectors.  Figure 7 shows the first 10 principal components of the odor responses of

the same PN shown in Figs. 3-6.  The first principal component (pc 1) closely re-

sembled the mean of all responses to all odors, and had the largest magnitude.
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pc 1

pc 2

pc 3

pc 4

pc 5

pc 6

pc 7

pc 8

pc 9

pc 10

Higher principal components had decreasing amplitudes (fine lines show absolute

magnitudes).  To emphasize their features, higher principal components were also

normalized in Fig. 7 (heavy lines).  These vectors, plotted as a function of time and

aligned to the odor pulse, contained features reminiscent of the epochs of excita-

tion and inhibition seen in PN odor responses.  For example, pc 2 resembled the

burst-plateau-inhibition response to cherry, whereas pc 7 resembled the early and

late bursts evoked by cineole.  The late burst evoked by octanol, which occurs later

than that of cineole, resembled that of pc 9.  Spectral analysis of these principal

Figure 7.  Principal components of slow

temporal patterns.  The first 10 principal

components of the set of all 134 odor re-

sponses, for the same PN (responding to

the same odors) as shown in Fig. 3-6, are

plotted here as a function of time, aligned

to the odor pulse (1s, indicated by horizon-

tal bar).  The components are plotted in

absolute magnitude (fine line) and also nor-

malized to the first principal component

(heavy line).  The absolute magnitude de-

creased for higher principal components.

The first component (pc 1) was similar to

the mean response across all odors, while

higher components resembled the epochs

of excitation or inhibition evoked by given

odors.  For example, pc 2 resembled the

burst-plateau-inhibition response to cherry, whereas pc 7 resembled the early and late bursts evoked

by cineole.  The late burst evoked by octanol, which occurred later than that of cineole, resembled

that of pc 9.
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Figure 8.  Coefficients of principal compo-

nents.  The coefficients of each principal

component are plotted for each odor.

These coefficients represent the degree to

which a given principal component ac-

counts for the variance in the responses

to a given odor.  Odors which evoked simi-

lar slow temporal response patterns had

similar coefficients (e.g., pentanol, hexanol,

octanol).  Conversely, odors which evoked

distinct slow temporal patterns had differ-

ent coefficients (e.g., octanol, benzalde-

hyde, lavender).  This compact represen-

tation (i.e., 10 numbers) can therefore cap-

ture similarities and differences between

odor responses in a quantitative way (see

components revealed no prominent increase in power in the 20-30 Hz range (the

frequency of odor-evoked oscillatory synchronization) compared to other frequen-

cies (not shown).

Because the principal components form a basis set, each odor response can

be represented as a weighted sum of these components.  These weights, or coef-

ficients, indicate how much variance in the response is accounted for by the re-

text for details).  Moreover, the patterns of coefficients illustrate how the principal components rep-

resent different features of the slow temporal patterns.  For example, odors which evoked inhibition

(e.g., lavender, benzaldehyde, spearmint) had high coefficients for principal components with inhibi-

tory epochs (e.g., pc 2, 5, 6), and negative coefficents for principal components with only excitatory

epochs (e.g., pc 3,4).
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spective component.  The coefficients are just the magnitude of the projection of an

odor response onto the principal components.  The coefficients of the first 10 prin-

cipal components are plotted for each odor in Fig. 8.  The patterns of coefficients

illustrate how the principal components represent different features of the slow tem-

poral patterns.  For example, odors which evoke inhibition (e.g., lavender, benzal-

dehyde, spearmint) have high coefficients for principal components with inhibitory

epochs (e.g., pc 2, 5, 6), and negative coefficients for principal components with

only excitatory epochs (e.g., pc 3,4).  Moreover, odors which evoke similar slow

temporal response patterns have similar coefficients (e.g., pentanol, hexanol, oc-

tanol).  Conversely, odors which evoke distinct slow temporal patterns have differ-

ent coefficients (e.g., octanol, benzaldehyde, lavender).  These observations can

be quantified by computing the euclidean distance between these odor response

representations.  For example, pentanol and hexanol evoke similar response pat-

terns and lie very near each other (at a distance of 96) in the space of the first 10

principal components.  Benzaldehyde and iaa evoke strikingly different temporal

response patterns, and are far apart (at a distance of 1,722) in this space.  This

compact representation (i.e., 10 numbers) can therefore capture similarities and

differences between odor responses in a quantitative way, as illustrated in Figure 9.

Each mean odor response, represented by the coefficients of its first three principal

components, was plotted in the space of those three components in Fig. 9A.  Points

representing odor responses with similar slow temporal patterns were near each

other in the space, while distinct odor responses were widely separated.  The re-

sponses therefore appeared to be grouped into 3 or 4 clusters.  For example, the

responses to the three aliphatic alcohols (octanol, hexanol, and pentanol) had simi-

lar temporal patterns (cf. Figs. 3-6), and these responses clustered together in Fig.

9A.  The response to benzaldehyde was quite different and was plotted correspond-

ingly far away from the alcohols.  Figure 9B shows the distances between the re-
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and strawberry are plotted over each other.  B.  Euclidean distance calculated between mean odor

responses.  Distances are plotted here using a cool-to-warm color scale.  Odor responses were

represented by their coefficients for the first 10 principal components.  Odor pairs which evoked

similar reponses (and thereby had small distances) are colored blue, while those which evoked very

different responses (and thus large distances) are colored red.  C.  Odor response neighborhood

tree calculated from the distances shown in B.  Each branch represents a rank increase in distance.

As in A, 3-4 clusters are evident.
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Figure 9.  Distances between odor responses.

A.  Mean odor responses projected into the space

of their first three principal components.  Each

point was obtained by plotting the coefficients of

the first three principal components (see Fig. 8)
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sponses to different odors in the space of the first 10 principal components.  Dis-

tance is represented as a cool-to-warm color scale, such that odor pairs which

evoke similar responses (and thereby have small distances) are colored blue, while

those which evoke very different responses (and thus large distances) are colored

red.  Because distance is commutative (i.e., distance from a to b equals distance

from b to a), the comparison matrix is diagonally symmetric.  Blue regions around

the diagonal (e.g., upper left and lower right corners) indicate clusters of odors

which evoked similar responses; red/yellow regions off the diagonals correspond

to groups of odors which evoked distinct responses in this neuron.  A distance

histogram calculated from the values shown in Fig. 9B contained 3 or 4 peaks,

depending on bin width (not shown).  Figure 9C shows a dendrogram or neighbor-

hood tree representation of rank distances between mean odor responses.  The

distances between odor responses shown in Fig. 9B were ranked, and succes-

sively connected by branches from closest to furthest.  In agreement with the clus-

ter plot in Fig. 9A (which used only principal components 1-3), the odor responses

appeared to be grouped into 3 or 4 clusters.

Effect of pulse duration

To what extent are the odor-evoked slow temporal patterns in PNs dependent

on the duration of the odor pulse? Do the different features or epochs of these

responses depend uniformly on pulse duration, or does this dependence vary for

different features? To address these questions, pulses ranging in duration from 10

ms to 60 s were delivered to the same PN as shown in Figures 3-9.  The responses

to cherry are shown in Figure 10.  An initial oscillatory compound EPSP followed by

inhibition was reliably evoked in this cell for pulse durations of 25 ms or greater,

with longer pulses eliciting a rhythmic burst of action potentials riding on the excita-

tion.  The membrane potential oscillations during the initial excitation can be clearly
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seen, for example, in the response to a 400 ms pulse in Fig. 10.  Shorter pulses

(i.e., 10 or 20 ms) could evoke small compound EPSPs, but these were not seen

consistently across trials.  These very fast pulse commands may have exceeded

the speed of the solenoid valves in the odor delivery system.  As the duration was

increased beyond 400-500 ms, an additional plateau epoch emerged in the tempo-

ral response pattern.  While the durations of the initial excitatory burst and the final

deep inhibition remained invariant over a wide range of pulse durations, the pla-

teau phase increased proportionally to the pulse duration, so that the deep inhibi-

10 ms

20 ms

25 ms

30 ms

50 ms

100 ms

200 ms

300 ms

400 ms

500 ms

1 s

2 s

3 s

10 mV
1 s

cherry

Figure 10.  Effect of odor pulse duration.  Pulses of artifi-

cial cherry flavor, ranging from 10 ms to 3 s in duration,

were presented to the same PN as shown in Figs. 3-9.

The different features of the slow temporal response pat-

tern were differentially dependent on odor pulse duration.

A 10 ms pulse evoked no response in this PN (this may

exceed the speed of the solenoid valves in the odor de-

livery system).  As duration increased,  initial excitation

was evoked (sub-threshold at first), followed by inhibi-

tion, and only at durations of 400 ms or greater was the

plateau phase evident.  The duration of the excitatory and

inhibitory epochs appeared  independent of pulse dura-

tion, unlike the duration of the plateau phase.
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tion always followed the termination of the odor pulse.  Thus these different fea-

tures of the slow temporal responses depend in different ways on the duration of

the odor pulse.  Similarly, the response to iaa contained a (potentially) sustained

excitatory epoch with increased duration as the odor pulse was lengthened, and a

final inhibitory epoch of constant duration (Fig. 11).  Octanol evoked a response

with a similar initial excitatory burst and terminal inhibition, but the intervening pe-

riod was composed of a complex succession of excitatory and inhibitory epochs.

10 mV

1 s

20 ms

50 ms

100 ms

500 ms

1 s

2 s

3 s

5 s

octanol

Figure 11.  The effect of pulse duration

was different for different odors.  Varying

the duration of iaa or octanol pulses dem-

onstrated that the dependence of differ-

ent features of slow temporal response

patterns on pulse duration varied across

odors.  The initial excitation in response

to iaa increased in duration as the pulse

was lengthened, unlike the initial excita-

tion in response to cherry (Fig. 9).  For octanol, prolonging the pulse increased the duration of a

complex response period, which contained mixed epochs of excitation and inhibition.  The pattern

of epochs within this period differed across pulse durations.

10 mV

25 ms

100 ms

500 ms

1s

iaa

500 ms
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The order and durations of the epochs in this complex response period varied across

pulse durations, and showed no discernible regularity.  Indeed, the irregular suc-

cession of excitatory bursts, plateau phases, and inhibitory epochs were sustained

for odor pulses of 30 s (as shown in Fig. 12) or even 60 s (not shown).  Figure 12

shows a continuous record of this neuron’s response to a 30 s presentation of

octanol.  It is not clear if the sustained complex temporal patterning in this response

was generated intrinsically by the olfactory system; it could be due in part to fluc-

tuations in the stimulus delivery caused by microturbulence at the antenna. Such

long lasting responses were not observed with other odor stimuli. Octanol is a known

gap junction uncoupling agent, thought to act nonspecifically by virtue of its lipo-

philic nature (Johnston et al., 1980). The significance of this fact for the stationarity

of octanol-evoked responses in PNs has yet to be tested.

10 mV

1 s

octanol, 30 s off

on

Figure 12.  Indefinite temporal patterns

in response to octanol.  The complex

mixed response was sustained for the

duration of a 30 s octanol delivery.  This

is a continuous record; each trace is con-

tinued on the trace underneath it (dotted

arrows).  Resting membrane potential is

indicated by the solid horizontal line.  The

succession of “bursts,” plateaus, and in-

hibitory epochs continued for as long as

the odor was delivered.
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Transient odor-specific synchronization between projection neurons

Knowing that individual neurons show odor-specific firing patterns, we next

examined the fine structure and timing of the action potentials evoked during each

period of activity.  We recorded the extracellular activity of up to 5 antennal projec-

tion neurons simultaneously, as well as the field potential in the mushroom body,

and presented up to 11 odors to the animal.  An example of the response patterns

evoked in 3 projection neurons by 4 different odors is shown in Fig. 13.  When an

Figure 13.  Simultaneous recordings of activity from 3 projection neurons and the ipsilateral mush-

room body, showing directly the complex and odor-dependent temporal activity patterns.  Top trace

is the local field potential (LFP).  For each PN (1-3), dot rasters are plotted above, and underneath

is the PSTH created for each PN from n presentations of the same odor (n given on right-hand side

of each bottom trace).  Odor pulse (1 s) indicated by the horizontal bars at the bottom.  A-D:  Data

recorded and analyzed in the same conditions and from the same 3 PNs in response to 4 different

odors (of 11 sampled alone and 3 binary combinations).  Note the differing temporal response

patterns of the 3 neurons for each odor, and of each neuron for the 4 odors.  Note also the long

period of co-activity of PNs 1 and 2 (1.5 sec) in response to strawberry (A).

eugenolapplecherry

10 Hz 10 Hz
10 Hz

n=27 n=21 n=16 n=9

071395

strawberry

200 ms

10 Hz
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PN2

PN3
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{
{

{
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odor is presented, the field potential (LFP, top trace) shows 20 Hz oscillations (indi-

cating synchronization of a population of neurons, Laurent and Davidowitz, 1994)

and the PNs display a pattern of action potentials, whose structure obeys the mac-

roscopic features described above.  The post-stimulus-time histograms reveal that

each odor evoked different response patterns in the 3 neurons, as shown above for

other neurons.  Strawberry, for example, evoked an initial increase in the firing rate

of PNs 1 and 2, and a decrease in that of PN3, while eugenol initially inhibited all

three neurons.  Note that, during the period of the odor response when no neuron

fires (e.g., to eugenol), the LFP nevertheless displays oscillations, indicating the

existence of other neurons (not recorded) that fired synchronously at that time.

We used the field potential recorded in the mushroom body as a time refer-

ence and studied the phase structure of each odor-evoked spike train, i.e., the

variations in phase of each action potential (relative to the field potential) over the

duration of the response.  We then considered all the spikes present in each odor

response and calculated their phase relative to their corresponding field potential

oscillation cycle.  Because the field potential is not a perfect sine wave, we calcu-

lated the phase relative to the entire period, or to the 1/2 period or 1/4 period and

extrapolated linearly (see Methods).  The different methods yielded essentially the

same results and the phases plotted here are calculated relative to the correspond-

ing 1/4 cycle of the oscillation.

Each action potential was thus represented by its phase (0 was arbitrarily de-

fined as the peak of the LFP oscillation), and its time of occurrence, in phase vs.

time raster plots (Fig. 14).  Each trial was separated from the next by 10 s.  All

action potentials were used to generate a phase frequency histogram (at left, along

each phase axis, Fig. 14) and a time histogram (at bottom, along the time axis).
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Figure 14.  Phase vs. time plots represent-

ing the odor-evoked activity in 3 simulta-

neously recorded projection neurons (PN1-

3), in response to two different odors.

These plots show a phase representation,

with respect to the simultaneously recorded

local field potential (LFP) in the ipsilateral

mushroom body, of two of the same odor

responses from the same PNs shown in

Figure 13.  The phase of all the action po-

tentials (relative to their respective LFP os-

cillation cycle) was measured (see meth-

ods) and plotted as a function of time.  The

positive peak of the oscillation was defined

as 0.  Each action potential is represented

as a dot, with its time of occurrence during

the trial represented on the x-axis (in s), and its phase represented on the y-axis (in radians, from 0

to 2π).  All spikes are summed to form a peri-stimulus time histogram (PSTH) underneath the time

axis (horizontal, cf. Fig. 13), and are also summed to form a phase histogram to the left of the phase

axis (vertical).  The phase-locking behavior of each PN can thus be followed as the population

response unfolds throughout each trial.  The peaked structure of the phase histograms indicates

periodic firing of these PNs on average, with a single preferred phase of 3π/2.  This preferred phase

is the same across PNs and odors.  Thus when PNs phase-lock to the field potential, they do so at

the same average phase.  The preferred phase of firing can also be seen from the increased density

of the dot rasters in the upper half of the plot.  The increased density of the dot rasters also forms

“columns,” which reflect the slow temporal patterns of firing which can be seen clearly in the PSTHs.

Thus any pair of PNs will phase-lock and oscillate at different times and for different durations over

the ensemble response.  The temporal structure of phase-locking of individual neurons is stable

over repeated presentations of the odor.  Therefore, not only do projection neurons display reliable

temporal firing patterns in response to odors, but the periods of time during which they phase-lock

with other projection neurons (or the field potential) are stable (for a given odor at a given concentra-

tion).
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The time histograms (PSTHs) are identical to those in Fig. 13.  The peaked struc-

ture of the phase histograms indicates that, on average, spikes from these neurons

evoked by these odors were phase-locked to the field potential, with a single pre-

ferred phase of 3π/2.  This preferred phase can also be seen from the increased

densities of the dot rasters in the upper half of the plots.  “Clouds” of increased dot

density are formed by the preferred phase (horizontally) and the temporal firing

patterns (vertically) which can be seen in the respective histograms.  Using this

representation, we could study not only the times during which a given neuron was

active in response to an odor, but those during which it was active and synchro-

nized to the oscillating population (and thus to other neurons).

Spiking activity during the odor response did not necessarily imply synchroni-

zation.  PN1 for example showed increased synchronization to the field during its

first “burst” in response to strawberry (as can be seen by the clustering of the dot

rasters during this epoch, at ~1.5 s), and less tightly synchronized during the sec-

ond burst, although it continued firing (~3 s).  Similarly, PN2 showed synchroniza-

tion to the field potential during its excitatory epoch for this odor, while PN3 was

relatively desynchronized during its epoch of delayed firing.

From these observations it follows that cross-correlation of any two spike trains

should only reveal significant periodic synchronization during very specific epochs

of the population response.  One can see for example that a cross-correlation be-

tween PNs 1-2 should yield a significant periodic function if calculated at ~1.5 s, but

that none would if it were calculated elsewhere, e.g., ~2 s after stimulus onset.  The

representation used here, however, does not indicate whether any pair of neurons

actually oscillated in synchrony during any part of the responses evoked by each

odor.  We therefore demonstrated this prediction directly by using a sliding-window
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Figure 15.  Synchronized oscillations in pairs of projection neurons are restricted to small temporal

windows during the ensemble response.  The cross-correlation was calculated, using a sliding win-

dow method (see Methods), between the spike trains of PN 1 and PN 2 in response to strawberry

(same odor responses from two of the same PNs as shown in Figure 13).  This cross-correlation is

thus based on action potential data only, and not on intracellularly recorded subthreshold activity, as

was shown in Laurent and Davidowitz (1994).  It is thus based here on the true axonal output of the

projection neurons during an odor response, but it is calculated using the data accumulated over 27

successive presentations (whereas cross-correlations calculated with intracellular data in Laurent

and Davidowitz, 1994, were based on single odor presentations).  Time lag of the cross-correlation

function is along x-axis, and time along y-axis.  The amplitude of the cross-correlation, which here

represents the number of times spikes from each of the 2 PNs coincided in the same 10ms-wide

bin, is color-coded such that a red area indicates that 40 spike pairs (accumulated from the 27 odor

presentations) were found to coincide in this time bin, whereas dark blue indicates 0 coincidences.

Post-stimulus time histograms for each PN in response to this odor (cf. Fig. 13) are plotted vertically,

along the time axis, aligned to the sliding-window cross correlation.  Odor delivered between 1 and

(continued on next page)
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2 sec.  Note that odor presentation led to a short but clear period of synchronized oscillations in PNs

1 and 2, but that this period was shorter than the time during which both neurons were active (as

seen from the PSTHs).  Two neurons are therefore not necessarily synchronized when they both

fire in response to an odor.  The conventional cross-correlation was also computed between the

entire spike trains of PNs 1 and 2 (i.e., without sliding windows), and the cross-correlation histogram

is plotted horizontally in yellow, underneath the time lag axis, aligned to the sliding-window cross

correlation.  The transient oscillatory synchronization seen so clearly in the sliding-window cross

correlation is obscured in the conventional cross-correlation histogram, because unsynchronized

spikes fired by these neurons outside of the transient epoch of synchronization are included.

Figure 15 (cont.):

cross correlation technique.  The cross-correlation functions so calculated for the

responses evoked by strawberry are seen in Figure 15 (see Methods for details on

sliding cross-correlation technique).  In these diagrams the time lag of the cross-

correlation function is on the x-axis and time is on the y-axis.  The odor was pre-

sented between 1 and 2 s.  Figure 15 reveals that PNs 1 and 2 briefly synchronized

and oscillated together for ca. 250 ms about halfway through the odor pulse.  This

period of synchronization was considerably briefer than the period of co-activity

revealed by the peri-stimulus time histograms (>1 s), which are plotted vertically

along the time axis for reference.  Two neurons are therefore not necessarily syn-

chronized when they both fire in response to an odor.  The conventional cross-

correlation was also computed between the entire spike trains of PNs 1 and 2 (i.e.,

without sliding windows), and the cross-correlation histogram is plotted horizontally

in yellow, underneath the time lag axis, aligned to the sliding-window cross correla-

tion.  The transient oscillatory synchronization seen so clearly in the sliding-window

cross correlation is obscured in the conventional cross-correlation histogram, be-

cause unsynchronized spikes fired by these neurons outside of the transient epoch
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Figure 16.  Transient ocillatory synchronization in pairs of projection neurons is pair- and odor-

specific.  Each panel (A-C) plots the sliding window cross-correlation calculated pairwise (PN 1x2 in

A; 2x3 in B; 1x3 in C) as in Fig. 15.  Panel A replots the same sliding window cross-correlation as in

Fig. 15.  Odor delivery (strawberry) between 1 and 2 s (light blue bar).  The amplitude of the cross-

correlation is color-coded following the scale given at bottom right.  A red area means that 40, 5, 15

spike pairs (accumulated from the 27 odor presentations) were found to coincide in this time bin in

A, B and C respectively.  Note that while strawberry led to a short but clear period of synchronized

oscillations in PNs 1 and 2, this odor led to no visible synchronized activity in neurons 2 and 3 (B).

PNs 1 and 3 are co-active (though less tightly synchronized than neurons 1 and 2, A), 2 seconds

after the odor pulse onset (C).  A neuron can therefore synchronize with several others, but at

different times during an odor response.

of synchronization are included.

In contrast to projection neurons 1 and 2, cross-correlation between spikes of

PNs 2 and 3 revealed no odor-evoked synchronization, while cross-correlation be-

tween neurons 1 and 3 revealed partial synchronization and coupled periodic firing
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Figure 17.  The timing of the synchronization between individual projection neurons and the field

potential oscillations is neuron- and odor-specific.  Cross-correlations calculated between the field

potential and each of the 3 projection neurons recorded in Figure 13, for responses to strawberry

odor (see Methods for details on color scales).  Each panel is an average calculated over 27 pre-

sentations of the odor.  The cross-correlation patterns displayed here are therefore consistent over

repeated presentations of the same stimulus.  Note that the time periods at which each of the 3

neurons synchronizes with the LFP differ and sometimes partially overlap (PN1-PN2: A,B; PN1-

PN3: A,C), indicating that these neuron pairs probably synchronize during these periods (cf. Figure

16).

about 2 s after the onset of the odor pulse (Fig. 16).  None of the 11 other odors

tested with this animal and these neurons produced any significant oscillatory syn-

chronization between any of the 3 pairs of neurons (PNs 1-2, 2-3, 1-3).  This result

directly demonstrates that an individual neuron can synchronize with different neu-

rons at different times during an odor-evoked response, and that each temporal

pattern of oscillatory synchronization is odor-specific.  We then calculated the cross-

correlation of the spike trains of each PN with the simultaneously recorded mush-
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room body LFP.  Figure 17 shows that each of the three simultaneously recorded

neurons phase-locked to the oscillatory field potential at different times around the

odor pulse (vertical stripes in cross-correlation displays).  This confirms the obser-

vation that individual projection neurons necessarily synchronize to others only for

limited durations during their responses to odors.

A further example of this transient oscillatory synchronization is shown in Figs.

18-19.  The spike trains and histograms shown in Fig. 18 reveal distinct slow tem-

poral patterns in two simultaneously recorded PNs in response to cherry odor.  De-

spite the sustained period of co-activity (>1 s), the sliding-window cross correlation

(Fig. 19 A) reveals that these neurons were strongly synchronized for only ~200

ms.  The auto-correlations of each PN (i.e., cross-correlation with itself) are shown

in Fig. 19 B-C.  The presence of side band structure at + 50 ms time lags in Fig. 19

B indicates that PN 1 fired rhythmically for the full duration of its odor response,

although this rhythmicity is stronger during the initial burst.  PN 2, however, fired

rhythmically only during the initial ~200 ms epoch of its response (Fig. 19 C).  Al-

though it continued to fire for >1 s (as can be seen from the prolonged central band

in Fig. 19 C or equivalently from Fig. 18), this latter firing was not periodic.  Thus,

10 Hz

cherry, 1s

200 ms

032296

Figure 18.  Simultaneous recordings of activity from

two projection neurons, showing complex temporal

activity patterns in response to cherry odor.  For each

PN, dot rasters are plotted above, with the PSTH

below (as in Figs. 1,6,12).  Odor pulse (1 s) indi-

cated horizontal bar.  Note the long period of co-ac-

tivity during the odor response.
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Figure 19.  Sliding-window cross-correlations of the responses of the two PNs shown in Fig. 18 to

cherry odor.  A: Cross-correlation of PNs 1-2.  Note the transient oscillatory synchronization around

1.5 s, corresponding to the intitial excitatory odor response in Fig. 18.  During the second excitatory

“burst” around 2 s these neurons were also synchronized, but much more weakly so despite the

nearly similar firing rate.  Thus degree of synchronization is independent of firing rates of co-active

(continued on next page)

A

 B    C
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while PNs 1-2 were tightly synchronized for the initial ~200 ms epoch, they were

not later in the trial.  Because PN 1 continued to fire rhythmically, it could potentially

have been synchronized during that time with some other PN(s) which were not

recorded.

Discussion

We demonstrated that odors evoke odor-specific temporal response patterns

in projection neurons in the antennal lobe of the locust, the functional analog of the

olfactory bulb of the vertebrate olfactory system.  Different neurons responded with

different temporal patterns to the same odor, and individual neurons responded

with different temporal patterns to different odors.  Distinct aspects of these tempo-

ral patterns (i.e., membrane potential fluctuations or firing patterns) are empha-

sized in different representations of neural responses.  Complex slow temporal

patterns can be quantitatively compared across odors in a given neuron, for ex-

ample with principal components analysis.  This and related analytical techniques

will likely provide useful tools for comparing slow temporal response patterns across

odors and neurons.  (We do not consider in this paper the influence of the concen-

tration of a single odor on the temporal patterns evoked in a single neuron.)  In

neurons.  B,C: Sliding window auto-correlations of PNs 1 and 2, respectively.  The auto-correlation

is the sliding window cross-correlation of a neuron with itself, and is therefore symmetrical about

time lag 0.  Both neurons showed periodicity in their spike trains around 1.5 s, corresponding to their

epoch of transient oscillatory synchronization seen in A.  PN 1, but not PN2, also showed rhythmic

firing during the second burst at 2 s.  Thus, whereas PNs 1 and 2 were only weakly synchronized

during the second burst, PN 1 could potentially be strongly synchronized with another (unrecorded)

neuron.

Figure 19 (cont.):
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addition, the participation of individual neurons in a synchronized oscillatory en-

semble was usually transitory, but occurred during one or several precise epochs

of an odor response.  Repeated presentations of the same odor in the same condi-

tions seconds or minutes later led to the same temporal patterns, and each neuron

oscillated in phase with the local field potential in the mushroom body during the

same epoch of each response.  The existence of action potentials in these epochs

of synchronization, however, remained probabilistic:  in other words, the knowl-

edge of the exact sequence of spikes produced by a neuron in one trial did not

allow one to predict the sequence of spikes in the same neuron on the next trial.

Finally, our data are not consistent with a phase-encoding of sensory stimuli, i.e., a

representation in which the delays between the spikes of two neurons, or the phase

delays between individual neurons and an average potential (such as the field po-

tential oscillation), vary in a stimulus-specific manner, as suggested in theoretical

models of sensory processing (von der Malsburg and Schneider, 1986; Hopfield,

1995).  In other words, a neuron was either phase-locked to the field potential

during an epoch or it was not.  If it was phase-locked, it always fired around a

particular mean phase which was constant across neurons and stimuli (Laurent

and Davidowitz, 1994).  Repeatable and stimulus-specific phase sequences such

as those observed in hippocampal place units of rats (O’Keefe and Recce, 1993)

were not seen.

Our results are summarized in Figure 20.  Here, the projection neurons are

symbolized by an array of 4x4 units, which can be in 3 ‘states’:  silent (which can

mean depolarized, but below threshold) or inhibited (dark), spiking but not phase-

locked to the field potential (gray), or spiking and locked to the field potential (green).

Before an odor is presented, a few neurons fire randomly and independently, and

the field potential in the mushroom body shows no oscillations (Laurent and Naraghi,
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1994; Laurent and Davidowitz, 1994).  At the onset of an odor pulse (indicated by

the horizontal bar), a group of neurons is activated (green and gray), only some of

which oscillate at 20 Hz and phase-lock to one another, thus giving rise to the field

potential oscillation that can be recorded in their target area, the mushroom body.

Several 100 ms later (arbitrary time step), however, the ensemble of active neu-

rons differs from what it was earlier.  Some neurons that were initially inactive be-

come active, while some that were oscillating desynchronize and yet others only

now phase-lock to the oscillating ensemble.  The field potential recorded from the

mushroom body, although indistinguishable from what it was earlier in its frequency

characteristics, is therefore now caused by a new ensemble of synchronized neu-

Figure 20.  Schematic representation of our hypothesis of odor coding in this olfactory system.  AL:

antennal lobe; LFP: local field potential.  Color code:  Each small sphere symbolizes a projection

neuron that can be in 1 of 3 states: silent or inhibited (black), active (spiking) but not synchronized

with the LFP (gray), active and phase-locked with the LFP (green).  The five successive squares

represent the successive states of the system around and during an odor pulse (pulse indicated

horizontal bar).  The LFP oscillations in the mushroom body are therefore caused by successive

and odor-specific ensembles of synchronized neurons.  See discussion for details.
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rons, which overlaps with the starting ensemble.  This progressive transformation

of the oscillating ensemble occurs in an odor-specific manner, and the number of

neurons participating in the oscillation and/or the tightness of their phase-locking

can vary over the duration of the population response.  This leads to variations in

the envelope of the field potential, as observed experimentally (Laurent and Naraghi,

1994).  When the odor stimulus ends, the ensemble progressively breaks up and

the field potential oscillations disappear.  We conclude that odor stimuli are repre-

sented in the antennal lobes as dynamical ensembles of synchronized and oscillat-

ing neurons.  These ensembles often comprise about 10-20% of the total comple-

ment of neurons (Laurent and Davidowitz, 1994), although their size probably var-

ies with odor concentration, as suggested in other animals by imaging experiments

(Cinelli et al., 1995).  We therefore  propose that the macroscopic 20 Hz oscillations

are caused by a stimulus-specific message that is distributed in space (the odor-

specific sets of synchronized neurons) and in time (the time at which these neurons

synchronize and desynchronize, in an odor-specific fashion).

Practical consequences for the analysis of distributed neuronal representa-

tions

The existence of oscillations in a local field potential is usually interpreted as

implying correlated and phase-locked firing of ensembles of neurons (generally

those which terminate and synapse into the area from which the field potential is

recorded) (Singer and Gray, 1995).  Nothing requires, however, that the oscillating

neurons be synchronized over the entire duration of the field potential oscillations

(i.e., the population activity).  The methods usually employed to study inter-neu-

ronal synchronization, however, often implicitly assume that this is the case.  For

example, cross-correlation analysis, which is the method of choice to assess whether

two neurons are phase-locked and oscillating, is often carried out and averaged
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over relatively long stretches of data.  Hence, the existence of transient but reliable

synchronization between two neurons could become masked in the time-averaged

cross-correlation function (as demonstrated in Fig. 14).  Our present results show

that two neurons in an oscillating ensemble sometimes phase-lock only for a very

brief period (e.g., only a few oscillation cycles), requiring the use of fine analysis

techniques, such as dynamic cross-correlation (Laurent and Davidowitz, 1994; this

paper; Vaadia et al., 1995).  One should therefore be careful when concluding that

phase-locking and oscillations do not exist between neurons in a large and distrib-

uted ensemble, especially if the stimulus representation (i.e., the response of a

neuronal ensemble) is spread over a significant time period, as often happens in

sensory systems.

Are such representations likely to be common to other olfactory systems?

The distributed representation described in this insect’s olfactory system con-

sists of three concurrent stimulus-evoked phenomena:  (1) temporally structured

neuronal responses (odor- and neuron-specific temporal patterns);  (2) oscillatory

mass activity, whose frequency characteristics are not odor-specific;  (3) transient

and dynamic synchronization of neuronal groups in an odor-specific manner.  Are

these phenomena observed elsewhere, and if so, are they also concurrent?

Temporally structured neuronal responses.  All olfactory bulb responses ex-

amined to date provide evidence for odor-evoked temporal patterns consisting at

least of sequential excitatory and ‘suppressive’ phases of neuronal activity.  Such

patterns have been observed in amphibians (salamander: Kauer, 1974; Kauer and

Shepherd, 1977), in bony fish (goldfish: Meredith and Moulton, 1978; Meredith,

1981) and in mammals (rat, rabbit and hamster:  Chaput and Holley, 1980; Mair,

1982; Meredith, 1986; 1992).  Although suggestions were made that ‘suppression’
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patterns arise in certain olfactory bulb neurons of the salamander when odor con-

centrations are too high (‘concentration tuning hypothesis’; Kauer, 1974), more re-

cent data from mammals indicate that suppression patterns are not more frequent

at higher odor concentration, and that certain neurons even go from an inhibitory to

an excitatory response pattern as odor concentration is raised (Meredith, 1986).  In

insects, our results provide evidence that general odors evoke odor-specific re-

sponse patterns in the antennal lobe projection neurons.  Other investigators showed

that pheromones evoke temporally structured responses in the cockroach Periplan-

eta and the moth Manduca (Burrows et al., 1982; Kanzaki et al., 1989).  It appears,

therefore, that such temporal features of responses to odors are common to neu-

rons in the first olfactory relay of many animal phyla and classes.

Oscillatory mass activity.  ‘Induced waves’, or oscillations in the EEG caused

by olfactory stimulation have been demonstrated in the olfactory bulb of amphib-

ians (frog: Libet and Gerard, 1939), fish (Salmonidae: Thommesen, 1978; carp:

Satou, 1990) and mammals (hedgehog: Adrian, 1942; rat, rabbit, cat:  Freeman,

1975; Bressler and Freeman, 1980), including humans (Hughes et al., 1969).  More

recently, oscillations were also discovered in the olfactory systems of a terrestrial

mollusk (Limax maximus: Gelperin and Tank, 1990; Delaney et al., 1994; Kleinfeld

et al., 1994) and an insect (locust: Laurent and Naraghi, 1994; Laurent and David-

owitz, 1994).  These observations have now been repeated in other insect species,

such as cockroaches and honeybees (Stopfer et al., 1998) and moths (Heinbockel

et al., 1998).  In all cases but that of Limax, oscillatory activity appears to be trig-

gered (or dramatically enhanced) by odor stimulation.  In Limax, oscillations are

present ‘at rest’, i.e., even in the absence of odors, but odor stimuli cause a col-

lapse of the phase gradient that exists across the procerebral lobe (Delaney et al.,

1994).  In all cases, the oscillations appear to be the result of local interactions
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between inhibitory local and excitatory projection neurons (within the bulb of verte-

brates, the procerebral lobe of Limax, or the antennal lobe of insects), and to reflect

the coherent activity of large numbers these neurons.

Transient synchronization of overlapping neuronal groups.  The existence both

of oscillatory mass activity and of temporal activity patterns in individual neurons in

the first olfactory relay of amphibians, fish, mammals, mollusks and insects sug-

gests that the distributed activity patterns described here for the locust may exist

also in many other animals.  Our preparation, however, appears to be the only one

so far where all three phenomena have been observed together and seen to ‘inter-

lock’ in a coherent fashion, showing transient synchronization of neuronal sets and

progressive transformation of a coherently active neuronal population.  The sepa-

rate pieces of evidence from vertebrates and mollusks seem to be compatible with

our hypothesis of stimulus representation and coding in the olfactory system, but it

remains to be seen if they can all be concurrently observed there also.  Optical

imaging in the salamander (Cinelli et al., 1995), for example, certainly give support

to the idea that odor representation in the olfactory bulb is distributed and combina-

torial.



103

Chapter 3: Odor encoding by temporal sequences of firing in oscillating neu-

ral assemblies

Abstract

Stimulus-evoked oscillatory synchronization of neuronal activity has been ob-

served in many systems, yet the possible functions of such rhythmic synchroniza-

tion in neural coding remain largely speculative.  In the locust, odors appear to be

represented by dynamic ensembles of transiently synchronized neurons.  We now

report that the components of these ensembles change in a stimulus-specific man-

ner and with a high degree of reliability on a cycle-by-cycle basis during an odor

response.  Thus, information about an odor is contained in the precise temporal

sequence in which these ensembles are updated during an odor response.  Neural

coding with oscillations thus allows combinatorial representations in time as well as

in space.

Although stimulus-evoked oscillations of brain potentials (caused by synchro-

nized neural activity) have now been known for about fifty years (Adrian, 1942;

Freeman, 1960; Gray & Singer, 1989; Gelperin & Tank, 1990; Laurent & Naraghi,

1994), the roles, if any, that they might play in information coding remain largely

speculative (Milner, 1974; von der Malsburg, 1986; Hopfield, 1995).  We tested two

possible functional hypotheses of temporal codes that might use oscillations.  The

first proposes that oscillations, by virtue of their periodic nature, allow the phase of

neural signals (i.e., the timing of action potentials relative to a specific or common

reference during each cycle) to be a coding parameter.  Different (and possibly co-

existing) stimuli could thus be represented by different neural assemblies respec-

tively defined by a common phase of activity (Gray & Singer, 1989; von der Mals-
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burg, 1986; Hopfield, 1995).  If true, this hypothesis predicts that the neural assem-

blies activated by different stimuli should synchronize at different phases.  The

second hypothesis rather proposes that oscillations allow the rank order (e.g., cycles

Figure 1.  The locust olfactory system.  Receptor afferents project from the antenna (not shown) to

the antennal lobe (AL).  The AL consists of projection neurons (PNs) which are spiking, excitatory

cells with discrete glomerular arborization patterns, and local neurons (LNs) which are nonspiking,

inhibitory cells with global arborization patterns.  Projection neurons project to Kenyon cells (KC) in

the mushroom body (MB). All three cell types experience odor-evoked membrane potential oscilla-

tions as shown in representative intracellular recordings at left (apple odor delivery indicated by

solid bar, 1 s).  Oscillatory synchronization of population activity can be seen in the local field poten-

tial (LFP) recorded in the mushroom body (here low-pass filtered at 50 Hz). Cobalt fills courtesy of

G. Laurent.

apple, 1s

10 mV

LFP

KC

LN

PN
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1, 2 and 4 of the oscillation) of action potentials produced by participating neurons

to be coding parameters.  In this scheme, the order of recruitment of neurons in an

oscillating assembly should be stimulus-specific.

To test these hypotheses, we used the olfactory antennal lobe of the locust

Schistocerca americana (anatomy shown in Fig. 1, reprinted here from Chapter 1

for reference), in which individual odors are represented combinatorially by oscillat-

ing and dynamic neural assemblies formed by about 10% of a total of about 830

Figure 2.  Top: Rasters and peri-stimulus his-

tograms (PSTHs) of the responses of two

simultaneously recorded antennal lobe PNs

to the odor cherry (21 trials at 0.1 Hz, aligned

on the odor delivery pulse).  The local field

potential (LFP) recorded in the ipsilateral

mushroom body during trials 1-4 are shown.

Each PN and the LFP were recorded with

separate extracellular glass microelec-

trodes.  Calibration (LFP): 500 mV.  Bottom:

Fine temporal structure of the PNs’ re-

sponses during the 1-2 s epoch in figure 1.

Spikes produced by each PN over the 21

trials were convolved one at a time with a 5

ms-wide Gaussian function (continuous

lines), giving a smooth firing probability dis-

tribution free of binning artifacts.  The LFP

trace is the average of the 21 LFP traces,

indicating a very tight stimulus-locking with

this odor.  Calibration: horizontal, 50 ms;

vertical, 30 Hz or p=0.03 of firing within a 1

ms bin.
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neurons (Laurent & Davidowitz, 1994; Laurent et al., 1996; Wehr & Laurent, 1996).

We recorded simultaneously the responses of small ensembles (2-5) of these pro-

jection neurons (PNs)— the analogs of the mitral-tufted cells of the vertebrate ol-

factory bulb— in vivo, to airborne odorants.  Fig. 2 (top) illustrates the temporally

modulated responses of two PNs to a cherry odor.  While both neurons responded

partly with an increased firing rate to this odor, their peaks of activity did not coin-

cide and the durations of increased firing differed between them.  The fine temporal

structure of these responses, shown at the bottom of Fig. 2, reveals that the firing

probability of each PN varied rhythmically and that the timing of either neuron’s

activity was locked to the other’s and to the field potential oscillation.  The coher-

ence (normalized cross power) of firing of these two PNs over the 1 second re-

sponse period was significantly different from zero (p<0.001) at 20Hz, the frequency

of the field potential oscillations (Fig 3), indicating tightly coherent firing.

We presented 13 odors and their mixtures and measured the phase of activity

of each neuron relative to the field potential (not shown) or to the other neuron (Fig.

4), for all odors with which these neurons phase-locked to the field potential, using

Figure 3.  Coherence function (varies

between 0 and 1) calculated for the

spikes produced by the two PNs over

the 1 s epoch in figure 2.
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cross-correlation techniques.  Fig. 4, for example, indicates that, while these two

neurons fired and phase-locked in response to cherry, apple, or a mixture of both,

the slight phase difference between their action potentials was constant and thus,

not odor specific.  This experiment was repeated with 5 pairs of PNs  and 17 ‘neu-

ron pair-odor’ combinations for which coherence values were significant at p<0.01

or better.  In no case did the phase of action potentials relative to the field potential

or to action potentials of other participating neurons appear to vary with, and thus

participate in encoding, the stimulus.

We next considered the second hypothesis.  Fig. 2, for example, indicates

that, while both neurons were synchronized  in response to cherry, coincident firing

of both PNs occurred only during certain cycles of the oscillatory ensemble re-

sponse (e.g., cycles 6-7, 10-13), and never during other cycles (e.g., 1-4).  This

information cannot be extracted by cross-correlation analysis (Fig. 4), which aver-

Figure 4.  Cross-correlation functions calculated

between the spike trains produced by both PNs

in figure 1-2 in response to two odors and their

1:1 mixture.  Spike coincidences were binned

into 5 ms bins or convolved with 5 ms wide

gaussian (solid lines).  Dotted lines indicated one

standard deviation from the mean.
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Figure 5.  Stimulus identity is encoded in part by the fine temporal features of firing of groups of

neurons.  A-C: Responses of two PNs (different animal than in Fig. 2) to two odors (A, C) and their

1:1 mixture (B).  i: Rasters and PSTHs constructed as in Fig. 2.  ii:  Fine temporal structure of the

PNs’ responses during the 1-1.5 s epoch (representation as in Fig. 3; bin size: 10 ms; vertical

calibration: 20 Hz or p=0.02 of firing within a 1 ms bin).  iii: Cross-correlation functions calculated

with the PN spike trains (as in figure ).  Note the similarity of both neurons’ overall responses to

(continued on next page)
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apple and cherry+apple (Ai, Bi), but the striking difference between the fine

structures of their spike trains (Aii, Bii).  Note that the cross-correlation function is symmetrical about

the y-axis at x=0 zero time lag) for apple (indicating near perfect average synchrony), but that it is

skewed to the right (meaning that PN1 fired one cycle earlier on average than PN2) for cherry+apple.

The exact temporal sequence of activation, however, can only be seen in ii.  Note finally that the

response to cherry alone was shorter in both neurons (it lacked the second excitatory epoch, Ci),

and that only PN1 showed an oscillatory response to this odor (Cii, iii).

ages together successive events, thereby obscuring temporal details of correlated

activity.  Are such temporal patterns stimulus specific?  Figure 5Ai,Bi illustrates the

responses of a different pair of neurons to the odor apple and the mixture

cherry+apple.  In both cases, the two neurons produced remarkably similar re-

sponses: a short ‘burst’ of action potentials, a period of silence, and a second,

longer period of elevated activity.  These responses (rasters and peristimulus histo-

grams) appear, at first glance, to be identical for both odors.  Consider now their

fine temporal structure during the initial part of the response (Figure 5Aii, Bii).

Whereas both PN1 and PN2 reliably fired simultaneous action potentials during

each of the first three cycles of the LFP oscillation in response to apple (Figure

5Aii), PN2 failed to fire during cycle 1 when the mixture was presented, resulting in

an apparent relative shift of the two PNs’ firing by one cycle (Fig.5Bii).  Such 1- or 2-

cycle relative shifts were observed for several other odor combinations to which

both neurons responded (Figure 7).  The skewness of the cross-correlation func-

tions calculated over the initial epoch of the two PNs’ responses to odors could be

indicative of the absence (e.g.,Figure 5Aiii) or presence (e.g., Figure 5Biii) of a

sequential activation of the two neurons, but could not reveal the exact temporal

structure of these sequences.  Sliding window cross-correlation analysis (Figure

6A) of the response to cherry+apple demonstrated that these neurons were tightly

Figure 5 (cont.)
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Figure 6.  Joint time-correlation representations of the response to cherry+apple.  A.  Spike trains

shown in Fig. 5Bi were used to calculate the sliding window cross-correlation (for details on meth-

ods, see Chapter 1, Methods).  These two PNs showed a ~200 ms epoch of strong oscillatory

synchronization between 1 and 1.5 s.  The second epoch of firing around 2 s showed much weaker

synchronized oscillations.  B.  Spike trains from the first firing epoch (1-1.5 s, shown in Fig. 5Bii)

plotted as a function of time lag (x-axis) and time throughout the trial (y-axis).  Note that the vertical

scale is expanded relative to A.  For each trial, the spike train from PN2 was plotted with each PN1

spike time fixed at 0 lag (on the x-axis) and its time of occurrence (on the y-axis), so that the

number of dots is the product of the spike counts of the two neurons.  This representation is related

(but not equivalent) to the sliding window cross-correlation.  Note the precise phase-locking on the

first cycle (illustrated by the tight clusters of dots at the bottom), which becomes progressively

weaker by the third cycle (top).

A B

synchronized during the initial ‘burst’ of firing, but much less so during the second

epoch of firing later in the trial.  Note that the peaked structure of the cross-correla-

tion histogram shown in Fig.  5Biii results from its calculation being restricted to the

1-1.5 s epoch of strongly synchronized firing.  Figure 6B shows an alternative rep-

resentation of firing correlations as a function of time, similar (but not equivalent) to

the sliding window cross-correlation.  Here individual spikes are plotted as dot ras-
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ters, demonstrating the fine structure of firing correlations on a cycle-by-cycle ba-

sis.   The precise phase-locking on the first cycle is illustrated by the tight clusters of

dots at the bottom, when PN1 leads PN2 by one cycle.  On the second and third

cycles the two PNs are synchronized at zero lag, and the phase locking becomes

progressively weaker by the third cycle at the top.  Note that in the sliding window

cross-correlation (Fig. 6A) all of these action potentials are averaged together in a

single window (which must span multiple cycles).

These fine temporal patterns were highly reliable.  The firing probability of a

PN during a given cycle could exceed 0.9 (for example, cycle 1 for PN1 in response

to cherry+apple, Fig. 7 and Table 1), indicating participation of this PN in the odor-

encoding assembly during this cycle of almost every trial.  In addition, the firing of

one PN during a given cycle often had some predictive value about the behavior of

another PN during the same, or a different cycle.  For  example, although the firing

probability of PN2 at cycle 3 was 0.4 in response to geraniol+cherry, this probability

rose to 0.67 if it was known that PN1 had fired at cycle 1 of the same trial (Table 1,

Fig. 7).  Similarly, whereas the firing probability of PN1 at cycle 1 was 0.6 in re-

sponse to this odor, it rose to 1.0 if it was known that PN2 would also fire at cycle 3

(Table 1, Fig. 7).  These results show that odors can reliably evoke specific se-

quences of activity across neural assemblies.

The fine temporal structure of PN responses to mixtures were not simple or

predictable combinations of their responses to the components presented sepa-

rately (compare Figs. 5A-C).  Each odor, however complex, apparently evoked

activity in its own specific neuronal set and its own specific sequence of activity.

For example, unique patterns are discernible in the firing probabilities of the two

PNs in Fig. 5 in response to many other odors probability greater than 0.3 for each
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Figure 7.  Information about an odor can be gained from the temporal structure of firing of the

neurons activated in periodic synchrony.  The temporal evolution of the firing probabilities of the two

PNs in Figure 5 in response to nine complex odors is displayed here.  If the firing probability of either

PN exceeded a given threshold (P=0.3) during one oscillation cycle of the response, the neuron’s

action potential was assigned a color corresponding to the cycle in which it occurred.  A colored box

thus indicates that the corresponding PN fired an action potential during that cycle with a probability

P>0.3 (integrated over the 20 ms period centered on the peak firing probability), The averaged LFP

in response to apple is shown at the top, with each oscillation cycle denoted by its color.  Each odor

can thus be represented by a particular colored pattern that contains more information about odor

identity than spike count alone.  For example, whereas cherry+apple and mint+apple each pro-

duced an average of 3.6 action potentials per trial in the two PNs over the first 3 cycles, the two

odors could be discriminated because these action potentials occurred in a different order with each

odor.  Similarly, lavender+geraniol and geraniol+cherry each produced an average of 2.7 action

potentials per trial in the two PNs over the first four cycles, but the two odors could be discriminated

by the sequence of these action potentials.
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PN and cycle is indicated by a colored box.  This representation reveals six differ-

ent patterns for these nine odors (Figure 7), indicating that knowing the average

temporal firing behavior of these two neurons over four oscillation cycles provides

Table 1: Action potentials of one PN during a given oscillation cycle have predictive value about the

likelihood of firing of another PN during the same or a different cycle.  Firing probabilities of the two

PNs in Figures 2 and 3 during the fist few cycles are shown for cherry+apple (left) and geraniol+cherry

(right).  The prior  probability is the probability that a PN fired and action potential in a given cycle.

The joint  probability P(PNx, PNy) is the probability that PNs x and y fired together during the same

trial, with a specific temporal relationship (for example, PN1 in cycle 1 and PN2 in cycle 3).  The

conditional  probability P(PNy|PNx) is the probability that PNy fired an action potential during a

given cycle, given that PNx fired an action potential in the same or a different cycle of the same trial

(for example, the conditional probability that PN2 fired an action potential in cycle 3, given that PN1

had fired in cycle 1 of the same trial, was 0.67 in response to geraniol+cherry).  When conditional

probabilities so calculated were greater than the corresponding prior probabilities, they exceeded

them by an amount varying between 0 and 0.45.  The average increase was 0.21 + 0.085.

Table 1 firing probabilities of neurons in response to odors

cherry+apple

prior probabilities:
cycle 1 cycle 2 cycle 3

P(PN1) 0.96 0.87 0.39
P(PN2) 0.04 0.70 0.52

joint probabilities: P(PN1,PN2)
PN1

cycle 1 cycle 2 cycle 3
cycle 1 0.04 0.04 0

 PN2 cycle 2 0.65 0.61 0.26
cycle 3 0.48 0.43 0.22

conditional probabilities: P(PN1|PN2)
PN1

cycle 1 cycle 2 cycle 3
cycle 1 1.0 1.0 0

 PN2 cycle 2 0.94 0.88 0.38
cycle 3 0.92 0.83 0.42

conditional probabilities: P(PN2|PN1)
PN1

cycle 1 cycle 2 cycle 3
cycle 1 0.05 0.05 0

 PN2 cycle 2 0.68 0.70 0.67
cycle 3 0.50 0.50 0.56

geraniol+cherry

prior probabilities:
cycle 1 cycle 2 cycle 3 cycle 4

P(PN1) 0.60 0.50 0 0
P(PN2) 0 0 0.40 0.30

joint probabilities: P(PN1,PN2)
PN1

cycle 1 cycle 2 cycle 3 cycle 4
cycle 1 0 0 0 0

 PN2 cycle 2 0 0 0 0
cycle 3 0.40 0.30 0 0
cycle 4 0.20 0.20 0 0

conditional probabilities: P(PN1|PN2)
PN1

cycle 1 cycle 2 cycle 3 cycle 4
cycle 1 — — — —

 PN2 cycle 2 — — — —
cycle 3 1.0 0.75 0 0
cycle 4 0.67 0.67 0 0

conditional probabilities: P(PN2|PN1)
PN1

cycle 1 cycle 2 cycle 3 cycle 4
cycle 1 0 0 — —

 PN2 cycle 2 0 0 — —
cycle 3 0.67 0.60 — —
cycle 4 0.33 0.40 — —
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a 66 percent chance of correct odor identification.  Ignoring this temporal informa-

tion would, by contrast, provide only a 33 percent chance of correct identification

(three different spike counts for nine odors), a probability similar to that provided by

considering the termpoal firing behavior of only one of these two PNs (3 different

temporal patterns for 9 odors in each PN, Figure 7).  In reality, PN firing is probabi-

listic and average firing probabilities are not available to the animal on a single odor

sampling.  Information is, therefore, probably gathered from multiple neurons at

once as well as over several oscillations cycles.  Previous results indicate that

odors are probably represented by about 100 neurons (Laurent & Davidowitz, 1994;

Laurent, 1996); only a subgroup of these are likely to be coactive during any given

oscillation cycle.

Figure 8.  Depiction of odor-specific sequence of synchronized ensembles of projection neurons in

the antennal lobe (AL).  During each cycle of the LFP oscillation (solid curve at top), a “snapshot”

depicts the state of the antennal lobe.  Dark circles represent quiescent PNs, while light circles

represent the ensemble of PNs firing a synchronous action potential during that cycle.
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Summary

In summary, we have shown that odors can be represented by ensembles of

synchronized neurons that are updated non-randomly at each cycle of an oscilla-

tory activation.  Information about the odor smelled is present not in the phase of

the active neurons, which is invariant, but rather in their identity and in the temporal

sequence in which they are recruited.  The firing probability of individual neurons

during one cycle of the response can be linked to that of other neurons during the

same or other cycles, indicating deterministic and stimulus-specific sequential acti-

vation of groups of neurons.  In principle, the timing of these odor-encoding se-

quences need not be precisely locked to the stimulus, although it is this feature

which allowed us to detect them.  We propose that oscillations are a means to

encode stimuli in a temporal combinatorial fashion.  Stimuli can thus be repre-

sented both by spatial (instantaneous) ensembles— i.e., the neurons activated to-

gether during any one cycle— and by temporal sequences (which are expressed

by individual or groups of neurons over several cycles).  We conclude that this

sequence of synchronized ensembles (depicted in Fig. 8) is stimulus-specific, and

suggest that it may, in fact, be part of the neural code for odors in this system.
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Chapter 4: Relationship between afferent and central temporal patterns in the locust

olfactory system

Abstract

Odors evoke synchronized oscillations and slow temporal patterns in antennal lobe neu-

rons, and fast oscillations in the mushroom body local field potential (LFP) of the locust.  What

is the contribution of primary afferents in the generation of these dynamics? We addressed

this question in two ways.  First, we recorded odor-evoked afferent activity in both isolated

antennae and intact preparations.  Odor-evoked population activity in the antenna and the

antennal nerve consisted of a slow potential deflection, similar for many odors.  This deflec-

tion contained neither oscillatory nor odor-specific slow temporal patterns, while simultaneously

recorded mushroom body LFPs exhibited clear 20-30 Hz oscillations.  This suggests that the

temporal patterning of antennal lobe and mushroom body neurons is generated downstream

of the olfactory receptor axons.  Second, we electrically stimulated arrays of primary afferents

in vivo.  A brief shock to the antennal nerve produced compound PSPs in antennal lobe

projection neurons, with two peaks at a ~50 msec interval.  Prolonged afferent stimulation

with step, ramp, or sine-shaped voltage waveforms evoked sustained 20-30 Hz oscillations in

projection neuron membrane potential and in the mushroom body LFP.  Projection neuron

and mushroom body oscillations were phase-locked and reliable across trials.  Synchroniza-

tion of projection neurons was seen directly in paired intracellular recordings.  Pressure injec-

tion of picrotoxin into the antennal lobe eliminated the oscillations evoked by electrical stimu-

lation.  Different PNs could express different temporal patterns in response to the same elec-

trical stimulus, as seen for odor-evoked responses.  Conversely, individual projection neu-
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rons could express different temporal patterns of activity in response to step stimulation of

different spatial arrays of olfactory afferents.  These patterns were reliable, and remained

distinct across different stimulus intensities.  We conclude that oscillatory synchronization of

olfactory neurons originates in the antennal lobe and that slow temporal patterns in projection

neurons can arise in the absence of temporal patterning of the afferent input.

Fast stimulus-evoked oscillations in the brain have now been known for over 50 years

(Adrian, 1942, 1950).  The functional significance of these oscillations remains controversial,

although oscillatory synchronization has been shown to be stimulus-specific in a few systems

(Gray et al., 1989; Wehr and Laurent, 1996), and experimental desynchronization impairs

fine discrimination of odors in the honeybee (Stopfer et al., 1997).  Olfactory systems across

phyla display, in addition to this fast oscillatory synchronization, complex slow temporal pat-

terns of excitation and inhibition in projection neurons of the first synaptic area, namely, the

olfactory bulb in vertebrates and the antennal lobe in insects (Christensen and Hildebrand,

1987; Kauer, 1974).  The functional significance of these slow temporal response patterns is

also unclear. The role of such temporal coding in vision, for example, remains controversial

(McClurkin et al., 1991; Shadlen and Newsome, 1998).  The slow temporal patterns in the

locust olfactory system are odor- and neuron-specific, and thereby shape the population of

activated, rhythmically synchronized projection neurons into an evolving sequence of syn-

chronized oscillatory assemblies which contains information about the odor presented (Lau-

rent and Davidowitz, 1994; Laurent et al., 1996; Wehr and Laurent, 1996).  Odors thus appear

to be encoded by dynamic neural ensembles, whose components and update are both stimu-

lus-specific (Laurent, 1996).

While oscillatory synchronization in olfactory bulb and antennal lobe is thought (Rall and

Shepherd, 1968; Freeman, 1975) or known to involve fast inhibitory feedback (MacLeod and

Laurent, 1996), the (possibly distinct) mechanisms by which oscillations are generated in
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other sensory systems remain unknown.  In the visual system, for example, the onset of

oscillatory firing is not stimulus-locked (Gray et al., 1989), whereas it can be so in the locust

olfactory system (Wehr and Laurent, 1996).  What, therefore, is the contribution of primary

afferents in the generation of these dynamics?  Could oscillatory synchronization of projec-

tion neurons be driven by temporal structure in the afferent input?  The vertebrate olfactory

epithelium, olfactory bulb, and piriform cortex are each capable of generating oscillations in

isolation, suggesting that these structures share a matched resonant capability, rather than

any one driving the other (Freeman, 1962, 1968; K Dorries and J Kauer, unpublished obser-

vations).  Here we investigate the degree to which this is true of the locust olfactory system.

The mechanisms by which odor-evoked slow temporal patterns are generated in projec-

tion neurons and mitral/tufted cells are even less well understood.  Although they are thought

to involve lateral synaptic interactions (Christensen et al., 1993; White et al., 1992; Meredith,

1986, 1992), the details of these interactions are unknown and only rarely have been the

subject of speculation.  Here we examine the extent to which these dynamics might be driven

by temporal structure in the afferent input, or alternatively, might be generated by the intrinsic

circuitry of the antennal lobe.

Materials and methods

The preparation:  Experiments were carried out in vivo on 125 adult female locusts (Schis-

tocerca americana) taken from a crowded colony.  Animals were restrained dorsal side up.

The head was immobilized with beeswax, and a watertight beeswax cup was built around the

head for saline superfusion.  A window was opened in the cuticle of the head capsule, be-

tween the compound eyes, and air sacs on the anterior surface of the brain were carefully

removed.  For stability, the esophagus was sectioned anterior to the brain, and the gut was

removed through a distal abdominal section which was then ligatured.  The brain was treated

with protease (Sigma type XIV), gently desheathed, and supported with a small metal plat-
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form.  The head capsule was continuously superfused with oxygenated physiological saline

(in mM: 140 NaCl, 5 KCl, 5 CaCl
2
, 4 NaHCO

3
, 1 MgCl

2
, 6.3 HEPES, pH 7.0) at room tempera-

ture.  Picrotoxin (PCT, 500 picoliters of 1mM solution in locust physiological saline) was pres-

sure injected into the center of the antennal lobe using a glass micropipette (2 mm tip diam-

eter) connected to a pneumatic picopump (WPI, Sarasota, FL).

Electrical stimulation:  The antennal nerve was cut distal to its bifurcation, and the an-

tenna was removed.  The cut ends of both antennal nerve branches were drawn into a poly-

ethylene suction electrode, or (in some experiments) each branch was drawn into a separate

suction electrode (see Fig. 1).  The antennal nerve was desheathed from the antennal lobe up

to the bifurcation, and penetrated with a planar array of 4 tungsten microelectrodes (etched to

a 1 mm tip and insulated with Formvar, impedance 2-5 MW), which were placed across the

width of the nerve, proximal to the bifurcation.  Bipolar electrical stimuli were delivered be-

tween any two of the four tungsten electrodes, indicated in Figures 9-11 by the notation TiTjn

for voltage applied from the ith to the jth electrode, with TiTjr indicating the reversed polarity.

The suction electrodes used a common AgCl wire in the bath as reference.  Together, the

suction electrodes and array allowed up to 15 stimulus configurations.  In some experiments

the antenna was left intact to enable natural stimulation with airborne odors; in these experi-

ments only the array was used for electrical stimulation.  Voltage pulses were produced with

a programmable pulse generator (AMPI, Jerusalem, Israel) and for voltage shock or step

stimuli,  were applied via a passive stimulus isolator (Grass Instr., West Warwick, RI).  Ramp

or sine-shaped voltage waveforms were produced with an analog function generator in single

cycle mode (Hewlett-Packard, Palo Alto, CA), DC amplified (Brownlee Precision Instr., Santa

Clara, CA), and applied via a stimulus isolator.  In some experiments (Figs. 4-8) the stimulus

isolator was not used, and the resulting stimulus artifact in the LFP was minimized by digitally

high pass filtering at 5 or 10 Hz (as noted in figure captions), but in PNs remains evident as a

downward trend in membrane potential.  For KC recordings, voltage shocks were applied

with a 50 mm stainless steel bipolar stimulating electrode placed in the center of the antennal
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lobe.

Olfactory stimulation:  The open ends of a set of 20 stainless steel tubes (0.5 mm inner

diameter) were placed 2.5 cm from the antenna, angled so that they converged onto the

antenna.  The other end of each tube was connected via polyethylene tubing to a 2 ml cham-

ber which contained a 1 cm2 piece of filter paper, on which was deposited 10 ml of one of the

following odors:  iso-amyl acetate (iaa), citral, cineole, geraniol, hexanol, octanol (Sigma, St.

Louis, MO), apple blossom potpourri oil (Gilbertie’s Herb Gardens, Easton, CT), spearmint oil

(Flavco, Mansfield, OH) or no odorant (air).  The chambers were connected in parallel to a

common air pressure injection system via a set of valves, so that electronically controlled

gentle pressure pulses (0.3 liters/min, insufficient to visibly bend the antenna) could be deliv-

ered to the animal.  Source air was cleaned and dried by passing through activated charcoal

and drierite.  Odorant pulses of 0.5 or 1 sec duration were delivered at 0.1 Hz.  For isolated

antennal recordings, 5 ml polystyrene serological pipettes were used in place of the stainless

steel tubes.

Electrophysiology:  Intracellular recordings were made using conventional sharp glass

microelectrodes pulled with a horizontal puller (Sutter Instr., Novato, CA), which were filled

with either 0.5 M KAcetate (for PNs) or a modified patch solution (for KCs, in mM: 155 KAsp,

1 CaCl
2
, 1.5 MgCl

2
, 10 EGTA, 2 ATP, 10 HEPES, ~3 Glucose adjusted to give 380 mOsm, pH

7.0; Laurent et al., 1993) and had DC resistances of 100-300 MW.  Local field potential (LFP)

and antennal nerve recording electrodes had ~1 mm tips with DC resistances of 1-10 MW

and were filled with locust physiological saline.  For antennal nerve recordings, a ported elec-

trode holder was used and gentle negative pressure was applied with a 10 cc syringe.  For

electro-antennograms (EAGs) from isolated antennae, two segments were removed from the

distal end of the antenna, and each end of the antenna was placed in a glass capillary (tip

diameter 0.68 mm) filled with physiological saline.  All recordings were done in bridge mode

using an Axoclamp-2A (Axon Instr., Foster City, CA) or an SEC-10L (NPI Electr., Tamm, Ger-
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many) amplifier, and stored to digital audio tape (DAT; Micro Data Instr., Woodhaven, NY; 5.5

kHz sampling rate).  The DAT recorder included an analog 8-pole bessel anti-aliasing filter.

Data were redigitized from DAT at 5 kHz (National Instruments: LabVIEW software and

NBMIO16L hardware) after DC amplification and anti-alias filtering at 3 kHz (Brownlee Preci-

sion Instr., Santa Clara, CA).

Analysis:  LFPs were digitally low-pass filtered at 50 Hz.  Antennal and antennal nerve

recordings were digitally low-pass filtered at 300 Hz.  Digital filtering was non-causal (i.e.,

introduced no phase distortion).  Decay time constants for EAGs from isolated antennae were

Figure 1.  Anatomy cartoon show-

ing configuration of stimulating

and recording electrodes.  S: suc-

tion electrode, AN: antennal nerve,

T1-4: planar array of tungsten

stimulating electrodes, AL: anten-

nal lobe, B: bipolar stimulating

electrode, V
PN

: projection neuron

intracellular recording electrode,

V
KC

: Kenyon cell intracellular re-

cording electrode, MB: mushroom

body, V
LFP

: local field potential re-

cording electrode, LPL: lateral

protocerebral lobe.
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obtained by fitting, in a least squares sense, the falling region (mean of 5 trials) from 90% to

30% of peak amplitude with the equation e
− t

τ
+κ

 where κ is a constant and τ is the reported

decay time constant.  Spectral and cross-correlation analyses were done on the 1.5 sec

response periods of each trial, except for the experiment shown in Fig. 2, in which they were

done on the entire 10 sec trial (for both antennal nerve recordings and LFP).  Cross-correla-

tions were done on mean-subtracted traces and are thus mathematically equivalent to cross-

covariances.  Power spectra were computed by concatenating response periods from a block

of trials and then estimating the power spectral density by Welch’s averaged periodogram

method (Welch, 1967).  Coherence was computed by separately obtaining cross-power and

power spectra as above; coherence was then given by the ratio of the magnitude-squared

cross-power to the product of the powers of each signal.  Mean membrane potentials were

computed by first subtracting the pre-stimulus resting potential from each trace, and simply

computing the mean across trials.  Peri-stimulus-time histograms (PSTHs) were constructed

by averaging spike times (obtained by using a threshold discriminator algorithm on the intra-

cellular signals) across blocks of trials aligned on the stimulus command, using bins of 25

msec.  All off-line analysis was performed with MATLAB (The MathWorks, Inc.).  Results are

based on 101 single PN intracellular recordings and 18 paired PN intracellular recordings in

31 animals (including 6 PNs successfully held through PCT injection), 212 KC intracellular

recordings in 74 animals, 9 in vivo antennal nerve recordings in 11 animals, and 17 isolated

antennal recordings from 9 animals.

Results :

Temporal structure of the afferent input

Presentation of odors to an antenna produced a slow potential deflection in the ipsilateral

electro-antennogram (EAG), which peaked some time after the end of the odor pulse, and
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took several seconds to decay.  Figure 2a shows a simultaneous recording of the antennal

nerve EAG and the mushroom body LFP in response to presentation of iso-amyl acetate.

Fast oscillations were clearly present in the LFP, but none were seen in the population activity

of the primary afferents.  Power spectra of the mushroom body LFP showed a peak at 20 Hz.

No such peak was seen in the antennal nerve spectrum of the same trials (Fig. 2a, inset).

Figure 2b shows EAGs from an isolated antenna in response to air and several odors.  These

responses were consistent across trials, as can be seen from the mean of 5 trials (black)

superimposed on the trace of a typical trial (gray).  No oscillatory activity or slow temporal

patterns were seen in the responses to these odors.  If normalized to the same peak ampli-

tude, these odor responses were essentially indistinguishable, except for their decay time

constants, which ranged from 0.4 to 1.0 sec.

Central oscillatory synchronization evoked by electrical stimulation of primary affer-

ent axons

To test whether oscillatory activity in the antennal lobe could be evoked by direct activa-

tion of the primary afferent axons, we removed the antenna and stimulated the antennal

nerve electrically with a suction electrode.  A brief (500 msec) shock produced a compound

PSP in PNs, that typically contained a second peak ~50 msec after the first (see Fig. 3a).  The

mushroom body LFP typically showed a single, biphasic deflection.  Traces from two con-

secutive trials at the same intensity are superimposed, showing the consistency of the re-

sponse.  Single shock stimulation of PN axons in the antennal lobe also gave rise to com-

pound EPSPs in their synaptic targets in the mushroom body (Kenyon cells, Fig. 3b).  As seen

for PNs in response to antennal nerve stimulation, these consecutive Kenyon cell EPSPs

were separated by ~50 msec.

Because odor-evoked afferent input is sustained (e.g., see Fig. 2), we next asked whether

sustained electrical stimulation of the primary afferents could generate sustained oscillatory
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activity.  Prolonged electrical stimulation of the antennal nerve (using a 500 msec voltage

step) generated rhythmic, summating EPSPs in PNs.  Three cycles were evoked in the ex-

ample shown in Fig. 3c.  Two consecutive trials at the same intensity are superimposed,

showing the consistency of the response.  The inter-stimulus interval was 30 sec;  with inter-

vals less than 20 sec, successive responses decreased in amplitude and duration (data not

shown).  Using this step stimulation protocol, oscillations were often (cf. Fig. 4-8), though not

always (Fig. 3c), seen in the mushroom body LFP.  The shape of the voltage waveform used

for nerve stimulation affected the duration of the evoked oscillatory activity.  Stimulation of the

antennal nerve with sine (Fig. 3d) or ramp (Fig. 3e) shaped voltage stimuli, for example,

generated sustained oscillations in PN membrane potential and in the mushroom body LFP.

In Fig. 3f, a PN was held hyperpolarized by current injection to prevent spiking and enhance

Figure 2.  Odor presentation evoked fast oscilla-

tions in the mushroom body LFP, but no such oscil-

lations were seen in simultaneously recorded an-

tennal nerve activity.  a: Presentation of iso-amyl

acetate (iaa).  The antennal nerve recording showed

a slow potential which took several seconds to de-

cay.  Odor presentation indicated by horizontal bar.

Onset of odor responses indicated by dotted line.

Inset: Power spectrum of unfiltered mushroom body

LFP (responses to seven consecutive iaa presen-

tations) shows a peak at 20 Hz, while no such peak

is seen in the antennal nerve spectrum of the same

trials.  b:  EAG recordings from an isolated antenna

in response to charcoal-filtered, dried air and seven

odors.  The mean of five trials (dark line) is super-

imposed on a typical single trial (gray line).  No os-

cillatory activity or slow temporal patterns were seen

in the EAGs in response to these odors.  500 msec

odor presentation indicated by horizontal bar.
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the voltage ramp-evoked EPSPs.  The precise synchronization of PN membrane potential

and mushroom body LFP can be seen directly from the traces (Fig. 3f), from the cross-corre-

lation of those two traces (Fig. 3g), and from the peak at ~30 Hz in the coherence function

(Fig. 3h).  The consistency of synchronized PN-LFP oscillations evoked by electrical stimula-

tion of the afferent axons can be seen in Fig. 4, where traces from six consecutive trials are

superimposed.

The LFP oscillations evoked by odors reflect rhythmic inputs carried by synchronized PN

assemblies to the mushroom body.  The synchronization of PN and LFP oscillations in re-

sponse to electrical afferent stimulation suggests that electrical stimuli, like odors, activate

synchronized PN assemblies.  This was shown directly using paired intracellular recordings

from PNs (Fig. 5a).  The subthreshold membrane potential oscillations of these two PNs are

consistently synchronized.  Alternating EPSPs and IPSPs can be seen in PN1.  The same

electrical stimulus sometimes produced different temporal patterns of subthreshold activity in

two PNs, as seen in the pair in Fig. 5b.  Electrical stimulation consistently evoked an initial

(suprathreshold) EPSP in PN1, while it evoked an initial IPSP followed by later EPSPs in

PN2.  Accordingly, the stimulus-evoked firing patterns of the two PNs differed: PN1 always

fired on the first cycle of the oscillation, whereas PN2 was prevented from firing by the initial

inhibition, and thus tended to fire later in the trial.  These patterns are reminiscent of the

different oscillatory sequences of firing seen in response to odor presentation (Wehr and

Laurent, 1996).

PN desynchronization by picrotoxin injection

The synchronized PN and LFP oscillations evoked by odor presentation are abolished by

focal injection of PCT into the antennal lobe (MacLeod and Laurent, 1996).  Does PCT also

block oscillations evoked by electrical stimulation of the primary afferents? To address this

question, we injected PCT into the antennal lobe while recording from a PN and the mush-
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room body.  PCT disrupted the oscillations evoked by electrical stimulation in both PNs and

mushroom body LFP.  Figure 6a shows a typical trial both before (heavy line) and after (fine

line) PCT injection, illustrating the loss of rhythmicity in both membrane potential and LFP.

The amplitude of the synaptic response in PNs was increased after PCT injection, presum-

ably due to the block of fast inhibitory feedback (MacLeod and Laurent, 1996).  The desyn-

chronization of PNs can also be seen in the decreased coherence between PN membrane

potential and LFP after PCT injection (Fig. 6b). Finally, the consistency of oscillatory responses

before, and of non-oscillatory responses after, PCT injection can be seen in averages calcu-
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Figure 3.  a: Shock of the antennal nerve with a

suction electrode produced a suprathreshold com-

pound PSP, which contained a second peak (in-

dicated by an arrow) ~50 msec after the first.  Two

consecutive trials at the same intensity are su-

perimposed (heavy and fine lines).  b:  Shock of

the AL produced a compound PSP in an intracel-

lularly recorded KC, with two peaks at a ~50 msec

interval.  Two consecutive trials at the same in-

tensity are superimposed (heavy and fine lines).

c: Prolonged (step) electrical stimulation of the

antennal nerve with an electrode array generated

membrane potential oscillations in PNs.  Here

three cycles are evoked.  Two consecutive trials

at the same intensity are superimposed (heavy

and fine lines).  d-e: Prolonged electrical stimula-

tion of the antennal nerve with a suction electrode

using sine or ramp-shaped stimuli generated sus-

tained oscillations in PN membrane potential and

in the mushroom body LFP.   f-g : The PN was hyperpolarized by current injection of -0.2 nA.  f: Note the

synchronization of PN membrane potential and mushroom body LFP.  g: Cross-correlation of traces in f.  h:

Coherence function of PN membrane potential and unfiltered mushroom body LFP, computed over 13 trials. a,

c-h from the same PN.
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lated over many consecutive trials (Fig. 6c-d).

Oscillatory activity could be evoked only over a relatively narrow range of stimulus inten-

sities (Fig. 7).  In this preparation, rhythmicity was absent at intensities below 110 mV, and

only one or two cycles were generated for 110 mV.  For stimulus intensities between 120 and

150 mV, regularity and rhythmicity were increased and up to 6 cycles could be evoked.  For

intensities greater than about 150 mV, oscillatory responses were curtailed and rhythmicity

was finally replaced by brief initial excitation followed by long-lasting inhibition in PNs, and by

a population spike in the mushroom body LFP (Fig. 7a).  After PCT injection, no stimulus

intensity could evoke oscillations (Fig 7b).

Temporal patterns evoked by stimulation of spatial arrays of afferents

To stimulate different arrays of afferent fibers, we first took advantage of the fact that the

antennal nerve has two branches (Fig. 1), and used a separate suction electrode to stimulate

each branch.  Stimulation of either branch evoked the same basic temporal pattern in a given

PN.  Figure 8, for example, shows a simultaneous recording from two PNs and the LFP in

response to stimulation of each branch (a and b) of the antennal nerve.  In PNs which showed

an initial inhibitory response (as did PN2 in Fig. 5b), the response was similarly initially inhibi-

tory for stimulation of either branch of the antennal nerve.  In no case did a PN respond with

different temporal patterns for stimulation of the two branches of the antennal nerve.

Figure 4.  Consistency of synchronized PN-LFP oscil-

lations is shown by superposition of traces from six con-

secutive trials (different animal from Fig. 3).  LFP fil-

tered at 5-50 Hz. 50ms

101097pn2

PN

LFP

5mV
0.5mV
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We then inserted an array of four tungsten stimulating electrodes across the antennal

nerve.  By choosing any two of the electrodes and applying bipolar stimulation between them,

we hoped to stimulate different subsets of the primary afferent fibers, thereby mimicking the

ability of odorants to activate different subsets of olfactory receptor neurons.  Activating differ-

ent afferent fiber sets with the same step stimulus generated different temporal response

patterns in PNs.  In Fig. 9a, these different patterns are apparent in the sub-threshold activity.

Single (heavy line) and mean (fine line) responses are superimposed to show the reliability of

the different temporal patterns.  This example is typical in that the different temporal patterns

were often either a brief, short latency, monophasic response (as with T1T2r), or a sustained,

long latency, structured response (as with T1T2n).  These different temporal patterns re-

5 mV

50 msec

PN2

PN1

LFP

PN2

PN1

10 mV
1 mV

50 msec

101597pair1

101297pair3

a

b

Figure 5.  Synchronization between PNs could be

seen directly in paired intracellular recordings.  a:

Four consecutive traces are superimposed, show-

ing consistent synchronization of the subthreshold

membrane potential oscillations in these 2 PNs.

IPSPs are indicated by arrowheads.  b: Membrane

potential of 2 PNs and the mushroom body LFP all

showed synchronized oscillations (LFP filtered at

5-50 Hz).  PN1 consistently receives an initial EPSP

in response to electrical stimulation, whereas PN2

received an initial IPSP (arrowheads), followed by

EPSPs later in the trial.  This suggests that different

PNs can receive different temporal patterns of in-

puts from the same electrical stimulus.  a-b: 500

msec step electrical stimulation by suction electrode,

onset indicated by arrow.
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mained different across stimulus intensities, as shown in Fig. 9b.  Thus the different temporal

patterns cannot be a simple effect of differential recruitment of the same population of affer-

ents by the different stimulating electrodes.  For stimulus T1T2r, the mean response latency

was 6.9 + 0.5 msec (antennal nerve conduction time not subtracted) and did not vary with

stimulus intensity.  For stimulus T1T2n, however, the latency clearly decreased with increased

stimulus intensity.

In some PNs, different spatial patterns of afferent stimulation evoked many different firing

patterns.  These firing patterns can be seen in individual traces (Fig. 10a), and their reliability

can be seen from rasters and peri-stimulus time histograms (Fig. 10b).  Delayed firing could

be caused by an early inhibition, as with stimulus T3T4n, or by a delayed excitation, as with

stimulus T1T2r.  Five consecutive trials in response to stimulus T3T4n demonstrate the con-

sistency of the response (Fig. 10c).
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Figure 6.  Pressure injection of PCT into the AL dis-

rupts the oscillations evoked by electrical stimulation

in both PNs and LFP.  a: Single trial responses of PN

and LFP evoked by step electrical stimulation (with a

suction electrode) before (heavy line) and after (fine

line) PCT injection.  Rhythmicity in both membrane

potential and LFP is abolished after injection (LFP

filtered 10-50 Hz).  Response amplitude also in-

creased after PCT (PN hyperpolarized by -0.5 nA).

b: Coherence between PN membrane potential and

unfiltered mushroom body LFP computed over seven trials both before (pre) and after (post) PCT injection.  The

peak at ~30 Hz is absent after PCT injection.  c-d : Mean membrane potential and LFP computed before (c) and

after (d) PCT injection for the same 14 trials as in b.  Rhythmic EPSPs and phase-locked LFP oscillations in c

indicated by arrowheads.
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Do the temporal patterns evoked by different spatial stimulus arrays bear any relation to

the temporal patterns evoked by different odors?  To address this, the antennal nerve was

electrically stimulated in a preparation in which the antenna had been left intact, so as to

enable the presentation of odors.  Response to odors and electrical stimulation are shown in

Fig. 11 for a single PN.  Three trials are superimposed for each stimulus.  Apple and citral

evoked an initial inhibition followed by a sustained excitation.  Cineole caused an initial exci-

tation followed by inhibition.  IAA produced a mixed response with an initial subthreshold

excitation, followed by epochs of inhibition and then excitation.  This spectrum of temporal

patterns for different odors is typical for PNs (Laurent and Davidowitz, 1994; Laurent et al.,

1996).  Electrical stimulation with either T3T4r or T1T2n evoked an initial inhibition followed

by excitation, similar to the responses to apple and citral.  Close examination of the response

to T1T2n reveals a fast initial IPSP followed by a slow inhibitory component.  In contrast, the
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Figure 7.  Intensity series showed that PCT effects can-

not be attributed to change in stimulus threshold (same

PNs as in Fig. 6).  a: Oscillations are only evoked within

a range of stimulus intensities (below which one or no

cycles are evoked, above which only a population spike

is evoked).  b: After PCT, no stimulus intensity can evoke

oscillations.
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the response to T1T3r consisted of a fast, subthreshold EPSP followed by a slow inhibitory

component.  No electrical stimulus produced an initial supra-threshold excitation for this PN.

Discussion:

Connectivity between olfactory afferents and antennal lobe neurons

In Manduca sexta, primary olfactory afferents are thought to synapse directly only onto

inhibitory local interneurons; PN excitation must therefore be polysynaptic, via disinhibition.

Electrical stimulation of the antennal nerve generally causes an early IPSP, followed by a later

excitation of PNs (Waldrop et al., 1987; Christensen and Hildebrand, 1988; Christensen et al.,

1993). In the cockroach (Periplaneta americana), however, ultrastructural studies indicate

direct afferent connections onto PNs (Distler and Boeckh, 1996, 1997).  In the locust, short

latency and consistent EPSPs were commonly seen in PNs in response to electrical stimula-

tion of the antennal nerve, a result not obtained with Manduca PNs (Waldrop et al., 1987;

Christensen et al., 1993).  The short latency and its low variance are consistent with mono-

synaptic connections between locust olfactory afferents and PNs—as shown morphologically

a
LFP

PN2

PN1

b 111197pair1

100 msec

0.5 mV
5 mV

Figure 8.  Stimulation of either branch (a and

b) of the antennal nerve evokes the same tem-

poral pattern in a given PN.  Two consecutive

trials at the same intensity are superimposed,

showing the consistency of the response.  LFP

filtered 10-50 Hz.  500 msec step electrical

stimulation, onset indicated by arrow.
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for Periplaneta—although direct proof awaits ultrastructural or direct electrophysiological evi-

dence.

Oscillatory synchronization

Odor-evoked oscillatory activity in the locust olfactory system is thought to be generated

by the intrinsic circuitry of the antennal lobe.  This hypothesis is supported by two previous

findings.  First, odor evoked oscillations in antennal lobe PNs persist after ablation of the

mushroom body (Laurent and Davidowitz, 1994), suggesting that the antenna and antennal

lobe are sufficient for oscillatory synchronization of PNs during odor responses.  Second,

focal injection of PCT into the antennal lobe abolishes fast IPSPs in PNs, phase locking of

PNs to the mushroom body LFP, and finally, LFP oscillations (MacLeod and Laurent, 1996).

These results demonstrate that inhibitory synapses of local neurons onto PNs are necessary

for their oscillatory synchronization.  The possible contribution of rhythmic and synchronized
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Figure 9. a: Stimulating different subsets of afferent

fibers generated different temporal PN response pat-

terns.  In this PN different patterns are apparent in the

sub-threshold activity.  Single (heavy) and mean (fine)

responses are superimposed.  Increased latency (and

increased latency variability, see mean) indicated by

arrow.  b:  Intensity series shows that the different tem-

poral patterns remained distinct across intensities.  In-

tensities are in mV.  For T1T2n but not for T1T2r, la-

tency was a function of stimulus intensity.
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Figure 10.  In some PNs, different spatial patterns of afferent stimulation (500 msec step, V
AN

) evoked many

different firing patterns.  a: Firing patterns can be seen in individual traces.  Delayed firing in S is due in part only

to conduction time along the antennal nerve.  b:  Peri-stimulus time histograms (25 msec bins) and rasters show

reliability of firing patterns.  c: Five consecutive trials in response to stimulus T3T4n show the consistent early

inhibition and late firing.

afferent input from the antenna, however, could not be ruled out.  Although no evidence exists

for reciprocal coupling between olfactory receptor neurons, such connections could in prin-

ciple participate in the generation of synchronized activity in the antennal lobe.  Indeed, re-

cent results from the salamander suggest that afferent synchronization and rhythmic odor-

evoked activity can be recorded in the olfactory epithelium even after connections to the

olfactory bulb have been severed (Dorries and Kauer, 1996, unpublished observations).  Are

locust antennal olfactory receptor neurons rhythmically and coherently active during odor

responses?  Simultaneous extracellular population recordings from the antennal nerve and

the mushroom body revealed odor-evoked 20-30 Hz oscillations in the mushroom body LFP,

but not in the primary afferents.  These results collectively show that the 20-30 Hz oscillations

seen in the antennal lobe and mushroom body originate in the antennal lobe.  This was

confirmed in experiments in which olfactory receptor axons were stimulated electrically, thereby
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eliminating the possibility of afferent induced rhythmic synchronization of olfactory receptors.

Single shocks to the antennal nerve evoked compound EPSPs with two peaks at a ~50 msec

interval in antennal lobe PNs. LFPs two synapses downstream (in the mushroom body) usu-

ally failed to reveal more than a single wave of activity. Single shocks delivered directly to the

antennal lobe PNs, however, evoked compound EPSPs in mushroom body Kenyon cells,

Figure 11.  Responses to odors and electrical stimulation in the same PN.  Three superimposed trials in each

condition.  Apple and citral evoke initial inhibition followed by an epoch of excitation.  Cineole leads to initial

excitation followed by inhibition.  Presentation of iaa evokes a mixed response with a weak subthreshold initial

excitation (*), followed by epochs of inhibition and then excitation.  Electrical stimulation with either T3T4r or

T1T2n evokes initial inhibition, followed by excitation.  Close examination of the response to T1T2n reveals a

fast initial IPSP (arrowhead) followed by a slow inhibitory component.  Response to T1T3r consists of a fast,

subthreshold EPSP (*) followed by a slow inhibitory component.
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also with successive peaks at a ~50 msec interval.  These results indicate that simple su-

prathreshold activation of antennal lobe PNs (either synaptically from the antennal nerve, or

directly, using an extracellular stimulating electrode) caused at least two consecutive waves

of activation in these and possibly other PNs, at a frequency identical to that of odor-evoked

responses. Such activity, however, was not sustained, unless unpatterned electrical stimula-

tion was maintained. In this case, oscillatory activity in PNs and in the LFP could be sustained

for many cycles.  This demonstrates that non-specific, temporally unstructured afferent input

can cause sustained oscillatory activity in the antennal lobe and mushroom body networks,

likely via activation of the antennal lobe reverberatory circuitry.

Our results for single shock stimulation are very similar to those obtained in vertebrates,

where shock stimuli delivered to the olfactory nerve—analogous to the antennal nerve in

insects—evoke damped gamma oscillations in field potentials and mitral cell firing in the ol-

factory bulb (Freeman, 1962, 1972, 1974).  Shocks delivered to the lateral olfactory tract—

analogous to the PN axon tract in insects—evoke damped field potential gamma oscillations

in their target area, the piriform cortex (Freeman, 1959; Haberly and Shepherd, 1973; Rodriguez

and Haberly, 1989; Ketchum and Haberly, 1991, 1993).  As seen in those experiments, oscil-

latory activity in the locust antennal lobe could only be evoked within a narrow range of stimu-

lus intensities.  These dynamics have been replicated in realistic (Wilson and Bower, 1992)

and abstract (Li and Hopfield, 1989; Freeman, 1987) models of mammalian olfactory bulb

and piriform cortex.

Finally, focal injection of PCT, a vertebrate GABA
A
 and insect ionotropic GABA receptor

antagonist, abolished electrically evoked oscillatory synchronization in the antennal lobe.  The

fact that no stimulus intensity could evoke oscillations after PCT injection shows that the

effect could not be attributed to a change in stimulus threshold.  These results indicate that

the inhibitory synapses from local GABAergic neurons onto PNs are necessary for oscillatory

synchronization, whether the afferents are stimulated by odorants or electrically.  Modeling
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studies have shown that inhibition can synchronize neural firing (van Vreeswijk et al., 1994;

Jefferys et al., 1996).  We conclude that oscillatory synchronization of antennal lobe neurons

is a result of the intrinsic connectivity of olfactory afferents, local, and projection neurons in

the antennal lobe.

Slow temporal patterns

Odors evoke slow temporal patterns of activity in PNs.  These usually consist of succes-

sive epochs of excitation, inhibition, and absence of activity.  Different odors evoke different

temporal patterns in a given PN, and a given odor evokes different temporal patterns in simul-

taneously recorded PNs (Laurent and Davidowitz, 1994;  Laurent et al., 1996; Wehr and

Laurent, 1996).  Similar slow temporal patterns are also seen in PNs in other insects

(Christensen and Hildebrand, 1987, 1988;  Waldrop et al., 1987; Waldrow, 1977; Sun et al.,

1993), as well as in mitral cells of the vertebrate olfactory bulb (Kauer, 1974; Meredith, 1986;

Hamilton and Kauer, 1989).  Interestingly, the slow temporal patterns evoked by odors in

locust PNs persist in the presence of PCT (MacLeod and Laurent, 1996).  This suggests that

the mechanisms which generate them are distinct from those which generate synchronous

oscillations.  What, therefore, are these underlying mechanisms?  One hypothesis is that the

slow temporal patterns seen in PNs are driven by slow temporal patterns in the afferent input.

For example, olfactory receptor neurons could respond with different time courses to different

ligands due to perireceptor events (Pelosi, 1996), competitive binding interactions at recep-

tors, combinations of multiple odor-activated membrane conductances (Restrepo et al., 1996),

or differential activation of (possibly interacting) second messenger cascades (Restrepo et

al., 1996).  Alternatively, these temporal patterns could be generated by complex dynamics

resulting from intrinsic antennal lobe circuitry.  To try and distinguish between these two (non-

exclusive) possibilities, we first recorded the population activity of the antennal nerve in re-

sponse to odor presentation to the antenna, and showed that it contains no odor-specific slow

temporal patterns.  An absence of slow odor-evoked temporal patterns in the population ac-
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tivity does not exclude, however, the possibility that temporal patterns exist in individual or

classes of olfactory receptor neurons.  Indeed, the many slow temporal patterns seen in PNs

are typically not reflected in the mushroom body LFP, i.e., in their averaged activity. We ad-

dressed this issue in two ways. First, we attempted to record odor responses from single

receptor axons.  All attempts failed, probably due to the small size (~0.1 mm diameter) of the

afferent axons.  Direct recordings from the peripheral sensilla—e.g., as done with moth

(Kaissling, 1986)—were unsuccessful (but see Kafka, 1970; Hansson et al., 1996). Failing

this, we used a second method, in which afferents were stimulated electrically from their

axons, using constant voltage waveforms. The results showed that identical and unpatterned

afferent stimuli could activate different temporal response patterns in simultaneously recorded

PNs. These response patterns closely resembled those evoked by odor presentation in intact

animals, in which PN firing is often cycle-specific (Wehr and Laurent, 1996). In addition, acti-

vation of different spatial arrays of afferent axons, using identical electrical stimulus wave-

forms, could often cause different temporal response patterns in individual PNs.  These re-

sponses were shaped by the same features (EPSPs, IPSPs, periods of silence) as seen

during responses to odors. This indicates that temporal patterning of the olfactory afferent

input is not required for shaping complex response patterns in PNs.  Simple depolarization of

single PNs by constant intracellular current injection never produced such temporal response

patterns in them.  We conclude that the complexity of PN odor response patterns (oscillatory

synchronization and slow temporal patterns) results in great part from the synaptic interac-

tions within the antennal lobe.  Although the contribution of temporal activity patterns in the

olfactory receptor neurons cannot be excluded, our results indicate that PNs are not simple

relay neurons for the afferent input.  Rather, their output to downstream areas is profoundly

shaped by lateral interactions within the antennal lobe, and these interactions are input spe-

cific.  This confirms earlier reports showing that simultaneously recorded PNs which respond

to the same odor often respond in a correlated manner from trial to trial [i.e., the firing of one

PN during one cycle on a given trial has predictive value about the firing of the other recorded

PN, in that or a different cycle, on the same trial (Wehr and Laurent, 1996)].  How slow
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temporal response patterns arise from these lateral interactions, however, remains largely

speculative.  Although realistic models of the olfactory bulb produce complex temporal re-

sponse patterns in mitral cells, the mechanisms for their generation are not understood in

detail (White et al., 1992).  Meredith (1986, 1992) has proposed that slow temporal patterns in

mitral cells are a result of non-monotonic intensity response functions, combined with the

necessarily finite rate of intensity increase associated with the onset of an odor pulse.  The

fact that slow temporal patterns are evoked in PNs by step electrical stimuli, which are not

subject to the rise time limitations of odor stimulation, suggests that the temporal structure of

these responses is generated by reverberatory lateral interactions within the antennal lobe,

without dependence on the rate of intensity increase or non-monotonicity of PN intensity

response functions.

These results demonstrate that the computations performed by the antennal lobe in-

clude, in addition to a spatial mapping of odor information (Hildebrand and Shepherd, 1997),

a coordinate transformation from spatial input patterns into temporal output patterns.  To our

knowledge, this is the first report of such a transformation in a sensory system, though stimu-

lus-related information has been demonstrated in higher principal components of visual corti-

cal neuron responses in primates (McClurkin et al., 1991; Richmond and Optican, 1987).  The

existence of such transformations is well known in motor systems, where (for example) stimu-

lation of so-called command neurons can elicit specific and complex motor outputs (Larimer,

1988) which presumably involve temporal patterns of firing in neural assemblies.  The func-

tional significance of such a transformation in a sensory system is unclear.  Piriform cortex

has been proposed to function as a content-addressable memory (Haberly and Bower, 1989),

as suggested by its recurrent architecture and the demonstration of LTP in the afferent and

associative pathways (Kanter and Haberly, 1990).  Recurrent network models incorporating

time delays (Tank and Hopfield, 1987), or fast and slow feedback (Kleinfeld, 1986; Sompolinsky

and Kanter, 1986), have time-dependent energy landscapes, and thereby attractors which

are not fixed points but sequences. Thus piriform cortex, by virtue of its fast and slow associa-
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tive feedback pathways, could store and recognize spatiotemporal patterns of inputs from the

olfactory bulb (Ketchum and Haberly, 1991).  The mushroom body in insects contains puta-

tive feedback pathways in the protocerebral lobe (Mobbs, 1982; Gronenberg, 1987; MacLeod

and Laurent, 1997), and has been implicated in learning and memory (Menzel and Muller,

1996; Davis, 1993).  These circuits may therefore be able to store and recognize spatiotem-

poral input patterns from the antennal lobe, which consist of rhythmic sequences of synchro-

nized PN assemblies shaped by slow temporal patterns in participating PNs.
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Conclusions

 The hypothesis that odors are encoded by dynamical (evolving) ensembles of

synchronized and oscillating neurons was first formulated by Laurent and David-

owitz (1994).  Previous work had demonstrated that odors evoked oscillations in

Kenyon cells and the local field potential of the mushroom body (Laurent and Naraghi,

1994), and recordings from local and projection neurons in the antennal lobe sug-

gested that these were generated by rhythmic inputs from a succession of synchro-

nously oscillating odor-specific assemblies of projection neurons (Laurent and Davi-

dowitz, 1994).  The work described in Chapter 2 (which appeared in Laurent et al.,

1996) confirmed and extended these results, demonstrating that odors evoke spe-

cific temporal response patterns in projection neurons in the antennal lobe, such

that different neurons responded with different temporal patterns to a given odor,

and individual neurons responded with different temporal patterns to distinct odors.

These patterns were consistent across repeated odor presentations, and different

patterns could be quantitatively compared by computing the relative distances be-

tween responses.  Oscillatory synchronization between antennal lobe neurons could

be seen from their membrane potential responses to a single odor presentation

(Laurent and Davidowitz, 1994), or from spike trains averaged across several pre-

sentations (Laurent et al., 1996).  Because the participation of individual neurons in

a synchronized oscillatory ensemble was usually transient, occurring during pre-

cise epochs of an odor response, the oscillating ensemble evolves over time—

forming a succession of synchronized ensembles, with a new and different (but

partially overlapping) ensemble for each successive epoch.  These epochs were

presumed to last hundreds of milliseconds based on the time course of slow tem-

poral patterns seen in PNs.
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This odor-coding hypothesis was very much refined by the work described in

Chapter 3 (which appeared in Wehr and Laurent, 1996).  Essentially, the fine tem-

poral structure of the succession of ensembles could be more precise and informa-

tive than was previously thought.  This refinement resulted from the demonstration

that these ensembles could change in a stimulus-specific manner and with a high

degree of reliability on a cycle-by-cycle basis during an odor response.  Thus, infor-

mation about an odor is contained in the precise temporal sequence in which these

ensembles are updated during an odor response.  The reliability of these oscilla-

tory sequences of firing was demonstrated by the predictive value that the firing of

one PN during a given cycle often had about the behavior of another PN during the

same, or a different cycle.  Transient oscillatory synchronization can be detected

with sliding window cross-correlation techniques, but is best quantified using spec-

tral techniques, with which odor-evoked synchronization was shown to be highly

significant.  As was demonstrated in Chapter 2 for slow temporal patterns, the fine

temporal structure of PN responses to mixtures were not simple linear or predict-

able combinations of their responses to the components presented separately.  Each

odor, however complex, apparently evoked activity in its own specific neuronal set

and its own specific sequence of activity.  Information about the odor smelled was

present not in the phase of the active neurons, which was invariant, but rather in

their identity and in the temporal sequence in which they were recruited.

Finally, Chapter 4 (to appear in Wehr and Laurent, 1998) addressed the mecha-

nisms with which the locust olfactory system generates the evolving oscillatory

synchronization described in Chapters 2-3.  Previous results (Laurent and David-

owitz, 1994; MacLeod and Laurent, 1996) had suggested that oscillatory synchro-

nization results from network properties in the antennal lobe, but the contribution of

afferent activity to this synchronization and to the slow temporal patterns was un-
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known.  Simultaneous extracellular population recordings from the antennal nerve

and the mushroom body revealed odor-evoked 20-30 Hz oscillations in the mush-

room body LFP, but not in the primary afferents.  Furthermore, oscillatory synchro-

nization was evoked by electrical stimulation of the afferent axons, demonstrating

that non-specific, temporally unstructured afferent input can cause sustained oscil-

latory activity in the antennal lobe and mushroom body networks.  Identical and

unpatterned electrical stimulation of the afferents could activate different temporal

response patterns in simultaneously recorded PNs.  These response patterns closely

resembled those evoked by odor presentation in intact animals.  Activation of differ-

ent spatial arrays of afferent axons, could often produce different temporal response

patterns in individual PNs.  We conclude that the complexity of PN odor response

patterns (oscillatory synchronization and slow temporal patterns) results in great

part from the synaptic interactions within the antennal lobe.  The computations

performed by the antennal lobe therefore include, in addition to a spatial mapping

of odor information, a coordinate transformation from spatial input patterns into

temporal output patterns.  To our knowledge, this is the first report of such a trans-

formation in a sensory system.

How is oscillatory synchronization decoded by downstream areas?  To ad-

dress this question, MacLeod et al. (1998) recorded from a population of neurons

in the β-lobe, two synapses downstream from the antennal lobe.  These neurons

showed odor responses whose specificity was degraded when their inputs were

desynchronized by PCT.  This degradation of selectivity consisted of the appear-

ance of responses to new odors, and a loss of discriminability of spike trains evoked

by different odors.  In contrast, such loss of information was never seen in the PNs

whose activity had been desynchronized, suggesting that the loss is due to PN

desynchronization and that the β-lobe neurons are sensitive to the temporal struc-
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ture of their inputs.  These results demonstrate that information encoded in time

across ensembles of neurons converges onto single neurons downstream in the

pathway.

Is oscillatory synchronization meaningful to the animal?  The fact that the oscil-

latory sequence of synchronized PN ensembles evoked by an odor contains infor-

mation about the stimulus does not demonstrate that this information is actually

used by the animal.  For example, because cricket call frequency varies with the

ambient temperature, information about the temperature is encoded in cricket calls—

and although this information can be decoded by the experimenter, it is not known

to be used by the animal in any way.  Similarly, the odor-specific oscillatory syn-

chronization described in this thesis could be epiphenomenal, although this seems

unlikely given the widespread occurrence of such oscillations in olfactory and other

sensory systems across phyla.  This question was addressed directly by Stopfer et

al. (1997) using proboscis extension response (PER) conditioning in the honeybee.

These experiments (described in Chapter 1) took advantage of the fact that picro-

toxin, an insect ionotropic GABA receptor antagonist, selectively disrupts oscilla-

tory synchronization of locust and honeybee PNs without affecting their slow tem-

poral response patterns (MacLeod and Laurent, 1996; Stopfer et al., 1997).  Hon-

eybees can be trained to selectively extend their proboscis for one odor but not

others.  Desynchronization using PCT impaired the ability of bees to discriminate

between molecularly similar odors (e.g., hexanol and octanol), but did not affect

their ability to discriminate molecularly different odors (e.g., octanol and geraniol).

These results demonstrate that oscillatory synchronization in the insect olfactory

system not only contributes to the selectivity of downstream neurons (MacLeod

and Laurent, 1998), but actually participates in odor encoding, and is in fact neces-

sary for fine odor discrimination.
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Converging evidence from single unit electrophysiology, spatial activity map-

ping, and molecular biology (e.g., Mori et al., 1992; Cinelli et al., 1995; Friedrich

and Korsching, 1997; Mombaerts et al., 1996) has demonstrated that different odor-

ants activate overlapping yet unique sets of glomeruli.  Similarly, stable odor-spe-

cific spatial patterns of oscillatory EEG amplitude have been seen in the olfactory

bulbs of trained rabbits (Viana Di Prisco and Freeman, 1985).  Taken together,

these results suggest to Freeman that during training, reinforcement of spatial pat-

terns of co-activated mitral cells leads to the formation of neural assemblies (Hebb,

1949), which produce odor-specific and stable spatial patterns of oscillatory EEG

amplitude over the entire bulb.  To other investigators, the spatial mapping of odor

information has suggested that the glomerulus serves as a functional unit for the

processing and coding of odor information, and that odor quality is represented by

a spatial code in the olfactory bulbs of vertebrates and the antennal lobes of arthro-

pods.  However, the fact that normal glomerular organization of the antennal lobes

may not be necessary for odor-modulated flight in female moths (Willis et al., 1995)

poses a challenge to this view.  Furthermore, as discussed in Chapter 1, the dem-

onstration of spatial maps in the olfactory system does not establish that neural

space encodes odor quality information (except to the experimenter).  Whether the

information contained in spatial activity patterns is actually decoded by downstream

neurons using position (rather than identity) and used for odor perception by the

animal, remains untested.  Certainly the identity of active neurons encodes infor-

mation (for the animal), but it is not yet clear whether there is a meaningful distinc-

tion between the identity of those neurons and their spatial location per se. One

interpretation of the results of Stopfer et al. (1997) is that the spatial pattern (or set)

of activated glomeruli is different for molecularly different odors, and is thereby

sufficient to support discrimination between them.  For similar odors the patterns of
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activated glomeruli may be highly overlapping, and the additional information car-

ried by oscillatory synchronization of PNs appears to be necessary for discrimina-

tion.  Odors therefore appear to be represented by a combinatorial code both in

time and in space.

Stimulus-dependent neuronal synchronization has been observed in many

systems; one of the most widely studied currently is the mammalian visual system.

In the visual cortex, as discussed in Chapter 1, stimulus-evoked synchronous oscil-

latory activity in the gamma (20-70 Hz) frequency range has been recorded at

many different spatial scales in the cat and monkey (Gray and Singer, 1989; Gray

et al., 1989; Eckhorn et al., 1988; Gray and DiPrisco, 1997; Livingstone, 1991).

The degree of synchronization depends on global stimulus properties, and there-

fore may play a role in image segmentation and visual feature integration.

While enormous progress has been made in understanding how an image is

analyzed by single neurons with diverse feature selectivities, the mechanisms with

which these visual features are integrated for global computations such as figure-

ground segmentation are essentially a mystery.  A central difficulty, termed the ‘bind-

ing problem,’ arises from the distributed representation of any visual object across

different cortical areas.  This distributed neuronal activity must somehow be identi-

fied as corresponding to the same object, and integrated without interfering with

coexisting activity patterns corresponding to other visual objects.  These problems

of figure segmentation and feature binding cannot be flexibly solved using only a

rate code, because relationships between features cannot be encoded along with

the features themselves.  The temporal correlation hypothesis suggests that neu-

ronal synchronization provides a dynamic, flexible mechanism for this integration

(Milner, 1974, von der Malsburg, 1981; von der Malsburg and Schneider, 1986;
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Gray, 1994; Singer and Gray, 1995).  The demonstration of stimulus-evoked oscil-

latory synchronization in visual cortex has been used to support this hypothesis.

 While the temporal correlation hypothesis has received a great deal of experi-

mental and theoretical attention, both the mechanisms and functional significance

of oscillatory synchronization in the mammalian visual system remain unknown.

The mechanisms are likely to include cortical network properties, but reports of a

novel class of fast rhythmic intrinsically bursting neurons (termed ‘chattering cells’)

in cat visual cortex suggest that a specialized subset of cortical neurons could

recruit large populations of cells into synchronously firing assemblies.  Direct dem-

onstration of this proposed synchronization mechanism will be extremely difficult,

requiring intracellular recording from a chattering cell, simultaneously with extracel-

lular recordings from multiple other cells coupled to that chattering cell— in vivo,

during presentation of optimal visual stimuli.  Even after such a heroic effort, with-

out demonstrating selective disruption of synchronization by interfering with the

putative mechanisms, causality will be difficult to establish.  In contrast, the mecha-

nism by which oscillatory synchronization is generated in the insect olfactory sys-

tem has now been fully and directly demonstrated to emerge from network proper-

ties in the antennal lobe, namely, reciprocal excitation and inhibition among local

and projection neurons.  Selective desynchronization by blocking fast GABAergic

inhibition has demonstrated a causal relationship, and together with the demon-

stration of oscillatory synchronization in response to electrical stimuli, these results

show that the excitatory and inhibitory circuitry in the antennal lobe are both neces-

sary and sufficient for generation of oscillatory synchronization.

The functional significance of oscillatory synchronization in the mammalian

visual system also remains unknown, although several findings suggest that it plays
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a role in visual integration and segmentation.  The stimulus-dependence of syn-

chronization shows that it contains information about the stimulus, but whether this

information is used by the animal has not been demonstrated.  Unlike insects, in

which the effect of PCT-induced desynchronization on odor discrimination was di-

rectly tested, in mammals there are no means yet known to experimentally inter-

fere with synchronization.  The strength of synchronization can be correlated with

different behavioral conditions, and such correlations have been reported and sup-

port a role for synchronization in visual perception.  For example, strabismic cats

exhibit interocular rivalry (humans with early onset strabismus do also, so that sig-

nals conveyed by the two eyes are not perceived simultaneously but in alternation),

and interocular suppression can be measured in cats by tracking eye movements.

Strength and regularity of synchronization between cortical neurons evoked by

dichoptic stimulation was increased for the dominant eye, and decreased for the

suppressed eye (Fries et al., 1997).  These differential changes were not associ-

ated with changes in firing rate, suggesting that degree of synchronization (rather

than firing rate) determines which signals are perceived by the animal.  A direct,

causal demonstration of a functional role for synchronization in visual perception

would require experimental desynchronization of neuronal ensembles, ideally with-

out affecting firing rates—an experiment which has as yet only been possible in the

insect olfactory system.

Stimulus-evoked oscillatory synchronization has also been long known in the

vertebrate olfactory system, and similar to the insect olfactory system is thought to

be generated (at least in the olfactory bulb) by network interactions between mitral

and granule cells.  While bulb circuitry is very well studied in vitro, the mechanisms

for odor-evoked oscillatory synchronization await direct demonstration.  In addi-

tion, the functional significance of these oscillations has not been addressed.  Stimu-
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lus- or task-dependent synchronization has also been reported in auditory cortex

(non-oscillatory, DeCharms and Merzenich, 1996), the somatosensory system

(Nicolelis et al., 1995), motor cortex (Donoghue et al., 1998), and frontal cortex

(non-oscillatory, Vaadia et al., 1995).  While these reports suggest that synchroni-

zation may be a widespread phenomenon in the brain, questions about mecha-

nisms and functional significance cannot be addressed until the basic phenomena

are more completely explored and characterized.

Both oscillatory population activity and complex temporal response patterns in

individual neurons are well established in the first olfactory relay of amphibians,

mammals, mollusks and insects, suggesting that the odor-evoked succession of

oscillatory ensembles in the insect antennal lobe may also occur in many other

animals, across phyla.  The insect olfactory system appears to be the only prepara-

tion thus far in which oscillations, synchronization, and slow temporal patterns have

been observed together and shown to ‘interlock’ into an odor-specific cycle-by-

cycle oscillatory sequence of transiently synchronized neuronal ensembles.  It is

also the only system in which oscillatory synchronization has been directly demon-

strated to play a role in stimulus encoding and perception, and the only system in

which the decoding of information conveyed by oscillatory synchronization has been

demonstrated in downstream neurons.  The separate pieces of evidence from ver-

tebrates and mollusks are compatible with our odor coding hypothesis, but it re-

mains to be seen if they can all be concurrently observed there also.
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Appendix A: Distinct rhythmic locomotor patterns can be generated by a

simple adaptive neural circuit: biology, simulation, and VLSI  implementation

Preface

This paper is unrelated to the work described in the main body of the thesis. It

arose out of a collaboration with Sylvie Ryckebush, who performed the physiology

and computational modelling described here (Ryckebusch et al., 1994). My contri-

bution to this work was the VLSI circuit design, fabrication, and testing (Figs. 6-7).

Abstract

Rhythmic motor patterns can be induced in leg motor neurons of isolated lo-

cust thoracic ganglia by bath application of pilocarpine.  We observed that the rela-

tive phases of levators and depressors differed in the three thoracic ganglia.  Argu-

ing that the central pattern generating circuits underlying these three segmental

rhythms are probably very similar, we developed a simple model circuit which can

produce either of the three activity patterns and characteristic phase relationships

by modifying a single synaptic weight.  We show results of a computer simulation of

this circuit using the neuronal simulator NeuraLOG/Spike.  We built and tested an

analog VLSI circuit implementation of this model circuit which exhibits the same

range of “behaviors” as the computer simulation.  This multidisciplinary strategy will

be useful to explore the dynamics of central pattern generating networks coupled

to physical actuators, and ultimately should allow the design of biologically realistic

walking robots.
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It is now generally recognized that neural circuits are not hardwired ensembles

of neurons with fixed properties, but rather form plastic and adaptable sets.  Some

of the clearest demonstrations of such neural plasticity have come from studies of

central pattern generator circuits.  Studies of the crustacean stomatogastric ner-

vous system, for example, have established that the intrinsic properties of compo-

nent stomatogastric neurons and the efficacies of their synaptic connections are

subject to modulation by a large number of “neuroactive” substances, which can

act on a wide range of temporal and spatial scales (Harris-Warrick et al., 1992).

Altering neuronal and synaptic properties is one way of creating different ‘func-

tional’ circuits from a fixed set of interconnected neurons.  The traditional concept

of a central pattern generator as a hardwired neural circuit which produces a fixed

output pattern is thus being replaced by that of a “family” of circuits, a set of modi-

fiable neurons and connections, which can be reorganized to produce different

outputs as external and internal conditions change (Harris-Warrick and Marder,

1991; Marder and Weimann, 1992).  Some examples of neural circuits that are

used to generate the motor patterns underlying multiple behaviors come from the

studies of Tritonia withdrawal and swimming (Getting and Dekin, 1985), crab for-

ward and reverse scaphognathite beating (Simmers and Bush, 1983),

Pleurobranchaea feeding, regurgitation, and rejection (McClellan, 1982), and the

crustacean gastric and pyloric nervous system (Weimann et al., 1991).

Work on more complex central pattern generators (such as the flight system of

the locust (Robertson, 1986) or the spinal cord of vertebrates (Grillner et al., 1991;

Grillner and Wallén, 1985)) has shown that the identification of component neurons

and their interconnections does not necessarily yield a clear functional understand-

ing of the circuits.  Such circuits are often more “complicated” than appears neces-

sary to generate a limited set of observable behaviors.  In addition, because a
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central pattern generator circuit probably contains elements which serve several

functions, it is hard to identify by inspection the components which are essential for

the generation of a single behavior.  In other words, the dissection of a complex

circuit into its component parts does not necessarily lead directly to an understand-

ing of the computational rules or algorithms that it employs.  One of the clearest

demonstrations of the limits of our intuition comes from a theoretical study of pairs

of neurons connected through reciprocal inhibitory synapses (Wang and Rinzel,

1993).  In this study, Wang and Rinzel showed that the behavior of such a circuit

depends critically on the time constant of decay of the inhibitory synaptic conduc-

tance.  If this time constant is short, the neurons oscillate in antiphase; if it is long,

however, the neurons fire in synchrony, despite their inhibitory reciprocal coupling.

Even seemingly simple ideas, therefore, need to be carefully tested and explored.

An alternative strategy to exhaustive electrophysiological analysis of complex

circuits and characterization of their component neurons is to use a limited experi-

mental data set to generate artificial models, whose behavior can then be exhaus-

tively challenged.  This strategy, in time, leads to new specific questions about the

biological system that can be addressed experimentally, and to the gradual addi-

tion of constraints on the modelled circuit.  We adopted such a multidisciplinary

strategy in the study of central pattern generating circuits underlying terrestrial lo-

comotion in insects.  We focused on the thoracic circuits controlling the three pairs

of legs of locusts.  Because the front, middle, and hind legs have unique morpholo-

gies and functional roles during walking, we focused here on the differences be-

tween the patterns of rhythmic activity generated by the three segments.  Arguing

that, although different, these rhythms should be produced by similar central pat-

tern generating networks (the three thoracic ganglia being essentially homologous

repeats of a single ontogenetic design), we then attempted to design a simplified
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generic circuit capable of producing all three output patterns.  This paper describes

one such successful circuit.

Although computer simulations are now widely used to model various aspects

of neural systems, silicon (hardware) models are less commonly used.  Yet silicon

models are extremely useful in testing the ability of a model to function with real

physical constraints such as noise and device imperfections (Mead, 1989).  In ad-

dition, because silicon models operate in real time, feedback to the experimenter is

immediate.  Moreover, Very Large Scale Integrated (VLSI) circuits can be easily

interfaced to mechanical actuators to build systems which interact with the environ-

ment, such as mobile robots (DeWeerth et al., 1991).  Several types of spiking

“neural” circuits have been successfully modelled in silicon hardware.  Pulse stream

encoding of information has been used in data communications applications and

neural networks for a number of years (Murray et al., 1991; Mahowald et al., 1992).

Ryckebusch et al. (1989) described silicon models of invertebrate central pattern

generators using simple spiking neurons and synapses.  Similar neuronal circuits

have been used successfully in silicon models of auditory localization (Lazzaro and

Mead, 1989) and the jamming-avoidance response of weakly-electric fish

(LeMoncheck, 1992).  A detailed model of a single neuron which explicitly included

different membrane conductances and adaptation mechanisms was introduced by

Mahowald and Douglas (1991).  Our approach thus combined biological experi-

ments, computer simulations, and silicon hardware designs, to study central pat-

tern generators underlying terrestrial insect locomotion.
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Methods

Electrophysiology

Experiments were performed on adult locusts Schistocerca americana of ei-

ther sex, from our crowded laboratory colony.  The results presented here were

gathered from 44 different experiments.

The preparation.  Experiments were performed on an in vitro thoracic prepara-

tion described previously (Ryckebusch and Laurent, 1993).  Briefly, thoracic gan-

glia were removed from the thorax of the animal with the surrounding tracheal sup-

ply and air sacs undisturbed, and were pinned down in a chamber lined with Sylgard

184 (Dow Corning Co., Midland, MI).  Leg motor nerves were carefully stripped of

their surrounding connective tissue with a small hooked pin.  The preparation was

superfused with locust saline (mM: NaCl: 140; KCI: 5; CaCl
2
: 5, NaHCO

3
: 4, MgCl

2
:

1, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (Hepes): 6.3; pH 7.0) supple-

mented with 2.5% (wt/vol) sucrose.  Air was supplied to the ganglia by teasing open

the tracheae at the surface of the saline.  A stock solution of 10-2 M pilocarpine

hydrochloride (Sigma) was prepared in advance, and was added to the saline to

final bath concentrations of 10-5 to 10-4 M.  The preparation remained healthy for at

least 4 or 5 hours at 20 to 26°C.

Recordings.  The electrical activity of different leg motor nerves was monitored

extracellularly using polyethylene suction electrodes.  Data were recorded on an

eight-channel Digital Audio Tape recorder sampling at 5 kHz (Sony/Biologic), and

were displayed on a Gould TA4000 chart recorder.
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Anatomy and nomenclature.  The muscles are numbered according to

Snodgrass (1929), except where a variant is now more commonly used in the lit-

erature.  The nerves are numbered according to Bräunig (1982).  Motor neurons

are designated by commonly used abbreviations or by the name of the muscle

group that they innervate.  Detailed descriptions of the innervation of the leg mus-

culature can be found in Campbell (1961), Bräunig (1982), and Siegler and Pousman

(1990a).

Analysis.  Electrophysiological recordings were analyzed off-line with a

Macintosh II microcomputer, after digitization at 2 to 8 kHz with a National Instru-

ments NBMI016L AD/DA interface.  The software packages used for data analysis

were Spike Studio (Eli Meir, Cornell University), Matlab (The MathWorks), and

Kaleidagraph (Abelbeck Software).

The centrally generated rhythm observed in the present experiments was char-

acterized by two main phases, hereafter referred to as the levator and depressor

phases, corresponding to the activities of levators and depressors of the trochanter.

The onset of a burst of activity in trochanteral levators was chosen as the reference

for the rhythmic activity.  A period is defined as the interval from the onset of a

levator burst to the onset of the next levator burst.

Computer simulations

Spike:  Event-Driven Simulation.  “Spike” is a fast event-driven simulator writ-

ten by Lloyd Watts (Caltech, Synaptics), optimized for simulating networks of spik-

ing neurons and synapses.  The key simplifying assumption in Spike is that all

currents injected into a cell may be composed of piecewise-constant pulses (i.e.,
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boxcax pulses).  All integrated membrane voltage trajectories are therefore piece-

wise linear in time.  This simple representation is well-suited for investigating sys-

tem-level questions that rely on detailed spiking behavior.  The simulator operates

by maintaining a queue of scheduled events.  The occurrence of one event (i.e., an

action potential) usually causes later events to be scheduled in the queue (i.e., end

of refractory period, end of post-synaptic current pulse).  The total current injected

into a neuron is integrated into the future to predict the time of firing, at which time

a neuron spike event is scheduled.  If any of the current components being injected

into the cell subsequently change, the spike event is rescheduled.  The simulator

runs until the queue is empty or until the desired run-time has elapsed.

NeuraLOG.  Neural Schematic Capture.  “NeuraLOG” is a schematic entry

tool, which allows the convenient entry of “neural” circuit diagrams, consisting of

neurons, synapses, test inputs, and custom symbols.  NeuraLOG is a customization

by Lloyd Watts of the program AnaLOG, by John Lazzaro and Dave Gillespie

(Caltech).  The parameters of the neural elements are entered directly on the sche-

matic diagram; these parameters include the neuron refractory period, duration

and intensity of the post-synaptic current pulse following an action potential, satu-

ration value of summating post-synaptic currents, tonic input currents, axonal de-

lays, etc.  Custom symbols can be defined, so that arbitrarily complex hierarchical

designs may be made.  For example, one can create a complex “neuron” (e.g.,

bursting neuron) containing many neuron and synapse primitive elements.  Spiking

inputs may be supplied as external stimuli in a number of formats, including single

spikes, periodic spike trains, periodic bursts, (Poisson) random spike trains, and

gaussian-jittered periodic spike trains.  Textual input to Spike is also possible, to

allow simulation of algorithmically-generated circuit topologies too complex to specify

graphically.
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NeuraLOG and Spike were both created by Lloyd Watts, and are distributed

under the GNU General Public Licence.  Send email to Iloyd@pcmp.caltech.edu

for information.

Neuron and Synapse Models.  The model neuron and synapse circuit primi-

tives we used both in our simulations and in the VLSI implementation were devel-

oped by Lloyd Watts as abstract models which capture some of the basic charac-

teristics of biological neurons and synapses.  These circuit elements are the primi-

tive elements in the NeuraLOG/Spike simulator described above.  Since both the

neuron and synapse circuits were designed as electronic VLSI circuits, it is rela-

tively straightforward to implement in VLSI a given model circuit which was de-

signed and sirnulated using NeuraLOG/Spike.  Detailed mathematical analysis of

the neuron circuit at the transistor level can be found in Sarpeshkar et al. (1992).

General descriptions of the circuit models and the simulation tools can be found in

Watts (1992, 1993).  We will briefly describe these circuits here in biological terms.

The model neuron circuit is similar to a Hodgkin-Huxley sodium-potassium conduc-

tance pair.  This neuron circuit takes as its input a current, and generates as its

output a train of pulses whose height is determined by the voltage of the power

supply (typically 5 volts).  The pulses are fired only if the input node, which is inte-

grating the input current, reaches the threshold voltage.  The firing frequency in-

creases with the input current until the upper frequency limit (saturation) set by the

refractory period is reached.  The neuron circuit has three parameters: a threshold,

a pulse width, and the refractory period of the action potential.  The circuit opera-

tions underlying the generation of a pulse can be described in biological terms as

follows.  A persistent “sodium conductance” causes the rising phase of the action

potential.  The “sodium conductance” activates, after a delay, a “potassium conduc-
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tance” that is coupled to it.  This “potassium conductance” restores the membrane

potential to its “resting” value and causes the falling phase of the action potential.

The “potassium conductance” inactivates slowly in a time-dependent (but not volt-

age-dependent) manner, causing a “refractory” period after the firing of the action

potential.

A simplified synaptic cleft model is the basis for the synapse circuit.  An action

potential from the presynaptic “neuron” causes the release of “neurotransmitter”

into the synaptic cleft, where it remains for a controlled duration.  While “neurotrans-

mitter” is in the cleft, a constant current is injected into the postsynaptic cell.  The

“synapse” circuit therefore has two parameters: the duration of a synaptic event

and the synaptic current which flows into the postsynaptic cell.  Any number of

“synapses” can be connected to a “neuron” circuit.

VLSI implementation

The VLSI implementation of the neuron circuit contains eight transistors and

can operate over wide ranges of firing frequency, pulse width, refractory period,

and threshold.  The firing frequency can be varied from 0.1-0.5 Hz to 100 kHz.  The

pulse widths and refractory periods of the action potentials can be varied from a

few tens of microseconds to hundreds of milliseconds.  The threshold for firing can

be varied from approximately 0.7 volts to the power supply voltage (5 volts).  A

typical neuron with its synaptic inputs measures approximately 100 x 250 µm (Fig.

6B).  The entire 3-neuron circuit contains 97 transistors and measures 400 x 600

µm.  VLSI circuits were designed using the layout editor LEdit (Tanner Research)

on a Hewlett Packard workstation.  The chip was fabricated in a standard 2-micron

double-poly CMOS (Complementary Metal-Oxide Semiconductor) process on a 2
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x 2 mm 40-pin die (TinyChip) (Fig. 6A).  Chip fabrication was provided by the De-

fense Advanced Research Projects Agency and through the MOSIS service.  Data

acquisition was performed using a Macintosh microcomputer with a National In-

struments NBMI016L AD/DA interface running Matlab (The MathWorks).

Abbreviations

CI common inhibitor

CMOS Complementary Metal-Oxide Semiconductor

dep depressor

Df fast depressor trochanteris

Ds slow depressor trochanteris

lev levator

troch trochanter

VLSI Very Large Scale Integrated

Results

Pro- , meso-, and metathoracic ganglia produce different rhythmic patterns

Metathoracic rhythm

The rhythmic patterns evoked in leg motor neurons in isolated metathoracic

ganglia by pilocarpine have been described in detail in Ryckebusch and Laurent

(1993). Those results are summarized here for the purposes of comparison.

The frequency of the pilocarpine-induced rhythm increased approximately lin-
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early from 0 to 0.2 Hz with concentrations of pilocarpine from 10-5 to 10-4 M. For

each hemiganglion, the rhythm was characterized by two main phases: a levator

phase, during which the anterior coxal rotator, levators of the trochanter, flexors of

the tibia, and common inhibitory motor neurons were active; and a depressor phase,

during which depressors of the trochanter, extensors of the tibia, and depressors of

the tarsus were active.  During normal walking these two phases would correspond

to the swing and stance phases of a step of the hind leg, respectively.  Trochanteral

depressor activity followed the trochanteral levator bursts with a short, constant

interburst latency such that activity in the two antagonistic groups did not overlap.

The levator phase was short in comparison to the cycle period (0.5 to 2 sec, or 10%

to 20% of the period), and was independent of the cycle period.  The interval be-

tween the end of a levator burst and the beginning of the following one thus in-

creased with cycle period.  The depressor phase was more variable, and was usu-

ally shorter than the interval between successive levator bursts.  A second depres-

sor burst was sometimes observed during the latter half of a cycle.  This second

burst generally coincided with a levator burst on the contralateral side and always

ended before the onset of the ipsilateral levator burst.

All depressor trochanteris motor neurons were active during the same phase,

although their spiking thresholds differed substantially.  In inactive preparations (no

pilocarpine), Df was silent and Ds was tonically active.  At low levels of activity, the

tonic firing of Ds was interrupted during the bursts of trochanteral levator activity;

this interruption was followed by a transient increase in firing frequency.  Variations

of the instantaneous firing frequency of Ds were mirrored by those of the mem-

brane potential of Df, which was hyperpolarized during a levator burst, and depo-

larized immediately after it.  As the level of activity increased, the tonic firing of Ds

ceased, and short, clearly defined, bursts of action potentials emerged.  Df action
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potentials were often observed when Ds reached its peak instantaneous firing fre-

quency.

Prothoracic rhythm

We recorded extracellularly from leg motor nerves 4A (trochanteral levators)

and 5A (trochanteral depressors) of isolated prothoracic ganglia.  From nerve 4A,

we recorded the activity of up to 10 motor neurons.  From nerve 5A, we recorded

the activity of the fast and slow trochanteral depressors Df and Ds and a common

inhibitory motor neuron CI (Fig. 1).  In inactive preparations (no pilocarpine), Df

was silent and Ds was tonically active.  The prothoracic rhythmic motor patterns

recorded in the presence of pilocarpine differed in several respects from the met-

athoracic ones.  During rhythmic activity, Ds maintained a high tonic firing rate, and

was periodically inhibited during the bursts of trochanteral levator activity (Fig. 1,

Figure 1.  Rhythmic patterns of activity of

levator and depressor trochanteris motor

neurons in isolated pro-, meso-, and meta-

thoracic ganglia.  In each pair of traces, the

top trace is an extracellular recording of

nerve 4A (trochanteral levators) and the bot-

tom trace is an extracellular recording of

nerve 5A (trochanteral depressors, CI).  Pilo-

carpine: 10-5 M (pro), 10-5 M (meso), 3 x 10-5

M (meta) (Scale bar: 5 sec).
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top).  The rhythmic activity could be elicited at lower concentrations of pilocarpine

(ca. 10-5 M) than that which was typically used for the metathoracic ganglion (5 x 10-

5-10-4 M).  The frequencies (inverse of cycle period) typically recorded were higher

than those in the metathoracic ganglion at similar concentrations of pilocarpine.

Although both prothoracic trochanteral levator burst durations and interburst inter-

vals were shorter than the metathoracic ones, the higher frequency was mainly due

to shorter intervals between trochanteral levator bursts (Figs. 1 and 2).  Whereas

metathoracic Ds and Df fired at the highest rate immediately after a trochanteral

levator burst, the highest firing frequency of prothoracic Ds and Df occurred before

Figure 2.  Spike frequency histograms of tro-

chanteral levator and depressor motor

neuronactivity as shown in Fig. 1. Data is

compiled from 30 (pro), 132 (meso) and 53

(meta) periods of activity from single continu-

ous recordings.  The reference is the onset

of a burst of trochanteral levator action po-

tentials.  The scale on the ordinate is the to-

tal number of action potentials in each bin,

and represents a cumulative total for all of

the periods of activity that were analyzed.
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trochanteral levator bursts (Figs. 1 and 2).  Overlap between levator and depressor

activities was often observed at the beginning of a trochanteral levator burst (Fig.

2).  In the isolated prothoracic ganglion, we typically did NOT observe a postinhibitory

increase in depressor firing frequency after a trochanteral levator burst, although

the latency between the end of a levator burst and resumption of tonic firing of Ds

was shorter than that observed in the metathoracic ganglion (Fig. 2).  Whereas in

the metathoracic ganglion we often saw coupling between depressors and the con-

tralateral levators (i.e., the firing frequency of depressors increased during a con-

tralateral levator burst), we rarely saw such bilateral coupling in the prothoracic

ganglion. (A detailed analysis of intersegmental coupling is the object of a following

publication.)

Mesothoracic rhythm

The rhythmic activity recorded in the mesothoracic ganglion was similar in

most respects to that in the prothoracic ganglion, as described above.  The main

difference observed was that the depressor motor neurons (Ds and Df) had marked

peaks of activity both immediately before and after a levator burst (Figs. 1 and 2).

This pattern of activity was somewhat variable: In some preparations, the mesotho-

racic depressors fired maximally before the levator burst (as was described for the

prothoracic ganglion); in other preparations, the depressors fired maximally after a

levator burst (as was observed in the metathoracic ganglion); in still other prepara-

tions, depressor activity was equally high both before and after a levator burst.  In

most preparations, each of these patterns occurred at some time.  The frequencies

of the rhythmic activity were similar to those of the prothoracic ganglion, as de-

scribed above.
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A simple configurable model circuit

The aim of the simulation studies described here was to test model circuit

designs which could produce the different motor patterns recorded in the isolated

pro-, meso-, and metathoracic ganglia.  The goal of this modelling study was there-

fore to explore possible circuit designs of a central pattern generator which would

be flexible enough to produce all of these motor patterns.  Such modulation of the

motor pattern should be achievable by simple and biologically realistic mechanisms

in the model circuit.  The actual structures of the biological circuits, however, are

Figure 3.  An abstract model circuit for generat-

ing pro-, meso-, and metathoracic motor pat-

terns.  A.  A “bursting” neuron can be modeled

by two “cells” connected by reciprocal syn-

apses.  Cell 1 makes a weak excitatory syn-

apse onto cell 2. Cell 2 makes a strong inhibi-

tory synapse onto cell 1. In addition, cell 1

makes an excitatory connection onto itself (posi-

tive feedback).  With the addition of a small

excitatory input drive into cell 1, the output of

cell 1 consists of bursts of action potentials

separated by a silent period.  Note that in such

a model circuit, cells 1 and 2 represent state

variables rather than actual cells.  B.  Three-neuron model circuit, consisting of a “Drive” neuron and

levator (Lev) and depressor (Dep) motor pool drivers.  Drive and the levator motor pool driver are

bursting neurons.  Filled bars represent excitatory synapses, and filled circles represent inhibitory

synapses.  The three motor patterns (pro-, meso- and metathoracic) can be obtained by modifying

the strength of the excitatory synapse between Drive and the levator neurons (Il).  For details see

Results and Appendix.
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unknown at this point.  Such a circuit was designed using abstract models of neu-

rons and synapses using the NeuraLOG/Spike circuit simulator (see Methods).  It

should be emphasized that this circuit was designed so that it would be both simple

and easy to implement using available VLSI technology (see below).

The bursting neuron

A bursting neuron, which produces rhythmic bursts of action potentials, was

constructed using two primitive neuron circuits (Fig. 3A).  Two neuron circuits were

needed to obtain an equivalent neuron with enough state variables to generate

bursting behavior.  In Appendix B, we describe another bursting neuron model which

uses only a single cell, but requires a more sophisticated model of the synapse.  In

the burster circuit (Fig. 3A), cell 1 makes a weak excitatory synapse onto cell 2. Cell

2, in turn, makes a strong inhibitory synapse onto cell 1. In addition, cell 1 makes an

excitatory feedback synapse onto itself.  In response to an excitatory input drive

(such as a constant current or a train of action potentials fed through an excitatory

synapse), cell 1 fires bursts of action potentials.  The activity of cell 1 is taken to be

the output of the bursting neuron.  The firing frequency of cell 1 during a burst is

determined by the magnitude of its positive feedback current.  The duration of the

burst is determined by the strength of the excitatory synapse from cell 1 to cell 2,

and the interval between bursts is determined by the strength of the excitatory input

drive into cell 1. The burst duration and interburst interval are therefore indepen-

dently determined.

The central pattern generator circuit

The entire model circuit, shown in Fig. 3B, is composed of two bursting neu-
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rons as described above (Drive and Lev) and one non-bursting neuron (Dep).  Lev

represents the drive to the pool of trochanteral levator motor neurons, and Dep

represents the drive to the pool of trochanteral depressor motor neurons.  For sim-

plicity, we will often refer to Dep and Lev as levator and depressor neurons.  Since

connections between motor neurons do not occur in the locust circuits, we consider

levator and depressor motor neurons to be followers, rather than fundamental com-

ponents of the central pattern generating circuits.  The connections shown between

Lev and Dep in the model circuit are therefore not connections between pools of

motor neurons, but between the central drives to these motor neurons.

In this model circuit, Drive makes excitatory synapses onto Lev and Dep, and

Lev makes an inhibitory synapse onto Dep.  The ability of this circuit to produce the

different patterns of levator and depressor activity depends on the relative strengths

of the excitatory synapses, Il and Id . In particular, by simply modifying the strength

of Il , the output of the circuit can be changed from a prothoracic-like pattern, where

the activity of Dep precedes Lev, to a metathoracic-like pattern, where the activity

of Dep follows the activity of Lev.  Intermediate mesothoracic-like patterns are ob-

tained in the transition region between prothoracic and metathoracic patterns.  The

operation of the model circuit can be understood as follows: Drive receives a con-

stant depolarizing input, which causes it to burst rhythmically (see previous de-

scription of burster neuron). When Drive is active, it excites both Lev and Dep.  If Il

is weaker than Id , Dep reaches threshold sooner than Lev, and fires as long as it is

being driven.  Once Lev reaches threshold, it fires a burst of action potentials,

inhibiting Dep.  Since Lev is a bursting neuron, its burst of activity eventually ends.

This first pattern, shown in Fig. 4 (PRO), is similar to the prothoracic rhythmic pat-

tern described above (Figs. 1 and 2).  Note that Fig. 4 shows the outputs of two

different depressor neurons (a “fast” depressor Depf and a “slow” depressor Deps)
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with different thresholds.  The activities of these neurons differ only in that Deps

fires tonically in its resting state.  Compare with the activities of the biological neu-

rons Df and Ds (Fig. 1, lower traces).

If, on the other hand, Il is stronger than Id , Lev reaches threshold sooner than

Dep.  Once Lev begins to spike, Dep is inhibited.  Only when Lev stops firing is Dep

released from inhibition sufficiently to fire a burst of action potentials.  This pattern,

shown in Fig. 4 (META), is similar to the metathoracic rhythmic pattern described

above and shown in Figs. 1 and 2. In order for Dep to fire a burst of action potentials

Figure 4.  Results of the simulation of the model circuit shown in Fig. 3B using NeuraLOG/Spike.

Shown are levator (Lev) and depressor (Dep) activities for three different values of Il , the synaptic

strength of the excitatory synapse from Drive to Lev (Fig. 3B).  In this simulation, two different Dep

neurons were simulated, one fast (Depf) and one slow (Deps).  In the three sets of traces, the top

trace is the output from Lev, the middle trace is the output from Depf, and the bottom trace is the

output from Deps. Compare with Fig. 1 (Scale bars: 5 secs, 2 volts).
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upon release from inhibition, it must receive sufficient excitatory input to drive it to

threshold.  This can be accomplished in this model circuit in either of two ways. (i)

If Drive has a longer burst duration than Lev (t > tl ), Dep will continue to receive

excitatory input from Drive once it is no longer being inhibited by Lev.  This is a

simple condition to achieve, since the burst durations of Drive and Lev can be

controlled independently.  If, however, the burst duration of Drive is set too long,

Lev may be depolarized enough to generate another burst, leading to anomalous

“double bursts” in the activity of Lev. (ii) In the simulation, the excitation to Dep was

prolonged by making the time constant of decay of the excitatory current Id very

long.  As a consequence, Dep is being depolarized by a persistent excitatory cur-

rent for a certain time τd after the Drive burst terminates.  The mathematical analy-

sis shown in Appendix A is general enough to allow one or both of the conditions to

hold.

For intermediate values of the synaptic strength Il , Dep fires a burst of action

potentials both before and after a burst of activity in Lev.  This output is therefore

similar to the mesothoracic rhythmic pattern (Figs. 1, 2, and 4).

Spike frequency histograms of the simulation output are shown in Fig. 5. This

figure should be compared with Fig. 2, which shows the spike frequency histo-

grams of electrophysiological data from locust thoracic ganglia.  One difference

between the figures is the shape of the levator spike frequency histogram.  This

histogram is bell-shaped in Fig. 2, whereas it is square in Fig. 5. This difference is

mainly due to the different numbers of neurons whose activity is represented in the

histograms.  In Fig. 2, data was obtaining by pooling all of the trochanteral levator

action potentials on nerve 4A, which included up to 10 motor neurons with different

thresholds.  As can be seen from Fig. 1, a trochanteral levator burst consists of
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action potentials from many different motor neurons, with the largest number of

neurons participating near the middle of a burst.  In contrast, the simulation in Fig.

5 only included a single levator neuron (Lev).  A similar bell-shaped distribution

would be obtained by pooling the activities of many levator motor neurons driven

by Lev, but with different thresholds.

In Fig. 2, substantial overlap between activities of the levators and depressors

of the trochanter can be seen, particularly for the pro- and mesothoracic patterns.

Figure 5.  Spike frequency histograms of the simulated

trochanteral levator and depressor neuron activities

shown in Fig. 4. Data compiled from 238 periods of ac-

tivity from single continuous output traces.  The refer-

ence is the onset of a burst of trochanteral levator action

potentials.  The scale on the ordinate is the total number

of action potentials in each bin, and represents a cumu-

lative total for all 238 periods of activity that were ana-

lyzed.  Compare with Fig. 2.
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This overlap is much smaller in the simulation histograms in Fig. 5. Such overlap

can be obtained in the simulation by weakening the inhibition between the levators

and depressors, which would allow some co-activity between the antagonists (Fig.

3B).

VLSI Implementation

We designed, fabricated, and tested a VLSI implementation of the simulated

model circuit described above (see Methods).  Fig. 6A shows a picture of the entire

VLSI chip layout, and Fig. 6B shows the depressor neuron layout.  The electronic

circuit implemented on the chip was essentially the same as the simulated circuit,

since, as described in Methods, the circuit primitives used in the simulator were

developed on the basis of existing electronic circuits.  The different parameters in

Figure 6.  A VLSI implementation of the model circuit shown in Fig. 3. A. Graphical design of the

entire chip, measuring 2 x 2 mm.  The model circuit is in the upper left corner of the chip (Scale bar:

250 µm).  B. Expanded view of a single non-bursting neuron circuit (Scale bar: 50 µm).

A B
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the model were represented as voltages which could be externally controlled.  The

synaptic strength Il (Fig. 3B) was represented as a single voltage parameter.  Fig. 7

shows voltage outputs of the chip operating at different frequencies.  Fig. 7A, for

example, shows the output from the levator and depressor drives for three different

values of Il .  As was shown in the simulation (Figs. 4 and 5), as Il  is increased, the

output of the circuit moves smoothly from a prothoracic (top) to a mesothoracic

(middle), and finally to a metathoracic (bottom) rhythmic pattern.  All other circuit

parameters were unchanged.  Figs. 7B and 7C show the same behavior as Fig. 7A,

but at different time scales.  In each case, the circuit parameters were adjusted for

operation of the circuit at a given time scale, but only Il  was then modified to gener-

ate the pro-, meso-, and metathoracic rhythmic patterns.  We verified that the chip

can operate in a stable manner in the frequency range of 0.1 to 10OHz.

Figure 7.  Output of the VLSI circuit.  A.

Output of electronic levator and depres-

sor neurons for three different settings of

the synaptic strength Il (see Fig. 3).  This

synaptic strength is modified by changing

the gate voltage on a single transistor.  In

the three sets of traces, top trace is output

from a “levator” neuron and bottom trace

is output from a “fast depressor” neuron.

Compare with Figs. 1 and 4.  B-C.  Same

figure as in A, except that the chip is oper-

ating at different time scales (note scale

bars in A, B, and C). The circuit can oper-

ate over four orders of magnitude of fre-

quency.



171

The circuit was most stable (i.e., the operating range of circuit parameters was

widest) at higher frequencies of operations.  In an attempt to quantify the decreased

circuit stability at lower frequencies of operation, we studied the operating range of

a single parameter (Il ) for different time scales of circuit operation (Fig. 8).  We

chose the synaptic current Il  since it is this parameter that determines the output of

the circuit model.  For each frequency of circuit operation, we measured the amount

by which Il needed to be changed to switch from a prothoracic to a metathoracic

pattern (defined to be the “range” of Il ).  On the chip, Il  is determined by externally

setting the voltage on the gate of a single transistor.  Since the synaptic currents in

the chip could not be measured, Il was estimated from the gate voltage and was

normalized.  The range of Il  was determined for five different frequencies of circuit

operation (Fig. 8).  As can be seen in Fig. 8, the range of Il  decreased monotoni-

cally as the cycle period increased.  This is because slow operation of the circuit is

achieved by reducing all currents in the electronic circuitry.  Therefore, excursions

Figure  8.  Range of the synaptic current Il as

a function of the period.  The range of Il is de-

fined as the difference in synaptic current re-

quired to switch the circuit from a “prothoracic”

rhythm to a “metathoracic” rhythm (Il(meta) -

Il(pro)).  Since the synaptic currents in the chip

could not be measured, values of the currents

were estimated from voltage measurements

and normalized.  The range was determined for five different time scales, represented on the ab-

scissa as the period.  Note that both the current range and the period are plotted on log scales.  That

the circuit is more stable at higher frequencies of operation (smaller periods) can be attributed to the

larger ranges over which parameters can be modified at these frequencies.
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in circuit parameters needed to switch between two states are correspondingly

smaller.  Since all of the currents in the circuit are smaller at lower frequencies, we

would expect the operating ranges of all of the different circuit parameters to de-

crease in a similar way.  This decrease in operating range of the parameters is

closely related to the increased instability of the circuit at lower frequencies.  When

currents are very small, instabilities due to noise and device imperfections have a

greater effect on circuit operation.

Mathematical analysis

We developed a simple theoretical analysis of the circuit model shown in Fig.

3B and described above.  The mathematical details can be found in Appendix A.

We computed expressions which describe the behavior of the circuit as Il  is varied.

These expressions express the widths of the bursts of activity of depressor drives

before and after a levator burst as functions of Il (Fig. 9A).  In Fig. 9A, we can see

that the width of the depressor burst which precedes a levator burst (w1) decreases

as Il  increases, and the width of the depressor burst which follows a levator burst

(w2) increases as Il  increases.  Different regions of the graph (shaded area, delim-

ited by asymptotes) correspond to the production of pro-, meso-, and metathoracic

rhythmic patterns.  For small values of Il , w2 = 0 and the depressor activity pre-

cedes the levator activity.  This corresponds to the prothoracic rhythm.  For inter-

mediate values of Il , both w1 and w2 are greater than zero, and the depressor

activity both precedes and follows a levator burst.  This corresponds to the me-

sothoracic rhythm.  For large values of Il , w1 = 0 and the depressor activity follows

the levator activity.  This corresponds to the metathoracic rhythm.  In Fig. 9B, we

show measured values of w1 and w2  from the output of the integrated circuit as Il

is varied.  The solid lines are fits of the forms given by the theoretical expressions
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for w1 and w2  (see Appendix A).  Note that since Il  is controlled by a voltage, exact

values of the current, Il  could not be determined.  The abscissa therefore repre-

sents a normalized current.

Discussion

We have shown that pilocarpine induces rhythmic activity in leg motor neurons

of isolated locust pro-, meso-, and metathoracic ganglia.  The patterns recorded in

the three ganglia differed in their sensitivities to pilocarpine, their frequencies, and

the phase relationships of motor neuron antagonists.  The different patterns we

Figure 9. Comparison of chip performance and

theoretical analysis.  A. Graph of theoretical

expressions for w1 and w2 (see Appendix and

inset in Fig. 9B) as a function of the magni-

tude of Il , the excitatory current from Drive to

the levator motor pool driver (Fig. 3).  Solu-

tions lie within the shaded rectangle delimited

by the asymptote W2(∞) and the constraint

I
min

.  See Results and Appendix for details.  B.

Measured values of w1 and w2 from integrated

circuit output, as a function of the current Il .

Solid lines are fits of the form given by the

theoretical expressions derived in the Appen-

dix and plotted in A. Because Il  was modified

by changing a voltage on the integrated cir-

cuit, exact current values could not be deter-

mined.  The current on the abscissa is there-

fore a normalized current.
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observed could be generated by a simple adaptable model circuit, which was both

simulated and implemented in VLSI hardware.

Locomotor rhythm generation in thoracic segments

Given that locomotor rhythms could be induced by pilocarpine in the isolated

locust metathoracic ganglion (Ryckebusch and Laurent, 1993), it is perhaps not

surprising that such rhythms could also be recorded in isolated pro- and mesotho-

racic ganglia.  This result supports the idea that there exist distinct pattern generat-

ing circuits for leg movements in each thoracic ganglion or hemiganglion.  This is in

contrast to other insect central pattern generators (CPGs), such as those underly-

ing flight and ventilation.  The flight central pattern generator, which controls two

sets of wings in the locust, is known to be distributed in both the meso- and the

metathoracic ganglia (Robertson and Pearson, 1983; 1985; Robertson, 1986).  It

has been established that ventilatory rhythms are produced by a dominant central

pattern generator in the metathoracic ganglion; indeed, respiratory rhythms recorded

in the pro- and mesothoracic ganglia cease when the connectives to the metatho-

racic ganglion are sectioned (Farley et al., 1967; Miller, 1960, 1966, 1967).

Perhaps more surprising is our finding that the phases and frequencies of the

evoked rhythms differ in the three thoracic ganglia.  These differences in rhythmic

patterns may reflect the intrinsic physical differences between the three pairs of

insect legs.  The front legs are oriented toward the front of the body, whereas the

hind legs are oriented toward the rear.  This implies that the intrinsic locomotor

rhythms for these legs must differ, as the sequence of levator and depressor activ-

ity (protraction and retraction) would be different during a step.  Cruse (1976) has

found that the three pairs of legs in stick insects have different functions during
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walking and the maintenance of posture.  During horizontal walking, the foreleg

has primarily a feeler function, while the middle leg has a supportive function and

the hind leg has both supportive and propulsive functions.  These roles can change,

however, if the insect walks on a non-horizontal surface, which implies that indi-

vidual segmental oscillators, already tuned in a segment-specific manner, in addi-

tion must have the capability of adapting their output in response to the changing

functional role of the limb which they move.

Differences in intrinsic frequencies of the segmental rhythms might also be

related to the morphological differences of the limbs.  It has been observed in be-

havioral experiments that, during tethered walking, the insect hind leg can exhibit

either 1:1 or 1:2 coupling with the front and middle legs (N.  Hatsopoulos, personal

communication; Graham 1978a,b);  i.e., the front and middle legs occasionally make

two steps for one step of the hind leg.  Since the hind leg is longer than the front or

middle legs, it compensates for a missed step by making a larger amplitude step at

the next cycle.  That the step frequencies of the hind leg are lower than those of the

front and middle legs in walking animals is consistent with the finding that locomo-

tor patterns recorded from isolated metathoracic ganglia are slower than those

produced by the pro- and mesothoracic ganglia.  Several models of insect walking

have in fact proposed an anterior-posterior gradient of frequencies for the thoracic

segments, with the hind segment having the lowest intrinsic frequency (Wilson,

1966; Graham, 1977; reviewed in Graham, 1985).  Such a frequency gradient ap-

pears to be necessary to produce appropriate phase lags and coupling between

the legs, and can also explain the occasional absences of rear leg protractions.  It

will be interesting to study the patterns of activity of the other motor neuron pools

such as the tibial and tarsal motor neurons and compare them to the corresponding

metathoracic patterns (Ryckebusch and Laurent, 1993).  We already established,



176

however, that the phase relationships between trochanteral antagonists are tuned

in a segment-specific manner.

Adaptable neural circuits

Our basic assumption in designing a model pattern generating circuit was that

the locomotor circuits in segmentally homologous thoracic ganglia were likely to be

very similar, despite the different rhythmic output patterns they generated.  In the

model we devised, the output pattern could be switched between those character-

istic of the pro-, meso-, and metathoracic ganglia by modifying a single synaptic

coupling parameter in the circuit.  There are now numerous examples of biological

pattern generating circuits which can produce several rhythmic patterns: the pyloric

and gastric mill rhythms in the stomatogastric system of crabs (Weimann et al.,

1991); withdrawal and swimming in Tritonia (Getting and Dekin, 1985), forward and

backward scaphognathite beating in crabs (Simmers and Bush, 1983); jumping

and kicking in the locust (Gynther and Pearson, 1989), to name only a few.  In

some of these systems, the switch from one pattern to another is accomplished

under the action of a neuromodulator which alters cellular and synaptic properties

of the circuit elements.  For example, the crustacean gastric mill motor pattern can

be switched from “squeezing” to “cut-and-grind” mode under the action of the pep-

tide proctolin (Heinzel and Selverston, 1988; Heinzel, 1988).  Although in most

systems the detailed mechanisms by which neuromodulators alter circuit proper-

ties are not known, the modification of a synaptic strength to alter circuit dynamics

has been demonstrated in the crustacean stomatogastric nervous system, where

application of the peptide proctolin potentiates the inhibitory synapse from the infe-

rior cardiac (IC) neuron to the gastric mill (GM) neurons, causing the GM neurons

to switch from a gastric to a pyloric pattern of activity (Weimann, 1992).
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Although any biological pattern generator is likely to be far more complex than

the simple model which we have designed, some of the mechanisms we propose

could be imbedded in a larger neural circuit.  Some simple central pattern genera-

tor circuits, such as that underlying feeding in the snail Lymnaca stagnalis (Ben-

jamin and Elliott, 1989) have been shown to use mechanisms similar to those em-

ployed by our model circuit.  The Slow Oscillator (SO) in Lymnaea plays a role

much like that of Drive in our model circuit.  SO initiates, maintains, and controls the

frequency of the snail feeding pattern, provided it receives a constant depolarizing

input.  SO is the primary source of excitatory drive to a small network of interneu-

rons forming the central pattern generator, which in turn provides the drive to a set

of buccal motor neurons.  The interneurons (Nl, N2, and N3) which form the core of

the central pattern generator produce rhythmic output as a result of their intrinsic

properties (e.g., endogenous bursting, postinhibitory rebound, plateau potentials)

as well as their synaptic connections.  Nl and N2 form a network reminiscent of the

design of our two-neuron “bursting” neuron, with slow excitation from Nl to N2 and

delayed inhibition from N2 to Nl.  N3 is first inhibited by Nl, and then produces a

postinhibitory burst of action potentials, which is similar to the Lev-Dep interaction

in our model network.

Design of realistic walking robots

The VLSI implementation of the model circuit we designed operated robustly

over 4 orders of magnitude of frequency, despite physical constraints such as noise

and device imperfections.  The chip exhibited the behavior predicted by theoretical

calculations and computer simulations.  Because a complete understanding of bio-

logical sensory-motor systems requires an understanding of the real-world context
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within which they operate, physical models of biological circuitry can be valuable

tools for the neurobiologist.  Designing physical devices such as sensory systems

and mechanical actuators that interact with the real world need not be the exclusive

domain of the engineer.  Physical devices such as walking robots could provide

biologists with a platform on which to test ideas about the design of biological cir-

cuitry.  We will use such techniques, for example, to explore the intersegmental

coupling between thoracic locomotor circuits, as well as the role of sensory infor-

mation in shaping motor outputs.  We believe that such an interdisciplinary ap-

proach will help to uncover the design principles of the biological circuit, while at the

same time allowing the design of more adaptable walking robots.
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Appendix i: A mathematical description of the levator-depressor model

Variables

C : Capacitance of neurons

VT : Neuron spike threshold

Il : Magnitude of excitatory synaptic current from Drive to Lev

Id : Magnitude of excitatory synaptic current from Drive to Dep

Ild : Magnitude of inhibitory synaptic current from Lev to Dep

τd : Duration of synaptic current from Drive to Dep

w1 : Duration of Dep burst preceding Lev burst

W2 : Duration of Dep burst following Lev burst

t : Duration of Drive burst

tl : Duration of Lev burst

Assumptions

1. The excitatory synapse from Drive to Dep is strong (Id  is large).  We assume

that Id >> Il  for the pro- and mesothoracic solutions.

2. Inhibition of Dep by Lev is stronger than the excitatory drive to Dep

(|Ild | > Id).

3. The synaptic current Id persists for a time td.  All other synaptic currents

decay quickly.
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Derivations

Given the above assumptions, one can derive the following expressions for w1

and W2 :

W1   =      
CVT  —   

CVT (1)

W2   =   t  +  τd — tl — ( CVT  —  
CVT ) (2)

We can see from (2) that w2 > 0 if t or τd  are sufficiently large, as was de-

scribed above (see Results). t > tl  if the Drive burst is longer than the Lev burst.

That τd  is large is the same as saying that the excitatory drive to Dep has a slow

time constant of decay.  One or both of these conditions need to be true to obtain a

positive value for w2 .

Constraints

For this circuit to operate in the desired range, the current Il must satisfy the

following constraint, represented graphically in Fig. 9A by a vertical dashed line:

Il    >  Imin  =  CVT (3)

Il Id

Il Id

t
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This constraint expresses the requirement that the time needed for Lev to charge

its membrane to threshold must be less than t, the duration of the Drive burst.

If Il  < Imin , Lev will remain silent, and Dep will receive excitatory input from

Drive but no inhibition.

Asymptotes

W2 (∞) = lim W2 = t + τd — tl +  CVT (4)

lim W1 = — CVT (5)

Solutions of interest

1. Prothoracic solution (w2 = 0)

This solution will occur when

Imin <  Il  <    
  C VT                                 (6)

The solution only exists when  tl > τd   (i.e., if the duration of a Lev burst is longer

than the duration of the excitatory drive to Dep).

Id

Il→ ∞

Id

Il→ ∞

t - tl + τd
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2. Mesothoracic solution (w1 > w2)

C VT        <   Il   <    
  2 C VT (7)

3. Mesothoracic solution (w1 < w2)

2 C VT        <   Il   <  Id                                 (8)

4. Metathoracic solution (w1 = 0)

This solution will occur when Il   >  Id  .

t - tl + τd t - tl + τd

t - tl + τd
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Appendix ii : An alternative design for the bursting neuron using summating

synapses

We describe here an alternative design for a bursting neuron using new fea-

tures recently incorporated in the NeuraLOG/Spike simulator.  In the earlier version

of the simulator, synaptic events consisted of square pulses of “neurotransmitter”

with a fixed amplitude and duration (see Methods).  These events did not summate;

i.e., if two presynaptic action potentials occurred in close succession, the amplitude

of the “neurotransmitter” released at the synapse as a result was no greater than

that caused by a single action potential.  The only effect of a presynaptic train of

action potentials was to prolong the duration of the presence of “neurotransmitter”

in the “synaptic cleft.”  The design of a bursting neuron as a two-neuron circuit was

a direct consequence of this limitation of the simulator.  Indeed, to build a neuron

capable of slow membrane potential oscillations, a mechanism is needed for stor-

ing the “history” of the activity of the neuron.  In biological neurons, this can be

accomplished by the accumulation of intracellular calcium caused by the genera-

tion of action potentials.  The intracellular calcium concentration is a representation

of the time integral of the spiking history of the neuron.  In the bursting neuron

circuit described above (see Fig. 3A and Results), cell 2 was used to store informa-

tion about the activity of cell 1. Repeated action potentials from cell 1 led to the

gradual depolarization of cell 2. A new feature of NeuraLOG/Spike allows the “neu-

rotransmitter” at a “synaptic cleft” to summate.  If a second action potential occurs

before the end of the pulse of “neurotransmitter” due to the first action potential, the

net amount of “neurotransmitter” during that time will be twice as large.  In addition

to the magnitude and duration of a synaptic event, the number of pulses which can

be summated (i.e., the maximum amount of neurotransrnitter in the synaptic cleft)

can now also be specified as parameters in the simulator.  This new feature allows
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a bursting neuron to be implemented by a single “neuron” circuit (Fig. 10A) with

excitatory and inhibitory feedback conductances.  When the neuron has reached

threshold in response to an excitatory current input, it will begin to fire action poten-

tials at a rate determined by the characteristics of the excitatory feedback in much

the same way as the previous bursting neuron circuit (Fig. 3A).  While the neuron is

Figure 10.  An alternative model for the bursting neuron.  A. Using an improved synapse model (see

Appendix B), a bursting neuron can be represented by a single neuron with excitatory and inhibitory

feedback conductances.  B. Output of the bursting neuron in response to a constant excitatory

input, simulated using NeuraLOG/Spike (Scale bars: 1 volt, 10 sec).  C-D.  Expanded view of a

single burst (top trace), excitatory (middle), and inhibitory (bottom) feedback currents for different

characteristics of the excitatory feedback current Ie , as described in Appendix B (Scale bars: 1 volt,

2 sec).  Note that, here, different firing patterns within a burst can be achieved by changing the

properties of the excitatory feedback Ie .
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firing, a slow feedback inhibition builds up.  The summating property of the synapse

allows the inhibition to slowly increase during the course of the burst.  As the cumu-

lative inhibition increases, the frequency of action potentials decreases until the

neuron eventually stops firing (Fig. 10B).  The firing frequency of the neuron during

a burst thus depends on the interaction between the excitatory and inhibitory feed-

back.  Figs. 10C and D show how the characteristics of a burst can be modified by

changing the excitatory feedback conductance.  If this excitatory feedback is small

and slowly increasing, the firing frequency of the neuron will increase during the

burst, reach a peak, and then decrease again (Fig. 10C).  If, on the other hand, this

excitatory feedback very quickly reaches its maximum amplitude, the firing fre-

quency of the neuron will be highest at the beginning of a burst, and will slowly

decrease during the course of a burst (Fig. 10D).  Although the ability of NeuraLOG/

Spike to simulate summating synapse makes it possible to simulate much more

sophisticated circuits, this new feature will currently not be useful to the VLSI chip

designer who uses NeuraLOG/Spike to develop hardware models, since there does

not yet exist a VLSI circuit implementation of the summating synapse.
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Appendix B: Simultaneous Paired Intracellular and Tetrode Recordings for

Evaluating the Performance of Spike Sorting Algorithms

Preface

This paper is also unrelated to the work described in the main body of the

thesis. It arose out of a collaboration with John Pezaris and Maneesh Sahani, and

will appear in Wehr et al. (1998).

Abstract

Understanding the function of neural ensembles is increasingly recognized to

require simultaneous recordings from multiple neurons.  One technique for record-

ing from several neurons at once is multiunit recording, in which the signal from an

electrode contains spike waveforms from multiple neurons.  This approach requires

the use of a spike sorting algorithm to assign each spike waveform to a candidate

source.  Evaluating the performance of spike sorting algorithms requires a priori

knowledge of the “right answer”: the correct classification for a given multiunit re-

cording.  Intracellular recording can unambiguously assign spikes to a single neu-

ron, thus providing the correct classification if signals from that neuron simulta-

neously appear in a multiunit recording.  Further, paired intracellular recording from

two neurons appearing in a multiunit recording allows the unambiguous resolution

of spike waveform overlaps.  We present here a data set consisting of single and

paired intracellular recordings from neurons which were concurrently recorded on

a tetrode.  We use this data to evaluate currently used spike sorting algorithms for

isolated as well as overlapped events.  In addition, these data are used to address
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the following fundamental questions about the properties of extracellularly recorded

waveforms: Do extracellular spikes combine additively, so that an overlapped event

is the simple superposition of the two component events?  Can the spike-to-spike

variability of the action potential shape from a given cell be quantitatively described?

Independent intra- and extracellular observations of the same spiking neuron allow

us to address these questions directly.

Until recently, the function of neural assemblies was typically inferred from

repeated recordings of single neurons.  This inference depends critically on the

assumption that time-dependent interactions between neurons can be neglected.

With the advent of electrophysiological techniques for simultaneously recording

from multiple neurons, many groups have found evidence for temporal interactions

between neurons (Gray, 1994; Nicolelis et al., 1997; Singer and Gray, 1995).  This

suggests that in order to understand the function of neural ensembles, simulta-

neous recording from multiple neurons is crucial.

Many types of electrodes can record action potentials simultaneously from

multiple neurons.  It is, however, difficult to unambiguously assign each waveform

to a distinct neuron.  For example, a conventional metal electrode placed in neural

tissue can often record spikes from several neurons, but the spike waveforms from

these cells may appear quite similar, hampering the task of identifying the source

for each spike.  Several algorithms have been devised to solve this spike sorting

problem.  Some methods extract characteristic parameters from each spike, such

as height and width, and then search for distinct clusters in the parameter space,

while others use the entire spike waveform (Fee et al., 1996) and include explicit

noise models (Lewicki, 1994).
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Particularly troublesome are overlapping waveforms generated when two neigh-

boring neurons fire near enough in time that the individual action potential wave-

forms interfere at the single recording site.  Some algorithms attempt to resolve

these overlaps, for example by subtracting candidate spike waveforms and search-

ing for remaining candidates.  Other spike sorting algorithms merely discard over-

lap events.

Multiwire electrodes, such as tetrodes (Recce and O’Keefe,1989), offer signifi-

cant advantages in addressing the spike sorting problem (Fee et al., 1996; Sahani

et al., 1998a,b; Gray et al., 1995).  These electrodes, essentially bundles of fine

wires, use close-packed recording sites to generate multiple views of the electrical

landscape at the electrode tip.  A cell which is closer to one site will produce a larger

waveform on that site than at other, slightly more distant recording sites.  Since

each cell has a unique spatial position, and thus a unique pattern of distances to

each recording site, each neuron should in principle have a characteristic pattern of

waveforms across the multiple channels.  All that is required is an algorithm for

decoding the four tetrode signals into the spike trains of the different neurons that

were recorded.  Several such algorithms have been devised; these face many of

the same challenges as single electrode spike sorting algorithms.

Evaluating the performance of a spike sorting algorithm, whether for single

electrodes or for tetrodes, requires that we know the “right answer.” Running a

spike sorting algorithm on a multiunit recording will produce inferred spike trains

from some inferred number of neurons.  In order to know how well an algorithm is

doing, one must have access to the true spike trains to see if and how they differ

from the output of the algorithm.  Knowledge of the true spike trains is essential for
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developing an algorithm or for comparing its performance to that of other algo-

rithms.

Currently this type of performance evaluation is done using synthetic data sets,

so that the right answer is known a priori.  Synthesizing such a data set requires

assumptions, such as how the signals add in situ, how the noise adds, and what

the distributions of noise and spike waveform shapes are, among others.  These

assumptions may in fact overlap with those on which the spike sorting algorithms

themselves depend.  Thus synthetic data sets are not suitable for testing the valid-

ity of these assumptions, and are perhaps not optimal for evaluating the perfor-

mance of spike sorting algorithms.

To test these assumptions directly, and thereby objectively evaluate the perfor-

mance of a spike sorting algorithm, we need real data (multiunit recordings) for

which we know the right answer.  Intracellular recording can provide the membrane

potential of a single neuron, and thus the right answer: unambiguous assignment

of spikes to a known neuron.  Thus one could determine one of the true spike trains

in a tetrode recording by simultaneously recording intracellularly from one of the

neurons which is being recorded by the tetrode.  This holds equally well for single

electrode multiunit recordings, which can be considered as a special case of tet-

rode recordings (in which three of the four signals are discarded).  Resolution of

spike waveform overlaps requires the identity and spike times of both neurons in-

volved (at least for two-spike overlaps).  This requires simultaneous intracellular

recording from two of the neurons appearing on the tetrode signal.

Two other yet unanswered questions are also addressed here.  Existing algo-

rithms for the decomposition of spike overlaps depend critically on the assumption
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of linearity, but the linearity of overlaps remains untested.  Do extracellular spikes

combine additively, so that an overlapped event is the simple superposition of the

two component events?  A second question regards intrinsic spike waveform vari-

ability.  Can the spike-to-spike variability of the extracellular action potential shape

from a given cell be quantitatively described? Only with spikes independently known

to arise from a single neuron can this variability be characterized.

Methods

The preparation:  Experiments were carried out in vivo on adult female locusts

(Schistocerca americana).  Animals were restrained dorsal side up, the head was

immobilized with beeswax, and a watertight beeswax cup was built around the

head for saline superfusion.  A window was opened in the cuticle of the head cap-

sule, between the compound eyes, and air sacs on the anterior surface of the brain

were carefully removed.  For stability, the esophagus was sectioned anterior to the

brain, and the gut was removed through a distal abdominal section which was

subsequently ligatured.  The brain was treated with protease (Sigma type, XIV),

gently desheathed, and supported with a small metal platform.  The head capsule

was continuously superfused with oxygenated physiological saline (in mM: 140

NaCl, 5 KCl, 5 CaCl
2
, 4 NaHCO

3
, 1 MgCl

2
, 6.3 HEPES, pH 7.0) at room tempera-

ture.

Electrophysiology:  Intracellular recordings were made using conventional sharp

glass microelectrodes pulled with a horizontal puller (Sutter P-87), which were filled

with 0.5 M KAc and with DC resistances of 100-300 MΩ.  Intracellular recordings

were done in bridge mode using an Axoclamp 2A amplifier (Axon Instruments) from

the third optic lobe (lobula).  Data are based on 28 single neuron intracellular re-
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cordings, and 6 paired intracellular recordings, from 7 animals.  Tetrode recordings

were made using 4 strands of 15 µm tungsten wire with FormVar insulation (Cali-

fornia Fine Wire) twisted at ~10 turns/cm, which had impedances of 0.4-0.7 MΩ at

1 kHz.  The tip was freshly cut at an acute angle using fine surgical scissors before

each penetration.  Tetrode recordings were done in the lobula, 50-100 µm medial to

the site of intracellular recordings (see Figure 1).  Recordings were made of spon-

taneous activity under these conditions for up to 15 minutes at a time.  The retinotopic

organization of the insect optic lobes, combined with the existence of large integra-

tive neurons in the lobula, allowed simultaneous intracellular impalement of tet-

rode-recorded neurons at distances of up to a hundred microns from the tetrode

tip.

Figure 1. Photomicrograph of locust head capsule taken directly following a recording session.
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Data acquisition:  All signals were amplified and low-pass filtered at 10 kHz

(tetrode signals were additionally high-pass filtered at 0.1 Hz) using an 8-pole ana-

log Bessel filter (BrownLee Precision), digitized at 50 kHz with 16-bit resolution

(Tucker Davis Technologies), and stored on the hard disk of an IBM-compatible

PC.  The continuous voltage recordings were processed off-line using in-house

packages written for Matlab.  The recordings were digitally high-pass filtered at 250

Hz and events were obtained by threshold detection on either the tetrode or intra-

cellular signals only.  The peak values for each event were extracted and clustered

using established Expectation-Maximization (E-M) techniques (for details on the

sorting algorithm used, see Sahani et al., 1998a,b).  For details on covariance

analysis, principal components analysis, and non-stationary components analysis,

see Wehr et al. (1998).

Results and discussion

Figure 2 shows an example of simultaneously recorded traces from this ex-

periment.  Tetrode channels T1-4 are displayed at the top, and intracellular chan-

nels I1 and I2 are displayed underneath.  This shows a typical tetrode recording

where each of the large spikes appears across the four channels with a character-

istic amplitude signature, with the simultaneous intracellular recordings shown in

the two lower traces.  The tetrode recording contains signals from (at least) four

identifiable cells, two of which were impaled with the intracellular electrodes.  This

recording will be used as a running example for the remainder of this paper.  Figure

3 shows the spike-triggered average waveforms of the six channels, triggered on

each of the two intracellular channels.  This reveals the tetrode waveform associ-

ated with action potentials from the two impaled cells shown in Fig. 2.
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Spike sorting performance

We used these data to measure the performance of a spike-sorting algorithm

based on maximum likelihood techniques (Sahani et al., 1998a,b).  The algorithm

consists of two stages.  In the first stage, heuristics and robust fitting techniques

were used to define clusters of events that belong to a single cell (for details see

Sahani et al., 1998a,b).  We did not attempt to exhaustively classify all spikes at

this stage, and specifically rejected overlapped events.

Figure 2.  Example of simultaneously

recorded raw traces.  A is an ex-

panded view of the region in B indi-

cated by the horizontal dotted line

below.  In both A and B, the top four

traces (T1-T4) are the four tetrode

extracellular voltages, the bottom two

traces (I1, I2) are the two intracellu-

lar voltages.  The intracellular traces

are unfiltered (except for anti-alias

filtering at 10 kHz) to demonstrate

their raw waveforms.  Note that in-

tracellular records in following figures

are high-pass filtered at 250 Hz to

facilitate accurate event detection,

resulting in waveforms uncharacteristic of intracellular records.  Based on the spike amplitudes,

rising phase shapes, after-hyperpolarization amplitude, and synaptic background, I1 was likely im-

paled in a distal dendrite far from the spike initiation zone, whereas I2 was likely impaled in a

primary neurite relatively near the spike initiation zone.

PIST 97-12-18/07 13.000-14.000 sec

3µV
30mV

100 ms

10ms

3µV
30mV

A

B
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Figure 4 shows the results of a clustering run.  The models were fit in the eight-

dimensional principal subspace.  The data are plotted in the space of event peaks

(Fig. 4a), and the optimal four-dimensional linear discriminant space (Fig. 4b).  The

dark green cluster (which corresponds to an impaled cell in this recording) would

be difficult to isolate by hand, i.e., the cluster is not well isolated in Fig. 4a.  The

coordinate transformation which results in Fig. 4b, however, optimally isolated the

clusters and shows good separation for the dark green cluster.

At the clustering stage we were most interested in the purity of each cluster.

Two clusters corresponded to impaled cells (blue and dark green ellipses in Fig. 4).

The blue cluster contained 862 spikes of which 831 (96.3%) came from a single cell

(verified intracellularly).  Only three additional spikes from that cell (0.4%) were

misassigned to other clusters.  The dark green cluster contained 190 events with

183 (96.3%) of these from the other impaled cell.  Ten spikes from this cell (5.5%)

were misassigned.

M1

T
1

T
2

T
3

T
4

I1

 1  2  3  4 5ms

I2

M2

 1  2  3  4 5ms

PIST 97-12-18 a07fs123f.au

Figure 3.  Spike-triggered average

waveforms of the six channels, trig-

gered on each of the two intracellular

channels.  M1 and M2 are the means

of I1 and I2 events, respectively.  The

apparent phase delay between the

extra- and intracellular signals is likely

due to the high impedance of sharp

glass microelectrodes.
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Figure 4.  Clustergram plots of sorting output.  The ellipses indicate fits generated from cluster

analysis of the first eight principal components.  The blue and dark green clusters (indicated by

arrows) correspond to the impaled neurons.  A:   Action potential peak heights for each tetrode

channel T1-T4 plotted against each other.  Axes are in scaled volts.   B:   The same data transformed

to the optimal four-dimensional linear discriminant subspace.  This representation improves the

discriminability of clusters.  Axes are in arbitrary units.

At present we have not performed a strong test of the second stage of our

sorting procedure due to difficulties with suitable decorrelation (whitening) of the

signal.  (Some features of the noise distribution in these data are different from

those used to develop the sorting algorithm, which were recorded in primate pari-

etal cortex).  Note that this stage includes decomposition of overlap events.  A

preliminary run on unwhitened data was performed to detect spikes belonging to

the blue cluster.  There were a total of 1052 such spikes (taken from the intracellu-

lar data).  Of these 999 were correctly detected (95.0%), however 124 additional

spikes were incorrectly grouped in with these (11.8%).  Such false-positives are

likely to be reduced once the filtering procedure is correctly applied.

A B
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Linearity of overlaps

Do events overlap additively?  That is, given two neural sources, do the sig-

nals combine linearly when recorded through an extracellular probe?  To our knowl-

edge the linearity of extracellular signals remains untested.  The answer to this

question is important because it determines if and how overlaps are decompos-

able.

For simplicity, consider the case where each of two cells fires exactly once.

Figure 5a shows an overlap event between spikes from each impaled cell.  If spike

waveforms combine additively, we should be able to reconstruct the recorded over-

lap by taking the sum of the two waveforms recorded independently.  Mathemati-

cally, this is expressed as follows:

v(t) = v
1
(t-τ

1
) + v

2
(t-τ

2
)

Where v is the observed voltage, v
1
 is the voltage due to the spike from one

cell, v
2
 the voltage due to the spike from a second cell, and τ

1
 and τ

2 
are the firing

times of the two cells.

Since spikes are short, we know that the equation above is true when τ
1
 and τ

2

are very different.  But what about when τ
1
 ≈ τ

2
?

To experimentally verify the equation, we estimated v
1
 and v

2
 by averaging all

events identified from intracellular traces I1 and I2, respectively (taking advantage

of the assumption that  v
i
(t) = 0 for t ≈/     0.  We passed the intracellular voltages I1 and

I2 independently through threshold detectors, sampled all 6 channels for 5 ms at
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each crossing, and averaged over events.  From these, we computed M1, the mean

of all I1 events, and M2, the mean of all I2 events.  These spike triggered averages

are shown in Figure 3.  By using the means, we assumed that the influence of any

external interference was time-independent and evenly positive and negative, and

therefore the mean reflected the underlying signal.  Then, we selected the instances

when the two cells fired at nearly the same time, and compared the actual record-

Figure 5. Spike waveform overlap. A:   Overlap event seen across all six channels (heavy lines).  T1-

T4 are the tetrode channels and I1-I2 are the two intracellular recordings.  The voltage predicted by

additive combination is shown by dotted lines.  Scaled square error between the actual and pre-

dicted voltage is shown by fine lines.  B: Expanded view of T2, with the spike-triggered average

from each neuron (M1 and M2, appropriately time-shifted ) shown in fine lines, the recorded overlap

shown by the heavy line, and the voltage predicted by additive combination (i.e., M1+M2) shown by

the dotted line.

A   B
T1

T2

T3

T4

I1

1  2  3  4  5 ms

I2

PIST 97-12-18 a07fs123f.au di10(1106)

100 µs

M1, M2

data

M1+M2
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ing around these events to the sum of M1 and M2 shifted appropriately as deter-

mined by the intracellular signals.  The results are depicted in Figs. 5-6.  The pre-

dicted waveform (dotted lines in Fig. 5a) closely matches the actual waveform (heavy

line).  Fig. 5b is a closeup of one channel showing the components from each

model (fine lines), their sum (dotted line), and the actual data (heavy line).  For

additively combined spikes, we would expect the simple sum of the models to ac-

curately predict the shape of overlap events.  Actual voltage is shown as a function

of predicted voltage in Fig. 6, demonstrating that the additive prediction is valid

Figure 6.  This plot shows, on a sample-by-sample basis for one channel, the values predicted by

adding the two models M1 and M2 together with the appropriate time shift (as shown in Fig 5b),

against the actual values seen for the 88 overlapped events in this recording.  The solid line is the

best linear fit to the points; the open circles show unity-slope; and filled symbols are the means and

standard deviations for the data as partitioned along the horizontal dimension.  The linear fit for this

channel (T2) of our running example has a slope of 1.025 and an intercept of -0.01.
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across the entire voltage range.  The region of increased density near 0 (baseline

voltage) does not correspond to increased variance, as shown by the standard

deviations (filled symbols) which were nearly constant across the entire voltage

range.  The increased density near 0 is a simple consequence of the voltage spending

proportionally more time near that value (see Fig.  5a).  The error distribution was

the same across all voltages.  This demonstrates that the actual value seen during

overlaps closely matched the sum of shifted non-overlapped signals within experi-

mental noise.  We conclude that overlapping extracellular waveforms behave lin-

early.

 Spike waveform variability

We selected all tetrode events associated with a single impaled cell and exam-

ined the resulting noise distribution.  We aligned the events to the center of mass of

the thresholded peak region of the extracellular trace.  Fig. 7 shows a histogram of

the coefficients of the first principal component of the resulting distribution.  The

dotted line indicates a Gaussian fit.  The distribution exhibits strong tails that lead to

severe non-normality.  However, when we fit the distribution in a robust manner

with a maximum likelihood (EM) technique, using a default uniform distribution to

describe the outliers, we observed that the remainder was well modeled as Gaussian

Figure 7. Histogram of first principal component coeffi-

cients. The dotted line is a Gaussian fit to the data, and

the solid line is a fit with a combination of a Gaussian

and a uniform distribution to describe the outliers.  Non-

spike noise appear to be Gaussian distributed.
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(solid line).  Spike waveform variability therefore appeared to be Gaussian distrib-

uted after outliers were removed.

We then fit the distribution in the robust manner described above and exam-

ined the covariance of the Gaussian component (Fig. 8).  The covariance was non-

stationary, as can be seen by the non-uniform distribution along the diagonal.  We

then decomposed the covariance matrix into stationary and non-stationary parts by

an EM algorithm equivalent to carrying out factor analysis in the Fourier-transformed

space.  By analogy with Principal Components Analysis, we call this Non-Station-

ary Components Analysis.  Figures 9b and 9c show the stationary and non-station-

ary components of the covariance matrix, respectively.  The matrix reconstructed

from these two components (Fig. 9d) closely matched the original covariance ma-

trix (Fig. 9a).  The stationary component corresponds to additive background noise,

whereas the non-stationary component corresponds to intrinsic spike waveform

variability.  From the non-stationary component of the covariance matrix, we com-

puted the major modes of non-stationary variability, shown in Figure 10.  These

modes illustrate the ways in which spike waveforms varied from event to event.

Figure 8. Full covariance matrix

for tetrode channels T1-T4.  The

spike-triggered averages are

overlaid for reference.  High co-

variance is red, low covariance is

blue.  The non-uniform distribu-

tion along the diagonals indicates

non-stationary covariance.
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For example, the first mode (dotted line) indicates that the predominant mode of

variability was an increase in amplitude (both a higher peak and deeper trough)

relative to the mean (heavy line).  The second mode (dashed line) indicates a broad-

ening of the action potential waveform compared to the mean.  The third mode (fine

line) corresponds to increased peak height and decreased trough depth, compared

Figure 9. Decomposition of covariance for tetrode channel T2 (A) into stationary (C) and non-sta-

tionary (B) components.  Reconstruction (D) from the two components closely matched the original

(compare D to A).  The stationary component of the covariance corresponds to non-spike noise

which is independent of the spike waveform.  The non-stationary component corresponds to intrin-

sic variability in the spike waveform from event to event.

non-stationary stationary

original

recontructed
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to the mean.

Conclusions

In conclusion, preliminary analysis of simultaneous paired intracellular and tet-

rode recordings demonstrates that one spike sorting algorithm (Sahani et al.,

1998a,b) performed 96% correct isolation and classification of signals from a tet-

rode.  Current research efforts are also directed towards an algorithm for the reso-

lution of spike waveform overlaps, and determining the performance of this algo-

rithm on overlaps (on the tetrode recording) between the two intracellularly identi-

fied cells.  Overlapping extracellular waveforms combine additively for the neurons

we recorded from.  Spike waveform variability could be decomposed into spiketime

jitter, stationary Gaussian non-spike noise, and several modes of non-stationary

variability.  Data sets will be made available; for more information contact John

Pezaris at pz@mit.edu.

Supported by NIH, NIMH, the Keck Foundation, the Alfred P. Sloan Founda-

tion, NSF, and ONR.

Figure 10. Modes of variability.  The mean (heavy

line) and first three modes of non-stationary vari-

ability about the mean are plotted here.  Intrinsic

variability in the spike waveform consisted of in-

creased peak and trough amplitude (mode 1, dot-

ted line), increased breadth (mode 2, dashed line),

or increased peak height (mode 3, fine line), all

relative to the mean.
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