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Chapter 2

Gravitational Waves and Their
Sources, Including Compact
Binary Coalescences

In this chapter we give a brief introduction to General Relativity, focusing on GW emission. We

then focus our attention on GWs from CBCs. The following presentation uses the conventions found

in [1].

2.1 Pillars of Relativity

Einstein developed the pillars of Relativity Theory in the early 20th Century, which can be summa-

rized by two thought experiments, or “gedankenexperiments.” These gedankenexperiments reveal

different implications of a single assumption, that the Laws of Physics are the same for everyone

observing an experiment.

The first application of this assumption was to the speed of light. Einstein assumed that the

speed of light was a constant, independent of an observer’s frame of reference. The conclusions

Einstein drew from this led him to develop the Special Theory of Relativity, which is useful in

Lorentz reference frames (i.e., those without gravity).

The second application of this assumption was the universality of the motion of objects in grav-

itational freefall. Einstein’ gedankenexperiment went as follows: suppose there are two observers

observing the motion on a object in freefall in their local reference frame. Over small distances and
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times, they will observe the same motion of the object whether the motion is due to gravitational

acceleration towards a gravitating body (e.g., for an observer whose frame is resting on the Earth),

or due to a uniform acceleration of the reference frame (e.g., for an observer whose frame is in a

rocket ship that is constantly accelerating in a specific direction). From this gedankenexperiment,

Einstein concluded that the acceleration around a gravitating body is produced by a curvature of

spacetime in the object’s vicinity. Using this framework, Einstein developed the General Theory of

Relativity.

2.2 Einstein’s Equations

In the General Theory of Relativity, the equations that link the curvature of spacetime to the

presence of matter and energy are called the Einstein Field Equation (EFE) given as

Gµν =
8πG
c4

Tµν , (2.1)

where Gµν is the Einstein Tensor given by Gµν = Rµν − 1
2Rgµν , R = gµνRµν , Rµν = Rγµνγ , Rγµνγ

is the Riemann Curvature Tensor, gµν is the spacetime metric, and Tµν is the stress-energy tensor.

These equations tell matter how to move due to the curvature of spacetime and spacetime how to

curve due to the presence of matter.

2.3 Gravitational Wave Solutions

The EFEs not only describe how spacetime curvature is influenced in the presence of matter, it also

predicts how the curvature should propagate away from accelerating objects. Just as electromagnetic

waves are emitted and travel away from accelerating electric charges, GWs are emitted and travel

away from accelerating masses. If we are far away from the accelerating source, the EFEs simplify

to

Gµν = 0 . (2.2)
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In this region, the spacetime is essentially Minkowski except for the perturbations do to GWs:

gµν = ηµν + hµν , where ηµν is the Minkowski metric. Assuming these perturbations are small

so that all components of hµν � 1, we can calculate how these perturbations propagate using a

linearized version of the EFEs. In the following discussion, we follow closely the description found

in reference [1].

2.3.1 Linearized Gravity

To first order in hµν the EFE become

−h̄µν,αα − ηµν h̄αβ,αβ + h̄µα,
α
ν + h̄να,

α
µ = 0 , (2.3)

where h̄µν ≡ hµν − 1
2ηµνh and h ≡ ηαβhαβ . We can eliminate all of the terms after the first by

imposing the tensor analogue of the Lorentz gauge condition of electromagnetic theory, namely

h̄µα,
α = 0. This leaves us with the wave equation

h̄µν,α
α = 0 . (2.4)

This wave equation has plane wave solutions

h̄µν = <
[
Aµνe

ikαx
α
]
, (2.5)

where < [. . .] means the real part of [. . .]. From the wave equation we find kαk
α = 0, which means

k is a null vector and the waves travel at the speed of light. From the gauge condition h̄µα,
α = 0

we find Aµαk
α = 0, which means the amplitude tensor A is orthogonal to k.

At this point A has six degrees of freedom, however four of these can be pinned down with an

additional gauge specification. Let us choose Aµνuν = 0 where uν is a 4-velocity of a particular

frame. This fixes an additional three degrees of freedom. For the final gauge choice, let us choose
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Aµµ = 0. All of these constraints in a Lorentz frame with u0 = 1 and uj = 0 give

hµ0 = 0 , (2.6)

hkj,
j = 0 , (2.7)

hkk = 0 . (2.8)

The first of these equations implies only the spatial components of hµν are nonzero. The second

implies that the spatial components are divergence free. Finally, the third implies that hµν is trace

free. This gauge is called the transverse-traceless (TT) gauge because in this gauge hµν is transverse

to the time direction and the direction of propagation, and is trace free.

These gauge choices leave us with two degrees of freedom for the propagating waves. This can be

interpreted as two polarizations of GWs, the plus (+) and cross (×) polarizations, named for their

affect on test particles. In terms of the these polarizations and in the TT gauge, Aµν takes the form

Aµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (2.9)

2.3.2 Geodesic Deviation

Objects undergoing free motion will follow geodesics described by the geodesic equation

d2xλ

dt2
+ Λλµν

dxµ

dt

dxν

dt
= 0 . (2.10)

Consider two particles, A and B, separated by nj in a coordinate system that is a local Lorentz

frame along A’s world line. In this coordinate system the separation vector becomes nj = xB
j −

xA
j = xB

j , since A is at the origin. In a TT coordinate system that moves with particle A and

with its proper reference frame to first order in the metric perturbation hTT
jk , the geodesic deviation
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equation is written as

d2nj

∂t2
= −RTT

j0k0n
k . (2.11)

In the TT gauge the Riemann curvature tensor takes the simple form

Rj0k0 = −1
2
hTT
jk,00 . (2.12)

Using this along with the separation vector’s definition, the geodesic deviation equation becomes

d2xB
j

∂t2
=

1
2
∂2hTT

jk

∂t2
xB

k . (2.13)

This equation of motion can be integrated, assuming particles initially at rest relative to each

other, to obtain the location of B as a function of time in the proper reference frame of A

xBk(t) = xB
j(0)

(
δjk +

1
2
hTT
jk

)
, (2.14)

where hTT
jk should be evaluated at the location of A. The second in the parentheses on the right-hand

side can be viewed as a strain and is proportional to the metric perturbation hjk.

2.3.3 Gravitational-Wave Polarizations

As mentioned above, there are two degrees of freedom for a GW, which can be seen as distinct

polarizations. Let us consider a plane, monochromatic wave propagating in the z direction. In the

TT gauge of this wave, the gauge constraints (equation (2.6)) leave the only nonzero components of

hTT
µν

hTT
xx = −hTT

yy = <
[
A+e

−iω(t−z)
]
, (2.15)

hTT
xy = hTT

yx = <
[
A×e

−iω(t−z)
]
, (2.16)
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Figure 2.1: Effects of Passing Gravitational Waves
The effect of the + and × polarization GW passing perpendicular to a ring of test particles.

where A+ and A× are the amplitudes of the + and × polarizations, respectively, and ω is the

frequency of the GW.

Defining the polarization tensors e+ = (ex ⊕ ex)− (ey ⊕ ey) and e× = (ex ⊕ ey) + (ey ⊕ ex) we

find a GW can be decomposed into its independent polarizations as

hTT
jk = h+e+jk + h×e×jk . (2.17)

The effects of each polarization can be seen independently by looking at a circular ring of test

particles surrounding a central particle: let all of the particles lie in the plane perpendicular to the

direction of propagation of the incident GW. For an incident +-polarized wave, the polarization

tensor e+ shows that the test particles will oscillate about their circular equilibrium positions in

such a way that as the distance from the origin along the x direction increases, the distance from

the origin along the y direction decreases. This results in the circle being stretched and squeezed

along the x and y axes at one moment, and vice versa half a wavelength later. For a ×-polarized

wave, a similar thing happens, except rotated by 45◦. This effect is visualized in figure 2.1.
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2.4 Gravitational Wave Sources

In the case of electromagnetic radiation, a multipolar analysis reveals that electromagnetic waves are

sourced by, in order of significance, accelerating electric-charge monopoles, electric-charge dipoles

and electric-current dipoles, electric-charge quadrupoles and electric-current quadrupoles, etc. In the

case of gravitational radiation, the conservation of energy prevents radiation due to the acceleration

of mass monopoles, the conservation of linear momentum prevents radiation due to the acceleration of

mass dipoles, and the conservation of angular momentum prevents radiation due to the acceleration

of current dipoles. This results in the leading-order radiation coming from the acceleration of mass

quadrupoles.

In reference [2], Thorne gives the relationships between GW radiation and its source. Radiation

can be related to the source through the multipolar expansion. For Newtonian sources the relevant

multipolar moments are given by

IAl =
[∫
ρXAld

3x
]STF

, (2.18a)

SAl =
[∫

(εalpqxpρvq)XAl−1d
3x
]STF

, (2.18b)

where XAl = xa1xa2 . . . xal , ρ is the Newtonian mass density, v is the velocity, εijk is the Levi-Civita

tensor, and STF stands for the symmetric trace-free part.

For these sources, the radiation hTT
jk is given by

hTT
jk =

[ ∞∑
l=2

4
l!
r−1(l)Irad

jkAl−2
(t− r)NAl−2

+
∞∑
l=2

8
(l + 1)!

r−1εpq(j
(l)Srad

k)pAl−2
(t− r)nqNAl−2

]TT

, (2.19)

where (l)I and (l)S represent the lth time derivative of these moments, and NAl = n1n2 . . . nl.

The superscript “rad” denotes this as the moment in the radiation field, which is the same as the

moment in the near zone if we ignore nonlinear corrections proportional to ln(λ/2πR) where R is

the background curvature of the local universe.
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The energy and momentum carried away from a radiating system by GWs is given simply in the

form of the stress-energy tensor for GWs:

TGW
µν =

1
32π

〈
hTT
jk,µh

TT
jk,ν

〉
. (2.20)

Expanding the energy term (i.e., µ = ν = 0) in terms of the multipole moments, we find the

energy flux carried by the waves to be

dE

dt
=

∞∑
l=2

(l + 1)(l + 2)
(l − 1)l

1
l!(2l + 1)!!

〈
l+1IAl l+1IAl

〉
+
∞∑
l=2

4l(l + 2)
(l − 1)

1
(l + 1)!(2l + 1)!!

〈
l+1SAl l+1SAl

〉
, (2.21)

where l! = l(l − 1) · · · 2 · 1 and l!! = l(l − 2)(l − 4) · · · (2 or 1).

GWs can come any source with an accelerating mass or current multipole, however, in most

situations the dominant term in the multipole expansion is the l = 2 mass quadrupole. Different

types of sources can be characterized into the following categories: known-transient waveforms (e.g.,

compact binary signals), unknown-transient waveforms (i.e., burst signals), discernible and narrow-

band continuous wave sources (e.g., pulsar and white-dwarf binary signals), and indiscernible or

broad-band continuous wave sources (e.g., stochastic and confused white-dwarf binary sources). In

section 2.4.1 we derive the waveforms associated with compact binary signals. In section 2.4.2 we

briefly discuss additional examples and how each type of waveform is searched for.

2.4.1 Compact Binaries

One of the families of known transient waveforms is associated with compact binary systems (i.e.,

binary systems whose objects are either neutron stars or black holes). As these objects orbit each

other, they act as a source for GWs.

Compact binaries are interesting signals, in part, because they are so well understood. These

signals can act as standard candles for measuring astrophysical distances due to the fact that their



11

amplitude is uniquely determined by their phase evolution and the luminosity distance to the source.

In addition, GW signals from compact binaries are considered some of the most extreme probes of

General Relativity as the signals originate from objects that massively curve space-time and travel

at speeds approaching the speed of light.

2.4.1.1 Compact Binary Inspiral Waveforms

In this section we go over the leading-order effects in calculating a compact binary inspiral waveform.

To aid in this calculation, we assume the objects are Newtonian point particles with masses mA and

mB . In this case, the mass density term in equation (2.18a) become Dirac delta functions and the

quadrupole moment Ijk is given as

Ijk =

[∑
A

mAxAjxAk

]STF

=
∑
A

mA

(
xAjxAk − 1

3
δjkr

2
A

)
. (2.22)

The leading-order term in the GW radiation (equation (2.19)) is due to the mass quadrupole and

given as

hTT
jk =

2
D
ÏTT
jk (t−D) , (2.23)

where D is the distance from the source.

Let us assume these objects are in quasicircular orbits around each other described by Kepler’s

Laws where their orbital speed is related to their separation by

Ω =

√
M

r3
, (2.24)

where M = mA +mB is the total mass of the system, and r is the separation.

As these objects orbit each other, in a coordinate system whose origin is at the center of mass
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with the plane of the orbit in the x-y plane, their locations are given by

xA(t) =
µ

mA
r cos(Ωt) , (2.25a)

yA(t) =
µ

mA
r sin(Ωt) , (2.25b)

xB(t) = − µ

mB
r cos(Ωt) , (2.25c)

yB(t) = − µ

mB
r sin(Ωt) , (2.25d)

where µ = mAmB/M is the reduced mass of the system.

Using these trajectories and equation (2.22) for Ijk, we find quadrupole moments for this system

as

Ixx = r2µ

(
cos2(Ωt)− 1

3

)
, (2.26a)

Iyy = r2µ

(
sin2(Ωt)− 1

3

)
, (2.26b)

Ijz = r2µ

(
−δjz 1

3

)
, (2.26c)

Ixy = Ixy = r2µ sin(Ωt) cos(Ωt) . (2.26d)

As GWs leave the system, they carry away energy, which has a back-reaction effect on the

orbiting binary. The energy carried away by quadrupole radiation is given from equation (2.21) as

dE

dt mass quadrupole
=

1
5
〈...I jk

...I jk〉 , (2.27)

which, substituting these moments in, we find to be

dE

dt mass quadrupole
=

32r4µ2Ω6

5

〈
4 cos2(Ωt) sin2(Ωt) +

(
2 sin2(Ωt)− 1

)2〉
=

32r4µ2Ω6

5
. (2.28)
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Using the Keplerian relation equation (2.24), we find this to be

dE

dt mass quadrupole
=

32µ2M3

5r5
. (2.29)

The energy contained in the system as a function of their separation is given by the Newtonian

formula

E = −µM
2r

. (2.30)

As energy leaves, the orbiting objects sink further into their respective gravitational potentials,

causing their orbital separation to decrease. Assuming this energy loss occurs adiabatically, we can

find the orbital separation as a function of time. First, we find the derivative of the separation with

respect to time as

dr

dt
=

(
dE

dt

)
/

(
dE

dr

)
= −64µM2

5r3
. (2.31)

Integrating this, we find the separation as a function of time to be

r(t) =
(

256µM2

5

) 1
4

(tc − t)
1
4 , (2.32)

where tc denotes the time when r = 0.

We can use this result along with equation (2.24) to find the orbital frequency Ω(t) as a function

of time

Ω(t) =

(
256M 5

3

5

)−3
8

(tc − t)
−3
8 , (2.33)

where M = η3/5M is the chirp mass and η = µ/M is the symmetric mass ratio.
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We can now use equation (2.23) to find the quadrupole radiation as

hc(t) ≡ −hTT
xx = hTT

yy =
4r2(t)µΩ2(t)

D

(
cos2(Ω(t)t)− sin2(Ω(t)t)

)
=

4r2(t)µΩ2(t)
D

cos(2Ω(t)t) , (2.34a)

hs(t) ≡ −hTT
xy = −hTT

yx =
8r2(t)µΩ2(t)

D
sin(Ω(t)t) cos(Ω(t)t)

=
4r2(t)µΩ2(t)

D
sin(2Ω(t)t) . (2.34b)

We can split the radiation into separate parts for the amplitude evolution A(t) and the phase

evolution Φ(t). The radiation then takes the form

hc(t) = A(t) cos(2Φ(t)) , (2.35a)

hs(t) = A(t) sin(2Φ(t)) . (2.35b)

Using the formulae for the separation and orbital frequency evolutions, we find A(t) and Φ(t) to

be

A(t) =
4r2(t)µΩ2(t)

D

=
4µM
Dr(t)

=
5

1
4

D
M 5

4 (tc − t)
−1
4 , (2.36a)

Φ(t) =
∫

Ω(t)dt

= φ0 −
(
tc − t
5M

) 5
8

, (2.36b)

where φ0 is the orbital phase at coalescence.

The signal described by equations (2.36a and 2.36b) is characterized by a sinusoidal oscillation
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Figure 2.2: Inspiral Waveform
The frequency f and strain h evolution of an inspiral waveform given in arbitrary units.

that increase in both amplitude and frequency as a function of time (i.e., a chirp signal). This is

illustrated in figure 2.2, which shows both the frequency evolution and the strain evolution over a

few cycles near the end of an inspiral waveform.

This continues as long as there is a local minimum in the effective potential of the system. For

the Schwarzschild potential, which is the unique potential outside a spherically symmetric mass

distribution, there exists a local minimum for a test particle in a circular orbit around the object

down to a separation of 6M , called the innermost stable circular orbit (ISCO). At this point the

above derivation breaks down and we terminate the calculation of the waveform. This occurs at a

(tc − t) value of

(tc − t) =
405M
16η

, (2.37)

and a frequency of

fISCO =
1

6
√

6πM
. (2.38)

The bodies will then plunge together, merging, leaving a final perturbed black hole, which relaxes

through quasi-normal mode oscillations. These final stages of the coalescence we call the “merger”

and “ringdown.”
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2.4.1.2 Inspiral Waveform Approximants

The above derivation was a rather simple one using only the leading-order energy-loss terms and the

quadrupole approximation. All of these arguments have been expanded in Post-Newtonian (PN)

theory where matching between the near-zone gravitational field and the wave-zone gravitational

field is done. In various studies different assumptions and expansions are used to calculate these

waveforms to varying orders in v/c, where an nPN order calculation is a controlled Taylor expansion

up to (v/c)n. The following are a few examples: reference [3] computes waveforms to Newtonian

order in amplitude and 2PN order in phase, references [4, 5, 6, 7] use the Effective One Body (EOB)

approximation for the Hamiltonian to compute waveforms to Newtonian order in amplitude and

3PN order in phase, references [8, 9] use the Padé resummation technique to compute waveforms to

Newtonian order in amplitude and 3.5PN order in phase. All of the previous waveforms ignored spin

effects associated with angular momentum of the bodies. The SpinTaylor approximant is computed

to Newtonian order in amplitude and 3.5PN order in phase using formulae from references [10] and

based on references [11, 12, 3, 13, 14, 15, 8, 16].

An example waveform constructed at Newtonian order in amplitude and 2PN order in phase is

given similarly as above, however, in order to simply the expressions, we introduce a dimensionless

time variable

Θ =
( η

5M
(tc − t)

)1/8

. (2.39)

In terms of this new variable, the orbital phase is given by

Φ(t) = φ0 − 1
η

[
Θ5 +

(
3715
8064

+
55
96
η

)
Θ3 − 3π

4
Θ2

+
(

9 275 495
14 450 688

+
284 875
258 048

η +
1855
2048

η2

)
Θ1

]
. (2.40)

In this notation, equation (2.36b) is given by the first two terms on the right hand side of equation

(2.40).
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2.4.1.3 Inspiral Waveform Stationary Phase Approximation

When searching for these signals in GW detector data, it is convenient to convert these waveforms

to the frequency domain using the Stationary Phase Approximation (SPA)

h̃(f) =
A(t)√
ḟ(t)

eiΨ(f) (2.41)

= A(f)eiΨ(f) . (2.42)

In this approximation, the Newtonian amplitude A(f) is given as

A(f) =

√
5
24

( M5/6

π2/3Df7/6

)
, (2.43)

and the 2PN phase Ψ(f) is given in terms of a dimensionless frequency variable,

τ = (πMf)1/3
, (2.44)

as

Ψ(f) = 2πftc + φ0 − 3
128η

[
τ−5 +

(
3715
756

+
55
9
η

)
τ−3 − 16πτ−2

+
(

15 293 365
508 032

+
27 145

504
η +

3085
72

η2

)
τ−1

]
. (2.45)

2.4.2 Other Types of Gravitational Waves

Additional examples of transient situations in which the gravitational waveform is well modelled

include GWs from cusps traveling along cosmic strings, hyperbolic encounters between compact

objects, and ringdowns from perturbed black holes. Since the waveform is well modeled, GW signals

from these transients can be searched for using matched filtering, which we discuss in chapter 5, as

was used in references [17, 18, 19, 20, 21, 22, 23].

We call transient GW events “bursts” when their waveform is not well modeled. Examples of
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situations generating these types of signals include GWs from supernova and neutron star glitches.

In order to search for these types of signals, since the waveform is unknown, GW data is searched for

transient excess power. In order to ensure that these transients are not just noise in the detectors,

these types of searches require either coherent or coincident signals to be seen in multiple detectors.

Examples of searches that have been performed from the LIGO Scientific Collaboration can be found

in [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 23, 34].

Stochastic waves come from sources that are continuously emitting in either an incoherent fashion

or in such a large number that the signals at the detectors are confused and inseparable. Examples

of these types of sources include relic GWs from inflation, GWs from Galactic binary white-dwarf

systems, and GWs from slow-spinning Galactic pulsars. These types of signals are searched for by

looking for correlations between multiple GW detectors. Examples of these searches can be found

in [35, 36, 37, 38, 39, 40, 41, 42, 43].

Continuous wave sources are are defined as signals that are quasimonochromatic and are separable

from other sources. Such signals are commonly emitted by asymmetric spinning neutron stars, such

as pulsars. These signals are emitted from their source at a constant frequency, however when they

detected, they have been modified by Doppler shifts from motion due to the Earth’s rotation, the

Earth’s orbit around the sun, the orbit of the source (e.g., when the source is part of a binary system),

etc. Searches for these types of signals then correct for these shifts, coherently or incoherently sum

the data over larger periods of time, and also correlate data from multiple detectors in order to

reduce noise. Examples can be found in [44, 45, 46, 47, 48].

The remainder of this thesis focuses on GWs from CBCs.


