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Chapter 9

Rate (Upper Limit) Calculation

Whether the search results in a small number of detection candidates or more, we can bound the rate

of CBCs in the (nearby) universe. Depending on the significance of the loudest event, the confidence

band we establish may or may not exclude zero. In either case, we can establish bounds on the rate

for different source mass ranges.

In this discussion, we follow the loudest event formalism described in [132, 133, 130, 131]. One

advantage of calculating bounds on a rate using the loudest event formalism is that for searches

that have steep background distributions, the expected upper limit you could get is always more

stringent than in fixed threshold formalisms. Another advantage is that one does not need to fix a

threshold before looking at the in-time triggers. It should be noted that in the end, the formalism

chosen does not affect the significance of the in-time triggers and is only necessary for calculating

rate bounds.

In previous CBC searches [17, 19, 18], we calculated rates of CBCs in terms of Milky Way

Equivalent Galaxies (MWEGs). However, as the horizon distances of our detectors expanded to

include more galaxies, we found it was prudent [134] to report rates in terms of L10s, where 1L10 ≡

1010 L�,B , L�,B is the solar blue-light luminosity, and 1 MWEG ≈ 1.7L10. We have used these

units for our rate calculations in [21, 22], and we shall use it here as well. The reason for this change

is because L10 track the rate of star formation in a given galaxy and we think CBCs are proportional

to this [135]. One drawback of this is that old elliptical galaxies are ignored since they do not have

significant blue-light luminosity [136].
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In order to calculate an upper limit on a rate of gravitational wave signals due to a particular

search, there are several things we need to know. These are related to how sensitive the search is

to signals from the universe, the background of the search, and the loudest event from the search.

Below we detail the calculations performed in arriving at a rate (figure 9.1).
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Figure 9.1: Upper Limit Calculation Pipeline
The stages of the upper limit calculation, in which we information from the top of the figure to

establish bounds on the CBC rate in the nearby universe in terms of events yr−1 L−1
10 .
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9.1 Posterior and Upper Limit Calculation

Calculating an upper limit on a rate of coalescences in the loudest-event formalism requires knowledge

of the cumulative luminosity to which the search is sensitive and a measure of the likelihood that

the loudest event was due to the observed background, described in section 9.3. We combine these

with the time analyzed to calculate the posterior on the rate for the search. Assuming a prior on

the rate p0(µ), the posterior is given by [130]

p (µ|CL, T,Λ) = p0(µ)
CLT

1 + Λ
(1 + µCLTΛ) e−µCLT , (9.1)

where µ is the rate in events yr−1 L−1
10 , CL is the cumulative luminosity in L10, T is the analyzed time

in years, and Λ is a measure of the likelihood of detecting a single event with loudness parameter x

(which in this analysis is FARc, cf., sections 7.3 and 8.4) versus such an event occurring due to the

experimental background, given by [130]

Λ (x) =
(−1
CL

dCL
dx

)(
1
P0

dP0

dx

)−1

, (9.2)

and P0 the background probability given by equation (7.6b). In this search, P0 = dP0/dx = ex, thus

the term involving these quantities disappears, which we will discuss in section 9.3.2.

In the limit that Λ→ 0 (i.e., when the loudest event is absolutely due to background), the 90%

confidence limit we set on the rate µ90% is given by

90% =
∫ µ90%

0

p(µ)dµ⇒ µ90% =
2.303
CLT

, (9.3)

and in the limit that Λ → ∞ (i.e., when the loudest event is absolutely due to signal), the 90%

confidence limit we set on the rate µ90% is given by

µ90% =
3.9
CLT

. (9.4)
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9.2 Incorporating Systematic Errors

The posterior (9.1) assumes a known value of CL associated with the search. In reality, CL has

associated with it systematic uncertainties, which we model as unknown multiplicative factors ζ

(fractional errors), each log-normally distributed about 1 with errors described in section 9.4. In

order to marginalize over the effects of the systematic errors on the cumulative luminosity, we first

calculate a probability distribution for the cumulative luminosity for the search, pd (CL). This is

calculated using the log-normal error distributions of the cumulative luminosity multiplier pd,error (ζ)

given by

pd,error (ζ) =
1

ζσerror

√
2π
e
− ln(ζ)
2σ2

error , (9.5)

where σerror is the fractional error of the cumulative luminosity calculated in section 9.4. The

pd,error (ζ) distributions are then convolved with each other to obtain a combined distribution

pd,comb (ζ). The distribution of the cumulative luminosity is then given as

pd (CL) =
∫
δ (CL − ζCL,m) pd,comb (ζ)dζ , (9.6)

where CL,m is the measured cumulative luminosity. To obtain a marginalized posterior, we integrate

the above posterior (equation (9.1)) times the distribution of cumulative luminosities (equation (9.6))

over the cumulative luminosity [130]

p (µ|T, ζ) =
∫
pd (CL) p (µ|CL, T, ζ)dCL . (9.7)

The results of several experiments (e.g., different types of S5 observing time and previous runs

such as S3 and S4) can be combined by taking the product of their likelihood functions; in the case

of uniform priors, this is equivalent to taking the product of their posteriors, allowing us to define

the rate upper limit µ at a confidence level α by numerically solving

α =
∫ µ

0

∏
i

pi (µ′)dµ′ , (9.8)
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where the pi (µ′) are the marginalized posteriors from different experiments calculated using a uni-

form prior on the rate. This is equivalent to using the posterior from previous observations as the

prior for subsequent ones, sequentially.

9.3 Cumulative Luminosity and Background Probability

The standard quantities we need to have before we can calculate an upper limit on the rate of

coalescences are the sensitivity of the search (i.e., the cumulative luminosity), and the probability

that no background triggers are louder than the loudest event.

9.3.1 Cumulative Luminosity and its Derivative

We measure the cumulative luminosity that the search is sensitive to in units of L10. The cumulative

luminosity quantifies the potential sources of observable CBC, as measured by blue-light luminosity

of the galaxies containing CBCs, which can be detected by our search. This can be calculated by

integrating the efficiency ε(D) and physical luminosity L(D) both as a functions of distance over

distance

CL ≡
∫
ε(D)L(D)dD . (9.9)

In practice, we do this as a discrete sum

CL =
∑
i

εiLi , (9.10)

where εi is the efficiency in distance bin i, and Li is the luminosity in distance bin i.

We calculate the efficiency εi in distance bin i as

εi =
Nfound,i

Ninjected,i
, (9.11)

where Ninjected,i is the number of injections injected with distance D ∈ (Di,min, Di,max), Di,min is the

minimum distance in distance bin i, Di,max is the maximum distance in distance bin i, and Nfound,i
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is the number of found injections in that distance bin. Distance bins in which there are no injections

are taken to have εi = 0. An injection is counted as found if there is a trigger associated with the

injection with a detection statistic louder than the detection statistic of the loudest in-time trigger.

The physical luminosity is calculated by creating an “injection” file using a galaxy catalog. The

“injections” are distributed according to the locations and luminosities of galaxies in the catalog.

More luminous galaxies end up have more “injections” associated with them. The luminosity weight

W each “injection” carries is determined by the most luminous galaxy in the catalog, galaxy j. W

is given by

W = Nj/Lj , (9.12)

where Nj is the number of “injections” in galaxy j, and Lj is the luminosity of galaxy j. The

physical luminosity Li in distance bin i is then given as

Li = niW , (9.13)

where ni is the number of “injections” from all galaxies with distance D ∈ (Di,min, Di,max).

The derivative of the cumulative luminosity is computed numerically by recalculating CL using

several values of the detection statistic x around the largest value from the in-time triggers.

9.3.2 Background Probability

The background probability takes a simple form with the choice of the FARc for the detection statistic.

Assuming a Poisson distribution, the probability of getting zero background triggers louder than the

loudest in-time trigger (i.e., with a FAR lower than the FAR of the loudest in-time trigger since low

FAR are more significant) is given by equation (7.6b) where, as before, x = −FAR× T , FAR is the

FAR of the loudest in-time trigger, and T is the total analyzed time searching for in-time triggers.

Since more significant triggers are given by lower FAR, triggers with higher values of x are

louder, so the derivative with respect to the detection statistic in the direction of louder triggers is

in the positive x direction (d/dx). The derivative of the background probability with respect to the
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detection statistic in the direction of louder triggers dPb/dx is

dPb
dx

= ex . (9.14)

Combining equations (7.6b) and (9.14), we find that (1/P0)(dP0/dx) = 1, and this term in equation

(9.2) goes away.

We therefore can compute all of the quantities in equation (9.1) and 9.2 needed to determine the

posterior on the rate µ, before marginalizing over systematic errors.

9.4 Systematic Error Calculation

Systematic errors associated with CBC searches for GW signals include errors associated with de-

tector calibrations, simulation waveforms, Monte Carlo statistics, and galaxy catalog distances and

magnitudes. Calculating these errors in terms of the cumulative luminosity is described below [131].

We can marginalize over these uncertainties using equation (9.7), to obtain the final posterior on the

rate, and use equation (9.8) to obtain the upper limits. This analysis can be repeated as function

of source mass.

9.4.1 Monte Carlo Errors

We refer to statistical errors associated with the efficiency calculation as Monte Carlo errors. Since

we calculate the efficiency as a function of distance, we calculate the error for a particular distance

bin i using the binomial formula, which gives an error of zero when the efficiency is zero or one, or

when there are no injections in that bin:

εMonte Carlo,i =

√
Nfound,i (Ninjected,i −Nfound,i)

N3
injected,i + 10−5

, (9.15)

where εMonte Carlo,i is the error in the efficiency, Ninjected,i is the number of injections injected into

distance bin i, and Nfound,i is the number of injections found in distance bin i. Finally, the associated
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fractional luminosity error σMonte Carlo is given in terms of εMonte Carlo,i, the physical luminosity in

each distance bin Li, and the measured cumulative luminosity CL,m as

σMonte Carlo =
1
CL,m

∑
i

εMonte Carlo,iLi . (9.16)

9.4.2 Calibration Errors

Calibration errors in the detectors are errors due to uncertainties in the absolute calibration of

the detector response to differential displacements caused by GWs [137]. These errors affect the

amplitude, and in turn the distance, at which we made injections to calculate the efficiency of our

search, since the injections we made assuming a specific value of the noise floor. During S5, the one-

sigma uncertainty in the amplitude (and thus the distance) associated with the calibration was 8.1%

for H1, 7.2% for H2, and 6.0% for L1 [137]. To calculate the luminosity error due to a calibration

error ∆calibration, all of the injections are moved further in that detector’s distance by ∆calibration

D′ = D (1 + ∆calibration) , (9.17)

and the efficiency is recalculated using equation (9.11) where Ninjected,i is the number of injections

injected with distance D′ ∈ (Di,min, Di,max), Di,min is the minimum distance in distance bin i,

Di,max is the maximum distance in distance bin i, and Nfound,i is the number of found injections

with distance D′ ∈ (Di,min, Di,max). This gives us εcalibration,i where the i denotes a particular bin

in distance. The standard efficiency εi is then subtracted from εcalibration,i on a bin-by-bin basis

dεcalibration,i = εcalibration,i − εi . (9.18)

Finally, the associated fractional luminosity error σcalibration is given in terms of dεcalibration,i, Li,

and CL,m as

σcalibration =
1
CL,m

(∑
i

dεcalibration,iLi

)
. (9.19)
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9.4.3 Waveform Errors

Waveform errors are associated with how different the true signals are from the signals we use to

measure the efficiency of our pipeline (i.e., the mismatch between the true signals and our injections).

This error effectively reduces the distances in our efficiency calculation since we do not recover all

of the power available in the signal due to the mismatch between the signal and our injections. To

calculate this, all of the injections are moved further by the error ∆waveform

D′ = D (1 + ∆waveform) , (9.20)

and the waveform fractional error is calculated as above (section 9.4.2). We calculate the wave-

form error in units of luminosity assuming a waveform mismatch of 10%. This value is obtained

by a detailed comparison of a variety of PN waveform approximants [8, 138], and it represents a

conservative estimate of this theoretical error on the true waveform.

9.4.4 Galaxy Errors

Galaxy errors are errors associated with our galaxy catalog [134] used to construct the physical

luminosity. Galaxy errors come in two types: distance errors and magnitude errors.

Future searches will be normalized per unit volume (Mpc3) to obtain a rate density, rather than

per unit L10, in order to avoid these errors (which are not intrinsic to this search method). In the

large volume limit (i.e., above a physical distance of 30 Mpc), there is a 0.02L10 Mpc−3 conversion

that can be used to compare the two rate units.

9.4.4.1 Distance Errors

To calculate the error on the luminosity due to distance errors, the physical luminosity calculation

is changed such that the distance to each of the “injections” in a galaxy is increased

D′ = D (1 + ∆D) , (9.21)



127

where ∆D is the fractional distance error for a given galaxy. Also, the “injections” in a particular

galaxy’s weighting is changed to be

W ′ = W (1 + ∆D)2
, (9.22)

where W is the original weighting for the galaxy. This form of weighting is chosen because the

galaxy’s luminosity is only known in terms of its magnitude and distance. If there is an error in the

distance, the luminosity must change by (1 + ∆D)2 in order to maintain the same magnitude. The

luminosity Ldistance,i is calculated with weighting W ′ and with “injections” at distances D′ as

Ldistance,i =
n′∑
i=1

W ′ , (9.23)

where n′ is the number of “injections” from all galaxies with distance D′ ∈ (Di,min, Di,max).

Ldistance,i is then multiplied by the standard efficiency εi as a function of distance and integrated

over distance to obtain the cumulative luminosity CL,distance at 1σ error in distance

CL,distance =

(∑
i

εiLdistance,i

)
. (9.24)

The associated fractional luminosity error σdistance in terms of CL,m as

σdistance =
1
CL,m (CL,distance − 1) . (9.25)

9.4.4.2 Magnitude Errors

To calculate the error on the luminosity due to magnitude errors, the physical luminosity calculation

is changed such that the “injections” in a particular galaxy are weighted by

W ′ = W10∆M/2.5 , (9.26)
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where ∆M is the (absolute) magnitude error for a given galaxy. This follows from the formula used

to calculate the luminosity of a galaxy

LB,i = LB,�

(
Di

10pc

)2

10(MB,�−mB,i)/2.5 , (9.27)

where LB,� is the blue solar luminosity, Di is the distance to the galaxy, MB,� is the (absolute) blue

solar magnitude, and mB,i is the (measured) apparent blue magnitude of the galaxy. The luminosity

Lmagnitude,i is calculated with weighting W ′ as

Lmagnitude,i =
n∑
i=1

W ′ , (9.28)

where n is the number of “injections” from all galaxies with distance D ∈ (Di,min, Di,max). The

magnitude fractional error is calculated as above (section 9.4.4.1).


