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Abstract

Let I' be a countable group and X a Borel I'-space with invariant Borel probability

measure p. Let £ = Er be the countable equivalence relation defined by
By < Iy eTl(y-xz=y).

This thesis consists of two independent parts, Chapter 2 and Chapter 3:

In Chapter 2, we study the descriptive complexity of the full group [E]. The main
result of this chapter is

i) If E is not smooth, then [F] is II3-complete;

ii) If E is smooth, then [E] is closed.
We also study the descriptive complexity of N[E], the normalizer of [E]. It turns
out that N[E] has the same complexity as [E], i.e., N[E] is II3-complete iff E is not
smooth and is closed if F is smooth.

In Chapter 3, we study descriptive properties of 7%, the Koopman unitary repre-
sentation associated with the action. Consider the induced Polish T" action on L?(X),
ie, v-f=a%(y)(f). Denote by E#Q(X) the induced countable Borel equivalence

relation on L?(X), i.e.,

FEE g = Fyel(g=~-f).
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Let I" act on the measure algebra of u, MALG,, by v- A = ~(A) and on Aut(X, n)

by v - T = 7%(y)T. We have the induced countable equivalence relations Eﬁ/[ ALG

and E2"X respectively. We relate the descriptive complexity of EX X to that
r y y T

2
of EX. We show that the smoothness of EFL ) is equivalent to the smoothness of

EMALG,

- and the compressibility of the nonconstant part of Elji *0

is equivalent to the
compressibility of Eﬁd ALGAMXD e also connect the smoothness and compressibility

of EF(X) to mixing properties of the action of I' on X. Finally, we will show that

the amenability of EX implies a certain weak containment property of 7.
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CHAPTER 1

Introduction

Let I' be a countable group and X a standard Borel I'-space with an invariant
(nonatomic) Borel probability measure x. T induces an equivalence relation F¥ on X,
which is defined by xEfy <= 3y € I'(y -2 =y). By a theorem of Feldman-Moore
(see [KM], Theorem 1.3), every countable Borel equivalence relation on a standard
Borel space X is induced by some Borel action of some countable group I'.

Denote by Aut(X,pu) the group of py-measure preserving automorphisms of X
(modulo null sets). For each T' € Aut(X, ), we can define a corresponding unitary
operator Ur € U(L*(X)), Ur(f) = foT~'. And by identifying T and Uz, we can
view Aut(X, ) as a subgroup of U(L?*(X)). The weak topology of Aut(X,p) is the
subspace topology of the weak topology on U(L?(X)). Aut(X, p) is a closed subspace
of U(L*(X) in the weak topology, hence Polish.

In Chapter 2, we will study the descriptive complexity of an important invariant

of E, namely the full group of E. The full group of E, denoted by [E], is defined by

E] ={T € Aut(X,p) : tETza.e.}.

The main result of this chapter is
i) If E is not smooth, then [E] is II3-complete.
ii) If E is smooth, then [E] is closed.

And the same result holds for N[E]:
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i) If F is not smooth, then N[E] is II3-complete.
ii) If E is smooth, then N[E] is closed.
Define

7% T — Aut(X, p) C U(L*(X)),
v =T,

where T is the element in Aut(X, u) such that T'(z) = - x for p-almost every x € X.
Or equivalently T'(f) = Ur(f) = f(y~ %) for every f € L?(X). Clearly ¥ is a
homomorphism of T" into U(L?*(X)), i.e., 7%is a unitary representation of I" on the
Hilbert space L*(X).

The unitary representation 7% induces a natural Polish I' action on L%*(X), i.e.,
v+ f=7%(y)(f). Denote by EFL2(X) the induced countable Borel equivalence relation
on L*(X), ie.,

2
FEEYg «—= FyeT(g=~-f).

. . X L%(X)
In Chapter 3, we will study relations between £y and E .

We will obtain characterizations of the smoothness and compressibility of EL*X)
and reducibility results. Denote by M ALG, the measure algebra of u (see Section
3.1.2). Let I' act on MALG, by v-A = v(A). Similarly, we have the induced

equivalence relation Eli\/[ ALG Jefined by

AENMO"B e 3y eT(B=1- A).
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2
We will show that Elg ) is smooth iff EI{W ALGu is smooth and the nonconstant part of
E#Q(X) is compressible iff EI{W ALGAXDY ¢ compressible. These descriptive properties

of EFLQ(X) also have connections with mixing properties of the I" action:

(X)

i) If T action is mildly mixing, then EFL2 is smooth.

X s compressible iff the I' action is weakly mix-

ii) The nonconstant part of EIQQ
ing.
Furthermore, we will show that smoothness is related to rigid factors and compress-
ibility is related to isometric factors.

At the end of this chapter, we will study some embedding properties, containment
properties, and their applications. Denote by Ar the regular unitary representation

of I" and by Ar/r, the quasi-regular unitary representation on Ar,r,. If the I' action

is amenable, then 7% < A (see [Kuhn]|). We show that if F¥ is amenable, then

X < f)e(a )\F/deu([ﬁ)



CHAPTER 2
Descriptive Complexity of Full Groups

2.1. Full groups and their normalizers

Let p be a Borel probability measure defined on a standard Borel space X. Re-
call that Aut(X, p) denotes the group of all measure preserving Borel isomorphisms
(modulo null sets) on X.

There are two frequently used topologies defined on Aut(X, 1), namely the uniform
topology and the weak topology.

Let’s use B(X) to denote the set of Borel subsets of X and A = {A,} an algebra

generating B(X). The uniform topology has as basis the sets of the form
Vre = {5 € Aut(X, p) : sup{pu(S(A)AT(A)) : Ae B(X)} <€}
It has two compatible metrics:
di(5,T) = p{[S(x) # T(x)}
and

dy(S,T) = sup{u(S(A)AT(A))[A € B(X)} = sup{u(S(A,)AT(An))}-

neN

Aut(X, ) is not separable in the uniform topology.
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The weak topology has as sub-basis the sets of the form
Wra,e = {Sp(S(An)AT(An)) < e}
and a complete and compatible metric:
p(S,T) =) 27" (u(S(A) AT (A)) + u(S™ (A) AT (An)))-

Aut(X, ) is a Polish group in the weak topology.

Now consider a countable Borel equivalence relation E defined on a standard Borel
space X. By Theorem 1.3 in [KM], E is induced by Borel action of a countable group
G acting on X, i.e., E = Eq, tEy <= Jg € G(g-x =y). We call a Borel measure
pon X E-invariant if p is G-invariant for every countable Borel group G such that
Eq=F.

Define for p that which is F—invariant
[E] ={T € Aut(X,u) : xETxae.}
and let N(E) C Aut(X, ) be the normalizer of [FE], i.e.,
N(E)={T € Aut(X,u) : T"'[E|T = [E]}.

The goal of this chapter is to determine the descriptive complexity of the full
groups of countable Borel equivalence relations and their normalizers in the weak

topology.
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2.2. Upper bound of the complexity of [F] and N(F)

Let {f.} C [E] be a Cauchy sequence in the uniform topology and assume VnVm >

n dy(fn, fm) < 27" For each n € N, let

Yo = {zlvm > n(fin(2) = fo(2))}-

We have p(Y,,) > 1— 27", and define f : X — X by f(z) = f,(z) if x € Y,,. Clearly
f is well-defined p-almost everywhere and is in [E]. Since di(f, f,) < 27", we have
f =lim f,. Therefore [E] is complete in the uniform topology

In general, [E] is not closed in the weak topology. For example, consider the Vitali
equivalence relation Ey on (X, ) = ([0, 1], m), zEyy iff 2"(z —y) € N for some n € N.
Since FEy is ergodic, for all measurable subsets A, B C X, 3T € [Ey| (T(A) = T(B)
iff 1(A) = p(B). So clearly [Eg] = Aut(X, ) in the weak topology. But [Ey] #
Aut(X, p) (for example x +— z+mmod 1 is in Aut(X, u)\[Eo]), thus [Ey] is not closed
in the weak topology.

More generally, let E be an ergodic countable Borel equivalence relation. Then
[E] = Aut(X, ;1) by the same reason above. We may assume (X, 1) = ([0,1],m) and
consider f, : © — x + 1 modl. We have f, € Aut(X,pn) and dy(f,,, fr,) = 1 if
r1 # 19, therefore Aut(X, p) is not separable in the uniform topology. However, by
the following proposition, we can show that [F] is separable in the uniform topology,

hence [E] # Aut(X, u) = [F] in the weak topology.

Proposition 2.2.1. If E is a countable Borel equivalence relation on a standard
Borel space X with invariant probability measure p, then [E) is separable in the uni-

form topology.
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PROOF. Let T,S : X — X be Borel maps. Consider the equivalence relation

T~S << Va(T(x) = 5(x)).

Denote by [T the equivalence class of T. When T is an automorphism, it is
customary to write 7" instead of [T if there is no danger of confusion. To avoid the
confusion with the | | notation of full groups, we will write the equivalence of T" as T’
instead [7'] for all Borel maps too. So when we write T is Borel (modulo null), we
mean the equivalence class of 7.

Let

A={T|T: X — X is Borel (modulo null).}.

We can view (Aut(X, p),d;) as a metric subspace of (A, d;). We only need to show
that there exists a countable subset S C A, such that [E] C S .

Construct S by the following steps. First, let {P,,} be a sequence of finite Borel
partitions of X where P,, = {A™}, such that for any finite Borel partition {X,,} and
e >0, there is a P,, = {A'} with Vn (u(A'AX,) < ¢).

Then since E is countable, we may assume X is a countable Borel GG-space and
E = Eq. Let {g;} be a finite subset of G and |{g;}| > |Pn|, define Sgs1. by

S{gn}7m‘Anm - gn‘A?g Let

S = {S{gn}m}H{gn} <o {on}CG-

Then clearly S C A and is countable.
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We only need to show [E] C S, that is
Ve > OVT € [E]3S € S (di(S,T) < ¢e).

Since T' € [E], we can find a finite subset {g,},<ny C G and a finite partition

{Xn}n<n such that T|X,, = g,|X,, if n < N, and u(Xy) < 5. Fix an m so that

w(ATAX,) < 55%. Clearly
4y (T, Sy m) < p(Xx) + 3 HATAX,) < e

Therefore, [E] is separable in the uniform topology. d

The following proposition gives an upper bound on the Borel complexity of [E].

Proposition 2.2.2. If E is a countable Borel equivalence relation on a standard

Borel space X with invariant probability measure p, then [E] is IS in the weak topol-

0gYy.

PROOF. Since [E] is separable in the uniform topology by the above proposition,
we can fix a countable dense subset {7},},en C [F] in the uniform topology. And
since [F] is closed in the uniform topology, we can write

(E] = () J{S : da(S,T0) <277}

m=1n=0

Note that {S : da(S,T,,) < 27™} is an open ball in the dy metric. Let A = {A,}

be an algebra generating B(X). We can write an open ball in the dy metric as



{§:dy(5,T) <r} = G {S :sup{u(SA,ATA,)} <r—-2""}

m=1

- fj ﬁ{s t (l(SA,ATA,) <r—27"Y,

m=1n=0

which is clearly 39 in the weak topology. Hence [E] is II3. O

We can use this to show that N(F) is in I3 in the weak topology.

Proposition 2.2.3. If E is a countable Borel equivalence relation on a standard
Borel space X with invariant probability measure p, and if [E] € TIY in the weak
topology, then N(E) € II3 in the weak topology too. In particular, by Proposition

2.2.2, N(E) € I3 in the weak topology.

PROOF. Let G be a countable group of Borel automorphisms generating F.
First note that if T € Aut(X,p) and Vg € G (TgT " € [E]), then if xEy, y = g(z)

for some g € G,

T(y) = T(g(x)) = TgT~'T(x).

Since T'gT~* € [E], there is a conull subset Y C X, such that
Ve,y € Y(zEy = T(y)ET(x)).

Similarly if Vg € G (T'¢T € [E]) then there is a conull subset Y C X, Vz,y €
Y (T(z)ET(y) = zEy).

Soif Vg € G(TgT ' € [E]) and Vg € G (T '¢T € [E]), then T € N(E).
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On the other hand, if T € N[FE], then

soVge G CIE], TgT~* € [E], and T-'¢T € [E].

Therefore,

N(E) = ({TITgT™" € [E]} n{T|T~'¢T € [E]}.

geG

Clearly T+ TgT~' and T — T '¢T (for any g € G) are continuous maps
from Aut(X,u) to itself, and reduce {T|TgT~' € [E]} and {T|T~'¢T € [E]} to [E],

respectively. Therefore N(E) is I13 . O

2.3. Smooth equivalence relations and the closure of [£]

To determine the exact complexity of [E], the simplest case is when FE is pu-
smooth, i.e., E|Y = F|Y, where F' is smooth and ¥ C X is p-conull. We can
even slightly loosen our conditions. Consider a (not necessarily countable) Borel
equivalence relation F' on X, andconsider p a (not necessarily F-invariant) Borel

probability measure on X. We define
[F] =AT € Aut(X, p)|V,x (T'(x) Fz)}

(which extends the concept of the full group to general Borel equivalence relations).

We have the following simple proposition:
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Proposition 2.3.1. Let ' be a Borel equivalence relation on a standard Borel
space X with a Borel probability measure . If F' is smooth, then [F| is closed in the

weak topology of Aut(X, ).

PROOF. F'issmooth, hence F' <p A([0,1]). Let f : X — [0, 1] be a Borel function
such that zFy iff f(z) = f(y). Then the assignment T+ f o T is a continuous map
from Aut(X,p) to Ly(X). Note that T' € [F] iff fT = f (modulo null sets), hence

[F] is closed. O

Notice that if two Borel equivalence relations F} and F; agree a.e. in the sense

that F1|Y = F,]Y for some co-null subset Y C X, then [F}] = [F3]. We have:

Corollary 2.3.2. Let F' be a Borel equivalence relation on a standard Borel space
X with a Borel probability measure p. If F' is p-smooth, then [F is closed in the weak
topology of Aut(X, ).

It remains to find the complexity of F when it is not pu-smooth.

Lemma 2.3.3. If E is a countable Borel equivalence relation on a standard Borel

space X with invariant probability measure p, then [E] is closed or 39-hard.

PROOF. If [E] is not closed, then 3T € [E|\[E]. If [E] is IT9, then since [E] is
dense in [E], [E] is comeager in [E]. Hence the coset [E]T is also comeager in [E],

but [E]N ([E]T) = @, a contradiction. Therefore [E] is not IT9, so it is 9 -hard (see

|[Kechris 2|, Theorem 22.10). O

It makes sense to see what [E] is. Recall the uniform ergodic decomposition
for invariant measures of E. Denote by P(X) the set of probability measures on

X, by Zp C P(X) the set of E-invariant Borel probability measures on X and by
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EIr C P(X) the set of E-invariant ergodic Borel probability measures on X. We
have (see [KM], Theorem 3.3)
Theorem 2.3.4. (Farrell, Varadarajan) Let E be a countable Borel equivalence
relation on a standard Borel space X. Assume Ir # 0. Then there is a unique (up
to null sets) Borel surjection m: X — ELg such that
(1) m(z) = m(y) if zEy;
(2) If X, ={z:m(x) =e}, for e € EIp, then e(X,) = 1;
(3) For any p € Ig, p= [ w(x)du(z).

So we can write EZg = {e, }, where e, = 7(z).

From now on, we will use the above notations: 7, X, to denote the unique ergodic
decomposition of (X, £) and F' to denote the Borel equivalence relation on X, which
is defined by xFy iff m(x) = w(y). Since F is smooth, [F] is closed by 2.3.2. and
clearly [E] C [F]. Furthermore, we can show that [F] is the closure of [E].

Theorem 2.3.5. Let E be a countable Borel equivalence relation on a standard

Borel space X with invariant probability measure u. Given S € [F| and a Borel set

A, then there is a T € [E] , such that T(A) = S(A).

PrROOF. Let Y be an F- invariant Borel set. Then

TANY)=TA)NTY)=T(A)NY,

hence p(ANY) = u(T(A)NY).
Consider the set Y = {z : e,(A) > e,(T(A))}. If u(Y) > 0, then u(ANY) >
w(T(A)NY). But Y is F-invariant, so this contradicts that u(ANY) = u(T(A)NY).

So p(Y)=0. We may assume therefore that Vo € X, e,(A) = e, (T(A)) > 0.



13

By a well-known lemma (see [Kechris 3|, p.117, Lemma 4.50), there are disjoint
E-invariant sets P ,@, and R, such that [A]U[T(A)] = PUQUR, and ANP <
TANP, TAANQY <ANQ, ANR~T(A)NR. But P, Q are also F-invariant,

u(ANP) = p(T(A)NP), n(ANQ) = (T (A)NQ), so p(P) = u(Q) =0, A= T(A). O
Corollary 2.3.6. [F] is the closure of [E].

PROOF. We only need to show that [E] is dense in [F].

Recall that weak topology of Aut(X, ) has as basis the sets of the form

Usre = (AT : w(T(A)AS(A)) < ),

where S € Aut(X, u), P is a finite Borel partition of X, and € > 0 is a real.

Fix an arbitrary S € [F], a finite Borel partition P = {A;} and an ¢ > 0. By
Theorem 2.3.5, there is a T; € [E] such that T;(A;) = S(A4;) for each A; € P. Let
T = U(T;|A;). Since S is an automorphism, {S(A4;)} is a Borel partition. Thus

T € Aut(X, u). Since T(x) = T;(z)Ex for some i, T € [E]. Finally,

W(T(A)AS(A)) = u(T(A)AS(A)) = 0 < e,

Therefore, [E] = [F]. O

For a countable Borel F/, we can divide F into the periodic part and the aperiodic
part, £ = Egperiodic U Eperiodic- The periodic part is smooth, 2 = F' in this part.
So we only need to deal with the case that E is aperiodic. We have the following

isomorphism theorem for (X, F, p):
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Lemma 2.3.7. Let E be a countable Borel equivalence relation on a standard
Borel space X with a nonatomic invariant probability measure fu.

If E is aperiodic, then (X, pu, F) = (EZg x [0,1], 7 x m, A x I).

PROOF. By the isomorphism theorem of standard Borel spaces with nonatomic

probability measures (see [Kechris 2|, Theorem 17.41), we can assume (X,u) =
([0, 1], m).

Define

f: X — &g x|0,1]
z = (m(z), m(z)([0, 2]))
and
g:&Zpx[0,1] — X
(e,r) — inf{y[e([0,y]) = r}.

Clearly, f and g are Borel, and since

g9f(x) = g(m(x), 7(x)([0, z]))
= inf{ylr(x)([0,y]) = 7(x)([0,2])}

= inf{y|r(z)(ly, 2]) = 0}.
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Let A = {z|gf(x) # x}, we have

A = {3y <aw(x)(ly,z]) = 0}

= U {z|r(x)([r — 27", z]) = 0}

neN

Also let A, = {z|r(x)([r — 27", z]) = 0}. It is easy to see that e(A,) = e(A, N
X.) = 0 for all e € £Z, therefore p(A,) = 0, hence u(|JA,) = u(A) = 0. That is
gf(x) =z almost everywhere.

It is easy to check that fu = mu x m and note that f(X.) = {e} x [0, 1], hence

(X, pu, F) = (EZp x [0,1], 7 x m, A x I). O

2.4. The Descriptive Complexity of [F] and N(FE)

By 2.3.3 we know that [FE] is either closed or X9-hard. In fact, we can show that

in the case that [E] is not closed, [E] is not only 39-hard but also IT3-complete:
Proposition 2.4.1. If E is a countable Borel equivalence relation on a standard

Borel space X with invariant probability measure p, then [E) is closed or II3-complete.

PROOF. Assume [E] is not closed. We claim that we can find a Borel partition
{Y;}ien of X, such that u(Y;) > 0 and [E|Y;] are not closed (hence X9-hard by 2.3.3)
in Aut(Y;, u|Y;)-

Granting this, since [E|Y;] is X9-hard, we have Qy <. [E|Y;] (where
Q2 ={zx € C: ImYn>m(z(n)=0)}

is a 39-complete set see [Kechris 2|, p.179).
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Define

F [ JAut(Yi, (V) /p(Y:)) — Aut(X, ),

€N

(fien — f =

, i.e, f|Y; = fi. Tt is easy to see that F is continuous and

(fien € [[IEIY:] = Vi(fi € [E|Yi])
= Vi((Uf)IYi € [EY])

= |Jrelr
where f; € Aut(Y;, (u|Y:)/p(Y:). Therefore [[..y[£]Yi] <. [E], hence

Py={z €2V : Vm (2, € Q2)} = Q) <. [[[EIY] <. [E].

i€N
Since P is IT3-complete (see |[Kechris 2|, p.179), [F] is II3-complete.

It remains to show that the claim is true. Let Xg = X. We will define X; and Y; =
X;\ X1 inductively. Suppose we already have X; such that u(X;) > 0 and [E|X]] is
not closed (which is clearly true in the base case that i = 0). We can therefore fix a
T € [E|Xi])\[E|Xi], and the non-null Borel subset A = X,\{z € X;|T(z)Ez}. Then
we simply define X, 1 and Y;,; to be any Borel partition of X; such that both X, 1NA
and Y; ;1 N A are not null. That is X;,; WY, = X; and 0 < p(X;01 NA) < u(A),
0 < p(Yinn N A) < p(A).

By Theorem 2.3.5, there is an S € [E|X;] such that S(X;41) = T(X;11). Since

ST (2)ET (x)Ex
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for almost every r € AN X; and S™'T € [E|X;], we have

STIT|X 41 € [E|Xin]\[E| X)),

hence [E|X;41] is not closed. Similarly, [F|Y;1] is not closed.
And since X; = X, UY;jand X = X, {Y;} is a Borel partition of X.

This completes the proof. O

We are ready to prove our main theorem.

Theorem 2.4.2. Let E be a countable Borel equivalence relation on a standard
Borel space X with invariant probability measure L.
If E is p-smooth, then [E], N(E) are closed.

If E is not u-smooth, then [E] and N(E) are II3-complete .

PrROOF. If E is pu-smooth, the result follows from 2.3.2 and 2.2.3.
For non p-smooth E. since the periodic part is smooth, we can assume F is

aperiodic and, furthermore, by 2.3.7, we can assume that

(X, 1, F) = (EZg x [0,1], 7 x m, A x I).

Define hy : (e,r) — (e,r + smod1). We have hs € [A x I| = [F] and dy(hs, hy) =
1 —0ds4. So [F] is not separable in the uniform topology, while [E] is, hence [E] # [F],
[E] is not closed, and [E] is II3-complete from 2.4.1.

To determine the complexity of N|[E], by 2.3.7 and 2.3.5 we can find a Borel subset
Y C X, S € [F], such that S* =1 and {Y,S(Y)} is a partition of X (modulo null

sets). For example, Y = g({(e,r)|[r < 3}), S = go (Ae,r).(e,r 4+ 3 mod1)) o f with
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notations as in Lemma 2.3.7. Define
h: Aut(Y,2u|Y) — Aut(X, p),

T(x) ifzey
h(T)(x) = .
x ifxeSY)
It is easy to check that h is continuous. If T' € [E|Y], then h(T) € [E] C N(E).

Conversely, if h(T") € [E], then there is a null subset N C X, such that
Vo,y € X\N (zEy <= h(T)xEh(T)y).

We may also assume S(NN) = N, otherwise, just replace N with N U S(N). If
x € Y\N, then Sz € S(Y)\IN C X\N. We have then T(x) = h(T)(z)ER(T)S(x) =
S(x)E(x)) for all 2z € Y, hence T' € [E|Y]. Therefore T' € [E|Y] iff h(T') € N([E]), so
[E|Y] <. N[E]. Since E|Y is not smooth almost everywhere, [E]Y] is II3-complete.

Combining with 2.2.3, N(E) is also II3-complete. O

2.5. N(FE) as a Polishable group

Let E be a countable Borel equivalence relation on X and 4 an E-invariant ergodic
Borel probability measure. Consider [E] as a standard Borel subgroup of Aut(X, u)
in the weak topology. Since [E] is a Polish group in the uniform topology and the
identity map is a Borel isomorphism between the weak topology and the uniform
topology, [E] is Polishable. N(FE) is also a subgroup of Aut(X,u). But N(E) is in
general not separable, hence it is not Polish in the uniform topology. However, we

can define a new topology (see [HO], p.91) in the normalizer group N(E) by saying
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that T,, — T in N(F) iff T,, converge to T' weakly and T,,ST, ! converges to T.ST
uniformly for all S € [E]. It is easy to check that N(FE) is a topological group with
this topology. In fact N(F) is a Polish group in this topology (see [HO|, Lemma 53).
It is easy to check that the identity map is a Borel isomorphism between the weak

topology and this topology, so N(FE) is also Polishable.
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CHAPTER 3
Descriptive Properties of Measure
Preserving Actions and the Associated

Unitary Representations

3.1. Introduction

3.1.1. Measure Preserving Actions and Unitary Representations. Let I’
be a countable group and X a standard Borel I'-space with an invariant (nonatomic)
Borel probability measure u. I' induces an equivalence relation EX on X, which is
defined by rEfy <= 3y € I'(y-x = y). On the other hand, by a theorem of
Feldman-Moore (see [KM], Theorem 1.3), every countable Borel equivalence relation
on a standard Borel space X is induced by some Borel action of some countable group
I.

Denote by Aut(X, i) the group of u-measure preserving automorphisms of X. For
each T € Aut(X, i), we can define a corresponding unitary operator Ur € U(L?*(X)),
Ur(f) = foT!. And by identifying T and Ur, we can view Aut(X, i) as a subgroup
of U(L*(X)). The weak topology of Aut(X,u) is the subspace topology of the weak
topology defined on U(L?*(X)). Aut(X,pu) is a closed subspace of U(L?(X) in the
weak topology, hence it is Polish.

Define 7% : ' — Aut(X,u) C U(L*(X)), v — T, where T is the element in

Aut(X, ) such that T'(x) =« - x for p-almost every x € X. Or equivalently T'(f) =
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Ur(f) = f(y") for every f € L?*(X). Clearly 7% is a homomorphism of T' into
U(L*(X)), i.e., m¥is a unitary representation of I' on the Hilbert space L*(X).

The unitary representation 7% induces a natural Polish I' action on L%*(X), i.e.,
v+ f =7%(y)(f). Denote by EFLZ(X) the induced countable Borel equivalence relation
on [*(X), i.e., fEIQQ(X)g <= Jye€Tl(g=r-f). If there is no danger of confusion,
we will set EF(0 = g0,

In this chapter, we will study relations between EX and EFL %) We will obtain
some characterizations of the smoothness and compressibility of EX*X) and some
reducibility results.

3.1.2. The I" action on MALG, and Aut(X, ). Let X be a standard Borel
space with Borel probability measure p. Denote by MEAS,, the o-algebra of mea-
surable sets and for A,B € MEAS,, let A = B <= u(AAB) = 0 and de-
note by [A] the equivalence class of A. Let MALG, = {[A4] : A € MEAS,}. Let
[A]JA[B] = [AAB] and §([4],[B]) = p(AAB). Then (MALG,,A) is an abelian
Polish group with invariant metric 0. For every measure preserving automorphism
T € Aut(X,p), [A] — [T(A)] is a measure algebra automorphism of MALG,. Con-
versely, every measure algebra automorphism of MALG, is of the form [A] — [T'(A)]
for some T' € Aut(X, ). Therefore, we can canonically identify Aut(X,u) and the
group of measure algebra preserving automorphisms of MALG, (see [Kechris 2],
p.118). If u is continuous, MALG,, is independent of y and called the Lebesgue Mea-
sure Algebra.

Consider I" a countable group and X a Borel I'-space with invariant Borel prob-

ability measure p. There is a I' action on MALG,, defined by - [A] = [y(A)]. This
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action is continuous. The map [A] — x4 is a continuous I'-space embedding of
MALG,, into L*(X, p).

Assume now that ' acts on Aut(X, p) by left translation and Aut(X, ) acts on
L*(X) by T f = Ur(f). Let f € L*(X) and denote by Aut(X,u); the stabilizer of
f,ie.,

Aut( X, p)y ={T € Aut(X,p): T - f = f}.

If Aut(X,p)s = {1}, then T'+— T'- f is a continuous I'-space embedding of Aut(X, u1)
into L*(X). Many such f exist, for example any f € L?*(X) that is an injection of X
into C has a trivial Aut(X, p)-stabilizer.

3.1.3. Borel Reducibility. Suppose we have Borel equivalence relations E, F
on X, Y respectively. If there is a Borel map o : X — Y such that z;Fry <—
a(zi)Fa(zy), for all z1,29 € X, we say F is Borel reducible to F. Put E <p F' if
E' is Borel reducible to F'. When « is a reduction and also an injection, F is said to
be Borel embedded in F, in symbols £ Cg F. If, moreover, the image of o, a(X), is
F-invariant, E is said to be Borel invariantly embedded in F or E Cy F.

B stands for Borel in the above symbols. We can replace Borel by another
class of maps, say in a class A, and generalize the concept and notations to A-
reducible, <4, etc. For example, for the class of continuous maps, we will denote
continuous reducible, embedded, invariantly embedded by <., C., C! respectively,

where ¢ stands for continuous.
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3.2. Smoothness of Eﬁz(X’“)

Smooth equivalence relations are the simplest relations in the reduction hierarchy.
We first review some basic properties of smooth relations and show there are simple
characterizations of the smoothness of E{*"*) and EM*"*  Then Theorem 3.2.5
shows that the smoothness of EFL X g equivalent to the smoothness of Eéw ARG 14
turns out the smoothness of these equivalence relations has interesting connections
with the concept of rigid factors, which we will discuss in 3.2.3. In 3.2.4, we will
discuss some relations between mixing properties and smoothness. In the rest of this
section, we will develop some techniques to deal with smoothness in some special
kinds of I'-spaces by using the Peter-Weyl theorem, which is sometimes easier than
using Theorem 3.2.5 directly.

3.2.1. General Facts on Smooth Relations. Recall that an equivalence rela-
tion £ on X is (Borel) smooth if E <p A(Y), where A(Y") is the equivalence relation
defined on some Polish space Y by 11 A(Y)ys <= y1 = 9.

A selector is a map s : X — X such that tEy <= s(z) = s(y). A transversal
for ' is a set T' C X that meets each E-class at exactly one point. Having a Borel
selector is equivalent to having a Borel transversal and implies smoothness. The
converse is not true in general. But in the case that the E is generated by a discrete
Borel group action, i.e., £ = Er for some countable group I', the smoothness of F
implies the existence of Borel selectors for Er (see [KM|, Proposition 6.4). Moreover,

we have:

Theorem 3.2.1. Let X be a Borel I'-space, where I' is a countable group. Then

the following are equivalent:
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i) Er is smooth;

ii) Er has a Borel selector;

iii) X/T = X/Er is standard Borel (in its quotient o-algebra);

iv) There is a Polish topology T on X compatible with its Borel structure such
that Er is closed in the product topology (X,T) x (X, T);

v) There is a countable sequence (A,) of Borel Er-invariant subsets of X separat-
ing E i.e. [Vn(x € A, < y € A,)] = [xEy);

vi) Egcannot be Borel embedded in EYX, where Ey is the equivalence relation on

the Cantor space C = 2" defined by sEqt <= V*°n € N(s(n) = t(n)).

Proposition 3.2.2. Let E be a countable Borel equivalence relation on a uncount-
able Polish space X.

i) If every equivalence class of E is Gs, then E is smooth.

ii) If E admits a nonatomic ergodic measure, then E is not smooth.

iii) If E is generically ergodic (i.e., every invariant Borel subset is either meager

or comeager and every class is meager), then E is not smooth.

Let X be a Polish metric space. In this case, we have a converse to Proposition

3.2.2 (i).

Proposition 3.2.3. Let X be a Polish metric space, I' a countable group acting
on X by homeomorphisms. The following are equivalent:

i) Er is smooth;

ii) Every orbit is discrete;

iii) Yo € X, x is an isolated point in T - x;

iv) The closure of each orbit is not perfect.
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PROOF. iii) <= ii): If y;-2 — ~-x for some x € X 7;,v € T, then (v "1;)-2 — .
So these two conditions are clearly equivalent.

ii) = i): Proposition 3.2.2 (i).

i) = iv): Proof by contradiction. Suppose I' -z is perfect for some x € X. Note
that [ -z is dense in T'-x which is equivalent to the condition that Ep|(T-x) is
generically ergodic. By Proposition 3.2.2 (iii), Er|(T - z) is not smooth. Therefore
FEr is not smooth.

iv) = iii): If  is a limit point in I"- x, then Vy € " (- x is a limit point in I" - z).

Therefore I' - x is perfect. O

Assume now I' acts on (X, ) by measure preserving automorphisms. Recall that

MALG, and Aut(X, ) can be embedded into L*(X) as I-spaces. We have

Corollary 3.2.4. EI{MALG“ 18 smooth iff for every Borel subset A C X, there is

an r > 0 such that u(y(A)AA) ¢ (0,r) for every v € I.

E?Ut(X’“) is smooth iff ™ (T')is discrete in the weak topology.

3.2.2. The Characterization of Smoothness of EIQQ(X). Clearly the smooth-

(X) EIIYIALG,L

L2 . . .
ness of £ implies the smoothness of . 'The converse is also true.

MALG,

Theorem 3.2.5. E. "7 is smooth iff Eliﬁ(x) s smooth.

Before we prove the theorem, it would be first convenient to prove the following
lemma:

Lemma 3.2.6. Let X be a standard Borel space with Borel probability measure

and

g?anfl).fQ"' € Lz(X,IU)

If fi = fin for all 1,3, then the following are equivalent:
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i) {71 (A) — g7 Y(A) for every analytic A C C;

it) f7'(A) — g '(A) for every Borel A C C;
iii) f;1(A) — g71(A) for every basic open set A C C;

w) fi — g.

PROOF. Obviously, i) = ii) = iii). Put f, =g.

(ii)=-1)) Assume ii) is true. We may assume f; is Borel for all i < w. Let
B; € X\ f;*(A) be a Borel set such that B; = X\ f; '(A4) (modulo null). So fi(B;) is
analytic and fi(B;) N A = 0. Let B = {J,, fi(Bi). By the separation theorem (see

|[Kechris 2| 28.B), there is a Borel set A, such that A C A’ C~ B. We have

fi_l(A) C fi_l(A,) C fi_l(’“ B) - fi_l(N B) = X\Bi~

Since X\B; = f~1(A) (modulo null), we have f;'(A) = f'(4) for all i < w.
Therefore f71(4) = £7(4') — g~ () = g71(A)
(iii)=-ii)) It is easy to check that the convergence property is preserved under

complement and finite union, that is

and

Vian(f7H (A) — g7 (As) (U A = £ A

k<n k<n

So we only need to check that the convergence property is preserved under countable
union. Suppose now f; *(Ay) — g '(A) for all k € N. We may assume (4;) is

increasing and put A = (J, .y Ak For any € > 0, we can find an n large enough so
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that

(for) (A\AL) + (gu)(A\A,) < e.

Combine with the condition fip = f;pforalli, j < w, so we actually have (f;u)(A\A4,) <

¢ for all i < w. We can also find m large enough so that

N(f;l(An)Agil(An)) <é

for all ¢ > m. Therefore, for every ¢ > m

p(fi (A)AGTHA) < p(fi (AN (An)) + 1S (An)Ag ™ (An))

+u(g (A)\g ' (An))

IA

p(fi (ANAL)) + p(fi (An) Ag ™ (An))

+u(g T (A\AL))

IN

3.

So fiH(A) — g7 (A).
(ii)= iv)) By simple function approximation, we can find Borel sets A; C C so

that

<e€

Hfo - Zaka(;l(Ak)
and
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for some ap € Ai. We can use finitely many A, and assume them to be bounded.

Then, because of the condition f;u = f;u for all 4, j < w, we have

iz —ak2d r) = s—ade i) (s
/fi_l(Ak)\f() Paue) = [l dlan (e
- / 5 — aul? d(fore) ()

- / fol) — au? dpu(z).
f

o (Ag)

So we actually have

fi— Zakxfﬂ(Ak)H <€

for all i < w. Since f;'(Az) — g7 '(Ax), we can find m large enough so that

Sl - a7 (A AT (A) < &

for all ¢ > m. Therefore, for every ¢ > m

fi= D anxgay
+ HZ BEREDY WX £ (Ar)

t HZ“ka,-*(Ak)\g*(ak)

Ifi=gll < | +lo =" g an

< 2eA HZ TR X g1 (AR\F (an)

= 2+ \/Z Jarl” - u(f;7 (Ar) Ag='(Ar))

< 3e.

We have f; — g.
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((iv)=-(iii)) Since f; — g, we have fiu — gu, hence fiu = gu for all i. Let
A =B,, ={s € C:|s—a|l < r} be an open ball with arbitrary radius r and
center a. If f3*(A) is null, then g='(A) is null. So assume u(f; '(A)) > 0. Toward a
contradiction, assume f; '(A) 4 g~(A). Pick t > 0 so that u(f; '(A)Ag~1(4)) >t

for all i. Since pu(f; *(A)) = u(g~'(A)), we have

]

p(f (AN (A) = g™ (A\fH(A)) >

DO | ~+

Let Ay = B,,_, and fix an s such that u(A\A,) < ;. Then we have

n(f7 (AN (A) = ulf7H(AN\g ' (A)) — n(A\A,)

>t
1

Finally we have

25 2 st
Ifi — agll” > \fi —g|" dp > —,
“L(A\g1(A) 4

i

contradicting the assumption f; — g. U

Remark. So if fiu = fju for all 4,7, then (f;) converge iff f;'(A) converge for
all basic open sets A, as the limit g in the above lemma can be easily constructed by

simple function approximation.

We are ready to prove the theorem:

MALG,,
By

PrRoor. We need to show that if EFLQ(X) is not smooth, then is not

(X)

smooth. Assume EIQQ is not smooth. By Proposition 3.2.3, there is an f € L*(X)
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such that f is a limit point of (I' - f)\{f}. We can find a countable sequence
{7} CT\I'f such that ;- f — f.

By Lemma 3.2.6, we may assume f(X) C C C [0, 1]. Otherwise, replace f by ao f
where « is a Borel isomorphism of C to the Cantor set C.

In order to prove this by contradiction, assume Ellyl ALGr 4 smooth. So for every
Borel subset A C X, there is an r4 > 0 such that u(y(A)AA) ¢ (0,74) for every
v € I'. And since pu(y;(f~1(B))AB) — 0 for every Borel B C C, there is a number
mp € N such that p(vp,(f~1(B))AB) > ry-1p) and u(v(f~1(B))AB) = 0 for all
1> mp.

Let S={seC:u(f'(s)) >0}

Suppose S = 0. Let P, = {S;,, : s € C}, where S;,, = {t € C : t|n = s|n}.

Fix an s € C, (N,en £~ (Ss0) = f71(8), im0 pi(f 7 (S5.0)) = 0.

Define s;,n; inductively. To simplify the notations, let A; = S5, ,,, i = Ta,,
m; = Mg, o,

Find sg,ng such that 0 < pu(f~ (Ssome)) < 1. Let Ag = f1(Ssymo)-

Suppose we have s;, n;.

Find 5,1, ni41 > n; such that A, = f7'(S,,,,), 0 < p(Aig1) < % and myq >
m;.

We can always find such s;,1,n;,1 because Von(#{S € P, : u(f~'(9)) > r} =0)
for every r > 0. And #{S € P, : u(f~'(5)) # 0} > 0.

Let A, = Ag)AA; ... AA,_;, and [A] = lim,_[A]] in MALG,,.
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Clearly v, - A — A. Let T,, = A\A,,. Since r; < 2(4;), we have p(A;4,) < 422

and
- 3
wT) < Y u(4) < FH(Ad).
j=i
Therefore
(Vg - A)AA) = (Y, (A) A (Y, (Ti41)) AA AT 1)
> (Y, (Ai))AA) — (v, (Tisa)) — p(Tisa)
= 1= 2p(Tis1)
> i — 3u(Ai)
> 0,
contradicting the assumption that E?ﬁ FASi s smooth.

Suppose S # (), then S is countable. Let f = f; + fo, where f1(X) C S and
fo(X) € C\S. Note that ~; - f1 — f1 and ~; - fo — fo because S and C\S are Borel.
If 3%4(y; - fo # fa), then replacing f by fs, we are back to the case that S = ). So
we may assume f = fi.

If S is finite, let m = max,cs{mys}. Thus v; - f = f for all i > m, contradicting
the assumption ~; - f # f for all 7.

If S is countably infinite, define s; € S inductively. To simplify the notation, let

A = [ (si), i = Ta,, mi =My



32
Pick s¢ such that 0 < p(Ag) = u(f~'(sg)) < 1. Suppose we have s;. Pick s;11
such that

T
0 < p(Aig1) < G

and M1 > My.
Let A=J2 A, T; = U‘;‘;Z A;. We have 7,,, - A — A, and since r; < 2(4;), we

have u(A;11) < “(?i) and 11(T;) < 2u(A;). Therefore,

p((Ym; - AAA) = (Vi (Ai)) AV, (Ti1) ) AA AT 1)

v

(1 Ym, (Ai)))AA;) — (Y, (Tig1)) — 11(Tiga)

IV

Ty — 2M<Ti+1)
> 71— 3p(Ait)

> 0,

contradicting the assumption that ElFVI EAS i smooth.

(X)

2
50 Eﬁ/[EAS“ is not smooth, when EFL is not smooth. O]

3.2.3. Rigid factors and smoothness of EIQQ(X). The smoothness of E{*" X

does not imply the smoothness of EIEQ(X’“ ). We will study some connections between

2
rigid factors, mixing properties, and the smoothness of Eﬁ (Xon),

Definition 3.2.7. A T action on (X, u) is faithful iff 7% : T — Aut(X,p) is

injective.

The following notion of rigid factor is from [SW].
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Definition 3.2.8. Let X be a I'-space with invariant probability measure p. The

rigid factor is the set
RT, X, ) = {f € L'(X, 0,1 s it - f = £, = 0}.

The T action on X is said to be rigid iff the rigid factor is L*(X, i, S'). The T action

on X is said to have no rigid factor if R(I', X, u) contains only constant functions.

There are many equivalent definitions of mildly mixing. For an action of countable
group, no rigid factor is equivalent to mildly mixing.

Assume now I' acts on (X, u) faithfully and p is a I-invariant Borel probability
measure. We have:

E?Ut(qu')

Proposition 3.2.9. 1s smooth iff the I' action on X is not rigid.

PROOF. Let f be a Borel isomorphism of X to [0, 1]. Put
d(T,5) = |T-f=5-fll

for all ;T € Aut(X, u) so that d is a (left I-invariant) metric of the weak topology.

w51 i5 not smooth, then lim infer d(y,1) = 0. Since L*(X, ) is a

Suppose E?
Polish Aut(X, p1)-space, the map ~ — - f is continuous for the weak topology restrict
on I' for every f € L*(X, ). We have liminf.cr ||y - f — f|| = 0 for all f € L*(X, u).

Assume now the I" action on X is rigid. We have liminf.ep ||y - f — f|| = 0. Since

the action is faithful, 'y is trivial and 7% (T") is discrete. O

(X)

In fact, the smoothness of Eﬁg is strictly between X having no rigid factors

and being nonrigid. Let
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(NM) <= theI action on X is mildly mixing.
(NRF) <= the I' action on X has no rigid factors.
(LS) «— EFLQ(X’”’) is smooth.
(MS) «— EéWALG“ is smooth.
(AS) <« E s smooth.
—

the I" action on X is not rigid.
Then we have the following picture:

(MM) <= (NRF)

b oo b oo

(LS) <= (MS)

b oo b oo

(AS) < (NR)

In 3.2.4, we will show (MM) = (LS) (Proposition 3.2.10 (iii)) and give an example
to show (AS) # (LS). Example 3.2.28 will show (LS) # (NM).
3.2.4. Mixing Properties and Smoothness of EﬁQ(X). Consider the count-

able Borel I'-space X with invariant probability measure p and recall the induced
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[-action on L?(X) by unitary operators. Denote by L3(X) the set
{f € L*(X) : {f,1) = 0}.

Then L3(X) is an invariant subspace of L*(X). Therefore, we have a I' action on
L3(X) and 7§ := 7X|L?(X), the subrepresentation of 7*on L3(X).

The mixing properties, including (strong) mixing, mild mixing, weak mixing, er-
godicity can be read from the I" action on LZ(X). Let us review these properties from
the strongest one to the weakest one:

1) (Strongly) Mixing:

An action is strongly mixing if and only if for any Borel A, B C X,

lim pi(y- AN B) = u(A)u(B).

y—00

Considering the I action on LZ(X), this is equivalent to

¥f.g € L(X)(lim (3 f.g) = 0).

In the language of unitary representation theory, it is equivalent to saying that
T is a co-representation.

2) Mildly mixing:

The I' action on X is mildly mixing iff

liminf u((y - A)AA) > 0

y—00

for any Borel subset A C X that is neither null or conull.
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It is equivalent to that for all f € LZ(X)\{0},

limsup [(v- f, f)| < [ f]I*.

y—00

3) Weakly mixing:

This is equivalent to saying that the T action on L2(X) has no finite dimensional
invariant subspace. Or in the language of unitary representation theory, 7 has no
finite dimensional subrepresentation.

4) Ergodic:

The I' action is ergodic iff every I'-invariant Borel subset of X is either u-null or
p-conull.

This is equivalent to saying that Vf € L3(X)\{0}(T'y #T), where I'y = {y € I":
v f = [}, the stabilizer of f. Or in the language of unitary representations, m does

not contain the trivial one-dimensional representation.

Proposition 3.2.10. i) EXX) is smooth iff EXX) s smooth.
i) If B is smooth, then n¥X(T') C Aut(X, ) is discrete in the weak topology.
i) If B3 is ergodic for every infinite subgroup H C T, then the T action on X is
mildly mizing iff EXO s smooth.
. . o LE(X)
In particular mildly mizing implies the smoothness of Er. .

) Assume Ey is ergodic for every subgroup H C T such that [#%(T) : 7% (H)] <

oco. If E’FLg(X) 15 smooth, then the T action on X is weakly mixing.

PROOF. i) It is easy to check that

EXX) = BL) x A(C).
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Therefore EX*X) is smooth iff EX) is smooth.
ii) This follows directly from Corollary 3.2.4 and Elfl ub(Xom) cC: EFLQ(X’“ ),

iii) Suppose the I' action on X is mildly mixing. Let A € MALG, If u(A) =0
or u(A) =1, Vy € T'[u((y - A)AA) = 0]. Assume A is neither null or conull. Since
I' is mildly mixing, R = liminf, . pu((y - A)AA) > 0. So there S = {y : 0 <
p((y - A)AA) < R} is a finite set. Let r = min,es{u((y - A)AA))}. We have
w((y-A)AA) ¢ (0, min(r, R)) for all 4. Therefore, by Theorem 3.2.5 and Corollary
3.2.4, E#Q(X) is smooth.

On the other hand, assume EF(X) is smooth. Suppose I' is not mildly mixing
on X. Then there is an A € MALG, such that liminf, . p((y- A)AA) = 0 and
0 < u(A) < 1. Therefore, S, = {y € I': u((v- A)AA) < r} is infinite for every r > 0.

By Theorem 3.2.5 and Corollary 3.2.4, there is an R > 0 such that u(y(A)AA) ¢

(0,R) for all v € T. So
Se={yel:ul(y-A)AA) <r}={yel:ul(y A)AA) =0}

Let H be the subgroup of I' generated by Si. Ep is not ergodic because A is
H-invariant. This contradicts the condition that Es is ergodic, when H is infinite.
So the I' action on X is mildly mixing.

iv) Proof by contradiction.

(X)

2
Suppose EFL is smooth and there is a finite dimensional I'-invariant subspace

V C L3(X). Pick an arbitrary f € V. Since EFLQ(X) is smooth, I' - f C V is discrete.
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Therefore I - f is finite. Thus

I (1) /7 (L) < oo,

But I'; fixes f € L§(X), contradicting the hypothesis that Er, is ergodic. O

Example 3.2.11. Let X, Y be faithful Borel I'-spaces with invariant probability
measures u, v respectively. Assume the I" action on X is mildly mixing, and E# ) g
not smooth. Consider I" acting on X x Y by the diagonal action. 7%¥*¥(T") is discrete

in Aut(X x Y, x v), hence E?"t(xxy’“xy) is smooth. In fact, pick any A C X that is

neither null or conull. There exists an r > 0 such that (uxv)((7-(AXY)A(AXY)) <7r
for almost every . But EFLQ(XXY) is clearly nonsmooth because we can find a B C Y
and a sequence of v; € I' so that v; - (X x B) = X x Band ;- (X x B) # X x B
for all 2.

For example, let I' = S_ and G = 2" x 2. Consider the I" action on G defined

by

v ((ag)v (bl>) = ((a“/_lg)v (b“/_l(i)>'

Then the I' action on 2'' is mixing, so E?”t(c’”) is smooth. But EFLQ(G) is not smooth

@)

L2(2Y) .
because Er. is not smooth.

3.2.5. The Peter-Weyl Theorem. We are going to develop several other tech-

2
niques to determine the smoothness and nonsmoothness of Elf )

. In some situation,
it is easier to use them than directly check the conditions in Theorem 3.2.5. Most of

these techniques involve the Peter-Weyl theorem.
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Recall the Peter-Weyl theorem from unitary representation theory (see [Folland,
Kechris 1]).

Theorem 3.2.12. (Peter-Weyl) Let G be a compact Polish group. Then

(1) FEvery irreducible unitary representation of G is finite dimensional;

(ii) G is countable;

(1i1) Every unitary representation of G is a direct sum of irreducible unitary rep-
resentations.

Consider a compact Polish group G with the (normalized) Haar measure p. For
each irreducible unitary representation 7 of GG, denote by 7 the isomorphism class of
7w and by H, the Hilbert space of it. Also denote by G the dual of G, which is the
countable set {7 : 7 is an irreducible unitary representation of G'}.

Denote by pg : G — U(L*(G)) the right regular representation of G, which is the

unitary representation defined by

(rc(9))(f(h)) = f(hg)

for all g,h € G and f € L*(G) .
Fix a representative 7 for each # € G and an orthonormal basis {ef }1<;<q., Where
dr = dim(H,). Let
mij(g) = (m(9)e], €)
be the matrix coefficients of 7 in this basis. m;; € L*(G) and denote by &, the linear

span of {m;;}. Clearly this space is independent of the choice of 7, thus we can write

Theorem 3.2.13. (Peter-Weyl) Let G be a compact Polish group. Then
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(i) L*(G) = @, €x-
(1) {\/dxTij}1<i j<a, 8 an orthonormal basis for Ex, so dim(&;) = d2.
(iii) Fori=1,...,d., the subspace & ; of E; spanned by the ith row of the matriz
(V/dxmi;) is invariant under the right reqular representation, and the subrepresentation

of pc determined by E;,; is isomorphic to .

Define the character x, by xx(g) = trace(w(g)). Trace is also independent of
the choice of the basis and the representative 7 of each isomorphic class, so we put
Xz = Xa- {Xs : 7 € G} is an orthonormal set in L*(G) (see |[Folland], 5.23).

Suppose T' is a countable group acting by (topological group) automorphisms on

G. Clearly I preserves pu. There is a natural I" action on G. For a ~v € I', define

Since 7 is irreducible, «y - 7 is also irreducible. And again, 7 - 7 is independent of the

choice of 7 in each isomorphic class. So we can define v -7 =~ - 7. Also note that

-1

(v-x#)(9) = xz(v "+ g) = trace(n(y~" - g)) = trace((v - 7)(9)) = Xyr(9)-

SO ¥ X# = Xys, finally v - & = &5

3.2.6. Some Characterizations of Smoothness.

Corollary 3.2.14. 1) Assume X = G is a compact Polish group and T' acts on
G by automorphisms. If EIEQ(G) is smooth, then Iz - m is finite for every irreducible
unitary representation w of X. Or equivalently, Tz /T, is finite for every irreducible

unitary representation m of X.
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2) Assume T acts on a compact Polish space X by isometries and X has a Borel
probability measure that is invariant under any isometry. Then EFLQ(X) 18 smooth iff

Er is uniformly periodic p-a.e., i.e.,
AN < ooz € X(|[z]g:| < N).

3) Assume I' acts on X by topological group automorphisms where X = G is a
connected semisimple Lie group with an invariant Borel probability measure . Then

E#Q(X) is smooth iff EX is uniformly periodic u-a.e.
PROOF. 1) Recall that T'; is the stabilizer of 7, i.e.,
Fﬁ:{’yefﬁ:fr}

Hence

Diom={y-nlyel:t={y 7|y -7=r}

By the Peter-Weyl Theorem, the subrepresentation of pe determined by &;; is
isomorphic to w. If I'; - 7 is infinite, then I'; - m;; is infinite for some j. But &,
is finite dimensional, so FW—WU, which is contained in the unit sphere of &, is
compact. Therefore I'; - m;; has at least one limit point and therefore is not closed.
By Proposition 3.2.3 (iii), EFLQ(G) is not smooth.

2) («) Since YN - f = f, E#Q(G) is smooth.

(=) Since I'so(X) is compact, by the Peter-Weyl theorem, 7% is the direct product
of irreducible finite dimensional unitary I'—representations, say L*(X) = [[,.y Vi, and

V; are finite dimensional 7% invariant subspaces.
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For every f € L*(X), we can write f = > fi where f; € V;. Suppose I' - f is

. . .. . . L2(X)
infinite. If I'- f; is infinite for some ¢, then E

is not smooth. Assume now I'- f; is
finite for every 7. Since Vi(I'- f;) is finite and I' - f is infinite, (),_,, Iy, is infinite for
every M < oo. Therefore, we can find a sequence g € (), Ly, - f\f, and gar — f,
hence EIEQ(X) is not smooth.

So if EF(X) is smooth, then every ' orbit of f € L?*(X) is finite. Therefore, we

must have a finite upper bound of I'-orbit on X p-a.e.

3) Since Aut(G) is compact, this is from the proof of 2). O

3.2.7. Stabilizers. Consider the I' action on L*(X). We can also describe the

stabilizer of f € L?(X) in terms of the T" action on X and its full group.

Definition 3.2.15. Let F' be a (not necessarily countable) Borel equivalence
relation defined on X and p a (not necessarily F-invariant) Borel probability measure

on X. Denote by [F]| ={T € Aut(X, p)|V*z (T'(z)Ex)} the full group of F.

This is a straightforward generalization of the usual concept of full group, which
is usually defined in the case that p is E-invariant and in the context that E is
countable.

We have the following simple proposition:

Proposition 3.2.16. Let F' be a Borel equivalence relation on a standard Borel
space X with a Borel probability measure p. If F' is smooth, then [F| is closed in the

weak topology of Aut(X, ).

PROOF. F issmooth, hence F' <p A([0,1]). Let f : X — [0, 1] be a Borel function

such that zFy iff f(z) = f(y). Then the assignment 7" +— f o T is a continuous map
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from Aut(X,p) to Lo(X). Note that T € [F] iff f oT = f (modulo null sets), hence

[F] is closed. O

Recall the uniform ergodic decomposition for invariant measures of E. Denote by
P(X) the set of probability measures on X, by Zg C P(X) the set of E-invariant
Borel probability measures on X, and by £Zr C P(X) the set of E-invariant ergodic

Borel probability measures on X. We have (see [KM]|, Theorem 3.3)

Theorem 3.2.17. (Farrell, Varadarajan) Let E be a countable Borel equivalence
relation on a standard Borel space X. Assume Ir # 0. Then there is a unique (up
to null sets) Borel surjection m: X — EZg such that
(1) m(z) = 7(y) it 2Ey;
(2) If X, ={z:m(x) =e}, for e € ETp, then e(X,) = 1;
(3) For any p € Ig, p = [ w(x)dp(z).

So we can write EZg = {e,}, where e, = 7(x).

Until the end of this subsection, we will use the above notations: 7, X, to denote
the unique ergodic decomposition of (X, FE) and F (F¥if E = EX) to denote the
Borel equivalence relation on X, which is defined by zFy iff 7(z) = m(y). Since F is
smooth, [F] is closed by Proposition 3.2.16 and clearly [E] C [F]. Furthermore, we

can show that [F] is the closure of [E].

Theorem 3.2.18. Let E be a countable Borel equivalence relation on a standard
Borel space X with invariant probability measure u. Given S € [F| and a Borel set

A, then there is a T € [E], such that T(A) = S(A).

PROOF. Let Y be an F-invariant Borel set. Then T(ANY) =T(A)NT(Y) =

T(A)NY, hence u(ANY) = u(T(A) NY).



44

Counsider the set

Y = {z: ea(A) > e(T(A))}.

If u(Y) >0, then u(ANY) > u(T(A)NY). Since Y is F-invariant, this contradicts
that u(ANY) = w(T(A)NY). So u(Y)=0. We may assume therefore that Vo €
X, ez(A)=¢,(T(A)) > 0.

By a well-known lemma, there are disjoint E-invariant sets P,(), and R, such that
[AJU[T(A)] = PUQUR, and ANP < T(A)NP, T(A)NQ < ANQ, ANR~T(A)NR.
But P, @ are also F-invariant, u(AN P) = u(T(A) N P), n(ANQ) = u(T(A) NQ),

50 1(P) = u(Q) = 0, A~ T(4). m
Corollary 3.2.19. [F| is the closure of [E].

We have the following characterization of a subgroup H < I being a stabilizer of
some f € L*(X).

Proposition 3.2.20. Let ' be a countable group and X be a standard Borel I'-
space with invariant probability measure p and H C I' a subgroup. Then H = I'y
(stabilizer of f) for some f € L*(X) iff H = [FX] N T, where Fi is the equivalence

relation induced by the ergodic decomposition of E;.

PROOF. (=) Assume H =TIy for some f € L(X, ). Since H =Ty, S- f = f for
every S € [EX]. By Corollary 3.2.19, T f = f for every T € [E¥] = [F]. Therefore,
[F¥]NT C Ty = H. On the other hand, H = [Ex]NT C [F5F]NT. So H = [F5]NT.
(<) Suppose H = T'N [F¥]. Let f = [ omy where my is the unique ergodic
decomposition of E7 and 3 is any Borel embedding of £Zx i) onto a subset of [0, 1].

fyely, mylx)=0tof(x)=pto(y-flx)=0""tof(yv 1 2)=mau(y ' 2.

In other words, (- z)Fjz for every x € X, v € I'y. Thus, 'y CI'N[F] = H.
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On the other hand, Vy € H,x € X,

v fx)=f(y ' a)=Bomu(y " -x)=Bomu(x) = f(z).

Therefore , H C I'y. We then have H =TI'y. 0

Corollary 3.2.21. Let I' be a countable group and X be a standard Borel I'-space
with invariant probability measure p and H C T a subgroup. If EX is ergodic and E3
is not, then we can find some f € L*(X), such that H CT; C T, and I'y is minimum

in the sense that H CT'y = 1'y CT'y .

PROOF. Let H' = TN[Ff]. Since H < H' < [F§], we have [FX] < [F] < [F¥],
Le., [F] = [F¥]. By the proposition, I" = I'; for some f. Suppose now H < T',.

Then we have [F] < [FI{] Therefore,
Ly=TN[Fg] CTN[F] =T,

O

3.2.8. Actions by Compact Group Automorphisms. Now assume that X =
G is a compact Polish group and I' acts on X by topological group automorphisms.
Recall from Corollary 3.2.14 that |I';/I';| < oo for all irreducible unitary repre-
sentations 7 is the necessary condition for ErLz(G) being smooth. Call a I' action on
G locally finite if it satisfies this condition. We have the following characterizations

of smoothness:

Theorem 3.2.22. Assume " acts on a compact Polish group G by automorphisms.

If EFL2(G) s smooth, then
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i) There is no infinite sequence (f;) C L*(G) such that (T';.) is a strict decreasin
fi g
sequence;

(i1) There is no infinite sequence m; of irreducible unitary representations of G

such that T'y, = (,<,, I'x, is a strict decreasing sequence;

i<n
(111) For any set A which contains non-isomorphic irreducible unitary representa-

tions of G, there is a finite subset S C A such that I's =1'4. Here 'y = ﬂﬂeA r..

Moreover, if we assume that the T action on G is locally finite, then (i) <= (ii)

S 18 smooth .

= (i) = EﬁQ
PROOF. (smooth=(i)) Let (f;)icy be a sequence in L?(G) such that 'y, is strictly
decreasing and we can assume f; are chosen from the unit sphere. Let ', = ﬂign I'y

Pt

Choose 7, € I',_1\I',, for each n and let d,, = H;:ll 27| fi — i - fil]- Define

f=> 6"dy- fa

n>1

Note that (d,) is a positive decreasing sequence and clearly, ||f — v, - f|| — 0.

Furthermore,

1f = fIl = 67" | = full =2 670 - |Ifill

>n
d;

dn+1

> 6 "dpyr — 46 " dpyy Y 6"

i>n

4
> 6_ndn+1 — 6_ndn+1 : g > 0.

Which means f is a nontrivial limit point of {~, - f}. EﬁQ(G) is not smooth.
((1)=-(ii)) It is easy to see that I'; = I'; for some f € &:. So (i) clearly implies

(id).
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((ii)=-(iii)) Assume (iii) is not true. Then there is an S that contains nonisomor-
phic irreducible unitary representations of G such that I'y # I' 4 for every finite subset
of S C A. Let S; be an increasing sequence of subsets of A. I's, is a decreasing se-
quence of subgroups of I' and ((I's, = I'4. Since I's, # I'4, we can find some m > n
such that I's, C I's . So we can assume that I'g is strictly decreasing. Choose
Tn € Spi1\Sn- Iy = ﬂign Iz, =Tg,,, is strictly decreasing.

(Assume locally finite, (iii)=-Smooth)

Assume local finiteness of the T action of G and (iii).

Suppose Ecry is not smooth.

Fix an arbitrary index on G, that is G = {#,;} and #; # 7; unless ¢ = j. Also let
& =Ex,.

There is an f € L?*(X) and a sequence {,} C I' such that ~,-f # gand v, f — g.

We can write
oo
f = Z aifz'
i=0

and

9= Z a;9;
i=0
where f; € &,,9; € Eand k; = k; < i =7 <= [, = [l;. Due to the local
finiteness, we can assume Vi(a; > 0). Choose the corresponding {m,} to be our A
and, with some reordering, we may assume S = {7, }i<ar as the witness of condition
(iii), i.e., T'g = Da.
Now suppose n < M — 1 and Vi < n(v; - fi = fi). A, = {gila; = a,} is finite.

Vi - fn € A, almost everywhere. So there is a g; € A, such that 3%i(g; = 7, - fn)-

Furthermore, due to the local finiteness, we have 3%i(7n" = ~; - ) for some 7’ such
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that 7/ = 7. Let {a;} be the subsequence of {7;} such that T = a; - m,. Define
B; = ag 'ay.Clearly f3; fixes f; for i <mn and 3 - f has a nontrivial limit point ag ' - g.
So, by replacing g with oy’ - g and {7} with {3;} inductively if necessary, we can
assume that =, are chosen from I'gs = I'4. But this means I'4 - f = f, a contradiction.

This proves the smoothness. O

Corollary 3.2.23. Assume local finiteness. Then EF(G)

18 not smooth iff there
is a sequence of normal subgroups N; C G such that I'q/n, is an infinite strictly

decreasing sequence of I', where

Fenv={yel:VgeG(y-ge Ng)},

i.e., the subset of coset preserving automorphisms.

PROOF. (=) Suppose L, ¢ (r) is not smooth. By the Theorem, we can find an infi-

nite sequence of irreducible 7; such that I'; is strict decreasing. Let N; = [, ker(m;).

i<n
Nj; is a normal subgroup. Since I'g/n, = I';, we have our decreasing sequence I'g/y;,.
(<) Suppose we can find such (N;). Note NV; is the kernel of some unitary repre-
sentation 7. For example m = Ag/n, © Pg/n,, where Pg/n, : G — G/N; is the natural
projection. Since 7 is the direct product of irreducible unitary representations, either
we can find finitely many irreducible m;; such that I'g/n, = (), T'x,; or we cannot.

(@)

The negative of condition (ii) holds in each case, hence EIEQ is not smooth. UJ

L2(G) . . . L2(G) .
Corollary 3.2.24. E 15 smooth if and only if EL, 1s smooth for every

subgroup TV < T.

3.2.9. Examples.
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Example 3.2.25. (Locally finite and not smooth) Let G be a compact abelian
Polish group and I'" act on G by automorphisms. Let m be an irreducible unitary
representation of G, and we may assume C is its underlying Hilbert space. If v-7 = 7,

then

(v-m(g) = (v -m)9),1)

Thus I', =I'; and the I' action on G is locally finite.

Let G = K", where K is a compact Polish group and I' = S_., the group of
finite permutations on N. Consider the I' action on G by 7 - (k;) = (ky-1(;). Let
7 be an irreducible unitary representation of K and define w,((k;)) = w(k,). We
have v - m; = my;). Let '), = ﬂign [y, (') is strictly decreasing. Hence EFL2(G)is

non-smooth. If furthermore, K is abelian, then the I action on G is locally finite but

EIEZ(G) is not smooth.

Example 3.2.26. (Simple compact groups) Consider a compact Polish group G
and let I' act on G by automorphisms. It is easy to check that I'; = {y € I' :
v -kerm = kerw}. If G is simple, then I'; = {1} for all nontrivial irreducible unitary
representations 7. So local finiteness is equivalent to smoothness when G is simple.

Assume now G is the finite direct product of some simple groups, i.e., G = G; X

Gy X - -+ X G, where every G} is simple and compact. Similarly there are only finitly
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many possible I';. So in this case, we also have that local finiteness is equivalent to

smoothness.

Example 3.2.27. Let ' < G act on a compact Polish group G by conjugations.

(@)

Then I'; =T for every 7 € G. It is easy to check that EFL2 is smooth iff I" is finite

by either Theorem 3.2.5 or Theorem 3.2.22.

Example 3.2.28. (Weakly mixing, smooth, but not mildly mixing) Let I" =
SL.(Z), G = T™ and the usual I action on G by matrix multiplication. The I" action
on (G is weakly mixing but not mildly mixing.

The dual G is Z", where (ki,...,k,) € Z" is identified with the character

ki

where v € I' = SL,,(Z) is a matrix. Since G is abelian, I'; = I'; for every irreducible
unitary representation 7 and in particular, the I' action on G is locally finite. Let
{Nicm T} = {Nicp T4, } be a strictly decreasing sequence, where 7i; = (ki, ... k;,) €
G = 7Z". View #t; = (ki,... k') as real vectors and let R,, = (i) i< e the linear

span of {7;}i<m in R™. If {I';} is an infinite sequence, then there is an m such that

Rm - Rm+1 .



ol

But

v € ﬂFm

<m

Vi<m+4 1(y- -1 =7;)

v E ﬂ I,

i<m+1

r 17 10 1 1
<
m
oy
i
|
G

contradicting that {(),., 'z} is strictly decreasing. So every strictly decreasing

i<m

@ is smooth.

2
sequence {[);<,, ['r, } is finite, hence EL
Note that for an action by automorphisms on a compact group, mixing is equiv-

alent to mildly mixing and weakly mixing is equivalent to ergodic (see [Kechris 1]).

3.3. Compressibility

Compressibility is another important descriptive property of equivalence relations.
A countable Borel equivalence relation E is compressible if there is a Borel injection
¢ : X — X such that 2E¢(z) for every x € X and X\¢(X) is a complete section.
In this paper, we only use this terminology as an alias of noneristence of invariant
Borel probability measure. The equivalence of these two conditions is due to Nadkarni
(see [Nadkarni|). Like smoothness, compressibility is also a notion of noncomplexity.
While saying a Borel equivalence relation E is not smooth is the same as saying that

Ey Cp E, for a nonsmooth F, being noncompressible is equivalent to Ey E% FE. Tt
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(X) and E#MLG”'

2
turns out that once again the compressibility of Elf coincides and is

strictly stronger than the compressibility of EFA ut(Xom),

3.3.1. Compressibility of EIEQ(X’“) and ElyALG". Let X,Y be Borel I'-spaces
and recall that the diagonal T’ action on X x Y is defined by v - (z,y) = (v - x,7 - y).
Also assume that u, v are I'-invariant Borel probability measures on X, Y respectively.
The Borel probability measure p x v defined on X x Y is also I'- invariant . Similarly,
let (X;)ien be a sequence of I'-spaces. The diagonal I' action on [], . X; is defined
by v - (x;) = (v - x;). Denote by Ep ¥ the orbit equivalence relation of diagonal T
action on [ X;.

Let X be a Borel I'-space with invariant (nonatomic) Borel probability p. Then
being mildly mixing is equivalent to saying that for any Borel I'-space Y with ergodic
non-I'-atomic invariant Borel measure v, the diagonal " action on (X x Y, u x v) is
ergodic. And being weakly mixing is equivalent to saying that for any Borel I'-space
Y with ergodic non-I'-atomic invariant Borel probability measure v, the diagonal I'
action on (X x Y, u x v) is ergodic.(see [SW, Glasner|)

In particular if the I' action on X is mildly mixing, then no Borel I'-space Y with
non-I'-atomic invariant ergodic Borel measure can be embedded in L?(X), which
means £ is smooth (see Proposition 3.2.10 (iii)).

(X)

2
Similarly, there is also a connection between the compressibility of EFL and

(X)
iIs never com-

weakly mixing action on X. To be precise, notice first that E#Q
pressible because every constant function in L?(X) is fixed by I'. So it only make

sense to describe the compressibility of the nonconstant part of L*(X). Denote by
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L2,(X) = L?(X)\{C- 1} the I-invariant subspace of L?(X) of nonconstant elements.

We have:

Theorem 3.3.1. Let X be a Borel I'-space with T'-invariant Borel probability
measure [t. Then

)

(i) T action on X is weakly mizing if and only if Eﬁgw(x 15 compressible;

(i1) E%“%C(X) s compressible if and only iof E%ALG“\{X’Q} 185 compressible;

(iii) E;l"t(X’“) is compressible if and only if ©(T') is not compact.

PROOF. (i) If Elég“‘(x) is not compressible, then it has a I'-invariant ergodic Borel
probability measure v. Let p : L?*(X) — LZ(X) be the projection. Since pv is a
[-invariant ergodic probability measure on Lo(X), supp pr = p(supp v) is a compact
[-invariant subset (see Proposition 3.3.2). So the I" action on X is not weakly mixing.

Conversely, assume now I' action on X in not weakly mixing. Then we can find
a Borel I'-space Y with ergodic invariant Borel probability measure v so that Eg( xY
is not ergodic. Let F' € L?*(X x Y, u x v) be a nonconstant I'-invariant function. Let
fy(z) = F(z,y). Notice that f, is not a constant function for v-a.e. y, otherwise by
the ergodicity of I' action on Y, F' is a constant function. So we have a v-measurable
I'-homomorphism from Y into LZ_(X) defined by y — f,. Clearly, the image measure
f«v is a T invariant Borel probability measure of L? (X).

(ii) Since EéV[ALG“\{X’w} Cy Eﬁ“(x), the compressibility of EFL%C(X) implies the
compressibility of E#MLG“\{X’@}. On the other hand, if EIQ%C(X) is not compressible,
then we can find an f € L2_(X) such that T'- f is compact. Let A = f~'(B) for
some Borel set B C C such that 0 < u(A) < 1. By Lemma 3.2.6, I" - A is compact.

Since Iso(I'- A) is compact, in particular amenable, there is a Iso(I'- A) invariant



54
Borel probability measure v on I' - A. Clearly v is '-invariant. So Eé”ALG“ V0 g
not compressible.
(iii) The existence of I'-invariant Borel probability measure is equivalent to the

existence of the Haar probability measure on 7(T"), so this statement is obviously

true. [l

3.3.2. Compressibility And Isometric Factors. Like the connection of rigid
factors to the smoothness of EFLQ(X) and B2 the notion of isometric factors has
connections to the compressibility of EL ") and e,

Let us first study the spectral characterization of isometric I'-spaces. A Borel
['-space X is said to be isometrizable if there is an I'-invariant metric d on X that
induces a separable topology and the same Borel structure. If moreover there is an
[-invariant Borel probability measure pu, then we say (X, p) is isometrizable if there
is a conull invariant subset of X that is isometrizable.

Assume now (X, u) is isometrizable with witness metric d. Let X’ = supppu.
Clearly X’ is invariant conull and Vx € X', r > 0, the open ball B, , is non-null. X’
might not be complete (with respect to the metric d), but taking the completion X',
d can be (uniquely) continuously extended to d on X’. We can also extend p to 77 on
X’ by letting 71(A) = (AN X') for every Borel A C X', so that I' acts on (X’,d) by
isometries with invariant Borel probability measure 7. Clearly (X, ) = (X/,7), so
if the I'-space X is isometrizable, we can assume I" acts on a Polish space (X, d) by

isometries. We have the following easy connection between ergodicity and topological

properties.
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Proposition 3.3.2. Let I' act on Polish space (X,d) by isometries with an in-
variant Borel probability measure p.
i) If p is ergodic, then X is compact;

i) u is ergodic iff there exists a dense orbit (iff every orbit is dense).

We can tell whether a Borel I' space X with invariant probability measure is
isometrizable from its unitary representation on L*(X).

A T action on X is said to have discrete spectrum if 7% is the direct sum of
finite dimensional irreducible unitary representations. Or in other words, L?(X) is
the direct sum of finite dimensional I'-invariant subspaces.

Suppose now I' acts by isometries on a compact Polish space X. Since Iso(X) is
compact, by the Peter-Weyl theorem, the I action on X has discrete spectrum. On
the other hand, assume p is ergodic and X has discrete spectrum; Mackey has shown
that the I' action on (X, u) is isomorphic to the left translation of some homogeneous
space, in particular, isometrizable (see [Mackey, Furman, FK|).

In general, we have:

Theorem 3.3.3. Let I' be a countable group and X a Borel I' space with invariant
probability measure . Then T action on X has discrete spectrum if and only if (X, p)

18 1sometrizable.

PROOF. (<) We can assume I' acts Polish space (X, d) by isometries and X =
supppu. We can also assume the I' action is faithful, otherwise we can replace I' by
I'/ ker 7% because their invariant subspaces are exactly the same. Notice that by
Proposition 3.3.2 and Theorem 3.2.17, for pa.e. € X, I - z is compact. Since every

nonempty open ball is non-null, we can pick a countable dense subset {z;} C X such
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that [' - x; is compact for every i. Let (7;) C I' be an arbitrary sequence. We can
find a converging subsequence () C (7). Since x} € I' - x; is compact for every z;,

we can pick v, and x}, inductively so that

Vi < k(d(x), 7y, - x5) < 27F).

Let T : X — X defined by T'(z) = lim,_. «} , where (x;,) is an arbitrary subse-
quence of (x;) that converge to z. It is straightforward to check that 7" is well defined,
i, d are I'-invariant, and 7, — 7T point wisely and in the weak topology of Aut(X, p).
Therefore T is a compact group and X is a Polish I space. The conclusion of X
having discrete spectrum follows from the Peter-Weyl theorem.

(=) Let L*(X) =[] Vi, where V,, are finite dimensional I-invariant subspaces.

Let f = f., where f, € V,,, f € L*(X) and injective. Suppose .- f — g
for some g € L*(X). Since I' - f is compact, there is a subsequence {v;} such that
A7 f = g for some g € LA(X). So 77 (A) — g7 (F(A)), 77(A) — gL (F(A))
for every Borel subset A C X. Therefore v; — v € I' < Aut(X, ) (in the weak
topology) and T'- f =T - f. Since Aut(X,pu); = {1}, we have T is compact (in the
weak topology). Let v be the Haar measure on I'. So we have a I' acting on L*(T)
defined by (v - ¢)(h) = ¢(v"'h).

Consider F': T' x X :— C, which is defined by F(z,7) = F,(y) =7 f(x). By the

Fubini-Tonelli theorem, F, € L*(T) p-a.e. Since

VAETVy eIz € X(A- f(y-2) = (v'A) - f(2)),
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we have
Vir € XVy € TV;A € D(Fyu(A) = X- f(y-2) = (v7IN) - f(z) =7 - Fu(N),

ie., Viwx € XVy € ['(F,, =~-F,). Since f is injective and every v € T C Aut(X, p),

has a pointwise realization, we have

Vy e TVaYy((y - f)(z) = (v- [)y) = = =y).

So VaVy(F, = F, = x = y). Therefore z — F, is a p-a.e. p-measurable I'-space
embedding of X into L?(T'). So there is a pu-conull T-invariant Borel set Y C X such

r)

that EX|Y T BEE®. d(x,y) = |Fy, F,|l, is a T-invariant metric defined on Y. [

Corollary 3.3.4. Let X be a Borel I'-space with invariant Borel probability mea-

sure p. Then X is isometrizable if and only if 7X(I") is compact in the weak topology.

PROOF. If X is isometrizable, then 7X(T") is compact follows from the fist part of
the proof of Theorem 3.3.3.

Suppose 7 (T") is compact. Since every I'-invariant closed subspace of L*(X) is

also 7% (I')-invariant, X has discrete spectrum by the Peter-Weyl theorem. |

Corollary 3.3.5. (Mackey) Let T' be a countable group and X a faithful Borel
I' space with invariant probability measure p. If the T' action on X has discrete
spectrum, then I' can be embedded onto a dense subgroup of a compact group G such
that T-space (X, ) is isomorphic to (G/K,w(v)), where K is a closed subgroup, v is

the normalized Haar measure on G, and 7w : G — G /K is the natural projection.
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PROOF. We can assume I" acts faithfully on Polish space (X, d) by isometries and
X = supppu.

Let G =T < Aut(X,p) with Haar measure v. Fix an arbitrary x, in X and let
K = G,,. Since G is compact and T is dense in G, G- 29 =T - 19 = X. It is easy to
check that the map « : gK — ¢ - x¢ is a I'-space isomorphism of G/K to X.

It remains to show that u = (« o 7)(v), where 7 : G — G/K is the natural
projection. Let 1y be the normalized Haar measure on K. Consider A C gK, define

&(A) = (gt A). Since
w((gh) ' A) = vo(h (g A)) = (g A),

the definition is independent of the choice of g and is welldefined. Define a finite

measure v’ on G by

o = / (o)

where ¢,(A) = ¢(ANa(z)) = ((h'A) N K) for some h € o~ !(z). We have
b:(gA) = p((htgA) N K) = (AN (g7 'hK)) = ¢y-1..(A) for some h € o™ (x).

Note that p is [-invariant, so it is ' = G-invariant. Therefore for arbitrary g € G,

J(gA) = / ol A)dn(z)

- / Ol A)dnta)

- / ol A)dn(ge)
'(4)

= UV
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By the uniqueness of the Haar measure, v/ = v. Finally, for any Borel set X, we

have

(aom)(V)(4) = V(r(a"'(4))

Example 3.3.6. No weak mixing action (with invariant Borel probability) is

isometrizable.

Let (X, ), (Y,v) be I'-spaces. If there is a I-map a : X — Y, which is onto and
v = fu, we say that X is an (I'-)eztension of Y and Y is a (I'-)factor of X. There
is a canonical embedding of L?(Y,v) into L*(X, i), namely f — foa. So it is easy
to check that the Borel I'-space (X, 1) has no rigid factors (in the sense of Definition
3.2.8) if and only if it has no nontrivial rigid I-factors. Call a factor (Y,v) of (X, u)

t(X,p) is COmpreSSible iff (X7 ILL) is

an isometric factor if it isometrizable. We have Elf‘“
not isometrizable by Theorem 3.3.1 (iii) and Corollary 3.3.4. We also have E#%C(X) is
compressible iff (X, 1) has no nontrivial isometric factors. Because if «v is a surjective

-map o : X — Y and d is a T'-invariant metric on Y, then y — d(y,a(-)) is an

[-space embedding of Y into L*(X). So L?(X) is not compressible. Conversely, if
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F € [*(X x Y, u x v) is nonconstant I'-invariant, X is embedded into a nontrivial

subset of L?(Y,v) by the map x — F(z,-).

3.4. Some Embedding and Containment Results

3.4.1. Translation and Conjugation. Let X = G be a compact Polish group
with Haar measure ;o and I' C G a countable subgroup. There are two natural ways

for I" to act on G: left translation

(7,9) — 9.

and conjugation

(v.9) — g =97 "

To distinguish these actions, let EF, E¢ be the induced equivalence relation by the
[ left translation and conjugation, respectively and let v - f(g) = f(v " 'g), f7(g) =
fg") = f(y'gy) for f € L*(G). And denote by EZLZ(G), EF©@ the induced
equivalence relation on L?(G) respectively.

Fix an f € L*(G) that is injective everywhere, so that Aut(G, p); is trivial.

Define f,(h) = f(g~'h). Since

v f(h) = fo(y'h) = fg™' v h) = fie(h)

and Aut(G,p)s is trivial, g — f, is a continuous invariant embedding of EC into

EF® Hence EG Tt B,
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Define 7,(h) = f(¢" ) = f(h~*gh). We have

V- 1g(h) = T4(v'h) = f(h'ygy ' h) = f(h™'g"h) = 74 (h)

and since f is injective everywhere, 7, = 7,, <= ¢1 = g2. So g — T, is a continuous

invariant embedding of EY into EZLQ(G). Hence we have E¢ C! EZLQ(G).

Define \,(h) = f(g~*hg). We have

AJ(R) = Ag(B7) = N (v ) = Flg7 v hvg) = M),
Mgy = Ag, = Vih € Glgy'hgy! = g3'hgy') <= g297" € Z(G), where Z(G) is
the center of G.

If Z(G) C T, then g — ), is a continuous Borel reduction of EZ into ECL2(G), SO
Ef <p EF© Ttis an embedding if Z(G) = {1}.

Suppose a Borel I' space X with invariant Borel probability is properly isometriz-
able (see next section) with witness d. Define f,(y) = d(x,y). It is easy to check that
for = fo» <= @11 =29 and v+ fy = frp. Thus EX C! EIQQ(X). Since conjugations
are isometries, ¢ C! EX @ for a compact Polish group G.

We can also show that EX (@ Ci EZLQ(G). Let ® : L?(G) — L*(G) be the map

defined by
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where f is any element in L?(G) (we no longer need f to be a fixed injective function).
Since

O(f)(g) = - f(ytghg ™ y)du(h) = ©(f)(v'g) =~ - 2(f)(9),

® is a -map. And

O(f1) =(f2) = Vgl : Gfl(ghgfl)d/i(h) = : sz(ghgil)d/i(h»

— vy / (= fa)(ghg™)du(r) =0

=  fi=Ja

Combining the above results, we have

Proposition 3.4.1. Let G be a compact Polish group and I" be a subgroup of G.
We have EC 0 EZ9 €L B and BE €L B 17 2(G) < T, EF <, EX

and if Z(G) = {1}, E¢ i EX©,

Example 3.4.2. Let X = G be a simply connected compact semisimple Lie
group with a trivial center, I' C Aut(G) a countable subgroup acting on G by au-

tomorphisms. Identify G and Inn(G) < Aut(G), which is a I' invariant finite in-

dex normal subgroup. We have ES ! B/ Therefore ES C! Ef (AU and

EIQ EZC ECLQ(AM(G)).
3.4.2. Embeddings related to hyperfiniteness.

Proposition 3.4.3. Let X be a Borel I'-space with invariant Borel probability

(X) ~ E(]VIALG’M)N ~ ELQ(X)N.

L2
measure (1. Then Ep T
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PROOF.
MALG, Cp L*(X),
SO
(MALG,)N Cp Ly (X)N.
To see that
L*(X)Cp (MALG,)Y,
let

a: L*(X) — (MALG,)Y

be the map defined by

where {A,, },en is an enumeration of basic open subsets of C. Clearly « is an injective
Borel I'-map. Since

L*(X)Cp (MALG,)Y,

we also have

LA (X)N Cg (MALG,)™N.

Therefore, we have

E£Q(X) ;ZB EIQMALGH)N ElB EL2(X)N EZB EI(‘MALGM)NXN.

Notice that

EIQMALGu)N ~ EIEMALGN)NXN.
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O

Let X be a Borel I'-space with invariant Borel probability measure u. Consider
the following property:

(*) For every sequence of Borel subsets (A;), there is an N € N such that
ﬂigN L = NienTar-

Property (*) holds for mixing and mild mixing action. In fact, it is easy to check
that the smoothness of E#Q(X) implies property (*). If I" acts freely on M ALG,\{0, X'},
i.e. , 7 is p-ergodic for all v € T', then it satisfies (*). If there exists an r < 1 such
that

v-A=A=pu(A) >r

for every A € MALG,, and v € T'\{1}, then (*) holds. More generally, if

sup [{Ae MALG, :v-A=A}| < o,

yel\{1}

then (*) holds.

Corollary 3.4.4. Let X be a Borel I'-space with invartant Borel probability mea-
sure p. If the above (*)-property holds, then E#Q( is hyperfinite <= EMALG“ is

hyperfinite.

PRrROOF. Let

Py ={(A,) € (MALG,)" : (\Ta, # () Ta, =()Ta}

<N i<N ieN
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so that each Py is I-invariant Borel and { Py} is a partition of (M ALG,)N. We only

_ EIEMALGN)N

need to show that EfN | Py is hyperfinite for each N. Fix an arbitrary

N. Notice that
EﬁMALG,L)N C EMALGN

is hyperfinite. So

A N
EI(1M LG,) :E<T>

for some Borel automorphism 7" : (M ALG,)N — (MALG,)". Define

S: (MALG )N — (MALG,)"

S((An)nen) = (7 An)nen

for some 7 € I' such that (v A,)n<ny = T((An)n<n). Notice that if

(’71 . An)nﬁN = (’72 : An)nSNa

then

"€ 72(ﬂ FAZ) = ’72(ﬂ FAL)

<N 1€N

So clearly S is well-defined. Since

MALG, )N
E1(“ 2 :E<T>7
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for every 71 € I', we can find an n € N so that

('Yl : An)ﬂSN = Tn((An)nﬁN)'

It it easy to check that

Sn((An)nEN)‘N = Tn((An)nSN)a

SO

Sn((An)TLEN) = (72 ) An)neN

for some 5 € 71 ([, ['4;). Using the condition
(Y Ta)=()Ta)
i<N ieN
again, we have

S™((An)nen) = (71 + An)nen

and

_ PN
E<S> - Er :

Therefore, Eij is hyperfinite. 0

Let X be a I'-space and p a quasi-invariant measure. EX is amenable iff Ef
is hyperfinite on an invariant p-conull subset (see |Zimmer| or [Kaimanovich|).
Recall that 1p < Ap iff I' is amenable (see [BHV]). If an ergodic I'-space (X, p) is

amenable (see [Zimmer| for definition), then 7%* < Ar (see [Kuhn]). The converse
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is in general not true (see [AD]). Let

52

b's
We have in analogy to the amenability of Ef:

Theorem 3.4.5. Let X be a Borel I'-space with quasi-invariant Borel probability

measure p. If E = EX is amenable, then 7% < \X.

PROOF. We can find a sequence \" : E — R of non-negative Borel functions such
that

(i) A" € £ ([x]g), where A" (y) = A\"(z,y), for zEy;

(i) 2], = L and

(iii) There is a y-conull Borel E-invariant set A C X , such that ||[A? — X|| — 0
for all z,y € A (see [KM] or |[Kaimanovich]|).

Let ¢" = v/ An. We have ¢" € £2([z]g), |¢7]| = 1 and
o7 = 31" < 132 = %511, —o.

Fix an arbitrary f € L*(X,u). Let f, : E — C , (z,y) — ¢"(z,y)f(x) and
v (z,y) = (v z,y) for xEy. Note that f(z)¢" € (*([z|g) for every z € X. For any

vel,

O fd = - £ = | () — 1) C“de@m—l.x)mw)

/

2

W )17 ) @)

IA

o, —
2
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Since 4 > ’

¢371.x - Qﬁ;

(@)2 f(v' - 2)fz) € LN(X, p),

[y fos Ju) = (v - [, [)] — 0 for every v € T. So for any finite subset F € T and

€ > 0, we can find an n such that

‘<’7'fnafn>_<7'fuf>|<€

for all v € F. Since [y|g =5 I'/T, it is easy to check that

fne/@ €2([Q]E>dﬂ(y):/@ C*(T/T,)dp(y)

ex yeX

and the I' action on E is Borel isomorphic to the left translation of " on

(&)
[ r/raduty)

X

Therefore every positive definite function realized in 7+ is the pointwise limit of a

sequence of positive definite functions realized in AX. In particular, we have 7% <

X O
Call a I'-space X coamenable if I', is amenable for every x € X. A I'-space X is

said to be coamenable p-a.e. if an invariant p-conull subset of X is coamenable.

Corollary 3.4.6. Let X be a Borel I'-space with quasi-invariant Borel probability

measure ji. If X is coamenable pi-a.e. and EY is amenable, then 7% < Ar.
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PROOF. Assume that Ef is amenable and X is coamenable p-a.e. Since T, is
amenable p-a.e., we have Arjr, < Ar p-a.e. Notice that the condition m; < 3 for
unitary representations m;, m is equivalent to ||7i(a)|| < ||me(a)|| for all a € £1(T),
where w(a) = > a,m(7) for every unitary representation 7 (see Section F.4 of [BHV]).
So we have ||Ar/r, (a)|| < |Ar(a)| for every pra.e. x € X and a € ¢(T). Tt is easy to

see that

W@ £.8) = Yy [ O fo i) duto)

yel

_ /X > (e o £2) dpla)

vel’

< /X A Ll dp)

= Al 1117

for every f € [© 3(T/T,)du(z) and a € €1(T). So ||Ar/r, (a)]| < [[Ar(a)|| for every

S

a € (}(T") and hence by Theorem 3.4.5,

75 <A <\

Corollary 3.4.7. Let X be a Borel I'-space with invariant Borel probability mea-
sure [i.

If 332(T, is amenable) and E% is amenable, then T is amenable.
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PROOF. Since amenability is preserved under subsets, we may assume that Ef is
amenable and X is coamenable p-a.e. (otherwise, replace X by an non-null invariant
Borel subset X’ C X, which is coamenable p|X’-a.e.)

By Corollary 3.4.6,

1§7TX-<>\X-<)\1‘.

So I' is amenable. O

Corollary 3.4.8. Let X be a Borel I'-space and I' a free nonabelian group. If X
15 coamenable, then E = Eﬁfl is hyperfinite and compressible, where X' is the nonfree
part of X.

In particular, if I' is a free nonabelian group and X s coamenable, then the T’

action 1is free p-a.e. for every I'-invariant Borel probability measure p on X.

PROOF. By replacing X with X', we may assume I', is amenable and nontrivial
for every x € X. Thus by the Nielsen-Schreier theorem, I'; is cyclic for every x. Fix

a well-ordering on I'. Let

i -1
p(7) = min{aya™}

and put v <, 72 if

p(11) < p(h2) V (p(11) = p(12) = 1 < 72)-

<, is also a well-ordering on I'. Consider the assignment x +— a, € I', where a, is the

smallest generator of I'; respect to <, i.e.,

(ag) =Tz Nag <, a,’.
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This assignment is clearly Borel and a, = a, if I'; = I'y. Furthermore, if y € [2]g,
then a,Era, (recall that 41 Elvq iff 71 = 77927~! for some v € I' ). This is because
ya,y~! is a generator of Ty, for some v € I' such that v -z = y. If ya,7~ ' # a,, then

azE} a,'. Notice that p is a selector of E}. We have

pla,") = plas) < pla;") = play) < pla,").

r
and hence a,E; a,.

Let

Y ={yeX:a,=play)}.

Since

p(plas)™") = pla;") < plag)

and p(a;) is a generator of I',., for some v € T, p(a,) = a, for some y € [z]g. So YV
is a complete section.

Also if x By, then ELy. Therefore if ,y € Y and xEy, then a, = p(a,;) = a,. By
a basic fact from combinatorial group theory, two elements of a free group commute if
and only if they are powers of a common element, that is, y172 = 7271 iff 71,7 € (7)
for some v € I'. Fix an arbitrary x € Y. It is easy to check that we can uniquely
write a, as a, = af"a~!, where n € N, « is reduced, 3 is cyclically reduced (i.e., 33

is a reduced word) and [ is not a nontrivial power of other elements, i.e.,

Vy € IVm > 0(y™ # 5).
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Put b, = aBa~t. We have

r(E|Y)y <= dInecZx =" y).
Let Y, = {z € Y : b, = 7}. We have E|Y, = E}. So
E|Y = &, B|Y,

is hyperfinite. Since Y is a complete section of E, F is hyperfinite. By Corollary

3.4.7, there is no ['-invariant Borel probability measure on X. U

The following is an analog to a property of amenable groups (Corollary G.3.8,
[BHV]) and amenable actions (Lemma 4.5.1, [AD]), which is related to Theorem

3.4.5.

Proposition 3.4.9. Let X be a Borel I'-space with quasi-invariant Borel proba-
bility measure p. Suppose H < I' and 1pr < Apjg. Then E3 is amenable iff EX is

amenable.

PROOF. Ex C EX. So the amenability of FZ implies the amenability of E5x.

So assume Eﬁ( is amenable from now on. Let m be a I'-invariant mean on Ap,y
and {p,} a set of H-invariant local means on E3 (see [Kaimanovich|) such that
x +— p,(F) is measurable for any F' € L>(X, p).

Define g, and g, by

gf,x(%H) = p%—l.m(f‘[«,;lm]EX)
H
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and ¢.(f) = m(gyz), where {v;} is a representative of I'/H for all f € (*([z]pgx). It
is straightforward to check that gy, € (*(I'/H), ¢, € (£>°)*[z]px and x — ¢,(F) is

measurable for any F' € L>®(X, ). Check

Itra(WH) = pityp-ralfli-100-1a1 )
- ph_lV;l‘I(f|[7;1'x]El{I(>

- p'yj_lx(f’[fyj_lw}EiI()

= gra(vH)

= gr.(v M)

= v gr(viH),
where 77!y, = 7;h for some h € H and
q’yx(f) = m(gf,'y-x) - m(’y ' gf,x) = m(gf,x) = qx(f)

So ¢,. is T-invariant. FY is amenable. O
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