Modern Digital Seismology — Instrumentation, and Small Amplitude Studies in the Engineering World

Thesis by

John F. Clinton

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

2004

(Submitted May 24, 2004)

© 2004

John F. Clinton All Rights Reserved

Acknowledgements

I would like to thank my advisor, Tom Heaton. Throughout my time at Caltech, he was continuously jovial, and gave me great encouragement. He has always been overly generous with his time, and I have learnt much from our frequent discussions.

I would like to acknowledge Jascha Polet and David Johnson from SeismoLab, who taught me a lot about the hardware and software issues, helped set up countless experiments, and were always helpful with data analysis and recovery. I also would like to thank Arnie Acosta and Erdal Safak for their help with obtaining data from the USGS array at Millikan Library. Mr. Isamu Yokoi from Tokyo-Sokushin was also extremenly helpful with all issues that arose with the VSE sensors. I would like to thank IRIS for purchasing the VSE-355G2 sensor.

The faculty and students of Civil Engineering also provided great support. In particular Brad Aagaard for the brains, Andy for the sharing the misery at 2am all first and second years long, Swami, Javier and Case for the laughs. And especially Case for the extensive proof-reading.

My mother-in-law, Maria Cua, helped out with minding Peete, letting us get some work done.

My parents, Peter and Margaret, so far away for these past years, have yet managed to share much of my Caltech experience, and helped me make it to the end.

But after everyone has gone home, Peete and Georgie were always there, and allowed me to too often not go home myself. Thanks for your patience and love. For what its worth, this is for both of you.

Abstract

The recording of ground motions is a fundamental part of both seismology and earthquake engineering. The current state-of-the-art 24-bit continuously recording seismic station is described, with particular attention to the frequency range and dynamic range of the seismic sensors typically installed. An alternative method of recording the strong-motions would be to deploy a velocity sensor rather than an accelerometer. This instrument has the required ability to measure the strongest earth motions, with enhanced long period sensitivity.

An existing strong motion velocity sensor from Japan was tested for potential use in US seismic networks. It was found to be incapable of recording strong motions typically observed in the near field of even moderate earthquakes. The instrument was widely deployed near the M8.3 Sept 2003 Tokachi-Oki earthquake. The dataset corroborated our laboratory observations of low velocity saturations. The dataset also served to show all inertial sensors are equally sensitive to tilting, which is widespread in large earthquakes. High-rate GPS data is also recorded during the event. Co-locating high-rate GPS with strong motion sensors is suggested to be currently the optimal method by which the complete and unambiguous deformation field at a station can be recorded.

A new application of the modern seismic station is to locate them inside structures. A test station on the 9^{th} floor of Millikan Library is analysed. The continuous data-stream facilitates analysis of the building response to ambient weather, forced vibration tests, and small earthquakes that have occurred during its lifetime. The structure's natural frequencies are shown to be sensitive not only to earthquake excitation, but rainfall, temperature and wind. This has important implications on structural health monitoring, which assumes the natural frequencies of a structure do not vary significantly unless there is structural damage.

Moderate to small earthquakes are now regularly recorded by dense, high dynamic range networks. This enhanced recording of the earthquake and its aftershock sequences makes possible the development of a Green's Function deconvolution approach for determining rupture parameters.

Contents

Ac	Acknowledgements iii		
Al	ostrac	t	iv
1	Intro	oduction	1
	1.1	Seismological Instrumentation	1
	1.2	Applications of Modern Instrument Data	3
		1.2.1 Small Amplitude Studies for Buildings	3
		1.2.2 Moderate Earthquake Source Inversions	3
	1.3	A Comment on Deconvolutions	4
	1.4	A Comment on Tilt	7
	1.5	A Simple Methodology for Determining Displacement and Tilt Using Seis-	
		mometers and GPS	10
	1.6	A Summary of Recommendations for Modern Station Design	12
		1.6.1 Station options	13
2	A St	rong Motion Velocity Meter in a Modern Seismic Network?	17
	2.1	Introduction	17
	2.2	A Typical CISN Station	20
	2.3	The Definition of Dynamic Range	27
	2.4	The Seismographic System	28
		2.4.1 Dynamic Range of the Digital Recorder	29
		2.4.2 Dynamic Range of Each Seismometer	30
	2.5	Strong Motion Instrument Comparisons Using Recorded Earthquake Signals	34
		2.5.1 Assembly of the Earthquake Database	34

36

		2.5.3 Recovery of Acceleration	41
	2.6	Strong Motion' Recordings at Teleseismic Distances	42
	2.7	Summary	44
	2.7	Summary	• •
3	Exa	mination of a Strong Motion Velocity Instrument	46
	3.1	Introduction	46
	3.2	A Note on Removing the Instrument Response	48
		3.2.1 Time Domain Deconvolution: Direct Integration	52
		3.2.2 Frequency Domain Deconvolution, Division by the Instrument Re-	
		sponse	56
	3.3	Synthetic Responses for the VSE-355G2 and FBA-23	59
	3.4	Instrument Design and Specifications	66
	3.5	Test Data and Analysis	69
		3.5.1 Instrument Sensitivity	69
		3.5.2 Instrument Response	71
		3.5.3 Instrument Resolution	74
		3.5.4 Instrument Clipping	78
		3.5.5 Spurious Resonances	84
	3.6	Recovery of Teleseismic Data	85
	3.7	Summary	86
4	Stro	ong Motion Velocity Instrument Performance in 2003 M8.3 Tokachi-Oki	
	Ear	thquake	90
	4.1	Introduction	90
	4.2	The Available Networks	92
		4.2.1 F-Net	92
		4.2.2 K-Net	92
		4.2.3 KiK-Net	92
		4.2.4 WISE	95
	4.3	Static Offset — GPS and Seismometers	96
	4.4	Strong Motion around Hokkaido	.08

			100
		4.4.1 Stations near Kushiro town	109
		4.4.2 Stations near Samani town	113
		4.4.3 Stations near Erimo	127
		4.4.4 Stations near Urahoro	132
		4.4.5 Stations near Obihiro	144
	4.5	Other F-Net stations on Hokkaido	149
	4.6	Teleseismic Motion around Japan	152
	4.7	Summary	172
5	Mod	fications to the VSE-355G2 — The VSE-355G3	176
	5.1	Introduction	176
	5.2	Modifications	177
	5.3	Test Analysis	178
		5.3.1 Instrument Clipping	178
		5.3.2 Instrument Response	183
		5.3.3 Instrument Sensitivity	186
	5.4	Summary	195
6	Sma	Amplitude Studies in Structures	199
	6.1	Introduction	199
	6.2	Historical Evidence for Natural Frequency Wandering $-$ Millikan Library . 2	201
	6.3	The Current System of Instrumentation at Caltech	211
		6.3.1 Millikan Library (MIK, USGS-Caltech Array)	212
		6.3.2 Broad Center (CBC)	212
		6.3.3 525 S. Wilson Ave – USGS Office (GSA)	215
		6.3.4 Robinson Building (CRP)	215
		6.3.5 The Athenaeum (CAC)	217
	6.4	Analysis of the Continuous Data Streams	217
		6.4.1 Entire Station Duration — MIK and CBC	218
		6.4.2 Winter Storms — MIK	225
		6.4.3 Santa Ana Winds — MIK	232

		6.4.4	Diurnal Variation and High Temperatures – MIK	. 232
	6.5	M5.4 2	22 February 2003 Big Bear Sequence	. 235
		6.5.1	Millikan Library	. 235
		6.5.2	Broad Center	. 239
	6.6	A Line	ear Transfer Function Solution?	. 239
	6.7	Conclu	sions and Discussion	. 243
7	Sour	ce Tim	e Functions	249
	7.1	Introdu	uction	. 249
	7.2	Theory	and Methodology	. 250
		7.2.1	Directivity	. 255
	7.3	Sample	e Events	. 260
		7.3.1	Yorba Linda	. 260
		7.3.2	Big Bear	. 275
		7.3.3	Anza	. 280
	7.4	Conclu	sions and Discussion	. 285
Bi	bliogr	aphy		290
A	VSE	-355G2	/3 Testing Regime	296
	A.1	12 Dec	cember 2001: DSN — Noise and Track Test	. 296
	A.2	Februa	ary - March 2002: PASA — Noise and Screw Test	. 299
	A.3	March	2002: PASB — Noise and Calibration Coil Test	. 299
	A.4	8 Marc	ch 2002: DSN — Cart Test I	. 301
	A.5	June 20	002: DSN — Cart Test II	. 301
	A.6	June -	September 2002: Japan	. 302
	A.7	11 - 12	2 November 2002: DSN — Cart Test III	. 302
	A.8	27 Nov	vember 2002: DSN — Cart Test IV	. 302
	A.9	12 Ma	rch 2003: DSN — Cart Test V	. 302
	A.10	26 Mar	rch 2003: DSN — Cart Test VI	. 303

С	Millikan Library Dynamic Response to Forced Vibration	323
B	Previous Studies of Millikan Library	317
	A.15 23 January 2004: CRP and DSN	314
	A.14 24 - 26 November 2003: CRP and DSN	308
	A.13 October - November 2003: CRP	308
	A.12 15 - 16 September 2003: DSN — Cart Test VI	303

List of Figures

1.1	The effect of tilt on seismometers	9
2.1	Typical CISN station recording range	22
2.2	SCSN station map - entire region	24
2.3	SCSN station map - Los Angeles basin	25
2.4	Broadband instrument response	26
2.5	Accelerometer noise floors	31
2.6	Instrument responses	33
2.7	Sample bandpasses for M3.5 at 100km	37
2.8	Sample bandpasses for M7.5 at 10km	38
2.9	Data scatter and geometric mean for M3.5 at 100km	39
2.10	Frequency - amplitude plot — advantages of recording velocity	40
2.11	Comparison of acceleration records for an accelerometer and a broadband	
	velocity meter	42
2.12	Velocity time series from a large teleseism	43
2.13	As Figure 2.12, bandpass from $37.5s$ to $75s$	43
2.14	As Figure 2.12, bandpass from 75s to 150s	44
3.1	VSE-355G2 photo - Cart Test setup	46
3.2	Time domain deconvolution of a strong motion record	55
3.3	Time and frequency domain deconvolution comparison: strong motion record	57
3.4	Time and frequency domain deconvolution comparison: regional motions .	58
3.5	Synthetic instrument response to a δ -function in acceleration	61
3.6	Synthetic instrument response to a step-function in acceleration	62
3.7	Synthetic instrument response to a static offset in acceleration, with a ramp	63
3.8	Synthetic instrument response to step function in displacement	64
3.9	Synthetic instrument response to static offset in displacement, with ramp	65

3.10	Synthetic instrument response idealised cart test	67
3.11	Sensitivity scaling (VSE-355G2)	70
3.12	Calibration coil response (VSE-355G2)	73
3.13	Comparison of theoretical and observed response (VSE-355G2)	74
3.14	Instrument resolution – E-W component (VSE-355G2)	75
3.15	Instrument resolution — N-S component (VSE-355G2)	75
3.16	Instrument resolution – Z component (VSE-355G2)	76
3.17	Instrument resolution at high frequency (VSE-355G2)	77
3.18	Frequency - amplitude (VSE-355G2)	79
3.19	Comparison of VSE / FBA noise floors, as Fig. 3.18 (VSE-355G2)	80
3.20	Accelerometer noise floors, as Fig. 3.18 (VSE-355G2)	80
3.21	Cart Test — uncorrected instrument clip (VSE-355G2), April 2002	82
3.22	Calibration test — clipping (VSE-355G2)	83
3.23	Cart Test – 'corrected' instrument – no $15cm/s$ clip (VSE-355G2)	84
3.24	Cart Test – 'corrected' instrument – clip at $40 cm/s$ (VSE-355G2)	85
3.25	Spurious resonances at high frequency (VSE-355G2)	86
3.26	Teleseisms: co-located VSE, STS-2 - velocity (VSE-355G2)	87
3.27	Bandpass from 100s to 200s of teleseism data (VSE-355G2)	87
3.28	FFT of teleseism data (VSE-355G2)	88
4.1	All strong motion stations in Japan	93
4.2	Strong motion stations in Hokkaido	94
4.3	GPS variation: 1 sample/day over 7 days	97
4.4	GPS variation: 1 sample/30s over 12.5hr around M8.3 mainshock	97
4.5	GPS vs. seismometers on Hokkaido Island, M8.3: Horizontal	00
4.6	GPS vs. seismometers on Hokkaido Island: Vertical	01
4.7	GPS vs. seismometers and Accelerometers near epicenter, M8.3: Horizontal 1	03
4.8	GPS vs. seismometers and Accelerometers near epicenter, M8.3: Vertical . 1	04
4.9	GPS vs. seismometers on Hokkaido Island: Horizontal: do deconvolution . 1	06
4.10	GPS vs. seismometers on Hokkaido Island: Vertical: do deconvolution 1	07

4.11	East Hokkaido map: topography and regions for investigation
4.12	Kushiro town stations
4.13	F-Net station KSR (VSE-355G2) — velocity clips
4.14	Kushiro town acceleration timeseries
4.15	Kushiro town velocity timeseries
4.16	Kushiro town displacement timeseries
4.17	Kushiro town velocity timeseries — bandpassed
4.18	Kushiro town displacement timeseries — bandpassed
4.19	Samani, Erimo region stations
4.20	F-Net station KMU (VSE-355G2) — velocity clips
4.21	Samani town acceleration timeseries
4.22	Samani town velocity timeseries
4.23	Samani town displacement timeseries
4.24	Samani town velocity timeseries – bandpassed
4.25	Samani town displacement timeseries — bandpassed
4.26	High-rate GPS vs. accelerometer Displacement — Mitsuishi
4.27	High-rate GPS vs. accelerometer Displacement – Mitsuishi – rotated 129
4.28	Erimo town displacement timeseries
4.29	Erimo town velocity timeseries — bandpassed
4.30	High-rate GPS vs. accelerometer displacement — Erimo1
4.31	High-rate GPS vs. accelerometer displacement - Erimo1 - rotated 134
4.32	Urahoro region stations
4.33	Urahoro acceleration timeseries
4.34	Urahoro velocity timeseries
4.35	Urahoro displacement timeseries
4.36	Urahoro velocity timeseries – bandpassed
4.37	Urahoro displacement timeseries — bandpassed
4.38	HKD086 liquefaction timeseries
4.39	HKD086 spectrogram — liquefaction
4.40	HKD091 spectrogram

4.41	Obahiro region stations
4.42	Obihiro displacement timeseries
4.43	Obihiro velocity timeseries — bandpassed
4.44	High-rate GPS vs. accelerometer displacement at Obihiro
4.45	High-rate GPS vs. accelerometer displacement - Obihiro - time syn-
	chronised
4.46	TKCH06 spectrogram — basin waves
4.47	F-Net station HID timeseries
4.48	Other F-Net Hokkaido stations — velocity
4.49	Other F-Net Hokkaido stations — displacement
4.50	F-Net sensors velocity comparison - M8.3 Tokachi-Oki
4.51	F-Net station NAA during M8.3, at $924km - E-W$ component clips 158
4.52	F-Net station NAA during M8.3 – velocity and displacement
4.53	F-Net station SBT during M8.3 – velocity and displacement
4.54	F-Net station TYM during M8.3 – velocity and displacement 159
4.55	F-Net sensors velocity comparison - M7.1 Tokachi-Oki aftershock 162
4.56	F-Net sensors velocity comparison – M6.8 off Honshu
4.57	F-Net station TKA during M8.3 – velocity and displacement 164
4.58	F-Net station TKD during M8.3 – velocity and displacement
4.59	F-Net station YMZ during M8.3 – velocity and displacement 165
4.60	F-Net velocity comparison — all data : instruments
4.61	F-Net velocity comparison — all data: instrument ratios
4.62	F-Net velocity comparison — all data: components
4.63	F-Net strong motion velocity vs. distance for 3 events
5.1	Cart Test — September 2003 (VSE-355G3)
5.2	Cart Test – November 2003 – tilting (VSE-355G3)
5.3	Cart Test – November 2003 – large velocities (VSE-355G3)
5.4	Tilt response — January 2004 (VSE-355G3)
5.5	Theoretical and observed response — VSE-355G2/3 — wide band 186

5.6	Theoretical and observed response — VSE-355G2/3 — 100s corner \ldots 187
5.7	Theoretical and observed response $-$ VSE-355G2/3 $-$ 3 components 188
5.8	Sensitivity scaling (VSE-355G3)
5.9	Noise: VSE-355G3 vs. STS-2
5.10	San Simeon timeseries at CRP
5.11	Noise resolution for VSE-355G3 vs. CMG-1T
5.12	VSE-355G3 channel sensitivity at CRP, February 2004
6.1	Millikan Library from North-East
6.2	Millikan Library – N-S section
6.3	Millikan Library – plan view
6.4	Millikan Library natural frequency history
6.5	Millikan Library natural frequency vs. amplitude
6.6	Whittier Narrows Millikan Library records
6.7	Broad Center from South-West
6.8	Broad Center from North-West
6.9	Broad Center – plan view
6.10	Broad Center – stacked FFT data
6.11	MIK lifetime spectrogram
6.12	MIK lifetime spectrogram – no scaling
6.13	CBC lifetime spectrogram
6.14	CBC lifetime spectrogram – no scaling
6.15	Deviation from mean of Millikan Library natural frequencies
6.16	CBC lowest frequency resonance spectrograms
6.17	CBC lowest frequency resonance spectrograms – no scaling
6.18	Winter 2002-2003 at MIK
6.19	Effect of rainfall at MIK
6.20	Heavy rainfall – E-W 1 st and 2 nd modes, February 2003 – scaled 230
6.21	As Figure 6.20 — no scaling

6.22	Hot temperatures, high winds, rainfall $- \text{E-W } 1^{st}$ and 2^{nd} modes, October
	2003 — scaled
6.23	As Figure 6.22 — no scaling
6.24	Effect of strong winds at MIK
6.25	Effect of high temperature at MIK
6.26	Big Bear earthquake – USGS Array at Millikan Library
6.27	Continuous MIK Data from Big Bear - 30s slice spectrograms
6.28	Continuous MIK Data from Big Bear - 5min slice spectrograms 238
6.29	Continuous E-W CBC Data from Big Bear - 5min slice spectrograms 240
6.30	Continuous N-S CBC Data from Big Bear - 5min slice Spectrograms 241
6.31	Forward modelling of GSA to MIK - M2.0 event
6.32	Forward modelling of GSA to MIK - M5.4 Big Bear event
71	Fault model geometry 251
7.1	Simplified fault geometry 256
7.2	Arrival time azimuthal dependency
7.5	
7.4	
7.5	source time function: the effect of azimuth and directivity
7.6	Yorba Linda and aftershocks: focal mechanisms
7.7	Yorba Linda: timeseries — map
7.8	Yorba Linda: timeseries — azimuth
7.9	Yorba Linda: timeseries — ordered
7.10	Yorba Linda: Transfer Functions from M2.85 — Transverse
7.11	Yorba Linda: timeseries from M2.85 - Radial
7.12	Yorba Linda: Transfer Functions from M2.85 – Radial
7.13	Yorba Linda: timeseries from M2.85 – Vertical
7.14	Yorba Linda: Transfer Functions from M2.85 — Vertical
7.15	Yorba Linda: Transfer Functions from M2.85 – all components
7.16	Yorba Linda: S-wave timeseries — azimuth
7.17	Yorba Linda: Transfer Functions from M2.85—S-wave Transverse 270

7.18	Yorba Linda: Transfer Functions from M2.85 — S-wave Radial $\ldots 270$
7.19	Yorba Linda: Transfer Functions from M2.85 — S-wave Vertical 271
7.20	Yorba Linda: displacement timeseries comparison with M2.66 - Trans-
	verse component
7.21	Yorba Linda: Transfer Functions from M2.66 – all components 272
7.22	Yorba Linda: displacement timeseries comparison with M2.93 - Trans-
	verse component
7.23	Yorba Linda: Transfer Functions from M2.93 – all components 273
7.24	Yorba Linda: displacement timeseries comparison with M2.47 - Trans-
	verse Component
7.25	Yorba Linda: Transfer Functions from M2.47 – all components 275
7.26	Yorba Linda: individual station timeseries comparison
7.27	Yorba Linda: individual station source time functions comparison 277
7.28	Yorba Linda: individual station source time functions comparison — scaled 278
7.29	Big Bear and aftershocks: Focal Mechanisms
7.30	Big Bear: Transfer Functions from M3.27 – all components
7.31	Big Bear: Transfer Functions from M2.92 – all components
7.32	Big Bear: Transfer Functions from M2.31 – all components
7.33	Big Bear: Transfer Functions from M2.66 – all components
7.34	Big Bear: Transfer Functions from M4.61 – all components
7.35	Big Bear: individual station source time functions comparison — scaled $\therefore 283$
7.36	Big Bear: individual station timeseries comparison
7.37	Anza: displacement timeseries comparison with M2.90 - E-W component 286
7.38	Anza: Transfer Functions from M2.90 – all components
Λ 1	Milling machine test data results (VSE 355G2) 208
л.1 л 2	Tilt test, using levelling service, March 2002 (VSE 255G2) 200
A.2	VSE 255C2 Cart Tast among March 2002 (VSE-555C2)
н.э л 4	$VSE-33303 \text{ Call rest entors} = Watch 2005 \dots $
A.4	$E = Value lest (VSE-555U5) \dots 305$
А.Э	Cart test — clip at $240cm/s$, september 2003 (VSE-355G3)

A.6	Cart test — duration of a test sequence, September 2003 (VSE-355G3) 307
A.7	Calibration coil response test, September 2003 (VSE-355G3)
A.8	Tilt test – using levelling screws, October 2003 (VSE-355G3)
A.9	Tilt test – using levelling screws, November 2003 (VSE-355G3) 312
A.10	Battery test, November 2003 (VSE-355G3)
A.11	Cart test - duration of test sequence, November 2003, with re-levelling
	(VSE-355G3)
A.12	Tilt test, using levelling screws, January 2004 (VSE-355G3)
B.1	Millikan Library natural frequency history
C.1	Millikan Library frequency sweep - E-W shake
C.2	Millikan Library frequency sweep - N-S shake
C.3	EW 1 modeshapes
C.4	NS 1 modeshapes
C.5	Torsional modeshapes
C.6	Higher-order modeshapes

xviii

List of Tables

2.1	Typical CISN instrumentation
2.2	Typical CISN digitisers
2.3	Instrument comparisons
2.4	Summary of waveform data
3.1	Typical station gains
3.2	Typical broadband sensor constants
4.1	Summary of F-Net station performance within 1000km of Tokachi-Oki 160
4.2	F-Net station performance summary
4.3	F-Net station performance summary (continued)
6.1	History of Millikan Library test results - fundamental flexural modes 204
6.2	Millikan Library and Broad Center natural frequencies
B .1	History of Millikan Library test results, 1967-1987
B.2	History of Millikan Library test results, 1987-2003
B.3	References for historical data
C.1	Millikan Library forced vibration results