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Chapter 6

Building Response Prediction

This chapter interprets the simulated building responses by developing relationships

to predict collapse, the permanent total drift ratio, and peak inter-story drift ratio

(IDR) from ground motion intensity measures. Previous chapters consider the sim-

ulation results for each ground motion study individually. In that light, the results

describe regional patterns of building response. The building response prediction

models developed in this chapter disregard which study produced the ground mo-

tions and consider only the building response as a function of intensity measure.

Since these prediction models include a measure of the uncertainty due to nonlin-

earities in building response, it is reasonable to forgo the full nonlinear time history

analysis for some purposes. These relationships can be used as general structural

analyses to approximate the lifetime costs of a proposed steel moment-resisting frame

(MRF) design, or to compare at an initial stage several designs, or for other general

analyses.

6.1 Simulated Ground Motions and Ground Mo-

tion Prediction Equations

Simulated earthquakes of magnitudes 6.3–7.8 produced the ground motions used in

this thesis. The sites of the ground motions range from 1 to 200 km distant to the gen-

erating fault. Figure 6.1 compares the magnitudes of the simulated earthquakes to the

measure of distance between the faults and ground motion sites for all simulation do-
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Figure 6.1: The simulated ground motions in this thesis cover a range of magnitudes
and distances between the fault and ground motion site. Negative distances are sites
on the hanging wall of a thrust fault. This figure shows the magnitude grouping of
the simulations for comparison with ground motion prediction equations.

mains. This distance is the shortest path between each site and the surface projection

of the rupture on a strike-slip fault or the projection of the top edge of a thrust fault.

Figure 6.2 shows the peak ground displacements (PGDlps) and peak ground velocities

(PGVlps) of the simulated ground motions as functions of the distance between the

fault and the site. Since there are not many recorded ground motions within 10 km

of a large magnitude earthquake, these simulated ground motions suggest what the

peak ground displacements and velocities may be for near-source records of strong

ground motions.

Figure 6.3 compares the simulated ground motions to the extended magnitude

ground motion prediction equations (GMPEs) by Cua and Heaton (2008). For the

smallest simulations (magnitudes 6.3 and 6.4), the GMPEs and the simulated ground

motions do not agree. At rock and soil sites within 5 km of the fault, the median
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Figure 6.2: There are few recorded ground motions from near-source sites in strong
ground motions. The simulated ground motions in this thesis suggest what the long-
period peak ground displacements and velocities may be for near-source sites.
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PGVlp of the simulated ground motions is more than one log-standard deviation

from the GMPE median PGV. The GMPE median PGV saturates at small distances

whereas the median PGVlp of the simulated ground motions continues to increase

linearly on the log-scale. For the large simulations (magnitudes 6.6 to 7.2), the GMPE

and simulated ground motions generally agree for rock sites but not for soil sites.

At soil sites within 10 km of the fault, the median PGVlp of the simulated ground

motion is more than one log-standard deviation from the GMPE median PGV. For the

largest magnitudes (7.7 and 7.8), the median PGVlp of the simulated ground motions

is generally within one log-standard deviation of the predicted median. However, the

median PGVlp of the simulated ground motions at sites within 10 km are consistently

larger than what is predicted.

For sites 30 to 200 km distant from the rupture of the largest magnitude earth-

quakes, the log-standard deviation of the simulated ground motions can be twice that

of the GMPEs. Figure 6.4 shows the data that produced these large log-standard de-

viations. The large spread is consistent for the three sets of southern San Andreas

simulations. (Although, TeraShake 1 has some unusually small peak ground veloc-

ities.) The spread in the peak ground velocity from the simulations based on the

1906 San Francisco earthquake on the northern San Andreas fault is smaller than

the spread from the southern San Andreas events. Thus the southern San Andreas

ground motions are the source of the unexpectedly large uncertainty in peak ground

velocity for distant sites in the largest magnitude earthquakes.

For the building response prediction models developed in the following sections to

be widely applicable, they must be based on plausible ground motions. The simulated

ground motions used to calculate the steel MRF responses should be reasonably con-

sistent with the patterns of recorded ground motions. The simulations and empirical

relations need not match exactly because there are gaps in the recorded data and the

building response prediction models disregard the magnitude and distance informa-

tion associated with each ground motion. Each study that produced the simulated

ground motions used in this thesis was satisfied that the ground motions were plausi-

ble. (The TeraShake 2 simulations are now considered more likely than TeraShake 1
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Figure 6.3: This figure compares the peak ground velocity medians and log-standard
deviations of the simulated ground motions to those of GMPEs by Cua and Heaton
(2008). The top four plots compare rock sites (shear wave speeds greater than 464
m/s), and the bottom four plots compare soil sites (shear wave speeds less than or
equal to 464 m/s). Each plot compares PGVs from similar magnitudes; Figure 6.1
defines the magnitude groups. Note that the long-period PGVs have been converted
to the root mean square velocity: PGVrms = PGVlp/1.18 (Cua and Heaton, 2008).
Converting long-period, vector amplitude PGV to broadband, vector amplitude PGV
does not significantly affect this comparison.
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Figure 6.4: This figure shows the long-period peak ground velocities for the largest
magnitude simulations at rock and soil sites. The data for sites over 30 km from the
fault have a large spread. The simulations on the southern San Andreas (TeraShake
and ShakeOut) contribute exclusively to the large range of peak ground velocities at
distant sites.
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because its less coherent source model generated ground motions more consistent with

past experience and current expectations.) With further investigation, seismologists

may reconcile the differences between the simulated ground motions and the GM-

PEs. The simulated ground motions are sufficiently consistent with the expectations

developed from recorded ground motions to justify their use in developing building

response prediction models.

6.2 Bayesian Model Class Selection

This section develops models to predict the state of a steel MRF building from inten-

sity measures of ground motions. The states of building response are: collapsed or

standing; total structural loss or repairable; and if repairable, the peak IDR. I propose

several possible prediction models and apply Bayesian model class selection to deter-

mine the most likely prediction model based on the simulated building responses, the

structure of the proposed model, and prior information about the parameters of the

models.

6.2.1 Data

The intent of this thesis is to model steel moment frame building response in strong

ground motions. Building responses in small ground motions can be adequately

modeled by modal analysis because the buildings remain elastic. Approximately one-

third of the simulated ground motions in this thesis can be considered too small to

induce inelastic building behavior. These small ground motions would dominate the

fit of the building response prediction models. Thus, I remove data for PGDlp less

than 0.15 m and PGVlp less than 0.3 m/s. Removing these ground motions from the

data set results in prediction models that better describe building response in strong

ground motions. Figure 6.5 locates the remaining data in the PGDlp-PGVlp plane

and indicates the amount of data at each location. The preponderance of the data is

from ground motions with PGDlp less than 1.5 m and PGVlp less than 1.5 m/s.
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Figure 6.5: This figure shows the location of data in the PGDlp-PGVlp plane. Ground
motions with PGDlp less than 0.15 m and PGVlp less than 0.3 m/s have been removed.
The remaining data comes primarily from ground motions with PGDlp less than 1.5
m and PGVlp less than 1.5 m/s.
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The data set for the six-story buildings is different than that for the twenty-story

buildings. Approximately 10% of the ground motions are broadband, which can

be applied to both six- and twenty-story building models. Most simulated ground

motions in this thesis are long-period, which can only be applied to the twenty-story

buildings. Furthermore, the peak ground measures of broadband ground motions are

almost always larger than those of long-period ground motions. I apply a low-pass

Butterworth filter with a corner period of 2 s to the broadband ground motions in

order to make the peak ground measures consistent. I filter the broadband ground

motions only to produce consistent PGD and PGV measures; the nonlinear time

history analyses use the unfiltered simulated ground motions. Thus, the PGD and

PGV in this chapter are calculated from long-period ground motions.

The peak ground displacements and velocities of the data set for the six-story

buildings are highly correlated, whereas the data set for the twenty-story buildings

does not show a strong correlation. The prediction models for the six-story buildings

should only be applied to ground motions with a PGD approximately equal to the

PGV. The prediction models for the twenty-story buildings can be applied to ground

motions in a larger area of the PGD-PGV plane.

The building responses as a function of PGD and PGV are consistent with in-

tuition: larger PGDs and PGVs induce larger building responses (Figures 6.6–6.8).

Generally speaking, the six- and twenty-story models with perfect welds collapse in

ground motions with PGDlp greater than 1 m and PGVlp greater than 2 m/s (Fig-

ure 6.6). Models with brittle welds collapse in smaller ground motions than do models

with perfect welds. For ground motions with PGDlp greater than 0.6 m and PGVlp

greater than 0.6 m/s, the building may remain standing but be deemed a total struc-

tural loss (defined in this thesis as a permanent total drift ratio greater than 0.0091;

Figure 6.7). In many simulations with large ground motions, the buildings experience

large dynamic inter-story drifts but are not total structural losses (Figure 6.8).
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Figure 6.6: This figure shows the location of collapse data in the PGDlp-PGVlp plane.
The coloring of a box represents the proportion of buildings that collapse in that range
of PGDlp and PGVlp. Blue and red dots locate some data points for buildings that
remain standing or collapse, respectively.
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Figure 6.7: This figure locates the total structural loss data in the PGDlp-PGVlp

plane. Similar to the plot of collapse data, the box color represents the proportion
of buildings that are a total structural loss, and blue and red dots locate some data
points for buildings that are repairable or a total structural loss, respectively.
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Figure 6.8: This figure locates some of the peak IDR data in the PGDlp-PGVlp plane.
The color of the data indicate the peak IDR. The peak IDR data assumes that the
building is not a total structural loss.
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6.2.2 Theory

Bayesian model class selection is a technique to compare proposed models based on

the Bayesian interpretation of probability and statistics. The fundamental distinction

between the traditional, or frequentist, and Bayesian approaches is the understand-

ing of probabilistic statements. (See, for example, Gill (2002) or Muto (2006).) A

frequentist understands probability as the long-term outcome of repeated trials; a

Bayesian understands probability as a degree of belief, or degree of plausibility, which

may be different for different observers. For this thesis, an important consequence of

the Bayesian approach is the treatment of uncertain model parameters. Traditional

model fitting determines values for uncertain model parameters by minimizing the

least squares error, and an ad hoc information criterion can be used to compare pro-

posed models. Bayesian model fitting uses a probability density function (PDF) of

the uncertain model parameters to represent the plausibility of different parameter

value combinations. Analysis of this PDF (that is, its maximum and average val-

ues) determines the most probable model among the proposed models based on prior

information, or judgement, and available data.

There are two levels of analysis in Bayesian model class selection: (1) determine

the most probable values of the uncertain parameters for each proposed model class;

and then (2) determine the most probable model class from the proposed model

classes. A model class refers to the general structure of a proposed model with

NB uncertain parameters. The uncertain parameters form a NB-dimensional space

(also known as the parameter space). A particular combination of the parameter

values defines a particular model in the model class. A PDF in the parameter space

quantifies the relative likelihood of each combination of parameter values based on

available information. For example, previous studies may suggest a model class, and

there is data which can revise, or update, the parameter values. In this case, the PDF

quantifies both the prior information and the new data. If there were no previous

studies, then the PDF would only quantify the information in the new data. The

PDF is used to determine the most probable values of the uncertain parameters, as
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well as the most probable model class.

The posterior PDF updates prior information about the uncertain parameter val-

ues with information from collected data using Bayes’ Theorem. Mathematically,

the posterior PDF is proportional to the product of the prior PDF and the likelihood

function (Equation 6.1, lines 1 and 2). The prior PDF is a weighting function over the

parameter space based on judgement from prior information. For example, a model

with negative parameter values may be undefined, and therefore the prior PDF would

be zero where the parameter values are negative. In another application, previous

studies may recommend certain combinations of parameter values (here the prior

PDF may be assigned a higher value), and thus significantly different combinations

of parameter values are not expected (here the prior PDF may be assigned a lower

value). The likelihood function quantifies the probability of observing the available

data set from the model defined by a particular combination of the parameter values

(line 3 of Equation 6.1). In other words, assuming only a model defined by a particular

combination of parameter values (for example, β1 for model class M1), the likelihood

function at β1 is the probability of getting all the available data according to that

model. The likelihood function at another combination of parameter values (say, β2)

is the probability of getting the same available data according to this second model

in model class M1. In this way, each model class has an associated posterior PDF

constructed from prior information and the available data, through Bayes’ Theorem

as follows:

Posterior PDF ∝ (prior PDF)(likelihood function)

p(β | D,M) ∝ p(β |M) p(D | β,M)

∝ p(β |M)
N∏

i=1

p(yi |xi, β,M) (6.1)

(assuming the data are independent and identically distributed)

where β is a vector of the uncertain parameters with NB elements,

D is the set of xi, yi data with N elements,
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and M is a proposed model class.

Each posterior PDF is a function over the parameter space, so it can be imagined

as a surface over this space. A peak in the posterior PDF at β is caused by a large

amount of data well modeled by the proposed model with parameter values of β. This

surface can have multiple peaks, and each peak can be narrow or broad depending

on the uncertainty in the parameter value. A narrow peak has less uncertainty in

the parameter value, whereas a broad peak has more. The parameter values that

correspond to the global maximum value of this surface are the most probable com-

bination of parameter values for the proposed model class (Equation 6.2). Thus the

most probable values of each proposed model’s uncertain parameters can be found

by maximizing each posterior PDF with respect to the parameters.

β̂ = arg
max
β∈B p(β | D,M) (6.2)

where β̂ is the most probable combination of parameter values

and B is the parameter space.

Take the linear model class y(x) = αx + γ, with uncertain parameters α and γ,

as an example. The set of all possible values of α and γ form a two-dimensional

parameter space for this model class. A previous study suggested α ≈ 6 and γ ≈ 0.1,

and so the prior PDF could be quantified such that α and γ are normally distributed

with means of 6 and 0.1, respectively, and variances such that the coefficient of

variation is 0.5. Suppose new data is available to update this previous study via

Bayes’ Theorem. If maximizing the posterior PDF finds α̂ = 7.2 and γ̂ = 0.19, then

ŷ(x) = 7.2x + 0.19 is the most probable model in the linear model class.

The second level of analysis in Bayesian model class selection is finding the most

probable model class among a set of proposed model classes (Beck and Yuen, 2004).

Each model class has an associated evidence, which is the integral over the parameter

space of the likelihood function weighted by the prior PDF (Equation 6.3). Thus
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the evidence can be understood as the weighted average likelihood for the entire

model class. It is also the normalizing constant in the definition of the posterior

PDF (Equation 6.4; compare to Equation 6.1). Beck and Yuen (2004), Ching et al.

(2005), and Muto (2006, Section 2.2) showed that the evidence can be decomposed

into two terms that quantify how well the model class fits the data and the information

gained from the data. The first term promotes models that predict the data well,

whereas the second term promotes models with a simpler structure. The model class

should provide a structure consistent with observations, but that structure should

not be unnecessarily complex. Using Bayes’ Theorem at the model class level, the

probability of a model class can be quantified as the model class’s evidence divided

by the sum of the evidences for all proposed model classes (Equation 6.5), assuming

all model classes are equally probable (Beck and Yuen, 2004). Bayesian model class

selection compares multiple proposed model classes and selects the simplest model

class (that is, extracts the least information from the data) that accounts for the

available data.

EV i =
∫

B
p(βi |Mi) p(D | βi,Mi) dβi (6.3)

where Mi is the ith proposed model class,

EV i is the evidence for Mi,

and βi is the most probable parameter values for Mi.

Posterior PDF =
(prior PDF)(likelihood function)

evidence

p(βi | D,Mi) =
p(βi |Mi) p(D | βi,Mi)∫

B p(βi |Mi) p(D | βi,Mi) dβ
. (6.4)

p(Mi | D) =
EV i∑
i EV i

. (6.5)
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Returning to the previous example of the linear model class, now consider a second

model class y(x) = δx2 + ζx + η. Each of these two proposed model classes has an

evidence based on prior information and the available data. If the data has a clear

curvature in the x-y-plane, then the quadratic model class should be preferred. The

evidence of the quadratic model class would be much larger than the evidence of the

linear model because a quadratic model fits curved data much better than a linear

model. However, if the output data is predominantly linear, the quadratic model class

may fit the data slightly better, but the linear model class should be preferred because

it extracts less information from the data (one fewer parameter). The evidence for

each proposed model class quantifies this trade-off.

There are two practical considerations that apply to this procedure. For compu-

tational ease, I minimize the negative of the logarithm of the posterior PDF, which is

an equivalent optimization to maximizing the posterior PDF. Also, I apply a Laplace

approximation to evaluate the evidence (Equation 6.6). The Laplace approximation

idealizes the posterior PDF as a multidimensional Gaussian, which has an integral

with a closed form (Beck and Yuen, 2004). Thus, this approximation is best for

surfaces with a single peak; the model class is said to be globally identifiable.

EV =
∫

B
p(β |M) p(D | β,M) dβ

≈ (2π)(NB+1)/2p(D | β̂,M)
∣∣∣Ĥ∣∣∣−1/2

(6.6)

where Ĥ is the Hessian of the negative of the logarithm of the product

of the prior PDF and the likelihood function, evaluated at β̂.

6.2.3 Application

I apply Bayesian model class selection to two sets of proposed building response mod-

els. I select one model to predict collapse given a value of intensity measure; I select

a second model to predict whether the building is a total structural loss (including

collapse) in a ground motion with a given intensity measurement; and I select a third
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model to predict the peak IDR, assuming the building is not a total structural loss in

a ground motion with a given intensity measurement. The intensity measure may be

a vector quantity. I distinguish between these three building response measures (that

is, collapse, total structural loss, and peak IDR) because they categorize or quantify

three distinct building responses.

The data suggest forms for the prediction models. Figures 6.9–6.11 plot the build-

ing responses as functions of three intensity measures: pseudo-spectral acceleration

(PSA), peak ground displacement, and peak ground velocity. PSA may predict build-

ing response well because it is commonly used to characterize seismic hazard and

building response. Peak ground measures, however, are independent of a particular

building and are more broadband measures of strong ground motions. The data sug-

gest that collapse and total structural loss can be modeled with a sigmoidal function

of the intensity measures. The peak IDR seems to be a linear function of the con-

sidered intensity measures with a log-normal distribution about the expected peak

IDR. Figure 6.12 shows the distribution of peak IDR about a line through the data

as functions of PGDlp and PGVlp. These distributions appear log-normal in shape.

Equations 6.7 define the four proposed model classes to predict collapse and total

structural loss from the ground motion intensity measures. These equations have

the functional form of a sigmoid, which is approximately zero for small values of

intensity measures and approximately one for large values. The four models consider

polynomials of the three intensity measures as well as polynomials of their logarithms.

Equations 6.8 define the four model classes to predict peak IDR from the intensity

measures. The form of the argument of the exponentials in Equation 6.7 is similar to

the form of the models to predict peak IDR.

M1: p(state) = [1 + exp (−α0 − α1 lnPSA)]−1

M2: p(state) = [1 + exp (−α0 − α1PGDlp − α2PGVlp − α3PGDlpPGVlp)]
−1

M3: p(state) = [1 + exp (−α0 − α1 lnPGDlp − α2 lnPGVlp − α3 lnPGDlp lnPGVlp)]
−1
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Figure 6.9: The simulation data suggest that PSA may predict building response well.
The proportions of total structural loss and collapse appear to smoothly vary from
zero to one as a function of log-PSA. The log-peak IDR varies linearly with log-PSA,
but the variance about that line generally increases with log-PSA.
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Figure 6.10: This figure projects some of the building response data onto the PGDlp-
response and PGVlp-response planes. The proportions of total structural loss and
collapse do not vary smoothly for PGDlp greater than 3 m and PGVlp greater than
3 m/s. The data are sparse for such strong ground motions. Peak IDR apparently
increases linearly with PGD and PGV, but the variances are large.
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Figure 6.11: This figure shows the building responses as functions of log-PGDlp and
log-PGVlp. The proportions of total structural loss and collapse generally increase
with log-PGDlp and log-PGVlp. The log-peak IDR varies linearly as a function of
log-PGDlp and log-PGVlp with approximately constant variances.



139

Figure 6.12: The peak IDR prediction models in this thesis predict the median peak
IDR as well as a measure of the uncertainty. The data suggest that the distribution of
peak IDR about a line through the data (that is, the expected peak IDR) is log-normal
for given values of peak ground displacement and velocity.



140

M4: p(state) = [1 + exp (−α0 − α1 lnPGVlp)]
−1 (6.7)

where state is either collapse or total structural loss

given a value of intensity measure.

M1: lnPeakIDR = β0 + β1 lnPSA + ε1

M2: lnPeakIDR = ln(β1PGDlp + β2PGVlp + β3PGDlpPGVlp) + ε2

M3: lnPeakIDR = β0 + β1 lnPGDlp + β2 lnPGVlp + β3 lnPGDlp lnPGVlp + ε3

M4: lnPeakIDR = β0 + β1 lnPGVlp + ε4 (6.8)

where the peak IDR assumes the building is repairable

and εi ∼ N (0, σ2
i ).

Prior information about the parameter values completes the specification of each

model class for Bayesian model class selection. I assume the parameters are inde-

pendent, and each is normally distributed. I choose a value for the prior mean of

each parameter based on the character of the data in Figures 6.9–6.11. I choose a

fairly wide, Gaussian distribution about the mean, defined as a coefficient of variation

equal to one-third. This definition of prior information does not significantly affect

the Bayesian model class selection in this application. The amount of data used in

the model class selection contributes significantly more evidence to the model than

does the prior definition.

For each of the four building designs with fracture-prone or sound welds, I max-

imize the posterior PDF for each proposed model in Equations 6.7 and 6.8. Fig-

ures 6.13–6.17 show the proposed models with the most likely parameter values plot-

ted with the data. Figures 6.13 and 6.14 show the models based on PSA for collapse,

total structural loss, and peak IDR. Note that these figures show the complete models

as functions of PSA (unlike the next figures which show contours of the prediction

models). Figures 6.15–6.17 present the three models based on PGDlp and PGVlp
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for collapse, total structural loss, and peak IDR, respectively. Models 2 and 3 are

functions of both PGDlp and PGVlp, making the predicted building response a three-

dimensional surface. Model 4 is a function of PGVlp alone. To compare the prediction

models, I show the contour where the probability of collapse or total structural loss

is 0.3.

Figures 6.15 and 6.16 show that the separating contours (here defined as a 30%

probability of collapse or total structural loss) for Models 2–4 are similar where there

is available data. Consider the separating contours for the responses of the six-story

buildings. Where there is no available data, the separating contours diverge. Model 2

curves toward the origin; the separating contour intersects the abscissa and ordinate.

Model 3 curves away from the origin; the separating contour appears to approach

the PGD and PGV axes for values of PGD and PGV greater than those considered

here. Model 4 is only a function of PGV. For the twenty-story models, the separating

contours for Models 2–4 appear similar and almost independent of PGD, suggesting

that PGD is not needed in the building response prediction models.

Table 6.1 reports the probabilities for the collapse prediction models. For all

building models, collapse prediction Model 1 is the least likely structure for the data.

For two building models (J6B and J6P) Model 2 is the most likely collapse prediction

model. For two other building models (U6P and U20B) Model 3 is the most likely

collapse prediction model. For the remaining four building models (J20B, J20P, U6B,

and U20P) Model 4 is the most likely collapse prediction model. No proposed model

is consistently most likely to predict collapse.

Table 6.2 reports the probabilities for the total structural loss prediction models.

Again, no proposed prediction model is consistently the most likely to predict total

structural loss. Model 1 is most likely to predict total structural loss for three build-

ings: J6P, J20P, and U6P. Model 2 is never the most likely to predict total structural

loss. Model 3 is most likely to predict total structural loss in two buildings: U20B and

U20P. Model 4 is most likely for three buildings: J6B, J20B, and U6B. The Bayesian

model class selection criterion does not consistently select the same functional form

for all four building designs and for both weld states.
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Figure 6.13: This figure locates the collapse, total structural loss, and repairable
building response data as functions of PSA. I locate the data at probabilities of 1, 0.5,
and 0, respectively, to distinguish what PSAs result in each response and to suggest
how well the collapse and total structural loss models distinguish the building states.
The black lines with symbols show Model 1 with the most probable parameter values
for collapse and total structural loss. For the twenty-story buildings with brittle welds
(J20B and U20B), the total structural loss and collapse models are almost the same.



143

Figure 6.14: This figure shows the peak IDR data as a function of PSA. The lines indi-
cate the prediction models with the most likely parameter values from the maximum
posterior PDF analysis.
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Figure 6.15: This figure compares the collapse prediction models with the most likely
parameter values to the data. The contours represent a predicted collapse probability
of 0.3 for Models 2–4. Note how similar the predictions of these models are where
there is available data.
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Figure 6.16: This figure compares the total structural loss prediction models with
the most likely parameter values to the data. The contours represent a probability of
total structural loss of 0.3 for Models 2–4.
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Figure 6.17: This figure compares the peak IDR prediction models with the most
likely parameter values to the data. The contours represent a predicted peak IDR of
0.025, the FEMA 356 level for life safety. Again, note the similar predictions where
there is available data.
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Model J6B J6P J20B J20P
1 0.0 0.0 0.0 0.033
2 0.92 1.0 0.0 0.0
3 0.077 0.0 0.0 0.0
4 0.0 0.0 1.0 0.97

Model U6B U6P U20B U20P
1 0.0 0.0 0.0 0.0
2 0.013 0.0027 0.0 0.0
3 0.14 1.0 0.95 0.0
4 0.84 0.0 0.048 1.0

Table 6.1: This table reports the probabilities of each proposed collapse prediction
model. None of the four proposed models is consistently most likely for all building
designs and weld states.

Model J6B J6P J20B J20P
1 0.0 1.0 0.0 1.0
2 0.0 0.0 0.0 0.0
3 0.25 0.0 0.00051 0.0
4 0.75 0.0 1.0 0.0

Model U6B U6P U20B U20P
1 0.0 1.0 0.0 0.0
2 0.040 0.0 0.0 0.0
3 0.00017 0.0 1.0 1.0
4 0.96 0.0 0.0 0.0

Table 6.2: This table reports the probabilities of the proposed total structural loss
models. As with the collapse prediction models, no proposed total structural loss
model is consistently best for all building models.
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Model J6B J6P J20B J20P
1 1.0 1.0 1.0 1.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0

Model U6B U6P U20B U20P
1 1.0 1.0 1.0 1.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0

Table 6.3: This table reports the probabilities of the proposed peak inter-story drift
ratio prediction models. The prediction model based on pseudo-spectral acceleration
is the most likely building response prediction model for all considered buildings.

Table 6.3 reports the model probabilities for the prediction of peak IDR given that

the building is not a total structural loss. For all building models, the model based on

PSA is most likely to predict peak IDR. This result should not be surprising because

PSA filters the ground motion at the fundamental period of each building. Thus

PSA is a good characterization of ground motion for mildly to moderately inelastic

building responses.

6.2.4 Interpretation

The building response prediction models for a categorical state (that is, collapse or

standing and total structural loss or repairable) define a probability that the building

assumes a particular state. Ideally a separating curve could be drawn at a value of

intensity measure to properly categorize the building states, keeping in mind that

the intensity measure could be a vector quantity. For intensity measures below the

curve, the buildings do not collapse or are not a total structural loss, and for intensity

measures above the curve, the buildings collapse or are a total structural loss. The

models in this thesis quantify the probability of the state, rather than drawing a dis-

tinct demarcation between the states. Considering the data, a curve is not justified:

for a relatively large range of intensity measures, both states are possible simultane-

ously. Drawing a single line to separate the states would result in a large number of
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misclassifications. A better characterization of the states is to provide a probability

of the state for a given value of intensity measure.

The most successful categorical model will have the steepest slope separating the

states. The ideal model has an infinite slope, corresponding to the clear demarcation

between the states. As the slope decreases, the distinction between the states becomes

less clear. In the extreme, a large change in the intensity measure causes a small

change in the probability of the state. The data in this thesis do not support this

characterization: by visual inspection of Figures 6.6, 6.7, and 6.13, there is a narrow

band of intensity measure values on which different simulations predict both states.

That is, for the same value of intensity measure, the building may collapse or stand

or may be a total structural loss or repairable. The Bayesian model class selection

procedure implicitly accounts for this consideration, since a model with a slope that

is too small will not accurately predict the building state.

Even though a probabilistic statement about the categorical state of a building

is more informative, there are times when a line must be drawn, figuratively and

literally. The choice of the curve that separates the two states of building response

reflects a value judgement. One person may be willing to accept a probability of 0.5

that the building will collapse. A second person may be more cautious and judge

a probability of 0.1 as sufficiently risky. For this thesis, I consider a probability of

0.3 to be the separating curve, or separating contour, between collapse and standing

and between total structural loss and repairable. I use this separating contour to

compare the predictions of the proposed models and to compare the performance

of the building models. The choice of a specific probability would not significantly

affect the location of the separating contour for models with a steep slope, but it

would affect that location for models with shallow slopes.

The most direct way to use the building response prediction models in this thesis

is to employ the most likely model according to the metric of Bayesian model class

selection. The selection procedure quantifies the probability of each proposed model,

and for the proposed models in this thesis, one prediction model is obviously most

likely for each building model. To predict the response of a building similar to one of
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Collapse Model 3 Parameter Estimates
Building α0 α1 α2 α3

J6B -4.1 2.6 5.7 0.88
J6P -5.3 2.4 4.5 0.96
U6B -2.2 1.6 7.0 0.80
U6P -3.7 2.8 5.3 0.90
J20B -1.5 0.092 4.9 -0.076
J20P -5.0 -0.12 5.6 0.48
U20B -0.41 0.24 4.4 -0.45
U20P -3.6 0.11 4.7 0.18

Table 6.4: This table provides the most likely values for the parameters in collapse
prediction Model 3.

Total Structural Loss Model 3 Parameter Estimates
Building α0 α1 α2 α3

J6B 0.26 0.86 4.4 0.76
J6P -0.99 1.0 4.1 0.66
U6B 2.0 1.0 5.2 0.65
U6P 0.72 1.3 3.9 0.61
J20B 0.088 0.23 5.5 -0.16
J20P -2.9 0.0021 5.8 -0.29
U20B 0.83 0.69 4.7 -0.42
U20P -1.6 -0.013 5.3 -0.98

Table 6.5: This table lists the most likely values for the parameters in Model 3 to
predict whether a building is a total structural loss.

those considered, consult Tables 6.1–6.3 to find the most likely proposed model, and

then find the values of the parameters from the tables in Appendix B. This approach

ensures that the employed prediction model is more probable than the other four

proposed models for the building under consideration.

A single functional form for steel moment frame response prediction is simpler

and more intuitive than choosing the most likely model according to a metric. The

Bayesian model class selection criterion should inform the decision of which functional

form to choose to predict the building response, but there are other considerations

as well. The prediction model should be consistent with a physical understanding of

the underlying problem. The recommended model may be extrapolated beyond the

currently available data, and thus a model consistent with the underlying physical
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Peak IDR Model 1 Parameter Values
Building β0 β1 σ2

J6B -6.0 1.1 0.13
J6P -6.3 1.1 0.062
U6B -5.1 0.86 0.084
U6P -5.4 0.95 0.061
J20B -5.0 1.2 0.14
J20P -5.5 1.2 0.083
U20B -4.5 0.87 0.12
U20P -5.1 1.1 0.087

Table 6.6: This table presents the most likely values of the parameters for the most
likely prediction model for peak inter-story drift ratio.

behavior should be preferred. (This is not, however, an endorsement of extrapolation.)

The preferred model class should also have a low rate of misclassification.

Model 1 provides some physical insight into the patterns of building response as

a function of pseudo-spectral acceleration. Figure 6.13 compares the predictions of

Model 1 for total structural loss and collapse. Note the relative locations of the total

structural loss and collapse curves for the eight building models. For the six-story

buildings, the two curves are relatively far apart: the pseudo-spectral acceleration

must increase by 10–15 m/s2 for a building with perfect welds to go from total struc-

tural loss to collapse or increase by 5–10 m/s2 for a building with brittle welds. The

increase in pseudo-spectral acceleration required for a building to go from a total

structural loss to collapse is smaller for the twenty-story buildings. For buildings

with brittle welds, this increase in pseudo-spectral acceleration is smaller than for

buildings with perfect welds. Twenty-story buildings with brittle welds need only a

small change in pseudo-spectral acceleration for a total structural loss to become a

collapse. Similar statements about the relative performance of the buildings can be

made for the peak ground measures, too.

Model 1 is consistently less likely to accurately predict collapse or total structural

loss than Models 2–4. Pseudo-spectral acceleration filters the ground motion at the

fundamental period of the building. For small ground motions, the building remains

elastic, and a spectral characterization of the ground motion accurately predicts build-
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Figure 6.18: This figure compares the contours of Model 3 at 10, 30, 50, 70, and 90%
probabilities of collapse to the data. For the six-story buildings (top four subfigures),
the contours are close, indicating that the model classifies collapse or standing well.
For the twenty-story buildings (bottom four subfigures), the contours are more widely
spaced. Also, these contours do not distinguish the twenty-story buildings that do
not collapse in peak ground displacements less than 0.6 m.
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Figure 6.19: Similar to Figure 6.18, this figure compares the contours of Model 3
at 10, 30, 50, 70, and 90% probabilities of total structural loss to the data. This
model seems to characterize the data well, even though Bayesian model class selection
does not consistently rank it most probable. For some building models, the building
response prediction models based on pseudo-spectral acceleration or peak ground
velocity alone are more probable than this model, which is a function of both peak
ground displacement and velocity.



154

ing response. In strong ground motions, the building exceeds its yield strength and

accumulates damage. The fundamental period of a building accumulating damage

lengthens as the building softens. The characterization of the ground motion at the

elastic fundamental period does not accurately predict inelastic building response.

For severely inelastic building responses, such as total structural loss and collapse, an

intensity measure based on a filter with a narrow band of periods does not predict

building response as well as a more broadband measure such as the peak ground

motion measures.

Models 2–4 tend to be the most likely prediction models for collapse and total

structural loss. Section 6.2.3 discusses the curvature of these models in the PGD-

PGV plane. Physically, Model 3 better describes steel moment frame response in

strong ground motions because it curves away from the origin. Ground motions with

a large PGD and a small PGV imply that the ground is slowly moving a large dis-

tance. In this type of ground motion, the building would follow the ground motion

as an approximately rigid body with only small deformations. High frequencies tend

to dominate ground motions with a small PGD and a large PGV. Tall steel moment

frames are not significantly affected by short-period ground motions, so the building

responses in this type of ground motion would be small. Model 3 describes these

physical building responses because it allows low probabilities of collapse or total

structural loss for both types of ground motions, unlike Models 2 and 4. This con-

sideration is more important for the six-story building response prediction models

since there is less available data to constrain the model, compared to the data for the

twenty-story models.

The misclassification of the available data using the prediction models also indi-

cates the predictive power of the categorical models. I use the separating contour

where the collapse probability is 0.3 to categorize the available data as collapsed or

standing and as total structural loss or repairable. Tables 6.7 and 6.8 list the percent-

age of the data misclassified by the four models. The model using pseudo-spectral

acceleration to predict building response (Model 1) has a higher rate of misclassifica-

tion compared to the other four models. Among Models 2–4 there are similar rates
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Misclassification of Collapse Data [% of Available Data]
Building Model 1 Model 2 Model 3 Model 4

J6B 9.4 6.3 6.5 7.4
J6P 4.6 3.7 3.9 4.4
U6B 13 8.1 8.3 8.5
U6P 8.8 7.0 7.5 7.8
J20B 10. 9.2 9.5 9.5
J20P 2.9 2.7 2.8 2.9
U20B 14 13 13 13
U20P 4.8 4.7 4.9 4.9

Table 6.7: I use the proposed prediction models to classify the available data as
collapsed or standing. Model 1 misclassifies collapse data more often than Models 2–
4.

Misclassification of Total Structural Loss Data [% of Available Data]
Building Model 1 Model 2 Model 3 Model 4

J6B 18 18 19 19
J6P 14 16 16 17
U6B 16 15 15 15
U6P 17 19 19 19
J20B 15 11 11 11
J20P 6.0 5.8 6.0 6.0
U20B 19 15 15 15
U20P 9.9 8.8 8.9 8.8

Table 6.8: Similar to Table 6.7, I use the proposed models to categorize the available
data as total structural loss or repairable. The rate of misclassification is much larger
for the total structural loss models than for the collapse models.

of misclassification.

Of the four proposed building response prediction models of the categorical states,

I prefer Model 3. Bayesian model class selection recommends it for several building

types. The functional form of the model is consistent with a physical understanding of

the response of tall steel moment frames in strong ground motions, and there is a low

rate of misclassification. However, depending on the specific application, Model 2 or 4

may be useful to predict collapse or total structural loss responses.

Model 1 should be preferred to predict the peak inter-story drift ratio, assuming

that the building is not a total structural loss in a given ground motion. The proba-

bility of this model is consistently 1 using the Bayesian model class selection criterion.
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Pseudo-spectral acceleration is also widely used in the earthquake engineering commu-

nity to characterize seismic risk and building response. The interpretation of building

response as a function of spectral quantities has a sound physical explanation.

The building response prediction models developed in this chapter predict the

same relative building performance as seen in the data. Figure 6.20 compares the

collapse separating contours for the four building designs with perfect or brittle welds.

The stiffer, higher-strength designs have separating contours that vary with both PGD

and PGV. The more flexible, lower-strength designs, however, are almost independent

of PGD. According to these prediction models, a ground motion with large PGV but

small PGD would collapse the more flexible, and not the stiffer, design. A ground

motion with large PGD but small PGV tends to collapse the buildings with stiffer

designs and not those with more flexible designs. The six-story buildings require

larger ground motions than the twenty-story buildings to collapse. The presence of

brittle welds shifts the separating contours to smaller combinations of peak ground

motion responses. The effect of brittle welds on the stiffer designs is less distinct for

large PGD.

Figure 6.21 shows the total structural loss separating contours for the four build-

ing designs with perfect and brittle welds. The prediction models show that the

probability of total structural loss depends on PGD only for ground motions with

PGDlp less than 1 m. The six- and twenty-story, more flexible designs with perfect

welds would be deemed total structural losses in ground motions with PGVlp greater

than approximately 1.5 m/s and 1.2 m/s, respectively. The other considered building

models would likely be total structural losses in ground motions with PGVlp greater

than 0.5–1 m/s.

Figure 6.22 compares the relative performance of the steel moment frame buildings

assuming they are repairable following an earthquake. As expected, the stiffer, higher-

strength designs have lower peak IDR compared to the more flexible, lower-strength

designs for the same PSA. The six-story designs have lower peak IDR compared to

the equivalent twenty-story designs, and the presence of brittle welds increases the

expected peak IDR.
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Figure 6.20: This figure shows the collapse separating contours (30% probability of
collapse) as functions of peak ground displacement and velocity for the four building
designs with brittle or perfect welds. The presence of brittle welds significantly in-
creases the probability of collapse. The stiffness and strength of the building design
changes the shape of the separating contour. A six-story building is less likely to
collapse in a given ground motion than a twenty-story building.
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Figure 6.21: This figure shows the total structural loss separating contours (30%
probability of total structural loss) as functions of peak ground displacement and
velocity. The probability of total structural loss is mostly independent of PGD, and
only somewhat dependent on PGV for small PGD. The separating contours of the
more flexible, lower-strength designs of twenty and six stories are at approximately 1
and 1.5 m/s, respectively. The separating contours for the other considered designs
and for buildings with brittle welds are mostly between 0.5 and 1 m/s.
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Figure 6.22: Pseudo-spectral acceleration best predicts the peak inter-story drift ratio,
assuming that the building is not a total structural loss. The expected peak inter-
story drift ratio in buildings with stiffer designs is smaller than the expectation for
more flexible designs. Six-story buildings have smaller peak inter-story drifts than
the similarly designed twenty-story buildings. The presence of brittle welds increases
the expected peak inter-story drift ratio.
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Recall that the building response prediction models developed in this chapter are

based on simulated data. These prediction models have not been validated against the

experiences of steel moment frames in historic earthquakes. Validating these models

would require knowing the ground motion—or at least the intensity measure—at

each steel moment frame that was subjected to strong ground motions. One result

of this thesis is to anticipate the building response in ground motions not previously

experienced in modern urban areas. Thus it may not be possible to validate these

prediction models with available data from historic earthquakes.


