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Chapter 12

Testing Effects of a Massive
Graviton

The General Theory of Relativity has proven to be very predictive over the past century. As esoteric

as it may seem, its effects can impact our every day lives, such as the General Relativistic corrections

needed for GPS navigation to work. However, we know the predictions of General Relativity must

break down at some small length scale since quantum effects will become important at the Planck

scale.

General Relativity could also have flaws at large scales. It has also been observed that stars

within galaxies and galaxies within galactic clusters orbit around the center of mass faster than they

should based on the amount of visible matter [147, 148]. There are one of two conclusions that can

be drawn from this, either there is more matter there than we can see, or General Relativity does

not describe gravity at large distances.

Many people currently believe the former of these two options, positing the existence of dark

matter to explain the missing mass. The latter option requires a modification to General Relativity

at large distances, which could be accounted for in the form of a massive graviton.

In this chapter we will compare the analysis of Will [149] using 1.5PN waveforms to a new

analysis using complete inspiral-merger-ringdown (IMR) waveforms. The rest of this chapter is as

follows: we briefly summarize the effects of a massive graviton (section 12.1), give a dispersion

relation for GWs in general (section 12.2) and specific to the analysis of GWs from CBC signals

(section 12.3 and 12.4), use this dispersion relation to predict theoretical bounds for the mass of
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the graviton from future CBC GW observations (section 12.5), and then compare these bounds to

current observational bounds and theoretical bounds from other techniques (section 12.7).

12.1 Effects of Massive Gravitons

Endowing the graviton with mass would have many affects on different physical processes. These

include changing the dispersion relation for gravitational waves such that they no longer travel at

the speed of light [149], increasing the energy loss due to gravitational waves of a given frequency

[150], and causing the Newtonian gravitational potential to have a Yukawa form instead of being

1/r which can affect the orbits of planets [149] and gravitational lensing observations [151]. The rest

of this chapter will focus on the first of these effects expect the final section (section 12.7) where we

compare these bounds to the bounds from other methods.

12.2 Dispersion of Gravitational Waves

In reference [149], Will derived the propagation effects for two GWs traveling over cosmological

distances, which we repeat below. Let us distinguish these GWs using the presence or absence of

a “′” on the properties of the two waves. Let us also denote properties of either wave at the time

of emission with an e subscript and at the time of arrival or measurement with an a subscript.

The emitted energies of these GWs is then given as Ee and E′e and the emission time difference as

∆te ≡ t′e − te. For clarity, we also recover the G and c terms for formulae in this chapter.

Let us assume the GWs propagate in a flat Friedman-Robertson-Walker homogeneous and

isotropic spacetime, with background metric given as

ds2 = −c2dt2 + a2(t)
[
dr2 + r2

(
dθa + sin2 θdφ2

)]
, (12.1)

where a(t) is the expansion factor of the universe.

Consider a graviton moving radially with mass m, 4-velocity uα = dxα/dτ , and 4-momentum
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pα = muα. Let it be emitted at a distance r = re and detected at r = 0. The energy-momentum

relation is given as

m2c4 = −pαpβgαβ = E2 − a−2p2
rc

2 , (12.2)

where E = p0c is the energy of the particle, m is the mass of the particle, and pr is the particles

radial momentum. Combining this with the ratio prc/E = pr/p0 = dr/dt, after eliminating E we

find

dr

dt
= − c

a

(
1 +

a2m2
gc

2

p2
r

)−1/2

. (12.3)

Since the graviton will be following a geodesic, its 4-velocity will satisfy the geodesic equation

uα;µu
µ = 0. Using the property of the metric that gµν ;α = 0, we also know that uα;µu

µ = 0. Expand-

ing the covariant derivative using a Christoffel symbol, this is then given by uα,µuµ−uνuµΓναµ = 0.

Expanding the Christoffel symbol and using its symmetries, we can write this as uα,µuµ−uµuνgµν,α =

0. Specializing this to ur and using the fact that only the time and radial components of the 4-

velocity uα are nonzero, and both g0µ and grµ are independent of r, we then find uα,µuµ = 0, which

shows ur to be conserved. This then implies that pr is a conserved component of the 4-momentum.

We choose to evaluate it at the moment of emission of the GW, p2
rc

2 = a2(te)
(
E2
e −m2

gc
4
)
.

Using the relation from quantum mechanics between a wave’s frequency f and its energy E = hf ,

where h is Planck’s constant, and the definition of the Compton wavelength of a particle λ ≡ h/m,

we find that mgc
2/Ee = c/(λgfe). Let us assume that the lowest frequency we are interested in

is such that Ee � mgc
2. Then the dispersion relation above can be expanded to second order in

c/(λgfe) as

dr

dt
= − c

a

(
1− c2a2

2a2(te)λ2
gf

2
e

)
, (12.4a)

which after integration gives

re =
∫ ta

te

c

a(t)
dt− c3

2a2(te)λ2
gf

2
e

∫ ta

te

a(t)dt . (12.4b)

Let us apply this to the two GW emitted with energies Ee and E′e with a time difference of
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∆te ≡ t′e − te. Application to the first wave yields

re =
∫ ta

te

c

a(t)
dt− c3

2a2(te)λ2
gf

2
e

∫ ta

te

a(t)dt , (12.5a)

while application to the second yields

re =
∫ ta+∆ta

te+∆te

c

a(t)
dt− c3

2a2(te)λ2
gf
′2
e

∫ ta+∆ta

te+∆te

a(t)dt . (12.5b)

Combining these two results gives us

∫ ta+∆ta

ta

c

a(t)
dt−

∫ te+∆te

te

c

a(t)
dt =

c3

2λ2
g

(
1

a2(te + ∆te)f ′2e

∫ ta+∆ta

te+∆te

a(t)dt

− 1
a2(te)f2

e

∫ ta

te

a(t)dt
)
. (12.6)

This can be simplified even further in the case where the characteristic time it takes a to change is

large compared to the emission time difference, characterized by ∆te � a/ȧ, and where the time

difference between te and ta is large to the form

∆ta = (1 + Z)
[
∆te +

Dc

2λ2
g

(
1
f ′2e
− 1
f2
e

)]
, (12.7)

where Z ≡ a0/a(te)− 1 is the cosmological redshift, and D is a distance given by

D ≡ (1 + Z)c
a0

∫ ta

te

a(t)dt , (12.8)

where a0 ≡ a(ta) is the present value of the expansion factor. D is different from standard cos-

mological distances, such as the luminosity distance DL ≡ a0(1 + Z)χe. For a matter-dominated

spatially-flat universe, D and DL are given by

D =
2c

5H0
(1 + Z)

[
1− (1 + Z)−5/2

]
, (12.9a)
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DL =
2c
H0

(1 + Z)
[
1− (1 + Z)−1/2

]
, (12.9b)

where H0 is the Hubble constant given by c/H0 ' 42Gpc. Both cases reduce to the familiar Hubble

law cZ/H0 in the limit Z � 1. It should also be noted that the frequency upon arrival to the

detector will have undergone a redshift such that fa = fe/(1 + Z).

12.3 Dispersion of Compact Binary Coalescence Gravitational

Waveforms

This dispersion relation above, equation (12.4), tells us that GW of different frequencies will travel

at different speeds. This can change the morphology of GW signals emitted from a single source

that originally were emitted with a well-defined frequency evolution.

With this in mind, let us analyze what happens to the inspiral waveform we calculated in chapter

2, where the orbital phase evolution Φ(t) is given in equation (2.36b). Taking the time derivative of

the phase evolution 2Φ(t), we find the frequency evolution πf(t) = dΦ/dt to be

f(t) =
(
GM

c3π2

)1/2
 5c9

256G3M3η
(

405GM
16c3η + tISCO − t

)
3/8

, (12.10)

where M = m1 + m2 is the total mass of the system, η = m1m2/M
2 is the symmetric mass ratio,

and we have defined tISCO to be the time when the frequency is that corresponding to the ISCO

fISCO = c3/(G63/2πM).

Let us consider equation (12.7) for two waves emitted at t = tISCO −∆t and t′ = tISCO and find

the distance D at which they will arrive at the same time (i.e., ∆ta = 0). Plugging these two times

into equation (12.10), using the frequencies in equation (12.7), and solving for D where ∆ta = 0, we

find

D =
2λ2

g∆t

π2

53/4M

[
256ηM3

(
405M
16η + ∆t

)]3/4
− 216π2M2

. (12.11)

Taking the limit of this as ∆t→ 0, we find the distance at which the end of the waveform starts to
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Figure 12.1: Waveform Inversion
Plots of inspiral waveforms at D � Dinv (left) and D � Dinv (right). The upper plots show

spectrograms of the waveforms below. This makes it easier to see what frequency information
arrives at what time.

become inverted (Dinv) to be

Dinv =
5λ2

g

16π2ηM
. (12.12)

Different waveforms are plotted in figure 12.1 showing how the morphology of the GW wave

changes as it propagates due to dispersion effects of a massive graviton. The end of the waveform

starts becoming inverted at D ∼ Dinv. At D � Dinv, the information at the end of the waveform

(i.e., the higher frequency portion of the waveform) can be seen to arrive before information that

was emitted earlier (i.e., the lower frequency portion of the waveform).
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12.4 Recovery of Dispersed Compact Binary Coalescence Grav-

itational Waveforms

In chapter 2 we found the inspiral portion of CBC waveforms as a function of time. Converted to

the form found in [149], these are given as

h(t) = A(t)e−iΦ(t) , (12.13a)

Φ(t) = Φ0 + 2π
∫ t
tc
f(t)dt , (12.13b)

A(t) = M
DL

(
5M
tc−t

)1/4

. (12.13c)

When searching for these signals in GW detector data, as discussed in chapter 2, it is convenient

to convert these waveforms to the frequency domain using the SPA (equation (2.41)). Converting

the SPA phase (equation (2.45)) to the form found in [149], Ψ(f) is given as

Ψ(f) = 2π
∫ fc

f

(tc − t)df ′ + 2πftc + φ0 , (12.14)

where the subscript c denotes a value at the time of coalescence. These waveforms are used to search

for signals in the GW detector data with the technique known as matched filtering (discussed in

chapter 5) where an inner product is defined as

(h1|h2) = 4<
[∫ ∞

0

h̃∗1h̃2

Sn(f)
df

]
, (12.15)

where <[· · · ] denotes the real part of [· · · ], h̃∗ denotes the complex conjugate of h̃, and Sn(f) is the

power spectral density of the particular detector.

Since these are the waveforms that are used for the detection of signals, all of the f ’s above

are measured frequencies, which as we have stated above, are related to the emitted frequencies by

f = fe/(1+Z). We are now in a position to see how the massive graviton propagation effects change

a signal of the form given in equation (2.41). The term which is modified by these effects is the
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integral term in the phase Ψ(f) (equation (12.14)). Applying equation (12.7) to this term we find

it changes to be

∫ fc

f

(tc − t)df ′ =
∫ fec

fe

(tec − te)df ′e +
∫ fec

fe

D

2λ2
gf
′2
e

df ′e −
∫ fec

fe

D

2λ2
gf

2
ec

df ′e

=
∫ fec

fe

(tec − te)df ′e −
D

2λ2
gfe

+
D

λ2
gfec

− D

2λ2
gf

2
ec

fe . (12.16)

These additional terms can be seen to have different effects on the waveform. The last term has

an f1
e dependence, which is the same dependence as the time offset term in equation (12.14) and

can be interpreted as a change in the arrival time. The second-to-last term has an f0
e dependence,

which is the same dependence as the phase offset term in equation (12.14) and can be interpreted

as a change in the phase at coalescence. The other additional term (the second term) has an f−1
e

dependence, which is the same as the 1.0PN phase term. This is the term that will change the

morphology of the waveform. Its effect on equation (2.45) is to add an additional −βf−1 term,

where β ≡ πD
λ2
g(1+Z) . To 1.5PN order, Ψ(f) is then given as

Ψ(f) = 2πftc + φ0 − 3
128η

[
(πMf)−5/3 +

(
3715
756

+
55
9
η

)
(πMf)−1

−16π (πMf)−2/3
]
− βf−1 (12.17)

12.5 Using the Dispersion of Gravitational Waves to Bound

the Mass of the Graviton

In reference [149], Will used the above formalism with restricted inspiral waveforms to 1.5PN order

in the phase to predict bounds on the mass of the graviton from the detection of signals from

Adv. LIGO and LISA. Will’s analysis used the rms error of associated massive graviton phase term

from parameter estimation techniques. Specifically, the rms error of a parameter θα is given by

∆θα ≡
√〈

(θα − 〈θα〉)2
〉

=
√

Σαα , (12.18)
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where Σ is the inverse of the Fischer Information matrix Λ given by

Λαβ ≡
(
∂h

∂θα
| ∂h
∂θβ

)
. (12.19)

For this analysis, we will compare the results of Will’s analysis [149] using 1.5PN waveforms to

a similar analysis using new IMR waveforms. The IMR waveforms we use are frequency domain

phenomenological waveforms whose phenomenological parameters have been tuned using Numerical

Relativity waveforms with symmetric mass ratios 0.25 ≥ η ≥ 0.16 [152, 153]. These waveforms are

given by

h̃(f) ≡ Aeff(f)eiΨeff (f) , (12.20)

where the effective amplitude Aeff(f) and phase Ψeff are given by

Aeff(f) ≡ C



(f/f1)−7/6 if f < f1

(f/f1)−2/3 if f1 ≤ f < f2

wL(f, f2, σ) if f2 ≤ f < f3

0 if f ≥ f3 ,

(12.21a)

Ψeff(f) ≡ 2πft0 + φ0 +
6∑
k=0

ψkf
(k−5)/3 , (12.21b)

where C = M5/6f
−7/6
1

DLπ2/3

√
5η
24 is the amplitude parameter for optimally oriented and located sources,

w = πσ
2

(
f2
f1

)−2/3

is a normalization such thatAeff is continuous through f2, L(f, f2, σ) = 1
2π

σ
(f−f2)2+σ2/4

is a Lorentzian function centered on f2 with width σ, t0 is the arrival time, and φ0 is the phase

offset. For these waveforms, f1 corresponds to the where the PN amplitude evolution ends (i.e.,

where the inspiral ends and the merger begins), f2 corresponds to where the merger ends and the

ringdown begins, and f3 is the frequency at which we cut off the waveform. The ringdown portion

of the waveform is modelled as a Lorentzian which agrees with the quasi-normal mode ringing of a

perturbed black hole from black hole perturbation theory.
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The phenomenological amplitude parameters αk = {f1, f2, f3, σ} are given by

αk =
akη

2 + bkη + ck
πM η3/5 , (12.22a)

where ak, bk, and ck are given in Table 12.1. The phenomenological phase parameters ψk are given

by

ψk =
xkη

2 + ykη + zk
(πM)(5−k)/3

η−k/5 , (12.22b)

where xk, yk, and zk are given in Table 12.1. The phenomenological phase parameters do not match

the PN terms because of the choice of the authors in references [152, 153]. They allowed these terms

to vary while trying to maximize the “faithfulness” and “effectualness” of the phenomenological

waveforms to recovering hybrid PN-Numerical Relativity waveforms.

Table 12.1: Phenomenological Coefficients
Parameter ak bk ck

f1 6.6389 ×10−1 -1.0321 ×10−1 1.0979 ×10−1

f2 1.3278 -2.0642 ×10−1 2.1957 ×10−1

σ 1.1383 -1.7700 ×10−1 4.6834 ×10−2

f3 1.7086 -2.6592 ×10−1 2.8236 ×10−1

Parameter xk yk zk
ψ0 -1.5829 ×10−1 8.7016 ×10−2 -3.3382 ×10−2

ψ2 3.2967 ×101 -1.9000 ×101 2.1345
ψ3 -3.0849 ×102 1.8211 ×102 -2.1727 ×101

ψ4 1.1525 ×103 -7.1477 ×102 9.9692 ×101

ψ6 1.2057 ×103 -8.4233 ×102 1.8046 ×102

Unitless coefficients describing the amplitude and phase of the phenomenological waveforms from
reference [152] to be used in equations (12.22). There is no ψ1 term as the 0.5PN phasing term is

0.

The amplitude C given above is the amplitude one would find for an optimally oriented and

optimally located source. Averaging over random angles for the two sky location angles, the polar-

ization angle, and the inclination angle, there is an overall factor of 2/5 we should apply to this. For

this reason we redefine C = 2M5/6f
−7/6
1

5DLπ2/3 from here on.

Applying equation (12.16) to this waveform results in a measured phase evolution of

Ψeff(f) ≡ 2πft0 + φ0 +
6∑
k=0

ψkf
(k−5)/3 − βf−1 , (12.23)
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where t0 is the measured arrival time which has absorbed the massive graviton term with the f1

dependence and φ0 is the measured phase offset which has absorbed the massive graviton term with

the f0 dependence.

In producing this result, we have made an assumption which we must check. This is that, at

the order to which we the phase evolution of the binary, energy loss due to massive graviton effects

are negligible. Since we use phenomenological terms up to the equivalent 3.0PN order and ignore

massive graviton effects of order (r/λg)2 when computing the energy loss at the source, this implies

we require r2λ−2
g v−6 � 1. Combining this with v2 ∼ M/r and v = 2πrf , we find the frequencies

this holds for are f > λ
−3/5
g M−2/5/(2π), which is f > 2.6 × 10−3(M/M�)−2/5Hz assuming the

current bound on λg > 1012 km. For the systems we consider, this is always satisfied.

The parameters we use in the Fischer Matrix calculation are lnC, φ0, t0, lnM, ln η, and β. The

partial derivatives of h̃ with respect to these are given by

∂h̃(f)
∂ lnC

= h̃(f) , (12.24a)

∂h̃(f)
∂φ0

= −ih̃(f) , (12.24b)

∂h̃(f)
∂t0

= 2πih̃(f) , (12.24c)
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∂h̃(f)
∂ lnM = CeiΨeff



7
6
∂ ln f1
∂ lnM

(
f
f1

)−7/6

if f < f1

2
3
∂ ln f1
∂ lnM

(
f
f1

)−2/3

if f < f1

wL(f, f2, σ)
(
∂ lnw
∂ lnM + ∂ lnL(f,f2,σ)

∂ lnM

)
if f2 ≤ f < f3

0 if f ≥ f3

+ iCeiΨeff

6∑
k=0

[
ψk
∂ lnψk
∂ lnMf (k−5)/3

]


(f/f1)−7/6 if f < f1

(f/f1)−2/3 if f1 ≤ f < f2

wL(f, f2, σ) if f2 ≤ f < f3

0 if f ≥ f3 ,

(12.24d)

∂h̃(f)
∂ ln η

= CeiΨeff



7
6
∂ ln f1
∂ ln η

(
f
f1

)−7/6

if f < f1

2
3
∂ ln f1
∂ ln η

(
f
f1

)−2/3

if f < f1

wL(f, f2, σ)
(
∂ lnw
∂ ln η + ∂ lnL(f,f2,σ)

∂ ln η

)
if f2 ≤ f < f3

0 if f ≥ f3

+ iCeiΨeff

6∑
k=0

[
ψk
∂ lnψk
∂ ln η

f (k−5)/3

]


(f/f1)−7/6 if f < f1

(f/f1)−2/3 if f1 ≤ f < f2

wL(f, f2, σ) if f2 ≤ f < f3

0 if f ≥ f3 ,

(12.24e)

∂h̃(f)
∂β

= −if−1h̃(f) . (12.24f)

When taking the inner products in calculating Λ, we find it is helpful to introduce the definition
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ofof an integral Iba(p, q) given by

Iba(p, q) ≡ 4
∫ b

a

f−p/3

((f − f2)2 + σ2/4)q gα(f)
df , (12.25)

where gα(f) is the frequency dependence of the detectors PSD. The PSD can then be written as

Sn(f) = S0gα(f). In this notation, the SNR can be written as

ρ ≡ (h|h)1/2

=
C√
S0

[
f

7/3
1 If10 (7, 0) + f

4/3
1 If2f1 (4, 0) +

w2σ2

4π2
If3f2 (0, 2)

]1/2

. (12.26)

In the calculation of the inverse of the Fischer Matrix, we find all of the terms to be proportional

to
√
S0/C. Let us then define ∆ as ∆β ≡ ∆1/2

√
S0/C. In setting an upper limit on the mass of the

graviton, we view ∆β as the upper bound on β which results in a lower bound on λg given by

λg >

(
D

(1 + Z)DL

)1/2
(

π2CM
S

1/2
0 ∆1/2

)1/2

. (12.27)

In Table 12.2 we summarize the bounds on λg we obtain from the complete IMR waveforms and

compare them to the results from Will [149]. This table uses two different noise models, one for

signals which Adv. LIGO will be sensitive to, and one for signals LISA will be sensitive to. The

noise model for Adv. LIGO is given by S0 = 3 × 10−48 and gα(f) = ((f/fn)−4 + 2 + 2(f/fn)2)/5

where fn = 70Hz. Since Adv. LIGO is sensitive down to f0 = 40Hz, this is where we start the

integration instead of at 0Hz. The noise model for LISA is given by S0 = 4.2× 10−41 and gα(f) =

(101/2(f/fn)−14/3 + 1 + (f/fn)2/1000 + 313.5(f/fn)−(6.398+3.518 log10 x)) where fn = 10−3Hz. For

LISA, we start the integration at the lower frequency corresponding to a T = 1yr integration time,

such that f0 = (5MT−1/256)3/8/(πM).

We see from table 12.2 and figure 12.2 that for some signals, we can obtain better bounds

from the PN inspiral-only waveform than from the complete IMR waveform. If we repeat the

above analysis for the phenomenological waveform keeping only the inspiral portion with the f−7/6
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Table 12.2: Massive Graviton Bounds
m1 m2 Distance Inspiral Complete Waveform

(M�) (M�) Detector (Mpc) Bound (km) Bound (km)
10 10 Adv. LIGO 1500 6.0× 1012 4.8× 1012

50 50 Adv. LIGO 3000 2.8× 1012 4.8× 1013

104 104 LISA 3000 7.4× 1015 4.3× 1015

105 105 LISA 3000 2.3× 1016 1.1× 1016

106 106 LISA 3000 5.4× 1016 2.1× 1017

107 107 LISA 3000 6.9× 1016 5.1× 1017

108 108 LISA 3000 5.8× 1016 9.7× 1017

109 109 LISA 3000 2.6× 1016 1.1× 1018

The theoretical bounds on λg that could be placed based on a GW detection from different mass
CBC signals. The column “Inspiral Waveform” refers to the bounds one could get from just

looking at the inspiral portion of the waveform up to the ISCO frequency. Where available, these
agree quantitatively with Will [149]. The column “Full Waveform” refers to the bounds one could
get from looking at the complete IMR waveform which has been characterized by Ajith [152] and

Ajith et al. [153].

amplitude frequency dependence and setting the cutoff frequency to be fISCO, we find that the PN

waveform always beats the phenomenological waveform. This is due to the differences between the

phenomenological phasing parameters and the PN phasing parameters Ajith et al. noted in [153].

The above observation implies the parameters of the PN waveform are less degenerate than the

parameters of the phenomenological waveform.
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Figure 12.2: Massive Graviton Bounds
Plots of theoretical bounds on λg that could be placed based on a GW detection from Adv. LIGO
mass systems (left) and LISA mass systems (right). For each mass of the Adv. LIGO systems, the

bound was calculated using lesser of the distance corresponding to an SNR of 10 for the 1.5PN
waveform and a distance of 3 Gpc and a minimum frequency of 10 Hz. For each mass of the LISA
systems, the bound was calculated using a distance of 3 Gpc and a bandwidth corresponding to 1

year of integration time. The 1.5PN curves correspond to the bounds one could get from just
looking at the 1.5PN waveform up to the ISCO frequency, as was done in Will [149]. The IMR

curves correspond to the bounds one could get from looking at the complete IMR waveform which
has been characterized by Ajith [152] and Ajith et al. [153].
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12.6 Beyond the Fischer Matrix Approach

The approach that has been taken by Will [149] and here to constrain the mass of the graviton

is the Fischer information matrix approach. This approximation is only valid in the large SNR

limit and does not include known issues involved in real data analysis pipelines, which search for

inspiral signals, such as recovery of a signal with incorrect parameters and separating the amplitude

correlations between distance, mass, and sky location. A full simulation is required to accurately

determine the achievable bounds on the mass of the graviton with one, or even several, observed

signals.

12.7 Other Bounds on the Graviton’s Mass

Let us compare these results to the results available from other physical effects of a massive graviton.

The first effect we shall look at is changes in planetary motion due to a Yukawa gravitational

potential. If this were the case, Kepler’s third law would be violated since the gravitational force

would no longer follow an inverse-square law. This leads to a bound on the mass of the graviton in

the form of λg > ( 1−a2
p

6ηp
)1/2 where ap is the semimajor axis of planet p, ηp is planet p’s bound on

the η parameter given by Talmadge et al. [154]. Both λg and ap are given in astronomical units.

The most stringent bound of this form comes from the orbit of Mars which limits the mass of the

graviton such that λg > 2.8× 1012 km [149].

The next bound on the mass of the graviton is from binary pulsar observations. If the graviton

had mass, the orbits of binary pulsars would decay at a slightly faster rate than predicted by General

Relativity, due to additional energy loss from the leading order massive graviton terms in the power

radiated. Combining the observations of PSR B1913+16 and PSR B1534+12, the 90% confidence

bound on the mass of the graviton is λg > 1.6× 1010 km [150].

The final bound on the mass of the graviton we shall look at can be obtained by studying

gravitational lensing data. Assuming a specific distribution of dark matter, lensing data can be

studied looking for an effect which would change the distribution of the variance of the power
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spectrum γ2(θ) smoothed over a filter of radius θ. When comparing the predictions of a 1/r potential

versus the Yukawa potential, Choudury et al. [151] find the bound on the mass of the graviton to be

λg > 3× 1021 km [151]. However, this upper limit is less robust than the others above as one must

assume a specific distribution of dark matter before calculating the bound.


