Steel Moment-Resisting Frame Responses in Simulated Strong Ground Motions: or How I Learned to Stop Worrying and Love the Big One

Thesis by

Anna H. Olsen

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

> 2008 (Defended April 24, 2008)

© 2008

Anna H. Olsen All Rights Reserved

Acknowledgements

This thesis exists because of the vision and guidance of my advisor, Professor Tom Heaton. Tom was always available to provide explanations when I was (frequently) confused, discuss the directions and implications of my research, and encourage me through the difficult times. I truly appreciate his ready advice and support.

Members of my committee also challenged me and provided guidance for this thesis. Professor Jim Beck helped me to learn and apply the Bayesian model class selection method. Professor John Hall provided the building designs and models, and he helped me interpret the results. Dr Tom Jordan gave me excellent feedback on this thesis and provided additional information on current ground motion simulation studies. Professor Zee Durón introduced me to research as an undergraduate and encouraged me to continue my studies at Caltech. He has continued to provide invaluable guidance and support.

This research was funded, in part, by the Southern California Earthquake Center. I used their allotment on the University of Southern California High Performance Computing Center cluster to calculate the building responses in this thesis. This thesis would not have been completed in a timely manner if not for this funding and access to a reliable computing cluster. This research also received support from a Hartley Fellowship and from a Housner Fellowship.

My fellow graduate students in the Civil and Mechanical Engineering Departments helped me to complete the coursework and this thesis. I learned as much from other graduate students as I did from the faculty. Alex Taflanidis, Julie Wolf, and Matt Muto reviewed early drafts of this thesis, and I appreciate their feedback. In many conversations about this thesis, Matt especially helped me to understand and communicate this work better.

This thesis also would not exist but for the love and support of my parents. They reluctantly sent me to California for my higher eduction, and I hope this thesis shows that that was the right decision.

Abstract

This thesis studies the response of steel moment-resisting frame buildings in simulated strong ground motions. I collect 37 simulations of crustal earthquakes in California. These ground motions are applied to nonlinear finite element models of four types of steel moment frame buildings: six- or twenty-stories with either a stiffer, higherstrength design or a more flexible, lower-strength design. I also consider the presence of fracture-prone welds in each design. Since these buildings experience large deformations in strong ground motions, the building states considered in this thesis are collapse, total structural loss (must be demolished), and if repairable, the peak interstory drift. This thesis maps these building responses on the simulation domains which cover many sites in the San Francisco and Los Angeles regions. The building responses can also be understood as functions of ground motion intensity measures, such as pseudo-spectral acceleration (PSA), peak ground displacement (PGD), and peak ground velocity (PGV). This thesis develops building response prediction equations to describe probabilistically the state of a steel moment frame given a ground motion. The presence of fracture-prone welds increases the probability of collapse by a factor of 2–8. The probability of collapse of the more flexible design is 1–4 times that of the stiffer design. The six-story buildings are slightly less likely to collapse than the twenty-story buildings assuming sound welds, but the twenty-story buildings are 2–4 times more likely to collapse than the six-story buildings if both have fractureprone welds. A vector intensity measure of PGD and PGV predicts collapse better than PSA. Models based on the vector of PGD and PGV predict total structural loss equally well as models using PSA. PSA alone best predicts the peak inter-story drift, assuming that the building is repairable. As "rules of thumb," the twenty-story

steel moment frames with sound welds collapse in ground motions with long-period PGD greater than 1 m and long-period PGV greater than 2 m/s, and they are a total structural loss for long-period PGD greater than 0.6 m and long-period PGV greater than 1 m/s.

Contents

A	Acknowledgements				
A	bstra	ct		v	
Li	ist of	Figur	es	ix	
\mathbf{Li}	ist of	Table	s	xiii	
1	Intr	oduct	ion	1	
	1.1	Motiv	ation	2	
	1.2	Previo	bus Work	5	
		1.2.1	Studies of Historic Earthquakes	5	
		1.2.2	Computational Modeling	10	
		1.2.3	End-to-End Simulations	13	
		1.2.4	Building Design and Weld State	15	
		1.2.5	Building Response Prediction	16	
	1.3	Outlin	ne of Chapters	17	
2	Bui	lding I	Models	20	
	2.1	Buildi	ng Designs	20	
		2.1.1	Building Height	25	
		2.1.2	Seismic Design Provisions	25	
	2.2	Finite	Element Models	26	
		2.2.1	Planar Frame Models	27	
		2.2.2	Fiber Method	28	

		2.2.3	Beam and Column Elements	29
		2.2.4	Panel Zones	32
		2.2.5	Basement Walls and Soil-Structure Interaction	33
		2.2.6	Damping	34
		2.2.7	Brittle Welds	34
	2.3	Chara	cterization of Building Models	37
		2.3.1	Elastic Periods	37
		2.3.2	Pushover Curves	39
	2.4	Measu	rement of Building Responses	42
	2.5	Broad	band versus Long-Period Peak Ground Measures	45
	2.6	Forms	of Building Response Figures	45
	2.7	Model	ing Assumptions	48
		2.7.1	Horizontal Ground Motions	48
		2.7.2	Vertical Ground Motions	56
		2.7.3	Brittle Weld Distribution	56
		2.7.4	Random Seed Number	59
3	\mathbf{Sim}	ulatio	ns in the San Francisco Area	65
	3.1	Groun	d Motion Study	66
	3.2	Buildi	ng Responses in Loma Prieta versus 1906-Like Simulations	70
	3.3	Stiffer	versus More Flexible Building Responses	73
	3.4	Respo	nses of Buildings with Non-Fracturing versus Fracture-Prone Welds	77
	3.5	Effect	of Rupture Propagation Direction	79
4	\mathbf{Sim}	ulatio	ns in the Los Angeles Basin	83
	4.1	Groun	d Motion Studies	84
	4.2	Six- ve	ersus Twenty-Story Building Responses	87
	4.3	Puent	e Hills Fault Simulations	92
	4.4	Multip	ple Simulations of the Same Earthquake	95

5	Sim	ulatio	ns of Distant Earthquakes	104
	5.1	Groun	nd Motion Studies	104
	5.2	Perma	anent Total Drift	110
	5.3	Distar	nt versus Basin Simulations	112
6	Bui	lding l	Response Prediction	118
	6.1	Simula	ated Ground Motions and Ground Motion Prediction Equations	118
	6.2	Bayes	ian Model Class Selection	124
		6.2.1	Data	124
		6.2.2	Theory	130
		6.2.3	Application	134
		6.2.4	Interpretation	148
7	Dis	cussior	n and Conclusions	161
	7.1	Discus	ssion	161
		7.1.1	Simulations as Proxies for Experience	162
		7.1.2	"Lessons Learned"	162
		7.1.3	Building Response Prediction Models	164
	7.2	Concl	usions	166
A	Bea	im and	l Column Schedules	168
В	Par	amete	r Values for Building Response Prediction Models	172
Bi	ibliog	graphy		177

List of Figures

2.1	Model J6 Floor Plan and Elevations	21
2.2	Model U6 Floor Plan and Elevations	22
2.3	Model J20 Floor Plan and Elevations	23
2.4	Model U20 Floor Plan and Elevations	24
2.5	Divison of Finite Elements into Segments and Fibers	30
2.6	Axial Stress-Strain Backbone Curve for Fibers	31
2.7	Moment-Shear Strain Backbone Curve for Panel Zones	32
2.8	Weld Fracture Strain Distributions	36
2.9	Frequency Responses of Building Models	38
2.10	Peak IDR of Twenty-Story Models Disaggregated by Story	40
2.11	Peak IDR of Six-Story Models Disaggregated by Story	41
2.12	Pushover Curves of Six-Story Models	42
2.13	Pushover Curves of Twenty-Story Models	43
2.14	Comparison of Peak IDR versus PGD, PGV, and PSV \hdots	47
2.15	Maps of Building Responses to Various Horizontal Resultants	52
2.16	Building Response as a Function of $\mathrm{PGV}_{\mathrm{bb}}$ for Various Horizontal Re-	
	sultants	53
2.17	Maps of Building Response for Three V_{pp} Algorithms $\ldots \ldots \ldots$	54
2.18	Building Response versus PGV_{bb} for Three V_{pp} Algorithms	55
2.19	Maps of Building Responses to Ground Motions With and Without the	
	Vertical Component	57
2.20	Building Responses versus $\mathrm{PGV}_{\mathrm{bb}}$ for Ground Motions With and With-	
	out the Vertical Component	58

2.21	Maps of Building Response for Different Weld Models	60
2.22	Building Response versus $\mathrm{PGV}_{\mathrm{bb}}$ for Different Weld Models $\ .\ .\ .$.	61
2.23	Maps of Building Response for Different Seed Numbers	63
2.24	Building Response versus $\mathrm{PGV}_{\mathrm{bb}}$ for Different Seed Numbers $\ \ . \ . \ .$	64
3.1	Simulation Domain for Northern San Andreas Fault Earthquakes $\ . \ .$	67
3.2	$\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{PGV}_{\mathrm{lp}}$ for Loma Prieta Simulations $\ . \ . \ . \ . \ .$.	68
3.3	$\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{PGV}_{\mathrm{lp}}$ for M 7.8 Simulations on the Northern San Andreas	
	Fault	69
3.4	Maps of Building Responses in Loma Prieta Simulations	71
3.5	Building Responses versus PGV in Loma Prieta Simulations	72
3.6	Maps of J20 and U20 Responses in M 7.8 Northern San Andreas Simu-	
	lations	74
3.7	Comparison of J20 and U20 Responses	78
3.8	Maps of Building Responses for Different Weld States	80
3.9	Comparison of Building Responses for Different Weld States $\ . \ . \ .$.	81
4.1	Simulation Domain for M 7.15 Puente Hills Earthquakes \ldots	85
4.2	$\mathrm{PGD}_{\mathrm{bb}}$ and $\mathrm{PGV}_{\mathrm{bb}}$ for M 7.15 Puente Hills Earthquakes $\ . \ . \ . \ .$.	86
4.3	Simulation Domain for Earthquakes on Ten Los Angeles Basin Faults .	87
4.4	$\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{PGV}_{\mathrm{lp}}$ for Two Simulations in the Los Angeles Basin $\ .$.	88
4.5	Peak IDR for Six- and Twenty-Story Buildings	90
4.6	Comparison of Six- and Twenty-Story Building Responses	91
4.7	Maps of U20P Responses in Four Puente Hills Earthquakes	94
4.8	Comparison of Building Responses in Four Puente Hills Earthquakes .	96
4.9	Maps of U20P Responses in Multiple Simulations on the Hollywood Fault	98
4.10	Maps of U20P Responses to Multiple Simulations on the Puente Hills	
	Fault	99
4.11	Maps of U6P Responses in Multiple Simulations on the Puente Hills Fault	100
4.12	Building Response versus $\mathrm{PGV}_{\mathrm{lp}}$ in Multiple Simulations on the Holly-	
	wood Fault	101

4.13	Building Response versus $\mathrm{PGV}_{\mathrm{lp}}$ in Multiple Simulations on the Puente	
	Hills Fault	102
4.14	Building Response versus $\mathrm{PGV}_{\mathrm{bb}}$ in Multiple Simulations on the Puente	
	Hills Fault	103
5.1	Maps of PGD and PGV for ShakeOut Simulation	106
5.2	Maps of $\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{PGV}_{\mathrm{lp}}$ for TeraShake 1 $\hfill \ldots \ldots \ldots \ldots \ldots$.	107
5.3	Maps of PGD_{lp} and PGV_{lp} for TeraShake 2	108
5.4	Maps of Permanent Total Drift in TeraShake and ShakeOut	111
5.5	Collapse, Total Structural Loss, and Peak IDR as Functions of PGV in	
	Southern San Andreas Simulations	113
5.6	Mapped Building Responses in Distant and Basin Simulations	114
5.7	Building Responses as Functions of $\mathrm{PGV}_{\mathrm{lp}}$ in Distant and Basin Simu-	
	lations	116
6.1	Magnitude versus Distance-to-Fault for Simulated Ground Motions $\ .$.	119
6.2	$\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{PGV}_{\mathrm{lp}}$ versus Fault-to-Site Distance for Simulated Ground	
	Motions	120
6.3	Comparison of PGV from Simulated Ground Motions and Ground Mo-	
	tion Prediction Equations	122
6.4	$\mathrm{PGV}_{\mathrm{lp}}$ versus Fault-to-Site Distance for M 7.7–7.8 Simulations	123
6.5	Location and Number of Simulation Data in $\mathrm{PGD}_{\mathrm{lp}}\text{-}\mathrm{PGV}_{\mathrm{lp}}$ Plane $\ .$.	125
6.6	Location of Collapse Data in PGD_{lp} - PGV_{lp} Plane	127
6.7	Location of Total Structural Loss Data in PGD_{lp} - PGV_{lp} Plane	128
6.8	Location of Peak IDR Data in PGD_{lp} - PGV_{lp} Plane	129
6.9	Building Response Data as a Function of Log-PSA	136
6.10	Building Response Data as Functions of $\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{PGV}_{\mathrm{lp}}$	137
6.11	Building Response Data as Functions of $\mathrm{Log}\text{-}\mathrm{PGD}_{\mathrm{lp}}$ and $\mathrm{Log}\text{-}\mathrm{PGV}_{\mathrm{lp}}$	138
6.12	Distribution of Peak IDR Data about Median Peak IDR	139
6.13	Collapse and Total Structural Loss Data and Prediction Model 1 as	
	Functions of PSA	142

6.14	Peak IDR Data and Prediction Model 1 as Functions of PSA	143
6.15	Collapse Data and Prediction Models 2–4 as Functions of PGD and PGV	/144
6.16	Total Structural Loss Data and Prediction Models $2-4$ as Functions of	
	PGD and PGV	145
6.17	Peak IDR Data and Prediction Models $2-4$ as Functions of PGD and	
	PGV	146
6.18	Collapse Prediction Model 3	152
6.19	Total Structural Loss Prediction Model 3	153
6.20	Collapse Separating Contours for Building Models	157
6.21	Total Structural Loss Separating Contours for Building Models	158
6.22	Predicted Peak Inter-Story Drift Ratios for Building Models	159
A.1	U6 Beam and Column Schedule	169
A.2	J6 Beam and Column Schedule	169
A.3	U20 Beam and Column Schedule	170
A.4	J20 Beam and Column Schedule	171

List of Tables

2.1	Values of 1994 UBC Design Parameters	25
2.2	Values of 1992 JBC Design Parameters	25
2.3	Parameter Values of Axial Stress-Strain Material Model	31
2.4	First and Second Modal Periods of Building Models	37
3.1	Simulations in the San Francisco Region	68
3.2	Building Responses that Threaten Life Safety in Simulations on the	
	Northern San Andreas Fault	75
3.3	Simulated Collapses in Earthquakes on the Northern San Andreas Fault	76
4.1	Long-Period Simulations in the Los Angeles Region	89
5.1	Summary of TeraShake Scenarios	105
6.1	Collapse Prediction Model Probabilities	147
6.2	Total Structural Loss Prediction Model Probabilities	147
6.3	Peak IDR Prediction Model Probabilities	148
6.4	Collapse Prediction Model 3 Parameter Values	150
6.5	Total Structural Loss Prediction Model 3 Parameter Values \ldots .	150
6.6	Peak IDR Prediction Model 1 Parameter Values	151
6.7	Misclassification of Collapse Data by Proposed Models	155
6.8	Misclassification of Total Structural Loss Data by Proposed Models	155
B.1	Collapse Prediction Model 1 Parameter Values	172
B.2	Collapse Prediction Model 2 Parameter Values	173
B.3	Collapse Prediction Model 3 Parameter Values	173

B.4	Collapse Prediction Model 4 Parameter Values	173
B.5	Total Structural Loss Prediction Model 1 Parameter Values	174
B.6	Total Structural Loss Prediction Model 2 Parameter Values	174
B.7	Total Structural Loss Prediction Model 3 Parameter Values $\ \ldots \ \ldots$	174
B.8	Total Structural Loss Prediction Model 4 Parameter Values	175
B.9	IDR Prediction Model 1 Parameter Values	175
B.10	IDR Prediction Model 2 Parameter Values	175
B.11	IDR Prediction Model 3 Parameter Values	176
B.12	IDR Prediction Model 4 Parameter Values	176