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Abstract

With the invention of turbo codes in 1993 came increased interest in codes and it-

erative decoding schemes. Gallager’s Regular codes were rediscovered, and irregular

codes were introduced. Protograph codes were introduced and analyzed by NASA’s

Jet Propulsion Laboratory in the early years of this century. Part of this thesis contin-

ues that work, investigating the decoding of specific protograph codes and extending

existing tools for analyzing codes to protograph codes.

The rest of this work focuses on a previously unknown relationship between the

binary entropy function and the asymptotic ensemble average weight enumerator,

which we call the spectral shape of the ensemble. This result can be seen as an

extension of the Pless power-moment identities based on the discovery that the convex

hull of the spectral shape is the Legendre transform of a function closely related to

the moment-generating function of a codeword’s weight.

In order to fully investigate this new relationship, tools needed to be designed

to calculate the derivatives of the spectral shape as the equation describing an en-

semble’s spectral shape is rarely straightforward. For Gallager’s regular ensembles, a

formula for calculating derivatives of functions defined parametrically was required.

For repeat-accumulate (RA) codes, a formula was needed for functions defined implic-

itly through a second function. Both formulas are similar to Faá di Bruno’s formula

for derivatives of compositions of functions.



vii

Contents

Acknowledgements iv

Abstract vi

List of Figures ix

List of Tables xi

1 Background 1

1.1 Historical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Basic Communications System . . . . . . . . . . . . . . . . . . . 4

1.4 Common Channel Models Used in This Thesis . . . . . . . . . . . . . 5

1.5 Error-Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 The Weight Enumerator . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Spectral Shapes 27

2 Spectral Shapes and Cumulants 28

2.1 Review of the Pless Identities and Dual Codes . . . . . . . . . . . . . 28

2.2 A Legendre Transform Theorem for Spectral Shapes* . . . . . . . . . 31

2.3 Connecting the Pless Identities to the Spectral Shape* . . . . . . . . 35

2.4 Conclusions* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



viii

3 Spectral Shapes of Specific Ensembles 39

3.1 Regular Ensemble* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Litsyn and Shevelev’s Ensembles* . . . . . . . . . . . . . . . . . . . . 42

3.3 RA Codes* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Protograph Codes* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Combinatoric Derivatives of Relevant Functions 60

4.1 Introduction and Notation . . . . . . . . . . . . . . . . . . . . . . . . 60
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Chapter 1

Background

1.1 Historical Framework1

The fundamental problem of communication is that of reproducing at one point a

message selected at another point. — Claude E. Shannon

In his seminal 1948 paper [51], Claude Shannon derived the mathematical laws

that govern how rapidly information can be reliably transmitted through a noisy chan-

nel. This mathematical framework became the basis for an entirely new field devoted

to its study — information theory— and its sister discipline error-correcting codes.

Shannon’s noisy channel coding theorem asserts that for every channel there exists a

maximum rate at which we can communicate with vanishing error probabilities. This

maximum rate is known as the capacity of the channel. Shannon further proved that

this capacity can be achieved by almost any extremely long code. This proof, how-

ever, was not constructive. An arbitrary long, random code may technically perform

well, but the encoding and decoding times would be prohibitively large.

In the decades following Shannon’s work, the ultimate goal of coding theory has

been to construct capacity-achieving codes with manageable encoding and decoding

times. One major success in this endeavor was the introduction of turbo codes in 1993

1Throughout this thesis, sections that contain significant contributions by the author will be
denoted by a * in their section heading.
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[10]. With turbo codes, came the introduction of iterative decoding, which bridged the

gap between high performance and low complexity. Specifically, iterative decoding

can achieve performance close to theoretical limits with a complexity that grows only

linearly with the length of the code.

The discovery of turbo codes led to a flurry of research interest in the field, and,

in particular, to the rediscovery of Gallager’s 1963 work [26] on low-density parity

check (LDPC) codes. Though Gallager’s work had been largely forgotten due to the

limited computational capabilities of his time, some interesting developments had

been occurring. Most relevant to this thesis was the work of Tanner [56], which

formally introduced the idea of using a bipartite graph to graphically represent a

code.

The idea of irregular codes was introduced in 1998 by Luby et al. [34] as a way

to improve upon Gallager’s regular codes. Five years later, NASA’s Jet Propulsion

Lab (JPL) introduced the idea of a protograph code [58]. A protograph code is

more structured than an irregular code, which allows for simpler code descriptions

without sacrificing performance. Protograph codes are closely related to Tanner’s

codes created from seed graphs [57], and are an example of the multi-edge type

construction introduced by Richardson [47].

With new codes came new theorems explaining their success. LDPC codes, with

iterative decoding, have been shown to achieve excellent performance over many chan-

nels, nearly approaching capacity on the additive white Gaussian noise (AWGN)

channel [48], and as code’s length tends to infinity, achieving it on the binary erasure

channel (BEC) [44].

2



1.2 Scope of This Thesis

In this chapter, we will provide the necessary background information that the rest

of the thesis depends on. The spectral shape of an LDPC code ensemble will be

introduced as an asymptotic version of the weight enumerator. While the weight

enumerator can be used to accurately estimate the performance of a single finite

length code, the spectral shape can be used to estimate the asymptotic performance

of a ensemble of codes.

Various ensembles will be introduced, including Gallager’s regular ensembles [26]

and several generalizations of it by Litsyn and Shevelev [33]. We will also call the set

of all codes the non-linear Shannon ensemble, and the set of all linear codes the linear

Shannon ensemble. As Shannon [51] and Gallager [27] respectively proved, these

ensembles are capacity-achieving. However, random codes are extremely difficult to

decode.

Ideally, we would like to find ensembles that can be decoded using fast, iterative

methods, but perform similarly to the Shannon ensembles. Since the spectral shape

of an ensemble can be used to estimate its performance, we will look for LDPC

ensembles whose spectral shapes are similar to that of the Shannon ensembles.

The first part of this thesis deals with how closely related the spectral shape of

an ensemble is to that of the Shannon ensemble. The Pless power-moment identities

[46] relate the moments of the distribution of the number of words of each weight to

the weight enumerator of the dual code. In Chapter 2, we will review these identities

and prove a similar result for the spectral shape. In Chapter 3, we will detail what

we know about the spectral shapes of the ensembles introduced in our introductory

material. Chapter 4 will detail the methods for taking derivatives of some relevant

functions using principles from combinatorics and set theory.

The second part of this thesis focuses on more practical concerns. Decoding

3



algorithms and queuing problems will be discussed in Chapter 5. Finally, in Chapter

6, we will discuss methods of estimating the performance of a code without resorting

to extensive simulation.

A review of relevant notation can be found in Table A-2 on page 113. Table A-

3 on the following page details the special notation for the queuing and set theory

problems.

1.3 The Basic Communications System

 

Channel 
Encoder 

Channel 

Channel 
Decoder 

Source 
Encoder 

Source 
Decoder 

1001010
1010101
0101010

100101011011 
101010101001 
010101010101 

10?101001011 
100010101101 
00010?010101 

1001010 
1010101 
0101010 

Source 

Source 

Figure 1.1: Basic Communications System

The basic set-up for a point-to-point communications system is shown in Figure

1.1. It all starts with a message or a source. This message can take many forms, but

for our purposes we will assume that the source encoder turns it into an element of

GF (2)k, i.e., a binary vector of length k. The channel encoder then adds redundancy

according to a specific code. This new vector is called a codeword and is an element

of GF (2)n. We call k the dimension of the code, and n its length.

The codeword is transmitted through either space or time using a channel. The

channel usually has the property that it alters signals that pass through it, corrupting

4



the data they contain. At the end of the channel, a word is received. This received

word may or may not be the codeword that was transmitted. The received word is

sent to a channel decoder, which attempts to correct the errors made by the channel

and returns the data to the source decoder, which identifies the original message.

As a simple example, consider burning a DVD: the raw footage from a camcorder

is the source. A computer acts as the source and channel encoders, converting the

footage to binary data and adding redundancy. The data is then burned to a DVD,

which is the channel. The DVD may get scratched or dusty, altering some of the

data, but a DVD player is able to read the disc, repair the altered data, and display

the video.

1.4 Common Channel Models Used in This Thesis

There are myriad physical channels and channel models. This thesis deals exclusively

with memoryless channels, which have the property that if and how a channel alters

one bit is completely independent from if and how it alters any other. In mathematical

terms, if the transmitted message is denoted x and the received message y, p(y|x) =∏
i p(yi|xi). This is a large assumption, but it is often made as it greatly simplifies

the mathematics without significantly distorting reality. This work will focus on

the binary erasure channel (BEC) and the additive white Gaussian noise (AWGN)

channel.

The binary erasure channel is defined by an erasure probability, p. Every bit that

is transmitted has probability p of being erased. An erased bit arrives at the receiver

as an unknown. The receiver knows that the bit was transmitted, but does not know

its value. Any bit that is not erased arrives unscathed. The BEC makes no errors and

alters no data other than erasing those bits. Interest in this channel has increased in

the last decade as it can be seen as a simplified version of how data is corrupted in

5



transmission over the Internet; packets rarely arrive corrupted, but often are dropped,

i.e., fail to arrive at all [35, 45].

The additive white Gaussian noise (AWGN) channel is defined by a signal-to-noise

ratio Eb/N0, the ratio of the energy in one bit of data to the energy of the surrounding

noise. This value is often given in logarithmic scale in dBs. A bit received from the

AWGN channel is the sum of the original bit value and an independent Gaussian

random variable with mean zero and variance N0/2. Gaussian noise is a reasonable

approximation of the type of noise encountered in deep space communications [4].

1.5 Error-Correcting Codes

A widely circulated e-mail states:

I cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was rdanieg.

The phaonmneal pweor of the hmuan mnid! Aoccdrnig to rscheearch taem

at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a

wrod are, the olny iprmoatnt tihng is taht the frist and lsat ltteer be in

the rghit pclae. The rset can be a taotl mses and you can sitll raed it

wouthit a porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey

lteter by istlef, but the wrod as a wlohe. Scuh a cdonition is arppoiately

cllaed Typoglycemia.

Amzanig huh? Yaeh and yuo awlyas thought slpeling was ipmorantt.

While no such study was ever done at Cambridge University, the readability of

the passage does suggest that spelling is not as important as one might have thought.

The English language is redundant, and even when it is heavily garbled, it is still quite

understandable. The goal of an error-correcting code is to duplicate that behavior

for binary messages.

6



An (n, k) binary linear code C is a subspace of GF(2n) with dimension k. The

rate of a code R = k/n is the ratio of the amount of information a word contains (k

bits) to the length of the code (n bits). The focus here is on linear codes, which have

the property that if x ∈ C and y ∈ C then x+ y ∈ C.

We start with the k-bit message. This message is multiplied by a k × n binary

matrix, G, known as the generator matrix, creating a codeword of length n. The

code is thus the rowspace of the generator matrix. A code can also be defined as the

nullspace of a (n−k)×n binary matrix called the parity check matrix. The generator

and parity check matrices are related. If the generator matrix, G is written in the

form G = [IkA], where Ik is the identity matrix of size k, then a parity check matrix

is given by H =
[
AT In−k

]
.

A third description of a code is by a Tanner graph [56]. A Tanner graph is a

bipartite graph consisting of n variable nodes, representing each of the n bits in the

codeword, and n− k check nodes, representing each constraint on the codeword. We

will use circles for variable nodes and squares for check nodes. The Tanner graph

is connected according to the parity check matrix, i.e., if Hij = 1, there is an edge

joining variable node i and check node j. To determine if a word is a codeword, the

subset of variable connected to each check node is examined. If each such subset has

even parity (i.e., sums to zero modulo 2), the word is a codeword.

Example 1. The Hamming Code

The (7,4) Hamming code can be defined by the 3× 7 parity check matrix

H =


1 1 1 0 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


7



or the 4× 7 generator matrix

G =



1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


or the Tanner graph shown in Figure 1.2. Note that, on a Tanner graph, variable

nodes will be shown as numbered circles, while check nodes are shown as lettered

squares. For larger Tanner graphs, the squares will simply contain plus signs.
 

1 2 3 4 5 6 7

A B C 

Figure 1.2: Hamming Code Tanner Graph

The Hamming code has dimension 4, and thus has 24 = 16 codewords. In terms

of the parity check matrix, x is a codeword if Hx = 0. In terms of the generator

matrix, x is a codeword if uG = x for some u ∈ GF (2k). In terms of the Tanner

graph, a word is a codeword if the subsets connected to each check node have even

parity. The 16 words are listed in Table 1.1

0000000 1111111 0100101 1011010

0001111 1110000 0101010 1010101

0010011 1101100 0110110 1001001

0011100 1100011 0111001 1000110

Table 1.1: Hamming Codewords

8



1.6 The Weight Enumerator

For any word, x, the Hamming weight of the word, wtx, is defined as the number of

non-zero components of x. For a binary word, this is simply the sum of the bits. The

weight of a word can also be used to define a distance metric; the distance between

any two words is the weight of their binary sum. For example,x = 1101100 has weight

four, as does y = 1101010; the distance between x and y is wtx + y = wt 0000110,

which is two. One of the most important descriptions of a linear code is its weight

enumerator. The weight enumerator is a list of the number of codewords of each

weight. In a linear code, the weight enumerator is of particular importance, as if

there is a word, x, of weight j in the code, then there is also a word at distance j

from every codeword y, i.e., y+ x. Because of this, the weight enumerator is also the

distance enumerator.

The distance enumerator is a powerful tool for estimating code performance with

specific decoding schemes, which will be discussed further in Chapter 5. In general,

however, knowing the distance between codewords allows us to calculate the proba-

bility that an error of a specific weight will cause the received word to be closer to the

wrong codeword than it is to the transmitted codeword. For example, if the distance

between any two codewords is always at least three, any error of weight one will be

decodable, as the received word will remain closest to the transmitted word.

Example 2. The Hamming Code

The 16 Hamming codewords, and their weights, are given in Table 1.2. There is

one word of weight zero, one word of weight seven, and seven words of weight three

and four.
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Word Weight Word Weight

0000000 0 1111111 7

0001111 4 1110000 3

0010011 3 1101100 4

0011100 3 1100011 4

0100101 3 1011010 4

0101010 3 1010101 4

0110110 4 1001001 3

0111001 4 1000110 3

Table 1.2: Hamming Codewords and Their Weights

1.7 Ensembles

While the Hamming code is a useful tool for explanation, it is quite short. Longer

codes, in general, perform better. Typically, the number of codewords increases ex-

ponentially in the dimension of the code. Further, as the code’s length increases,

it becomes harder to analyze specific codes, and we instead focus on groups, or en-

sembles, of codes that share certain properties. While Aj represents the number of

words of weight j in a code, Aj represents the average of Aj over all the codes in the

ensemble, equally weighted. Since this value is growing exponentially, we consider

the limit of its logarithm, the spectral shape of the ensemble.

Mathematically, the spectral shape, E(θ), is given by Equation (1.1).

E(θ) = limn→∞
1

n
logAθn (1.1)

The notation was chosen to be an E because this represents the first-order exponent

of the asymptotic average weight enumerator, i.e.,

Aθn = 2nE(θ)+o(n).

Like the weight enumerator, the spectral shape is especially important for linear

10



codes, as it describes not just the codeword weights, but also the distance between the

codewords. The spectral shape can thus be used to calculate bounds on asymptotic

code performance. One simple example of such a bound, discussed in [16], will be

addressed in chapter 6.

When we discuss the average number of words of a specific weight in an ensemble,

we are assuming that an ensemble contains two pieces: a set of codes, and a probability

distribution which describes how likely each code is to be chosen. In all cases, the

probability distribution is assumed to be uniform; each code in the ensemble is equally

likely. The set of codes varies, but there are a few standard cases.

Here, we will focus specifically on ensembles of low-density parity check (LDPC)

codes. These codes are preferred over other types because their parity check matrices

are sparse, which allows us to design efficient encoders and decoders. The following

set of subsections briefly describes some ensembles and their spectral shapes. This

is by no means an exhaustive list, but will serve to introduce the ensembles in this

thesis.

1.7.1 The Shannon Ensemble

In his unprecedented work, Shannon [51] proved that almost any long code achieves

capacity. Later, Gallager proved the same result for almost any asymptotically long

linear code [27].

We will call the set of all linear codes of rate R the Shannon ensemble. This

ensemble is defined by the set of all (1 − R)n × n binary parity check matrices.

Equivalently, a code in this ensemble is defined by a random parity check matrix

in which every bit is independently chosen to be zero or one with equal probability.

Note that, as the parity check matrix is dense, this is not an LDPC ensemble. It is,

however, useful for comparisons.

Given this random parity check matrix, H, we need to calculate the expected
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number of words of weight j = θn. A word, x will be a codeword if and only if

Hx = 0. If x has weight h, then Hx is just the binary sum of h of the columns in H.

However, each of the columns is independent, and each of the bits within the columns

is independent. Regardless of h, each bit in the resulting word is equally likely to be

a zero or a one. The probability that x is a codeword is thus given by 2−(1−R)n.

There are, however,
(
n
θn

)
words of weight θn. The expected number of codewords

of weight θn is simply the product of the number of words and the probability of a

word being a codeword,

Anθ =

(
n

θn

)
2−(1−R)n.

The spectral shape is the limit of the logarithm of this equation, and is given in

the following equation,

E0(θ) = limn→∞
1

n
log

(
n

θn

)
2−(1−R)n

= H(θ)− (1−R). (1.2)

Here, we have used the fact that, to first order in the exponent

(
n

nθ

)
= 2nH(θ)+o(n). (1.3)

The binary entropy function, H(θ), is defined as H(θ) = −θ log θ− (1− θ) log(1− θ),

and plays a crucial role in much of information theory. This particular relationship

between the binomial coefficients and the entropy function can be verified using Stir-

ling’s formula.

We could also consider a non-linear Shannon ensemble, in which 2Rn words were

chosen at random from the 2n possible words. This ensemble also has a spectral shape

given by Equation (1.2), as the probability of any particular word being in the code
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is still given by 2−(1−R)n.

1.7.2 Regular LDPC Codes

The regular codes exist in many forms, but were first conceived by Robert Gallager

[26] in 1963 as the first kind of LDPC codes. Every code in a (j, k) regular ensemble

has a parity check matrix with exactly j ones in each column and k ones in each row.

The spectral shape is best described parametrically, as it was in Gallager’s work, given

here in Equation (1.4). Several spectral shapes are shown in Figure 3.1 on page 40.

Z(s) =
(1 + es)k + (1− es)k

2

F (s) = logZ(s)

E(s) = (sF ′(s)− F (s)) + (j − 1)H(Θ)

Θ(s) =
1

k
F ′(s) (1.4)

1.7.3 Litsyn and Shevelev’s LDPC Ensembles

Gallager’s regular ensembles, though simply defined, have rather complicated spectral

shapes. It is sometimes useful to consider generalizations of the regular ensembles

that may help explain the various properties of the regular ensembles. The effect

that such generalizations have on the spectral shape of the ensemble is of particular

importance to this thesis.

In [33], Litsyn and Shevelev discuss the regular ensemble and numerous general-

izations thereof, several of which share the same spectral shape. To summarize,

• In Ensemble A, the parity check matrix is chosen with uniform probability

from the set of all m×n binary matrices having precisely j ones in each column

and k ones in each row. The spectral shape is that of the regular ensembles,
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given in Equation (1.4) 2.

• In Ensemble B, the parity check matrix is formed with j strips of size m
j
× n,

where the first strip is the k-fold concatenation of the identity matrix of size k,

and the rest of the strips are random permutations of the columns of the first

strip. The spectral shape is that of the regular ensembles, given in Equation

(1.4).

• In Ensemble C, the parity check matrix is chosen uniformly at random from

the set of all m×n binary matrices with precisely j ones in every column. The

spectral shape is given in Equation (1.5) and several examples are plotted in

Figure 3.3 on page 44.

EC(θ) = H(θ) + (1−R)H(t) + jθ log(1− 2t) (1.5)

where t is the only root of

(1− 2t) log

(
1− t
t

)
= 2

jθ

1−R
(1.6)

• In Ensemble D, the parity check matrix is formed by starting with an all-zeros

matrix, and flipping precisely j positions (not necessarily distinct) in every col-

umn. The spectral shape is the same as that for ensemble C, given in Equation

(1.5).

• In Ensemble E, the parity check matrix is chosen uniformly at random from

the set of all m × n binary matrices with precisely k ones in every row. The

spectral shape is given in Equation (1.7) and several examples are plotted in

Figure 3.4 on page 44.

2The form of the equation found in [33] can be found by replacing our es with their t.
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EE(θ) = H(θ) + (1−R) log
1 + (1− 2θ)k

2
(1.7)

• In Ensemble F, the parity check matrix is formed by starting with an all zeros

matrix, and flipping precisely k positions (not necessarily distinct) in every row.

The spectral shape is the same as that of ensemble E, given in Equation (1.7).

• In Ensemble G, the parity check matrix is formed by starting with an all-zeros

matrix of size m × n and flipping each bit with probability k/n = j/m. The

spectral shape is given in Equation (1.8) and several examples are plotted in

Figure 3.5 on page 46.

EG(θ) = H(θ) + (1−R) log
1 + e−2kθ

2
(1.8)

• In Ensemble H, the parity check matrix is formed from a random regular

bipartite m× n graph, with left degree k, and right degree j such that matrix

entry hil = e, where e is the number of edges between left node i and right node

l. The spectral shape is that of the regular ensembles, given in Equation (1.4).

1.7.3.1 A New Litsyn-Shevelev Type LDPC Ensemble*

As in [33], let H be an m×n binary parity check matrix, and let k and l be constants

independent of n. In ensemble E, H is chosen with uniform probability from the set

of all m× n binary matrices with rows of weight k.

We define ensemble E∗ in which H is chosen with uniform probability from the

set of all matrices such that, given a sequence {ki}mi=1 of positive whole numbers, the

ith row of the parity check matrix has weight ki. We define the set of row sums as

K; K ∈ K if ki = K for some i. We let mK be the number of rows of weight K.

Following the example set in [33], we seek the spectral shape of this ensemble. Let
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N (C, n, θ) be the number of codewords of weight nθ in the code defined by matrix

H, and E(N c, n, θ)) denote the expected value of this quantity over all the codes in

ensemble E∗. Let b(n, θ) = Prob(word of weight nθ is a codeword).

E(N (C, n, θ)) =

(
n

nθ

)
b(n, θ)

The spectral shape is defined as E(θ) = limn→∞
1
n

log E(N (c, n, θ)).

Note that when we let n approach infinity, we hold the design rate of the code

R = 1− m
n

constant. Further, we also hold the ratios mK
n

constant.

Using the identity regarding the binomial coefficients and the binary entropy func-

tion given in Equation (1.3), we can simplify part of the equation for the spectral

shape.

E(θ) = lim
n→∞

1

n
log

(
n

nθ

)
b(n, θ)

= lim
n→∞

1

n
log

(
n

nθ

)
+ lim

n→∞

1

n
log b(n, θ)

= H(θ) + lim
n→∞

1

n
log b(n, θ)

To analyze b(n, θ) we first note that the probability that a word of weight nθ is a

codeword is independent of the location of the nθ ones in the word. The probability

that any weight nθ word is a codeword is the same as the probability that the word

with nθ ones followed by n(1− θ) zeros is a word. We will denote this word 1nθ0n−nθ.

1nθ0n−nθ will be a codeword if and only if the first nθ columns of the parity check

matrix sum to zero modulo 2. For this to be true, the number of ones in the first nθ

columns of each row must be even. Given that a row in a matrix has weight ki, the

probability that the first nθ columns contains an even numbers of ones is given by
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Pi =
1(
n
ki

) bk/2c∑
j=0

(
nθ

2j

)(
n− nθ
ki − 2j

)
.

This is Equation 155 of Litsyn and Shevelev’s work [33], and, as they state, the

limit of this as n→∞ is

Pi =
1 + (1− 2θ)ki

2
+ o(1).

This represents one row, but the rows are independent. Thus, the probability that

every row has an even number of ones in the first nθ positions is given by

lim
n→∞

b(n, θ) =
m∏
i=1

Pi

=
m∏
i=1

(
1 + (1− 2θ)ki

2

)
=

∏
K∈K

(
1 + (1− 2θ)K

2

)mK
.

For large n, the logarithm of this probability is

1

n
log b(n, θ) =

1

n

∑
K∈K

mK log

(
1 + (1− 2θ)K

2

)
=

∑
K∈K

mK

n
log

(
1 + (1− 2θ)K

2

)
.

and therefore,

EE∗(θ) = H(θ) +
∑
K∈K

mK

n
log

(
1 + (1− 2θ)K

2

)
, (1.9)

which clearly simplifies to Equation (1.7), the spectral shape of ensemble E, when all
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rows have the same row weight.

1.7.4 RA Code Ensembles

RA or repeat accumulate codes were the first step toward designing codes composed

of simpler pieces, which led to ARA codes [1] and the AR4A/AR4JA family of pro-

tograph codes now used as JPL standards, which will be discussed shortly. RA codes

were first introduced in 1998 as a simple example of an LDPC code similar to a turbo

code [20]. They are easiest to describe from the point of view of the encoder. A block

of data of length k is repeated q times. This new block of data is fed to an interleaver,

which applies a permutation to the order of the bits. Finally, the scrambled data is

fed to an accumulator. An accumulator takes inputs (u1, u2, . . . uqk) and produces

outputs (x1, x2, . . . xqk) according to the following progression:

x1 = u1

x2 = u1 + u2

x3 = u1 + u2 + u3

...

xqk = u1 + u2 + . . .+ uqk.

The spectral shape of an RA code ensemble is given implicitly by Equation (1.10)

[30]. Several RA spectral shapes are shown in Figure 3.6 on page 47.

E(θ) = max
0≤u≤min(2θ,2−2θ)

{
f(u, θ) +

1

q
H(θ)

}
(1.10)

f(u, θ) ≡ −H(u) + (1− θ)H(
u

2(1− θ)
) + θH(

u

2θ
)
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1.7.5 Protograph Code LDPC Ensembles

A protograph [59], [58] is a bipartite graph consisting of a set of variable nodes, a

set of check nodes, a set of edges connecting one variable node to one check node.

Variable nodes are usually denoted by circles, which are numbered, and check nodes

are denoted by squares marked with letters. The protograph is equivalently described

by a protomatrix M where Mc,v is the number of edges connecting check node c to

variable node v.

To create an ensemble of codes, the protograph is lifted by an integer L. First,

L copies of the protograph are created. Now, for each v ∈ V , there are L variable

nodes. We say that all of these nodes are in class v. Each check node or edge is

also in a class defined in a similar fashion. The codes in the ensemble are formed

by performing independent permutations within each class of edge. Each possible

combination of permutations creates the Tanner graph for one code, and a uniform

probability distribution on each of these graphs forms our protograph ensemble.

Each of these Tanner graphs has its own equivalent parity check matrix. In this

matrix, the rows corresponding to check nodes of the same class have the same row

sum, and the columns corresponding to variables of the same class have the same

column sum. To create the parity check matrix from the protomatrix M , the element

Mc,v is replaced by an L×L binary matrix whose row and column sums are all Mc,v.

Example 3. The Hamming Code as a Protograph

Normally, protographs are lifted such that the total length of the code is in the

thousands. Here, the Hamming code will be used as a protograph, lifted 3 times, to

create a code of length 21. The process is shown in Figure 1.3. First, the three copies

are made. Then, a permutation is applied to each set of edges, starting with the edge

that connects variable node 1 with check node A. This process is repeated for each

edge.
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(a) First, the protograph is copied.

 

1 2 3 4 5 6 7

A B C 

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C 

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C 

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C 

1 2 3 4 5 6 7

A B C

1 2 3 4 5 6 7

A B C

(b) Next, the edges between variable node 1 and check node A are permuted.
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(c) Then, the edges between variable node 1 and check node B.
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(d) Once all the edges have been permuted, the code is complete.

Figure 1.3: Lifting the Hamming Code
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While any random permutation of the edges creates a code in the protograph

ensemble, some codes are easier to describe than others. The use of a block circulant

structure greatly reduces the amount of storage space required, and allows for simple

encoding [5]. A circulant matrix is a square matrix formed by summing shifted

versions of the identity matrix. The n × m protomatrix, M , is lifted to become a

nL×mL parity check matrix, which is subdivided into nm L×L sub-matrices. The

(i, j)th sub-matrix details the connections between variable nodes of class i and check

nodes of class j as the sum of Mij uniquely shifted versions of the identity matrix.

For example, the protomatrix M =

 1 2 0

1 0 2

, is shown in Figure 1.4 being

lifted by six using circulants. The six copies of the protograph are shown on top. The

second row shows the permutations all applied, but the structure is not immediately

obvious. The bottom row shows the same connections, but with the variable and

check nodes regrouped according to class, which brings the circulant structure to

light. Finally, the parity check matrix is given, which clearly shows the circulant

structure.

The spectral shape of a protograph code is found by the method of types and

Sanov’s theorem [23], [39] and is given by Equation (1.11). Figure 3.8 on page 57

shows several protograph spectral shapes.

E(θ) = max
Θ:Θ=θ

E(Θ)

= max
Θ:Θ=θ

m∑
c=1

(
Φc(Θ)− (

n∑
v=1

Mcv − 1)H(θv)

)
(1.11)

where M is the n ×m protomatrix and Φc(Θ) is the following constrained entropy
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(b) The edges are permuted using circulants.
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(c) The nodes are reordered by class, exposing the circulant structure.
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(d) The parity check matrix has a block circulant
structure.

Figure 1.4: Lifting with Circulants
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maximization problem: Let c refer to a class of check nodes.

Φc(Θ) = maxH(p(x)) s.t. (1.12)∑
p(x) = 1∑

W(x)p(x) = α.

In this equation, αi = θiMc,i for the non-zero elements of row c in the protomatrix,

and x ∈ ΩN , the set of all binary vectors of length N =
∑

iMc,i which have even

parity. The function W(x) is a vector of length n such that the first component is

the weight of the first Mc,1 components of x, the second component the weight of the

next Mc,2 components of x, etc.

The calculation of Φc(Θ) is a convex problem, that will be addressed in Chapter

3. The maximization over all Θ whose average is θ, however, is not convex. As the

number of rows of the protomatrix (the number of classes of check nodes) increases,

the landscape of E(Θ) develops more valleys and hills. Without calculating the

value of the function at every point, one cannot be certain where the true maximum

lies. For this reason, we are always calculating a lower bound on the spectral shape

of a protograph code. In practice, however, using several starting points for the

optimization, the spectral shape obtained in this fashion is indistinguishable from

those found using the only other existing formula for protograph enumerators, given

in [17]. The formula in [17] is quite similar to ours, and also involves a complicated

optimization problem.

One benefit of calculating the spectral shape in this fashion is that it can calculate

the spectral shape not of the codewords, but of the stopping sets of the code, simply

by changing from x ∈ Ω(N) to x ∈ Ω∗(N), the set of all binary vectors of length N

which have weight not equal to one. When decoding on the BEC, a stopping set is any

set of variables that, if erased, cause the decoding to stop. As such, they determine
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the performance. All codewords are stopping sets, but the converse is not true.

1.7.5.1 Equivalent Protographs

Many protographs which look structurally different have equivalent spectral shapes.

Figure 1.5 shows three protographs representing ensembles which are contained within

the regular (3,6) ensemble. The difference between the three protograph ensembles is

that the ensemble featured on the left has no codes which contain double edges, while

the center and right ensembles do contain double edges. However, all three of these

code ensembles share their spectral shape with that of the regular (3,6) ensemble.

While a regular ensemble always contains more codes than a protograph representa-

tion of the same ensemble, the difference is slight and cannot be distinguished in the

spectral shape.
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Figure 1.5: Equivalent Protographs

1.7.6 Codes Used in this Thesis

In later parts of this thesis, performance curves will be calculated for the AR4JA or

AR4A groups of codes developed by the Information Processing Group at the Jet

Propulsion Lab (JPL) specifically for deep-space applications. Here, the codes will

be briefly described. Detailed descriptions of these codes can be found in [13] and

[17].

The rate 1/2 AR4A and AR4JA protograph ensembles each contain three classes

of check nodes, and five classes of variable nodes. One class of variable nodes is
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punctured. A punctured variable is a variable that takes part in the encoding and

decoding process, but is not transmitted. On a protograph, a punctured variable

is denoted by an open, rather than shaded, circle. The protograph structure of

each ensemble is shown in figures 1.6 and 1.7. The protomatrices are described in

Equations (1.13) and (1.14). They are formed from the same basic building blocks:

accumulators and repeaters. The final accumulator in the AR4JA code, however, is

“jagged”, hence the “J” in its name. Ensembles of different rates can be created by

adding pairs of degree-four variables similar to variables 2 and 3. As an example of

this, the rate 4/5 version of AR4A is shown in Figure 1.8.

 

5 1 BA 

4 C

2 

3 

Figure 1.6: Rate 1/2 AR4A Protograph

H =


1 2 0 0 0

0 3 1 0 2

0 1 3 2 0

 (1.13)
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Figure 1.7: Rate 1/2 AR4JA Protograph
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H =


1 2 0 0 0

0 3 1 1 1

0 1 2 2 1

 (1.14)
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Figure 1.8: Rate 4/5 AR4A Protograph

26



Part I

Spectral Shapes
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Chapter 2

Spectral Shapes and Cumulants

In this chapter, we will show that the spectral shape of an ensemble is closely related

to that of the Shannon ensemble. In particular, we will show that if an ensemble

has minimum dual distance d⊥, then the first d⊥ derivatives of the spectral shape at

θ = 1/2 will be precisely the first d⊥ derivatives of the spectral shape of the Shannon

ensemble, H(θ)− (1−R) at 1/2.

2.1 Review of the Pless Identities and Dual Codes

Given a code C with parity check matrix H, the dual code, C⊥, is the code formed

when H is used as a generator matrix. Every word in C⊥ is perpendicular to every

word in C. The weight enumerator of the dual code is denoted A⊥j , and its minimum

distance is d⊥. The enumerators for a code and its dual are related through the

MacWilliams and Pless Identities.

We will follow the treatment of the Pless Identities given in Chapter sixteen of

Berlekamp’s text [8]. The number of codewords of weight j is denoted Aj. This also

defines the probability that an arbitrarily chosen codeword will have weight j, i.e.,

Aj/2
Rn. This probability distribution allows us to calculate the average codeword

weight, and higher-order moments as well. The Pless Identities relate these moments

to the weight enumerator of the dual code, A⊥j . For binary codes, the rth moment
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around n/2 is given in terms of the dual weight enumerator, according to Equation

(2.1).

n∑
j=0

(n/2− j)r Aj
2Rn

=
1

2r

r∑
j=0

A⊥j F
(j)
r (n) (2.1)

F (j)
r (n) =

(
dr

dxr
coshn−j(x) sinhj(x)

)
x=0

(2.2)

While Equation (2.2) is rather intimidating, for our purposes we will only need

F
(0)
r (n), as A⊥j = 0 for 1 ≤ j ≤ d⊥.

In the non-linear Shannon ensemble, 2Rn words are chosen at random from the

set of 2n possible words. This is the same as letting each bit of each word be an

independent random variable with probability one-half of being a one and probability

one-half of being a zero. The moment-generating function for this Bernoulli variable

is

E
{
ex(t−1/2)

}
=
e−x/2 + ex/2

2
= cosh(x/2)

and therefore the moment-generating function for the n independent bits that make

up a codeword is coshn(x/2), which is very similar to F
(0)
r (n). The right-hand side of

Equation (2.1) contains 2−r, which is precisely the ratio between the rth derivative

of coshn(x/2) and coshn(x) at x = 0. This leads to Theorem 2.1.

Theorem 2.1. Consider a code, C, whose dual code C⊥ has minimum distance d⊥.

The rth central moment of the weight of word in C is given by
∑n

j=0(n/2 − j)r Aj
2Rn

.

According to the Pless Identities, the first d⊥ central moments are equivalent to the

first d⊥ central moments of the Shannon ensemble. In other words, the first d⊥ terms

(i.e., the constant term, x, x2, . . . , xd
⊥−1) of the moment-generating function are the

same.
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Since

coshn(x) = 1 +
nx2

2
+

(
n2

8
− n

12

)
x4 + . . . ,

this gives us that the first few central moments are given by

n∑
j=0

(n/2− j)0 Aj
2Rn

= 1

n∑
j=0

(n/2− j)1 Aj
2Rn

= 0

n∑
j=0

(n/2− j)2 Aj
2Rn

= n

n∑
j=0

(n/2− j)3 Aj
2Rn

= 0

n∑
j=0

(n/2− j)4 Aj
2Rn

= 3n2 − 2n

...

or,

E
{
e(j−n/2)x

}
= coshn(x) up to degree d⊥. (2.3)

For simplicity, we will use Ψ(s) to denote the moment-generating function of

the weight of a codeword in a specific code or ensemble, and Ψ0(s) to denote the

moment-generating function of the weight of a codeword in the Shannon ensemble.

We will also use ψ(s) = log Ψ(s) and ψ0(s) = log Ψ0(s) to denote their respective

cumulant-generating functions.
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Notation Definition

V a finite set

J a finite set of n integers

w(v) a function which takes v ∈ V to j ∈ J
Vj {v ∈ V : w(v) = j}
mj |Vj|
Z(s)

∑
v∈V

e−sw(v) =
∑
j∈J

mje
−sj

F (s) − logZ(s)

F̃ (x) L{F (s)}, the Legendre transform [28, 7, 2]

G(x) max{
∑
j∈J

pj logmj :
∑
j∈J

pjj = x} for x ∈ [0, n]

Table 2.1: Notation for Theorem 2.2

2.2 A Legendre Transform Theorem for Spectral

Shapes*

In this section, we will introduce and prove Theorem 2.2[3], which is needed to con-

nect the cumulant generating function for codeword weight to the convex hull of the

ensemble’s spectral shape. The following section will deal with its application.

We will first need the notation described in Table 2.1. The function Z(s) is similar

to the moment-generating function. Using Ψ(s) to denote the moment-generating

function, Z(s) = 2RnΨ(−s). The cumulant-generating function, ψ(s) = log Ψ(s), is

related to F (s) similarly, i.e., F (s) = −Rn−ψ(−s). The function G(x) is the convex

hull of the logarithm of the weight enumerator.

If we consider the Taylor series representation of ψ(s) and F (s) around s = 0, and

use ψk and Fk to denote the coefficient of sk in φ(s) and F (s), respectively, then

Fk =

 ψk if k is odd

−ψk if k is even.

We will need to consider F (s) and not ψ(s) because F ′′(s) is easily shown to be
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positive, and the Legendre transform is only defined for convex functions.

Theorem 2.2. Aji, McEliece, Sweatlock [3]

F̃ (x)− log n ≤ G(x) ≤ F̃ (x)

In particular,

1

n
F̃ (x)− 1

n
log n ≤ 1

n
G(x) ≤ 1

n
F̃ (x).

Thus, in the limit as n→∞, G(x) = F̃ (x). In words, this means that a function

related to the asymptotic cumulant-generating function of a codeword’s weight and

the convex hull of the spectral shape are Legendre transforms of each other.

Proof. This proof is easily accomplished by looking at each inequality separately.

Proof that F̃ (x)− log n ≤ G(x)

F̃ (x) := max
s
{xs− F (s)}

To find the maximum, we differentiate with respect to s, yielding the expression

x = F ′(s), or

x =

∑
v∈V

e−sw(v)w(v)∑
v∈V

e−sw(v)
=
∑
v∈V

q(v)w(v)

for some probability distribution q over V .

Using this value for x, we can show that sx− F (s) = H(q).
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sx− F (s) = s
∑
v∈V

q(v)w(v) + log
∑
ν∈V

e−sw(ν)

=
∑
v∈V

−q(v) log e−sw(v) +
∑
v∈V

q(v) log
∑
ν∈V

e−sw(ν)

=
∑
v∈V

−q(v)(log e−sw(v) − log
∑
ν∈V

e−sw(ν))

=
∑
v∈V

−q(v)

(
log

e−sw(v)∑
ν∈V e

−sw(ν)

)
=

∑
v∈V

−q(v) log q(v)

= H(q)

From the distribution q over V , we can convert to a distribution p over J , where

for j = w(v), pj = mjq(v), and
∑
pjj = x. So,

H(q) =
∑
v∈V

−q(v) log q(v)

=
∑
v∈V

−
pw(v)

mw(v)

log
pw(v)

mw(v)

=
∑
j∈J

−pj log
pj
mj

=
∑
j∈J

−pj log pj + pj logmj

= H(p) +
∑
j∈J

pj logmj.

To summarize,

F̃ (x) := max
s
{xs− F (s)}

= max
q
{H(q) :

∑
v∈V

q(v)w(v) = x}

= max
p
{H(p) +

∑
j∈J

pj logmj :
∑

pjj = x}

≤ log n+G(x)
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where the last line is obtained by bounded H(p) by log n, and noting that by definition

G(x) ≥
∑

j∈J pj logmj when we assume that
∑
pjj = x.

Proof that G(x) ≤ F̃ (x)

For any i and real s,

mi ≤
∑
j

mje
−s(j−i)

= esi
∑
j

mje
−sj,

as the summation contains only positive values, one of which is mi. Taking the

logarithm on both sides yields

logmi ≤ si+ log
∑
j

mje
−sj

logmi ≤ si− F (s) = F̃ (i).

Then, we weight by pj, sum, and let
∑
pjj = x to find the desired result,

∑
j∈J

pj logmj ≤
∑
j∈J

pj(sj − F (s))∑
j∈J

pj logmj ≤ s
∑
j∈J

pjj − F (s)

{
∑
j∈J

pj logmj :
∑
j∈J

pjj = x} ≤ sx− F (s)

G(x) ≤ F̃ (x).
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2.3 Connecting the Pless Identities to the Spectral

Shape*

The Pless Identities show that the first d⊥ terms in the moment-generating function

for a codewords weight are equivalent to those of the Shannon ensemble. In this

section, we’ll detail the steps necessary to prove that when applying Theorem 2.2 to

transform from the cumulant-generating function to the spectral shape, the first d⊥

terms in the resulting series still match.

2.3.1 The Cumulant-Generating Function

We start with the Pless Identities, which give us that Ψ(x) = Ψ0(x) up to degree

d⊥. We would prefer to deal with the cumulant-generating functions, however, so we

need to first take the logarithm on both sides of the equation. We need to prove that

doing so does not alter the property that the first d⊥ derivatives match.

Consider a function M(x) =
∑∞

i=0 aix
i. We would like to find the power series for

C(x) = logM(x) around x = 0. We will denote this power series
∑∞

i=0 bix
i. Equating

the derivatives of the two series shows that

b0 = log a0

b1 =
a1

a0

b2 =
−a2

1

2a2
0

+
a2

a0

b3 =
a3

1

3a3
0

− a1c2

a2
0

+
a3

a0

.

Note that dn depends only on those cj such that j ≤ n. This will be true for all n,

as C(x) is a composition of two functions (log x and M(x)) and the nth derivative of

a composition contains only the first n derivatives of the composing functions. This
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is formalized in Faá Di Bruno’s formula, which is discussed more formally in Chapter

4.

Thus, given that the moment-generating functions Ψ(s) and Ψ0(s) match up to

degree d⊥, so will the cumulant-generating functions ψ(s) and ψ0(s). From the series

representation of the cumulant-generating functions, we can create the series for the

functions F (s) and F0(s) where F (s) = −Rn − ψ(−s). These two convex functions

will also clearly match up to degree d⊥. We are then prepared to take the Legendre

transform.

2.3.2 The Legendre Transform

We are now prepared to use Theorem 2.2 and take the Legendre transform of F (x)

and F0(x), yielding the convex hulls of the logarithms of the weight enumerators G(s)

and G0(s). However, we need to show that taking the Legendre transform preserves

our matching property.

Consider the Legendre transform of a convex power series f(x) =
∑
aix

i

f̃(s) = max
x
{sx− f(x)}

s = f ′(x) =
∑

iaix
i−1

sx− f(x) =
∑

iaix
i −
∑

aix
i

=
∑

(i− 1)aix
i

The Legendre transform is thus given parametrically, with s(x) =
∑
iaix

i−1 and

f̃(s(x)) =
∑

(i − 1)aix
i. Derivatives of functions defined parametrically are also

discussed in chapter 4. Much like in Faá di Bruno’s formula for function composition,

the first n derivatives of a parametrically defined function depend only on a1, a2, . . . an.

We know that the first d⊥ central moments (i.e., the zeroth through d⊥-1 moments)
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of our code and the non-linear Shannon ensemble code match, which implies that F (s)

is tangent to F0(s) at s = 0 with a degree of tangency equal to d⊥. The Legendre

transform sets up a bijection between s in moment space and x in spectral shape space

as s = G′(x) and x = F ′(s) [2]. So, the point s = 0 in moment-space corresponds to

the point x = F ′(0) in spectral shape space.

F ′(s) =
−Z ′(s)
Z(s)

=
−
∑
Aj(−j)e−sj

2RnΨ(−s)

F ′(0) =

∑
jAj

2Rn

=
∑

j
Aj
2Rn

, the first moment

If d⊥ is at least two, x = F ′(0) = F ′0(0) = n/2 (we usually look at the spectral

shape in terms of fractional weight θ, and this is the point θ = 1/2.) If, however,

d⊥ < 2, F ′(0) 6= F ′0(0) = n/2 and the spectral shapes will not be tangent to each

other as the point s = 0 corresponds to different values of x = θn. This is the case for

Litsyn and Shevelev’s [33] ensembles C, D, and G, which were introduced in Chapter

one and will be further studied in the following chapter.

2.4 Conclusions*

We have glossed over one small detail — the relation between the convex hull of

the spectral shape and the spectral shape itself. If a function is convex at its global

maximum, then for some neighborhood around that maximum point, the convex hull

and the function are equivalent. It is not trivial to show, however, that the spectral

shape will be convex at its maximum point for a generic ensemble. Spectral shapes

of protograph ensembles, for example, are not guaranteed to have continuous first

derivatives if they contain more than one check node. However, for a wide class of
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useful ensembles, there is no difference between the spectral shape and its convex hull

in some neighborhood around the maximum point. When this is the case, Theorem

2.3 applies.

Theorem 2.3. Given an ensemble whose spectral shape is convex at its maximum,

and whose dual minimum weight, d⊥, is at least two, the degree of tangency between

the ensemble’s spectral shape, E(θ) and that of the Shannon ensemble, E0(θ) = H(θ)−

(1−R), is at least d⊥ at θ = 1/2.

Theorem 2.3 suggests that if we are looking for an ensemble whose spectral shape

is similar to that of Shannon ensemble, we should look for codes whose minimum dual

distance is large. Since the minimum distance of the dual code is no larger than the

minimum row weight of the parity check matrix, this suggests that ensembles whose

parity check matrices have high row weight have spectral shapes more similar to the

that of the Shannon ensemble.
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Chapter 3

Spectral Shapes of Specific
Ensembles

In this chapter, we will detail what is known about the spectral shapes of certain

ensembles. The minimum weight of the dual code is not always known. The dual of

LDPC codes are called low-density generator matrix (LDGM) codes, as the LDPC

parity check matrix is the generator matrix for the dual code. The minimum distance

of the LDGM code is clearly no bigger than the minimum row weight in its generator

matrix. Little work has been done on showing that it is no smaller. An input/output

weight enumerator for finite-length regular LDGM codes (the dual to Gallager’s reg-

ular LDPC codes) has been derived [29], but not studied asymptotically for small

weights. The results in this section assume the following conjecture:

Conjecture 1. In the limit as the code’s length approaches infinity, the minimum

distance is precisely the minimum row weight of the generator matrix. Thus, the

minimum dual weight is the minimum row weight of the parity check matrix.

We will return to this conjecture in the concluding remarks for this chapter.

3.1 Regular Ensemble*

The spectral shape of a regular ensemble is given in Equation (1.4), but repeated

here for convenience. Spectral shapes for several rate one-half ensembles are shown
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Figure 3.1: Spectral Shapes of Regular Ensembles

in Figure 3.1, along with the spectral shape of the rate one-half Shannon ensemble.

Z(s) =
(1 + es)k + (1− es)k

2

F (s) = logZ(s)

E(s) = (sF ′(s)− F (s)) + (j − 1)H(Θ)

Θ(s) =
1

k
F ′(s)

We will define the (j, k) regular ensemble as the set of all binary parity check

matrices with j ones in each column and k ones in each row. The dual to the (j, k)

regular ensemble LDPC is a (j, k) regular low-density generator matrix (LDGM) code.

The minimum distance of the LDGM code is clearly no more than k, as each of the

rows is a codeword and has weight k.

Using our formula for parametric derivatives, discussed in Chapter 4, we can

calculate the derivatives of the spectral shape E(θ) with respect to θ. We can then
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compare those to the derivatives of the shifted entropy function, E0(θ) = H(θ)− (1−

R), which is the spectral shape of the Shannon ensemble of rate R. Since the ith

derivative is exponentially related to i, we will list the ratio between them. At θ = 1
2
,

the derivatives of the entropy function are given by Equation (3.1).

H(i)

(
1

2

)
=

 0 i odd

−2i(i− 2)! i even

(3.1)

Table 3.1 lists the ratios between the even derivatives of the spectral shape of

rate 1/2 regular ensembles and the entropy function. Odd derivatives, which are all

zero, are not listed1. While the analysis in Chapter 2 explains the leading ones in

each column, it does not explain why every single one of these values is an integer.

Further, each element, decreased by one, is a multiple of j(k − 1).

Derivative Ensemble

i (2,4) (3,6) (4,8) (5,10) (6,12) (7,14) (8,16)

2 1 1 1 1 1 1 1

4 -5 1 1 1 1 1 1

6 31 -14 1 1 1 1 1

8 -209 1 -27 1 1 1 1

10 1471 136 1 -44 1 1 1

12 -10625 -164 1 1 -65 1 1

14 78079 -1364 365 1 1 -90 1

16 -580865 3361 -419 1 1 1 -119

18 4361215 12496 1 766 1 1 1

20 -32978945 -53864 -5319 -854 1 1 1

Table 3.1: Ratios of the Derivatives of the Spectral Shape of (j, k) Regular Ensembles
to Those of the Entropy Function

We would like to find the radius of convergence the Taylor series expansion of E(θ)

around θ = 1/2, the coefficient of (θ− 1/2)i. Given a series, f(x) =
∑
ai(x− c)i, the

1Rate 1/2 regular ensembles have even row sums, which implies that the all ones word, 1n is
always a valid codeword. When this is the case, for every codeword (x) of weight θn, there is a word
(x+ 1n) with weight (1− θ)n. Thus, the spectral shape is an even function and all odd derivatives
are zero.
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radius of convergence is given by lim infi→∞ |(ai)|−1/i. In this notation, ai = 1
i!
diE
dθi

.

Finding this value for i > 30 is quite time consuming, and unfortunately the limit is

not reached quickly. However, if we factor out the derivatives of the entropy function

and the factorial, we can say something about the radius. The radius of convergence

of the entropy function is 1/2. If we let bi be the ratio between the ith derivative of

the spectral shape and the entropy function, then the radius of convergence of the

series is 1
2

lim(bi)
−1/i. Since the spectral shape is only defined for 0 < θ < 1, we expect

the radius of convergence at θ = 1/2 to be less than 1/2. In the ensembles we have

tested, (bi)
−1/i < 1 for all i > k + 2, which is consistent with our expectations.

For example, for the (3, 6) ensemble, for even i, the first 30 (bi)
−1/i are (1., 1., 0.644,

1., 0.612, 0.654, 0.597, 0.602, 0.592, 0.580, 0.594, 0.569, 0.614, 0.563, 0.592). With

only fifteen values, we cannot precisely define the limit, but the sequence appears to

be approaching something around 0.6, suggesting that the radius of convergence of

the Taylor Series is approximately 0.3. This value is supported by Figure 3.2.

3.2 Litsyn and Shevelev’s Ensembles*

Ensembles A, B, and H have spectral shapes like the regular ensembles, which were

discussed in the previous section. Here, we will discuss the spectral shapes of en-

sembles C, E*, and G. While Litsyn and Shevelev’s work [33] does show plots of the

spectral shapes of their ensembles, they do not include comparisons to that of the

Shannon Ensemble.

3.2.1 Ensemble C

Recall that in ensemble C, the parity check matrix is chosen with uniform probability

from the set of all m × n binary matrices with exactly j ones in each column. The

spectral shapes for various rate 1/2 codes are shown in Figure 3.3, along with the
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Figure 3.2: The spectral shape of the (3,6) regular ensemble is reconstructed from its
Taylor series. The red curve shows the spectral shape, the blue shows the reconstruc-
tion with between 20 and 30 terms in the series. The green line is the binary entropy
function. The full curve is shown on the left, and a smaller region is shown on the
right. As expected, the radius of convergence is approximately 0.3.

appropriately shifted entropy function. Note that the spectral shapes do not match

the shifted entropy function, even at the maximum. We expected this is because

there is a possibility that rows in the parity check matrix will have weight less than

two. Empty rows in the parity check matrix mean that the code is not actually the

rate it was designed to be. Rows of weight one force their attached variable nodes to

always be zero. When that happens, the first moment, the average codeword weight,

is not at θ = 1/2. In other words, the minimum dual distance is less than two, and

so Theorem 2.3 does not apply.

3.2.2 Ensemble E*

In ensemble E, the parity check matrix is constrained to have precisely k ones in each

row. The spectral shapes for various rate 1/2 ensembles of this type are shown in

Figure 3.4.
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Figure 3.3: Spectral Shapes for Ensemble C
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Figure 3.4: Spectral Shapes for Ensemble E
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Since ensemble E can be seen as a special case of ensemble E∗, we will discuss

the derivative matching properties of ensemble E∗ in which row i has sum ki for a

prescribed list of kis. The minimum distance of the dual code is clearly no more than

min ki. We expect the derivatives of the spectral shape at θ = 1/2 to match those of

the Shannon ensemble up to this degree.

We start from Equation (1.9), which gave the spectral shape of the E∗ ensemble,

and is repeated here for convenience:

EE∗(θ) = H(θ) +
∑
K∈K

mK

n
log

(
1 + (1− 2θ)K

2

)
.

Let us focus near the point θ = 1
2
. In this neighborhood, (1− 2θ) is small, and so

log

(
1 + (1− 2θ)K

2

)
= (1− 2θ)K − log 2 +O((1− 2θ)2K)

E(θ) = H(θ) +
∑
K∈K

mK

n

(
(1− 2θ)K − log 2 +O((1− 2θ)2K)

)
.

Note that
∑ mK

n
= m

n
= 1−R and so

E(θ) = H(θ)− (1−R) log 2 +
∑
K∈K

mK

n

(
(1− 2θ)K +O((1− 2θ)2K)

)
.

In the neighborhood around θ = 1
2
, the difference between spectral shape and

the shifted entropy function h(x) − (1 − R) is of order (1 − 2θ)k
∗

where k∗ is the

smallest element in K, and the smallest row-weight of the parity check matrix. Thus,

as expected, the derivatives of the spectral shape will be identical to those of the

Shannon ensemble up to the k∗th derivative.
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3.2.3 Ensemble G

Parity check matrices in this ensemble begin as the all-zeros matrix, and each entry

is flipped with probability k/n = j/m. Spectral shapes for various rate 1/2 codes are

shown in Figure 3.5. As with ensemble C, there is a possibility that a row in this

parity check matrix has weight less than two, which means that the average word

weight is not n/2, so we do not expect these spectral shapes to match the shifted

entropy function.
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Figure 3.5: Spectral Shapes for Ensemble G

3.3 RA Codes*

An RA(q) code has rate R = 1
q
, so we cannot create pictures of codes with the same

rate as we have for previous ensembles. Figure 3.6 shows the spectral shapes for

various values of q.

The spectral shape for an RA code is defined implicitly. Unfortunately, the formula

for calculating derivatives of functions defined implicitly (given in Equation (4.4)) is

much more complicated than that of the functions defined parametrically. Once again,

we display not the actual derivatives, but the ratio of the derivatives to the derivatives

of the entropy function. Table 3.2 lists the ratio for the first few even derivatives; the
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Figure 3.6: Enumerators for RA Codes of Various Rates
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Random Permutation 

m1 m1 m1 m2 m2 m2 m3 m3 m3 m4 m4 m4 m5 m5 m5 m6 m6 m6 m7 m7 m7

      …u9u8u7u6u5u4u3u2u1

+ + + + + + + + + + + + + + + + + + + + +

      …x9x8x7x6x5x4x3x2x1

Figure 3.7: The Tanner graph for the RA(3) code is shown. The first row contains
seven message bits, each repeated three times. These bits are all punctured (i.e., not
transmitted). The message bits are randomly connected to another set of punctured
variable nodes, denoted by ui. These variable nodes are then accumulated, using a
row of check nodes, denoted by the plus sign. The final result is the set of transmitted
variables xi.

first few odd derivatives are all zero. Once again, we notice that these ratios are all

integers. We know that the degree of tangency, which in this case is four, should be

at least the minimum weight of the dual code. However, this is one case where the

degree of tangency actually exceeds the minimum distance of the dual code.

Derivative RA(2) RA(3) RA(4) RA(5)

2 1 1 1 1

4 -5 -11 -17 -23

6 31 121 271 481

Table 3.2: Ratios of the Derivatives of the Spectral Shapes of RA Codes to the
Derivatives of the Entropy Function

To calculate the actual minimum weight of the dual to the RA codes, we need to

examine the Tanner graph representation of the codes, shown in Figure 3.7. As this

Figure suggests, for every i, xi + xi−1 = ui. If we rearrange these equations, we find
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that

x1 = u1

x2 = u1 + u2

x3 = u1 + u2 + u3

...

xqk = u1 + u2 + . . .+ uqk

where we have assumed that it is an RA(q) code with k message bits, and thus the

code’s length is n = qk.

Words in the dual code are found from writing parity check equations, i.e., if

xi + xj + xk = 0, then the word of weight three, with ones in positions i, j, and k,

is a word in the dual code. If, for instance, u1 = u2 = mj for some message bit j,

then x2 = mj + mj = 0 and thus there is a word of weight one in the dual code.

This, however, is unlikely to occur. Whatever u1 happens to be, the probability that

u2 = u1 is q−1
qk−1

, which tends to zero as k approaches infinity.

Words of weight two are found when xi + xj = ui+1 + ui+2 + . . .+ uj = 0. This is

most likely to happen when j − i is as small as possible, i.e., when identical message

bits are connected to consecutive us. In this case, xi−2 + xi = ui−1 + ui. Whatever

message ui−1 is connected to, the probability that ui is connected to the same message

is (q− 1)/qk. Since there are qk possible choices for i, the expected number of words

of weight two is q − 1. This is the most likely way to get words of weight two, as it

only involves restrictions on two different us. If j − i = s, the probability drops to

O((qk)1−s/2).

It is simple to show that there are at least q− 1 words of weight three. For any j,

x1 + xj + xj+1 = u1 + uj+1. Regardless of what u1 is, there are precisely q − 1 values

of j such that u1 = uj+1. Other methods of obtaining words of weight three have
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expected values that decrease with k.

The number of words of weight four, however, is O(k). This is easy to show

because xi + xi+1 + xj + xj+1 = ui+1 + uj+1. Clearly, for every value of k, there are(
q
2

)
choices for i and j.

The minimum weight of the dual to an RA(q) code is thus independent of q. Often,

the minimum weight is two, as the expected number of words of weight q is q−1. The

minimum weight is never more than three, as there are always at least q − 1 words

of weight three. The spectral shape of the RA code matched that of the Shannon

ensemble up to degree four, which suggests that perhaps it is not the minimum dual

weight that matters, but the minimum dual weight for which the number of words is

significant with respect to n.

3.4 Protograph Codes*

Equation (1.11) was introduced as the spectral shape of a protograph code. It involved

an entropy maximization problem, Φc(Θ), which we will investigate here.

Let c refer to a class of check nodes in an m× n protomatrix M .

Φc(Θ) = maxH(p(x)) = −
∑

x∈ΩN

p(x) log p(x)(s.t.)∑
p(x) = 1∑

W(x)p(x) = α

where αi = θiMc,i for the non-zero elements of row c in the protomatrix, and x ∈ ΩN ,

the set of all binary vectors of length N =
∑

iMc,i which have even parity. The

function W(x) is a vector of length n such that the first component is the weight of

the first Mc,1 components of x, the second component the weight of the next Mc,2

components of x, etc. The set of valid values for α is a closed set that will be denoted
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K. Since α is directly related to Θ, we will refer to this problem as Φ(α) for simplicity.

Example 4. If we are dealing with the protograph M = [3, 4], and Θ = [0.5, 0.5],

then α = [1.5, 2]. Ω is the set of binary vectors of length 7 that have even parity. For

a vector x ∈ Ω, W (x)1 is the weight of the first 3 components of x and W(x)2 is the

weight of the last 4 components of x. This is detailed in Table 3.3. Note that while

there are 64 possible choices for x, W(x) takes one of only 10 values.

x W(x) x W(x) x W(x) x W(x)

0000000 0 0 0100001 1 1 1000001 1 1 1100000 2 0

0000011 0 2 0100010 1 1 1000010 1 1 1100011 2 2

0000101 0 2 0100100 1 1 1000100 1 1 1100101 2 2

0000110 0 2 0100111 1 3 1000111 1 3 1100110 2 2

0001001 0 2 0101000 1 1 1001000 1 1 1101001 2 2

0001010 0 2 0101011 1 3 1001011 1 3 1101010 2 2

0001100 0 2 0101101 1 3 1001101 1 3 1101100 2 2

0001111 0 4 0101110 1 3 1001110 1 3 1101111 2 4

0010001 1 1 0110000 2 0 1010000 2 0 1110001 3 1

0010010 1 1 0110011 2 2 1010011 2 2 1110010 3 1

0010100 1 1 0110101 2 2 1010101 2 2 1110100 3 1

0010111 1 3 0110110 2 2 1010110 2 2 1110111 3 3

0011000 1 1 0111001 2 2 1011001 2 2 1111000 3 1

0011011 1 3 0111010 2 2 1011010 2 2 1111011 3 3

0011101 1 3 0111100 2 2 1011100 2 2 1111101 3 3

0011110 1 3 0111111 2 4 1011111 2 4 1111110 3 3

Table 3.3: Example of x and W (x) for [3, 4] Protograph

We solve the constrained maximization problem (1.11) for the spectral shape of

a protograph ensemble by taking the derivative of the Lagrangian. To simplify the

notation, let xi be the ith vector in Ω. Let pi = p(xi) and wi = W(xi). We will use λ

as the Lagrange multiplier for the constraint that
∑
pi = 1 and s for the constraints

that
∑

wipi = α.
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L(p) = H(P )− s ·
∑

wipi − λ
∑

pi

L(p) = −
∑
i

pi log pi − s ·
∑

wipi − λ
∑

pi

dL(p)

dpi
= −(1 + log pi)− s ·wi − λ

In order for the derivative of the Lagrangian to be zero,

pi =
e−s·wi

eλ+1
,

but since the denominator is just a constant, we remove λ from the equation and rec-

ognize that the probability distribution p must be the Boltzmann probability density

p(x) =
e−W(x)·s∑

x∈Ω e
−W(x)·s .

Let Z(s) =
∑

i e
−s·wi and F (s) = − logZ(s).

Then,

Φ(α) = −
∑

p(x) log p(x)

= −
∑ e−W(x)·s

Z(s)
log

e−W(x)·s

Z(s)

= −
∑ e−W(x)·s

Z(s)
((−W(x) · s) + F (s))

=
∑

(W(x) · s)p(x)− F (s)

=
∑

(W(x)p(x) · s)− F (s)

= α · s− F (s).

This final equation may look familiar. It defines Φ(α) as the Legendre transform
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[28, 7, 2] of F (s), which gives us that ∇F (s) = α and ∇Φ(α) = s. This sets up

our bijection: for every α ∈ K, there exists one and only one s ∈ Rn such that

Φ(α) = s · α − F (s) [2]. Solving this problem then simplifies to finding the s such

that ∇F (s) =
∑

i
wie
−s·wi∑

j e
−s·wj = α.

Our code first tries Broyden’s method to solve this problem. If Broyden’s method

cannot find a solution (which typically happens along the border of α ∈ K), Newton’s

method is used. These methods are described in the following subsection. A reader

already familiar with the methods will find little new information there.

3.4.1 Newton’s and Broyden’s Methods

Chapter 11 of Nocedal and Wright’s text [42] deals with the problem of solving non-

linear equations. In our case, we are trying to find a specific value of s such that

∇F (s) = α. In their notation, r(s) = ∇F (s) − α, where r(s) is a vector of length

n. In general, such a system can have no solutions, a single solution, or many solu-

tions. In our case, we know the solution is unique because of the Legendre transform

relationship.

Assuming that we have a suitable starting position, s0, Newton’s method begins

by calculating J(x0), the Jacobian of r(s0), which in our case is the Hessian of F (s0).

The algorithm is iterative, and subscripts denote the iteration, i.e., x5 is the vector

after 5 iterations, not the fifth component of x. The algorithm in its purist form

is given in Algorithm 1. In practice, however, the addition of a backtracking line

search can improve convergence times, and a stopping condition should be added.

This algorithm is given in Algorithm 2.

Algorithm 1. Newton’s Algorithm

• Choose s0;

• Calculate the Jacobian, J(s0)

• for k=0,1,2,. . .
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– Solve the Newton equation for a new direction pk

J(sk)pk = −r(sk)

– Set sk+1 = sk + pk

– Calculate J(sk+1)

Algorithm 2. Newton’s Algorithm with Backtracking Linesearch

• Choose s0 and set tolerance ε

• Set β0 = 1, k = 0

• Choose ρ ∈ (0, 1)

• Calculate the Jacobian, J(s0)

• while r(sk) > ε

– Solve the Newton equation for a new direction pk

J(sk)pk = −r(sk)

– Choose βk by line search

∗ Set βk = 1

∗ while (r(sk) + βkpk) > r(sk)
βk = ρβk

– Set sk+1 = sk + βkpk

– Calculate J(sk+1)

– Set k = k + 1

Broyden’s method is an approximation to Newton’s method that approximates

the Jacobian at each step, which is often much faster than calculating it. This ap-

proximation is carefully constructed to mimic the behavior of the true Jacobian as

each step is taken. To calculate this update, the difference between successive values

of s and r(s) must be known. The difference between sk+1 and sk is already known;

it is xk = βkpk. Let yk = r(sk+1)− r(sk). With this new notation, Broyden’s method

is given in Algorithm 3.

Algorithm 3. Broyden’s Algorithm
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• Choose s0 and set tolerance ε

• Set β0 = 1, k = 0

• Choose ρ ∈ (0, 1)

• Set B0 equal to the Jacobian s0

• while r(sk) > ε

– Solve the Newton equation for a new direction pk

Bkpk = −r(sk)

– Choose βk by line search

∗ Set βk = 1

∗ while (r(sk) + βkpk) > r(sk) βk = ρβk

– Set sk+1 = sk + βkpk

– Set xk = βkpk and yk = r(sk+1)− r(sk)
– Update Bk+1

Bk+1 = Bk +
(yk −Bkxk)x

′
k

x′kxk

– Set k = k + 1

3.4.2 Specific Protograph Enumerators*

Since the spectral shape of a protograph is found numerically, and only approxi-

mately, calculating the derivatives is not feasible. However, we can still compare the

enumerators to the shifted entropy function visually, and see what we notice. We

expect the minimum weight of the dual code to be equal to the minimum row weight

of the protomatrix. If this were true, protomatrices with higher row sums would have

spectral shapes more like the shifted entropy function. Here we will focus on rate

1/2 protomatrices with a single row, corresponding to a single class of check node. In

this case, the outer non-convex maximization problem does not exist, and thus the

spectral shape is easier to calculate and far more accurate.

Figure 3.8 shows the spectral shapes for various protograph ensembles. There are

three sets of pictures corresponding to three different check node weights. In all cases,
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the full enumerator is shown on the left and a close-up of the behavior near zero is

shown on the right. This allows us to quickly identify which ensembles have positive

zero crossings, which indicates better code performance. This will be discussed further

in chapter 6. Note that the ensembles with higher check node degree are more likely

to have this property, and they also remain close to the shifted entropy function E0(θ)

longer, suggesting that their degree of tangency is higher.

As mentioned in Chapter 1, one of the benefits of our method for calculating

protograph spectral shapes is that it can be easily altered to calculate the growth

rate of the stopping set enumerators. These growth rates are shown in Figure 3.9.

Note that protograph ensembles with larger check degree are more likely to have a

growth rate which is negative up to some value of θ, denoted θs. In theory, this

means that asymptotically long codes will have no stopping sets smaller than θsn. In

practice, however, any finite length code will have smaller stopping sets [25].

3.5 Conclusions

In this chapter, we reviewed the spectral shapes of several ensembles, and examined

the degree of tangency between their spectral shapes and the shifted entropy function,

which is the spectral shape of the Shannon ensemble. The hope is that ensembles

whose spectral shapes closely mimic that of the Shanon ensemble will contain codes

whose performance mimics that of the Shannon ensemble. In this chapter, we saw

that ensembles whose parity check matrices have high row weight have spectral shapes

with higher degrees of tangency to the spectral shape of the Shannon ensemble.

We also saw that ensembles like Litsyn and Shevelev’s ensembles C and G [33],

that place no restrictions on the row weight of the parity check matrix, have spectral

shapes that differ greatly from the shifted entropy function.

Further study of the dual codes to these ensembles may be needed to prove a
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Figure 3.8: Spectral Shapes of Protograph Ensembles
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Figure 3.9: Stopping Set Enumerators for Protograph Ensembles
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stronger result than Theorem 2.3, which stated that the degree of tangency was at

least d⊥, the minimum dual distance. If the ensemble’s parity check matrices are

constrained to have row weights at least k, it is certainly still possible to have words

in the dual code of smaller weight. As the code’s length increases, however, this

becomes less likely.

If every row in a parity check matrix has weight k, then there are at least O(n)

words of weight k in the dual code. The sum of any two random rows is likely to

have weight 2k, and thus there are at least O(n2) words of that weight. For regular

codes, the number of ones in each column is fixed, thus it will always be possible to

select two rows such that their sum creates a word of weight 2k− 2. There are, then,

at least O(n) words of weight 2k − 2.

There are far fewer words of weight less than k, and of weight k + 1 through

2k − 3. For a regular ensemble, we suspect that the expected number of words of

these weights is o(n). If this is the case, then the results in this chapter support

a stronger hypothesis than Theorem 2.3, i.e., that the ith derivative of the spectral

shape of an ensemble at θ = 1/2 is precisely equal to that of the spectral shape of the

Shannon ensemble if the number of words in the dual ensemble of weight i is o(n).

This would suggest that, while the minimum dual weight is useful for predicting the

spectral shape of the primal ensemble, knowing even a few more points in the dual

enumerator would allow for a much more accurate description of the primal code’s

spectral shape.
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Chapter 4

Combinatoric Derivatives of
Relevant Functions

4.1 Introduction and Notation

To apply Theorem 2.2 in Chapter 2 we needed a few results regarding the derivatives

of functions constructed from other functions. We needed Faá di Bruno’s famous

formula for calculating the derivatives of function compositions, and a new formula to

differentiate functions defined parametrically. The parametric derivatives formula is

always needed to calculate the derivatives of the spectral shape of Gallager’s regular

LDPC ensembles. For RA code ensembles, a formula is needed for differentiating

functions defined implicitly. In this chapter, we will give combinatoric formulas for

each of these three derivatives. Much of this chapter is based on the first few pages of

Chapter 5 of Stanley and Fomin’s combinatorics text [53], though we will alter their

notation slightly.

A sequence is a mapping from the nonnegative integers N, or the positive integers

P, to a fixed field K of characteristic zero. Typically, such a sequence will be denoted

by f [0], f [1], f [2], . . .. The exponential generating function for a sequence f [n] is the

formal power series

Ef (x) =
∑
n≥0

f [n]
xn

n!
.
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The original sequence f [n] can be recovered from the series Ef (x) by formal differen-

tiation:

f [n] =
dn

dxn
Ef (x)|x=0.

This important pairing is summarized with the symbol

f [n]↔ Ef (x).

The problems to be addressed in this section are as follows: Given sequences

f : P → K, with f [1] = 1 and g : N → K, with g[0] = 1, construct sequences k[n],

and h[n] such that

Ek(x) = Ef (Eg(x))

Eh(x) = Eg(E
(−1)
f (x)).

To construct these sequences, we will need the notion of set theory and number

theory partitions. We will use the capital letter Λ to refer to the former, and lowercase

λ to refer to the latter. A number theory partition n is a multiset of positive integers

that sum to n. For instance, λ = {1, 1, 2, 2, 2} is a partition of 8. Functions of λ

are defined to be the product of the functions of each λi, i.e., if λ = {λ1, λ2, . . . , λk},

then for a generic function f , f [λ] = f [λ1]f [λ2] . . . f [λk]. A partition can also be

characterized by its multiplicities mj = # {i : λi = j}. For example, the partition

λ = {1, 1, 2, 2, 2} is denoted by its multiplicities as 1223 and f [λ] = f [1]2f [2]3.

A set theory partition of n is a sectioning of the integers from 1 to n. Each set

theory partition corresponds to a number theory partition. This number theory par-

tition is a list of the size of each subset. The set theory partition {(1)(2)(34)(56)(78)}

has corresponding number theory partition λ = {1, 1, 2, 2, 2}.

Let #λ be the number of parts in a given partition λ and r denote the number of
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singletons in the set theory partition (the number of subsets with only one number).

Finally, let N (λ) be the number of set theory partitions that collapse into number

theory partition λ.

N (λ) =
n!∏n

i=1(i!)mimi!

Table 4.1 lists a few examples of each type of partition for n = 5.

Num. Theory Partition #λ r N (λ) (Some) Set Theory Partitions

{1, 2, 2} 3 1 15 (1)(23)(45), (1)(24)(35), (1)(25)(34)

(2)(13)(45), (2)(14)(35), (2)(15)(34), . . .

{5} 1 0 1 (12345)

{2, 3} 2 0 10 (12)(345), (14)(234), (124)(35), . . .

{1, 4} 2 1 5 (1)(2345), (1345)(2), (1245)(3),

(1235)(4), (1234)(5)

Table 4.1: Examples of Set and Number Theory Partitions

4.2 Faá di Bruno and Function Composition

Faá di Bruno’s formula [21] calculates the derivatives of a function defined as the

composition of two functions. While Faá di Bruno’s result is the most well known, he

was not the first or the last to study this particular problem. It is possible that the

first calculation is due to Arbogast [6] in 1800. More historical framework is found in

Johnson’s work [31]. More recently, research has focused on extending these results

to the multivariate case [12]. In the next section, we will extend it to a different kind

of function, one that is defined parametrically.

Theorem 4.1. Faá di Bruno’s Formula Given two functions and their corresponding

sequences

Ef (x) ↔ f [n]

Eg(x) ↔ g[n],
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The exponential generating function for their composition,

Ek(x) = Ef (Eg(x)),

can be described by the corresponding sequence k[n] where

k[n] =
∑

λ∈P (n)

N (λ)f [#λ]g[λ]

P (n) =

{
λ :
∑
j

λj = n

}
.

Example 5. Some Examples of P (n) and k[n]

P (1) = {1}

P (2) = {{2} , {1, 1}}

P (3) = {{3} , {2, 1} , {1, 1, 1}}

P (4) = {{4} , {3, 1} , {2, 2} , {2, 1, 1} , {1, 1, 1, 1}}

k[0] = 1

k[1] = f [1]

k[2] = f [1]g[2] + f [2]

k[3] = f [1]g[3] + 3f [2]g[2] + f [3]

k[4] = f [1]g[4] + 4f [2]g[3] + 3f [2]g[2]2 + 6f [3]g[2] + f [4]
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4.3 Parametric Functions*

This section deals with the problem of how to take the derivatives of functions defined

parametrically. We assume that we have two generating functions Eg(t) ↔ g[n] and

Ef (t) ↔ f [n]. We assume that while Ef (t) is a bijection, inverting the function

analytically is intractable. Further, we assume that the problem has been scaled such

that E ′f (0) = f [1] = 1. We have defined the new generating function

Eh(x) = Eg(E
(−1)
f (x))↔ h[n]

and we are looking for the sequence h[n]. In simpler language, h[n] is the nth deriva-

tive of a function defined parametrically as (Eg(t), Ef (t)) evaluated at the point t = 0,

h[n] =
dnEg
dEn

f

|t=0.

We need to introduce new notation for the multiplicity of one in the partition,

r = m1, as this plays a crucial role in the theorem. When necessary, we will use

subscripts, i.e., rλ to distinguish one partition’s r value from that of another partition.

Theorem 4.2. Parametric Derivatives Theorem

Eh(x) = Eg(E
(−1)
f (x))↔ h[n] (4.1)

h[n] =
∑

λ∈V (n)

(−1)#λ−rN (λ)f [λ]g[r + 1] (4.2)

V (n) =

{
λ :

#λ∑
j=1

max(λj − 1, 1) = n− 1

}
(4.3)

The proof of this theorem is given in the appendix.

Example 6. Some Examples of V (n) and h[n]
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V (1) = ∅

V (2) = {{2} , {1}}

V (3) = {{3} , {2, 2} , {2, 1} , {1, 1}}

V (4) = {{4} , {3, 2} , {3, 1} , {2, 2, 2} , {2, 2, 1} , {2, 1, 1} , {1, 1, 1}}

h[1] = g[1]

h[2] = g[2]− g[1]f [2]

h[3] = g[3]− 3g[2]f [2]− g[1]f [3] + 3g[1]f [2]2

h[4] = g[4]− 6g[3]f [2]− 4g[2]f [3] + 15g[2]f [2]2 − g[1]f [4] +

+10g[1]f [2]f [3]− 15g[1]f [2]3

4.4 Implicit Functions*

Assume that we are given g(x, y) = 0, and that this uniquely defines y in terms of x,

though in a manner that is too complicated to be practical. Let F (x) = f(x, y). We

seek the total derivatives of F with respect to x, i.e., dF
dx

= ∂f
∂x

+ ∂f
∂y

dy
dx

.

If we take the derivative of g(x, y(x)) = 0 with respect to x, we find that ∂g
∂x

+

∂g
∂y

dy
dx

= 0, which simplifies to

dy

dx
=

∂g
∂x
∂g
∂x

.
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This gives us our first derivative

dF

dx
=
∂f

∂x
−

∂f
∂y

∂g
∂x

∂g
∂y

.

This also sets up our recursion

dnF

dxn
=

∂

∂x

dn−1F

dxn−1
−

∂g
∂x
∂g
∂y

∂

∂y

dn−1F

dxn−1
.

If we use subscripts to denote partial derivatives, i.e.,

fx =
∂f

∂x

and

fxx =
∂2f

∂x2
,

the first few derivatives are given by

dF

dx
= fx −

fygx
gy

d2F

dx2
= fxx −

fygyyg
2
x

g3
y

+
fyyg

2
x

g2
y

+
2fygxygx

g2
y

− 2fxygx
gy

− fygxx
gy

d3F

dx3
= fxxx −

3fyg
2
yyg

3
x

g5
y

+
3fyygyyg

3
x

g4
y

+
9fygyygxyg

2
x

g4
y

+
fygyyyg

3
x

g4
y

− 3fxygyyg
2
x

g3
y

−6fyygxyg
2
x

g3
y

− fyyyg
3
x

g3
y

− 3fygyygxxgx
g3
y

− 3fygxyyg
2
x

g3
y

−
6fyg

2
xygx

g3
y

+
6fxygxygx

g2
y

+
3fyygxxgx

g2
y

+
3fxyyg

2
x

g2
y

+
3fygxxygx

g2
y

+
3fygxygxx

g2
y

− 3fxxygx
gy

− fygxxx
gy

− 3fxygxx
gy

.

With each subsequent differentiation, the number of x derivatives increases by

one, as we might expect. The number of derivatives in y varies, but it is always
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balanced; the denominator has exactly as many derivatives in y as the numerator.

Every time we take a derivative in y, we divide by gy. The nth derivative always

contains the term fxn , but all the other terms involve g in some way.

Unlike with function composition and parametric functions, these derivatives can-

not be described with simple partitions. We instead need partition pairs. Each

element of the partition will be an ordered pair. The sum of these ordered pairs will

be the pair (n, k) We will assume the convention that in each pair, the first element

corresponds to x derivatives and the second to y. For example, with (n, k) = (2, 3),

one possible partition is λ = (2, 1)(0, 1)(0, 1). However, some of these derivatives are

of f and others are of g. We will assume that the first pair corresponds to the deriva-

tives of f , and we will call this first pair µ. Thus, the partition λ above corresponds to

the term fxxyg
2
x. The multiplicities of elements of the partition are defined pairwise,

i.e., mi,j is the multiplicity of pair (i, j) in the partition.

Conjecture 2. Equation (4.4) gives a formula for the nth derivative of F (x) =

f(x, y) when y is defined by g(x, y) = 0.

dnF

dxn
=

2n−1∑
k=0

(−1)k

gky

∑
λ∈K(n,k)

C(λ)fµgλ, (4.4)

where

C(λ) =
1∏

ij

mi,j!

n!∏
i

λix !

(k − 1)!λ1y∏
i

λiy !
.

The set of partitions K(n, k) is a subset of the set of all partitions of x degree n

and y degree k. The restrictions on K(n, k) come directly from the recursive formula

for calculating the derivatives. First, even though k is often bigger than n, neither a

specific element nor the sum of any pair can be larger than n. This corresponds to

the idea that we are taking only n derivatives, so no single f or g term can have more

than n derivatives. The pair (0, 1) can only refer to f (i.e., it can only be the first
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pair), as the term gy cannot appear in the numerator. Finally, every time we take a

derivative w.r.t y, we then multiply by a negative sign and gx/gy. Because of this,

the number of y derivatives (k) must also be equal to the number of terms involving

g. Since there is always one and only one term involving only f , there are a total of

k + 1 pairs in the partition.

The coefficient C(λ) is the product of the multinomial coefficients that describe

how many ways we can partition the n derivatives in x and k − 1 derivatives in y.

This number is divided by the multiplicities because the derivatives are indistinguish-

able. Only k − 1 derivatives in y are considered because, except for the term fxn

(which contains no y derivatives) every term in the summation contains at least one

y derivative of f . Put in another way, C(λ) is precisely the number of set theory

partitions that collapse into number theory partition λ if we assume that if µy is not

empty, it contains the number one.

Conjecture 2 is known to be accurate up to at least the eighth derivative. To our

knowledge, standardized, consistent notation does not yet exist for partitions of pairs.

Ongoing work on this and other derivatives will hopefully lead to such notation and

a conclusive proof of this conjecture.
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Part II

Practical Considerations for

Protograph Codes
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Chapter 5

Iterative Decoding of LDPC Codes

In this chapter, we will discuss the iterative decoding of LDPC codes. In the first

section, we will introduce the idea of maximum likelihood decoding. In the second

section, we will discuss the iterative decoding framework. Finally, the last section

discusses the effects of adding an input buffer to the decoding system.

5.1 Bounded Distance and Maximum Likelihood

Decoding

In the first chapter, we defined the weight enumerator Aj as the number of words of

weight j in a given code. For any linear code, A0 = 1, meaning that there is precisely

one codeword of weight zero. For good codes, Aj = 0 for all j less than some value

d, called the minimum distance. A code with minimum distance d can always correct⌊
d−1

2

⌋
errors using a bounded distance decoder (BDD). Imagine the codeword vectors

as points in space. No two words are closer together than the minimum distance, d.

If we draw spheres around each codeword of radius
⌊
d−1

2

⌋
, then, no two spheres will

overlap. If no more than
⌊
d−1

2

⌋
errors are made by the channel, the received word

will lie within the sphere of the transmitted word, and thus be correctly decoded.

Figure 5.1 illustrates this decoding. The smaller circles represent codewords, and

the large circles a radius of
⌊
d−1

2

⌋
. The red codeword was transmitted. If less than
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Figure 5.1: Decoding Spheres

⌊
d−1

2

⌋
errors are made, the received word resembles the green circle labeled A and is

clearly within the sphere for the desired codeword. If slightly more errors are made,

the result could be something like green circles B or C. A bounded distance decoder

would make an error in both of these cases.

However, the circle labeled C, though outside the sphere of radius
⌊
d−1

2

⌋
is still

closer to the transmitted codeword than any other codeword. A maximum likelihood

decoder always finds the closest codeword to the received word. Because of this, it

can decode more than
⌊
d−1

2

⌋
errors some of the time. Using the weight enumerator,

or spectral shape, bounds on the maximum likelihood decoding error probability can

be found. One simple example of such a bound, discussed in [16], will be addressed

in chapter 6.

For a code of rate R and length n, there are 2Rn codewords. A maximum likelihood

decoder has to find the distance between the received word and each of the codewords

in order to choose the smallest one. So, while the maximum likelihood decoder can

correct the most errors, its complexity grows exponentially with the length of the

codewords. For this reason, iterative decoding methods, which have complexity that
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grows linearly with the length of the codewords, are much preferred.

5.2 Introduction to Message Passing Decoding

When discussing iterative decoding, it is helpful to think of the code in its Tanner

graph form. Each bit of the received message is represented by a variable node. Each

variable node is connected to a set of check nodes. In a valid codeword, the subset of

variable nodes that each check node is connected to has even parity.

Messages are passed from variable nodes to check nodes and back again along the

edges that connect them. These messages consist, in general, of information about

the value of each variable node. Message passing algorithms like this are a specific

case of the general class of belief propagation algorithms.

5.2.1 Message Passing on the BEC

Message passing is easiest to understand on the binary erasure channel (BEC). As

described in chapter one, this channel introduces no errors, but erases some message

bits. In the Tanner graph representation, then, each variable node either knows

with certainty what its value is, or it does not. Decoding starts when the variable

nodes send messages to their adjacent check nodes that indicate whether or not the

variable node knows its value. The check nodes examine the messages they received

from their adjacent variable nodes. If all the adjacent variables but one knew their

value, the check node can determine the value of the remaining node because even

parity is required. A round is completed when all the check nodes that can make

this calculation send a message to the last variable node, letting it know its value.

Check nodes connected to variables that all know their value can be removed from

the decoding process. The cycle then repeats. With every round, more variable nodes

learn their true values, until all is known or no more progress can be made. When no
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more progress can be made, the set of erasures remaining is known as a stopping set.

Example 7. Decoding the Hamming Code on the BEC

Figure 5.2 illustrates the decoding of the Hamming code on the BEC.
 
 
 
 
 
 
 
 
 
 
  
 
 
 

1 ? 1 1 ? 1 0

   

1 ? 1 1 ? 1 0

1 0 1 1 ? 1 0

 

1 0 1 1 ? 1 0

Figure 5.2: Decoding the Hamming code on the BEC starts on the top-left, with each
variable node sending its value to the check nodes (red for “one” and blue for “zero”).
On the top-right, the third check node sends a message to the second variable node,
letting it know that it is a zero. In the bottom row, the process repeats, and every
variable learns its identity.

5.2.2 Message Passing on Other Channels

Message passing on more complicated channels is more mathematically challenging,

but conceptually the same. Each variable node has some idea of what its value is,

those values are sent to the check nodes, and the check nodes send information back

to the variable nodes.

Several possibilities exist for what the actual messages should be, and with each

set of messages there are different update rules at every variable and check node. The
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outgoing message on any edge, e, is a function of the incoming message along all the

other edges connected to the node, and not of the incoming message on e. This is a

crucial element of the proofs for the success of message passing decoding and will be

discussed further in section 6.3.

Discussing all the possible messages is beyond the scope of this thesis. One idea

is to use the likelihood ratio λ = P (x=0)
P (x=1)

. Here, we will use the log-likelihood ratio

Λ = log λ.

In the log-likelihood domain, the update rules are quite simple. The outgoing

message on any edge leaving a variable node is the sum of all the incoming messages

on the other edges connected to that variable node. At a check node, the outgoing

message u is given in terms of the incoming messages on other edges, x and y,by

Equation (5.1).

u = sign(xy)[min(|x|, |y|)− log(1 + e(−||x|−|y||)) + log(1 + e(−||x|+|y||))] (5.1)

5.3 Iterative Decoders with Input Buffers*

Iterative LDPC decoders can either be designed to perform a fixed number of it-

erations on each noisy received word, or to stop iterating when a preset stopping

condition has been met. In the former case, a fixed amount of time is required to

process each word; in the latter, most words are decoded more rapidly and a few take

longer.

Noisy words from the channel arrive at the decoder bit by bit. Since the decoder

must operate on an entire word, it cannot begin decoding until the entire word has

arrived. While one word is being decoded, the bits that compose the next are arriving.

These bits must be stored in a buffer large enough to hold at least one noisy codeword.
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If the buffer can only hold one such word, the decoder must be able to finish decoding

each word before the last bit of the next arrives; the decoder cannot spend more time

decoding any one word than the time between word arrivals. If an additional buffer is

included, the decoder can spend more time decoding a particularly difficult word, as

long as the subsequent words can be decoded fast enough to prevent buffer overflow.

This system is shown in Figure 5.3.

Decoded 
Data 

Incoming 
Data 

 

Decoder 

 …   

Optional 
Additional 

Buffers 

 

Standard 
Single Word 

Buffer 
 

 
 Figure 5.3: An LDPC Decoder with an Input Buffer That Holds One or More Words

When considering the effect of buffering on the decoding system, there are three

important parameters: the number of received noisy words that fit in the additional

buffer, the amount of time between word arrivals, and the average amount of time

needed to decode a word. This average depends not only on the code’s parameters,

but also on the amount of noise present. Since each iteration of the decoder takes a

constant amount of time, an iteration can be seen as the unit of time; we consider the

average number of iterations needed to decode a word and the number of iterations

between word arrivals.

This idea has been studied extensively in many applications [50, 38, 11, 60] and

in many ways our analysis parallels theirs. In [50, 38], Rovini and Martinez propose

a buffering system that is slightly different from ours. The difference occurs when a

word arrives to find the buffer is full. In their system, the arriving word is discarded

or blocked. In our system, the word currently being decoded is thrown out. If the

additional buffer can hold β words, their system is a D/G/1/β + 1 system with
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blocking, where the D stands for deterministic arrival times, the G for a general

service distribution, a single decoder, and a system that can hold at most β + 1

words. Our system is a variant of a pre-emptive system. In a pre-emptive system

the server (or decoder) knows how much time each customer (or word) will take to

complete service and picks customers from the queue based on that information. Our

system does not presume to know that much. Rather, it assumes that if the buffer

is full, then the word currently being worked on has likely had a fair amount of time

in the decoder, and since it has not yet decoded, its likely to never decode. Rather

than continue to work on this word, it discards it and begins to work on a fresh word.

Though not technically correct, we will call our system pre-emptive buffer control.

With a blocking system, one has to be careful to impose some maximum on the

total number of iterations allowed (the iteration cap), to avoid becoming stuck on

one undecodable word. This is not necessary in pre-emptive buffer control, though it

can improve performance slightly. Blocking tends to yield better performance when

the incoming data rate is almost the same as the average decoding speed, but this is

an unfavorable situation in which we would almost never practically operate.

A mathematical description for the blocking system is given in [50], based on

the study of a random walk in Feller’s popular probability textbook [22]. A similar

description for pre-emptive buffer control based on a random walk is described in

[55]. Here, we follow a different mathematical approach in an attempt to gain more

insight into the problem. Our approach is based on that of Berlekamp and McEliece

[9], with ample help from Kleinrock’s text [32].

5.3.1 The Model

We assume that the standard buffer of size one is used to collect incoming bits until

an entire word has arrived, and that the entire word then travels instantaneously

from the standard buffer to the additional buffer. Additionally, we assume words are
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transfered instantaneously from the additional buffer to the decoder when needed.

This rapid transfer may not be entirely accurate, but the delay could be included

into the model by adding a constant amount to the number of iterations needed to

decode [41]. We further assume that the number of iterations needed to decode a word

is an independent and identically distributed (i.i.d.) random variable with a known

distribution. In practice, consecutive words may have correlated noise, violating this

assumption. As noted in [9], this could be avoided by including an interleaver in the

decoding system.

Finally, we assume that we are using pre-emptive buffer control ; when the buffer

is full and a new word arrives, the decoder releases the word it was working on and

starts decoding a new word. With this method, there are never buffer overflows,

errors occur when a word is ejected from the decoder before it has finished decoding.

Our results will again focus on a group of codes from the AR4JA family of proto-

graph codes described in [18], [19], and [13]. This family contains codes of several rates

(R) and information block lengths (k). For this analysis, we focus on the k = 1024

codes of rate 1
2
, 2

3
, and 4

5
, and the R = 1

2
, k = 4096 code. We also consider the

R = 7/8, k = 7154 block-circulant code C2, which is also described in [13]. Our dis-

tributions for the decoding times were obtained from simulations of decoding noisy

words obtained from a simulated additive white Gaussian noise (AWGN) channel at

various noise levels. These noise levels are characterized by Eb/N0, the ratio of the

bit energy to the noise power spectral density.

5.3.2 Mathematical Analysis

Using the notation in [9], let Wn denote the number of iterations that the n-th word

must wait in the additional buffer before decoding of that word begins, and let Dn

denote the number of iterations needed to decode it. Assume that the additional

buffer holds β words and that a word arrives every a iterations. The decoder and the
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additional buffer hold a total of β+ 1 words. If it has not already decoded, word n is

ejected from the system when word n+β+1 arrives. Thus, we have an error whenever

the combination of the waiting and decoding time for a word exceeds a(β + 1).

Let wn(k) = Prob(Wn = k) and d(k) = Prob(Dn = k). In most cases, we will

only have data for a fixed number of decoder iterations; let M denote that maximum.

We are looking for the steady-state behavior of the system, denoted by

w(k) = lim
n→∞

wn(k).

To find this, we note that the waiting times obey a recursion. Given Wn, the next

word arrives a iterations later, but has to wait an additional Dn iterations for the nth

word to decode before it can begin decoding, unless the n-th word decodes before the

n+ 1st word arrives, in which case Wn+1 = 0. Further, after aβ iterations, if a word

has not already entered the decoder, it will be forced in. Thus,

• W1 = 0

• Wn+1 = (Wn − a+Dn)aβ+

where (x)y+ = min(max(x, 0), y). This leads to a recursion on the wn(k).

wn+1(k) =



M∑
j=0

d(j)

a−j∑
i=0

wn(i) if k = 0

M∑
j=0

d(j)wn(k + a− j) if 1 ≤ k < aβ

aβ∑
i=0

wn(i)
M∑

j=aβ−i+a

d(j) if k = aβ

0 if k > aβ

In practice less than a hundred iterations are required to find the limiting distri-
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bution w(k). As stated above,

Prob(overflow error) = Prob(Wn +Dn > a(β + 1)).

Thus, convolving w(k) with d(j) and summing the probability in the tail yields the

probability of errors due to overflow. This does not include the probability that

the decoder finished decoding but chose the wrong codeword. Since histograms of

the decoding time are usually obtained through simulation of a decoder, and that

decoder usually has a maximum number of iterations, the probabilities of error given

by this method will only be valid when a(β + 1) is strictly less than M , the number

of iterations the decoder allowed. In our case, M = 200. Further, in our simulation

of standard decoding, a word never decoded to the wrong word; all errors were due

to the decoder reaching the cap of 200 iterations without meeting the stopping rule.

Figures 5.4, 5.5, and 5.6 show an example of the probability distribution functions

of the decoding time, waiting time, and total time spent in the system (the system

time), respectively, on linear and log scales, obtained from the histogram for the

decoding times for the R = 1/2, k = 4096 AR4JA code at Eb/N0 = 1.35 dB (where the

average number of iterations to decode, Iavg, is 22.49) with a = 24 and an additional

buffer of size 2. Notice that, while the distribution of the decoding times in Figure

5.4 has a heavy tail that extends to 200 iterations (and probably beyond), most of

the probability is concentrated between 20 and 30 iterations. The distribution of the

waiting times in Figure 5.5 shows a large spike at zero, implying that most words are

decoded immediately upon their arrival. On the logarithmic scale, a spike at aβ is

visible. This spike occurs because if one word has to wait the maximum amount of

time before it can enter the decoder, there is a reasonably large probability that the

next word will wait the maximum as well, and so on, until the decoder has caught

up with the queue. The total system time distribution shown in Figure 5.6 is the
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convolution of the decoding and waiting times distributions. Since the waiting time

distribution is dominated by the spike at zero, the system time distribution resembles

the decoding time distribution, and it reflects the fluctuations inherent in obtaining

the decoding time distributions from simulations.
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Figure 5.4: Distribution of Decoding Times, AR4JA, k = 4096, R = 1/2

5.3.3 Latency

In practice, we would have to include a buffer of size β at the output of our decoder to

allow for data to move through the decoder at a constant rate. The average latency

is thus not of much practical concern. However, the normalized average weight time

does give us a way to compare many different situations and draw some conclusions

about when the system is likely to perform well.

With any block decoder, there is a certain amount of latency introduced because

the decoder cannot start working until the entire block has arrived. Now that we

have introduced a buffer, we must not only wait for the entire word to arrive, but

that word might also have to wait in the buffer for the decoder to be available. Since

any word spends at most a(β+ 1) iterations in the buffer and decoder, the maximum
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Figure 5.5: Distribution of Waiting Times, AR4JA, k = 4096, R = 1/2, a = 24,
β = 2

possible time from the arrival of the first bit until the word leaves the decoder is

a(β + 2).

Let W a(β) be the average number of iterations a word waits in the additional

buffer of size β with incoming words every a iterations. Table 5.1 gives W a(β) for

several combinations of a and β for the rate 1/2, k = 4096 AR4JA code at Eb/N0 =

1.35 dB (Iavg = 22.49). The average waiting time is nearly aβ, the maximum, when

a < Iavg, and is very small when a >> Iavg. The averages for various buffer sizes

obey W a(β) < W a(β + 1), and, as β increases, for all a > Iavg the average waiting

time approaches a limit, the average wait time in an infinite queue.

Figure 5.7 illustrates these trends. For each code, six representative values of a

were chosen. These values of a are the same values that are used in the the series

of performance curves in figures 5.9, 5.10, 5.11, 5.12, and 5.13. At every Eb/N0

value such that the word error rate (WER) with a fixed 200 iterations on each word,

which we call WER(200), is less than 0.01, the average waiting time was calculated

for additional buffers of size one and five. Decreasing the threshold value further
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Figure 5.6: Distribution of Service Times, AR4JA, k = 4096, R = 1/2, a = 24, β = 2

from 0.01 to 0.001 would remove the three outliers seen on right side of the plot.

Requiring that WER(200) be below a threshold essentially requires that our decoding

distribution, obtained from the histogram, is a reasonable approximation of the true

distribution. When WER(200) is high, too much of the tail has been collapsed into

a single point at 200 iterations.

The average waiting times were normalized by their maximum value, aβ, and

plotted against ρ = Iavg
a

. This value of ρ, commonly called the utilization factor in

queuing theory, represents the load on the system. When ρ is small, the decoder runs,

on average, much faster than the incoming data rate. When ρ = 1, the incoming data

rate and the average decoder speed are identical. When ρ > 1, the incoming words

are arriving faster than they can be decoded, and many are ejected before they can

finish decoding. For a buffer of infinite length, we would expect to see a discrete step

in the normalized average waiting time from zero to one at ρ = 1. This is supported

by the increase in the sharpness of the transition between the trends for a buffer of

size one and a buffer of size five. It is remakable that across the wide variation in

codes and decoding time distributions, the normalized waiting times as a function
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of ρ and the size of the additional buffer seem to lie along the same curve. Given

only the ratio between the average decoding speed and the incoming data rate, we

can determine the normalized average waiting time. The plot shows that if ρ < 0.5,

i.e., that the incoming data rate is half the average decoding speed, the normalized

average waiting time is nearly zero. This implies that most words do not have to wait

in the additional buffer, which suggests that most words finish decoding before the

next arrives. Based on this fact, we can expect near optimal performance even with

an additional buffer that holds only one word.

a W a(1) W a(2) W a(3) W a(4) W a(5)

22 16.1 36.9 58.7 80.7 103

23 5.82 7.57 7.94 8 8.02

24 1.93 1.98 1.98 1.99 1.99

30 0.0638 0.0647 0.0651 0.0656 0.0661

40 0.00264 0.0029 0.00314 0.00343 0.00343

50 0.000499 0.000679 0.000893 0.000893 0.000893

Table 5.1: Average Waiting Times For AR4JA, R = 1/2, k = 4096, at Eb/N0 =
1.35dB
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5.3.4 Sensitivity to the Quality of the Distribution

Since the distribution for the decoding times is based on simulation data which is

difficult to determine accurately at low WER values, it is important to consider what

happens when the distribution is altered. Starting with the original distribution from

the rate 1/2, k = 4096 AR4JA code at Eb/N0 = 1.35 dB, which is denoted D, we

consider four other distributions derived from it. The distribution D contains 201

values. The first 200 contain the probability that a word decoded correctly in 0–199

iterations. The final bin contains the probability of word errors; those that did not

decode correctly in 199 iterations.

• D is our original distribution.

• D2 is equivalent to D except for the last item, which was set to zero. The

values were then rescaled to ensure that the probability distribution was still

valid. This effectively sets the WER to zero, a common situation when the

decoder simulations have not been running long enough to have found a word

error.

• To create D3, the probability of a word decoding in 99–199 iterations correctly

was set to zero, but the WER was left intact. The distribution was then rescaled.

• To create D4, the entire tail was removed; the probability of word error and

correct decoding in 99–199 iterations was set to zero, and then the distribution

was rescaled.

• In D5, the value representing the WER has been halved, and the distribution

rescaled.

Table 5.2 shows the WER obtained for these distributions when the interarrival

time was set at 30 iterations. Though the distributions were altered, the average
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number of iterations in each case was still 22.49 iterations. Note that the results for

D4 are overly optimistic; some tail is needed for the results to be accurate. Between

D2 and D3, D3 is closer to the actual performance, thus, having the correct WER is

more important than having the correct tail. Further, if the simulation has not been

running long enough to have any word errors, as in D2, including any WER (even if

it is off by a factor of 2, as in D5) is more accurate than leaving the WER at zero.

Distribution β = 1 β = 2 β = 3 β = 4 β = 5

D 1.32e-005 2.17e-006 1.16e-006 9.23e-007 8.58e-007

D2 1.24e-005 1.37e-006 3.55e-007 1.21e-007 5.63e-008

D3 1.23e-005 1.29e-006 8.02e-007 8.02e-007 8.02e-007

D4 1.15e-005 4.90e-007 5.02e-011 6.58e-013 1.61e-016

D5 1.28e-005 1.77e-006 7.56e-007 5.22e-007 4.57e-007

Table 5.2: WER for Distorted Distributions

5.3.5 Optimization of the Iteration Cap
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Figure 5.8: Optimization of WER with Respect to the Iteration Cap

If a word arrives while the buffer and the decoder are empty, it can begin decoding

immediately. If it has not finished decoding, after β words have arrived, the buffer
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will be full. When the β+ 1st word arrives, if the original word is still in the decoder,

it will be ejected to make room for the new word. Thus, the maximum number of

iterations that can be performed on any codeword is a(β + 1). We can, however, cap

the maximum number of iterations lower than that to improve performance.

Figure 5.8 shows the WER for the rate 1/2, k = 4096 AR4JA code at Eb/N0 =

1.2 dB with a = 30. The average number of iterations needed to decode at this

Eb/N0 value is 26.8664. For buffers of size zero through 5, the buffer and decoder

were simulated for values of the iteration cap between 50 and 200, and 20 million

word arrivals were simulated at each point. The dotted line, denoted “WER(C)”, is

independent of a. It shows the performance of a fixed iteration decoder performing C

iterations on each word. Notice that when the iteration cap is small, the WER of the

buffered decoder is limited by the performance of the fixed iteration decoder. The

constant WER for high values of the iteration cap is a result of the methods iteration

cap; whether the maximum is set at 180 or 200 does not matter if the method only

allows for 150 iterations.

The minimum WER occurs around halfway between aβ, where the curve begins

to deviate from the fixed iteration curve, and a(β + 1) where it reaches a constant

value. Thus, a reasonable approximation for the ideal iteration cap is a(β + 1
2
).

The intuition for this minimum is as follows; suppose that a difficult word is in the

decoder, and words arrive until the buffer fills up and the decoder ejects its current

word. The next word will only have a iterations at its disposal. However, there is a

greater probability that this word would have decoded between iterations a and a+ a
2

than that the previous word was going to decode in the last a
2

iterations before it

was ejected. So, if difficult words are ejected a few iterations sooner, what we lose in

WER for the difficult words is far less than what we gain by letting the next word

(which is likely to be less difficult) have a few more iterations available.

In practice, however, setting the iteration cap perfectly only improves the WER
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by a small amount. For the sake of simplicity, all our results presented here were

produced with an iteration cap equal to the minimum of 200 and the iteration cap

imposed by the method.

5.3.6 Performance Curves

Figures 5.9, 5.10, 5.11, 5.12, and 5.13 are performance curves for the R = 1
2
, k = 4096

AR4JA code, whose average decoding times are given in Table 5.3, the k = 1024

family of AR4JA codes, whose average decoding times are given in Table 5.4, and

C2, whose average decoding times are given in Table 5.5. Each Figure contains several

plots. Each plot is for a constant interarrival time and shows the WER curve found

with buffers of size zero through five. The WER obtained from allowing 200 iterations

on every word, which is equivalent to setting a = 200 and β = 0, is also shown and

again labeled WER(200). For convenience, a graph of of the average number of

iterations to decode at each Eb/N0 value accompanies each sequence of plots.

For the rate 1/2 codes, the curves are obtained through simulation. At each

point, the number of words simulated varies between 10 million and 200 million. The

simulations were stopped between these values when at least 100 errors had been

found. Note that these 100 errors are not independent events, as one difficult word

can reduce the number of iterations available for several words following it. The

rest of the curves were obtained from the mathematical analysis. The mathematical

analysis could not be used for the rate 1/2 codes because with relevant interarrival

times and buffers of size four or five, the iteration cap imposed by the method is

greater than 200, and the distribution for the decoding times does not include the

possibility of more than 200 iterations.

Of particular interest are the sets of images that show what happens when the

interarrival time is increased from below the average number of iterations needed to

above it. Even if the additional buffer only holds two or three words, the transition
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is sharp; when the interarrival time is less than the average number of iterations to

decode, the WER is unacceptably high, but when the interarrival time is increased

to just a few iterations above the average decoding time, the WER quickly drops to

near optimal levels. Further, note that as predicted by the analysis of the waiting

times, the word error rate of the buffered decoder, even with an additional buffer that

holds only one word, is nearly optimal when the number of iterations between word

arrivals is greater than twice the average number of iterations to decode.

Also, note that the distance between the curves for buffers of size zero and one is

much larger than the distance between the 200-iteration WER and the buffer of size

one curve. Including a single buffer decreases the word error rate by far more than

increasing the size of the buffer from one to two.

AR4JA, k = 4096

Rate 1/2

Eb/N0 (dB) Iavg
1.05 35.0939

1.1 31.5612

1.15 28.9237

1.2 26.8664

1.25 25.1865

1.3 23.7456

1.35 22.4932

Table 5.3: Average Number of Iterations to Decode k = 4096 AR4JA

5.3.7 Conclusion

Using the performance of an iterative LDPC decoder performing 200 iterations on

each word as a benchmark, we have shown that adding a buffer large enough to

hold only a few noisy received words allows the system to operate much faster while

achieving the same word error rate. Over a wide range of codes and noise levels, the

system can handle incoming data rates almost as high as the average decoding speed.
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AR4JA, k = 1024

Rate 1/2 Rate 2/3 Rate 4/5

Eb/N0 (dB) Iavg Eb/N0 (dB) Iavg Eb/N0 (dB) Iavg
1.4 23.6116 2 34.9007 3 27.7324

1.5 20.2983 2.2 20.0406 3.2 16.1086

1.6 17.9357 2.4 14.3357 3.4 10.9234

1.7 16.3232 2.6 11.7384 3.6 8.8097

1.8 15.0695 2.8 10.1553 3.8 7.5657

1.9 14.0370 3 8.9971 4 6.6795

2.2 11.7419 4.3 5.7128

Table 5.4: Average Number of Iterations to Decode k = 1024 AR4JA

C2, k = 7154

Rate 7/8

Eb/N0 (dB) Iavg
3.6 17.3389

3.7 9.8870

3.8 7.4820

3.9 6.3648

4.0 5.6138

Table 5.5: Average Number of Iterations to Decode C2
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Figure 5.9: Performance for a Variety of Interarrival Times: AR4JA, rate 1/2, k =
4096
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Figure 5.10: Performance for a Variety of Interarrival Times: AR4JA, rate 1/2,
k = 1024
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Figure 5.11: Performance for a Variety of Interarrival Times: AR4JA, rate 2/3,
k = 1024
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Figure 5.12: Performance for a Variety of Interarrival Times: AR4JA, rate 4/5,
k = 1024
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Figure 5.13: Performance for a Variety of Interarrival Times: C2, rate 7/8, k = 7154
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The ratio between them, ρ, is a crucial parameter. The word error rates are high

when ρ ≥ 1, but as ρ is decreased from 1, they rapidly approach the benchmark of

WER(200). When ρ = 2/3, the Eb/N0 loss with respect to the benchmark is on the

order of tenths of a dB. For ρ < 1/2, there is virtually no loss.
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Chapter 6

How to Find a Good Protograph

In this chapter, we will discuss ways to determine which protograph ensembles are

likely to contain codes that will be successful. In the first section, the definition of

a “good” code will be introduced and we will discuss how we can use the spectral

shape to determine which ensembles contain good codes. We will also use the spectral

shape to calculate some performance bounds. The second section deals with density

evolution, and the use of simulated annealing to find good codes with high density

evolution thresholds on the binary erasure channel (BEC). In the final section, we

will discuss minimum cycle size.

6.1 Applications of the Spectral Shape*

An ensemble of codes is said to be “good” if the probability of error can be made

arbitrarily small for some nonzero rates [36]. All code ensembles that have a minimum

distance that grows linearly with the code’s length are “good” [37]. One way to

determine this is to find the zero crossing of the spectral shape. If E(θ) represents

the spectral shape, the number of words of weight θn is enE(θ)+o(n). If the spectral

shape of a code is negative for small values of θ, then crosses zero at θc and becomes

positive for larger values of θ, then as n grows, the number of words with weight less

than nθc will decrease exponentially. Thus, there will be codes in the ensemble for any
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given value of n such that the minimum weight is approximately equal to θcn [15].

For instance, the (3, 6) regular ensemble contains good codes because the spectral

shape crosses the axis at θc = 0.0227. For very large n, we expect the distance of the

code to be roughly 0.0227n.

Section 3.4.2 contains plots of several rate 1/2 protograph ensembles. In Table

6.1, approximate values of θc are tabulated for those ensembles. Also tabulated are

the approximate values of θs, the value of θ at which the growth rate of the stopping

set enumerator crosses zero. The tabulated values are found by a bisection method

that stops when the objective function has an absolute value that is less that 10−5,

so they are not the exact zero crossings, but a reasonable approximation of them.

An entry of “-” in the Table is used for ensemble whose spectral shapes are never

negative.

Protomatrix θc θs(
2 2

)
- -(

2 3
)

- -(
1 3

)
- -(

2 4
)

- -(
3 3

)
0.0227 0.0180(

3 4
)

0.0428 0.0322(
4 4

)
0.0627 0.0453(

3 5
)

0.0569 0.0416(
4 5

)
0.0746 0.0526

Table 6.1: Zero Crossings of the Spectral Shape and the Growth Rate of the Stopping
Set Enumerator for Several Protograph Ensembles

In [16], Divsalar derives a simple, tight bound on the minimum signal-to-noise

ratio at which a code can reliably transmit information on the Gaussian channel.

This bound is given in Equation (6.1).

(
Eb
N0

)
min

=
1

R
max

0≤θ≤(1−R)

{(
1− e−2E(θ)

) 1− θ
2θ

}
(6.1)
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Using the enumerators shown in section 3.4.2, we can calculate the value of this

bound for each protograph ensemble. The minimum possible signal-to-noise ratio is

given by the rate of the code, so it is fair to compare codes of the same rate. Table

6.2 contains a list of several bounds on the threshold values, given in decibels 1. The

AR4JA code has the best (i.e., lowest) threshold of the rate 1/2 codes. In general,

the Table shows that for simple codes the threshold decreases as the maximum check

node degree increases.

Protomatrix Bound on Threshold (dB)(
2 2

)
3.3644(

2 3
)

1.5031(
1 3

)
5.4647(

2 4
)

0.8727(
3 3

)
0.7938(

3 4
)

0.5417(
4 4

)
0.4262(

3 5
)

0.4299(
4 5

)
0.3665

AR4JA 0.3598

R = 1/2 Shannon Ensemble 0.3081(
3 0 3

0 3 3

)
-0.3885(

3 0 3

0 3 4

)
-0.4101

R = 1/3 Shannon Ensemble -0.4533

Table 6.2: Bounds on the Minimum Eb/N0 Value at which decoding will succeed
based on the spectral shape

In this section, we compared the zero crossings of the spectral shape, the growth

rate of the stopping set enumerator, and a bound on AWGN performance for several

simple protograph codes. In each case, better codes were found by increasing the

number of edges in the protograph.

1A number in decibels can be converted to the actual number according to the formula x dB =
10 log10(x).
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6.2 Density Evolution on the BEC

On the binary erasure channel (BEC) each symbol is erased with probability p. An

(n, k) linear code with rate R = k/n will never be able to decode if p > 1 − R, as

1 − R is the fraction of the data that is redundant. Accepting that p must be less

than 1 − R, we use a tool called density evolution to calculate the maximum value

of p such that decoding is likely to succeed. This allows us to compare codes of the

same rate, as if one code can decode at 90% of 1−R and the other cannot, it would

be fair to say that the former code is better.

Density evolution looks at the evolution of the probability densities as the decoder

performs successive iterations. Let us assume that we are dealing with a large code in

a regular (j, k) ensemble. The assumption that the code is large is necessary because

this analysis assumes that the local structure of the code is tree-like. Initially, each

variable has probability p of being erased. Each variable sends this message to all

its adjoining check nodes. The check node can determine the value of an adjoining

node if all the other nodes are not erased, which occurs with probability (1 − p)k−1.

Thus, the probability that a check node of degree k tells a variable node that its

value is unknown is 1 − (1 − p)k−1. The outgoing message from a variable node of

degree j will be an erasure if all of its adjoining check nodes and the channel do not

know its value. This will happen with probability p1 = p(1 − (1 − p)k−1)j−1. Thus,

after one iteration, the probability that a variable node is still erased is p1. After two

iterations, the probability will be p2 = p(1 − (1 − p1)k−1)j−1. After three iterations,

the probability will be p3 = p(1− (1− p2)k−1)j−1 and so on. If this probability tends

to zero, then decoding will succeed. The largest value of p such that pn → 0 is the

code’s threshold on the BEC. Table 6.3 lists the threshold values for several rate 1/2

regular codes.

The same reasoning holds for protographs, although the execution becomes more
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Ensemble Threshold p

(2,4) 0.3336

(3,6) 0.4294

(4,8) 0.3834

(5,10) 0.3415

Table 6.3: Density Evolution Thresholds for Rate 1/2 Regular Codes

complicated as the degrees of each node are no longer constant. Using the same

process, however, density evolution thresholds for given protographs can be calculated

quite simply. For example, the AR4A protograph has a density evolution threshold

on the BEC of 0.4418; the AR4JA protograph’s threshold is 0.4387. These and other

protograph thresholds are given in Table 6.4

Protomatrix Threshold

Rate 1/2 Code 0.5(
2 4

)
0.4450(

3 3
)

0.4294(
3 4

)
0.4094

AR4JA 0.4387

AR4A 0.4418

Rate 1/3 Code 0.667(
3 0 3

0 3 3

)
0.5206(

3 0 3

0 3 4

)
0.5070

Table 6.4: Maximum Erasure Probability p at which Decoding Can Succeed

6.2.1 Simulated Annealing*

Once calculation of the threshold becomes possible, it is natural to ask whether we can

optimize protographs using this information. One way of accomplishing this goal is

through simulated annealing, as discussed in [59] and [37]. A starting protograph with

the desired number of check and variable nodes is selected. Edges in this protograph

are added, removed, or moved according to some probability distribution. These
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changes are accepted if they increase the threshold. If they decrease the threshold,

they are accepted with some small probability that decreases with how long the

algorithm has been running.

This is not the only optimization method known to find codes with high thresh-

olds on the BEC. Other possibilities include linear programming [35] and differential

evolution [54, 52].

Other constraints are imposed on the system. The size of the initial protograph is

the size of the final protograph, and smaller protographs have fewer degrees of free-

dom. We expect to get different results for a 4x8 protograph than a 2x4, even though

they have the same rate. We also restrict the maximum check node degree. High

check node degrees, while potentially beneficial to theoretical decoding performance,

increase the decoding time dramatically. Every iteration, the decoder updates first

the variable nodes, and then the check nodes. The update rules are simple at the

variable nodes, and complicated at the check nodes, as described in chapter 5. The

maximum degree of the check node, then, primarily determines how much time an

iteration takes. Limiting the check node degree thus limits decoding times.

Starting with a protograph with four transmitted variables, one punctured vari-

able, and three check nodes (like the AR4A and AR4JA codes), simulated annealing

found a protograph with a density evolution threshold of 0.4834, slightly higher than

the AR4A and AR4JA codes.

M =


2 1 1 2 0

1 1 1 0 0

0 3 0 0 1


The second variable node is the punctured node. Unfortunately, the spectral shape

for this protograph is positive at 0.0025, making it unlikely that this is a “good” code.

Repeating the annealing process several times yields other codes with high thresholds,
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but none which are “good” codes.

6.2.2 Simulated Annealing with Constraints*

To find good codes that also have high density evolution thresholds, we must adjust

the simulated annealing algorithm by choosing a small value, like θ = 0.005. With ev-

ery change in the annealing process, the value of the spectral shape at θ is calculated.

If this value is negative, the change is accepted or rejected in the normal fashion. If,

however, the value of the spectral shape is positive at that point, the change is always

rejected.

Using the same parameters as the AR4A and AR4JA codes, i.e., a 3x5 protomatrix

with the second variable punctured, simulated annealing found an ensemble defined

by the protomatrix

H =


1 1 2 0 1

0 2 0 1 0

2 0 1 1 1

 ,

which has density evolution threshold on the BEC of 0.4443. The spectral shape for

this ensemble appears to remain negative for some time, crossing the x-axis somewhere

between θ = 0.008 and θ = 0.009.

Calculating the zero crossing of the spectral shape is difficult, and could not be

done on every simulated annealing run. As an example, however, it was attempted

for the annealing of an unconstrained 2x3 protomatrix. Figure 6.1 is a scatter plot

of the results for eighty-two 2x3 protomatrices. With such a small protograph, the

calculations are quite simple, allowing us to explore a large region of the space.

While this is only a small collection of the possible protomatrices, a trend is

noticeable. The density evolution threshold on the BEC seems to be negatively

correlated with the zero crossing of the spectral shape. This data suggests that one
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cannot have high threshold and a large minimum distance. This same relationship

was observed for the irregular ensembles in [14]. Table 6.5 lists a few such values for

the 2x3 protomatrices. Protomatrices with many edges are more likely to have high

zero crossings and low thresholds. Protomatrices with few edges have high thresholds

but low zero crossings.

Protomatrix Density Evolution Threshold θc(
6 3 1

1 5 3

)
0.3968 0.1009(

6 3 1

2 1 4

)
0.3932 0.1010(

4 4 1

1 3 5

)
0.4052 0.1013(

4 4 1

2 2 5

)
0.4034 0.1014(

2 2 1

2 0 2

)
0.5962 0.005(

1 2 1

3 0 2

)
0.5855 0.005(

1 2 0

2 0 3

)
0.5851 0.0051(

1 2 1

2 0 2

)
0.6063 0.008

Table 6.5: Protomatrices, Density Evolution Thresholds, and Zero Crossings of the
Spectral Shape

For the specific goal of improving performance on the BEC, one might argue that

it would be better to plot not the zero crossing of the spectral shape (θc), but the

zero crossing of the growth rate of the stopping set enumerator (θs). Recall that a

stopping set is any set of variable nodes that, if erased, cause an erasure decoder to

stop. The growth rate of the stopping set enumerator is defined analogously to the

spectral shape, i.e., if Sj represents the number of stopping sets of size j, the growth

rate of the stopping set enumerator is given by limn→∞
1
n

logSj. Figure 6.2 is a scatter

plot of the results for a 4x8 protomatrix. Unfortunately, for a protomatrix this large
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Figure 6.1: Simulated Annealing on a 2x3 Protograph
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calculation times were long and only a small region of the space could be explored.

The correlation between θs and the threshold does not seem as striking here only

because the axes are so much smaller. Since all codewords are stopping sets, the zero

crossings of the spectral shape and the growth rate of the stopping set enumerator

are strongly correlated with each other, and so we see similar results when comparing

them to density evolution thresholds.
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Figure 6.2: Simulated Annealing on a 4x8 Protomatrix

6.3 Cycles and Girth

Much effort has gone put into finding the minimum cycle size, or girth of codes,

and to design codes with high girth [61],[40],[43],[24]. Existing proofs of the success

of message passage decoding rely on the messages remaining independent, which

requires a tree-like structure (i.e., no cycles) [49]. Since hundreds of iterations may

be performed, we are interested in determining when this assumption is no longer

valid.

In [26], Gallager calculates an upper bound on the girth of codes in a regular

ensemble. Starting with any node, he considers the tree created by following its
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edges to its neighbors, and their neighbors, and so on. The number of nodes in this

tree grows exponentially. For any code’s length n, there exists some point where the

number of nodes in the tree exceeds n. At this point, some node is in the tree twice,

and thus a cycle has been formed. In this section, we will review that technique and

extend it to protograph codes.

6.3.1 Gallager’s Method for Regular Codes

Assume that we have a regular (j, k) ensemble. Then if we start with any variable

node, there are j(k − 1) variables nodes in the next layer, i.e., it is connected to j

check nodes, each of which is connected to k − 1 other variable nodes. So, counting

our first node, we have touched 1+j(k−1) nodes. Each of the new nodes is connected

to (j − 1) new check nodes, connected to (k − 1) additional variable nodes, etc. If

we use L to denote how many layers there are in the tree, the last layer contains

j(k − 1)L−1(j − 1)L−2 variable nodes. So, in a tree with L layers, we will touch

Tv(L) = 1 +
L−1∑
i=2

j(k − 1)i−1(j − 1)i−2 nodes.

 

Figure 6.3: Tree Structure

For some value of L denoted L∗, Tv(L
∗) > n. At his point, we will have touched
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some node more than once, creating a cycle. Figure 6.3 shows this tree for the (3,6)

ensemble. The first variable node is connected to 3 check nodes, each of which is

connected to 5 other variable nodes, for a total of 15 variable nodes at this level. Each

of these variable nodes is connected to two other check nodes, which are connected

to five more check nodes, for a total of 150 variable nodes in the third level. At this

point, it becomes difficult to actually draw the tree structure. but this illustrates the

main point: the tree gets very large very fast.

Calculating Tv(L) gives us the number of variable nodes in the tree. By also

considering the check nodes, we can further clarify a bound on the cycle size. We

denote by Tc(L) the number of check nodes connected to the first L rows of variable

nodes. Each variable is connected to j − 1 new check nodes. Table 6.6 shows the

number of variables in each level, and the number of checks they are connected to.

Their cumulative sums yield the values of Tv(L) and Tc(L), which are also shown.

Using this Table, we can calculate an upper bound on the girth of codes in the (3, 6)

ensemble, shown in Table 6.7.

L Number of Variable Nodes Number of Check Nodes Tv(L) Tc(L)

1 1 3 1 3

2 15 30 16 33

3 150 300 166 333

4 1,500 3,000 1,666 3,333

5 15,000 30,000 16,666 33,333

Table 6.6: Number of Nodes in Each Level for the (3,6) Ensemble

6.3.2 Protographs Codes — An Example*

With regular codes, we were only able to consider the total number of variable and

check nodes. With protographs, we can consider each class of variable and check node

seperately. For instance, let us consider the protograph codes from the ensemble

defined by the protomatrix H = [3, 4]. In this ensemble, there are two types of
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n Upper Bound on Girth

n < 16 4

16 ≤ n < 66 6

66 ≤ n < 166 8

166 ≤ n < 666 10

666 ≤ n < 1, 666 12

1, 666 ≤ n < 6, 666 14

6, 666 ≤ n < 16, 666 16

Table 6.7: Bounds on the Minimum Cycle Size in the (3,6) Ensemble

variable nodes. The first type has degree three, the second degree four. Every check

node is connected to three of the first type and four of the second.

Let us call the variables with degree 3 “type one” and the variables with degree 4

“type two”. Let us start with a type one node. This node is connected to 3 checks,

which are each connected to 2 other type ones and 4 type twos. So, the original type

one node is connected to 6 type ones and 12 type twos. That is the first iterations.

Each of these type 1s is connected to 2 other checks, each of these checks is connected

to 2 other type ones and 4 type twos. So in subsequent iterations, each type one is

connected to 4 type ones and 8 type twos.

If we start with a type two node, in the first iteration it is connected to 12 type

ones and 12 type twos. In subsequent iterations, a type two node is connected to 9

type ones and 9 type twos.

For i > 2, if xi represents the number of type ones at step i, and yi the number of

type twos, then xi+1 = 4xi + 9yi and yi+1 = 8xi + 9yi. The values of T (L) must now

be separated not only between variables and check nodes, but also between types of

variable nodes. We differentiate this using extra subscripts. The first is either a c or

a v, depending on whether we are counting check nodes or variable nodes, as before.

The second subscript is the type of node. Using this notation, Tv1(L) =
∑L

i=1 xi and

Tv2(L) =
∑L

i=1 yi.

Next, the check nodes must be considered. If we start with a type 1 variable node,
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it is connected to 3 check nodes. A type 2 variable node is connected to 4. Assuming

i > 1, if there are xi type ones and yi type twos in level i of the variable nodes, then

the number of check nodes connected to them is 2xi + 3yi, as each variable is already

connected to one check node in the previous level.

Table 6.8 details Tv1 , Tv2 , and Tc at various levels, starting at both a type one

and a type two variable node. These values are used to generate Table 6.9, which

gives the bounds on the minimum cycle size for this protograph ensemble based on

the number of copies of the protograph C = n/2. For example, a length 1600 code

has C = 800. According to Table 6.8, there are plenty of variables in level three, but

not enough check nodes. Two of the check nodes in the third level must be the same,

creating a cycle of size ten.

 

L=3 

L=1 

L=2 

Figure 6.4: A cycle of size ten is formed when there are not enough check nodes in
the third level.

Starting From Type One Starting From Type Two

L Tv1(L) Tv2(L) Tc(L) Tv1(L) Tv2(L) Tc(L)

1 1 0 3 0 1 4

2 7 12 51 12 13 64

3 139 168 783 168 217 988

4 2,071 2,628 12,027 2,628 3,301 15,160

5 31,939 40,224 184,554 40,224 50,737 233,660

Table 6.8: Tv(L) and Tc(L) for [3, 4] Protograph
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C Maximum Girth

4 ≤ C < 14 4

14 ≤ C < 64 6

64 ≤ C < 218 8

218 ≤ C < 988 10

988 ≤ C < 3302 12

3302 ≤ C < 15, 160 14

15, 160 ≤ C < 50, 738 16

Table 6.9: Bounds on Minimum Cycle

6.3.3 Protograph Codes in General*

The example in the previous section was simple because there was only one kind of

check node. When calculating the number of variable nodes or check nodes in each

layer of the tree, one must keep track not only of the number of nodes in the previous

layer, but where they came from. At every layer, we calculate the number of variables

of type j that came from check nodes of type i. We then calculate the number of

check nodes of type i that come from these variables of type j. We must do this

starting from each type of variable node to get the best results.

We have used Matlab to calculate the number of nodes of each type at each level,

and thus Tvj(L) and Tci(L) for all variables of type j and check nodes of type i for

any protograph ensemble. In order for there to be no cycles created, the lifting of the

protograph has to be larger than the maximum of all the Tvj(L) and Tcj(L).

For the AR4A and AR4JA ensemble, considering only the maximum Tv and the

maximum Tc, we arrive at the results summarized in Table 6.10. For instance, for

either code, if we only lift by 20, for a total code’s length of 80 transmitted variables,

then in the second level, two check nodes must be the same, creating a cycle of size

six. Similarly, a code of size 16,000 (i.e., lifted by 4000) will have a cycle of size

fourteen.
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AR4A AR4JA

Level maxTv maxTc maxTv maxTc
1 1 3 1 3

2 9 30 9 28

3 103 357 93 343

4 1279 4488 1195 4016

5 15989 55851 13961 47383

Table 6.10: Maximum Nodes Touched by AR4A and AR4JA

6.3.4 Conclusions

The results of this section suggest that cycles are more prevalent than one might have

thought. The assumption that messages passed in iterative decoders are independent

clearly breaks down after only a handful of iterations. However, since message passing

works, it must be that this assumption is important only to the proofs, and not

actually to the success of decoding. As Gallager wrote in Chapter 4 of his seminal

work [26],

This lack of independence can be ignored, however, on the reasonable

assumption that the dependencies have a relatively minor effect and tend

to cancel each other out somewhat.

This idea is echoed by Richardson and Urbanke in [49], where, after proving that

for large enough code lengths the decoding performance converges to the cycle-free

performance, they remark that

The required size of n [codeword length], according to the proofs, could

be absurdly large. The proofs, however, are very pessimistic. We assume,

for example, that any loop effectively introduces an error into every mes-

sage it affects. . . . In practice, however, large loops may have only a small

effect . . . .
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Appendix

A-1 Proof of the Parametric Derivatives Formula,

Theorem 4.2*

While Equation (4.3) is much clearer if f [1] = 1, the proof is less obvious so we will

need to prove a related, but more complicated, result given in Theorem A-1.

Theorem A-1. Let fλ = f (λ1)(t)

f ′(t)λ1

f (λ2)(t)

f ′(t)λ2
. . .1 and gr+1 = g(r+1)(t)

f ′(t)r+1 . Then, the nth deriva-

tive of g with respect to f is given by

hn(t) =
dng

dfn
(t) =

∑
Λ∈V (n)

(−1)#λ−rfλgr+1,

where

V (n) =

{
λ :

#λ∑
j=1

max(λj − 1, 1) = n− 1

}
.

We have changed the summation over number theory partitions λ to one over set

theory partitions Λ, with the understanding that λ now refers to the corresponding

number theory partition to Λ. When f ′(0) = 1 and we evaluate the equation at t = 0,

this simplifies directly to Theorem 4.2 on page 64.

This result can be proved by induction on n, noting that the statement is true for

n = 1, as

h1(t) =
dg

df
= g1

1With this definition, f1 = 1.
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If we then assume that the formula is true for hn(t), we will show that it is true for

hn+1(t).

To get hn+1(t), we need to differentiate hn(t) by f . To accomplish this, we first

differentiate with respect to t and then divide by f ′(t). Each term corresponding to

a specific partition will be differentiated by the product rule, yielding several new

terms in hn+1, each corresponding to taking the derivative w.r.t. t of either gr+1, a

specific fj, or the denominator.

We start with a specific Λ, which contains the numbers 1 through ξ partitioned

into #Λ sets. The term corresponding to this Λ is

(−1)#λ−rfλgr+1 = (−1)#λ−r
∏
i

fλi(t)

f ′(t)λi
g(r+1)(t)

f ′(t)r+1
.

Taking the derivative will yield terms of three types:

• If we take the derivative w.r.t. t through g, then divide by f ′(t), the result will

be

(−1)#Λ−rN(λ)
∏
i

fλi(t)

f ′(t)λi
g(r+2)(t)

f ′(t)r+2
,

which corresponds to a new partition found by including a new set of size 1 in λ.

Equivalently, this derivative creates a new partition η = {Λ, (ξ + 1)} ∈ V (n+1).

This new partition has #η = #Λ+1 and η = rΛ +1, so (−1)#Λ−rΛ = (−1)#η−rη .

Thus, this new term is precisely equal to

(−1)#η−rN(η)
∏
i

f ηi(t)

f ′(t)ηi
g(r+1)(t)

f ′(t)r+1
= (−1)#η−rf(η)g(r + 1).

• If we take the derivative w.r.t. t through fλi(t) then divide by f ′(t), the fλi

term will be replaced by an fλi+1 term. There will also be an additional power

of f ′(t) in the denominator. This corresponds to a new partition that is formed

by taking λi > 1 and increasing it by one. In terms of Λ, this new partition
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is created by including ξ + 1 in the ith set of Λ. This changes neither the

number of singletons, nor the number of total sets, leaving the coefficient of −1

unchanged. This new partition is clearly a member of V (n+ 1).

• If the total denominator is called f ′(t)L, the derivative w.r.t t through f ′(t) is

−Lf ′′(t)
f ′(t)L+1 . When we divide by f ′(t), we will arrive at −Lf

′′(t)
f ′(t)L+2 , essentially creating

a new partition found by including a new set of size two in λ. To accomplish

this, both ξ + 1 and ξ + 2 will be incorporated into Λ to create an additional

partition of size two. This new partition will also be a member of V (n + 1).

Since the new partition has an additional pair in it, its size has increased by

one, which accounts for the negative sign.

While we have proved that each term in hn(t), when differentiated, yields only

terms that should be in hn+1(t), we must now show that every element of V (n + 1)

can be found in this way.

Many elements of V (n + 1) are simple to identify. For instance, if the partition

Λ is such that the largest number is contained in a set of size one, or is contained

in a set of size three or larger, then removing it reveals the element of V (n) that,

when differentiated, yields a term corresponding to Λ. When, however, the largest

element of Λ is contained in a pair, this is less trivial. Consider the partition Λ =

{(15)(3)(24)} ∈ V (4). If the largest term, 5, is removed, the partition is still in V (4).

Even removing 5 and 4 results in a partition still in V (4). If the largest element of

Λ is contained in a pair, then it must have resulted from taking the derivative of

something through the denominator. In the denominator, f1 is raised to a power

L = 1 + m1 + 2m2 + 3m3 + . . . . When this is differentiated, the result is −L times

the appropriate functions. Thus, the derivative of a term corresponding to Λ must

create L new partitions.

The L partitions created are described as follows:
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• One partition is formed by adding a new pair (ξ + 1, ξ + 2) to the partition.

• m1 partitions are formed by adding (ξ + 1) as a singleton, and including ξ + 2

in each existing singleton, creating a pair.

• 2m2 + 3m3 + 4m4 + . . . partitions are formed by replacing any element not in

a singleton with ξ + 1, and including the displaced element as a new pair with

ξ + 2.

Thus, the anti-derivative of a term corresponding to Λ when the largest number

in Λ is located inside a pair is the partition formed when the largest number is

removed, and its partner used to replace the second-largest number. A few examples

of partitions and the partitions created by their differentiation are shown in Table

A-1.

Partition Derivative Partitions

through f through g through the denominator

(1) (1)(2) (1)(23), (13)(2)

(1)(23) (1)(234) (1)(23)(4) (1)(23)(45), (15)(23)(4)

(1)(25)(43), (1)(24)(35)

(1)(23)(456) (1)(237)(456) (1)(23)(456)(7) (1)(23)(456)(78), (18)(23)(456)(7)

(1)(23)(4567) (1)(28)(456)(73), (1)(38)(456)(72)

(1)(23)(457)(68), (1)(23)(476)(58)

(1)(23)(756)(48)

Table A-1: Examples of Partitions After Differentiation

We have now completed our induction. Our base case, h1(t) is true. Assuming

that the theorem then holds for hn(t), then every partition in V (n) is present as a

term in hn(t). If we differentiate hn(t) with respect to t and divide by f ′(t), each term

is uniquely related to a partition in V (n + 1) with the sign as predicted by theorem

A-1.

A-2 Notation and Definitions
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Notation Description

C a code

C⊥ the dual code

k code dimension

OR number of ones in each row of a LDPC parity check matrix

n length of the code

GF(2) Galois Field of two elements

BEC binary erasure channel

AWGN additive white Gaussian noise

R code rate

G generator matrix

H parity check matrix

Aj weight enumerator

E(θ) spectral shape

lim 1
n

logAj
w input weight

h output weight

E0(θ) spectral shape of Shannon ensemble

= H(θ)− (1−R)

H(θ) binary entropy function

= −θ log θ − (1− θ) log(1− θ)
H(Θ) entropy function

−sumiθi log θi
q number of times data is repeated in an RA code

M protomatrix

Ω(n) set of all even vectors of length n

Ω∗(n) set of all vectors of length n with weight ≥ 2

d minimum distance of a code

minimum codeword weight in a linear code

d⊥ minimum distance of the dual code

A⊥j dual code weight enumerator

θc value at which E(θ) crosses x-axis

θs value at which the stopping set growth rate crosses x-axis

Tv(L) number of variable nodes touched in a tree with L layers

Tc(L) number of check nodes touched in a tree with L layers

Ψ(x) moment-generating function for codeword weight

Ψ0(x) moment-generating function for Shannon ensemble codeword weight

ψ(x) cumulant-generating function for codeword weight

ψ0(x) cumulant-generating function for Shannon ensemble codeword weight

Table A-2: General Notation

113



Queuing Notation

Wn waiting time of nth word

Dn decoding time of nth word

M maximum number of iterations allowed

β size of the additional buffer

a number of decoder iterations between word arrivals

wn(k) probability that Wn = k

d(k) probability that Dn = k

w(k) limn→∞wn(k)

WER(200) decoder performance with a fixed 200 iterations for each word

ρ utilization factor, Iavg/a

Iavg average number of iterations to decode a word

W a(β) average waiting time with arrivals every a iterations

and an additional buffer of size β

Partition Notation

λ number theory partition

Λ set theory partition

#λ number of sets in a set theory partition

number of elements in a number theory partition

N (λ) number of set theory partitions that collapse into λ

r number of sets of size one

O(ni) less than or equal to a constant times ni

Table A-3: Special Notation
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