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Chapter 13

Toward Understanding Black Hole
Merger Dynamics

The stunning breakthroughs in Numerical Relativity over the past few years, starting with those

by Pretorius [155] in spring 2005, have provided greater insight into the realm of strongly curved

spacetime and dynamical gravity. Non-spinning binary black hole merger simulations are quickly

becoming the norm, and numerical relativists have started looking at more interesting situations,

including the orbit and merger of spinning binary black holes. Surprising results from this sort of

situation are exemplified in the extreme-kick configuration in which two identical, spinning black

holes are initially in a (quasi-)circular orbit, with oppositely directed spins lying in the orbital plane

(figure 13.1).

As Campanelli, Lousto, Zlochower, and Merritt [156, 157] (CLZM) discovered and Healy et

al. [158] helped flesh out, of all equal mass, quasi-circular initial configurations, this one has the
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Figure 13.1: Extreme-kick Configuration
Extreme-kick configuration for a black-hole binary: Identical holes, A and B with masses

m = M/2 move in a circular orbit with their spin angular momenta SA and SB antialigned and
lying in the orbital plane.
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largest kick speed for the final black hole. Not only that, it also exhibits intriguing orbital motions.

During the inspiral phase, as the holes circle each other, they bob up and down (in the z direction

of figure 13.1), sinusoidally and synchronously. After merger the combined hole gets kicked up or

down with a final speed that depends on the orbital phase at merger (relative to the spin directions).

This bobbing-then-kick, as deduced by CLZM from numerical simulations, is graphed quantitatively

in figure 13.2.

Qualitatively, Pretorius [159] has offered a lovely physical explanation for the holes’ bobbing

(figure 13.2) in this configuration: In figure 13.3, taken from his paper, we see snapshots of the holes

at four phases in their orbital motion. In each snapshot, each hole’s spin drags space into motion

(drags inertial frames) in the direction depicted by gray, semicircular arrows. In phase B, hole 1

drags space and thence hole 2 into the sheet of paper (or computer screen); and hole 2 drags space

and thence hole 1 also inward. In phase D each hole drags the other outward. This picture agrees in

phasing and semiquantitatively in amplitude with the bobbing observed in the simulations (figure

13.2).

However, momentum conservation dictates that, when the holes are moving upward together

with momentum pzA + pzB , there must be some equal and opposite downward momentum in their

gravitational field (in the curved spacetime surrounding them); and when the holes are moving down-

ward, there must be an equal and opposite upward field momentum. Our aim is to quantitatively

answer the following questions: How is this field momentum distributed? What are the details of the

momentum flow between field and holes? And to what extent are other momentum-flow processes

responsible for the motion shown in figure 13.2?

The outline of this chapter is as follows: section 13.1 gives a brief overview of the Landau-Lifshitz

formalism, which can be used to calculate the energy and momentum content of the gravitational

field, section 13.2 sets up the calculation of momentum consveration by splitting the total momentum

into its respective pieces, section 13.3 calculates each of the pieces of the momentum both for the

general binary and in the extreme-kick configuration, and section 13.4 combines these results to

show that the momentum of the objects balanced by the field momentum.
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Figure 13.2: Bobbing Motion in Extreme-kick Configuration
Bobbing and kick of binary black holes in the extreme-kick configuration of figure 13.1, as

simulated by Campanelli, Lousto, Zlochower, and Merritt (CLZM) [157]. Plotted vertically (as a
function of time horizontally) is the identical height z of the two black holes, and then

transitioning through merger (presumably at t/M ∼ 170), the height of the merged hole, above the
initial orbital plane. This height versus time is shown for six different initial configurations, each
leading to a different orbital phase at merger. In all six configurations, the initial holes’ spins are
half the maximum allowed, a/m = 0.5. The height z and time t are those of the “punctures” that

represent the holes’ centers in the CLZM computations, as defined in their computational
coordinate system, which becomes Lorentz at large radii. These z and t are measured in units of

the system’s total mass M ' 2m.

Figure 13.3: Pretorius’ Explanation
Pretorius’ physical explanation for the holes’ bobbing in the extreme-kick configuration, in which

the effect is attributed qualitatively to frame-dragging.
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13.1 The Landau-Lifshitz Formalism in Brief

Here we give a detailed analysis of momentum flow in generic compact binary systems. We begin

in this section with a brief review of the Landau-Lifshitz (LL) formulation of general relativity as a

nonlinear field theory in flat spacetime [160].

The Landau-Lifshitz formulation [160] starts by choosing an arbitrary coordinate system that

is asymptotically Lorentz, to this an auxiliary flat spacetime is added by asserting that the chosen

(“preferred”) coordinates are globally Lorentz in the auxiliary spacetime (so in them the auxiliary

metric has components diag(−1, 1, 1, 1)). In this formulation, gravity is described by the physical

metric density

gµν =
√−ggµν , (13.1)

where g is the determinant of the covariant components of the physical metric, and gµν are the

contravariant components of the physical metric.

The EFEs are then reformulated as a nonlinear field theory in the space of the flat, auxiliary

metric. Making use of the superpotential

Hµανβ ≡ gµνgαβ − gµαgνβ , (13.2)

the EFEs are given by

Hµανβ
,αβ = 16πτµν , (13.3)

where τµν = (−g)(Tµν + tµνLL) is the total effective stress-energy tensor, indices after the comma

denote partial derivatives (covariant derivatives with respect to the flat auxiliary metric), and the

Landau-Lifshitz pseudotensor tµνLL (actually a real tensor in the auxiliary flat spacetime) is given

by equation (100.7) of LL [160] or equivalently equation (20.22) of MTW [1]. By virtue of the

symmetries of the superpotential (which are the same as those of the Riemann tensor), the field
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equations in the form (13.3) imply the differential conservation law for 4-momentum

τµν,ν = 0 , (13.4)

which is equivalent to Tµν ;ν = 0 (where the semicolon denotes a covariant derivative with respect

to the physical metric).

It is shown in LL and in MTW that the total 4-momentum of any isolated system (as measured

gravitationally in the asymptotically flat region far from the system) is

pµtot =
1

16π

∮
S
Hµα0j

,αdΣj , (13.5)

where dΣj is the surface-area element defined using the flat auxiliary metric, and the integral is over

an arbitrarily large closed surface S surrounding the system. Differentiating this, we find

dpµtot

dt
=

1
16π

∮
S
Hµα0j

,α0dΣj . (13.6)

Let us look at Hµα0j
,α0 = Hµανj

,αν − Hµαkj
,αk. The first term is −16πτµj by virtue of the field

equations (13.3) and the antisymmetry of the superpotential on its last two indices (13.2). That

same antisymmetry on the second term −Hµαkj
,αk permits us to write it as the curl of a 3-vector

field, whose surface integral vanishes by virtue of Stokes’ theorem. Combining these two results we

find the total 4-momentum satisfies the standard conservation law

dpµtot

dt
= −

∮
S
τµjdΣj . (13.7)

This proof has also been given in LL and MTW where it relied on an assumption that the interior

of S be simply connected, i.e., that it not contain any black holes.
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Figure 13.4: Division of Space
The regions of space around and inside a compact binary system.

13.2 Momentum Conservation for a Fully Nonlinear Com-

pact Binary

We now apply this LL formalism to a binary system made of black holes and/or neutron stars; see

figure 13.4. We denote the binary’s two bodies by the letters A and B, and the regions of space

inside them by these same letters, and their surfaces by ∂A and ∂B. For a black hole, ∂A could be

the hole’s absolute event horizon or its apparent horizon, whichever one wishes. For a neutron star,

∂A will be the star’s physical surface. We denote by E the region outside both bodies, but inside

the arbitrarily large surface S where the system’s total momentum is computed.

By applying Gauss’s theorem to equation (13.5) for the binary’s total 4-momentum and using the

EFE (13.3), we obtain an expression for the binary’s total 4-momentum as a sum over contributions

from each of the bodies and from the gravitational field in the region E outside them:

pµtot = pµA + pµB + pµfield . (13.8a)
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Here

pµA ≡
1

16π

∮
∂A

Hµα0j
,αdΣj (13.8b)

is the 4-momentum of body A and similarly for body B, and

pµfield ≡
∫
E
τ0µd3x (13.8c)

is the gravitational field’s 4-momentum in the surrounding space.

If either of the bodies has a simply connected interior (is a star rather than a black hole), then we

can use Gauss’s theorem and the EFEs (13.3) to convert the surface integral (13.8b) for the body’s

4-momentum into a volume integral over the body’s interior:

pµA =
∫
A

τ0µd3x . (13.8d)

By an obvious extension of the argument we used to derive equation (13.7) for the rate of change

of the binary’s total 4-momentum, we can deduce from equation (13.8b) the corresponding equation

for the rate of change of the 4-momentum of body A:

dpµA
dt

= −
∮
∂A

(τµk − τµ0vkA)dΣk . (13.9)

Here the second term arises from the motion of the boundary of body A with coordinate velocity

vkA = dxkA cm/dt. Equation (13.9) describes the flow of field 4-momentum into and out of body A.

We shall use equations (13.8), (13.7), and (13.9), specialized to linear momentum (index µ made

spatial) as foundations for our study of momentum flow in compact binaries.

The actual values of the body and field 4-momenta, computed in the above ways, will de-

pend on the arbitrary coordinate system that we chose, in which to make the auxiliary metric

be diag(−1, 1, 1, 1) and in which to perform the above computations. This is a “gauge dependence,”

which we will fix by our choice of coordinates. In the remainder of this chapter we shall choose
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Harmonic coordinates, so the gravitational field satisfies the Harmonic gauge condition

gαβ,β = 0 , (13.10)

and we shall specialize the above equations to the 1.5 post-Newtonian approximation and use them

to study momentum flow during the inspiral phase of generic compact binaries.

13.3 Post-Newtonian Momentum Flow in Generic Compact

Binaries

13.3.1 Field Momentum Outside the Bodies

In Harmonic gauge at leading post-Newtonian order, the Landau-Lifshitz formalism gives for the

density of field momentum

τ0jej = −g ×H

4π
+

3
4π
U̇Ng (13.11)

(equation (4.1a) of [161]). Here, to the accuracy we need, g is the Newtonian gravitational ac-

celeration field (the gravitoelectric field), H is the gravitational analog of the magnetic field (the

gravitomagnetic field), UN is the Newtonian potential and the dot denotes differentiation with re-

spect to time, and ej is the jth basis vector of the flat-spacetime field theory that we are using.

This field momentum can be split into several pieces, only one of which will flow back and forth

between the field and the bobbing holes. Each of the components in equation (13.11) (i.e., g, H,

and UN ) have contributions from body A and body B, where

gA = −m
r2
A

nA , (13.12a)

UN,A =
m

rA
, (13.12b)

(equations (2.5) and (6.1) of [161]). In addition, H can be split into terms arising from either



172

velocity (Hvelo) or spin (Hspin) contributions of a particular body:

Hvelo
A =

4mA(nA × vA)
r2
A

, (13.12c)

Hspin
A = −2

(3nA · SA)nA − SA
r3
A

, (13.12d)

(equations (2.5) and (6.1) of [161]), with nA the unit radial vector pointing from the center of body

A to the field point, rA the distance from the center of body A to the field point, vA the vectorial

velocity of body A, and SA the vectorial angular momentum of body A. The fields for body B are

the same as equations (13.12), but with each subscript A replaced by a B.

The full field momentum density is written most concisely as

τ0j = τ0j
spin + τ0j

velo, (13.13a)

where τ0j
spin and τ0j

velo are the terms that depend on the spins and the velocities, respectively. These

terms are given by

τ0j
spinej =

mB

2πr3
Ar

2
B

[3(SA · nA)(nA × nB)− (SA × nB)]

− 1
2π

mA

r5
A

(SA × nA) + (A↔ B), (13.13b)

and

τ j0veloej =
mA

4πr2
A

{
mB [4(nB · vA)nA − 4(nA · nB)vA]

r2
B

−3mB(nA · vA)nB
r2
B

+
mA[(nA · vA)nA − 4vA]

r2
A

}
+(A↔ B), (13.13c)

where (A↔ B) means the same expression with labels A and B interchanged.

We are only interested in that portion of the field momentum that is induced by the holes’ spins,

since this is the portion that must flow back and forth between the field and the bobbing holes in
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order to conserve total momentum. As can be seen from equations (13.12), this portion arises from

one hole’s gravitoelectric field g coupling to the spin-induced part of the other hole’s gravitomagnetic

field Hspin

δτ0jej = −gA ×Hspin
B

4π
− gB ×Hspin

A

4π
. (13.14)

Combining equations (13.14) and (13.12) we obtain for the binary’s density of field momentum

(that portion which must flow during bobbing)

δτ0jej =
mB

2πr3
Ar

2
B

[3(SA · nA)(nA × nB)− (SA × nB)] + (A↔ B) . (13.15)

In order to integrate this over the region E , we find it convenient to rewrite the bodies’ gravito-

electric (13.12a) and gravitomagnetic fields (13.12d) as

gjK = mK

(
1
rK

)
,j

, Hj
K = −2SiK

(
1
rK

)
,ij

, (13.16)

where K is A or B and where, as before, rK is the (flat-space) distance of the field point from the

center of mass of body K. Inserting equations (13.16) into expression (13.14) and manipulating the

derivatives, we obtain the following expression for the field momentum density:

δτ0j = − 1
2π
εjpl

[
SqAmB

(
1
rA

)
,q

(
1
rB

)
,l

]
,p

+ (A↔ B) . (13.17)

Notice that this expression for the momentum density is the curl of a vector field; or, equally well,

it can be viewed as the divergence of a tensor field.

The total spin-induced, flowing field momentum is the integral of expression (13.17) over the

exterior region E (cf., figure 13.4). Using Gauss’s law, that volume integral can be converted into

the following integral over the boundary of E

δpjfield = − 1
2π
εjplS

q
AmB

∫
∂E

(
1
rA

)
,q

(
1
rB

)
,l

dΣp + (A↔ B) . (13.18)
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The boundary of E has three components: the surface S far from the binary on which we compute

the binary’s total momentum, and the surfaces ∂A and ∂B of bodies A and B. The integral over S

vanishes because the integrand is ∝ 1/r4 and the surface area is ∝ r2 and S is arbitrarily far from

the binary, r → ∞. When integrating over the bodies’ surfaces, we shall flip the direction of the

vectorial surface element so it points out of the bodies (into E), thereby picking up a minus sign and

bringing equation (13.18) into the form

δpjfield =
1

2π
εjplS

q
AmB

[∫
∂A

(
1
rA

)
,q

(
1
rB

)
,l

dΣp

+
∫
∂B

(
1
rA

)
,q

(
1
rB

)
,l

dΣp

]
+ (A↔ B) .

(13.19)

We presume (as is required by the PN approximation) that the bodies’ separation is large compared

to their radii. Then on ∂A, we can write (1/rA),q = −nqA/r2
A and (1/rB),l = nlAB/r

2
AB , where nA is

the unit vector pointing away from the center of mass of body A, nlAB is the unit vector pointing from

the center of mass of body B toward the center of mass of body A, and rAB is the (flat-spacetime)

distance between the two bodies’ centers of mass. The first integral in equation (13.19) then becomes

nAB/r
2
B

∫
∂A
nqA/r

2
AdΣp. For simplicity we take the surface of integration to be a sphere immediately

above the physical surface of body A and ignore the tiny contribution from the region between

that sphere and the physical surface. On this sphere, we write dΣp = r2
An

p
AdΩA, where dΩA is the

solid angle element, and we then carry out the angular integral using the relation
∫
∂A
nqAn

p
AdΩA =

(4π/3)δqp. Thereby we obtain for the first integral in (13.19) (4π/3)δqpnAB/r2
B independent of the

radius rA of the sphere of integration. (If the body is not spherical, the contribution from the

tiny volume between our spherical integration surface and the physical surface will be negligible.)

Evaluating the second integral in equation (13.19) in the same way, and carrying out straightforward

manipulations, we obtain for the external field momentum

δpfield =
2

3r2
AB

(mBSA −mASB)× nAB . (13.20)
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13.3.1.1 Field Momentum Specialized to the Extreme-Kick Configuration

For the extreme-kick configuration, which has mA = mB = m and SB = −SA, the field momentum

(13.20) becomes

δpfield =
4
3
m

r2
AB

SA × nAB . (13.21)

Figure 13.5 shows the z-component (perpendicular to the orbital plane) of the field-momentum

density δτ0z, as measured in the orbital plane at four different moments in the binary’s orbital

evolution. Only that part of the momentum that flows during bobbing (equation (13.15)) is pictured.

Red depicts momentum density flowing out of the paper (+z direction), and blue, into the paper.

The yellow arrows show the holes’ vectorial spins S, and the arrowed circle is the binary’s orbital

trajectory. In the top-left and bottom-right frames, the black holes are momentarily stationary

at the top and bottom of their bobbing. Nevertheless, the momentum density has a nontrivial

distribution. In the top-right and bottom-left frames, the black holes are moving downward and

upward, respectively, with maximum speed. In both cases, the field-momentum density between

the two holes flows in the same direction as the bobbing, whereas the momentum surrounding the

binary is in the opposite direction and larger. This leads to net momentum conservation for the

binary, as discussed in section 13.4.

It is worth noting that the four figures, going counterclockwise from the top-left, are taken a

quarter period apart in orbital phase. The first and third differ by half an orbital period (as do the

second and fourth); and, consequently, the momentum patterns of each pair are identical, but signs

are reversed (red exchanged with blue, as dictated by the symmetry of the configuration). This

feature is responsible for the sinusoidal bobbing.

13.3.2 Centers of Mass and Equation of Motion for the Binary’s Compact

Bodies

Restrict attention, temporarily, to a body that is a star rather than a black hole, and temporarily

omit the subscript K that identifies which body. Then, following the standard procedure in special
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Figure 13.5: Field Momentum Density
The four pictures show the z-component of field-momentum density δτ0z in the orbital plane at

four different times, a quarter orbit apart. Red represents positive momentum density (coming out
of the paper), and blue, negative (going into the paper). Only the piece of momentum density δτ0z

that flows during bobbing (equation (13.15)) is depicted. The yellow arrows are the black holes’
vectorial spins; the large, black arrowed circle shows the orbital path of the two holes. In the top
left picture, one sees the density of momentum when the black holes are at the top of their bob
(maximum z) and momentarily stationary. The gravitational-field momentum is zero, but the

momentum density itself shows rich structure. A quarter orbit later, in the top right, the holes are
moving downward (into the paper) at top speed. The momentum between the black holes (blue

region) flows into the paper with them, while surrounding momentum (red region) flows out of the
paper (+z-direction). A half orbit after the first picture, in the lower left, the holes are

momentarily at rest at the bottom of their bob (minimum z), the net field momentum is zero, and
the momentum distribution is opposite that in the first picture (as one would expect during

sinusoidal bobbing). Similarly, three quarters of the way through the orbit, in the lower right, the
holes have reached their maximum upward speed, and the momentum distribution is identical to

the second picture, but with the opposite sign.
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relativity (e.g., Box 5.6 of MTW [1]), we define the star’s center-of-mass world line to be that set of

events xµcm satisfying the covariant field-theory-in-flat-spacetime relationship

Sαβpβ = 0 . (13.22)

Here pβ =
∫
τ0βd3x is the body’s 4-momentum and

Sαβ ≡
∫

[(xα − xαcm)τβ0 − (xβ − xβcm)τα0]d3x (13.23)

is the body’s tensorial angular momentum. Here the integrals extend over the star’s interior, and

because the star’s momentum is changing, we take the time component of xµcm to be the same as

the time at which the integral is performed, x0
cm = x0. (If the momentum were not changing, this

restriction would be unnecessary; cf. Box 5.6 of MTW.)

In a reference frame where the body moves with ordinary velocity vj = pj/p0, equation (13.22)

says Si0 = Sijvj . We wish to rewrite this in a more illuminating form, accurate to first order in the

velocity v. At that accuracy, we can evaluate Sij in the body’s rest frame, obtaining Sij = εijkSk

where Sk is the body’s spin angular momentum

Sk =
∫
εklm(xl − xlcm)τm0d3x . (13.24)

Using definition (13.23) of Si0 with x0
cm = x0, our definition (13.22) of the center of mass then takes

the concrete form

mxcm =
∫

xτ00d3x− v × S . (13.25)

Here on the left side we have replaced p0 =
∫
τ00d3x by its value in the body’s rest frame, which is

the mass m, since the two differ by amounts quadratic in v.

Notice that, when computed in the body’s rest frame so v = 0, the center of mass is mxcm =∫
xτ00d3x, but when computed in any frame moving slowly with respect to the rest frame, this

expression must be corrected by the term −v × S. This is called the physical spin supplementary
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condition [162].

In our Harmonic coordinate system and at the 1.5PN order of our analysis, the dominant, time-

time component of the EFEs (13.3) reduces to ηµνg00
,µν = 16πτ00. The type of analysis carried

out in section 19.1 of MTW [1] then reveals that in the star’s rest frame, the monopolar part of its

g00 is centered on the location xcm; or, equivalently, when one expands the star’s g00 around xcm in

its own rest frame, there is no dipolar 1/r2 term (no mass dipole moment). This well-known result

(e.g., [163, 164]) can be used as an alternative definition of xcm—a definition that works for black

holes as well as for stars.

Using this monopolar-field-centered definition of xcm, Thorne and Hartle [164] have employed

matched asymptotic expansions (valid for black holes) to derive the equations of motion for a system

of compact bodies (e.g., a compact binary) (their equations (4.10) and (4.11)). For a compact binary,

the spin-induced contributions to these equations of motion at 1.5PN order are (equation (4.11c) of

Thorne and Hartle)

mA
dδvA
dt

=
mA

r3
AB

[6nAB(SB × nAB · vAB) + 4SB × vAB

−6(SB × nAB)(vAB · nAB)]

+
mB

r3
AB

[6nAB(SA × nAB · vAB) + 3SA × vAB

−3(SA × nAB)(vAB · nAB)] . (13.26)

Here

vA ≡ dxcmA

dt
, δvA =

dδxcmA

dt
, vAB = vA − vB (13.27)

are the velocity of (the center of mass of) body A, the spin-induced perturbation of that velocity,

and the relative velocity of bodies A and B. The first two lines of equation (13.26) are due to frame

dragging by the other body (body B); the last two lines are a force due to the coupling of body A’s

spin to B’s spacetime curvature.
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13.3.2.1 Equations of Motion Specialized to the Extreme-Kick Configuration

As in the previous section, we now specialize the above discussion to the extreme-kick configuration.

In this configuration we are trying to explain the bobbing motion of the bodies as they orbit each

other (i.e., the motion of the bodies perpendicular to the standard orbital plane). As noted above for

the equal mass case, the symmetries of this configuration are such that vA = −vB , SA = −SB , and

vAB ·nAB = 0. Since we are only interested in the portion of the equations of motion perpendicular

to the orbital plane, the necessary portions of the equations of motion we shall look at are:

(
d2δxcmA

dt2

)
FD

=
1
r3
AB

4SB × vAB , (13.28a)(
d2δxcmA

dt2

)
SC

=
1
r3
AB

3SA × vAB , (13.28b)

where the subscript FD refers to the frame dragging piece, while the subscript SC refers to the

spin-curvature coupling piece. The sum of these two effects gives

(
d2δxA
dt2

)
spin effects

= − 2
r3
AB

SA × vA , (13.29)

where we have used the fact that SA = −SB and vAB = vA − vB = 2vA. We get the same

acceleration of hole B by replacing all subscript A’s by subscript B’s because SB = −SA, vB = −vA.

We can easily integrate this equation in time by noting that the spin precesses much more slowly

than the orbital motion so SA can be approximated as constant, and noting that vA rotates with

angular velocity Ω =
√
M/r3

AB =
√

2m/r3
AB , where M is the total mass and m is the mass of each

hole. The result, after one integration, can be written as

mδvA = mδvB = − m

r2
AB

SA × nAB . (13.30)

These pieces of the total momentum we will call the kinetic momentum.
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13.3.3 The Momenta of the Binary’s Bodies

Let us now turn our attention to the total momentum contained by the bodies. This is done for

two cases, first for stars where we can integrate over the interior, and then for black holes where we

must convert the volume integrals to surface integrals. We shall find that both methods yield the

same result. We initially omit the star’s label A or B for ease of notation.

13.3.3.1 The Momentum of a Star

For a star we can derive an expression for the momentum pj =
∫
τ0jd3x (with the integral over

the star’s interior) in terms of the star’s velocity vj = dxjcm/dt by differentiating the center-of-mass

equation (13.25) with respect to time. To allow for the possibility that the mass might change with

time, we set m =
∫
τ00d3x before doing the differentiation; i.e., we differentiate

xcm

∫
A

τ00d3x =
∫
A

xτ00d3x− v × S . (13.31)

Using τ00
,0 = −τ0k

,k and Gauss’s theorem, we bring the left side into the form v
∫
A
τ00d

3x −

xcm

∫
∂A

(τ0j − τ00vj)dΣj . The last term arises from the motion of the surface of the star through

space with velocity v. Manipulating the time derivative of the integral on the right side of equation

(13.31) in this same way, we bring it into the form
∫
A
τ0jd3x − ∫

∂A
xj(τ0k − τ00vk)dΣk = pj −∫

∂A
xj(τ0k − τ00vk)dΣk, where pj is the star’s momentum. Inserting these expressions for the left

side and the right-side integral into equation (13.31), noting that the star’s spin angular momentum

evolves (due to precession) far more slowly than its velocity, denoting the time derivative of its

velocity by dv/dt = a (acceleration), solving for p, and restoring subscript As, we obtain

pA = mAvA +
∫
∂A

(x− xcmA)(τ0k − τ00vkA)dΣk + aA × SA . (13.32)

Although we have derived this equation for a star, it must be true also for a black hole. The

reason is that all the quantities that appear in it are definable without any need for integrating over

the body’s interior, and all are expressible in terms of the binary’s masses and spins and its bodies’
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vectorial separation, in manners that are insensitive to whether the bodies are stars or holes. To

illustrate this statement, in section 13.3.3.2 we deduce (13.32) for a black hole, restricting ourselves

to spin-induced portion of the momentum that is being exchanged with the field, δpA.

It is this δpA that interests us. Because the spin has no influence on τ00 at the relevant order

(which is δτ0k ∼ gH and δτ00 ∼ g2 where g and H are the gravitoelectric and gravitomagnetic

fields), equation (13.32) implies that

δpA = mAδvA +
∫
∂A

(x− xcmA)δτ0kdΣk + aA × SA . (13.33)

The acceleration aA of body A is, at the order needed, just the gravitoelectric field of body B at

the location of A, aA = −(mB/r
2
AB)nAB . Performing the surface integral on a sphere just above

the body’s physical surface we can write x − xcmA = nArA and dΣk = r2
An

k
AdΩA. Inserting these

into equation (13.33), we obtain

δpA = mAδvA︸ ︷︷ ︸
kinetic
term

+
∫
∂A

r3
Aδτ

0knAn
k
AdΩA︸ ︷︷ ︸

surface term

+
mB

r2
AB

SA × nAB︸ ︷︷ ︸
SSC term

. (13.34)

Here “SSC term” refers to the “spin supplementary condition” required to get the correct, physical

center of mass; see text following equation (13.25). In the surface term, the field momentum density

δτ0k is given by equation (13.17). The second term (A ↔ B) is smaller than the first by M/rAB

and thus is negligible. Inserting the first term into the integral, using (1/rA),qp = (3nqAn
p
A− δqp)/r3

A

and (1/rB),l = −nlB/r2
B , and

∫
njAn

l
AdΩA = 4π

3 δjl, we bring equation (13.34) into the form

δpA = mAδvA︸ ︷︷ ︸
kinetic
term

−2
3
mB

r2
AB

SA × nAB︸ ︷︷ ︸
surface term

+
mB

r2
AB

SA × nAB︸ ︷︷ ︸
SSC term

= mAδvA +
1
3
mB

r2
AB

SA × nAB . (13.35)
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13.3.3.2 The Momentum of a Black Hole

In section 13.3.3.1 we derived expression (13.32) for the momentum of a body in a binary, assuming

the body is a star so we could do volume integrals, and we then asserted that this expression is also

valid for black holes. The spin-induced portion of this expression that gets exchanged with the field

as the body moves is given by equation (13.33), which reduces to (13.35). In this section we shall

sketch a derivation of equation (13.35) directly from the surface-integral definition (13.8b) of a black

hole’s momentum,

δpjA =
1

16π

∫
∂A

δHjα0k
,αdΣk . (13.36)

To evaluate this surface integral up to desired 1.5PN-order accuracy turns out to require some 2.5PN

fields. Qualitatively, this can be anticipated because the superpotential we use in the surface integral

is sourced by the spin-orbit piece of field momentum, and therefore necessarily a nonleading PN term.

One can see this more clearly by expanding δHjα0k
,α in terms of the metric density and using the

symmetries of the superpotential H (which are the same as the Riemann tensor). In general, the

momentum is given by

δpjA = − 1
16π

∫
∂A

(gjkgα0 − gjαg0k),αdΣk . (13.37)

In Harmonic gauge, however, gαβ,β = 0, and the spatial metric is flat until 2PN order while the

time-space components are of 1.5PN order. As a result, the terms at lowest and next-to-lowest PN

order are contained within two terms,

δpjA =
1

16π

∫
∂A

(gj0,k + gjk,0)dΣk . (13.38)

In this expression, the momentum arises from linear terms involving the metric density, instead of

quadratic ones. As a result, one must keep pieces of the metric perturbation that are of higher PN

accuracy. (Note: if we were to evaluate the time derivative of δpA using the surface integral (13.9),

we would not face such a delicacy; the integrand there is quadratic and requires only 1.5PN fields

for its evaluation.)



183

To find the momentum in terms of the standard post-Newtonian parameters, we resort to a

standard way that the metric perturbations are written in recent post-Newtonian literature, e.g., by

Blanchet, Faye, and Ponsot [165]:

g00 = −1 + 2V − 2V 2 + 8X̂ , (13.39a)

gi0 = −4Vi − 8R̂i , (13.39b)

gij = δij(1 + 2V + 2V 2) + 4Ŵij , (13.39c)

√−g = 1 + 2V + 4V 2 + 2Ŵkk . (13.39d)

For spinning systems, we adopt the notation of Tagoshi, Ohashi, and Owen [166] where O(m,n)

means to order cm for nonspinning terms and χcn for terms involving a single spin χ. (Here χ =

|S|/m2 is the body’s dimensionless spin.) In this notation, terms we are interested in are of the

order O(3, 6), while the above post-Newtonian potentials have been obtained up to the following

orders [166, 167]:

V = O(2, 5), Vj = O(3, 4),

Ŵjk = O(4, 5), R̂j = O(5, 6). (13.40)

In terms of these post-Newtonian potentials, V , Vi, R̂i, X̂ and Ŵij , the perturbed metric density is

g00 = −1− 4V − 2
(
Ŵkk + 4V 2

)
+O(6, 7), (13.41a)

g0i = −4Vi − 8
(
R̂i + V Vi

)
+O(6, 7), (13.41b)

gij = δij − 4
(
Ŵij − 1

2
δijŴkk

)
+O(6, 7). (13.41c)
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As a consequence, equation (13.38) is given by

δpjA =
1

16π

∫
∂A

{[
−4Vj − 8

(
R̂j(S) + V(m)Vj(S)

)]
,k

−4
[
Ŵjk(S) − 1

2
δjkŴii(S)

]
,0

}
dΣk , (13.42)

where a subscript (S) means keep only the parts of those potentials proportional to the spins of the

bodies, and a subscript (M) involves monopolar pieces of the potential without spins (proportional

to the masses of the bodies). Terms without a subscript have both pieces.

Tagoshi, Ohashi and Owen express the potentials V(M), Vj , R̂j(S) and Ŵjk(S) in terms of the

bodies’ masses, vectorial velocities, vectorial spins, and vectorial separations, and distance to the

field-point location (their equations (A1a), (A1d), (A1f), and (A1g)). While the full equations are

quite lengthy, the portions that generate momentum flow—those involving the coupling of the mass

of one body to the spin of the other—are somewhat simpler. For convenience, we give these portions

of the equations below, rewritten in our notation, with the typos noted by Faye, Blanchet, and

Bounanno [167] corrected:

V(M) =
mA

rA
+ (A↔ B) , (13.43a)

Vj =
mAv

j
A

rA
+ εjklS

k
A

{
nlA

[
− 3mB

2r2
ArAB

− mB(nA · nAB)
4rAr2

AB

]
+ nlAB

3mB

4rArAB

}
+(A↔ B) , (13.43b)

Ŵjk(S) =
niA
r2
A

[
1
2

(
εijlS

l
Av

k
A + εiklS

l
Av

j
A

)
− δjkεilmvlASmA

]
+ (A↔ B) , (13.43c)

R̂j(S) = εjklS
k
A

[
nlA

(
− mB

2r2
ArAB

+
mB

rABs2

)
+ nlAB

(
− mB

2rAr2
AB

+
mB

2r2
ABrB

+
mB

rAs2

)
+nlB

(
mB

rAs2
+

mB

rABs2

)]
+njAεiklS

l
A

[
niA(nkAB + nkB)

(
mB

rAs2
+

2mB

s3

)
− 2niABn

k
B

mB

s3

]
+njABεiklS

l
A

[
−2niAn

k
b

mB

s3
+ (niA + niB)nkAB

(
− mB

rABs2
− 2mB

s3

)]
+(A↔ B) . (13.43d)
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Here, as before, mA, vA, and SA are the mass, velocity, and spin angular-momentum of object

A; rA is the separation of body A from a point in space and rAB is the separation of the two

objects; and nA and nAB are unit vectors pointing along rA and rAB , respectively. A new quantity,

s = rA + rB + rAB , has been introduced, in addition. Inserting these expressions into equation

(13.42) gives us δHjα0k
,α, and the momentum of body A is then found by performing a surface

integral over A’s surface. The surface integrals are computed under the same assumptions as in

section 13.3.1; namely the separation of the bodies is much larger than their radii, and each surface

of integration is a sphere immediately above a body’s surface. When they are computed, they give

the same result as equation (13.35),

δpA = mAδvA +
1
3
mB

r2
AB

SA × nAB . (13.44)

As before, the momentum for body B is given by exchanging A and B.

As a consistency check, we can evaluate the system’s total momentum by doing a surface integral

at infinity:

δpjtot =
1

16π

∮
S
δHjα0k

,αdΣk . (13.45)

The quantity δHjα0k
,α is exactly the same as above, from which one can find

δptot = mAδvA +
mB

r2
AB

SA × nAB + (A↔ B) . (13.46)

This, combined with the fact that

δptot = δpA + δpB + δpfield , (13.47)

as well as equation (13.44), gives

δpfield =
2mB

3r2
AB

SA × nAB + (A↔ B), (13.48)
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as found in section 13.3.1.

13.4 Momentum Conservation

The total spin-induced momentum perturbation, δptot = δpA+ δpB + δpfield (equations (13.35) and

(13.20)) is

δptot = mAδvA +mBδvB +
1
r2
AB

(mBSA −mASB)× nAB . (13.49)

Momentum conservation requires that the time derivative of this δptot vanish. The time derivative

of the kinetic terms can be read off the equation of motion (13.26):

mA
dδvA
dt

+mB
dδvB
dt

(13.50)

= −(mBSA −mASB)× [vAB − 3(nAB · vAB)nAB ] .

By inserting nAB = (xcmA−xcmB)/rAB into the second term of equation (13.49) and differentiating

with respect to time, we obtain the negative of expression (13.50). Therefore,

dδptot/dt = 0 ; (13.51)

i.e., as the binary’s evolution drives spin-induced momentum back and forth between the bodies and

the field, the total momentum remains conserved, as it must.

Interestingly, during the summation of momentum terms, one finds that the surface terms in

δpA + δpB have exactly cancelled the field momentum δpfield, leaving the total momentum as the

sum of the bodies’ kinetic term and their SSC term.

13.4.1 Momentum Conservation for Extreme-Kick Configuration

Let us examine in detail how momentum conservation is achieved in the presence of the bodies’

bobbing. Our detailed analysis (above) breaks each object’s momentum perturbation δpA,B into

three terms, the kinetic momentum mδvA,B , a term due to the SSC, and a surface integral term
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Table 13.1: Pieces of Total Momentum
Kinetic

Body Frame-
Dragging

Spin-
Curvature

SSC Surface Total

pA −4aB × SB 3aA × SA aA × SA − 2
3aA × SA − 2

3aA × SA
pB −4aA × SA 3aB × SB aB × SB − 2

3aB × SB − 2
3aB × SB

pfield
2
3 (aA × SA + aB × SB)

Spin-dependent, time-varying pieces of body and field momenta at 1.5PN order, for the
extreme-kick binary (circular orbit with spins antialigned and in the orbital plane). The body

momenta are broken down into kinetic, SSC and surface terms and are expressed in terms of the
bodies’ spins SA,B and Newtonian-order gravitational accelerations aA,B = −mB,AnAB,BA/r

2
AB .

See equations ((13.26)) and ((13.35)) for a similar decomposition in a generic binary.

(see table 13.1). The total kinetic momentum

mδvA +mδvB = − (aA × SA + aB × SB) 6= 0 , (13.52)

is not conserved because of the noncancellation between the frame-dragging and spin-curvature

coupling terms. The total body momentum δpA + δpB is not conserved either; it sums up to 2/3

the total kinetic momentum:

δpA + δpB = −2
3

(aA × SA + aB × SB) 6= 0 , (13.53)

To achieve momentum conservation, there is a nonzero spin-dependent total field momentum dis-

tributed outside of the bodies, with

δpfield =
2
3

(aA × SA + aB × SB) . (13.54)

Note that this total external field momentum is only−2/3 the spin-dependent total kinetic momentum—

instead of the −1 that one might have naively expected.
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13.5 Summary

We have studied generic binary compact objects and mometum flow that occurs between the bodies

and the surrounding spacetime using the Landau-Lifshitz formalism. In this analysis, we have found

that the momentum of the absolute motion of the binary system is balanced by the momentum

contained in the surrounding gravitational field. These results were also specialized to the interesting

case of spinning black holes in the extreme-kick configuration. We think this formalism holds great

promise for understanding the dynamics of compact objects and anticipate additional insights and

intuition gained from applying this sort of analysis to other interacting black hole environments.


