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Abstract

We report on a search for charmless hadronic B decays to the three-body final states th%ﬁ,
K*hFr0 and K3h*7® (h* denotes a charged pion or kaon), using 9.12 fb™" of integrated lumi-
nosity produced at /s = 10.58 GeV and collected with the CLEO detector. We observe the decay
B — K%/ K°r+7~ with a branching fraction (5073° + 7) x 107¢ and the decay B — K*(892)*7T
with a branching fraction (16Jjg +2) x 107, where the uncertainties are statistical and systematic,
respectively. Both branching fractions are averages over C' P-conjugate states. We also search for
a CP-violating asymmetry in the decay B — K*(892)*nT. We find Acp(B — K*(892)*7F) =
0.26+0-33+0.10

o34 008> giving an allowed interval of [—0.31,0.78] at the 90% confidence level. These mea-

surements are used to constrain fundamental parameters of the Standard Model.
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Chapter 1 Introduction

Throughout the millenia, philosophers and scientists have sought to identify and explain the behavior
of the building blocks of our material world. This pursuit has engendered many accounts of the origin
of matter, from the mythological to the rigorously mathematical. Some ancient cultures, including
the Greeks and the Chinese, believed in four fundamental elements: earth, air, fire, and water.
Before the fifth century BCE, Greek philosophers debated how these elements transformed into one
another or whether one was more fundamental than another. Democritus of Abdera (460?7-3707
BCE) introduced the notion of atoms, which he saw as tiny, indivisible, eternal particles in constant
motion, of which all things were made, including one’s soul. Aristotle (384-322 BCE) dismissed
these ideas, and the concept of the atom did not resurface until our current scientific age.

By the middle of the nineteenth century, many of the chemical elements familiar to us today were
recognized as distinct substances that could be combined to form compound substances with different
properties. Each element was composed of a single type of atom. In 1869, Dimitry Mendeleev
organized the elements by atomic weight and observed a periodicity in their chemical properties.
This periodic structure was not understood until J. J. Thompson’s 1897 discovery of the electron
and Ernest Rutherford’s 1911 elucidation of atomic structure. Rutherford went on to discover the
proton in 1918, and his student, James Chadwick, did the same for the neutron in 1932. At the
time, electrons, protons, and neutrons were thought to be fundamental constituents of matter.

However, cosmic ray experiments from roughly the same time were yielding a plethora of new
particles, such as muons, pions, and kaons, which have the same charge as a proton but different
mass. Many attempts were made to explain the spectrum of new particles and their decays. In this
pursuit, Wolfgang Pauli proposed a hypothetical particle, the neutrino [1] (1930), and Murray Gell-
Mann formulated the quark model [2] (1964). In doing so, they deduced the existence of fundamental
particles that had not yet been observed experimentally, and they founded the two main classes of
fermions, leptons and quarks, that we recognize and seek to understand today.

These experiments also brought to light the existence of antiparticles, which is one of the deepest
consequences of the C' PT invariance of relativistic quantum mechanics. Today, we employ a quantum
field theory, known as the Standard Model of elementary particle physics, to describe all the known
particles and antiparticles. As we shall see, comparision of the properties of particles with those of
their antiparticles is a rich area of study that may allow us to glimpse physics beyond the Standard
Model.

In addition to the fundamental subatomic particles, physicists have also identified four funda-

mental forces that act on these particles. In order of decreasing strength at everyday energy scales,
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they are the strong nuclear force, the electromagnetic (EM) force, the weak nuclear force, and grav-
ity. While the weak force consists of both charged and neutral currents, EM currents are purely
neutral, and the strong force is now understood to have only neutral currents at the fundamental
level. The Standard Model provides a description of these three forces. One beautiful feature of the
Standard Model is its depiction of the electromagnetic and weak nuclear forces as manifestations of
a single electroweak force. It is hoped that this unification can be extended to the strong nuclear
force and to gravity. The theory of the strong force, known as quantum chromodynamics (QCD),
is a mathematical variant on that of the electroweak force, both of which are based on relativistic
quantum mechanics.

The theory of general relativity has accurately predicted and explained gravitational phenomena
from terrestrial to astronomical length scales. However, attempts to quantize gravity and incorporate
it into the Standard Model have not met with success. Furthermore, it is expected that this grand
unification, should it be achieved, would occur at the Planck scale with energies of 1028 eV, far
above our current experimental reach.

According to the Standard Model, all matter consists of two classes of particles, fermions, which
have half-integer spin, and bosons, which have integral spin. There are twelve fundamental fermions,
and these are subdivided into two groups, six leptons and six quarks, as shown in Table 1.1. The
particles in each of these two groups are arranged in three generations containing two particles each.
Each member of a generation possesses characteristics similar to those of corresponding particles
in different generations. For instance, the three generations of charged leptons (e, u, and 7) have
identical charge and weak coupling constants. The most salient feature distinguishing the three
generations is the mass of the member particles; particles of higher generation number tend to be
more massive. With the charged leptons, the muon is about 200 times heavier than the electron,

and the tau, in turn, is about 17 times heavier than the muon.

2 Forces| Strong EM (Charge) Weak  Gravity
% Relative Strength 1 1072 1073 10—39
= Mediators g v W=, Z° graviton
Gen.1 Gen.2  Gen. 3
0 2
S Quarks “ ¢ t * * (+§) * ¢
S d s b ° ° (_5) ° .
&
“ Leptons < e ) < 7 ) < T ) o (—1) . .
Ve vy, vy (0) . .

Table 1.1: Standard Model particles and their interactions.

The three generations of quarks comprise three up-type quarks (u, ¢, t) and three down-type
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quarks (d, s, b). All up-type quarks have charge +%e, where e is the electron charge, and all down-
type quarks have charge —%e. However, the strengths of the weak couplings are not constant across
the generations. The weak charged current converts an up-type quark into a down-type quark and
vice versa. The two quarks that participate in a weak charged current need not belong to the same
generation. For example, a ¢t quark can, in principle, decay to a b, s, or d quark. The coupling

constants of the weak charged current are described by the Cabibbo-Kobayashi-Maskawa (CKM)

matrix:
Vud Vus Vub
VCKM = Vcd Vcs Vcb . (11)
V;ﬁd V;ﬁs V;Sb

In practice, the CKM matrix is nearly diagonal, meaning that the weak charged interaction tends to
preserve generation number. Understanding this pattern of quark generation mixing and measuring
the elements of the CKM matrix forms a major motivation for many of today’s experimental and
theoretical programs, including the research presented in this thesis.

The fundamental bosons in the Standard Model act as force mediators. Interactions between
particles are understood to be exchanges of intermediate gauge bosons. As shown in Table 1.1, each
fundamental force is carried by vector bosons unique to that interaction: the photon () for EM,
the W+ and Z° for the weak force, and gluons (g) for the strong force. Although gravity is not
included in the Standard Model, it is expected to be mediated by a tensor boson known as the
graviton. There also exists a neutral scalar Higgs boson, which is responsible for endowing all the
fundamental particles with mass. The precise nature of the Higgs boson is unknown, as it has not
yet been observed in the laboratory.

Nearly every Standard Model particle has a corresponding antiparticle, with identical mass as its
partner but whose electric charge and all other quantum numbers are reversed in sign. The exceptions
are the neutral gauge bosons v, Z°, g, and the Higgs boson, which are their own antiparticles.
Particles behave identically to their antiparticles in almost all cases. That is, most processes are
invariant under C'P, the combined operations of charge conjugation and parity inversion. However,
in certain situations involving the weak interaction, an inequality can arise between the rates for
a process and its CP reflection. This rare phenomenon is known as CP violation, and since its
discovery in neutral kaons in 1964 [3], the physics community has sought to clarify its origin. In the
current view, C'P violation is hypothesized to stem from the complex phase of the CKM matrix,
known as 7, and a large amount of experimental and theoretical effort has been and continues to be
geared towards either validating or refuting this picture.

The study of the weak interaction in the quark sector is hampered by the fact that free quarks
are never observed in the laboratory. Instead, they are bound by the strong interaction to other

quarks and antiquarks to form hadrons. The B meson is a hadron consisting of a b antiquark bound
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to a u or d quark. B mesons decay via the weak decay of the b, through a quark-level process such
as b = W1E, where the W is virtual. Hence, B decays are sensitive to CKM matrix elements.
Semileptonic decays, B — Xz ¢ v, where Xz 5 denotes a hadron containing a ¢ or @ antiquark, are
among the most common B decays, with branching fractions of about 10%. These processes allow
us to measure the magnitudes of the CKM matrix elements V,; and V, but they are not expected
to exhibit C'P violation.

In contrast, charmless hadronic B decays are far more likely to be sources of C'P-violating
behavior. Indeed, rate differences between C'P conjugate decays in modes such as B — K=, K*m,
or pK are predicted to be 20%-30% of the C P-averaged rates, and the sizes of these rate differences
are related to the CKM phase v. However, these rare decays pose great challenges. Experimentally,
they are difficult to observe, having branching fractions of order 10~® or smaller. Furthermore, the
hadron-level strong interactions often obscure the quark-level weak interactions so that extraction
of the weak coupling constants from experimental measurements is subject to sizeable theoretical
uncertainties.

As will be discussed in Chapter 2, precise measurements of the parameters governing C P violation
provides for a rigorous test of the Standard Model. Discrepancies between experiment and theory
may point to the existence of physics beyond the Standard Model. Such New Physics is generally
anticipated by physicists who are dissatisfied with the need to introduce into the Standard Model a
number of free parameters, such as the masses of the fundamental particles, whose values are not
predicted by the theory; instead, they must be determined from experiment. Since these parameters
are not calculable from first principles, any derivation of their values must lie beyond the Standard
Model.

There are other arguments supporting the presence of New Physics, such as the failure of the
Standard Model to account for the number of particle generations or the so-called heirarchy prob-
lem wherein parameters must be fine-tuned in order to prevent the mass of the Higgs boson from
diverging. One additional piece of evidence for New Physics is related to the phenomenon of CP
violation. The CKM matrix and its complex phase do not generate enough C'P violation to ex-
plain the overwhelming dominance of matter over antimatter in today’s universe. Indeed, one could
consider our very existence as an indication of physics beyond the Standard Model. Therefore, one
strategy in the pursuit of New Physics is to search for new sources of C'P violation. Such a program
can be carried out using the charmless hadronic B decays introduced above, and Chapter 8 of this
thesis presents an example of such a search.

Throughout this thesis, measurements are given in natural units, in which A =c¢ =1.



Chapter 2 The Standard Model

For the past quarter of a century, the Standard Model has stood as a remarkably successful de-
scription of the interactions of quarks and leptons via the strong nuclear and electroweak forces.
Time and again, its predictions have been verified to high precision. This fact, while impressive,
has been a source of unease, brought about by the existence in the Standard Model of twenty-five
free parameters not determined by the theory. Since these parameters are not calculable from first
principles, it is believed that they must have their origin in physics beyond the Standard Model.
The discovery of this New Physics through deviations from the Standard Model’s predictions is the
most common goal behind the theoretical and experimental endeavors in high-energy physics today.

The Standard Model [4] employs a Lagrangian formalism to describe the interactions among
the twelve fundamental fermions. These fermions are classified according to the forces to which
they are subject. The six leptons engage only in electroweak interactions, while the six quarks also
participate in strong interactions. All particles experience gravitational forces which depend on their
masses, but since, at the subatomic scale, gravity is more than thirty orders of magnitude weaker
than the interactions of the Standard Model, they are usually ignored in high-energy physics. The
strength of the EM force experienced by each particle depends on its electric charge. Neutral-current
weak interactions depend on the “weak charge”, which can be related to the electric charge and to
weak isospin in the unified theory. All quarks carry the same color charge, so the strength of the
strong interaction is identical for all flavors. The remaining Standard Model interaction, the weak
charged current, is the only interaction to exert universal strength for all fermions. Neutrinos, being
electrically neutral, are unaffected by the EM force, but they do participate in charged and neutral
weak currents.

The particles in each class of fermions are grouped into three generations of weak isospin doublets,
as shown in Table 1.1. This table also lists the interactions available to each particle, along with their
relative strengths. The masses of the charged fermions increase with generation number. Although
the neutrino masses are not yet precisely known, their mass heirarchy is likely to be ill-defined because
their weak eigenstates are very different from their mass eigenstates [5]. Within a generation, the
mass of a fermion is correlated with the relative strength of its dominant interaction [6].

The particles in each doublet differ in electric charge by *e, and they are connected by the
charged current of the weak interaction. Until recently, the masses of the three flavors of neutrinos
were thought to be degenerate and identically zero, an arrangement that would have eliminated
inter-generational mixing in the lepton sector. However, the discovery of neutrino flavor oscillations

and, hence, of finite neutrino masses has changed that picture. For massive neutrinos, their weak
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eigenstates are not, in general, equal to their mass eigenstates. Therefore, the weak charged current
can connect any charged lepton to any flavor of neutrino, and a propagating neutrino produced in a
weak eigenstate evolves as an oscillating superposition of mass eigenstates, resulting in flavor mixing.
Experimentally, no evidence has been found for neutral weak currents that affect a particle’s flavor
quantum number. Therefore, flavor-changing neutral currents (FCNCs) are forbidden at tree level
in the Standard Model.

An analogous situation obtains in the quark sector. Here, the charged weak interaction acts
predominantly within a generation. Transitions between generations occur less frequently than those
which preserve generation number by an order of magnitude or more. The b quark, with which this
thesis is concerned, is less massive than its isospin partner, the ¢ quark, so it can only decay via these
suppressed inter-generational transitions. For this reason, rare or anomalous phenomena associated
with the weak interaction are more apparent in decays of the b quark than of quarks whose dominant
decay channels are not suppressed; the transitions of interest are less likely to be overwhelmed by
background from competing processes.

Because of a property of the strong interaction known as color confinement, free quarks are never
observed in nature. The strong force is transmitted by the exchange of gluons, which are themselves
carriers of color charge. Because gluons can interact with each other, the strength of the strong
interaction, unlike that of gravity or the EM force, increases with the distance between color charges
and, conversely, decreases with the energy of the exchanged gluon. The particles that we detect in
the laboratory are observed to be color singlets. Before we gain access to individual quarks, which
are colored, they interact with other quarks or antiquarks that have the appropriate colors and
anticolors to form colorless bound states known as hadrons, of which there are two types: mesons
(quark-antiquark states) and baryons (three-quark or three-antiquark states). Thus, although we
wish to measure the properties of the b quark, we cannot probe them directly. Instead, we study
B mesons, which are bound states of a u or d quark and a b antiquark. Our view of quark-level
weak processes is obscured by the hadron-level strong interactions. These hadronic interactions are
complex, non-perturbative, residual, effective manifestations of the fundamental quark-level strong
interactions.

These properties of fermions and their interactions are encoded in the Standard Model La-
grangian, which is invariant under local transformations given by the gauge group SU(3) ® SU(2) ®
U(1). This group is the direct product of the symmetry groups for color, weak isospin, and hy-
percharge, respectively. Each generator of these groups corresponds to a gauge boson that carries
the associated force between fundamental fermions. Hence, the strong force is mediated by eight
gluons, and the electroweak force by four bosons: W+, W—, Z%, and . The Higgs mechanism for
electroweak symmetry breaking, whereby all particles acquire their mass, leaves a remnant known

as the Higgs boson, which is the only Standard Model particle that has not yet been observed



experimentally.

For all of the Standard Model’s successes, there remain several mysteries, mostly concerning the
Higgs sector and the origin of mass. The masses of the fundamental fermions and bosons constitute
fourteen of the Standard Model’s twenty-five free parameters, and their generational structure, while
suggestive, defies explanation at the moment. Another unanswered question about the Standard
Model concerns the apparent number of particle generations. Measurements of the Z° lineshape
at LEP indicate that there exist only three flavors of active neutrinos, but the theory does not
favor this number over any other. However, the most pressing deficiency of the Standard Model is
the so-called heirarchy problem, in which the Higgs boson mass (mg) suffers from an instability
under radiative corrections. The Higgs boson can fluctuate into a pair of virtual ¢ quarks, W=,
79, and ~ gauge bosons, or even Higgs bosons themselves, and these one-loop diagrams contribute
quadratic divergences to myg. Direct experimental searches place a lower bound on the Higgs mass
of myg > 114 GeV. An upper limit on mpyg is given by the triviality bound, which results from
demanding a non-zero self-coupling below the scale of New Physics. For a New Physics scale of ~ 10
TeV, the triviality bound is mg < 700 GeV. In order for the Standard Model Higgs to obey both of
these constraints, the couplings of the Higgs to these loop particles must be tuned to the unsatisfying
level of tens of decimal places citelangacker. Extensions to the Standard Model that eliminate the
need for fine-tuning include supersymmetry [5] and Little Higgs [8] models. Such models generally
predict the appearance of new particles at the TeV scale.

Current high-energy collider experiments have verified the Standard Model up to < 1 TeV. In
the next decade, the LHC at CERN will explore the 1-10 TeV region, and the boundaries of the
energy frontier as well as the New Physics reach will be extended considerably. However, it is also
possible to discern the effects of novel TeV-scale physics at lower energies, particularly in processes
involving loop diagrams, where new particles can appear virtually. Rare decays of B mesons, such
as those studied in this thesis, hold promise both in the search for New Physics and in the detailed
understanding of the Standard Model’s weak sector. One phenomenon in the B system that has

attracted special interest in this regard is C'P violation.

2.1 Properties of B Mesons

The spectrum of observed b-flavored mesons consists of bound states where the b antiquark is paired
with a lighter quark. The masses and lifetimes of these mesons are listed in Table 2.1. In addition to
the four pseudoscalars, there exists a complementary series of radially excited vector states, most of
which are poorly understood. The b quark also forms, in principle, a set of baryons, although only
the A has been definitively seen. There exists evidence for the Zj, states, but the ¥, baryons (uub,

udb, ddb) and the Q; (ssb) are merely hypothetical. In this thesis, we study Bt and B® mesons
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and their charge conjugates produced near threshold through the reaction ete~ — Y(4S) — BB
at center-of-mass energy E.p, ~ 10.6 GeV. Higher mass bottom hadrons are not produced at these

energies.

Particle Valence Quarks  JF Mass (MeV) Lifetime or Width

BT bu 0~ 5279.04+ 0.5 7= 1.674+0.018 ps
B bd 0~ 5279.4+0.5 1 =1.542+0.016 ps
B bu r } 5325.0 + 0.6 ?

B*0 bd 1-

B%(5732) bu/bd 77 5698 + 8 I' =128 + 18 MeV
B bs 0 5369.6 2.4 7 =1.461 £ 0.057 ps
B0 bs 1~ 5416.6 + 3.5 ?

B ;(5850)° bs 77 5853 + 15 [' =47 + 22 MeV
Bf be 0~ 6400 + 410 7= 0467018 ps
AY udb i 5624+ 9 7 = 1.229 + 0.080 ps
=9 usb %+ } o ;= 1.3910:34
Eb_ dsb %4- : =199 028 P

Table 2.1: Spectra of observed b-flavored mesons and baryons. Charge conjugation is implied.

Bottom hadrons are uniquely well-positioned to probe the generational structure of the quark
sector. Because the b quark is lighter than its weak isospin partner, the ¢ quark, it can only decay
to quarks of the first and second generations, making it the only quark that decays with appreciable
branching fractions to quarks of the two other generations. In contrast, generation-changing decays
of the t quark are expected to be overwhelmed by the dominant process, t — W*b. Thus, B mesons
offer us a window into the weak couplings between quarks of the third generation and those of the
other two generations, namely, the CKM matrix elements, V., Vup, Vis, and V4. In addition, the
presence of loop diagrams in several of the decay amplitudes give rare B decays sensitivity to New
Physics at mass scales higher than those directly accessible today.

B® and B* mesons can decay via the weak interaction to leptonic, semileptonic, or hadronic
final states. The dominant quark-level transition is the tree-level b — W1 process, shown in
Figure 2.1a and 2.1b. If the virtual W+ materializes as quark-antiquark pair (¢,qg, where q, = ¢,u
and qg = s,d), then the final state is purely hadronic. If, instead, the W decays into a lepton-
neutrino pair (£*v), the result is a semileptonic final state. Tree-level b — W4 transitions proceed
via similar Feynman diagrams, but these processes are highly suppressed relative to the dominant
b— Wte.

Charmless hadronic final states, which are studied in this thesis, can be generated by all six

diagrams pictured in Figure 2.1. However, the W-exchange, annihilation, and penguin annihilation



_ w B* B <
b ; ay dg
d

B* B?
u, u,d u,d u,d
(a) (b)
— wt _ — —
b T dq b v dy
t :
q : q
B* B gt | _ B° wHi _
q : q
u,d u, d d : u
(c) (d)

b dq|| v _ 5
- O, i
° C C
u qyll It @

(e) ()

Figure 2.1: Feynman diagrams for B decays: external tree (a), internal color-suppressed tree (b),
gluonic penguin (c), W-exchange (d), annihilation (e), and penguin annihilation (f). Up-type quarks
are denoted by g, = u, ¢, down-type quarks by g4 = d, s, and light quarks ¢ = u,d, s. Vertical boxes
indicate correlated variations in particle content.

diagrams (Figures 2.1d-f) are expected to be negligible. The primary contributions to these rare
decays come from tree-level b — u processes and from gluonic penguin diagrams (Figure 2.1c), which
result in effective b — s or b - d FCNC transitions.

Purely leptonic final states BT — £tv occur only through the annihilation diagram (Fig-
ure 2.1e), which is suppressed by helicity conservation, by the smallness of |V,|?> ~ O(107%), and
by (fs/mgB)? ~ 103, where fg is the B meson decay constant, which quantifies the wavefunction
overlap of the b and u quarks. Because of helicity suppression, the branching fraction B(Bt — £*v)
is proportional to the mass squared of the charged lepton. Hence, the most common leptonic B
decays are expected to be Bt — 7tv, with a predicted branching fraction of O(10~%), compared
to O(10~7) and O(10712) for B* — uty, and Bt — et v,, respectively. None of these leptonic B

decays has been observed experimentally.
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There is also a class of charmless B decays associated with the electroweak penguin diagrams
shown in Figure 2.2. These diagrams are similar to the penguin diagrams in Figure 2.1 except that a
photon or Z° is radiated instead of a gluon. Electroweak penguins can yield hadronic final states, as
well as leptonic or semileptonic ones. However, since the lepton pairs are produced through neutral
gauge bosons, they are of the type {7/~ and v instead of £Tv. Other Standard Model processes

that give the semileptonic final states X, 4¢*¢~ and X, quv are shown in Figures 2.2e and 2.2f.

Y b— ..
_ w+r""‘d\r _ o =
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u,d u,d d —1

(a)
— T _
b . : q
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Figure 2.2: Electroweak penguin diagrams for charmless B decays: electromagnetic penguin B —
X, 47 (a), penguin annihilation (b), external penguin (c), internal color-suppressed penguin (d).
Also shown are loop diagrams contributing to B — X, 4¢7¢~ (e) and B — X, qvv (f). Up-type
quarks are denoted by g, = u, ¢, down-type quarks by ¢; = d, s, and light quarks ¢ = u,d, s. Vertical
boxes indicate correlated variations in particle content.

The electromagnetic penguin in Figure 2.2a radiates a real photon, giving the final state X, 4.
The rate for B — X,v relative to B — X7 is given by the ratio |Vis/Vi4|?> =~ 30. Because
FCNCs are forbidden at tree level in the Standard Model, B — X, 47 decays can only proceed
via loop diagrams, making them particularly sensitive to possible new heavy loop particles. Both
the inclusive rate and the photon spectrum are theoretically well-understood, being dominated by

perturbative short-distance interactions. Therefore, because B — X 4 receives only one, precisely
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calculated contribution in the Standard Model, any significant deviation from its predictions can
immediately be ascribed to New Physics. The current experimental measurements of the B — Xy
rate and photon spectrum agree well with expectations. Similar tests of the Standard Model can be
performed with X, 4¢7¢~ and X, 4vv decays, although the theoretical uncertainties are somewhat
larger.

The dominant decays of B mesons can be described with the spectator model, in which the b
quark is treated as a weakly decaying free particle, as in the b — W g, tree diagrams of Figures 2.1a
and 2.1b. The accompanying spectator quark is incorporated into a final state hadron after the decay
of the b has taken place. Corrections to this simple picture arise from QCD effects where gluons are
exchanged between the spectator quark and the other final state quarks.

The spectator model provides a qualitative explanation of the B® and B lifetimes. For a free b
quark, the partial width for each W= decay channel is

2,5
_ Ggm;

= Jooms |Vyus|*Ne®, (2.1)

where my is the mass of the b quark and ® is a phase space suppression factor to account for
finite masses of the three final state fermions. N, is the number of colors in the W decay (3 for
W+ = quda, 1 for Wt — £+v), although it can be converted into a phenomenological parameter to
include QCD corrections, giving it a value of approximately 4 for W+ — ¢,q4. Considering the five
W final states, ud, c3, etve, ptv,, and 7Tv,, the total lifetime in the spectator model is found to

be 1.58 ps, and the separate inclusive branching fractions are listed in Table 2.2.

Mode N. @ |Vl B
g=c

cud 4 0.52 0.038 0.483
ccs 4 0.25 0.038 0.232
cet, 1 052 0.038 0.121
cuty, 1 052 0.038 0.121
ertv, 1 013 0.038 0.030
g=u
aud 4 1.00 0.003 0.006
ucs 4 0.52 0.003 0.003
wetv, 1 1.00 0.003 0.001
apty, 1 1.00 0.003 0.001
artv, 1 0.25 0.003 0.000

Table 2.2: Inclusive B meson branching fractions in the spectator model.

Thus, b — ¢ transitions constitute nearly 99% of all B decays. The relative scarcity of b — u
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transitions is determined by the ratio |Vis/Ves|? =~ 0.008. Semileptonic decays, b — ¢/*v and
b — @t v, constitute about 24% of the total width. These decays are instrumental in measuring the
magnitudes of V,, and V,; because they are theoretically manageable; there no strong interactions
between the ¢ v pair and the quarks in the final state. The uncertainties related to the hadronization
of the ¢ or u quark and the spectator quark are controlled by applying heavy quark effective theory
(HQET) [9, 10], which expands QCD around the heavy quark limit, mj; — oc. In this limit, the b
quark inside a B mesons acts as a stationary color source and the spin degrees of freedom of the
heavy quark decouple from the dynamics of the system. HQET simplifies the theoretical expressions
for inclusive and exclusive semileptonic B decay and relates the hadronic uncertainties to universal,
measureable parameters.

All B decays that do not proceed via the dominant b — ¢ transition are referred to as “rare”
processes. These include b — u, b — d, and b — s transitions to charmless hadronic final states,
which are governed by the CKM matrix elements V,;, Vigq, and Vg, respectively. In general, these
decays can be produced through more than one of the amplitudes pictured in Figures 2.1 and 2.2. In
order to extract the CKM matrix elements, one must separate the various amplitudes. In addition,
non-perturbative long-distance QCD effects loom large in these hadronic final states, and theoreti-
cal uncertainties abound. Disentagling these several contributions requires measurements of many
modes that are related by symmetries of the strong interaction.

Because of the interference among competing (but suppressed) amplitudes, charmless hadronic B
decay rates are sensitive not only to the magnitudes of the weak couplings but to their C' P-violating
phases as well. This interference is a necessary condition for C'P violation, and the C' P asymmetries
in some of these modes are expected to be as large as 20%-30%. Indeed, the very presence of the
rare b — u transitions is connected to the existence of C'P violation; if |V,;| were zero, CP violation
would not exist in the Standard Model. Thus, in addition to carrying information about weak quark
couplings, non-perturbative strong interactions, and, potentially, New Physics, charmless hadronic

B decays provide a testing ground for the Standard Model’s description of C'P violation.

2.2 CP Violation

In 1956, an experiment studying [-transitions of polarized cobalt nuclei showed that the weak
interaction violated parity symmetry maximally [11]. This discovery implied a vector-minus-axial
(V — A) Lorentz structure for the weak interaction, which acts only on left-handed fermions and
right-handed antifermions. The proposed structure was also invariant under the combined operation
of charge-conjugation and parity inversion (C'P), which was then believed to be a symmetry of the
weak interaction. Less than a decade later, in 1964, this assumption was refuted by the observation

of a small C'P-violating effect in decays of neutral kaons [3].
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Among the attempts to reconcile C'P violation with the two-generation theory of weak inter-
actions then in existence was the Kobayashi-Maskawa (KM) mechanism [12], which required a hy-
pothetical third family of quarks. With only two families (four quarks), the unitary quark mixing
matrix is purely real [13]. Expanding the matrix to three families allows for a non-trivial imaginary
phase, which is the sole source of C'P violation in the Standard Model. In this form, the quark mixing
matrix is called the CKM matrix, which was introduced earlier in Chapter 1. Recent experimental
results [14, 15] from the B meson system have provided strong evidence in favor of the KM model.
We now know that this C'P-violating phase is large and that the rarity of C'P violating phenomena
stems not from the approximate conservation of C'P in nature but rather from the suppression of
inter-generational mixing in the weak interaction.

The phenomenon of C'P violation is closely linked to the composition of the observable universe,
which consists mainly of matter with very little antimatter. If the Big Bang created the two in equal
quantities, as is commonly believed, then today’s matter-antimatter imbalance must have arisen
during the evolution of the universe [16]. The KM model provides a mechanism for generating C P
violation, but the magnitude of this effect is not large enough to explain the current baryon-to-
photon ratio [17, 18], for which we must turn to physics beyond the Standard Model. In general,
these extensions imply the existence of many new CP violating parameters which have no a priori
reason to be small. However, any viable TeV-scale model must be reconciled with the apparent
success of the KM hypothesis at the electroweak scale.

Conversely, measurements of C'P-violating Standard Model quantities are uniquely sensitive to
New Physics. The simplicity of the KM hypothesis gives it predictive power in a wide range of
processes. All forms of C P-violating phenomena in the Standard Model are related to the single
imaginary phase in the CKM matrix. Therefore, is it desirable not only to measure this parameter
as precisely as possible, but also to measure it in as many processes as possible. Any inconsistency
among these various measurements would signal the presence of New Physics.

Ultimately, any complete theory of C'P violation must explain not only its presence in the weak
interaction but also its absence in the strong interaction. In principle, the Standard Model allows for
a CP violating parameter in QCD [19, 20, 21], but measurements of the electric dipole moment of the
neutron have constrained it to be less than 1071% [22]. The inability of currently accepted theories

to account naturally for this vanishing parameter has led to the so-called strong C'P problem.

2.2.1 The CKM Matrix and the Unitarity Triangle

In the Standard Model, the weak eigenstates and mass eigenstates of left-handed quarks are related
by the CKM matrix (Equation 1.1) of complex couplings for charged-current weak interactions. For
three generations of quarks, this unitary matrix is fully determined by three real parameters, which

act like Euler angles, and one C'P-violating phase. Experimentally, it has been determined that the
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CKM matrix is nearly diagonal, and generation number is nearly conserved. The subdominant tran-
sitions between generations are characterized by the parameter A = |V,s| = 0.22, which is the sine of
the Cabibbo angle. The strengths of the couplings between the first and second generations, second
and third generations, and first and third generations are O()), O()\2), and O(A3), respectively.
This heirarchical structure allows the CKM matrix to be expressed in the following approximate

form, known as the Wolfenstein parametrization [23]:

1— 12 A AX3(p —in)
Vexm = -2 1— 12 AN? + 0. (2.2)
AN (1 —p—in) —AN 1

A and X has been measured to high precision (O(1%)), but the parameters p and 5, which together
represent the C' P-violating phase, are known only to 50% and 15%, respectively [5].

The unitarity of the CKM matrix leads to six orthogonality relations involving pairs of columns
or pairs of rows. Each of these relations defines a triangle in the complex plane. These six triangles
share a common area, given by the Jarlskog invariant [24, 25], 1|S(Via Vg BVl (i # 3§, a # B),
which is non-zero if C'P is violated. In four of the six triangles, the three sides are not of comparable
magnitude; one side is shorter than the other two by O(A\2) or O(A*). Of the remaining non-squashed

triangles, the one most relevant to B physics is given by
VudVy + VeaVep + ViV = 0. (2.3)

It is depicted in Figure 2.3 and has been dubbed the Unitarity Triangle (UT). The lengths of the
sides have been scaled by V4V = AX3, which places the apex of the triangle at (p,7), where
p = p(l — 1X?) and 7 = n(1 — $A?). This geometric representation of the CKM matrix allows
constraints from various sources to be combined conveniently. The most commonly cited goal of B
physics today is to overconstrain the UT by measuring its sides and angles in as many different ways
as possible. Consistency among the various measurements would support the KM mechanism as the
source of C' P violation in the Standard Model. In particular, the Standard Model predicts the sum
of the UT angles, a + 3 + v, to be 7, and New Physics can cause this relation to be violated.

Generally speaking, the lengths of the sides are probed by decay rates, and the angles by CP
asymmetries. Decay rates are also sensitive to the CKM phase when a process receives contributions
from two or more amplitudes of comparable magnitudes but with differing weak phases. The inter-
ference between these amplitudes is partially governed by the phases of the weak quark couplings.
Such is the case with several of the charmless hadronic B decays studied in the research presented
in this thesis.

The length of the left side of the UT is determined by measuring |Ves| with b — ¢~ v decays and
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Figure 2.3: The CKM unitarity triangle.

|Vup| with b — wl v decays. Both quantities are accessible through the decays of B mesons. The
experimental uncertainty on the ratio |V /Ves| is currently about 20% and is shrinking quickly. The
ratio |Vya/Vea| is given to a precision of about 7% by nuclear beta decay and neutrino scattering
experiments [5]. For the right side of the UT, the product |V;qV}j| is extracted from the B°-B°
mixing parameter, which is related to the mass difference of the B mass eigenstates, Am, (see
Section 2.2.2). The position of the apex is also constrained by the parameter € that quantifies the
size of indirect C'P violation in the neutral kaon system.

Of the three angles in the unitarity triangle, only 8 = argV,}; has been measured to any mean-
ingful precision in a study of time-dependent C'P violation in b — ¢¢s transitions where the final
state is a C'P eigenstate, such as B — J/¢ K% [14, 15]. This method is experimentally favorable and
relatively free from theoretical uncertainty. On the other hand, the angles @ and v = argV,}, are
not as straightforward to probe. They depend on measurements of rare B decays that receive con-
tributions from more than one quark-level amplitude. In these processes, the penguin loop diagram,
shown in Figure 2.1c, plays an important role. At times, it is a necessary ingredient, but at other
times, it is a nuisance and a complication. Methods of determining all three angles are discussed in
more detail in Section 2.2.2.

Combining the experimental inputs on the lengths of the sides of the UT (|Vyp/Ves|, B°-B°
mixing, and €) gives the “standard” analysis of the allowed region in the -7 plane [26]. The current
(and also rapidly changing) estimate of this region is shown in Figure 2.4. Overlaid but not included
in the fit is the world average sin23 = 0.734 £ 0.054. The remarkable agreement of the standard
fit with the measured sin 23 validates the KM mechanism, suggesting that it is responsible for the
bulk of C'P violation in flavor changing processes. The constraints on a and -y are still too imprecise
to have much bearing on this determination. As an illustration, Figure 2.5 presents an alternate,
independent analysis [27, 28] of the allowed p-7j region using the rare B — K7 decays, which are
sensitive to . This analysis makes no reference to B’-B° mixing or to B,-B; mixing and is therefore

independent of the top quark sector. While the preferred value of -y is slightly larger than that of the
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standard fit, there is no conclusive discrepancy to be seen. Future reductions in the experimental
and theoretical uncertainties should help to refine this assessment.

The KM hypothesis has successfully survived the first round of experimental scrutiny, and the
Standard Model has been shown to provide a viable description of all observed C P-violating phe-
nomena. CKM unitarity continues to be tested by experimental measurements currently in progress,
and the hope of uncovering a deviation remains strong. That there must be non-Standard-Model
sources of C'P violation is almost demanded by the strong C'P problem and by cosmological baryo-
genesis. However, the dominance of the KM mechanism below 1 TeV severely limits the range of

possibilities for new C'P violating mechanisms above the TeV scale.

N
'
o
v
ol o -

Figure 2.4: Standard constraints on (p,7) with 95% and 68% confidence level contours [26]. The
world average sin 24 is overlaid but not included in the fit.

2.2.2 CP Violation in B Decays

The Standard Model contains three methods of generating C'P violation in B decays via the CKM
phase. The first of these occurs in the B%-B% mixing transition (|AB| = 2), which proceeds through
the diagrams shown in Figure 2.6, and is referred to as “indirect” C P violation. The neutral B mass

eigenstates are defined as

|B1) p|B°) + ¢|B°)

p|B°%) — q|B%). (2.4)

| B2)

If ¢ and p were not equal, then the mass eigenstates would not be CP eigenstates, and B°-B°
mixing would not conserve CP. In the Standard Model, |¢/p| is expected to be close to unity,
and the deviation of O(107?) is usually neglected. The value of |q/p| is accessible through the CP
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Figure 2.5: The confidence level contours for (p,7) at 95% (solid), 90% (dashed), and 68% (short-
dashed), based on a fit to B — K7 and ww branching fractions in the QCD factorization frame-
work [28]. The two dots represent the best fit for two different sets of hadronic input parameters.
The dashed circles centered at the origin are the 95% confidence level contours for the world average
|Vub/Ves|, which is not included in the fit. The 95% confidence level contour of the standard fit
including the world average sin 23 [26] is given by the shaded region.

asymmetry in wrong-sign semileptonic B® decays:

T(B® —» (*X) —T(B° 5 £~X) _1—|q/p|*
T(BO —» (+X) +T(BY > (-X) 1+ g/p|*

(2.5)

Since this asymmetry is very small in the Standard Model, experimental evidence for a non-zero

value may be due to New Physics.

_ - = _ _ + _
b LGt d b . AR d
B? W+§ w- B® B uc,t u,c,t B
d v u,c,t ! b d | W b
(a) (b)

Figure 2.6: Feynman diagrams for B%-B° mixing.

The other two types of C'P violation occur in the interference of two amplitudes with different
C P-violating weak phases that contribute to a single process. These contributions also carry, in
general, different C'P-conserving phases. Hence, the two C'P partner amplitudes can be expressed

as

AB = f) = A+ Ay =|A|ef01H91) 4| 4p|ei02H02) (2.6)
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AB = f) = A+ Ay =|Ai]e0790) 4|4, eilC2—02)

where the A; are the contributing amplitudes, and ¢; and &; are their CP-violating and CP-
conserving phases, respectively. We have assumed that |4;| = |4;|. Hence, the CP asymmetry

is evaluated to be

_ JAB o P - JAB - DP
Acr = AB S DEFIAB S P 20
2| A1 || Az |sin(d; — &2) sin(¢r — ¢2)

|A1]2 + |A2|? + 2| A1]|As| cos(61 — 82) cos(pr — ¢a)

From this expression, it is seen that Agp vanishes if either ¢y = ¢ or d; = J». Therefore, the
necessary conditions for a non-zero Acp in a given process are that more than one amplitude
contribute to the decay, that each amplitude carry a different C'P-conserving phase, and that each
amplitude also carry a different C' P-violating weak phase.

For B° decays to C'P eigenstates, fop, the final state can be reached either directly (B® — fop)
or through the mixed state (B® — B® — fop). The time evolution of amplitudes for initial states

that are pure B® or B® at t = 0 is given by

A(B°(t) = fop) o< cos (Argdt> A+ z% sin (Azldt> i (2.8)
AB°(t) = fep) zg sin (Argdt) A+ cos (AT;ldt) A

where A = A(B® — fop), A= A(B° = fcp), and Amg is the mass difference between the neutral B
mass eigenstates. Thus, the decay amplitude receives two contributions with a C'P-violating weak
phase difference of arg(qA/pA), with arg(q/p) = —23. The imaginary sine terms arise from the
fact that the mixing channel is virtual or “dispersive,” whereas the direct channel is “absorptive.”
As a result, the C'P-conserving phase difference between the two contributions is simply 7, and

B°(t) — fop exhibits a time-dependent CP asymmetry:

Aop(t) = |A(B®(t) = fep)|> — |A(B°(t) = for)®
T JABW) = for)2 +AB#) — for)?
23 (gA/pA) sin(Amgt) — (1 — |gA/pA|?) cos(Amgt)
1+ [gA/pAP?

> o9

If |JA/A| = |g/p| = 1, then the above asymmetry simplifies to Acp(t) = $(qA/pA)sin(Amgt). In
the case of B — J/9K%, all Standard Model contributions except the b — c¢s tree diagram are
negligible, so A and A have the same magnitude as well as the same weak phase in the Wolfenstein
parametrization. Therefore, the time-dependent CP asymmetry in B — J/¢ K2 is proportional to

sin 23, although the time-integrated C'P asymmetry vanishes. The fact that A(B® — J/¢KY) is
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dominated by a single amplitude allows the details of hadronization to be ignored, since only the
ratio A/A appears in the above expressions and the strong interaction is assumed to be C' P-invariant.
This method of determining 3 is thus practically free from theoretical uncertainty.

In principle, the B decay to the C'P eigenstate 777~ can be used to determine « in a manner
similar to B — J/$ K for 3. However, the situation in B — m 7~ is complicated by the presence
of both tree and penguin diagrams with differing weak phases. If we consider only the dominant
b — wiid tree contribution, then A/A = e 7, and the time-dependent C'P asymmetry probes
sin 2(8 + v) = sin 2a, where we have used a + 8 + v = 7. However, the b — d penguin amplitude,
whose magnitude is estimated to be one-fifth that of the tree amplitude, cannot be neglected. Since
its weak phase is 3, arg(A/A) is no longer simply —2v but instead depends on the magnitude of
the penguin amplitude. Furthermore, if the strong phases of the tree and penguin amplitudes differ,
then, for reasons given below, |4/A| # 1. The effect of a sizeable penguin amplitude is to shift the
measured value of a from its true value. The theoretical uncertainty introduced by this “penguin
pollution” can be resolved with an isospin analysis of the three B — 7w modes [29]. However, this
program faces the hurdle of a very small branching fraction for B — 7%7° (< 4 x 1079), which has
not yet been observed.

An alternate method of determining @ makes use of the Dalitz plot for B — ntx~x° [30, 31, 32].
The interference regions between the three p(770) resonance bands allow extraction of a (as well
as the strong phase between the tree and penguin amplitudes) without the fourfold ambiguity of
the B — w77~ method. However, fierce experimental backgrounds and the possible existence of
a virtual intermediate B* or a three-body non-resonant component may limit the utility of this
approach [33, 34].

The angle v is conventionally regarded as the most difficult angle of the Unitarity Triangle to
determine because the B meson does not decay to a C'P eigenstate where a time-dependent C'P
asymmetry measurement would yield v. However, v can be probed with the last type of C' P violation
in the B system, known as “direct” C'P violation because it originates in the decay amplitude itself,
independent of C'P violation in B°-B° mixing. Direct C'P violation is the most common form of CP
violation in decays to non-C P-eigenstates, and it is the only allowed form in decays of the charged
B* meson. It is not expected in B decays to charm, which are dominated by a single amplitude, but
it may appear in charmless hadronic final states, where the interfering amplitudes can be of similar
size. Because of CKM unitarity, there are at most two different C'P-violating weak phases in any
charmless hadronic B decay. If the constituent amplitudes also have different strong phases, then
the requisite C'P-conserving phase difference is present, and direct C'P violation can occur. Unlike
with decays to C'P eigenstates, direct C'P asymmetries can be observed in the time-integrated rates.

In decays with interference between b — us tree amplitudes and b — sgq penguin amplitudes,

the weak phase difference is 7, and both the C' P asymmetry and the C'P-averaged branching fraction
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(denominator of Equation 2.7) provide a window on the CKM phase. Because of this expected
sensitivity, B — K decays have received much attention recently. These decays are experimentally
challenging to detect because of their small branching fractions (O(107%)) and because of difficulty
in distinguishing charged pions from charged kaons at high momentum. Current experiments have
managed to overcome both of these drawbacks with high-luminosity particle colliders and innovative
particle-identification devices. The C P-averaged branching fractions for all four B — K= decays
have now been measured to a precision of 10%-20%.

In addition to the two-pseudoscalar (PP) B — K decays, the pseudoscalar-vector (PV) decays
B — K*(892)r and B — p(770)K can also be used to constrain . In particular, the decay
B — K*(892)*nT, whose branching fraction is measured in this thesis, receives only contributions
from b — wu tree and b — s penguin diagrams (see Section 2.5). So, as long as the hadronic
uncertainties can be controlled, this decay provides a clean determination of 7. Experimentally,
these B — PV decays are accompanied by higher background levels than the corresponding B —
PP decays caused by the higher final state multiplicity. They are also more difficult to calculate
theoretically because of the increased number of independent amplitudes associated with PV modes.
It has been suggested that a broader analysis examining the Dalitz plot of B — K7 decays, which
includes B — K*(892)7 and p(770) K, may also permit extraction of the strong phases among the
various amplitudes contributing to the decay [30, 35, 36, 37, 38, 39].

Other methods of determining v involve decays, like B — D [40, 41, 42] or B — DK [43, 44,
45, 46, 47], where a b — cu{d, s} amplitude interferes with a b — u¢{d, s} amplitude. Such methods
are not subject to uncertainties from penguin contributions, but their experimental feasibility is
limited either by small decay rates or by small CP asymmetries. A recent proposal [48] involving
B* — DOK#*, where D° — K*(892)*KT, makes use of processes with substantial branching
fractions and does not require a time-dependent analysis or B flavor tagging, thereby overcoming
the statistical limitations of the other B — DK methods.

In order to extract the weak phase from direct C' P violation measurements, one must know both
the magnitudes and strong phases of A; and As in Equation 2.7. Evaluation of these hadronic
matrix elements is a formidable theoretical undertaking since the strong interaction cannot always
be treated perturbatively. Below, we discuss two complementary approaches to this problem. The
first exploits the approximate flavor symmetry of the u, d and s quarks, employing the SU(3) group
to relate the matrix elements of various processes. In this approach, no assumptions are made about
the form of the hadronic matrix element. In contrast, the decay rates can be calculated using an
effective low-energy Hamiltonian and applying a factorization assumption, which states that the two
final state hadrons do not interact with each other. Typically, in these calculations, the electroweak
and perturbative QCD contributions are directly evaluated, while the non-perturbative contributions

are parametrized as form factors and decay constants and are taken from other independent sources.



21
2.3 SU(3) Flavor Symmetry

One approach to determining the strong interaction amplitudes in two-body charmless hadronic B
decays is to invoke SU(3) flavor symmetry [49, 50]. Under this assumption, the u, d, and s quarks
transform as a triplet under the strong interaction, while the ¢, b, and ¢ quarks are all flavor singlets.
SU(3) symmetry results in relations among the various amplitudes contributing to these decays, but
the absolute sizes of these amplitudes are not predicted; they must be estimated experimentally
or by other means. Nevertheless, the simplicity of the SU(3) relations gives rise to a number of
powerful constraints on the CKM parameters. SU(3) symmetry is broken by the large mass of the
s quark compared to the u and d quarks, and corrections to the SU(3) predictions occur at the
My,qa/ms level. While SU(3) is not an exact symmetry of the strong interaction, deviations caused
by symmetry breaking are generally eclipsed by the precision of current experimental measurements.

The quark-level process for charmless hadronic B decays, b — §1¢2@3, connects a singlet with
three triplets under SU(3). Therefore, the transition amplitude transforms as 393®3 = 3®306015.
Adding the triplet light spectator quark in the B meson leads to the following representations for

the meson-level process:

33 = 108
623 = 8 ®10 (2.10)
153 = 8;010 27.

For B decays to two mesons, the final state consists of two SU(3) octets, which form the multiplets
88=2T010010®85H 8,1, (2.11)

where the subscripts S and A denote multiplets symmetrized and antisymmetrized under exchange
of the two final state mesons. When the daughter mesons are both pseudoscalars (B — PP), they
exist in an S-wave state because of angular momentum conservation. Bose symmetry requires that

we only consider the symmetric product
8R8)s =270 85D 1. (2.12)

Each final state multiplet in Equation 2.12 that matches a multiplet in Equation 2.10 corresponds
to an independent transition amplitude. Therefore, B — PP decays are characterized by one
singlet, three octet, and one 27-plet amplitude. Separate amplitudes apply to strangeness-preserving
(AI = 1 or 2) and strangeness-changing (AI = 0 or 1) transitions. For B — PV decays, there is

no symmetry requirement because the two final state particles belong to different meson octets, so
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all six 8 ® 8 multiplets in Equation 2.11 are permitted, leading to ten independent amplitudes.

It is convenient to adopt an equivalent graphical representation of these SU(3) amplitudes using
a set of quark topologies corresponding to the Feynman diagrams shown in Figure 2.1. These
quark topologies are labeled T (external color-favored tree), C' (internal color-suppressed tree), P
(gluonic penguin), E (W-exchange), A (annihilation), and PA (penguin annihilation). The so-called
“charming penguin” topologies [51, 52], which take the form b — &c{5,d}, and which can rescatter
into a charmless final state, are not included in this decomposition. We adopt a notation in which
amplitudes for [AS| = 1 transitions are primed, while those for AS = 0 transitions are unprimed.
For B — PP decays, the six diagrams form an overcomplete representation of the five independent

amplitudes, and the two representations are related as follows:

1 = 2\/§[PA+§(E+P)—11—20+3T]

8 = —\/g[P+g(T+A)—%(C+E)]

8, = ?(C+A—T—E) (2.13)
8, — —%[T+C+5(A+E)]

27 = —QL\/E(TJFC),

with analogous relations for the |AS| = 1 transitions. Each independent amplitude carries its own
strong phase. For flavor singlet mesons, there exists an additional penguin contribution, denoted S.

For B — PV decays, the spectator quark can be absorbed by either the vector or the pseu-
doscalar, so the number of diagrams doubles, as does the number of SU(3) multiplet amplitudes. A
subscript P or V on the T, C, and P amplitudes indicates whether the spectator quark hadronizes
into the pseudoscalar or vector meson, respectively. For E, A, and PA, the subscript stands for the
meson that incorporates the outgoing quark go in bg; — ¢2Gs.

Higher order contributions from electroweak penguins, pictured in Figures 2.2c¢ and 2.2d, do not
add SU(3) amplitudes because no new flavor topologies are introduced [53]. However, since the
coupling of the photon or Z° depends on flavor of the pair-produced quarks, electroweak penguins
violate isospin symmetry, and the strength of the b — g@u transition relative to the b — gdd and
b — ¢3s transitions is altered. The effects of the color-favored and color-suppressed electroweak pen-
guin amplitudes (denoted Pgw and P&y, respectively) are incorporated by modifying the existing
amplitudes as follows:

tET-i—PgW c=C+ Pegw
p=P—3Pg, s=S—3iPsw (2.14)
a=A e+pa=FE+ PA.
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In the tree diagrams, the b quark emits a virtual W—, which subsequently decays into a us or
ud quark pair. These two quarks can hadronize either together in a final state meson (external
emission), as in Figure 2.1a, or separately in different mesons (internal emission), as in Figure 2.1b.
Internal emission is suppressed by the need to match the color content of the quarks from the W~
with that of the spectator and u quarks so that the resulting mesons are color singlets. Experimental
measurements of the suppression factor place the value around 0.2. The discrepancy with the naive
expectation of % (given by the number of colors) is not fully understood but it is possibly related
to the details of hadronization. For both tree topologies, the strangeness-changing transition is
suppressed relative to the strangeness-preserving one by a factor |V,s/Vya| = A = 0.22.

The gluonic penguin (Figure 2.1¢) is a loop process that results in an effective flavor-changing
neutral current, which is forbidden at tree level in the Standard Model. Any up-type quark can
appear in the loop, but the ¢t quark component is believed to be by far the dominant contribution
because of the GIM suppression of the u and ¢ contributions (the cancellation is exact if m,, = m.)
and because m; is much larger than m, and m.. Therefore, the CKM vertex factors associated
with penguins are Vi V5 and ViV for b — s and b — d transitions, respectively. In order to
conserve energy and momentum, a virtual gluon is emitted, and its vertices contribute a factor of
a,. Because the gluon is not a color singlet, the quarks it produces are hadronized internally rather
than externally, but without color-suppression.

The remaining three diagrams in Figure 2.1, W-exchange (d), annihilation (e), and penguin
annihilation (f), are expected to be much smaller than the tree and penguin diagrams. The W-
exchange and annihilation diagrams are related by crossing symmetry. Both are helicity-suppressed
by the V' — A structure of the weak interaction. The annihilation diagram is also suppressed by the
overlap of the b and @ wavefuctions, characterized by the B meson decay constant, fg. The penguin
annihilation diagram is both helicity- and OZI-suppressed, in addition to being fp-suppressed. Most
calculations ignore these three contributions, although the smallness of annihilation diagrams has
been questioned in recent literature.

Electroweak penguins involve the emission of a virtual photon or Z° that produces a pair of quarks
in a color singlet state that can be hadronized either internally (color-suppressed) or externally
(color-allowed). Electroweak penguins carry the same CKM factors as gluonic penguins. However,
the quarks couple more weakly to the photon and Z° than to the gluon. Since the coupling to the Z°
is expected to dominate, electroweak penguin amplitudes are reduced relative to gluonic penguins
by a factor of approximately as/a;s & 35/0.2 ~ 1, where both couplings are evaluated at my.

Table 2.3 organizes the SU(3) amplitudes by their size relative to the dominant amplitude in
AS = 0 and |AS| = 1 transitions separately. In this context, the parameter A = 0.22 does not
necessarily refer to the CKM parameter. For instance, the color-suppression factor of C' relative to

T is roughly A. Also, |Pew /P| = A because of the ratio of coupling constants. Finally, the factor
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fB/mB ~ 0.05 ~ A\? characterizes |E/T|, |A/T|, and |PA/P|. The order-of-magnitude estimates
that produce this heirarchy do not include dynamical considerations relating to hadronization or to
the helicity configuration of the final state. Fully incorporating these effects can alter the picture
presented above and represents the bulk of the current theoretical activity in calculating these

amplitudes directly.

AS=0 |AS|=1
T t P p'
C, P ¢, p T', Pew t s
(M) | E, A, Pew e, a,s | C', PA", PSy,  pa
O(X%) | PA, PSy pa E', A PAgw €,d

Table 2.3: Heirarchy of SU(3) amplitudes.

In |AS| = 1 transitions, the vertex factors of the tree diagrams are O(A*) while those of the
b — s penguin are O(A\%a;) ~ O(X?). Therefore, strangeness-changing decays should be dominated
by the penguin amplitude. This qualitative observation is borne out by the measured B — K7
branching fractions, which far exceed expectations from the tree diagrams alone.

The situation is reversed for AS = 0 decays. The tree and penguin diagrams are of the same
order in CKM factors, but the penguin is further suppressed by as. Therefore, tree contributions
dominate the strangeness-preserving decays. However, the b — d penguin cannot be ignored, as
demonstrated in the above discussion of B — w7 ™.

SU(3) symmetry is broken by the mass difference between the s and d quarks [54]. In T
diagrams, the strange meson in the final state is coupled directly to the weak current. Therefore,
the magnitude of SU(3)-breaking is characterized by the ratio of decay constants (fx — fr)/fr = 0.2.
SU(3)-breaking effects in P’ and C' diagrams can be incorporated as form factor corrections, while
those in E', A, and PA’ diagrams are governed by the difference in the pair production amplitudes
for s5 and ui or dd. The size of the corrections in non-T" diagrams is not well-understood, but it is
usually assumed that they are of the same order as in 7" diagrams. The SU(3)-breaking diagrams
may also have different strong phases than their unbroken counterparts. For instance, T'/T is given
by fx/fr and an unknown phase. Such unpredictable phase differences can affect both branching
fractions and C' P asymmetries, thereby potentially clouding the extraction of the CKM parameters
within the SU(3) framework.

A promising application of the SU(3) decomposition is to constrain v with |AS| = 1 decays.
There exist various methods of deriving information on -, most of which involving taking ratios
of branching fractions or constructing amplitude triangles or quadrangles, the sides of which can

be determined from branching fraction measurements [55, 56, 57, 58, 59]. Both the Kn (PP)
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modes and the K*(892)w or p(770)K (PV') modes can be used, although, in general, the PP modes
provide greater power because of the smaller number of independent amplitudes. With twice the
number of amplitudes, the PV analyses introduce more unknown parameters, and the system is often
underdetermined without making simplifying assumptions. Therefore, methods using B — PV
decays often have greater statistical and theoretical uncertainties than methods using B — PP
decays. Nevertheless, it is important to compare v determined from B — Kz with that from
B — K*(892)m and B — p(770)K. In Chapter 8, we present one such constraint on v using various
B — PV branching fractions.

2.4 Effective Low-Energy Hamiltonian

The quark-level Feynman diagrams in Figures 2.1 and 2.2 serve as useful tools for visualizing and
classifying the various flavor topologies that give rise to rare B decays. However, these diagrams
do not depict the meson-level QCD interactions involved in hadronization of the quark pairs and
possible final state interactions (FSI). Absolute rate predictions for these processes including strong
effects are calculated not by evaluating these Feynman diagrams directly, but rather by means of an
operator product expansion [60].

Charmless hadronic B decays contain three distinct energy scales: the weak scale, my ~ 80 GeV;
the scale of energy released in the decay, mj ~ 5 GeV; and the scale at which the strong interaction
becomes non-perturbative, Agcp ~ 200 MeV. Processes with characteristic energies below the
masses of the W*, Z°, and t can be described by an effective Hamiltonian obtained by integrating
out these heavy degrees of freedom. For two-body hadronic B decays, performing this integration
results in point-like interactions, as shown in Figure 2.7, and the Hamiltonian becomes a product of
local four-quark operators. To account for the W=, Z°, and ¢, which no longer appear explicitly in
the theory, their propagators are replaced by effective coupling constants (Wilson coefficients), and
the running masses of the remaining particles in the theory are modified. Thus, the physics at the
weak scale is separated from the physics at m;, and Agcp. The effective theory reproduces the full
theory up to corrections of order my/my, .

In general, hadronic matrix elements of this effective Hamiltonian are impractical to compute.
However, the Hamiltonian can be reorganized with the operator product expansion. A time-ordered
product of local operators can be expressed as an expansion in local operators that depend on

position z:
T(Oa(.’lf)Ob(O)) = anbk(m)ok (0) (2.15)
k

The momentum-space version of the operator product expansion is given by the Fourier transform
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Figure 2.7: Integrating out the heavy degrees of freedom.

of Equation 2.15:
/ €T (04 (2)0p(0))d' = 3 carr(g) Ok (0). (2.16)
k

Matrix elements of the left-hand sides of Equations 2.15 and 2.16 are completely equivalent to those
of the right-hand sides, and the Wilson coefficients ¢,y are independent of the matrix elements,
provided the momenta of the external states are much smaller than 1/z. In this kinematic region,
the QCD coupling constant is small because of asymptotic freedom, and the ¢gpr can be computed
perturbatively.

The effective Hamiltonian for |AS| = 1 charmless hadronic B decays consists of an expansion in

ten local four-fermion operators, denoted Oy, ..., O1p:
a 10
Hot = —= Z Vap Vs (107 + ¢203) — Vi Vi Z ¢;O; | + Hermitian conjugate. (2.17)
\/i q=u,c =3

The operators O; consist of two currents of the form J{'Jo, = (q1¢2)vea(@3qs)vea = [G1y.(1 £

¥5)q2)[@3 (1 £ ¥5)qa):

Of = (biui)v—a(tijs;)v—a Of = (bici)v-a(Ejsj)v-a

0% = (biuj)v-a(ajsi)v-a 05 = (bicj)v—a(Cjsi)v-a

O3 = (bisi)v—a X, (Tig)v-2 Os = (bisj)v-a 2., (@ia:)v—a (2.18)
Os = (bisi)v—a2_,(2595)v+a Os = (bisj)v—-a3_,(@jq)v+a

Or = 5(bisi)v—a 2, e4(qi)vea Os = 5(bisj)v-a X, eq(qii)vra
3 (bisj)v-a2_,eq(Tiqi)v-a,

bisi)v—a X, €q(@aj)v-4 O =3

where the subscripts ¢ and j on the quark fields are SU(3) color indices, the sums are over quark
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flavors ¢ = u,d, s,c, and e, is the electric charge of the quark g. The first two operators are tree
operators, with O; corresponding to the dominant W-emission contribution (¢; = 14+ O(a;)) and O,
representing the QCD correction (c2 = 04+ O(as)). The operators Os, ..., 0 arise from the gluonic
penguin diagrams, which contribute at order ay, and Oz, ..., O¢ are the electroweak penguins. One
obtains the AS = 0 Hamiltonian by replacing the s quark fields not appearing in the sums with d
quark fields.

In practice, the Wilson coefficients ¢;(u) are calculated at the energy scale u ~ my, and the
couplings of the effective theory are matched to those of the full theory. The couplings and coeflicients
are then evolved to u ~ my using renormalization group equations. The renormalization procedure
guarantees that that matrix elements of the Hamiltonian, which correspond to observable quantities,
are independent of the renormalization scale u. The p-dependence of the Wilson coeflicients is
compensated by that of the operators order by order in .

However, truncation of the perturbative series for the c;(u) at the weak scale induces a p-
dependence that becomes more severe the farther the Hamiltonian is evolved. This unknown de-
pendence on the renormalization scale, as well as on the appropriate value of my itself, usually
dominates the theoretical uncertainty. One method of addressing this uncertainty is to extract the
scale-dependence of the operators and absorb this dependence into a redefinition of the Wilson coef-
ficients so that the resultant effective coefficients c$f are scale-independent. However, extraction of
the scale-dependence of the O; is plagued by infrared divergences, which are regulated by introduc-
ing an infrared cutoff and a gauge parameter. Therefore, the scale-dependence of the ¢; is replaced
by the gauge-dependence of the c¢f.

Determination of these coefficients varies according to the renormalization scheme and the value
of my used in the calculations. Typical values for the coefficients at next-to-leading order in ay,

taken from Reference [65], are

ST =1.149 s =-0.325
T = 0.0211 4 0.00454 s = —0.0450 — 0.0136i
g™ = 0.0134 + 0.0045; g™ = —0.0560 — 0.0136i (2.19)

& = —(0.0276 + 0.0369)a 5T = 0.054a
S = —(1.318 4 0.036%)a ¢ = 0.263a.

Since the strong coupling constant does not depend on quark flavor, these ¢ hold for all B decays.
Contributions from O7 and Og are usually ignored because of the smallness of their correspond-
ing Wilson coefficients. Were it not for the CKM factors, charmless hadronic B decays would be
overwhelmingly dominated by the tree operators. The ratio of c§ to ¢ gives an estimate of the

color-suppression of internal tree diagrams relative to external tree diagrams.
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2.4.1 Factorization

The operator product expansion filters the short-distance perturbative physics at the weak scale into
the Wilson coefficients that describe the quark-level process. The long-distance non-perturbative
physics, characterized by the scale Agcp, that governs the meson-level dynamics of hadronization
is obtained by calculating the matrix elements of the local four-fermion operators: {M;M>|0;|B),
where |B) represents the B meson and |M; M») the two-body final state of the decay.

For inclusive final states, the hadronic matrix element can be approximated by the matrix el-
ement for free quarks, ({d, s}|O;|b), which is easily computed. However, for exclusive final states,
(M1 M>|0;|B) is difficult to compute from first principles. Because of quark confinement, these ma-
trix elements cannot be treated in perturbation theory. Use of the full theory is made by numerical
techniques like lattice QCD [61], which, so far, have successfully been applied only to semileptonic
decays (where only one current participates in the strong interaction) or under the quenched ap-
proximation (neglect of quark pair production and annihilation in the vacuum). However, rapid
progress is being made in performing unquenched calculations and in extending the technique to
more complicated hadronic systems.

In the meantime, analytical calculations of the hadronic matrix elements are performed usually
relying on some form of the factorization ansatz [62, 63, 64, 65]. This approximation is based on the

postulate that the matrix elements can be expressed as a product of hadronic currents:
(M1 M3|03|B) = (My M| J{ J2u| B) = (M| J{'| B){M3]J2,0). (2.:20)

The factorized currents are then parametrized in terms of decay constants and form factors, which
depend on the quarks’ four-momenta. These phenomenological inputs can be taken from lattice
calculations and QCD sum rules [66, 67, 68], or they can be derived from data under various model
assumptions.

The application of factorization is justified by the color transparency [69] of the outgoing mesons;
energetic quarks in a color-singlet state decouple from soft gluons. Mesons can be viewed as small
color dipoles that are opaque to high energy gluons, since these short-wavelength probes can resolve
the two halves of the dipole. However, these dipoles are transparent to long-wavelength, low energy
gluons, and they act as apparent color singlets. Another intuitive argument is that after hadroniza-
tion, the quarks are dressed as mesons that move away from each other so quickly (Ey ~ mp/2)
that they are not given a chance to interact. Therefore, long-distance non-perturbative final state
interactions can be neglected. Short-distance QCD effects, which are crucial in predicting C'P asym-
metries, can be included perturbatively.

The combinations of effective Wilson coefficients that appear in the decay amplitudes are given
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by the quantities a;, defined as follows:

£, 1 eff ;_
cs +FCC?+1’ 1=1,3,5,7,9

T+ ey, i =2,4,6,8,10

&
Il

(2.21)

where N, is the number of colors. Deviations from factorization are incorporated by converting N,
into a phenomenological parameter, N¢. This substitution is made only when N, appears in the
a;. This approach accounts for the finite energies of the B decay products and for the fact that the
matrix elements of the octet-octet currents are discarded since they, unlike the singlet-singlet matrix
elements, are not directly measured experimentally. Also, factorization is expected to work best with
decays dominated by external W-emission. The use of factorization for color-suppressed internal
W -emission has been shown to be invalid in B — D7 and B — J/¢K*(892) decays [64, 70, 71], and
the same is expected to be true for penguin amplitudes. It is unclear whether a single parameter
N is sufficient to describe non-factorizable effects in all ten operators. In principle, N¢f can
be extracted from experimental data. However, the fact that N is process-dependent limits the
predictive power of the factorization assumption. The formalism sketched above has come to be
known as “naive” factorization (NF).

Recently, there have emerged two new approaches for incorporating hard-scattering QCD effects
into NF by factorizing the strong physics at the scales my and Agcp. As with the operator product
expansion, these methods are exact up to corrections suppressed by the inverse of the heavy scale,
O(Agcep/ms). The QCD factorization approach (QCDF) [72, 27] applies methods from the heavy
quark expansion and NF to separate the perturbative radiative corrections, represented by hard-
scattering kernels, T7-77, from the non-perturbative portion, parametrized by form factors, FB=M
and by light-cone meson distribution amplitudes (wavefunctions), ®,;. Schematically, the matrix

element for a B decay to mesons M; and M, assumes the following form:

(MiM|O;|B) = FP2M(0)-T] (1) @ ®ps, + 85 @ T (1) © Pty © Py (2:22)
A
= GBI - [1+0G) +0 (2222)], (2.23)

where M is the meson that absorbs the spectator quark. The T} are running coupling constants
that include hard gluon exchanges between mesons not involving the spectator quark. At lowest
order, the TiI term in Equation 2.22 reproduces the NF result. The Ti” represent hard gluon
interactions with the spectator quark and only appear at order ;. The O(a;) terms are the non-
factorizable radiative corrections to NF, and they can be computed systematically. The theoretical
uncertainty in QCDF stems from the power corrections (O(Agcp/msp) terms) and the neglected
annihilation contributions. While it is not yet fully understood how to estimate the size of the

power corrections, some of the tools being considered are QCD sum rules [73] and soft-colinear
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effective theory [74, 75, 76, 77]. It has been suggested that charming penguin operators [78] or the
intrinsic charm content of the B meson [79] may also represent non-factorizable corrections of similar
size to the power corrections.

The second technique for calculating interactions between final state mesons is known as the
perturbative hard-scattering (PQCD) approach [80, 81, 82]. In PQCD, the form factors, FZ=M,
are assumed to be perturbatively calculable. Sudakov effects are invoked to suppress the kinematic
region where the spectator quark is soft. Therefore, all exchanged gluons are hard, and the form
factors formally do not contribute at leading order, but only at O(as). In other words, PQCD differs
from QCDF in that all the perturbative corrections are treated in the presence of the spectator quark,
i.e., all the scattering kernels are of the type T77. One result of this procedure is that annihilation
topologies and other non-factorizable corrections are included on the same footing as the factorizable
terms.

Under NF, there exist very small C'P asymmetries because the form factors and decay constants
are purely real, and the effective Wilson coefficients are almost purely real. Therefore, sizeable
CP asymmetries only arise from non-factorizable effects. QCDF predicts that, in the heavy quark
limit, strong phases enter only at O(as), so CP asymmetries in charmless hadronic B decays should
be small (~ 5%). In contrast, the annihilation contributions in PQCD generate significant strong
phases, and the predicted CP asymmetries can be as large as 15%-30%. Furthermore, the CP
asymmetries in the two approaches tend to have opposite signs.

Both QCDF and PQCD have achieved some degree of success in explaining the branching frac-
tions in B — PP decays (see Section 2.5), although the size of the theoretical and experimental
uncertainties precludes any definitive statement about the validity of either approach. In the fu-
ture, precise measurements of C'P asymmetries in charmless hadronic B decays should be able to

distinguish between these two methods.

2.5 Theoretical Predictions

The research described in this thesis focuses on rare charmless three-body B decays of the type
B — Krrm and B — KKn. Among the contributions to these three-pseudoscalar final states are
quasi-two-body decays with intermediate vector resonances, B — K*(892)m and B — p(770)K. The
primary goal of our analysis is to search for these B — PV decays, but non-resonant production
of the three-body final states must also be understood in order to extract the B — PV branching
fractions accurately. There may also be contributions from high-mass scalar, vector, and tensor reso-
nances with sizeable branching fractions to w7 or K, such as fo(980), f2(1270), f1(2050), K*(1410),
K}(1430), K;(1430), K*(1680), K3(1780), and K;(2045). Because of the large intrinsic width of

these resonances (> 100 MeV), decays through these intermediate states are nearly indistinguishable
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from non-resonant decays except that the amplitude and phase across the Dalitz plot is not strictly
constant.

The quark topologies contributing to these rare B decays are perhaps most easily viewed in the
SU(3) framework. Tables 2.4 and 2.5 give the amplitude decomposition for a selection of B — PP
and B — PV decays. Contributions of order A2 and smaller have been omitted unless they are
dominant. Modes that can provide information on the UT angle v are |AS| = 1 transitions with
interfering tree and penguin amplitudes. Of the B — PV processes that have been observed,
B° — K*(892)*7~ stands out as being particularly sensitive. All that is required to determine = is
knowledge of the ratio of tree to penguin amplitudes, |t'»/p’p|, as well as their relative strong phase.

One method of estimating this amplitude ratio is given in Chapter 8.

Mode Amplitudes Observed
AS=0
nta~ —(t+p) .
atn0 —%(t +c) o
LA #P—0)
KTK- —(e + pa)
K+K° p
KOK©° p+pa
|AS| =1
Ktn— —(p' + t') .
KOz %(p’ —d) o
K+rY —\%(p'%—t'—}—c’) o
KO+ p' .

Table 2.4: SU(3) amplitude decomposition to O()) for {B°, B¥} — PP modes.

Before discussing the experimental details of the searches, we give in Tables 2.6 and 2.7 some
branching fraction predictions, for the decays under consideration in the context of the factorization
frameworks introduced above. In almost all cases, the preferred branching fractions are 10=° or
smaller. At these levels, the current generation of experiments has begun to observe some B — PV
decays, and hopefully, many more will soon follow. Because of the high uncertainty endemic to
calculations of these processes, a full picture of charmless hadronic B decays with the ability to
determine v and to test the various theoretical models will require the precise measurement of an
ensemble of both B —+ PP and B — PV modes.

Non-resonant three-body decays have received much less theoretical attention than B — PV
decays because they suffer from greater hadronic uncertainties. The approach usually taken is

to combine heavy quark effective theory with chiral perturbation theory [97, 98, 99]. However,
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Mode Amplitudes Observed
AS =0

p(770) —(tp + pp) .

p(770)~ 7wt —(tv +pv) .

p(770)070 %(CP +cv —pp—pv)

p(770)F 70 %(tp +cy +pp —pv)

p(770)°7t  ——5(tv +cp +pv — pp) .
K*(892)TK~ —(ev + pap + pay)
K*(892)"K+ —(ep + pap + pay)
K*(892)°K° pv
K*(892)°K° pp
K*(892)+K© Py
K*(892)°K* pp

#(1020)7° %Sp

#(1020)7+ sp

|AS| =1

p(770)" K+ —(tv +py)

p(770)°K° 7Py —cp)

p(TT0)+K° Py

p(770)° K+ — 5ty +cp + 1Y)
K*(892)tw— —(pp +tp) o (this thesis)
K+ (892)°r0 2w — )

K*(892) 70 — 5 (tp + ¢l +Pp)

K*(892)%7+ pp o

$(1020)K° P + sp .
$(1020) K+ Pp + 5 .

Table 2.5: SU(3) amplitude decomposition to O()) for {B°, B} — PV modes.

the chiral symmetry breaking scale is A, ~ 830 MeV, so chiral perturbation theory is applicable
in only a portion of the kinematically allowed region. Prediction of the total non-resonant rate
using this approach requires some ad hoc limits on the use of chiral perturbation theory, and one
estimate [100] places the branching fraction for B — K%rT7~ at 5 x 107%. Another possibility
explored recently is to extend PQCD factorization to three-body non-resonant decays by introducing
two-meson distribution amplitudes [101].

CP asymmetries in rare B decays constitute another set of observables sensitive to the differences
between theoretical models (as well as to ). The currently measured asymmetries for B — PP
modes are shown in Table 2.8. A reduction of the uncertainties on these measurements by about an

order of magnitude would provide for an interesting comparision with the theoretical predictions.
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Mode NF QCDF PQCD Experiment

AS =0
atr—  [9,15] 48 7.0  47+05
atm0 [3,8] 5.4 3.7 5.8+ 1.0
70 [0.1,0.8] 1.0 03 20407
KtK- 0.05 0.06 <19
K+R®  [0.8,1.5] 14 <24
K°K®  [0.8,1.4] 14 <17
|AS| =1
K*n~ [14,21] 19.0 15.5 185+ 1.0
Ko  [5,9] 8.2 86  101+15

K+ta® 9,15 114 91  126+13
K7+  [14,26) 201 164 179417

Table 2.6: Branching fraction predictions [64, 86, 87] for {B®, Bt} — PP modes, in units of 1075.
Experimental measurements [5, 89, 90, 91, 92, 93, 94, 95, 96] are C P-averaged.

In the B — PV modes, C' P asymmetries are beginning to be measured, and the analysis in this
thesis contributes to this effort. We list the available measurements in Table 2.9. This table also
compares the theoretically expected ranges for C'P asymmetries in these modes using the QCDF and
PQCD approaches. In particular, B — K*(892)r decays may prove to be a fertile testing ground
for these two models. QCDF and PQCD predict the branching fractions for B — K*(892)w to be
similar, but their C' P asymmetries are quite different. Measuring these asymmetries requires much
greater statistical power than measuring C'P-averaged branching fractions, so it may be some time
before a comprehensive, detailed understanding of charmless hadronic B decays is reached.

SU(3) symmetry also leads to a number of relations among C P-violating rate differences among
B°, B*, and B, mesons [102, 103]. Below, we give the relations involving B — PP decays to 7,
Km, and KK final states and their B — PV analogues. We define A(B — M;M,) = I'(B —
My M,) — T(B — M;M,). SU(3)-breaking effects are estimated by ratios of the decay constants
and form factors used in the factorization approximation. We have also assumed that annihilation
topologies are negilgible. The smallness of these contributions can be assessed with the branching
fractions for Bt - KK+, B® —» K*(892)*K T, and B, — ntn—, n%7°, p(770)ExT, p(770)°%°, or
wm®.

A(B~ - K~K% = A(B°—= K°K°) (2.24)
- [Eore

2
0 VK[ A(B™ — K%~
Ff%(mi)] (B = K)
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Mode SU(3) NF QCDF PQCD Experiment
AS =0
p(770) Y7~ [6,30] [21,34] [21, 23] }25_4i4_2
p(770) "7t [15,32] [6,9] 10
p(770)070 [0.07,1.7] 0.1 <55
p(770)+7° [4,15] [11,16] [12,14] <43
p(770)07+ [8,17] [1,7] 8.9 10+4
o K*(892)*KT 0.02 <125
K*(892)°K° [4,20] x 107*  [0.03,0.06]
K*(892)°K?° [0.3,0.6] [0.2,0.3]
o K*(892)°Kt [0.3,0.7] [0.2,0.3] <5.0
K*(892)tK° [5,20] x 10=*  [0.04,0.06]
#(1020)7° [0.002,0.2] [6,8] x 1074 <5
#(1020)7+ [0.005,0.4]  [12,17] x 10~4 <14
|AS| =1
o K*(892)tr~ [7,17] [6,8] 11 9.1 16.57%1
o K*(892)7° 1,2] [2,4] [0.7,0.9] 2.8 <33
o K*(892)t7° [4,7] [4,7] 2, 4] 3.2 <26
o K*(892)07t [5,12] [6,12] 10 10.0 12.612%
(770) [6,10] [0.4,0.6] 12 < 32
e p(T70)°K° [6,14] [0.5,0.7] 1.2 <21
e p(T70)TK° [5,12] [0.01,0.03] [0.6,0.8] < 52
p(T70)° K+ [1,2] [0.5,0.7] [0.4,0.6] <12
#(1020)K° [0.4,18] 8.4 9.6 82+1.1
$(1020) K+ [0.5,18] 8.9 10.2 8.7+1.6

Table 2.7: Branching fraction predictions [83, 84, 64, 85, 86, 87, 88] for {B°, B*} — PV modes,
in units of 1075. Experimental measurements from Reference [5] are C P-averaged and are supple-
mented by contributions from this thesis (marked by bullets).

A(B® — ntr7)

A(B° - K°7Y)

A(B™ — K*(892)°K™)

A(B™ — K*(892)"K°)

ﬂ_FB—Hr i 2 _ _
im0
2

fKFB—nr m2 ) _
iy | A® )
= A(B° - K*(892)°K?)
FPR 3D (e L om0
= — |2 ——K2 A(B™ - K*(892)%)
| FP 77 (i) |

= A(B° - K*(892)°K")

- -2

AB—>K* 2 B
- (’Bﬁi(mK) A(B~ — p(770)~K?)
L Ay p(m%() |

(2.25)

(2.26)

(2.27)

(2.28)
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B 2
A(B® = p(T7T0)tK~) = — % A(B® — p(770)77) (2.29)
T30 T
2
— _ fK*FB—Hr(m2 *) = —
A(B° - K*(892)"nt) = -— L K A(B° 770y "7t 2.30
(B® = K*(892)"7™") f,FE7 (m2) (B® = p(770)"7™) (2.30)

The ratios of form factors, as calculated from lattice QCD or light cone sum rules, are all consistent
with unity [64] with possible deviations at the 20% level. The decay constants are extracted from
experimental measurements and are known to 1%—-3%. The relevant ratios are given by fr/fx =~ 0.82

and f,/fx+ = 0.98. We also consider the sum of Equations 2.29 and 2.30:

B B JrAG TP (m2) :
A(B® = p(170)*77) + A(B® = p(770)"7t) = Jndy “Una) | A (B0 s pr70) KO
fKAO (mK)
B—m 2 2
f;f?B*E:%j) AB = K- (899)7ah) p.  (23D)

An evaluation of Equations 2.29-2.31 using currently available measurements is presented in Chap-
ter 8.

The current availability of a variety of calculational techniques may be important in the presence
of New Physics. These techniques are not all based on the same assumptions, and their uncertainties
have separate origins, so it is conceivable that non-Standard-Model contributions would modify each
of their predictions differently. Thus, the presence of New Physics might be discerned with rare B
decays in several ways. First, the various experimental measurements may not yield an internally
consistent value of v within a single calculational framework. Second, the various frameworks may
agree on a value of « that differs from that of the standard CKM fit of Figure 2.4. Finally, different
frameworks may arrive at different values of . In this last case, if we assume these methods are
all valid, then investigating the successes and failures of each model might shed some light on the

nature of possible New Physics.
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Mode QCDF PQCD  Experiment

AS=0
ntmw [16,30)  [-18,6] 42 + 22
a0 0 0 13+£21
|AS| =1
K*trn= [-22,-13] [-4,14] -9+4
K+r% [-17,-10] [-2,16] —10+7
Kozt  [-2,-1] [0, 2] 4+38

Table 2.8: Acp = [B(B = f)—B(B — f)]/[B(B — f)+B(B — f)] predictions [27, 87] for B —+ PP
modes with experimental measurements [89, 91, 93, 95], in percent.

Mode QCDF PQCD Experiment
AS =0
p(770) T 7~ [-13,20] —11+18
p(770) "7t [—32, 26] —82+35
p(770)070 [-29,19]
p(770)F 70 [-12,-3]
p(770)07+ [3,14]

K*(892)*K+  [-25,17]
K*(892)°K°  [-12,-9]
K*(892)°K° [20, 23]

K*(892)°K+ [-32,—21]
K*(892)tK° [-9,9]

$(1020)7° 1

$(1020)7+ 0

|AS| =1

K*(892)*n~  [14,47] —19 26732 (this thesis)
K*(892)°7°  [-12,—-9]  —10
K*(892) 70 [15, 36] —44
K*(892)07~ [1,2] —4

p(TT0) T K~ [—54, 3] 19 +18
p(770)°K° [24,27)

p(TTO)TK®  [-0.4,0.4]

p(TT0)0 K+ [-79,3]

$(1020)K° 34

#(1020) K+ 1

Table 2.9: Acp = [B(B — f)—B(B — f)]/[B(B = f)+B(B — f)] predictions [85, 88] for B — PV
modes with experimental measurements [104, 105], in percent.
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Chapter 3 The CLEO Experiment

3.1 The Cornell Electron Storage Ring

The discovery of the J/1 resonance in 1974 [106, 107] prompted experimental efforts around the
world to search for new resonances with even higher mass. Among these endeavors was the addition
of the Cornell Electron Storage Ring (CESR) to the Cornell Synchrotron, located on the Cornell
University campus in Ithaca, New York. At the time of CESR’s inception in 1979, the Y(1S) and
Y (2S5) resonances had already discovered [108] and identified as bb bound states. These resonances,
with masses near 10 GeV, fall neatly in the energy range of 9-16 GeV for which CESR was designed,
and the experiments located at CESR have been at the forefront of the study of the b quark.

CESR is a symmetric ete~ collider that has been operating in the center-of-mass energy range
of 9.4-11.2 GeV for more than two decades. From 1980-1990, collisions at two points along the
ring provided data for the CLEO and CUSB detectors. In 1990, CESR moved to single interaction
region running for the CLEO detector only. CESR also delivers x-rays from synchrotron radiation
to the Cornell High Energy Synchrotron Source (CHESS) facility.

Figure 3.1 shows a schematic diagram of the CESR facility. Electrons are obtained from a heated
filament in a voltage potential and are placed in a 30 m linear accelerator (linac). At the end of the
linac, the electrons have an energy of 300 MeV, and they are injected into the synchrotron, where
they are brought to an energy of around 5 GeV. After reaching their final energy, the electrons
are transferred to the storage ring, where they remain until annihilating with the positrons in the
interaction region or colliding with the walls of CESR.

At the midpoint of the linac, accelerated electrons at 140 MeV strike a tungsten target to produce
a shower of particles containing positrons as well as electrons, x-rays, and protons. The positrons
are captured and steered with magnets and are accelerated to 150 MeV in the remainder of the
linac. From there, they are injected into the synchrotron and then into CESR, circulating in the
opposite direction as the electrons.

CESR has a circumference of 768 m and lies 12 m below Cornell’s Alumni Fields. For the data
analyzed in this thesis, CESR maintained beam energies at or near 5.29 GeV. While circulating in
CESR, the electrons and positrons lose energy at the rate of 1.2 MeV per turn. This energy loss
is caused by synchrotron radiation, which is enhanced by the wiggler magnets placed in the beam
orbit to provide additional radiation for CHESS. This lost energy is restored by two RF regions with
five-cell cavities operating at 500 MHz. These accelerating cavities shape the beams into discrete

bunches of particles. Initially, CESR ran with one bunch for each particle type. Over the years, the
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CESR

SYNCHROTRON ~—— \_~"

@ Positron Bunch - Clockwise
@ Electron Bunch - Counter Clockwise

Figure 3.1: Schematic diagram of the CESR facility.

number of bunches in each beam was increased and the trajectories of the particles were adjusted to
avoid parasitic collisions at points other than the interaction region. By 1999, when the latest data
analyzed in this thesis were collected, CESR was running with twenty-seven bunches in each beam,
organized into nine trains of three bunches each.

The rate of collisions is given by the interaction cross section multiplied by the luminosity, £,
which is defined as follows:

r fNpninsg

(3.1)

Amo, oy ’
where f is the frequency with which a given bunch passes the interaction region, Ng is the number
of bunches in each beam, n; and ns are the number of particles in the electron and positron bunches,
and o, and o, characterize the transverse beam profiles in the horizontal and vertical directions. At
CESR, the transverse bunch dimensions are typically o, ~ 300 pm and oy ~ 6 ym, and the length
of the bunch parallel to the beam is o, ~ 2 cm. With approximately 10'! particles per bunch and a
transit frequency of 3.9 x 10° Hz, the peak luminosity achieved by CESR was 8.5 x 1032 cm—2s71.

The hadronic cross section in CESR’s operating energy range is shown in Figure 3.2. Most of the
data analyzed in this thesis were produced at a center-of-mass energy of /s = 10.58 GeV, on the peak
of the T (4S5) resonance. This energy is 20 MeV above the threshold for pair production of B mesons,
and the Y(4S) decays exclusively to B¥* B~ or BOB°. The process ete™ — Y(4S) — BB accounts

for 1.07 nb of the hadronic cross section at /s = 10.58 GeV. The remaining 3.4 nb corresponds
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to ete™ — ¢ events, where ¢ = u,d,s,c. This component of the total cross section known as
the continuum, and, typically, it dominates the background in the study of rare B decays on the
T (45S). To better understand this continuum background, one-third of the luminosity was produced
at /s = 10.52 GeV, 35 MeV below the BB treshold. This off-resonance data is used extensively in
this thesis to study the properties of the continuum background without making use of Monte Carlo

simulated data.

25
o " Y@S
:% 200 (15) ]
~ e
w ;o
g Lot
S50 4 . ]
< [ 2S
s Dot (25)
T o Y(3S) 1
"o + \‘ A
+ : Do oty Y(4S)
Q [ + B e ;] % 4
- 5 I N § T . ‘.
b t o T S R Lo S
0 1 1 1 1 1 1 1 1
9.44 9.46 10.00 10.02 1034 1037  10.54 10.58 10.62

Mass (GeV/cz)

Figure 3.2: Hadronic cross section in the region of the T resonances.

3.2 The CLEO II Detector

The CLEO II detector [109] is situated at CESR’s south interaction region, where it records the
passage of particles produced in the ete™ collisions. CLEQO II was designed to detect both neu-
tral and charged particles with high efficiency and to measure their energies and momenta with
excellent resolution. A schematic diagram of CLEO II appears in Figure 3.3. Like many cylindri-
cal general purpose particle detectors, it possesses tracking chambers that detect charged particles,
an electromagnetic calorimeter for photon and electron identification, and time-of-flight scintillator
counters that identify charged particles and participate in the trigger. These systems reside in a
1.5 T solenoidal magnetic field, and muon chambers are embedded in the return yoke of the mag-
net. CLEQ II boasts high-precision tracking and photon energy measurements, as well as a high
hermeticity, covering 94% of the solid angle. Below, we describe each of the subsystems in more

detail.
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Figure 3.3: Schematic diagram of the CLEQ II detector.

3.2.1 Charged Particle Tracking

Tracking of charged particles is accomplished by three concentric devices immediately surrounding
the beam line: the precision tracking layer (PTL), the vertex detector (VD), and the main drift
chamber (DR). All three devices operate in a gas mixture of 50% argon and 50% ethane (CyHg).
When charged particles traverse these detectors, they ionize the gas. Wires held at a positive
voltage collect the electrons from the avalanche initiated by the primary ionization electrons. The
helical trajectories of the particles are reconstructed from the spatial distribution of the ionization.
Furthermore, the amount of ionizaton along the path is a measure of energy lost by the particle
(dE/dz), which can help determine its mass.

The tracking device closest to the beamline is the PTL, which consists of six layers of straw tubes.
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Figure 3.4: Schematic diagram of the PTL and VD.

In each layer, there are 64 gold-plated tungsten axial wires, each surrounded by an aluminized mylar
tube, which shapes the electric field. These cells are arranged with half-cell staggering between
adjacent layers, as shown in Figure 3.4, to provide local resolution of the drift distance sign ambiguity.
The PTL has an inner radius of 4.5 ¢cm, an outer radius of 7.7 cm, and the wires have a half-length
of 25.0 cm. It provides precise transverse position measurements near the IP with a resolution of
90 pm in the r-¢ plane. No longitudinal (z) information is obtained from the PTL. Its material
constitutes 0.35% radiation lengths in the transverse direction. It was installed in 1989 and replaced
in 1995 by a three-layer silicon vertex detector (See Section 3.4).

Just beyond the PTL, between the radii of 8.1 cm and 16.6 cm, lies the VD, which contributes
1.2% radiation lengths of material. It was installed in 1984 and provides ten layers of measurements
from 800 nickel-chromium sense wires with 20 ym diameter and 35.0 cm half-length. The sense wires,
along with the 2272 aluminum field wires, are arranged in hexagonal cells, as shown in Figure 3.4.
As in the PTL, the wires of the VD are all axial, but the finite resistivity of nickel-chromium permits
charge division measurements, hence providing z information. Additional z measurements are made
by the inner and outer cathode surfaces, which are constructed from longitudinally segmented alu-
minized Mylar and detect the image charges of the ionization avalanche at the first and last layers.

The position resolutions of the VD are 150 pym in r-¢ and 750 pym in z.
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Figure 3.5: Layout of the DR wires.

The DR, installed in 1986, covers radii 17.8-94.7 cm, has a half-length of 96.2 cm, and, with 51
measurement layers, provides the bulk of the tracking measurements for particles with transverse
momentum p; > 100 MeV. The 12240 gold-plated tungsten sense wires and 36240 aluminum field
wires are organized in rectangular half-staggered cells that have roughly uniform size over the volume
of the chamber. Forty of the 51 layers are populated by axial sense wires, which make only r-¢
measurements. The remaining eleven layers, occurring at regular intervals among the axial layers,
have sense wires tilted at a small angle (1.9°-3.5°, depending on radius) with respect to the z axis.
Because of this stereo angle, these layers are capable of measuring the z position of the track. As
with the VD, the inner and outer cathode surfaces are instrumented with segmented aluminum for
further longitudinal sensitivity. The amount of material seen by a track at normal incidence is 0.4%
radiation lengths from the gas and wires and 3.5% radiation lengths from the inner and outer shells

and cathodes. The DR has achieved r-¢ resolutions of 110 um for axial wires and 130 pm for stereo
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wires as well as z resolutions of 3 cm for stereo wires and 1 mm for the cathodes.

Tracks are reconstructed from hits in the PTL, VD, and DR by means of a pattern recognition
algorithm. These hits are then fitted to a helical trajectory to extract the position and momentum
vectors of the particle at the IP. The fitter makes use of a Kalman filter [110] to account dynamically
for deviations of the trajectory from a perfect helix. These deviations arise during flight and include
both deterministic and random perturbations caused by energy loss and multiple Coulomb scattering
in the material of the detector. The resultant error matrix for the track parameters correctly
describes the uncertainties on a track-by-track basis. The detectors are calibrated and aligned using
bhabha and ete™ — uTu~ events.

The combined momentum resolution of all three tracking devices is

2
(%) = (0.0017p;)? + (0.0050)2, (3.2)
t

where the p; is given in GeV. The first term in the above equation reflects the intrinsic resolution
of the tracking devices in measuring the track curvature. The second term, which dominates the
resolution up to momenta of about 3 GeV, arises from multiple Coulomb scattering. The resolutions
of the azimuth angle ¢ and the polar angle #, measured at high momentum (~ 5 GeV), are o4 =1
mrad and oy = 4 mrad.

For tracks with |cosf| < 0.71 and p; > 250 MeV, the track detection efficiency is about 95%
and is independent of momentum. Tracks outside of this kinematic region suffer inefficiencies from
geometric effects. The diameter of curvature of a track is given by d = 2p;/0.3B, where d is given in
meters, p; in GeV, and B is the magnetic field in tesla. Since the outermost tracking layer is 95 cm
from the interaction point (IP), tracks with d smaller than this distance, i.e., with p; < 225 MeV,
will curl back on themselves before passing through all the measurement layers. These tracks are also
more likely to undergo hard scatters or to lose all of their energy in the detector material. Therefore,
the detection efficiency in this regime is significantly degraded, as illustrated by Figure 3.6, and the
tracking resolution worsens. A reduction in the number of measurements also occurs for tracks with
| cos@| > 0.71, which exit the detector through the endcap.

Each B meson decay produces, on average, five charged tracks [111], from which one can form
a primary vertex with a resolution in the r-¢ plane of 180 um. Since the B mesons at CLEQO are
produced at /s = 10.58 GeV, with a momentum of 300 MeV, they typically travel only 25 pum
before decaying. Therefore, B meson decay vertices are nearly impossible to distinguish from the
IP. However, longer-lived particles, such as K2 and A, have flight distances of a few centimeters, so

these secondary vertices are easily identified by their separation from the beamspot.
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Figure 3.6: Track detection efficiency versus momentum.

3.2.2 Time of Flight

The time-of-flight (TOF) system was designed to provide fast trigger information and particle iden-
tification for tracks with momentum less than 1 GeV. Located just outside the DR, the barrel TOF
system consists of 64 plastic scintillator counters that have dimensions 5 cm by 10 cm by 2.8 m.
These scintillators are arranged longitudinally in a single layer around the DR cylinder. Both ends of
the counters are coupled to two-meter-long lucite light guides, which carry the scintillation photons
to photomultiplier tubes (PMTs) situated outside the solenoidal magnetic field. The PMTs capture
the incident photons and amplify the signal, whose time and pulse height are then recorded.

The barrel TOF system extends over the angular region |cosé| < 0.81. Most of the remaining
solid angle, 0.81 < |cosf| < 0.97, is covered by the endcap TOF system, consisting of 28 wedges of
plastic scintillator mounted on each endcap. PMTs are attached directly to the scintillator and are
oriented parallel to the beam line to minimize the effect of the solenoidal magnetic field. Both the
barrel and endcap TOF counters amount to 12% radiation lengths.

The TOF system has achieved a timing resolution of 154 ps for pions in the barrel, which allows
separation of 1 GeV kaons and pions at the level of two standard deviations (o). The K /m separation
decreases with momentum, and the TOF has limited value for particle identification of tracks with

momentum greater than 1 GeV.
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3.2.3 Crystal Calorimeter

Photons are detected by the electromagnetic calorimeter (CC), which is located outside the TOF
system, with an inner radius of 1.02 m and an outer radius of 1.3 m. The CC comprises 7800
thallium-doped CsI crystals, 6144 in the barrel and 828 in each endcap, which cover 95% of the solid
angle. The transverse dimensions of approximately 5 cm square and the depth of 30 cm (equivalent to
16 radiation lengths) were chosen to balance the competing needs for high granularity and resolution
and low cost of assembly and readout.

The barrel calorimeter provides coverage for | cosf| < 0.85, and its crystals are arranged such
that photons originating at the IP strike the crystal faces at nearly normal incidence. The endcap
calorimeter overlaps slightly with the barrel calorimenter, covering 0.81 < |cosf| < 0.97, and its
crystals are all parallel to the z axis. To detect photons from electromagnetic showers in the crystals,
four photodiodes, each with an active area of 1 cm?, are attached to a lucite window at the end of
each crystal.

The reconstruction software forms shower clusters from groups of adjacent crystals with ener-
gies above threshold, where only one local maximum occurs. A shower’s energy and position are
calculated from its N most energetic crystals, where N depends on the shower energy and increases
logarithmically from 4 at 25 MeV to 17 for 4 GeV and higher. The absolute energy normalization is
calibrated using radiative bhabha events, 7° decays, and ete~ — ¥~y events and is known to £1%
at 25 MeV, +0.5% at 100 MeV, and +0.2% at 5 GeV.

The performance of the CC varies with polar angle because of the distribution of material in
front of the crystals. Particles traveling from the IP see substantially less material in the barrel than
in the endcap or the barrel-endcap overlap region. In this thesis, we use photons with | cos 8| < 0.95.
Table 3.1 gives the parametrizations for the photon energy and angular resolutions for the barrel
and endcap regions. The resolution is dominated by calibration uncertainty and electronic noise for

low shower energies and by insufficient crystal depth to fully contain the shower at high energies.

Barrel Endcap
2 (%) F+19-01E 926425
04 (mrad) 2—\/'% +1.9 % +7.3
oy (mrad) 0.804 sin @ % +5.6

Table 3.1: Energy and angular resolutions for the CC for photon energies in GeV.

In this thesis, the CC is used primarily for two purposes. The first is to reconstruct 70 — vy

decays. The resolution on the 7° invariant mass is about 5 MeV. To improve the momentum and

0

angular 7° resolution, two-photon candidates are kinematically constrained to the known 7° mass.
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In addition, the CC used to reject charged tracks positively identified as electrons, which, unlike
other stable charged particles, deposit nearly all of their energy in the CC. Therefore, they can be

identified by the ratio of momentum in the tracking chambers to associated energy in the CC.

3.2.4 Muon Chambers

The muon detection system consists of three sets of plastic proportional chambers embedded in the
iron return yoke of the solenoid at depths of 36, 72, and 108 cm, corresponding to 3, 5, and 7 nuclear
interaction lengths at normal incidence from the IP. Three layers of counters in each set provide
redundancy and increase the geometrical acceptance. These barrel counters identify muons with
|cosf| < 0.71. The angular region 0.71 < |cosf| < 0.87 is covered by a single set (three layers) of
counters on each endcap.

The proportional chambers are 8.3 cm wide, 1 cm thick, and 5 m long. Each counter contains
eight anode wires separated by graphite-coated plastic walls that act as cathodes. External copper
strips of the same width as the counters are mounted perpendicular to the anode wires and detect
the image charge induced on the cathode. The intrinsic resolution of the copper strips is 5.3 cm
in the z direction. For the anodes, the eight wires in each counter are ganged together, giving an
intrinsic resolution of 8.3/ V12 = 2.4 cm in the 7-¢ direction.

Tracks reconstructed in the central detector are extrapolated into the muon chambers, accounting
for dE/dx energy loss. Muon chamber hits are then matched to the track by the distance between
the measured and projected hit positions. The spatial resolutions for the anodes are 3.7, 4.6, and
5.7 cm for the units at 3, 5, and 7 interaction lengths, respectively, and 7.2 cm for the endcap units.
The corresponding resolutions for the cathode strips are 5.5, 7.0, 7.5, and 9.0 cm.

Muons are not used in the current analysis. Instead, we reject tracks that are consistent with
being muons by requiring the track candidate to penetrate fewer than seven interaction lengths or

to register no hits in one of the preceeding units.

3.2.5 Trigger and Data Acquisition

The CLEO II and II.V trigger [113] consists of three levels of progressively restrictive event selection
in hardware and one level in software after the detector has been read out. The CLEQ detector is
gated with every beam crossing, at which time, the L0 trigger is evaluated using hits in the TOF and
CC and crude track segments in the VD. The L0 trigger requires 400 ns and reduces the event rate
by about two orders of magnitude. A successful LO trigger disables data taking, which is resumed
no later than 2.0 ms after the L0 trigger, depending on the decisions of the L1 and L2 triggers.
The L1 trigger, which takes 2.2 us, incorporates DR hits and performs additional tracking calcu-

lations, including determining the charges of the tracks. The L2 trigger takes 40 us and discriminates
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against beam-wall and beam-gas interactions as well as cosmic rays with the help of more sophisti-
cated tracking.

Events satisfying the L2 trigger are read out by the data acquisition system [114], which uses a
parallel readout system and VME-based CPUs for processing the raw data and shipping them to the
host computer. Analog signals above threshold are digitized by the front end crates, and the output
is placed in a 32-event buffer. The detector is reenabled when the front end crates have emptied
their buffers. The detector readout takes 2 ms and incurs the bulk of the dead time during data
taking. The data in the event buffers is sparsified by VME CPU boards, which takes 16 ms, thus
constraining the maximum trigger rate to 50 Hz. The event builder CPU assembles the sparsified
data and sends it to the host computer.

The physics cross section at the T (4S5) has the following contributions: 4.5 nb from hadrons,
0.91 nb from 7-pairs, 15 nb from prescaled bhabhas, and 2 nb from p-pairs and two-photon events.
The trigger efficiency for physics events is better than 99%. At the peak CLEO IL.V luminosity of
8.5 % 10%? cm~! 571, these events contribute about 20 Hz to the trigger rate. The remainder of the
rate of 50 Hz is dominated by beam-wall, beam-gas, and cosmic ray backgrounds. Most of these
background events are rejected by the L3 software trigger, which runs on the host computer. L3
rejects 45% of the L2 triggers while maintaining an efficiency for hadronic events above 99%. Physics
events with low multiplicity, like one-prong 7 or two-photon events, suffer a small efficiency loss of

0.5%. Events passing the L3 trigger are written to disk and eventually to archival tape storage.

3.3 Charged Particle Identification

There are five species of charged particles with lifetimes long enough that they decay outside of the
CLEO detector: electrons, muons, pions, kaons, and protons. Of these, electrons and muons are
easy to identify using the CC and muon chambers. To separate the remaining three types, we rely
on a determination of the particle’s velocity. Since the momentum of the particle is known from its
curvature in the tracking devices, a velocity measurement determines the mass.

Particle velocity can be obtained from two devices in CLEQ: the TOF and the DR. The TOF
measures the flight time of the particle, which, when combined with its path length in the tracking
chambers, gives its velocity. However, a large percentage of tracks from low-multiplicity B decays,
such as those searched for in this thesis, have momentum greater than 1 GeV. The TOF provides
meager K /m separation at these momenta, so it is not used for particle identification in the current
analysis.

In the DR, the pulse height of the hits measures the amount of ionization energy loss (dE/dzx)
undergone by the particle, which is a function of the particle’s velocity. Figure 3.7 shows the

dE/dz as a function of momentum for pions and kaons. Both the theoretical expectation and the
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Figure 3.7: dE/dx as a function of momentum for charged pions and kaons. The solid curves
represent the expected energy loss and the dotted curves the experimental resolution (+10).

experimental resolution are displayed. In the vicinity of 1 GeV, no discrimination of pions from
kaons is possible, but the separation increases with momentum to about 1.70 at 2.6 GeV.

For each track, only the hits with pulse height smaller than the median pulse height are used in
the dE/dz determination so that sensitivity to the Landau tail on the high side is reduced. Instead
of the raw dE /dx value, we make use of a normalized dE/dx constructed by taking the difference the
measured dF /dz and the expectation for a given particle hypothesis and dividing by the experimental
resolution. These normalized dE /dx values are denoted o7, Jdz for the pion hypothesis and afE Jdz
for the kaon hypothesis. Figure 3.8 shows the Uﬁ; Jd distributions for charged pions and kaons at
2.6 GeV under the kaon hypothesis.

The dE/dz calculation is calibrated with charged particles of known identity. Such samples are
obtained from K% — nt7~ decays and D — K £1F decays. The D daughter tracks are identified
either kinematically by selecting asymmetric decays where exchanging the daughter track mass
assignments would shift the D mass by more than 7o from the known mass or by reconstructing
D** — DY/D°z* and using the charge of the primary pion to determine the flavors of the D

daughters.

3.4 The CLEO II1.V Detector

In 1995, the PTL was replaced with a three-layer double-sided silicon strip detector (SVX) [115],
pictured in Figure 3.9. The SVX covers 92% of the solid angle and corresponds to 1.4% radiation
lengths for a normally incident track. It was designed for high-precision impact parameter measure-

ment to permit the resolution of secondary D and 7 decay vertices from the primary vertex at the
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Figure 3.8: Normalized dE/dz under the kaon hypothesis, afE Jdz for charged pions and kaons at
2.6 GeV.

IP. The radii of the beampipe and of the first layer of the SVX (2.0 and 2.35 cm, respectively) are
minimized for optimal impact parameter resolution.

Each of the 96 wafers in the SVX has double-sided readout, so measurements in both the r-¢
and z directions are made. Because the SVX is an important source of longitudinal information,
the z-measurement side of each wafer is mounted facing the beam pipe to minimize the effect of
multiple scattering in the wafer material on z resolution. The pitch of the silicon strips on the z
sides is about 100 um, and each one is read out. On the r-¢ sides, the strips have a pitch of about
28 pm, which is one-fourth of the readout pitch. The entire SVX contains 26208 readout channels.

The ratio of signal to noise (S/N) affects the efficiency, occupancy, and resolution of the detector.
Measurements taken for colliding beam data find a S/N of 9-13, which is slightly lower than the
design specifications. The occupancy of the detector is typically 5%, of which less than 2% results
from physics; the rest is dominated by electronic and beam-related noise.

Figure 3.10 shows the intrinsic resolution of the SVX as a function of the track’s angle of incidence
on the silicon wafer. At normal incidence, the achieved resolutions are 19 ym and 29 um for the r-¢
and z measurements, respectively. On the r-¢ side, the resolution improves with track inclination
because the signal grows as 1/sinf. However, since the signal charge also spreads in z as the
inclination increases, the resolution worsens as 1/ cosé on the z side.

The installation of the SVX was accompanied by a change in the gas in which the DR operated.
The argon-ethane gas mixture was replaced by 60% helium and 40% propane (CyHg). Helium-
propane yields a slower drift velocity for the ionization electrons within 3 mm of the sense wire
(half a cell width). However, the smaller Lorentz angle of helium-propane regulates the behavior of

electrons near the edge of the cell, giving shorter drift times at long drift distances. Thus, the use
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of helium-propane raises the single hit efficiency and brings the overall spatial resolution from 172
pm to 150 pm [116]. Although helium-propane provides fewer primary ions than argon-ethane, the
dE [dz resolution is not degraded because the improved efficiency and spatial precision result in a
20% increase in the number of contributing measurements. Indeed, the K /7 separation at 2.6 GeV
increases from 1.7¢ for CLEO II to 2.0¢ for CLEO II.V.

Roughly two-thirds of the data analyzed in this thesis were collected with the CLEQO II.V detector.
We do not make explicit use of the vertexing abilities of the SVX. However, the CLEO II.V data
show a 20% improvement in tracking resolution (due to both the SVX and the DR gas modification)

and increased K/m separation, both of which improve the experimental sensitivity to charmless
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Figure 3.9: Front and side views of the CLEO II.V SVX detector.

3.5 Monte Carlo Simulation

In addition to the data collected with the CLEO detector, we also use Monte Carlo (MC) simulated
data to study the response of the detector to the decays we hope to observe. The simulation
occurs in two steps. First, a program known as QQ generates the physical processes of interest,
including ete~ — ¢¢ and the production and decay of B mesons. The output of QQ consists

of the four-momenta for all the particles in a particular decay chain. These four-momenta are
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Figure 3.10: Resolution of the CLEO II.V SVX as a function of incidence angle.

given to a GEANT-based [112] package, called CLEOG, that simulates the detector response to
the particles generated in QQ. CLEOG makes use of a detailed description of the material in the
detector to simulate processes like bremsstrahlung, multiple Coulomb scattering, photon conversions,
and hadronic interactions. It also handles the decays of relatively long-lived particles such as charged
pions and kaons and Kgs, which tend to decay in the active volume of the detector, rather than in
the vacuum of the beampipe. The electronic response generated by CLEOG, which includes noise
hits, can be processed with the standard offline reconstruction software.

We measure detection efficiencies and crossfeed among signal modes with MC simulated signal
events. To study backgrounds from other B decays, we also make use of a MC sample consisting of
exclusive b — ¢ transitions with relative branching fractions taken from the PDG summary [5]. The
sizes of the b — ¢ MC samples correspond to at least 3.4 times the luminosity collected with CLEO
IT and CLEO IL.V.
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Chapter 4 Event Selection

We search for B decays with the following final state topologies: K3h*n¥, K*hTn0, and K2h*nO,
where h* denotes a charged pion or kaon. We study these three-body decays “inclusively” by
disregarding the possible resonant substructure. We also analyze the Dalitz plots of these decays
to search for exclusive quasi-two-body or three-body non-resonant (NR) decays. Finally, we extend
the Dalitz plot analysis to measure the CP asymmetry in B — K*(892)*nF. All of these analyses
are performed using a maximum likelihood technique.

The possible intermediate resonances we consider are those with sizeable branching fractions to
K or mm: K*(892), K;(1430), p(770), and fo(980). Figure 4.1 shows the momentum distributions
for the three final state particles in B — K%rtr~ for NR decay and two representative intermediate
resonances. The other three-body final states possess similar spectra, as shown in Figures 4.4
and 4.5. NR decays populate the Dalitz plot uniformly, and the momentum distributions exhibit
no structure within the kinematic limits. The quasi-two-body decay B — K (1430)*7T with
K}(1430)* — K*7F produces a monoenergetic pion at 2.6 GeV, whose momentum is smeared
by detector resolution. Since the pseudoscalar B decays to two spin-0 particles, the Kg(1430)*
daughters emerge isotropically, and their spectra are relatively flat over the kinematically allowed
region. On the other hand, in the vector-pseudoscalar decay B — K*(892)*n ¥, the vector K*(892)*
is transversely polarized because of helicity conservation. Therefore, the K*(892)* daughters emerge
preferentially along the K*(892)* flight direction in the B rest frame, giving rise to their bimodal
momentum distributions. In the Dalitz analysis, we exploit these differences in helicity structure to
differentiate various decay modes with identical final state particles.

The data used for this analysis comprises 13.48 fb™" produced at or near the T(4S). Roughly
one-third of this luminosity was collected with the CLEO II detector; the remainder was collected
with CLEO ILV. The 9.12 fb™" produced on the Y(4S) is referred to as the on-resonance data
sample, and it corresponds to 9.66 x 106 BB pairs (3.32 x 106 CLEO II and 6.34 x 10¢ CLEO IL.V).
The 4.36 fb~' produced at /s = 10.52 GeV is referred to as the off-resonance data, 2.75 fb~' of
which was collected with CLEO IL.V. The entire data sample was recorded between November 1990
and February 1999.

In Section 4.1, we describe the general event properties used to select candidate events. We also
present the requirements that reject poorly reconstructed charged tracks and calorimeter showers
and that provide cleanly identified K3 — nt7~ and 7° — v decays. In Section 4.2, the kine-
matic properties of the B decay candidate are used to distinguish signal decays from continuum

background. We reserve discussion of the maximum likelihood technique for Chapter 5.
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Figure 4.1: Momentum spectra obtained from MC for the final state particles in B — K3rt7—: K9
(top row), the slower 7+ (middle row), and the faster 7% (bottom row). The three-body decays are
modeled as NR decay (left column), B — K} (1430)*7T (middle column), and B — K*(892)*n¥
(right column).

4.1 General Event Properties

Hadronic events are selected by requiring that three charged tracks originate near the IP and that the
total visible energy from tracks and calorimeter showers be greater than 15% of the center-of-mass
energy +/s. These criteria remove tau-pair and two-photon events, as well as beam-wall, beam-gas,

and cosmic ray backgrounds.

4.1.1 Track Reconstruction

Fitted tracks are given to a post-processing package that detects two main types of tracking patholo-
gies: spurious tracks formed from unused hits along a real track and particles that curl up inside
the DR (because of insufficient momentum to reach its outer wall) which are then identified as two
separate tracks. Only tracks that survive this filter are given further consideration, and we discard
events with fewer than five such tracks.

Additional requirements are placed on the quality of the track fit. Tracks that are inconsistent
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with coming from a secondary vertex must point back to the IP. Also, the number of hits assigned
to the track must exceed 30% of the number of hits expected, given the track’s trajectory through
the detector. The above criteria are imposed on all tracks in the event, not just those forming the
B candidate, because non-candidate tracks participate in background suppression, as discussed in
Section 4.2.

Primary tracks in the B candidate must pass even more stringent cuts. They must have mo-
mentum greater than 100 MeV and | cos 6| < 0.90 to ensure that they are measured with sufficient
precision and that they are well-modeled by the MC simulation. Particles that are positively iden-
tified as electrons or muons are not allowed in the B candidate. Muon identification is described
in Section 3.2.4. Electron identification is accomplished by a combination of E/p, dE/dz, TOF
information, the distribution of energy in the CC crystals, and the distance between the track and
the associated shower.

As discussed in Section 3.3, charged pions and kaons are statistically separated by dE/dz. At
momenta above 1 GeV, this separation degrades to less than 3o, and dE/dz provides weak discrim-
ination between the two particle hypotheses. We label tracks with ambiguous particle ID by h* to
denote a 7+ or K*. In the K3h*7wT and K*hT70 topologies, the h* is chosen to be the faster
of the two tracks in the candidate, and it typically has momentum greater than 1 GeV. The other,
slower, track in the candidate must have dE/dz that agrees with its particle ID assignment, with

af}é;rdm‘ < 3 for the appropriate particle hypothesis. In the K2h*7° topology, the h* is the only

track in the candidate and may have momentum between 0.1 and 2.4 GeV. For the h*, we require
|cosf| < 0.85 and —5 < o7 Jaz < 3. The latter cut eliminates badly-behaved tails in the 075,
distribution while maintining high efficiency for both pions and kaons.

This selection procedure introduces slight inefficiencies for signal decays with two misidentified
tracks, i.e., K3K*7T decays where px < pr and K*7n 770 decays where p, < px. In principle, a
loss of efficiency also occurs in all three topologies when h* = K+ and the track’s momentum is low
enough so that o Jdz < —5. In practice, however, this second inefficiency is unnoticeable. Table 4.1
gives the efficiencies of the dE/dx cuts in all three topologies for the pion and kaon h* hypotheses,
measured with simulated NR signal events. In all cases, these selection requirements amount to
a relative inefficiency of less than 7%. The effect is larger in K*hT7° than in K3h*nT because,
as discussed below, we only accept m° candidates with momentum above 1 GeV. This requirement
reduces the average momentum of the other final state particles, making misidentification of both
tracks in the candidate more likely. The cumulative efficiency for all track quality requirements is
about 98% per track for momenta above 1 GeV. Below 1 GeV, the efficiency decreases steadily to
about 92% at 300 MeV.
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€™ +eK

T K
Topology €354, €iE/dx ‘ i/ de

Koh*n® 989+0.1 957404 3.3+04
K*h¥7r% 90.8+£0.3 96.7+£0.3 6.3+0.4
K3h*r® 994401 99.6+0.2 0.240.2

Table 4.1: Efficiencies, in percent, for the dE/dz selection requirements under the pion and kaon hy-
potheses for h*, measured using simulated NR signal decays. Also given are the relative inefficiencies
for the two particle hypotheses.

4.1.2 K3 Reconstruction

K decays are reconstructed from the 777~ final state, which occurs with a branching fraction of
0.686 + 0.003 [5]. The K2 reconstruction software considers pairs of oppositely charged tracks with
good fit quality that overlap in r-¢ or that have an r-¢ miss distance of less than 2 mm. These tracks
are transported to the estimated vertex position, taking energy loss in the detector material into
account, and are fitted with a vertex constraint. Dipion candidates with an invariant mass within 10
MeV (about 2.50) of the known K2 mass are accepted for this analysis. To reduce the combinatoric
background, we also place requirements on the significance of the vertex flight distance, the K% and
daughter pion impact parameters to the IP, and the ratio of the number of hits on the daughter
tracks to the number expected. The efficiency of these requirements is greater than 90% at all K2
momenta, and the resultant signal-to-background ratio is around 10. The width of the K mass
peak increases roughly linearly with momentum from 3 MeV for PKY below 500 MeV to 4 MeV for
PKY above 2.5 GeV. Figure 4.2 shows the invariant mass distribution for K2 candidates in all the
B — KJh*7T candidates from on-resonance data accepted for this analysis.

The effects of the selection criteria for K2 candidates are studied by fitting the 777~ invariant
mass peaks to a bifurcated Gaussian (a Gaussian with different widths above and below the peak)
and a second-order polynomial background. The signal (S) and background (B) yields thus obtained
are used to form a figure of merit, S?/(S + B), and the cut positions are chosen to maximize this

quantity.

4.1.3 Photon and 7° Reconstruction

Photons reconstructed in the CC are combined in pairs to form 7% — vy candidates. At least one
of the photons must have |cosé| < 0.71. Both photons must not be associated with charged tracks
and must satisfy a minimum distance requirement between the shower centroid and the nearest
track. The spatial distribution of energy within a shower distinguishes photons from hadrons, and
both 7° daughters must have energy profiles consistent with being photons. In order to suppress the

combinatoric background from real photons, the energy of the less energetic photon in a 7° candidate
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Figure 4.2: Invariant mass distribution for K3 candidates forming B — K2h*7nT candidates in
on-resonance data.

must lie above a cutoff given by a quadratic function of the 7° momentum. The above requirements
are chosen by optimizing S?/(S + B) in the v+ invariant mass distributions. The efficiency of these
requirements rises linearly with 7% momentum from 90% at 100 MeV to nearly 100% at 3 GeV.
Photon pairs with invariant mass between 115 MeV and 155 MeV (+30) are kinematically fitted to

0 mass to improve the 7° energy and momentum resolution.

the known 7

Prior to the mass constraint, the 7° mass resolution is about 5.3 MeV for p,, < 1 GeV and about
6.6 MeV for p,, > 1 GeV. The unconstrained diphoton invariant mass distributions for these two
momentum regions are shown in Figure 4.3. Because of the severity of the combinatoric background
at low momentum, we discard 7° candidates with momenta less than 1 GeV. The loss in signal
efficiency balances the gain in background reduction so that the sensitivity to rare B decays is
essentially unchanged. Figures 4.4 and 4.5 show the momentum spectra for the final state particles
in various exclusive modes belonging to the K*hT7? and K2h*7° topologies. The effect of the 7°
momentum requirement is also displayed.

CC showers that do not form 7° candidates and that are not associated with charged tracks
participate in continuum suppression, as detailed in Section 4.2. These showers must have | cos 8| <

0.95 and an energy between 50 MeV and 5 GeV. Stale showers due to bhabhas from earlier beam

crossings are removed by rejecting back-to-back shower pairs with a combined energy above 6 GeV.

4.2 Background Suppression

The primary background in this analysis comes from continuum ete~™ — ¢ events, where ¢ =

u,d, s,c. These events are distinguished from signal events by means of kinematic constraints on the
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Figure 4.3: Invariant mass distribution for 7° candidates with momentum less than 1 GeV (left)
and greater than 1 GeV (right) forming B — K3h*7° candidates in on-resonance data.

B candidate and by the spatial distribution of all the decay products in the event. The kinematic
constraints also discriminate against combinatoric background and other non-signal B decay modes.
Various B — Dm or B — J/v modes have final states identical to those for which we search. These

exclusive b — ¢ transitions are vetoed by rejecting narrow bands in the Dalitz plots.

4.2.1 Kinematic Constraints

In identifying B decays, the two most powerful kinematic variables are the ones that express energy
and momentum conservation. Because the BB pairs are produced with the B mesons nearly at rest,
the summed energy of the B decay daughters is equal to the beam energy. We define the energy
difference AFE to be

AE = E; + Es + E3 — Epeam (4.1)

where E;, E,, and Ej3 are the energies of the B candidate daughters. For signal decays, the width
of the AE distribution is dominated by the detector resolution. Final states with a K2 and two
charged tracks have a AE uncertainty of about 20 MeV for CLEO II and 15 MeV for CLEO IIL.V.
A 70 in the final state degrades this resolution by approximately a factor of two. AFE is always
calculated assuming the h* is a pion. Therefore, the AE distribution for pions is centered at zero,
while that for kaons is shifted by at least —40 MeV.

The complementary variable expressing momentum conservation is the beam-constrained mass

of the B, mp. This variable is defined to be the invariant mass of the B candidate, with the
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Figure 4.4: Momentum spectra obtained from MC for the final state particles in B — K*aF70: 70
(top row), the slow K* (middle row), and the fast 7+ (bottom row). The three-body decays are
modeled as NR decay (left column), B — K} (1430)*7T (middle column), and B — K*(892)*n¥
(right column). The shaded regions are retained by the pro > 1 GeV requirement.

reconstructed energy replaced by the beam energy:

mp = \/EZ o — P, (4.2)

where pp is the momentum of the B candidate. Performing this substitution improves the resolution
of mp by one order of magnitude, to about 2.7 MeV. This width is dominated by the spread in the
beam energy.

Figure 4.6 shows a typical two-dimensional mp-AFE signal distribution, using B — K*(892)*n ¥
MC. Apart from the peak in the signal region, demarcated by the horizontal and vertical lines at
+30, there is also a combinatoric background covering the plane that accounts for roughly 30%
of the events. Projecting the two-dimensional distribution onto one variable while applying a 3o
requirement on the other variable results in the one-dimensional distributions in Figure 4.7. The
peaks in both variables are parametrized by bifurcated Gaussians. The combinatoric tails are not

included in the parametrization. The mp width does not change from CLEO II to CLEO II.V, but
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Figure 4.5: Momentum spectra obtained from MC for the final state particles in B — ngiwo:
7° (top row), K% (middle row), and 7+ (bottom row). The three-body decays are modeled as
B — K;(1430)*7° (left column), B — K*(892)*7° (middle column), and B — p(770)*K$ (right
column). The shaded regions are retained by the p o > 1 GeV requirement. The distributions for
NR decay, B — K (1430)°7F, and B — K*(892)°7rT are similar to those in Figure 4.4.

the AE width decreases by about 23%.

Figure 4.8 shows the continuum mp and AE distributions obtained from off-resonance data.
CLEO II and CLEO ILV are observed to have similar distributions. The continuum AFE distribu-
tion is parametrized by a first-order polynomial. For the continuum mp distribution, we use an

empirically determined shape, known as the Argus function [117]:

A(mp) xmpy/1— (Ezljn) 2ea [1_(Erj’“)2] . (4.3)

In our analysis, we accept B candidates with mp between 5.2 and 5.3 GeV and with |AE| less than
300 MeV for K*h¥70 and K2h*7° and 200 MeV for Kh*nT. This region includes the signal

region and a high-statistics sideband for background normalization.
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Figure 4.6: Two-dimensional signal mg-AE distribution obtained from B — K*(892)* (K%n*)nT
MC. The horizontal and vertical lines demarcate 3o regions around the peak in each variable.

4.2.2 Event Topology

Because B mesons produced through the Y (4S5) are nearly at rest in the center-of-mass frame, the
directions of the daughters from the two B mesons are uncorrelated, and they follow an isotropic
spatial distribution. On the other hand, the particles generated in continuum ete™ — ¢7 events
are collimated around the boost direction of the two initial quarks. Examples of these two types of
events are shown in Figure 4.9.

The sphericity of a collection of NV particles in an event is defined to be

3 E£1|Pti|>
S= ===, 4.4
2<z£11|pi| @

where the index i labels the particles in the collection, the p? are momentum vectors, and the pg’
are the components of the p¢ transverse to a given axis. The sphericity axis of the collection is the
axis that minimizes S.

A variable that highlights the difference between the event topologies of BB and continuum events
is the angle between the sphericity axis of the B candidate and that of the remaining particles in
the event, denoted by fspn. In continuum events, the two-jet structure causes these two axes to
be correlated, so the | cosfspn| peaks strongly at 1. In contrast, the isotropic nature of BB events
makes the two sphericity axes uncorrelated, and such events are flat in | cos fspn|. Figure 4.10 shows
representative distributions of |cos6spn| for the two types of events. In our analysis, we accept
candidates with |cosspn| < 0.8, thus rejecting 83% of the continuum background while retaining

roughly 83% of signal B decays.
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Figure 4.7: Signal distributions for mp (left) and AE in CLEO II (right top) and CLEO IL.V
(right bottom), obtained from B — K*(892)*(K%n*)7T MC. In plotting mg, a 30 cut on AE was
applied, and vice versa.

4.2.3 Fisher Discriminant

The variable cos 5,1 provides a powerful discriminator between BB and continuum events, but even
more information can be extracted from a more fine-grained examination of the event topology. We
make use of a virtual calorimeter, which divides the event into nine 10° angular bins around the
sphericity axis of the B candidate, as shown in Figure 4.11. We sum the magnitudes of the momenta
for all the charged and neutral particles in each angular bin. These particles must pass the loose
selection criteria described in Section 4.1.

In addition to the nine momentum sums, we use two additional variables. The first of these is
the ratio of second to zeroth Fox-Wolfram moments [118], which provides a global characterization
of the event topology. The second is the angle between the sphericity axis of the B candidate and

the 2z (beam) axis, denoted by Ocanq- Because of angular momentum conservation, continuum events

2

o nq While signal B decays are flat in cos fcand-

distribute themselves according to 1 + cos 6
Each of the above eleven variables weakly distinguishes BB signal from continuum background.
The cumulative power of these variables is harnessed by combining them in a multivariate linear

discriminant, known as a Fisher discriminant (F):

11
i=1

x; denotes the input variables, and the coefficients «; are chosen to maximize the separation between
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Figure 4.8: Continuum distributions for mg (left) and AE (right) in the K2h*7T topology, obtained
from off-resonance data.

signal and continuum:
11

o = SOV 4+ V) (e — ), (46)
j=1

where V" and V;;® are the covariance matrix elements in the input variables for continuum and

signal, respectively, and the p; are the mean values of the input variables. In the case of uncorrelated

variables (V;; = 0 for ¢ # j), the coefficients become

cont __ s.ig
o=k (4.7)

(Ugont)z + (Ul?kg)‘z'

Thus, the Fisher discriminant gives greatest weight to those variables with large separation and
small variance.

The optimal coeflicients were determined from off-resonance data and signal MC events and were
found to be independent of B decay mode. Figure 4.12 shows the F distribution for off-resonance
events selected for the K2h*7rT topology and NR B — K2rtn~ signal MC events. The Fisher

discriminant provides separation of signal from continuum at the level of around 1o.

4.2.4 Exclusive b — ¢ Vetos

Figure 4.13 shows the Dalitz plots of the three topologies for off-resonance and b — ¢ MC events
that pass all selection criteria in a 3o region in mp and AE. The phase space scaling discussed in
Section 5.3.1 is not applied in this Figure. The two-particle invariant masses are all calculated under
the pion hypothesis for h*. In the K2h*nT and KThTr0 topologies, each candidate contains two

possibilities for m KOn# OF Myt qo0. We choose the two-particle combination with the lower invariant
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Figure 4.9: Comparison of event topologies for BB (left) and continuum (right) events. Tracks in

the VD, PT, and DR are shown, along with hits in the TOF and barrel and endcap CC. The barrel
CC is shown in the outermost region of each event, with the z coordinate mapped to radial distance
from the IP.

mass so that the tracks forming the intermediate resonances are positively identified (according to
the dE/dz selection criteria). For this reason, the Dalitz plots for these two topologies are “folded”,
with m%gwi and m?, , each covering half the range it normally would. In the K*hFz® and
K3h®7° topologies, the ranges of m%. - and mf{g .+ are limited by the 7° momentum cut.
The background from continuum events is most severe near the edges of the Dalitz plots, which
is also where most of the intermediate resonances lie. In addition, several exclusive b — ¢ decays
enter this analysis with high rate. These processes have similar or identical final state particles as

our much rarer signals and appear as horizontal or vertical bands in the Dalitz plot. To prevent

these decays from overwhelming our potential signal, we impose the following vetos:
K2h*nT:
o [myoqx —1.8693 GeV| > 30 MeV to reject B — D*r¥, D* — KgnT.

o |m +,- — 3.1000 GeV| > 50 MeV to reject B — K2, where ) — w7~ or ¢ — ptp~ and
the muons are not rejected by the muon veto.

KEhFr0:

o |mgirs — 1.8645 GeV| > 30 MeV for both K7 mass assignments to reject B — D70,
D° - K*7~ and the charge conjugate decay.

o |Mmy+,— — 3.1000 GeV| > 25 MeV to reject B — %, where ¢ — 77~ or ¢ — pTp~ and

the muons are not rejected by the muon veto. This cut is looser than for thiﬁ because
B — m® occurs much less frequently than B — K.
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Figure 4.10: Distributions of | cosfspn| for signal (solid histogram) and continuum (points) events.

Figure 4.11: Tllustration of the virtual calorimeter. Only three of the nine angular bins are shown.

o |m,+0 —1.8693 GeV| > 50 MeV to reject B — D*nF, D* — 7579, No veto is necessary for

D* — K*79 since it is doubly Cabbibo-suppressed and, hence, occurs with low rate.

Koh*+r0:

® |mggr+ —1.8693 GeV| > 15 MeV to reject B — D*p(770)F where a slow 7F from the p(770)F
is lost. These events accumulate at low values of AE (outside the signal region), so they do

not appear in Figure 4.13.

® |mggr0 —1.8600 GeV| > 60 MeV to reject B — Dz%, D% — K970 and the charge conjugate
decay.
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Figure 4.12: F for off-resonance events selected for the K9h*nT topology (points) and NR signal
B — K%rtn~ MC (solid histogram). The signal distribution has been scaled to the same area
as the continuum distribution. The dotted lines show the parametrizations used for the maximum
likelihood fit, as discussed in Section 5.2.3.

4.3 Multiple Combinations

The three-body signal topologies we consider include a final state particle with momentum typically
below 1 GeV. Combinatoric background from fragmentation pions or from the decay of the other B
in the event also populates this low-momentum region. Therefore, it is common to find multiple B
candidates in each event. Signal decays produce an average of 1.4 candidates per event. However,
the vast majority of these extraneous combinations lie outside the signal regions; typically there are
only 1.03 candidates per signal event in a 30 mp-AFE region. Therefore, the maximum likelihood
fitter (see Chapter 5) will correctly identify the combinatoric background as such. In this analysis,

we include all candidates with equal weight.
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Figure 4.13: Dalitz plots of B — K3h*n¥ (top), K*hTn° (middle), and K3h*7° (bottom) for
off-resonance data (left) and b — ¢ MC events (right) in a 30 mp-AFE signal region passing all
selection criteria except the D and v vetos. The horizontal and vertical lines demarcate the vetoed
regions of the Dalitz plots.
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Chapter 5 Maximum Likelihood Fit

An unbinned maximum likelihood fit is used to extract signal yields from the input sample. In the
K9h*rT, K*h¥7% and K2h*7° topologies, the h* refers to the faster of the two tracks, which
typically has momentum above 1 GeV. Because dE/dx provides limited separation of pions and
kaons at these momenta, we make use of the dE/dz information for the h* in the likelihood fit,
rather than imposing a tight selection requirement. The other input variables to the three-body
inclusive fits are mp, AE, F, and cosfp, where fp is the angle between the flight direction of
the reconstructed B and the z-axis. Each of these variables is discussed in Section 5.2. We fit
simultaneously for contributions from h* = 7+ and h* = K*. At high momentum, these two
particle hypotheses are statistically separated by their dE/dz and by AE, each of which provides
discrimination at the 1.7¢ level for CLEO II and the 2.00 level for CLEO II.V. For the Dalitz plot
fits, we also include the two Dalitz plot variables as inputs.

In the maximum likelihood fits, we allow for three types of contributions: signal B decays, generic
b — ¢ background, and continuum background. The probability for an event to be consistent with a
given component is the product of the probability distribution function (PDF) values for each of the
input variables (neglecting correlations). The likelihood for each event is the sum of probabilities
over the allowed components, with relative weights determined by maximizing the total likelihood

of the sample, which is given by the following expression:

#events [ #components #variables
c= 1] > (fj II Pijk) : (5.1)
i=1 j=1 k=1
The P;j are the per event PDF values, and the f; are the free parameters optimized by the fit and
constrained to sum to unity. Since the PDF's are normalized to unit integral over the fit domain, the
fj can be interpreted as component fractions. The parameters of the dE/dz PDFs are measured from
D — K*77F decays in data. For all other variables, the signal and b — ¢ PDFs are determined from
high-statistics Monte Carlo samples, and the continuum PDFs are determined from off-resonance

data.

5.1 Correlations Among Variables

As given above, the joint probability for each event to belong to given component, [[73"2P1 p, .\

is calculated assuming the input variables are independent quantities. However, it is known that

the detector resolution varies by 10%—20% according to the momenta of the final state particles.
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The mp and AFE resolutions for signal are worse for symmetric decays than for asymmetric ones. A
smaller variation in the resolution is caused by the level of combinatoric background, which increases
with decreasing particle momentum (especially for 7%s). F also depends on the kinematics of the B
candidate because it takes a global event shape parameter as one of its inputs.

The impact of correlations among the input variables is reduced by determining the mp, AE,
F, and cosfp PDFs as a function of the event location in the Dalitz plot, for twelve coarse bins
in the m%_-m2, plane for K2h*n¥ and ten bins for K*hTn® and K2h*7®. These regions are
shown in Figures 5.8-5.10. The use of these Dalitz-dependent PDFs results in shifts in signal
yield of approximately 15% compared to the Dalitz-independent fits. The effect of any remaining
correlations in the PDF's is assesed with a MC study, and we assign a systematic error accordingly

(see Chapter 7).

5.2 Three-Body Inclusive Fits

We perform one inclusive fit for each topology, K3h*7rT, K*hTn?, and K2h*n°, allowing for
six components, pion and kaon hypotheses for A% for each of the following: signal, continuum
background, and background from b — ¢ decays. The same PDF parameters are used for CLEO
IT and II.V except for signal AE and the dE/dx variables because both of these have improved
resolution in CLEO IL.V.

Figure 5.1 shows a schematic table of PDF shapes, omitting the variables and components that
describe K /m separation (except AE). As described below, the dE/dxz PDFs are simply bifurcated

Gaussians, and their parametrizations do not vary with type of component.
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Figure 5.1: PDF shapes for three-body inclusive fits.

The combinatoric background in signal decays creates long tails in the mp and AE distributions,
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which are visible in Figure 4.7. Modeling these tails in the PDFs introduces a bias that allows
backgrounds to be identified as signal: the fit assumes these two variables to be uncorrelated, but
in reality, the tails in the two variables coincide; events in the mp tail do not peak in AE and vice
versa. To avoid describing these two variables by a two-dimensional PDF, we truncate the tails of
these distributions, and, to measure the signal PDFs, the domain is restricted to a 3o region around
the mp and AFE peaks. Thus, the combinatoric background from signal events is not classified as
signal, resulting in a fit efficiency of 60%—90%, depending on mode.

Having given a general description of the PDFs and how they are determined, we discuss the

notable features of each of the input variables in turn.

5.2.1 Beam-Constrained Mass

The parametrizations of the mp PDFs for signal and continuum were given in Section 4.2.1. All
signal modes in a given topology share a common mg PDF.

For generic b — ¢ decays, the mp distribution consists of a combination of an Argus function
and a Gaussian peak at the B mass, as illustrated in Figure 5.1. The peak is caused by candidates
with AE < —40 MeV and 1.4 < Myt < 2.2 GeV, as shown in Figure 5.2. The MC generator-
level information for events in this region reveals that about 75% result from B — D, where
D* — KYK* (and the K% is reconstructed as a 7*) or where D — Kp(770), K*(892)x, or K pv,
and a pion or neutrino is lost. The remaining candidates in this region are random combinations
but always in the presence of a B — D*)hE decay.

In order to incorporate our knowledge of this correlation into the fit, the parametrization of the
mp PDF is allowed to vary with AE. For AE < —40 MeV, the PDF is represented by an Argus
function plus a Gaussian peak. For AE > —40 MeV, the Gaussian is removed, and the PDF is
renormalized to unit area. The measurement of the PDFs in bins across the Dalitz plot accounts

for the dependence of the peak size on mg .

5.2.2 AE

The AE PDFs for the signal components are parametrized by bifurcated Gaussians. For the K*n®
modes, AF is evaluated assuming the h¥ is a 7%, so the Gaussian is centered at zero. Since the h* in
these decays is monoenergetic, the AE PDFs for the K* K+ modes are taken to be identical to those
for K*n®, except shifted by —45.2 MeV. The CLEO ILV detector benefits from an improvement in
tracking resolution over CLEO II, resulting in AFE resolutions that differ by about 23%. Therefore,
the signal PDF's for the different datasets use the corresponding AE widths, as measured from signal
MC. The variation of the AF widths among the signal modes in a given topology is negligible, and

we apply a common AE PDF. For NR decays, where the h* is not monoenergetic, we ignore the
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Figure 5.2: myg,+ distribution for b — ¢ MC events in the K2nt7~ mp-AE signal region (left).
mp vs. AE for b — ¢ MC events with 1.4 <mgo + <2.2 GeV (right).

slight broadening of AE for h* = K%,
The continuum AFE distribution is described by a first-order polynomial, and that for b — ¢

decays by a second-order polynomial. In both cases, the same PDFs are used for CLEO IT and
CLEO IL.V.

5.2.3 Fisher Discriminant

All signal and b — ¢ components in a given topology share the same F PDF, which is parameterized
by a bifurcated Gaussian. For the continuum F PDF, care is taken in describing the tails on the
low side. If the continuum likelihoods at low values of F are underestimated, then the significance
of an excess in this region can be artificially enhanced. The functional form for the continuum
PDF is chosen to be the sum of a Gaussian, a bifurcated Gaussian, and a Breit-Wigner, based on a
high-statistics sample from off-resonance data of B candidates in the h*h¥h* or h*hT70 topologies.

Examples of signal and continuum PDFs along with their parametrizations are shown in Figure 4.12.

5.2.4 B Flight Direction

We define g to be the angle between the flight direction of the reconstructed B and the z-axis.
Angular momentum conservation results in different distributions for cosfp in BB and continuum
decays. Since B mesons from Y (4S) decays are produced in a P-wave with L, = +1, they have a
preferred flight direction, exhibiting a 1—cos? #p dependence. On the other hand, the flight direction
of misreconstructed B candidates is random, so candidates from continuum are flat in cosfg. The

distribution for b — ¢ decays is a mixture of those for signal and continuum candidates, as shown
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in Figure 5.3.
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Figure 5.3: Distributions of cosfp for non-resonant B — Kor™n~ MC events (left), b — ¢ MC
events (center), and continuum events (right) in the K3h*nT topology.

5.2.5 dE/dz

The PDFs for the normalized dE/dx variables, o7 Jda and afE /g re the same for signal, b — ¢
decays, and continuum components. However, the improved K /7 separation in the CLEO II.V data
(2.00) over CLEO II (1.70) reduces the crossfeed between the particle hypotheses. Furthermore,
the shapes are sufficiently different between CLEO II and II.V to warrant the use of separate PDF's
for the two datasets. We only consider o7 4, for h* = 7% and ¥ /4o for h* = K*. The PDFs
are modeled as bifurcated Gaussians, and their parameters are determined separately for CLEO
II and IL.V as well as for positive and negative charges, using charged daughters of D*-tagged D°
decays with momenta between 2.3 and 2.9 GeV. The results of these measurements are reproduced

in Table 5.1.

Particle Mean Oleft Oright
CLEO II =t —0.09+0.09 0.91+0.06 1.16+0.07
CLEO IIL n— —0.15+0.08 0.86+0.06 1.21+0.07

CLEO ILV =+ —0.02+0.08 0.90+0.05 1.06+0.06
CLEO II.V i~ —0.00+0.08 0.91+0.05 1.04+0.05
CLEOII K+ —0.114+0.07 0.96+0.06 1.13+0.06
CLEOII K~ —0.07+0.08 0.94+0.06 1.13+£0.06

CLEO ILV Kt —0.05+0.08 0.86+0.05 1.03+0.05
CLEOILV K~ —-0.06+0.07 0.89+0.05 1.084+0.05

Table 5.1: Parameters of the bifurcated-Gaussian dE/dx PDFs for CLEO II and CLEO IL.V.
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5.2.6 Double Particle Misidentification

For the two NR modes K3K *7F and K*7F70, the AE distribution acquires a tail on one side,
and the aféfdw distribution of the high-momentum h* is centered halfway between the pion and
kaon hypotheses (see Figures 5.4 and 5.5). This broadening of both distributions is correlated and
is caused by misidentifying both tracks in the signal decay. For B — K2K*nT events in the fit
domain, one of the tracks often has momentum around 2.6 GeV, and the other between 0.5 and 1.5
GeV so that m K9nt OF Mg o0 lies between 0.7 and 1.8 GeV. Kaons and pions are indistinguishable
by their dE/dz around 1 GeV, so the 30 requirement on the slower track accepts both kaons and
pions. When the slower track is misidentified, the faster one is as well. The two misidentifications
shift AE in opposite directions, but the size of the shift is larger for the slower track. Therefore, the
one-sided tail in AFE coincides with the portion of the afé;rdw distribution shifted from zero. This
correlated broadening does not exist for the partner modes, ng+7r_ and KT K~7°, because it is
impossible to misidentify a signal decay in the same way.

It was found that modeling this AE—J‘%;M correlation in the fitter resulted in large positive
biases for the NR component in question. The effect is akin to including the combinatoric tails in

the mp and AFE PDFs; these broadened PDF's allow background events to be classified as signal more

easily. To prevent this bias, we truncate the tails in the AE PDFs for these two components, and the

K/m
4B/ dz

KYK*7F and K*7T 70 are 30%-50% lower than for K3ntn~ and K*K~7°. Any residual bias in

PDFs take the standard form given in Section 5.2.5. For this reason, the fit efficiencies for

the form of crossfeed between components is measured using the technique described in Section 5.2.8.
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Figure 5.4: Distributions of AE and o ,, of the h* in B — KZK*7¥. On the left are projections
of the two-dimensional o7 Jdz V- AFE histogram.
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5.2.7 Fitter Performance

We have verified that our maximum likelihood fitter provides an unbiased and efficient estimate of
the fraction of signal events in a given sample. This study was performed by generating random
events according to the measured PDFs for each variable (hereafter referred to as “toy” Monte
Carlo). Then, this sample was fitted as one would a real data sample. We form an ensemble of such
experiments, where the number of generated signal events is allowed to undergo Poisson fluctuations
around a given mean. The performance of the fitter is evaluated by subtracting the number of
signal events from the nominal value and then dividing by the yield uncertainty, giving a figure of
merit known as the pull. For an unbiased efficient estimator, the pull distribution should be a unit
Gaussian centered at zero. Figure 5.6 shows the results of generating an ensemble of experiments
similar in composition to the inclusive K3h*7F on-resonance fit. We obtain similar results in other
ensembles of experiments containing different signal components and different ratios of signal to

background events.

5.2.8 Efficiency Measurement

For each mode where we observe no yield, i.e., the three K K7 modes, we measure the selection
and fit efficiencies for three assumptions of resonant substructure: K*(892)K*, K;(1430)K*, and
NR KKm. The fit efficiency is measured from a single fit of all the available MC for each (non-
Jresonant mode with the off-resonance data. We then use the lowest combined efficiency among
these three to establish conservative branching fraction upper limits. In the thiW* topology, we

find, from MC studies, no crossfeed between K3n+n~ and K3K*7F. In the other two topologies,
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Figure 5.6: Number of signal events returned by the fitter (left) and its pull distribution (right) for
toy Monte Carlo. The average number of generated signal events is 60.

there is measurable crossfeed between K7 and KK, but the KK yields are identically zero, so
no crossfeed occurs in practice.

We employ a different procedure for modes with non-zero yields, i.e., the three K77 modes.
Both the selection and fit efficiencies for these three-body final states vary with the momenta of
the final state particles; low momentum particles experience reduced detection efficiency and higher
combinatoric background. The size of the variation can be as large as a factor of five in either
direction. We reduce the model dependence of our branching fractions by measuring the efficiencies
in bins across the Dalitz plot. These efficiency histograms are smoothed according to the algorithm
described in Section 5.3.1, and a correction is applied to each entry in the fit.

Since NR MC events uniformly populate the available phase space at generator level, we take the
Dalitz plot of simulated NR events entering the fit to be the numerator of the selection efficiency.
The denominator is the integral of phase space in each Dalitz plot bin, scaled to the number of
generated MC events.

The fit efficiency is measured in the presence of background to mimic the situation in real data
as closely as possible. We construct an ensemble of experiments that combine toy MC for the
b — ¢ and continuum components and fully-simulated MC for the signal components. The high-
statistics pools of signal MC consist of mixtures of resonant and NR, decays. For each of the 1000
experiments in the ensemble, we randomly draw 80, 60, or 30 events for K3n*tn~, K*n¥70 or
K277, respectively, and embed these in enough toy continuum and b — ¢ MC to match the fit
sample size with on-resonance data. We record the Dalitz plot coordinates of the embedded signal
events to form the denominator of the fit efficiency histogram. For the numerator, we identify the

events labeled as signal by the fit by weighting each event (embedded signal or toy background) by
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its signal probability:
f sig £si g

# components ’
i=1 f z'L'

Psig = (5.2)

where the f; are the component fractions optimized by the fit. The sum of all weights is the signal
yield reported by the fit, and Dalitz plot of these weighted events is the fit efficiency numerator.
Examples of the numerators and denominators for the fit and selection efficiencies are shown in
Figure 5.7. To correct the on-resonance yields, the signal probability of each event is divided by
the product of selection and fit efficiencies from the smoothed histograms. The efficiencies listed in
Table 6.1 are averages over the signal events. Because the signal events do not carry uniform weight,
the products of the average selection and fit efficiencies do not equal the average total efficiencies.
Using the above ensembles of MC experiments, we find no evidence for crossfeed between the Knn
and KK signal components in the thiﬂ”F topology. In the other two topologies, where no
significant signals are observed, we ignore the crossfeed of 5%—-10% to establish conservative upper

limits.

5.3 Dalitz Plot Fit

While it is possible to detect strong signals when one ignores the resonant substructure in the
three-body final state, it is difficult to interpret these signals theoretically. More useful than these
inclusive measurements are observations of NR transitions, or better yet, quasi-two-body decays
with an intermediate resonance. We search for these exclusive decays by adding the two Dalitz plot
variables as inputs to the fit, described by a two-dimensional PDF. We neglect interference among
these various processes, and the implications of this simplification are discussed in Section 7.2.1.
The charmless resonances we choose to reconstruct are ones with mass below the D mass and
with sizeable branching fractions to K7 or nww, namely the vectors p(770) and K*(892), and the
scalars fo(980) and K(1430). We omit AS = 0 transitions unless there is K /7 ambiguity in a high
momentum track. The signal modes considered for each topology are given in Table 5.2. We do
not include the mode B — p(770)FTK* in the K*hT7° topology because of low efficiency. In signal

decays, the daughter ¥ of the p(770)F has lower momentum than the primary K+, so it must pass

a |affE Jaz| < 3 cut, according to our selection criteria. Because we also require pro > 1 GeV, the
momenta of the 7T candidates lie below 1 GeV, with the spectrum peaking at 600 MeV. At these
momenta, the 7F tends to fail the afE Jdz requirement, resulting in a selection efficiency of only 2%.

Figures 5.8-5.10 show the Dalitz plots for all the components in the three topologies. Modes
with K/m ambiguity use the same Dalitz PDF for h* = 7t as for h* = K*. The two-particle

invariant masses are all calculated under the pion hypothesis for h*.
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S
and denominators (right) of the selection (top) and fit (bottom) efficiencies.

5.3.1 Dalitz Plot PDF

Unlike the PDFs used in the inclusive fit, which are smooth functions of the input variables, the
Dalitz plot PDF is represented by a two-dimensional histogram. At leading order, the value of the
PDF at a given point is the contents of the bin containing that point (Npi,), normalized by the sum
over all bins (Niota1) and by the bin width (w) in each dimension: Ppatitz = Nbin/(NeotalWawy).
To reduce the loss of information caused by binning the PDF, we introduce a first order correction
that smooths the histogram. Figure 5.11 shows a data point (X) that lands in the (4, j)-th bin. We
construct a box around the data point (shaded) with the same dimensions as the histogram bins.
This box overlaps with the bin containing the data point and with three adjacent bins. To calculate

the PDF value, we average the contents of these four bins, each weighted by the area of the overlap
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KohtrT K*h¥70 K2h*n0
K*(892)* (KnT)m~ K*(892)H(K*7%)m~ K*(892)°(K%r0)nt
K*(892)Y(K9rt)K—  K*(892)T(K+r°)K~  K*(892)°(K3n°)K*
K;(1430)F(K2nt)m~  Kg(1430)T(K+ta0)n~  K§(1430)°(K9n0)rt
K3 (1430)H(KOrH) K~ Kg(1430)H (Kt n0) K~ Kj(1430)°(K9n0) K+

p(770)°(rt ) KO K*(892)°(Ktn—)n° K*(892) " (K2rT)nm®
fo(980)(nt 7~ ) KO K§(1430)%(K+r)n®  K§(1430)H(K%nt)m®
K°zt7— NR K+tn—7° NR p(770)F (rt 70 KO
K°K+r— NR KTK—-7% NR KO+7% NR
K°K+79 NR

Table 5.2: Modes considered for Dalitz plot fits. Charge conjugation is implied.

in each bin:

[Nij(wy — Az) + Ni_1,;Az] (wy — Ay) + [Nij1(wz —

AIE) + Ni,1’]‘+1AIL’] Ay
Ntotalwzwy '

Ppalitz = (5.3)

When the box around the data point crosses over the histogram boundary, we remove the terms in
Equation 5.3 corresponding to the non-existent bins and reweight the remaining bins appropriately.
This procedure is equivalent to performing a first order Taylor expansion in two dimensions.

The b — ¢ and continuum Dalitz PDFs suffer from limited statistics which are spread across the
full range of the Dalitz plot. As a result, the sparsely populated regions of these histograms contain
many bins with zero entries, when in reality, the probability is small but finite. Therefore, we add
an additional step to the smoothing procedure for these two PDFs, as well as for the NR PDF. If
the average of the four bins (the numerator in Equation 5.3) is less than 10, then the area around
the data point is expanded to 9 bins (3 x 3), then to 25 (5 x 5) bins, and so forth, until at least
10 events are included in the sum (which gives a 30 measurement of the probability density). This
sum is then corrected for the area of the expanded box around the data point. Area expansion is
not invoked for the resonant two-body PDFs because it effectively creates long tails extending into
regions of the Dalitz plot far from the resonances. Such tails would bias the fit, enhancing the yield
for these signal modes.

The choice of bin size for the Dalitz PDFs is driven by the amount of MC available. Since we
have sufficient statistics for the signal components, the binning can be made (almost) arbitrarily
fine, and we choose it so that the most populous bins contain 30-40 events, giving typical bin widths
of 0.05-0.15 GeV?. For the NR, b — ¢, and continuum PDFs, the bins are not allowed to straddle
the boundary of the physical region. Otherwise, the probability density in these bins would be

underestimated. Because the resonances we consider also occupy the edge of the Dalitz plot, events
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Figure 5.8: Dalitz PDFs for the K2h*7rT topology. The twelve large bins are the ones used to
measure all the other PDFs.

falling in these edge bins would have an artificially enhanced signal to background probability ratio,
leading to a biased fit. This problem is overcome by reducing the bin size past a threshold determined
by the masses of the final state particles. The bin sizes chosen for the NR, b — ¢, and continuum

PDFs in the three topologies are

ntm—

o KOnt7r=: 0.50 GeV?® (m2,,_) x 0.25 GeV? (m%,__)
S

o K+h~n%: 0.50 GeV? (m%,__) x 0.50 GeV” (m2%, o)

o KOhtn~: 0.37 GeV? (mﬁ(gw_) x 0.40 GeV? (mg{gﬂo).

In this regime, bin size variations cause shifts in yield of about 15%. This effect is included in the
systematic errors.

One additional issue pertains to the K3h*7° topology. The boundaries of the physical region on
the horizontal and vertical edges of the Dalitz plot are fixed by the masses of the final state particles.
However, the distance of the diagonal boundary from the origin is determined by the invariant mass
of the three-body system. In this analysis, we accept B candidates with a large range of invariant
mass (not beam-constrained mass): 4.85-5.55 GeV. So, while the continuum and b — ¢ Dalitz plots
have dense bands along the horizontal and vertical edges, their diagonal bands are smeared by the B
candidate’s invariant mass. As a result, the continuum and b — ¢ Dalitz probabilities for events in
the diagonal band are reduced by as much as an order of magnitude, thereby biasing the fit towards
large signal yields.

In principle, there is information in this spread; candidates with large invariant mass will be far
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Figure 5.9: Dalitz PDFs for the K=hT70 topology. The ten large bins are the ones used to measure
all the other PDFs.

from the origin. This correlation could be introduced into the fit by measuring the Dalitz PDF as
a function of B invariant mass. However, there is insufficient off-resonance data and b — ¢ MC to
permit these measurements. Instead, we eliminate this correlation by scaling the Dalitz variables
for all candidates to a uniform invariant mass. For the decay B — abc, the two-body invariant mass
Mgy is scaled as follows:

(mp —my)? = (mj, +my)*
(mp —me)? — (mg + myp)?

m2, — [m2, — (mg +myp)?] + (ml, +myp)?. (5.4)
The primed masses are the known masses taken from Reference [5]. For tracks and 7°s, the primed
and unprimed masses are identical (the 7° four-momentum used to form the B candidate has a mass
constraint imposed). Figure 5.12 shows the off-resonance Dalitz plot before and after the scaling.
This transformation effectively unifies the size of the available phase space for all candidates and
creates a dense diagonal edge in the Dalitz plot. The other two topologies, thiﬁ and K*hF70,
do not require phase space scaling because we do not consider any resonances that lie on the diagonal

of the Dalitz plot.

5.3.2 Fit Efficiencies

The fit efficiency matrix is again measured with fully simulated signal MC embedded in toy con-
tinuum and b — ¢ background MC, as described in Section 5.2.8, but with different signal pools.

A simple implementation of this method would use one ensemble of fits for each of the n signal
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Figure 5.10: Dalitz PDFs for the K2h*7° topology. The ten large bins are the ones used to measure
all the other PDFs.

components, with each signal pool containing a single species of signal MC. However, the pres-
ence of other signal components affects both the efficiency and the crossfeed. In the Dalitz fits of
on-resonance data, we find that the inclusive three-body yields are distributed among the signal
components. Therefore, a more accurate measurement of the fit efficiency matrix would be obtained
from mixtures of different signal species, instead of pure signal pools of one type. Using n mixtures
of varying compositions, we construct two n X n matrices, one for the true average yields (A), and
one for the measured average yields (M) of each signal component. Each ensemble of fits for a given
signal pool provides measurements for one column of A and one column of M. Each of the n signal
pools contains MC for all the signal components except one. Therefore, all the diagonal elements of
A are zero. To obtain the efficiency matrix T, we note that A and M satisfy the following relation:
TA = M. Hence, we can solve for T by inverting A: T = MA~!. The resultant efficiency matrices
are shown in Tables 5.3-5.5.

As a simplification, all matrix elements in Tables 5.3, 5.4, and 5.5 that are consistent (< 30)
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Wy

Figure 5.11: Illustration of the Dalitz PDF smoothing algorithm.
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Figure 5.12: K2h* 7" off-resonance Dalitz plot without (left) and with (right) phase space scaling.

with zero and with absolute value less than 7.5% are set to zero, resulting in the following matrices:

0.684 0 0 0 0 0 0 0
0 0.554 0 0 0 0 0 0
0 0 0.724 0 0 0 0 0

Thgpins = 0 0 0 0.529 0 0 0 0.102 (5.5)

0 0 0 0 0.509 0 0 0
0 0 0 0 0 0.582 0 0
0 0 0 0 0 0 0.749 0
0 0 0 0.085 0 0 0 0.289
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Trontrr K*(892)*nF K*(892)*KT K;(1430)*nT K;(1430)*KT
K*(892)*nF 68.42+0.35 887+382  —0.32+0.45 4.28 + 3.66
K*(892)*K¥ 1984037 5543+1.38  0.90+£0.25 2.26 +2.07
K;(1430)*7F | —0.73+1.14 —0.88+6.46 72.38+0.43  16.52+6.00
K;(1430)*KF | 1.024+0.54  1.48+2.92 1.86 £0.33 52.91 + 2.02

p(770)° K 0.75+0.58  0.78+320  052+037  —1.01+3.09
£0(980) K 0.38+£042  298+215  0.56+0.25 4.25 £ 2.05
Kortr~ NR | —044+124 1.754+6.65  2.27+070  —6.88+6.31

KgK%ﬁ NR | —0.17+0.44 —-0.64+2.31 0.21+0.29 8.2 +£2.02

p(TT0°KS  fo(980)K%  K%rtz~ NR KYK*rF NR
K*(892)*nF | —0.38+1.45 0.10+2.91 1.0140.31 1.65 + 3.87
K*(892)*K¥ | 1.68+£0.80  0.21+167  0.13+0.18 0.53 +2.18
K;(1430)frF | 218+235  3.12+491  2.65+0.43 4.23 +6.49
K;(1430)fKF | 0.61+1.08  1.62+228  0.74+024  10.19+2.87
p(770)° K¢ 50.87+£0.66  3.49+237  1.04+0.25 4.30 + 3.23
f0(980)K? 140+082 58244098  0.58+017  —1.61+228
Kortn~ NR | —0.31+254 2424509  74.89+0.27  2.55+6.52
KOK*rF NR | 0.88+0.89  033+1.74  1.55+0.17  28.86+1.72

Table 5.3: Fit efficiency matrix for the K2h*nT Dalitz fit (reconstructed | generated —) with
elements given in percent.

0.734 0 0 0 0 0 0 0

0.294 1.005 0 0 0 0 0 0
0 0 0.643 0 0 0 0 0

Trips o = 0 0 0 0.740 0 0 0 0.092 (5.6)

0 0 0 0 0.795 0 0 0
0 0 0 0 0 0.689 0 0
0 0 0 0 0 0 0.365 0
0 0 0 0 0 0 0.333 0.689
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T g+ pF 70 K*(892)*7nF K*(892)*KT  K;(1430)*nF K(1430)*KT
K*(892)*n¥ 73.39 +2.72 —4.06 +4.38 1.15 4+ 4.21 3.71+4.44
K*(892)*K¥ 29.36 4 4.03 100.52 + 2.96 0.68 + 4.27 —2.77+4.34
K (1430)*7F —3.78 + 6.36 5.89 + 6.46 64.28 + 4.81 7.04 + 6.41
K;(1430)*KF 3.80 £ 5.94 0.80 £ 6.17 16.42 + 5.53 73.97 £ 4.56
K/K*(892)x° 3.81 +4.14 2.30 + 4.41 3.54 +4.08 3.62 + 4.43
K/Kg(1430)°7° | 6.09 + 8.57 3.06 + 8.74 8.86 + 8.59 0.75 + 8.84
K*r¥70 NR 10.39 + 8.49 5.53 +9.06 21.70+8.10 —15.01+9.17
K+*K—7° NR —14.65 + 9.24 —0.2949.72  —14.54+9.01  20.33+9.67
K/K*(892)°7° K/Kg(1430)°7° K*rT7°NR K+tK 7" NR
K*(892)*n¥ —0.16 4 4.32 1.65 4 0.59 1.96 4+ 0.70 3.91+2.05
K*(892)*K¥ 3.53 £4.08 0.94 +0.58 0.24 +0.74 0.33 +2.12
K (1430)*7F 1.35 4+ 6.23 2.80 +0.85 6.95 + 0.97 3.46 £ 2.92
K;(1430)*KF 10.03 £ 5.63 —0.01+£0.85 2.22 +0.99 9.20 + 2.70
K/K*(892)x° 79.50 &+ 2.73 1.62 4 0.56 1.92 4+ 0.69 1.25+1.97
K/Kg(1430)°7° | 0.26 £ 8.21 68.86 & 0.73 6.62 £ 1.35 —3.84+4.17
K*r¥7° NR 11.53 +8.03 —1.414+1.19 36.47 4+ 0.83 1.38 4+ 4.06
K+*K-7° NR —11.144+9.13 6.82 +1.25 33.31+1.26 68.91 +4.04

0.906 0.101 0
0 082 0
0 0 0837
0 0 0

Tiontno = | 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0

0 0

0 0
0.717 0

0 0.551

0 0 0

0 0

0 0

0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
.554 0 0
0 0.433 0
0 0 0.5
0 0 0

15

0
0.393

Table 5.4: Fit efficiency matrices for the K*h¥70 Dalitz fit (reconstructed | generated —) with
elements given in percent.

(5.7)

The inverses of the simplified efficiency matrices, given in Equations 5.8-5.10, are used to deconvolute
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T kg pt 0 K/K*(892)°7*  K/K*(892)°K* K/K;(1430)7*
K/K*(892)x* 90.55 £0.73 10.07 + 3.03 0.61+ 1.34
K/K*(892)°K* 5.98 & 0.91 83.16 £ 1.15 0.08 £+ 0.92
K/K((1430)°7* 0.06 + 1.99 —1.42 +4.46 83.73 £ 1.10
K/K(;(1430)°K* 1.73+1.34 3.26 + 2.84 5.59 + 1.11
K*(892)*nx° —0.94 + 2.09 1.38 £4.59 —2.06 + 1.87
K} (1430)%7° 0.96 + 2.56 —3.33+5.72 3.75+2.28
p(T70)* K2 1.95 +2.24 —0.85 4+ 4.69 1.99 + 1.98
K3n*r® NR —0.13+3.14 14.11 +£ 6.91 3.21 4 2.69
K9K*71° NR -1.89 £ 1.73 1.71 £ 3.55 —0.63 £1.54
K/K;(1430)°K*  K*(892)*x° K} (1430)*7°
K/K*(892)0x* 1.99 +£2.68 0.18+0.33 0.09 + 0.43
K/K*(892)°K* —0.89 +1.83 0.26 + 0.22 0.23 £+ 0.30
K/K;(1430)07* 4.99 + 3.48 0.82 4 0.45 0.55 % 0.57
K/K;(1430)°K* 71.71 4+ 1.45 —0.06 £ 0.30 —0.22 4+ 0.39
K*(892)*n° 5.19 & 3.69 55.07 £ 0.23 1.36 £ 0.60
K;(1430)*7° 2.49 +4.78 —-0.35 £ 0.57 55.42 £ 0.42
p(T70)* K2 3.46 + 3.83 0.11+0.46 1.86 + 0.62
K2r+7% NR 4.15+5.48 ~1.28 £0.72 0.22 4+ 0.89
K3K*n° NR 7.55+2.85 0.05 £ 0.38 0.02 4+ 0.48
p(770)* K K9r*r0 NR K9K*r° NR
K/K*(892)07* 0.46 + 0.50 0.42+0.35 0.50 + 1.84
K/K*(892)°K* —0.25 4 0.36 0.24 +0.24 0.13+1.23
K/K}(1430)07* 1.72 £ 0.66 3.79 +0.43 —0.114+2.43
K/K;(1430)°K* 0.24 £+ 0.46 —0.37+£0.33 8.56 & 1.54
K*(892)*n° 0.26 + 0.69 1.1240.49 1.23 + 2.52
K (1430)*7° 0.24 4+ 0.88 4.48 +0.56 2.79 4+ 3.25
p(T70)* K 43.32 + 0.41 2.02 + 0.50 —0.02 £ 2.50
K2m*r® NR —1.56 4+ 1.04 51.53 + 0.33 6.07 + 3.82
K3K*r® NR —0.47 £ 0.58 4.76 £ 0.32 39.30 + 1.39

Table 5.5: Fit efficiency matrix for the K3h*x® Dalitz fit (reconstructed | generated —) with
elements given in percent.

the raw fitted yields.

1.462 0 0 0 0 0 0 0
0 1.804 0 0 0 0 0 0
0 0 1.382 0 0 0 0 0
1 0 0 0 2.004 0 0 0 —0.708
Troptos = (5.8)
s 0 0 0 0 1.966 0 0 0
0 0 0 0 0 1.717 0 0
0 0 0 0 0 0 1.335 0
0 0 0 —0.592 0 0 0 3.675




oo
(28

1362 0 0 0 0 0 0 0
—0.398 0.995 0 0 0 0 0 0
0 0 155 0 0 0 0 0
. 0 0 0 1352 0 0 0165 —0.181
T prno = (5.9)
0 0 0 0 1258 0 0 0
0 0 0 0 0 1452 0 0
0 0 0 0 0 0 2.742 0
0 0 0 0 0 0 —1325 1.451
1.104 —0.134 0 0 0 0 0 0 0
0 1202 0 0 0 0 0 0 0
0 0 1194 0 0 0 0 0 0
0 0 0 1394 0 0 0 0 —0.304
Tyt =] 0 0 0 0 1816 0 0 0 0 (5.10)
0 0 0 0 0 1804 0 0 0
0 0 0 0 0 0 2308 0 0
0 0 0 0 0 0 0 1941 0
0 0 0 0 0 0 0 0 2.545

5.3.3 Simultaneous Fit of K3h*7nF and K*hFn°

As will be shown in Section 6.2, the Dalitz fits of the K2h* 7T and K*hT7° topologies give consistent
branching fractions for the four modes K*(892)*h¥ and K (1430)*hT. The two measurements of
each mode could be combined by adding the one-dimensional likelihood contours for each submode,
but any correlations among the components would be ignored in the process. To make full use of the
available information, we fit the two topologies simultaneously while constraining each of the four
branching fractions to be equal in the two K** submodes. To apply this constraint, the selection
efficiencies for each mode and the fit efficiency matrix for each topology must be made available
to the fitter. Every time the sample likelihood is computed, the fitter solves for the K*(892)*hT
and K (1430)*hT fractions in the K*h¥7° topology based on the same fractions in the K3h*n¥
topology. The calculation begins by equating the efficiency-corrected yields for K*(892)*hT and
K (1430)*h7:

gi' /et gt [ef
Ay A B /B
€ €
N | BIE sl e (5.11)
95 /€ 95 /€3

93 /ex 9P Jef
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The superscripts A and B refer to the two topologies, the subscripts 1-4 refer to the four K*(892)*h¥
and K¢ (1430)*hT components, € denotes a selection efficiency, and the N? are the numbers of events
in the fit. The g; are the fit-efficiency-corrected component fractions: g; = Zfil Tﬁl fi, where T
is the fit efficiency matrix, f; are the raw component fractions, and K is the number of signal
components in a given topology. Solving for fZ, f£, fE, and fE, we obtain the following system of

linear equations:

f1B gfl/ff1 % zi:5(TB)_zlfiB
KB -
1 —E-! N_A 95 €3 _ é Zi:{)(TB) zlsz (5.12)
- B B _ 7 *
F N gd/ed = L (TP P
B
1P git et o L (TP)5 P
where the matrix E is given by
(TP) /el (TP)p el (TP /el (TP)i /P
E= (TB)_11/62B (TB)_21/€2B (TB)_31/52B (TB)2_41/52 (5.13)
(TP)a [e8 (TP)z [ef  (TP)55 /ef (TF)3i [ef
(TP)n fef (TP e (TP)ig/ef  (TP)i [ef
In the absence of crossfeed ( (T")j_,c1 =0 for j # k ), the above equations reduce to
FE(TP)INT  pA@A) N
J BJJ _ AJJ (5 14)

€; €

as expected. Substituting these expressions into the likelihood reduces the combined number of free

parameters in the two topologies from 22 to 18.

5.4 CP Asymmetry Fit

The results of the simultaneous fit of the K$h*nF and KThTF7° topologies, given in Section 6.2.1,
show a statistically significant yield in B — K*(892)*#T. In this Section, we present an extension
of the above Dalitz fits that allows us to measure the charge asymmetry in B — K*(892)*7xF. The
charge state of a B — K*(892)*7 T decay in either of the two topologies is determined by the charge
of h*, the faster of the two tracks in the candidate. We define the charge asymmetry, A, _, to be

B(B — ht)—B(B — h™)
T BB ht)+B(B k)

(5.15)
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Similarly, for a B decay to a final state f, the C P asymmetry, Acp, is defined to be

B(B— f)—B(B - f)
B(B— f)+B(B - f)

-ACP = (516)

In B — K*(892)*nT decays, the primary pion and the K*(892)* daughter track have very different
momenta, so it is nearly impossible to confuse the two charge states. In signal MC events falling
in a 30 mp-AFE window, we find no misclassified events, and we limit the crossfeed probability to
be less than 8.9 x 10~°, according to the MC sample size. Thus, for B — K*(892)*7T, the charge
asymmetry is essentially the same as the C' P asymmetry.

To determine A4 _ from the maximum likelihood fit, we fit for both sets of charge conjugate final
states at once. In principle, each signal or background component should have an associated charge
asymmetry, thus doubling the number of free parameters in the fit. However, in each topology,
we find the charge asymmetries in the two background b — ¢ components and the two continuum
components (one each for h* = 7% and h* = K¥) to be consistent with those of the entire fit
sample (0.010 £ 0.009 for K3h*nF and 0.006 + 0.006 for K*hTr0). Therefore, we fix these four
asymmetries to those of the fit sample and add free parameters only for the asymmetries in the
signal modes. The consequences of this simplification are investigated in Section 7.

Each candidate enters the fit only once and is given a unique charge assignment. In |AS| =1
transitions, B° decays are associated with At and B° decays with h~. Nonetheless, slight correlations
between the two charge states can occur in the fit because the asymmetries of the background
components are fixed.

In each topology, we fit for eight resonant and NR signal modes. Four of these (p(770)°K2,
fo(980)K2, K2nTm~ NR, and KTK~7°% NR) are CP eigenstates. In these modes, A, measures
not the C'P asymmetry between B® and B° decays, which would require tagging the flavor of the
other B in the event, but the momentum asymmetry between ht and h~. Absent correlations
between flavor and momentum, these asymmetries are, in principle, zero, but we allow them to float
in the fit to remain sensitive to novel effects. We explore the effect of constraining these asymmetries
in Section 7.

The three modes, K*(892)* KT, K;(1430)* KT, and K3K*nF NR, are not CP eigenstates, but
they can still be reached from both B® and BY initial states. Therefore, a charge asymmetry in these

AS = 0 transitions would not necessarily imply a difference between B° and B° decay rates; it might

['(B°>K*(892)TK™) and I'(B°>5K*(892)" K1)

also be generated by a difference between, for example, (S K (892) = KF) (B K+ (392) T K=)

Furthermore, even if there is a C'P asymmetry between the B® and B rates, the charge asymmetry
will be zero if both of the above ratios are unity.

We begin by fitting the two topologies, B — K2h*n¥ and B - K*h¥ 70 separately. Depending
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on the charge of the h®, each event in the fit is assigned a likelihood, £t or £, which is given by

I:EA’ 1:l:A12_ 1:l:A’
£ = Z P = (1 Z 25| Pra, (5.17)
i=1
where the index ¢ labels the components in the fit, with ¢ = 1,...,8 referring to the eight signal
components and ¢ = 9,...,12 to the four background components. N is the total number of events

in the fit, and N+ is the number of events with the corresponding charge of h*. P; is the probability
for each event to belong to component 4, and the f; are the component fractions summed over the
two charge states. Since the Ai_ for the background components are fixed to (Nt — N7)/N, the

above likelihood becomes

gizz%fﬂ) +—Zfﬂ’ +< Z%fﬁ—Zﬂ) P (518)

i=1 i=1

The nineteen free parameters in the fit of each topology are f; and .Aﬂr_

We also determine the charge asymmetries from a simultaneous fit to both the K2h*n¥ and
K*h¥F70 topologies by expanding the analogous fit from Section 5.3.3. The four modes, K*(892)*h¥
and K (1430)*hT, are common to both topologies, and we constrain each of them to have equal
charge-averaged branching fractions and A4 _ values in the two topologies, giving the fit thirty free
parameters.

In calculating the sample likelihoods, the constraints on the K*(892)*hT and K((1430)*hT
branching fractions are applied by solving for the yields in the K=h¥7° topology based on the
same yields in the K3hTnT topology. To do so, we use the same efficiency matrices and selection
efficiencies for both the ht and h~ samples. However, the yields in the two charge states are

deconvoluted separately.
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Chapter 6 Fit Results

6.1 Inclusive Fit Results

We show the maximum likelihood fit results for on-resonance data in Table 6.1 and for off-resonance
data in Table 6.2. The on-resonance continuum yields agree with the off-resonance yields scaled
by LonTon/Loi0or = 2.071. In Table 6.1, the efficiencies for the K7nm modes are averages over the
signal events, and the daughter branching fractions are included in the selection efficiencies. The
branching fractions for the signal processes are calculated using €. The significances of the raw

yields are statistical; no systematic effects have been included.

Mode On-res. Yield €sel (%)  €ay (%) €ror (%) B x 10°
KOrtm— 60.2715:3(8.10) 14.0 77.5 12.4 5014°
K°K+r- 2.4%71(0.40) 12.2 65.7 8.0 <19

b—c,h=m 505157
boc,h=K 32.873%2
Continuum, h =7  (6.33 +0.01) x 103
Continuum, h = K 4.96 x 10°
Ktr—n0 43.01132(3.70) 25.2 82.5 194 2373 (< 34)
K+tK—7° 0t1L:5 15.0 92.9 13.9 <16
b=c,h=m 46815
b=c,h=K 260173
Continuum, h =7 (1.76 &+ 0.01) x 10*
Continuum, h = K 1.02 x 10*
KOrtn0 20.3715%1(2.70) 10.0 54.7 6.8 31112 (< 53)
KK +7° 0t1® 4.2 88.1 3.7 <20
b—c,h=m 547153
b=c,h=K 0t72
Continuum, h =7 (7.44130%) x 10°
Continuum, h = K 1.33 x 103

Table 6.1: Three-body inclusive fit results for on-resonance data. No systematic effects have been
included. Yields are sums and branching fractions are averages over charge conjugate modes.

The only mode with a statistically significant yield is K3n+t7~. Figure 6.1 shows the Dalitz

plot of the N most signal-like events in the three modes with non-zero yields N, selected with a



Mode KohtrT K*h¥70 K2h*n0
Signal h = 7 ot17 5.972-2(0.80) 0t24
Signal h = K o+1:2 o+i-6 0+L0
b - c, h =7 0+11.8 0+11.0 0+7.6
bse,h=K 0+9-5 ot+13.2 Q+5.0
Continuum, h =7  (3.16 £0.06) x 10° (8.26 £ 0.09) x 10* (3.65 £ 0.04) x 103
Continuum, h = K 2.56 x 10° 4.92 x 103 0.62 x 10°

Table 6.2: Three-body inclusive fit results for off-resonance data.

requirement on the signal to background likelihood ratio,

Acsig
Esig + Zi#;;rgnponents fzﬁz

Rsig = (6.1)
The NR Dalitz plot is overlaid to indicate the physically allowed region. The signal events tend to
congregate near the edges of the Dalitz plot, thus hinting at possible resonant substructure.

Figure 6.2 shows the Dalitz plot projections for the signal events, along with the distributions
of off-resonance and generic b — c events satisfying the same R, requirement, normalized to the
on-resonance luminosity. Also overlaid are the expected signal distributions, assuming the signal
consists of NR decays. For K3ntn~, we also project m,+,- for events with m K9rt within 3" of
the K*(892)* mass. Clearly, the data disagree with the NR assumption, especially in the Klntn—

mode, which exhibits an excess of events around the K*(892)* mass.

6.2 Dalitz Fit Results

The results of the Dalitz fits to the three topologies are shown in Tables 6.3—6.5. The on-resonance
yields are corrected by the fit efficiency matrix T to give the yields in the third column. Dividing
these corrected yields by the selection efficiency and by the number of BB pairs in the sample, Ng5 =
9.66 x 10°%, we obtain the branching fractions in the last column. For the branching fraction upper
limits, we apply only the diagonal elements of the fit efficiency matrices to arrive at conservative
estimates. The only significant signal observed is for K*(892)*#T in the K2h*nT topology. The
same mode in the K*h¥ 70 topology exhibits a much weaker signal but with a consistent branching
fraction. In no other mode do we observe a statistically significant yield. Tables 6.6 and 6.7 list the
fitted yields in off-resonance data. None of the signal modes have yields significantly different from
zero, and the non-zero yields are included the systematic uncertainties.

The projections of the fit onto the two-particle invariant masses shown in Figure 6.3 are identical

to those in Figure 6.1 except that the fit predictions contain the resonant contributions measured
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Figure 6.1: Dalitz plots for signal events in B — K9rtn~ (top left), K*7Fx (top right), and
K%7*70 (bottom), along with Dalitz plot for signal NR. decays. Events are selected with a cut on
the signal to background likelihood ratio.

from the Dalitz fit, rather than assuming the signal yield is entirely NR. The agreement between
the fit prediction and the data in the K*(892) mass regions is qualitatively better for the Dalitz fits
(Figure 6.3) than for the inclusive fits (Figure 6.1). Also, for K277~ the m +,- projection in the
K*(892)* mass region agrees with the vector helicity structure.

We define the helicity angle for B — K*(892)*(K3n%)nT, bhel, to be the angle between the
K*(892)* daughter 7% direction in the K*(892)% rest frame and the K*(892)* direction in the B
rest frame. Figure 6.4 shows the distribution of cosfe in the region 0.75 < MEypt < 1.05 GeV
after subtracting all contributions except B — K*(892)* 7T, which are estimated from data collected
below the BB production threshold and from Monte Carlo simulation. The data are consistent with
the cos? Ope dependence expected for a pseudoscalar-vector B decay and reflected in the overlaid fit
projection.

Most of the theoretical work on three-body charmless hadronic B decays has focused, so far, on
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Figure 6.2: Submass projections for signal events in B — K3nt7~ (top left), K*n¥7° (top right),
and K°7* 79 (bottom), along with inclusive fit predictions, assuming NR decays. Events are selected
with a cut on the signal to background likelihood ratio.

quasi-two-body decays via low-mass intermediate resonances. The results of the Dalitz fits suggest
that a complete description of these final states would require fully understanding the contributions
from higher-mass resonances as well as from NR decays, which are beginning to attract the attention
of theorists. Table 6.8 shows the results of a fit for the fraction of the inclusive Kgr 7~ yield in each
exclusive mode. K*(892)*77 only accounts for 20% of the Kan+ 7~ yield, and this fraction is found
to be 7.40 from unity. Although they are of lower significance, the fractional yields of K (1430)*x ¥
and NR K%nt 7~ exceed that of K*(892)*#T, thus suggesting the presence of contributions that
have not been modeled in this exclusive fit. Nevertheless, the B — K*(892)*7T signal is shown to
be stable against variations in these two components in Section 6.3. Future higher-statistics analyses

of this topology should probe the exact nature of these broad components.
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Mode On-res. Yield T-corr. Yield ege; (%) B x 108
K*(892)tn— 12. 0+§~§(4 00) 17.5%%3 11.9 15*8
K*(892 )+K* 1.6728(0.90) 3.0159 11.2 3t (< 11)
K (1430) T 16.2753(2.60) 2241512 9.5 24117 (< 42)

K3 (1430)T K~ 0+2 3 0t5:3 8.9 <14
p(770)°K° 6.9151(2.30) 13.6110.0 21.0 78 (< 14)
fo(980)K° .61‘3.}(1.40) 4.5153 9.8 518 (< 14)
KO%tn~ NR 21.875:3(3.20) 29.011%3 13.9 2270 (< 35)
K°K*n~ NR 037 ot+13.7 12.2 <24
boec, h=m 45818
boec, h=K 23.97370

(6.36 & 0.09) x 10°
4.99 x 103

Continuum, h =7

Continuum, h = K

Table 6.3: Dalitz fit results for KSh*nF. Yields are sums and branching fractions are averages over
charge conjugate modes.

6.2.1 Simultaneous Fit Results for K3h*n¥ and K*hTx°

The results of the simultaneous fit of the K2h*nT and K*h¥7° topologies are shown in Table 6.9.
As required by the constraints on the K*(892)*hT and K¢ (1430)*hT branching fractions, their
values in the two topologies are identical. For B — K*(892)*7¥F, we find a combined significance of
4.60 in both submodes, and we claim an observation of this mode based on this fit. The resultant
branching fraction is B(B — K*(892)*nF) = (161%) x 1076. This simultaneous fit is considered
the standard fit for branching fraction measurements in the modes covered by these two topologies.

The results for off-resonance data are given in Table 6.10.

6.3 Verification of Fit Results

To verify the results of the maximum likelihood fits, we perform three types of studies: counting
analyses with restrictive requirements on the variables used in the fit, goodness of fit tests comparing
the fit results with expectations, and tests of signal stability under variation of the conditions of the

fit.

6.3.1 Counting Analysis

Corroborating evidence for the observed maximum likelihood signals in the inclusive mode B —
K2nt7~ and the exclusive mode B — K*(892)*7T is found in a counting analysis searching for

the same decays. We choose our cuts to maximize sensitivity. That is, we adopt the cuts that result
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Mode On-res. Yield T-corr. Yield ege; (%) B x 108
K*(892)tn— 7.275:7(2.10) 9.8%78 53 1911 (< 43)
K*(892)t K~ 4.2%57(1.00) 14761 5.0 3t (< 28)
K (1430) 7~ 2.8192(0.30) 4.31133 6.3 753 (< 46)
K3 (1430)T K~ 0t34 1.0+53 6.1 279 (< 25)

K*(892)%7° 037 ot+47 12.9 <10
K (1430)07° 15.975:5(2.80) 23217 169 1477 (< 25)
K+ n° NR 13.8%3%5%(1.60) 37.813:3 23.0 1771 (< 16)
K+tK-7° NR 7.2+3%3(0.80) ot214 23.5 <15
b=c,h=m 91771
bsc,h=K 512183

Continuum, h =7 (1.724+0.01) x 104

Continuum, h = K 9.91 x 103

Table 6.4: Dalitz fit results for K*hT70. Yields are sums and branching fractions are averages over
charge conjugate modes.

in the smallest branching fraction, Bs,, where we would expect to observe an excess inconsistent
with background fluctuation at the 4o level (S/v/B > 4). In practice, we define a 30 signal region
in mp (£8 MeV) and AE (+50 MeV) and require 0% iz
as well as | cosfspn| < 0.8. We also apply the D and ¢ vetos from Section 4.2.4. Then, for a series

< 3 for all the tracks in the final state

of values of assumed branching fraction, we determine the cuts that maximize S?/B. The variables
considered for B — ngﬂr* are F and cosfp. For K*(892)*7nT, we also cut on mg- and cos fher.
The expected background is determined from off-resonance data and b — ¢ MC and the expected
signal from signal MC. This optimization is performed independently for each variable, but the entire
process is iterated to account for correlations among the variables.

Once the optimal requirements have been established, they are applied to the on-resonance
data. We define the grand sideband (GSB) to be 5.20 < mp < 5.27 GeV and |AE| < 200 MeV.
The population of the GSB is projected into the signal region to estimate the background due to
continuum and combinatoric b — c¢. The scale factor between the GSB and the signal region is the
product of the mp and AFE scale factors. For the AE dimension, this factor is simply the ratio
of the AFE window sizes because the background is linear in this variable and both windows are
centered at zero. For the mp dimension, we combine off-resonance data and b — ¢ MC, normalized
to a 3:1 ratio (the ratio of cross sections), and fit the mp distribution to an Argus shape. The mp
scale factor is calculated by integrating the appropriate portions of this curve. For b — ¢ MC, we
require |AE| > 0 MeV to prevent peaking around the mp signal region from the sources described
in Section 5.2.1. The size of the b — ¢ peaks in the signal region are estimated separately from

events with |AE| < 50 MeV and are included as an additional background contribution.
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Mode On-res. Yield T-corr. Yield ege; (%) B x 108
K*(892)°xt 6+3 7(3.20) 7.2%%] 1.5 49728 (< 93)
K*(892)° K+ 30(0.50) 0.9%38 1.4 738 (< 50)
K3 (1430)07t 0. 9+§ g(o 30) 1.07%$ 1.8 6f{3 (< 55)
K(1430)°K* 0t1o 0t27 1.7 < 52
K*(892)t70 6.4757(1.50) 11.615%3 12.1 1072 (< 23)
Kg(1430)t7° 3.2+453(1.20) 5.7182 9.7 612 (< 22)

p(770)*t K° 10.358(2.20) 23.81158 127 20173 (< 39)
Kortn® NR 0t27 0t5:2 8.9 <18
K°K+70 NR 0t!s 0+39 7.5 <20
boe,h=m 322%4%
bsec,h=K 157452

Continuum, h =7 (7.66 & 0.06) x 103
Continuum, h = K 1.17 x 103

Table 6.5: Dalitz fit results for K3h* 7. Yields are sums and branching fractions are averages over
charge conjugate modes.

For inclusive B — K°/K°r*tn~, the optimized cuts are F < 0.6 and |cosfg| < 0.8, with
By, = 28.7 x 1076, The resultant signal efficiency is 6.4%, including daughter branching fractions,
and assuming only phase space decay. We observe 95 events in the signal box with an expected
background of 59.3+2.0 events. The excess of 35.7£10.0 events is 3.60 from zero and is inconsistent
with being a background fluctuation at the 4.60 level. Using the efficiency given above, the branching
fraction is (57 & 16) x 1075. If, instead, we correct the background-subtracted Dalitz plot of events
in the signal box, using the procedure of Section 5.2.8 (but without the histogram smoothing), we
obtain a model-independent branching fraction of (64 & 18) x 10~ ¢. Both branching fractions are
consistent with the likelihood fit result. Figure 6.5 shows the mp-AF plane for this analysis, as well
as the projections onto the two variables (with a cut on the variable not being plotted).

For B — K*(892)*n¥, we only consider the K*(892)* — K27n* submode. The optimized
requirements are F < 0.55, |[Amg+| < 50 MeV, and | cosfyei| > 0.25, which gives By, = 5.0 x 10~¢
and a signal efficiency of 3.0%. The optimization procedure favors no cut on cosfg. We observe 6
events in the signal box with an expected background of 2.0 + 0.3 events. The excess of 4.0 £ 2.5
events is only 1.60 from zero, but it is 2.80 from being a background fluctuation. The branching

fraction of (14 £ 8) x 10~% agrees well with the likelihood fit result. Figure 6.6 graphically displays

the results of this counting analysis.
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KohtrT K*hFr0
Mode Off-res. Yield Mode Off-res. Yield
K*(892)*x 0+o-8 K*(892)*n¥ 2.6154(0.70)
K* (89 ):I:K:F 0107 K* (892):|:K:|: 0+27
K (1430)*7 0t24 K (1430)*nF 4.775%(1.20)
K(1430 )iK”F 0.8%17(0.40) K3(1430)* KT o+to
p(T70)° K 0t K/K*(892)070 2.81%:3(0.90)
fo(980) K% 0+2:0 K/K}(1430)°7° 7.975-8(1.90)
K2ntr= NR 0+10 K*n¥70 NR 0+3:3
KYK*nF NR 0t!2 K+K 7° NR ot'4
b—c,h=mw 0+29 b—>c,h=m ot15.4
b—oc, h=K o+4-6 b—ce,h=K 0+265
Continuum, h =7 (3.16 £ 0.06) x 103  Continuum, 7  (8.24 £+ 0.09) x 103
Continuum, h = K 2.56 x 103 Continuum, K 4.91 x 103

Table 6.6: Fitted yields for independent Dalitz fits to the K3hTnT and K*hTx® topologies for
off-resonance data.

6.3.2 Goodness of Fit

To evaluate the quality of the likelihood fit, we perform a series of comparisons between data and
MC, where the signal and background composition of the latter is given by the results of the fit.
Discrepancies between data and MC can have various origins: neglect of correlations among the
input variables, extra sources of background, or PDFs which do not accurately represent the data.

Any of these pathologies can bias the fit results, and we find no evidence of them in any of our fits.

Projection Plots

To illustrate the fit results in the various variables used in the fit, we apply background suppression
requirements that visually enhance the signals. The variable used for this selection is the ratio Ry,
defined in Section 6.1 and computed without the variable being plotted. Thus, the criterion used
to select the events is independent of the plotted quantity. The cut on R, is chosen to maximize
S?/B in the mp-AE signal region, and this optimization is performed separately for each variable
and each mode. Figure 6.7 shows the mp and AFE projections for the two modes where we claim
an observation. Overlaid on the histograms are predictions from the fit. The dotted curves are the
sum of the continuum and b — ¢ PDFs normalized to the fitted yields and scaled by the efficiencies
of the likelihood ratio cut. The solid curves include an extra contribution from the relevant signal

PDF. In all four plots, the size of the excess agrees well with the fit prediction.
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Mode Off-res. Yield
K/K*(892)7* 1.71%1(1.40)
K-/K* (892)0Ki ot+i3
K/Kg(1430)7* ot+18

K/K;(1430)°K* o+L7
K*(892)*7° 0+0-9
K (1430)* 70 0t!2
p(T70)* K2 ot+t1
K2n*tn® NR 0t+10
KYK*m® NR ot'®
b—oc,h=m ot24
b—c,h=K ot+1s.6
Continuum, h =7  (3.65 £ 0.04) x 103
Continuum, h = K 619

Table 6.7: K%h*7° Dalitz fit results for off-resonance data.

Mode Fractional On-res. Yield

K*(892)*7T 0.2015:0%

K (1430)* 7 0.271513
p(770)° K 0127958
fo(980) K 0.0470:0

K2rtn~ NR 0.37

Table 6.8: Fractional fit results for B — K3nt 7. The total yield is 59.4710:3 events.

Likelihood Ratio

In addition to observing excesses in the variables used in the fit, we also examine the likeli-
hoods for each event. Figure 6.8 shows the distributions of Rg, for inclusive B — K3rt7~ and
B — K*(892)* (K27%)nT in the K2h*7T topology. The distribution for data is compared to the
expected distributions for signal and background. The normalizations of the signal contributions
are determined by the fit results. Discrepancies in the shape of the distribution or the size of the
excess can arise from inaccurate PDFs or neglected sources of background. In both fits, we observe

good agreement in shape and number.

Optimized Likelihoods

We also gauge the goodness of fit by comparing the expected distribution of optimized likelihoods,

obtained from toy MC, with the value from the fit of on-resonance data. To reduce the contamination
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Figure 6.3: Submass projections for the signal events in B — K2ntm~ (top left), K= ¥7% (top
right), and K27*7° (bottom), along with Dalitz fit predictions. Events are selected with a cut on
the signal to background likelihood ratio.

from background contributions, we consider only events in a 30 mp-AFE signal region instead of using

the full fit domain. We define the normalized sample likelihood to be
9
-2 i
X =—-= z:E - In ;C:nax, (62)

where the index i labels the N events in the signal region, and the £,  are the event likelihoods
evaluated with the optimized component fractions returned by the fit.

In the limit of Gaussian PDFs, ¥ behaves like a figure of merit for a least-squares fit (with
an aribtrary offset). Hence, a poor fit would result in a nominal ¥? that lies in the high tail of
the expected distribution. On the other hand, if the correlations among the fit variables are not
modeled correctly, then the number of degrees of freedom in the fit is effectively overestimated,

and the nominal ¥? would lie in the low tail. Since ¥ is obtained by summing the individual log-
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Figure 6.4: cosfhe projection for B — K*(892)*(K%r*)rT. Shown are the data distribution
(points) in the region 0.75 < mgg,+ < 1.05 GeV with all non-K *(892)* 7 contributions subtracted
and the fit prediction for B — K*(892)*x ¥ (histogram). The background has been suppressed with
a cut on the ratio of signal and background likelihoods computed without the Dalitz plot variables.
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Figure 6.5: Counting analysis results for inclusive B — K277 ~: the two-dimensional grand side-
band and signal region in the mp-AFE plane (left) and the one-dimensional projections of mpg for
events in the AFE signal region (left top) and AFE for events in the mp signal region (left bottom).

likelihoods for each event, a reasonable value of ¥? can arise by accident; being a global quantity, x2
is relatively insensitive to variations in the distribution of the individual log-likelihoods. Therefore,
we also compare the event distributions of optimized likelihoods in the signal region between data
and toy MC.

Figure 6.9 shows the expected distributions for y2. These distributions are measured using
ensembles of toy MC experiments with generated component fractions taken from the on-resonance
data fit. The dashed vertical lines in Figure 6.9 show the x? values for data, and these agree well
with expectations in both fits with significant signals, the inclusive and Dalitz fits of the K3h*n¥
topology. We define the confidence level to be the fraction of the expected ¥? distribution that lies
above the data value. Figure 6.9 also shows the event distributions of —21n £ . for events in the

signal region. Here, the confidence level is that returned by a fit of the data distribution to the

expected distribution. For both the inclusive and Dalitz K gh%ﬁ fits, the comparisons between MC
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Mode On-res. Yield T-corr. Yield €5 (%) B x 108
K2h*n¥
K*(892)*n 12. 6+§-g(4 60) 185757 11.9 16*¢
K*(892 )+K* 1.773:%(0.90) 3.1+47 11.2 3%3 (< 11)
K3(1430)tn—  14.0%79(2.50) 19.41%8 9.5 217" (< 36)
K3 (1430)T K~ 01 0t44 8.9 <10
p(770)°K° 6.9751(2.30) 13.6110.0 21.0 7 (< 14)
fo(980)K° 2.6131(1.40) 4.5%53 9.8 518 (< 14)
K°*t7— NR  22.8793(3.40) 30.51137 13.9  23%% (< 35)
K°K+r~ NR 0t46 0t17.04 12.2 <24
K*hFr0
K*(892)tm— 6.1122 8.3139 5.3 16*¢
K*(892)vK~ 3.8+21 1.4722 5.0 378 (< 11)
K (1430)tm 8.3%5+ 12.8764 6.3 2173 (< 36)
K;(1430)T K~ o+t o3t 6.1 <10
K*(892)°7° 0t37 0t47 12.9 <10
K;(1430)°7°  15.87%4(2.80) 23.01 154 16.9 1417 (< 25)
K+tr—7% NR  14.475%°(1.70) 39.5758-2 23.0 18713 (< 16)
K+K—7° NR  5.3%:%%(0.70) 0F1o-7 23.5 <15

Table 6.9: Results of simultaneous fit to the thiﬁ and K*hF7° topologies for on-resonance
data. Yields are sums and branching fractions are averages over charge conjugate modes.

and data give reasonable confidence levels.

6.3.3 Signal Stability

The stability of the two significant signals is probed by varying the PDFs, the events entering the

fit, and the number of free parameters in the fit.

PDF Variation

To assess the sensitivity of the signals to uncertainties in the PDF parameters, we record the response
of the fitted yields to extreme PDF variations. To do so, we coherently shift the PDF parameters
of mp, AE, and F for all components by one unit of statistical uncertainty in the direction that
minimizes the signal. We repeat the procedure using the reverse variations to maximize the signal.
To simplify the procedure, we use the PDFs averaged over the Dalitz plot, so the fit results with
unmodified PDFs differ from the standard fit results. Table 6.11 shows the results for the inclusive
and Dalitz fits. We find that the B — K2nt 7~ yield varies by +8%, and the significance changes by
+0.30. The B — K*(892)*(K2n%)7rT yield varies by £7% and its significance by £0.20. Clearly,
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th%ﬁ K*hF70
Mode Off-res. Yield Mode Off-res. Yield
K*(892)*n 008 K*(892)*n¥ ot+18
K*(892 )iK:F 0t06 K*(892)*K ¥ 0+2:3
K;(1430)*7F  0.8132(0.40)  K3(1430)*7T  0.5712(0.40)
K;(1430)*KF 022 K;(1430)*KF 0to8
p(770)° K 0+23 K/K*(892)°70  2.8%43(0.90)
fo(980) K% 0.3719(0.30) K/K§(1430)°7° 7.9757(1.90)
K%ntn~ NR otto K*r¥7° NR  0.3753(0.20)
K)K*n¥ NR 0+22 K+*K 7° NR ot'®

Table 6.10: Results of simultaneous fit to the thiﬁ and K*hF70 topologies for off-resonance
data.

both signals are robust under PDF variation.

Resonance Variation

An additional test of the robustness under PDF variation of the B — K*(892)*(K27*)rT signal
is to vary the resonant components included in the Dalitz fit. We replace the Kg(1430)* scalar
resonance with the vector K*(1410)*. Figure 6.10 compares the Dalitz PDFs for the two resonances.

The results of the two fits are shown in Table 6.12. The B — K*(892)*7 ¥ yield undergoes a 1.6%
change. The use of the K*(1410)* is somewhat unrealistic, as its branching fraction to K is only
6.6%. This exercise primarily probes the model dependence of our results, and it demonstrates that

the B — K*(892)*#T yield is relatively insensitive to the precise nature of the broad components.

Removal of Events

We remove the two most signal-like events from the inclusive and Dalitz fits to the K gh%ﬁ topology
to verify that the observed signals are not caused by extremely unlikely events with unusually high
weight. These events are identified via the likelihood ratio Rsiz. There is no overlap between the
two best B — K9n+7~ events and the two best B — K*(892)*(K27*)rT events. We find that
these four events are each assigned a weight of 1.8-1.9 events by the fitter, so they are not solely
responsible for the signal yield. Table 6.13 shows the drop in yield and significance as each succesive

event is removed.

Removal of Fit Components

Another test of stability is to vary the number of broad scalar components allowed in the fit by

constraining the yields for the K3(1430) or the NR components to zero. Table 6.14 shows that
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Figure 6.6: Counting analysis results for B — K*(892)*7nT: the two-dimensional grand sideband
and signal region in the mp-AFE plane (left) and the one-dimensional projections of mp for events
in the AE signal region (left top) and AFE for events in the mp signal region (left bottom).

fixing one of these two components transfers its yield to the other, suggesting a large correlation
between the two. The two B — K*(892)*nT yields in both K*(892)% submodes, however, remain
roughly constant in these fits. It is only when both components are fixed to zero that the B —
K*(892)*7F components experience an increase in yield and significance. Such fits, however, are
unjustified, as the combined significance of the Kj(1430) and NR components is 6.40 and 4.2¢
for the th%ﬁ and K*hF70 topologies, respectively. The fit demands the presence of a broad
scalar component to describe properly the inclusive B — K277~ signal, the bulk of which is not

B — K*(892)* (K% ) F.

6.4 Dalitz Fit Results with Charge Asymmetries

Tables 6.15 and 6.16 show the A, _ fit results for the two topologies containing B — K*(892)*7T.
The signal yields and significances do not deviate significantly from those of the charge-summed
fits in Section 6.2, where we assumed A;_ = 0 in all modes. Some excursions are expected
since the sums of the component fractions in the two charge states are not constrained to the
Ai_ = 0 result; the yields for each charge of h* are allowed to fluctuate (essentially) indepen-
dently. In all signal modes, the fitted charge asymmetry is consistent with zero. To assure con-
vergence of the fit, the charge asymmetries for components with yields less than 0.1 events are
fixed to zero. Performing a weighted average of the B — K*(892)*71F asymmetries from the two
topologies gives A, (B — K*(892)*nF) = 0.327332. Table 6.17 shows the results of the si-
multaneous fit with charge asymmetries to the Kh*nT and K*hTr0 topologies, where we find

Ay (B — K*(892)*7T) = 0.267033. We henceforth consider this simultaneous fit to be the stan-
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Figure 6.7: mp and AFE projections for B — K2ntn~ (left) and B — K*(892)*77 (right), which
includes the two K*(892)* submodes, K*(892)* — K2n* (lower histogram) and K*(892)* —
K*79 (upper histogram). The dashed and solid lines show the fit predictions for background and
the sum of signal and background, respectively.

dard fit for the CP asymmetry in B — K*(892)*7T.

We determine the sample likelihood as a function of Ay (B — K*(892)*xT) by refitting with
the asymmetry fixed to a series of values in the physical region [—1, 1]. Recording the likelihood from
each fit gives the curve shown in Figure 6.11, which has been arbitrarily normalized. The likelihood
function is well-described by a bifurcated Gaussian, and we construct a symmetric allowed interval
by integrating this function in the physical region. Each of the excluded regions contains 5% of the
integrated area, and, at the 90% confidence level, we find A;_(B — K*(892)*n¥) € [-0.30,0.75]
based on the statistical errors only. In Section 7, we inflate this interval to account for systematic

effects.

6.5 Sources of Bias in A, _

Investigations of charge- and strangeness-correlated systematic effects in high-momentum tracks and
K*(892)* decays in CLEO were performed using kinematically identified pions and kaons from D
decays [95, 119]. These studies found negligible asymmetries in the selection criteria, momentum
measurement, and dF/dz measurement. The yield asymmetries for charged pions and kaons was
limited to 0.2% for tracks between 2 and 3 GeV and to 0.5% for pions and 1.5% for kaons below 2
GeV. Asymmetries in the dE /dz measurement were limited to 1.0%. It was also found that crossfeed
between the ngi and K*7° submodes was negligible. Below, we consider additional sources of
bias in the charge asymmetry measurement for B — K*(892)*7T, the only two-body mode with a

significant signal.



104

50 —————T————— 30 ——
[ === On-resonance data I === On-resonance data

40 :------; Off-resonance + b—c MC I - Off-resonance + b—sc MC
[ —— Signal MC + backgrounds - — Signal MC + backgrounds

0
0.90 0.925 0.95 0.975 1.00 0.90

0.95
Ry for B—>Kmm™ Ry for B—>K'(892)" (Ko%m* )™

1.00

Figure 6.8: Likelihood ratio distributions for inclusive B — K%nt 7~ (left) and B — K*(892)*n¥
with K*(892)* — K2r* (right). The data distributions are shown as solid histograms, and the
expected distributions for background (dashed) and background plus signal (solid) are overlaid.

Since the fitter uses the same Dalitz plot PDF for both charge states, we check the K*(892)*
and K*(892)~ lineshapes for possible charge asymmetries. We examine K3h+th~ and nhTh~
candidates in both on- and off-resonance data that pass all the fit selection criteria except the
b — ¢ vetos and the dE/dz requirements. In particular, the mass and momentum cuts on the 7°
candidates are retained. For both K*(892)* — K37+ and K*(892)* — K*7°, we accept three-
body candidates with |AE| < 300 MeV and mp > 5.17 GeV. Each three-body candidate contains a
K*(892)* candidate and a K*(892)~ candidate. We consider K*(892)* candidates with invariant

mass between 0.7 and 1.1 GeV and require the K*(892)* daughter track to satisfy ‘agE Jaz| < 2

< 2. No cuts are placed on the dE/dz of the other track. Figure 6.12 compares the

or ‘Jlg(E'/dz
K*(892)*" and K*(892)~ lineshapes in the two decay modes. No significant difference is seen. We fit
these distributions to a second-order polynomial background and a signal Breit-Wigner with width
fixed to the known value [5]. The charge asymmetries in the areas and means of the Breit-Wigner
are shown in Table 6.18. We use the sign convention A4 = [K*(892)~ — K*(892)*]/[K*(892)~ +
K*(892)*]. In no case is the asymmetry observed to be different from zero. Because of the limited
statistical power of this study, we rely on the work in the two previously published papers mentioned
above to establish systematic uncertainties associated with detector bias.

Biasin A4 _ may arise from the event selection and the maximum likelihood fit. In Table 6.19, we
compare selection and fit efficiencies for MC samples of B® — K*(892)*7~ and B® — K*(892) 7.
The fit efficiencies are measured by fitting all the available MC with the off-resonance data. We
find no evidence for differences in overall efficiency between the two charge states, and we limit the

uncertainty on Ay _ to less than 2%.
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Figure 6.9: Expected distributions (solid histograms) of x? (top) and per event —21n £ . (bottom)

in the signal region for the K3h*7T inclusive (left) and Dalitz (right) fits. The x> values and

—2In i, distributions for on-resonance data are given by the dashed vertical lines and the square

points, respectively.

Another possible source of bias in A, _ for B — K*(892)*nT is the presence of crossfeed from
other signal B decays. In the independent fits of the two topologies, the A, _ values for the signal
modes are determined from the raw yields, without being deconvoluted by the efficiency matrices.
Ideally, the signal yields in the two charge states would be deconvoluted separately, and A4 _ would
be determined from the resultant yields. However, in both topologies, the efficiency matrices confirm
the lack of crossfeed between K*(892)*nF and the other signal components, so calculating A,
from the raw yields is a valid procedure. In the simultaneous fit to the two topologies, the efficiency
matrices are effectively taken into account, and the above caveat does not apply.

There may also exist crossfeed between one charge state of one mode and the opposite charge state
of a different mode. We neglect this effect in the fit, and we estimate its size with a MC study using

ensembles of fits to simulated samples. We compare the A, _(B — K*(892)*7¥) averages of two
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Mode Unmodified PDFs Extreme Down  Extreme Up
K9r*nF 65.27117(8.50)  60.071,5(8.10) 70.47773(8.80)
ngK:tﬂ':F 0+6.8 0+6.4 0+6.0
K*n¥70 46.57183(3.40)  37.47152(3.00) 57.67175(3.90)
K+K_7T0 0+15.2 0+14.7 0+15.2
K%n*n® 18.71%3(2.40)  13.1123(1.90) 251115 0(2.90)
KgK:l:ﬂ.O 0+2.5 0+2.2 0+3.0

K*(892)%(K9n™)nT 14.1752(4.60) 13.2753(4.40)  15.175%(4.80)
K*(892)*(K%r*)K T 1.8728(1.00) 1.7727(1.00)  1.97%3(1.00)
K (1430)* (K%7+)nF 17.1+8:1(2.70) 16.379(2.70)  18.175:3(2.80)
K5(1430)i(Kgﬂ'i)K:‘: 0+2.1 0+1.8 0+2.3
p(T70)° K¢ 9.5757(2.80) 8.3754(2.60)  10.9753(3.00)
fo(980) K% 2.4%3:0(1.30) 2.2739(1.20)  2.6737(1.30)
Kyrtn~ NR 18.0793(2.70)  16.6770(2.60) 19.4735(2.90)
KgKiW:F NR 0+2.5 0+2.4 0+2.7
K*(892)* (K*a%)n T 10.27%7(2.40) 8.4780(2.10) 12477 5(2.70)
K*(892)X(K*r0) K+ 7.4185(1.60) 6.3783(1.30)  9.0758(1.80)
K (1430)F (K*+7%)n ¥ 079 (s 2.219:2(0.30)
KS(1430):|:(K:|:7T0)K$ 0+2.6 0+2.4 0+2.8
K/K*(892)°7° 5.8+7-2(0.90) 2.2%82(0.40)  10.2%72(1.60)
K/Kg(1430)°7° 14.5%3:3(2.40) 12.7753(2.20)  16.8%5%8(2.70)
K*7F7% NR 14.475%.0(1.60)  12.273%*(1.40) 16.47115(1.70)
K+tK 7% NR 2.2410%4(0.30) 1.271990.20)  2.9%1%7(0.30)
K/K*(892)%* 8.9735(3.70) 8.1%712(350)  9.5715(3.90)
K/K*(892)°K* 2.373-2(1.10) 2.075:5(1.00) 2.573-3(1.20)
K/K;(1430)07% 0.5755(0.20) 0+3-2 1.5743(0.40)
K/K§(1430)°K+ 0.3753(0.10) 0+4:2 1.7+53(0.40)
K*(892)%7° 1.7+33(0.50) 0.7+41(0.20)  3.3733(0.90)
K (1430)*7° 3.6737(1.30) 2.7732(1.10)  4.6751(1.50)
p(T70)* K 7.0125(1.60) 447355(1.20)  10.27%3(2.10)
Kgﬂiﬂo NR 0+2.5 0+2.0 0+2.5
KYK*7° NR 0tt7 otts 0tts

Table 6.11: Fit results using Dalitz-plot-averaged PDF's with extreme variations.

ensembles with different sample compositions. In the first ensemble, signal MC for B — K*(892)* 7T
is embedded in toy MC for the four background components. In the second sample, we replace the
B — K*(892)*7F MC with signal MC for all eight signal components, where the proportions of MC
in each signal mode mimics the results of the fits to on-resonance data. The two final state topologies
are treated independently. The B — K*(892)*n T MC sample contains roughly equal amounts of
each charge state, and the MC for the C'P eigenstates are explicitly generated with A4_ = 0. For all
other signal modes, A4_ = —1 in the MC. The fitted charge asymmetries in on-resonance data are
scattered throughout the physical region, so we overestimate the effect of crossfeed between modes
by using a common extreme value for the generated asymmetries.

Figure 6.13 shows the distributions of A, _ (B — K*(892)*7¥F) from the two ensembles in
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Figure 6.10: Dalitz PDFs for B — K (1430)*hT (left) and B — K*(1410)*h¥ (right).

Mode K3E = K3(1430)F K3 = K*(1410)*
K*(892)*n+ 12.075:3(4.00) 12.2%53(4.10)
K*(892)* K+ 1.613:8(0.90) 1.677%(0.80)

KiEnT 16.2+51(2.60) 8.0179(1.10)
KEKT 0+23 1.2734(0.50)
p(770)° K% 6.9151(2.30) 6.5759(2.20)
fo(980) K9 2.6131(1.40) 2.4+31(1.20)
K%rt7n— NR 21.8793(3.20) 29.513%" (4.40)
K)K*nT NR 0+37 0*34

Table 6.12: K3h* 7T Dalitz fit results with K3 (1430)* and K*(1410)*.

each topology. In neither topology is there evidence for bias away from the true asymmetries of
0.002 for th%ﬁ and 0.010 for K*h¥x%. Also, within each topology, the difference between
the average A, (B — K*(892)*nT) values in the two ensembles does not deviate significantly
from zero. Nonetheless, the shifts of 6.4 (B — K*(892)*7F) = 0.03 £ 0.06 for K3h*n¥ and
SA,_(B — K*(892)*7T) = 0.04 £+ 0.09 for K*hT7° are included in the systematic uncertainty.
Finally, we consider charge asymmetries in the four background components, which we have
assumed in the fit to be those of the entire samples. We make a simplified determination of
Ay (B — K*(892)*7T) by fitting for the yields of each charge state separately and propagat-
ing the bifurcated-Gaussian errors on the resultant branching fractions by MC simulation. Unlike
the direct fits for charge asymmetries, we form 4,_ values for modes with no yield. In these
simultaneous fits to the K2h*nT and K*h¥7° topologies, the A, _ values for the background
components are effectively allowed to float. This method does not account for the (possible) non-

Gaussian shapes of the likelihood functions, and it ignores the (potential) correlations between the
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Mode Standard Fit Remove One Remove Two
thiﬂ:F Inclusive Fit
Kontm= 60.27155(8.10) 58.37105(7.80) 56.41105(7.50)
KYK*n¥F 2.4773(0.40)  24701(040)  2.5770(0.40)

K2h*n¥ Dalitz Fit

K*(892)*7F  12.0731(4.00) 10.2739(3.40)  8.5133(2.80)
K*(892)TKF  1.6728(090)  1.7%28(0.90)  1.9%28(1.00)
K;(1430)=xF  16.2781(2.60) 16.3782(2.60) 16.5782(2.60)
K3(1430)qu: 0+2.3 0+2.3 0+2.3

p(7T70)° K% 6.97535(2.30)  6.9755(2.30)  7.0154(2-30)

f0(980) K% 2.6731(1.40)  2.6%31(140)  2.6731(1.40)
Kdrtn— NR  21.8755(3.20) 21.8738(3.20) 21.9%35(3.20)
KOKiﬂ.¢ NR 0+3.7 0+3.7 0+3.7

Table 6.13: K2h*rT inclusive and Dalitz fit results with the one and two most signal-like events
removed.

two charge conjugate states. The results for the signal and background components in these two fits
are shown in Table 6.20. From these charge-separated fits, A, _ (B — K*(892)*7¥F) is determined
to be 0.257052 which agrees well with the value from Table 6.17. We conclude that the negligible
charge asymmetries in the background do not bias the charge asymmetry in B — K*(892)*7F, and
we include the difference of 6.4, _ (B — K*(892)*7F) = 0.01 between the two determinations in the

systematic uncertainty.
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Mode No KZ(1430) No NR No KZ(1430)/NR
K*(892)F(K%n+)rT  12.4%53(4.20) 12.3%53(4.10)  14.7153(5.30)
K*(892)*(K%n*)KT  1.6728(0.90)  1.6728(0.90) 1.5728(0.90)
K (1430)* (KO £)nF — 26.2Jj§.§(5.5a) —

K (1430) = (K%n*) KT — 0+23 —
(770)0Kg 6.8739(2.20)  7.6754(2.60) 8.173%(2.80)
f0(980)K? 2.2730(1.10)  3.4%31(2.10) 3.4753(2.20)
Krtn~ NR 35.2152(5.90) — —
KSK*nF NR 0t38 — —
K*(892)*(K*n%)n¥  71757%(2.10)  7.3757(2.20) 7.4%5:7(2.20)
K*(892)(K*nO)KF  4.2%37(1.00)  4.37558(1.00) 4.4758(1.10)
K (1430)* (K*70)nF — 7.875:9(1.00) —
K3 (1430)*(K*n%) K ¥ — 045 —
K/K* (892)070 0+4-7 0+3-8 0+5-6
K/K§(1430)°7° — 18.5722(3.40) —
K*rFx% NR 22.21111(2.40) — —
K+tK—7°% NR 6.815%%(0.80) —
K/K*(892)7* 6.6737(3.30) 6+3 7(3.20) 6.675 7( 30)
K/ K*(892 )OKi 0.872:5(0.50) 2-2(0.50) 0.8+2:5(0.50)
K/Kg(1430)°7 — 0. 9+ 5(0.30) —
K/K;(1430)°K* — 0+L —
K*(892)%7° 6.6757(1.60)  6.4757(1.50) 6.6757(1.60)
K (1430)*7° _— 3.2755(1.20) —
p(TT0)*KS 10.6758(2.20) 10.3%8%(2.10)  10.67%8(2.20)
KOrtn® NR 0+37 - _
K3K*70 NR 0t16 — —

Table 6.14: Dalitz fit results with yields for various broad components fixed to zero.
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Mode Yield Al
K*(892)*n¥ 11.5759(3.90) 0.19 + 0.40
K*(892)*K¥ 2.4728(1.50) 1.0079:89
K§(1430) 7 18.4773(4.50) —1.0019:3¢
K (1430)*KF 0+23 0

p(7T70)° K 5.975%(2.30) —0.3540.72
fo(980) K 2.872:8(1.80) 1.0010:29
K%rt7~ NR 19.4755(3.70) 0.511045
KYK*r¥ NR 0+37 0
b=sc,h=m 458143
b—c,h=K 23.6172%3

(6.37 £ 0.09) x 10°
4.98 x 108

Continuum, h =7

Continuum, h = K

Table 6.15: Results of Dalitz fit with charge asymmetries for K3h*7nT.

Mode Yield Ay
K*(892)x¥ 7.3757(2.30) 0.721335
K*(892)*KF 4.3728(1.00) —0.10 £ 1.43
K;(1430)*7F 6.7752(1.20) 1.0079:99
K (1430)*KF 0+30 0
K/K*(892)°7° 0+38 0

K/K;(1430)07° 16.178:1(2.90) —0.061047
K*rF7% NR 11.91%3(1.50) —0.241385
K+tK-7° NR 6.911%2(1.10) ~1.00%5 05
b=c,h=mn 915177
b>e, h=K 512753

Continuum, h =7 (1.72 £ 0.01) x 10*
Continuum, h = K 9.91 x 103

Table 6.16: Results of Dalitz fit with charge asymmetries for K*hF70.
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Mode Yield (Koh*nT) Yield (K*hF79) Ay
K*(892)x+ 12.4743(4.60) 5.9722(4.60) 0.2619:3%
K*(892)*K T 2.111:3(1.50) 4.0%%2(1.50) 1.00+9:29
K (1430)*7F 13.977:5(3.60) 8.2%31(3.60) -0.8619-29
K;(1430)* K+ o+1:5 o+1-4 0

p(770)° K 6.1759(2.30) —-0.3510 %%
f0(980) K2 2.8728(1.80) 1.0079:99
Kortm~ NR 21.0193(3.70) 0.327945
K9K*nF NR 0+ 0
K/ K*(892)%n° ot38 0
K/K;(1430)°7° 15.839(2.80)  —0.071948
K*r¥1° NR 14.3t1%%(1.70)  —0.02*3 71
K*+K~-7° NR 4.9788(0.90) —1.0010-58
bosc,h=m 458745 916177
b—sce,h=K 23.9757-9 512+53
Continuum, h =7  (6.37£0.09) x 10> (1.72 £0.01) x 10*
Continuum, h = K 4.98 x 10® 9.91 x 10°

Table 6.17: Results of simultaneous A _ fit of the K3h*7T and K*hF7° topologies.
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Figure 6.11: Likelihood as a function of A, _(B — K*(892)*xT) for the simultaneous fit of the
K9h*rT and K*hFr0 topologies, before (dashed) and after (solid) including systematic uncertain-
ties. The hatched regions each contain 5% of the integrated area and are excluded at the 90%

confidence level.
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Figure 6.12: Invariant mass distributions of K*(892)* (histogram) and K*(892)~ (points) candidates
for the K27* (left) and K* 70 (right) decay modes.

Mode Total Area Area Asymmetry Mean Asymmetry
K*(892)* — K%nt 1798 +132  —0.039 +0.073 —0.001 + 0.002
K*(892)* —» K*7° 477+131 0.106 + 0.273 0.003 + 0.008

Table 6.18: Charge asymmetries in area and mean of the Breit-Wigner component of the K*(892)%*
lineshape, measured in on- and off-resonance data.

Mode Ngenerated €sel €fit €tot
K*(892) (K07r+)7r 20087 357403 69.6+0.4 24.9+0.2
K*(892)~ (K% )rt 15000 352404 682+0.6 24.0+0.3
K*(892)+(K+7r0)7r 32731 159402 87.4+0.5 13.9+0.2
K*(892)~(K-m%)n+ 15000 150403 89.7+0.6 13.4+0.3

Table 6.19: Selection, fit, and total efficiencies in percent for charge-separated states, not including
branching fractions.
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Figure 6.13: Distributions of A, _ (B — K*(892)*7¥) for ensembles of simulated experiments for the
K2h*7T topology (left) and the KThTx0 topology (right), with signal MC for B — K*(892)*n¥
only (top) and for all eight signal modes (bottom). The generated A, (B — K*(892)*7T) values
are 0.002 for K*(892)* — K27* and 0.010 for K*(892)* — K*7°.
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Mode Yield (k) B(ht) Yield (h™) B(h™) Ay
K2h*tm= (6007 entries) K2h~7t (5886 entries)

K*(892)*n+ 7.8%3:2(4.00) 2012 4.5739(2.30) 1275 0.2519-37

K*(89 )iIF 1+2 2(1.40) 78 0+09 0t3 0.8619-3
K (1430) 7 58(0.20) PAEY: 13.173:5(3.00) 3917 —0.72+9-49

Ka‘(1430)iK”F 0. 3+§ ‘;(0 20) 1+ 0+0:8 0+8 0.4019-72

p(7T70)° K%/ K° 2.013-%(0.80) 477 4.013:7(2.20) 87 —0.20+0.50

fo(980)K°/K° 2.872-8(1.80) 10110 0t12 0t 0.9119-19

K%/K%+tn= NR  14.3*%5(3.10) 2813 6.7787(1.40) 1313 0.3270%
K°/K°K*rT NR 0+21 0+13 1.6753(0.50) 10727 —0.7415:83

b=c,h=m 23515, 224t§3 0.0279:89

b, h=K 9.9 +19.8 11.7+18:¢ 0.0570 0%
Cont., h =7 (3.18 + 0.06) x 10° (3.19 £ 0.06) x 10° 0.00 £ 0.01
Cont,, h=K  (2.554+0.05) x 10 (2.43 £ 0.05) x 103 0.02 £ 0.01

K=h*70 (14377 entries) K+h~7° (14212 entries)

K*(892)*rF 3.7 T 2013 2.2+18 12720 0.2570-32

K*(S )ifﬁ 32118 (s 0.9793 0to 0.6979-29
K3 (1430)*1 0.4737 243 7753 3911 —0.721005

K (1430)iK”F 0+22 3t 0+o-8 0t7 0.5115-72
K/K*(892)%7° 0+27 (g 0.2+5:7(0.10) 0ttt —0.6970%
K/KZ(1430)7° 7.1+5(1.80) 1370 8.8+%1(2.20) 1673 —0.12+548
K*r¥7° NR 5.5772(1.00) 14718 7. 7+g o(1.40) 19718 0147928
K*K-7° NR 0+6-1 o+ 5.5789(0.90) 0+12  —0.1313%°
b=c,h=m 538138 3sotg‘;’ 0.17 +0.08

b—sc,h=K 272148 243+5° 0.051917
Cont., h =7 (8.67 + 0.10) x 103 (8.52 4 0.10) x 103 0.01+0.01

Cont., h=K  (4.87+0.07) x 10 (5.03 4 0.07) x 103 —0.02 £ 0.01

Table 6.20: Results of simultaneous fits of the K ghiﬁ and KFh*r0 topologies, with charge states
separated. Branching fractions are given in units of 107°.
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Chapter 7 Systematic Uncertainties

In this chapter, we present the sources of systematic uncertainty in the three-body inclusive branch-
ing fractions, the exclusive branching fractions from the Dalitz fits, and the C'P asymmetry in
B — K*(892)*7F. Both additive and multiplicative uncertainties are considered for the branching
fraction measurements, while the C'P asymmetry only receives contributions from additive uncer-

tainties.

7.1 Uncertainties on Inclusive Fit Results

Table 7.1 lists the systematic uncertainties assigned to the C' P-averaged branching fractions for the
three-body inclusive modes. The first section of the Table gives additive errors. The error arising
from PDF parameter variation is taken to be \/% times the spread in yields from the extreme PDF
variations discussed in Section 6.3.3. In the three K K'm modes, the extreme PDF variations do not
modify their zero yields, so we assign a conservative uncertainty equal to that of the corresponding
Krmm mode.

In the K*hT70 topology, fitting the off-resonance data does not give zero yields, so we assign a
one-sided uncertainty corresponding to the non-zero off-resonance yield scaled to the on-resonance
luminosity.

The uncertainty due to fit variable correlations is estimated using toy MC, where all the PDFs
are modeled by Gaussians because they are easily rotated into an arbitrary basis. We compare
two ensembles of fits: one where the toy MC events are generated with uncorrelated variables, and
another where the events are generated according to the correlation matrices observed in data and
signal MC. The difference between the average signal yield in these two ensembles is consistently
smaller than 1%, and we assign a conservative 1% systematic error to every mode for fit variable
correlations.

The second section of Table 7.1 gives the multiplicative errors, which include errors on the
efficiency, dominated by uncertainties in the accuracy of the MC reproduction of track, K2, and 7°
reconstruction efficiencies. Based on high-statistics studies of 7 decays and D°/D° — K*x¥x0
decays, we assign correlated uncertainties of 2% per track, K2 or 7°. We also include 1% per track
for the use of dE/dz information. Statistical uncertainties in the efficiency arise from finite MC
statistics and from the binning used in determining the Dalitz-plot-dependent efficiency. The latter
uncertainty also reflects the difference between the Dalitz-plot-dependent efficiency and that obtained

by averaging the efficiencies of the exclusive modes in each topology. Thus, we have accounted for
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the uncertainty in the efficiency of the 7° momentum requirement from not knowing the true m°

momentum distribution.

The final two sources, which are common to all modes, reflect our uncertainty in the num-
bers of charged and neutral B mesons produced. The uncertainty on the ratio of charged to
neutral B mesons is taken from a recent CLEO measurement [120] of fi_/foo = I'(Y(4S) —
Bt*B7)/T(Y(4S) — B°B°) = 1.04 £ 0.07 + 0.04, which was made by comparing the rate for
BY — J/1K*(892)° and its charge conjugate with that for B¥ — J/¢K*(892)*. The total number
of B mesons, Ngg = 9.66 x 10%, is obtained from measurements of the luminosity, £, and the
ete™ — BB cross section, o. £ is determined from detected yields of eTe™ — ete™, putpu~, and
vy and from MC simulation of these processes combined with their calculated cross sections. The
systematic error of 1.0% on £ arises from the cuts (especially on the polar angle) made to select the
above samples. The ete™ — Y(4S) — BB cross section is calculated from the differences in on-
and off-resonance hadronic event yields and the known respective luminosities. Contributions to its
systematic error include the time variation of o within a dataset and different running conditions
between on- and off-resonance. To span these uncertainties conservatively, we assign a systematic
error to Ngg = Lo of 2%.

The total systematic error for each mode is the quadrature sum of all the contributions. The
branching fraction upper limits are inflated by one unit of the positive error, which gives conservative

upper limits.

7.2 Uncertainties on Dalitz Fit Results

The systematic uncertainties on the CP-averaged branching fractions for the Dalitz fit modes are
listed in Table 7.2. The uncertainties from PDF variation and from off-resonance signal yields are
evaluated as for the inclusive fits (Section 7.1). The Dalitz PDF uncertainty is estimated by changing
the binning of the two-dimensional histogram. The uncertainty due to the choice of components
allowed to float in the fit is the full width of the larger of the two variations in the first two columns
of Table 6.14. In some modes with zero yield, e.g., B — Kg(1430)*KT and B — K°K*n~
NR, applying systematic variations to the PDFs and fit components do not produce any change
in signal yield. The procedure used to measure the error from neglecting interference is described
in Section 7.2.1. Uncertainties common to all modes are those due to input variable correlations,
the cosfspn requirement, foo/f+—, and Npg, amounting to a contribution of 8.6%. The K§(1430)
modes also include a 10.8% error for the uncertainty in the branching fraction B(K(1430) —» K7) =
(93 £10)% [5]. The common uncertainty of 8.6% and the B(K(1430) — K) uncertainty are not
itemized in Table 7.2 (for lack of space) but are included in the total uncertainties.

For B — K*(892)*hT and B — K (1430)*hT, the combined branching fractions from Sec-
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Source K%tn— KKtn- Ktaa° KYK—7° KOtg® KOK+t#0
Additive errors
PDF's +4.4 +4.4 +12.5 +12.5 +18.4 +18.4
Off-resonance 0 0 —28.5 0 0 0
Correlations +1.0 +1.0 +1.0 +1.0 +1.0 +1.0
Multiplicative errors
€08 Ospn +2.0 +2.0 +2.0 +2.0 +2.0 +2.0
Tracking +8.0 +8.0 +4.0 +4.0 +6.0 +6.0
K? finding +2.0 +2.0 — — +2.0 +2.0
70 finding — — +2.0 +2.0 +2.0 +2.0
dE /dz +2.0 +2.0 +2.0 +2.0 +1.0 +1.0
MC statistics +1.7 +1.9 +0.9 +1.7 +1.4 +3.2
€ vs. DP +4.0 — +7.4 — +10.8 —
foo/f+— +8.1 +8.1 +8.1 +8.1 +8.1 +8.1
Ngp +2.0 +2.0 +2.0 +2.0 +2.0 +2.0
Total +13.6 +13.0 fégjg +16.1 +24.0 +21.6

Table 7.1: Systematic uncertainties (%) on C P-averaged branching fractions for three-body inclusive
modes. When a source does not apply to a given mode we give a “—” entry. Uncertainties that are
found to be negligible are given a “0” entry.

tion 5.3.3 are equivalent to averages of the two K** submodes, weighted by the squares of the
individual significances (S?):

(7.1)

Therefore, assuming uncorrelated uncertainties, the errors quoted for these four modes in Table 7.2

are averages over the two submodes:

2 2
%8 L (o8 4 9Bg 4 9
(B)uncorr_Si +‘S%\/( BA) $A+ (BB> SB (7 )

For MC modeling errors, which are correlated between the two submodes, the fractional error is:

ag _ ]. O'BA 2 " UBAUBB 5 o O_BB)2 .
( )_ 53,+sg\/( BA) Sat25 B, 4% T\ B, ) S5 (7.3)

For K§(1430)* K ¥, which has zero significance in both submodes, we weight the two contributions

o]

o

by the positive errors on the yields.
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Mode PDF  Bin Comp Offres Interf | Trk K° 7% 2E MC [ Tot
K*(892)Fr— | 38 —44 35 0 52 | 80 20 — 20 1.0
K*(892)tK~ | 23 255 1.2 0 0 |80 20 — 20 20
K3(1430)t7— | 31  —6.5 621 0 654 | 80 20 — 20 1.1
K3(1430)*K— | 0 0 0 0 0 |80 20 — 20 39

p(770)°K° 79 —141 96 0 433 | 80 20 — 20 1.0 | F5T
f0(980)K© 49 485 26 -272 639 |80 20 — 20 11 | *%%
KOz+tn= NR | 45 4138 617 0 253 | 80 20 — 20 08 | T%3
K°K+n= NR | 0 0 0 0 0 [80 20 — 20 30| 125
K*(892)Fr— | 115 —-105 1.7 0 153 | 40 — 20 20 15
K*(892)TK~ | 10.3 —345 26 0 0 |40 — 20 20 22
K3(1430)tn— | 22.9 4204 179.9 0 1093 | 40 — 20 20 16
K3(1430)*K— | 0 0 0 0 0 |40 — 20 20 25
K*(892)%70 0 0 0 0 0 40 — 20 20 14 | 100
K;(1430)°7° | 83 -24 159 -103.5 60.7 | 40 — 20 20 1.8 | 830,
Ktr—7°NR | 84 436 612 —47 240 |40 — 20 20 14 | ¥
KtK-7°NR | 233 -106 59 0 0 |40 — 20 20 19 | 2!
K*(892)*n— 39 —41 28 0 52 | 72 16 04 20 09 | 73S
K*(892)tK~- | 58 —222 0.7 0 0 58 0.9 11 20 15 | *322
K;(1430)t7— | 31  *84 611 -126 643 |79 20 0 20 1.1 | £39¢
K3(1430)* K~ | 0 0 0 0 0 |68 14 06 20 28 | 158
K*(892)%*+ | 45 —07 06 -539 43 |60 20 20 10 19 | F27
K*(892)°K+ | 64 —23.7 0 0 0 60 20 20 1.0 3.0 | F320
K;(1430)°7+ | 84.9 +59.7 1.1 0 1028 [ 6.0 20 20 10 19 | *IeH
K3(1430)°K* | 1940 0 0 0 0 |60 20 20 1.0 29 | 1946
K*(892)*7° | 435 5.4 3.3 0 83 | 6.0 20 20 1.0 1.2 | 461
Kg(1430)tx® | 151 —11.3 0 0 346 | 6.0 20 20 1.0 1.3 | ™58
p(T70) T K° 23.9 +220 23 0 28 |60 20 20 10 16 | 32
K%zt70 NR 0 0 0 0 0 6.0 20 20 1.0 13 | 11.0
K°K*7° NR 0 0 0 0 0 6.0 2.0 20 1.0 33| 114

Table 7.2: Systematic uncertainties (%) for K3h*nT (first section), KT¥hTr° (second section), and
K9n*7® (last section) modes. The third section combines the first two sections. Totals include
unitemized contributions of 8.6% for all modes (correlations, cosfsph, f+—/foo, and Ngg) as well
as 10.8% for K (1430) modes (Bk). Uncertainties are symmetric unless preceeded by + or —.

7.2.1 Interference

In the Dalitz fits, we neglect interference among the various two-body and NR complex amplitudes
contributing to each topology. In reality, however, variations in the phases of these amplitudes can
change the apparent yield for each mode. We employ a MC technique to estimate the size of the
uncertainty introduced by these unknown phases.

For the decay of a particle D to an intermediate resonance R and a pseudoscalar C', where R

subsequently decays to two pseudoscalars A and B, we approximate the resonant amplitudes with
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relativistic Breit-Wigners. For the case where R is a scalar, the amplitude is given by

FpFg
A= — 5 - . (7.4)
my —myp — imgl(q)
If R is a vector, the amplitude is
A = i Mo + (i = m o i)y 5

m% —m? g —imgl(q)

mp is the nominal mass of the resonance, I'(g) is the mass-dependent width, and Fp and Fg are

hadronic form factors. The mass-dependent width is given by the expression:

pa(mag)]?’t mg
2
I(g) = o [PAT8)[ 7 IRy (76)
pa(mn) MAB
where T'g is the width of the resonance at map = mpg and pa(z) is the momentum of A in the
AB rest frame for map = x. For the form factors, we use the Blatt-Weisskopf barrier penetration
factors, which are unity for scalars. The form factors for vectors are given by
1+ r2p? (mg)

Fr = —_— 7.7
R 1+ r2p%4 (mag) (7.7)

1+ r2p%(mp)

F s
b 1+ r2p% g(mp)

(7.8)
where the effective radius of the resonance, r, is taken to be 10 GeV™' for the B meson and
1.5 GeV~! for the intermediate resonance. The integrated rates are insensitive to the choices of r.
For NR decays, Axg = 1.

The total amplitude, Mo, is the sum of the resonant and NR contributions: My, = >, M;,
where M; = N;a;e® A;. The §; are the unknown strong phases, and the a? are the component
fractions. The individual amplitudes are normalized to uniform integrated rates over the Dalitz plot
(®): 1/N? = [ A} A;d®. The total rate at any given point in the Dalitz plot is [Mio|? = M, Miot-
The interference pattern in the Dalitz plot is determined by the constant strong phases §; and by
the event-dependent strong phases arg A; from the relativistic Breit-Wigners. Both contributions
are simulated. In the MC, the a; are fixed according to the measured branching fractions from the
Dalitz fit, but the §; are randomly generated to probe the behavior of the decay rate under variation
of the strong phases.

Focusing on a single resonance, ¢, we can separate the total amplitude into two pieces, with
all non-¢ contributions considered to be background and labeled “bkg” below. The total rate can
be expressed as |Myos|? = |M;|? + |Mykg|® + 2| M;||Mpkg| cos(d; — birg).- To estimate the yield

for the i-th component, we first integrate |M;o¢|> in a +3T window around the resonance. For
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the background estimate, we integrate |Mpig|? over the same window. We take the fitted yield
of the i-th component to be the difference between these two integrated rates, which corresponds
to |M;|? + 2| M;||Myig| cos(6; — dbig)- Since the fitter neglects interference, the interference term
must be absorbed into one of the yields. The yields of the non-i components are determined from
other regions of the Dalitz plot, and this background is projected into the i-th resonance region.
Therefore, it is most likely that the integrated interference term in the £3I" region is assigned to
the i-th component. For NR components, the region of integration consists of those portions of the

Dalitz plot not included in any resonant signal region.
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Figure 7.1: Integrated rates in the signal regions for modes with final states K3n+ 7~ (top), K*7Tn®
(center), and K%n*70 (bottom), as seen by a fitter that ignores interference, under variation of the
strong phases. The numbers in parentheses are the fractional r.m.s. widths of the distributions and
are reproduced in Column 6 of Table 7.2. The result with non-interfering amplitudes is shown by
the arrows.

Different choices for the strong phases result in the rate distributions shown in Figure 7.1. Only
the modes with K7 final states are shown; in each topology, only one K K7 mode has a non-

zero yield, so there are no interference effects for these modes. These plots show that neglecting
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interference does not produce a significant bias, assuming a flat distribution for the unknown strong
phases. However, there are strong phases in reality, so the widths of these distributions provide
an indication of the induced error. The horizontal scales are arbitrarily normalized, and we assign
systematic errors equal to the fractional widths of these distributions. These uncertainties are given
in the sixth column of Table 7.2 and are included in the total uncertainties in the last column.
The presence of several broad resonances and of the NR component leads to large variations
in most cases, thus precluding any meaningful branching fraction measurements. Because of the
narrowness of the K*(892)% and the large size of the B — K*(892)*x T signals, the two systematic

errors for this mode are well-controlled and do not degrade the overall precision appreciably.

7.3 Uncertainties on Acp(B — K*(892)*nT)

The sources of systematic uncertainty on the B — K*(892)*nF branching fraction measurement do
not all apply to the charge asymmetry measurement. Since .4 _ is a ratio of branching fractions, the
multiplicative errors cancel, assuming they act charge-symmetrically. Only the errors on the yield
need to be considered. Of these, we evaluate directly the uncertainties from PDF variation (including
Dalitz PDF binning), the choice of free components in the fit, and the neglect of interference in the
fit. Table 7.3 gives a full list of the sources of systematic uncertainty and their contributions to
A;_(B = K*(892)*7F) in each K*(892)* submode.

When uncertainties are measured separately for each topology, they are convoluted by treating

the combined asymmetry as a weighted average of the asymmetries in each topology:

AAWa + ApWpg

A: )
Wa+Wg

(7.9)

where the weight factors W4 and Wg are the inverse squares of the average errors on each asymmetry.
Using the results from Tables 6.15 and 6.16, we find weights of 2.00 and 1.00 for K*(892)* (K$n*)nF
and K*(892)*(K*n%)rT, respectively. If 544 and dAp are uncorrelated, then the uncertainty on

the above average asymmetry is

NEAL +0']23W%. (7.10)

Ouncorr =
Wa+Ws

For cases where we assume 100% positive correlation between .44 and §.4p, the uncertainty on the

average asymmetry is

_ VOAW2 +20405WaAWE + o3 W3

Ocorr = 7.11
Oco Wa+Wg ( )

The systematic uncertainties in dE/dx measurement and tracking at high and low momenta

were discussed in Section 6.5. The uncertainties in the two momentum regions are assumed to be
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Source ou,_ (KIhEnT) o, (KERT70) OA,_
o A in BN gy E0002 }10.003 +0.002 }10.013 +0.006
low—p +0.005 +0.015

. Ai_ in dE/dx +0.010 +0.010 +0.010
° Ai_ine +0.017 +0.019 +0.018
Other signal components +0.030 +0.037 +0.023
< A4 _ in background +0.010
PDF variation +0.009 +0.043 +0.016
Dalitz PDF binning +0.017 +0.162 +0.055
< Fitting method +0.060
< Choice of broad scalar +0.019
O A4 _ of CP eigenstates +0.010
< K}(1430) —» K*(1410) +0.006
. Interference +0.017 +0.051 +0.028
° PDF correlations +0.012 +0.017 +0.014
Total i

Table 7.3: Systematic uncertainties on the A, _ (B — K*(892)*7T) measurement. A bullet marks
the uncertainties that are positively correlated between the two topologies. A diamond marks the
uncertainties that are determined for the simultaneous fit directly.

perfectly correlated. Therefore, any asymmetry in the track yields is mitigated when considering
pairs of oppositely charged tracks, such as those in B — K*(892)*nT. If the two tracks have
equal asymmetries, then the cancellation is exact. Furthermore, if both track yield asymmetries are
zero, then the uncertainty on the asymmetry of the pair is the difference between the individual
asymmetries. This result is derived below. We denote the charge asymmetry in the high-momentum
bachelor track by a and in the low-momentum K*(892)* daughter track by b. Then, the yields in
the two B — K*(892)*n ¥ charge states are

N(B® - K*(892)"7n") o« (1+a)(1—0b) (7.12)

N(B® - K*(892)*1™) o (1—a)(1+b), (7.13)

and the charge asymmetry is given by

_a-—b

Ay (B = K*(892)*7T) T

(7.14)

Propagating the correlated errors on a and b, one finds the tracking uncertainty on A;_(B —
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K*(892)*7F) to be

; 1 oo - )
giracking _ m\/a —12)202 — 2(1 — a2)(1 — b2)o,0y + (1 — a2)20?. (7.15)
Thus, if a = b = 0, then ¢%**"8 = |5, — 0y

To determine the systematic uncertainty due to PDF uncertainties, we measure the change in
A;_(B — K*(892)*7TF) under extreme coherent variations in the mp, AE, and F PDF parameters.
The two topologies are not fitted simultaneously, and we assign uncertainties that are \/% times the

spread in Ay_ (B — K*(892)*7T). We also vary the binning of the Dalitz plot PDFs for the NR,

b — ¢, and continuum components. Making the bin width in each dimension as much as four times

smaller than in the standard fit, we find a one-sided uncertainty taken to be \/% of the spread in

Ay (B — K*(892)*nT). The fitted asymmetries from these modified fits are given in Table 7.4.

PDF Variation Ay (K*(892)F(Kor®)nT) Ay (K*(892)*(K*n0)nT)

None 0.19 £ 0.40 0.7215-69
DP-averaged PDFs 0.15+0.36 0.637949
Extreme Down 0.17+£0.37 (]_711‘8:%;
Extreme Up (]_14J_F8-_§§ 0-56i8;§§
Finer DP Binning 0_22‘f8:i(1’ 1-00f(1):82

Table 7.4: Charge asymmetries from independent fits of the K2h*nT and K*h¥7° topologies with
PDF variations.

The uncertainty due to the fitting method is assessed by comparing the weighted average of the
charge asymmetries from the separate fits to each topology with the charge asymmetry from the
simultaneous fit. The full width of this difference is included in the systematic uncertainty.

We also study the sensitivity of A, _ (B — K*(892)*7T) to the number of free parameters in the
fit by varying the mixture of broad scalar components allowed in the fit. Tables 7.5 and 7.6 show
the results for the simultaneous fits with either the K} (1430) or the NR components removed. In
addition, we repeat the standard fit with the charge asymmetries of the C'P eigenstates fixed to zero,
as shown in Table 7.7. None of these modifications affects A _ (B — K*(892)*7T) significantly,
and we assign systematic uncertainties corresponding to the full widths of these variations.

As an additional test of the robustness of A, _(B — K*(892)*n ) against the precise nature of
the broad resonances in the fit, we replace the scalars K (1430)* and K¢(1430)° with the vectors
K*(1410)* and K*(1410)°. The results of the simultaneous fit with this substitution are shown in
Table 7.8. Virtually no change is seen in A, (B — K*(892)*x¥).

The effect of neglecting possible interference among the signal components is assessed with MC

simulation, in a manner similar to that described in Section 7.2.1. For each signal component, we
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Mode Yield (Koh*7rT)  Yield (K*hT70) Ay
K*(892)*7 12.6755(4.70) 6.0722(4.70) 0.2419:32
K*(892 )iK”F 2.172%(1.50) 4.1732(1.50) 1.007999
K (1430)*n — — —
K} (1430 )inF — — —
p(770)°KY 6.215:9(2.20) —0.3715:19
fo(980) K3 8*%8(1 80) 1.0025:%
K%rtr~ NR 34.9792(5.90) —0.17+9:33
K$K*nF NR 0+4.0 0
K/K*(892)°7° o+37 0
K /K (1430)07° — —
K*7¥7°% NR 22.5701.0(2.60)  0.01104%
K+K-7° NR 6.5793(1.10)  —1.007542

Table 7.5: Results of the simultaneous A, _ fit of the K2h*7T and K*hT7° topologies with yields
for K§(1430) components fixed to zero.

calculate two amplitudes, one for each charge of h*, which differ only in normalization; the two am-
plitudes for each component share a common C'P-conserving strong phase. We simulate interference
between amplitudes with the same charge of A*, but not between amplitudes of different charge
states. The C' P asymmetries are given by the differences in apparent yields of the two charge states
of each component. We simulate the K3ntn~ and K=nFx° final states separately, with amplitude
normalizations fixed by the branching fractions in Table 6.9 and with C'P asymmetries fixed to those
in the simultaneous fit of Table 6.17. Figure 7.2 shows the distributions of Acp(B — K*(892)*7T)
in both topologies. The r.m.s. spreads of the distributions give systematic uncertainties of +0.017
for K*(892)* — K27% and £0.051 for K*(892)* — K*x0.

The final source of systematic uncertainty stems from our (partial) neglect of correlations among
the input variables to the fit. Uncertainties on the yield from this source were determined in
Section 7.1, and we use these to derive the corresponding asymmetry errors. To do so, we must
account for the unknown charge asymmetry of the yield variations, which may differ from the
charge asymmetry of the yield itself. The error on the yield, og, is applicable to the sum of the two
charge-conjugate yields, S = S; +S_, which forms the denominator of A, _ = (S —S_)/(S++S5-).
The numerator of A, is perfectly correlated or anti-correlated with the denominator if the yield

variations affect only S; or S_, but not both. The uncertainty on A4 _
0.244_ 5 [Si + 82075 —2pS4S_oy0_], (7.16)

where o are the uncertainties on S, and p is the correlation coefficient between Sy and S_. If we
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Mode Yield (Koh*7rT)  Yield (K*hT70) Ay
K*(892)n¥ 13.3738(5.10) 6.4723(5.10) 0.2619:31
K*(892)*KT 2.01%:3(1.40) 4.223(1.40) 1.0015-99
K (1430) 7T 16.878%(4.20) 9.9712(4.20)  —0.5015:32
K;(1430)*KF 0.3732(0.20) 0.37% ‘g(o 20) 0

p(7T70)° K% 6.475%(2.30) —0.17+5:8¢
fo(980) K% 3.4728(2.60) 1.0079:89
Kg7r+7r’ NR — —
K3K*nF NR — —
K/K*(892)°7° o+37 0
K/K(1430)°7° 17.2¥73(3.90)  —0.4073:39
K*7F7° NR — —
KTK—7° NR — —

Table 7.6: Results of the simultaneous A, _ fit of the K2h*7T and K*hT7° topologies with yields
for NR components fixed to zero.

take p = 0, then 0% = 02 + 02. We define the asymmetry between o and o_ to be

0'2 —U% 02 —U%
a=F+——="+_—. (7.17)
oy +oZ Oy
The error on A;_ can then be expressed as
4 [(1+A- \(1+a 1-Ai- N (1-a
2 _ + 2 + 2
o2
= S—*g[l + A% +2aA; ). (7.19)

To be conservative, we maximize the systematic uncertainty by choosing a = +1, resulting in

O = g (LA ]). (7.20)
The fractional errors on the yields, og/S, are given in Table 7.2, and the values of A, _ are taken
from the independent fits to each topology in Tables 6.15 and 6.16. We assume the yield uncertainties
to be correlated between the two topologies.

The total systematic uncertainty on A, _ (B — K*(892)*n ), given in Table 7.3, is about one-
fourth the size of the statistical uncertainty and is dominated by PDF uncertainties and variations
in the fitting method. We model both the statistical and systematic uncertainties with bifurcated

Gaussians and convolute them via MC simulation. The resultant likelihood function is shown in

Figure 6.11, and we inflate the allowed region to A, (B — K*(892)*7T) € [-0.31,0.78] at the 90%
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Mode Yield (K9h*7rT)  Yield (K*hT70) Ay
K*(892)*n¥ 12.3755(4.60) 5.9722(4.60) 0.2719-33
K*(892)*KF 2.1123(1.40) 4.01%2(1.40) 1.0019-%9
K (1430) 7T 13.177-3(3.00) 7.7132(3.00)  —0.751548
K;(1430)*KT o+t oti4 0

. p(770)°K? 6.815(2.30) —

. fo(980) K9 2.6131(1.40) —

e Klrtmn~ NR 22.579:5(3.50) —
K3K*nF NR 0+ 0
K/K*(892)7° ot+3-8 0
K/ K (1430)°7° 15.8181(2.80)  —0.081948

K*r¥70 NR 14.4%7%7(1.80)  —0.147057

e KVK 7°NR 5.1752(0.60) —

Table 7.7: Results of the simultaneous A, _ fit of K3h*nT and K*hTn° with A, _ for CP eigen-

states (marked by bullets) fixed to zero.

confidence level.
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Mode Yield (K$h*7rT)  Yield (K*h¥70) As
K*(892)*n¥ 12.4735(4.60) 6.0732(4.60) 0.2519-33
K*(892)*K T 2.1773(1.40) 4.0172(1.40) 1.0079 93
K*(1410)*7F 7.2%8-2(1.50) 4.2%%87(150)  —0.7479%8
K*(1410)*KF 0.4%38 0tt4 0

p(T70)°K? 5.8t39(2.10) —0.331973
fo(980) K 2.872:8(1.80) 1.00%0:09
Kdrtr~ NR  28.8%9%(4.50) —0.037533

K9K*rT NR 0t43 0
K/K*(892)°7° 0t+34 0
K/K*(1410)%7° 16.0773(3.70)  —0.4370:32
K*n¥7° NR 16.773%%(2.00)  0.0570:89
K+tK~7° NR 54789(0.90)  —1.007954

Table 7.8: Results of the simultaneous A,  fit of the K3h*7rT and

K} (1430) resonances replaced by K*(1410).
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Figure 7.2: Ay_(B — K*(892)*nF) under variation of strong phases in the K377~ (left) and
K*nF70 (right) final states, calculated from integrated rates in the signal regions, as seen by a
fitter that ignores interference. The numbers in parentheses are the fractional r.m.s. widths of the
distributions and are reproduced in Table 7.3. The result with non-interfering amplitudes is shown

by the arrows.
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Chapter 8 Summary and Discussion

In this chapter, we review the experimental results of the preceeding chapters. We also construct
constraints on the CKM angle v using our results on the decay B — K*(892)*7F. Although both
experimental and theoretical uncertainties result in a wide allowed range for -, our study suggests
that if strong phases are small (as suggested by measurements of CP asymmetries in charmless
hadronic B decays), then v is larger than the value obtained from indirect fits. This possible
discrepancy is supported by data from other B — PV modes. A tenfold improvement in the
precision of the experimental inputs used in the study, along with an understanding of the strong

phases in B — PV decays would constrain v to 10° or better.

8.1 Summary of Results

We have searched for B decays to the three-body final states K2h*7T, K*hTx°, and K2h*zO,
both with and without distinguishing between NR production and intermediate resonances. We find
significant yields for the two modes B — K3n* 7~ and B — K*(892)*nF. The branching fractions
for these decays are given in Table 8.1, along with upper limits at the 90% confidence level for modes
without significant yields.

Table 8.1 also gives theoretical predictions [64, 83, 84, 85, 86, 87, 88] for models invoking SU(3)
decomposition, naive factorization, QCD factorization, and perturbative-QCD factorization. The
prediction for K°/K%*7~ NR is calculated under heavy meson chiral perturbation theory [100].
The measured branching fraction B(B — K*(892)*7T) is higher than but consistent with most
predictions. In all modes without significant signals, the branching fraction upper limits exceed the
theoretical predictions.

We have also measured the CP asymmetry in B — K*(892)*7T by performing a simultaneous
maximum likelihood fit to the B — K2h*nT and B — K*hT7° topologies. We find A, _(B —
K*(892)*7F) = Acp(B — K*(892)*7T) = 0.2670:33101% and a symmetric allowed interval at
the 90% confidence level of Acp(B — K*(892)*7F) € [-0.31,0.78], which includes systematic

uncertainties.

8.2 Constraints on ~

In the flavor SU(3) decomposition of the amplitudes contributing to charmless B — PV decays,

the transition B — K*(892)*7F is dominated by two amplitudes, tree and penguin, pictured in



Mode B x10° SU(3) NF QCDF PQCD
Kortm= 50750 £ 7
K+tn 70 < 40
KOrtq0 < 66
KOK+n— <21
K+tK-n° <19
KOK+70 < 24
K*(892)tn— 161t +2 [7,17] [6, 8] 11 9.1
K*(892)07° <11 [1,2] [2,4] [0.7,0.9] 2.8
K*(892)7+ <105  [5,12] [6,12] 10 10.0
K*(892)*7° < 34 [4,7] [4,7] 2,4] 3.2
K (1430) 7~ < 68
K (1430)°7° <41

K;(1430)°7+ <136
K (1430)+ 0 <31

p(770)°K° <21 [6,14]  [0.5,0.7] 1.2
p(770)* KO < 52 [5,12] [0.01,0.03] [0.6,0.8]
f0(980)K° <24
K*(892)t K~ <13 0.02
K*(892)°K+ < 57 [0.3,0.7]  [0.2,0.3]
K;(1430)* K~ <12
K;(1430)°K*+ <153
K%t7~ NR < 59 0.5 (HMChPT)

K+tn—7% NR < 26
Ko7tz0 NR < 20
KK+7— NR <27
KTK—n° NR <19
KOK+7% NR < 22

Table 8.1: Summary of measured branching fractions including systematic errors and theoretical
predictions, both in units of 107%. Experimental measurements are averages over charge conjugate
modes.

Figures 2.1a and 2.1c, which interfere with a weak phase given by the CKM angle v = argV}
and with an unknown strong phase §. Based on independent determinations of the magnitudes of
these two amplitudes, we form an allowed range for cosycoséd up to a twofold ambiguity, using
a toy MC to propagate experimental uncertainties. A second method of determining 7 that adds
information from B — ¢(1020)K decays is also discussed. We also make use of the CP asymmetry

in B — K*(892)*nT to probe v and J separately.

8.2.1 SU(3) Amplitude Decomposition

The SU(3) decomposition of amplitudes contributing to charmless hadronic B decays was dis-
cussed in Chapter 2. From Table 2.5, the amplitude for B — K*(892)*xT is represented by
A(K*(892)Tm ) = —(plp + t’»). The invariant amplitudes ¢’ and p’ carry the CKM matrix elements

VunVy, and Vi Vi, respectively, so their relative weak phase is m# — . The amplitudes for the two
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charge states are given by

A(K*(892)T77)

Pl — [tple™ e (8.1)

Pl = ltple™e®, (8.2)

A(K*(892)~7T)
and we can express the C P-averaged amplitude as follows:

(1A (892) "7 )” + |A(K™(892) 7 *)[*] = |pp|* + [tp|” — 2|p}p||t| cos d cos-y. (8.3)

N | =

We identify squared amplitudes, |A|> = A*A, with branching fractions, B, and we absorb all
numerical factors, like Gr, mp, phase space integrals, decay constants, form factors, and CKM
matrix elements, into the definitions of the amplitudes. Nearly all the B branching fraction mea-
surements in the literature are calculated assuming equal production of charged and neutral mesons.
Therefore, before their branching fractions can be used to extract decay amplitudes, they must first
be corrected for the ratio of BT B~ to B°B° production rates, fi_/foo. The ratio of charged to
neutral lifetimes, 7 /79, affects the apparent amplitudes through the total decay rate and is also
taken into account. Since we are only concerned with ratios of branching fractions, we leave the B+
branching fractions unaltered and scale the B%/B° branching fractions and their uncertainties by
the product J}+To_ x TT—Jg

Using only the C P-averaged branching fraction for B — K*(892)*7¥F, we cannot gain knowledge
of the strong phase J, and we are sensitive only to the product cos+vycosd, which is given by the
following expression:

Pp|? + [tp]* — B(K*(892)*7) (:;+_— x r_+)

00 70

cosycosd =
2|pp|ltp|

8.2.2 Tree and Penguin Amplitudes

Numerical values of the tree and penguin amplitudes are derived from measurements of other
charmless B — PV branching fractions [84]. The penguin amplitude is simply given by the de-
cay Bt — K/K*(892)z*:

Ipp| = |A(K*(892)°7T)| = \/%[B(K*(892)07r+) + B(K*(892)%7)]. (8.5)

For the tree amplitude, we make use of AS = 0 transitions and relate tp to the AS = 1 amplitude

t’> through ratios of CKM matrix elements and decay constants:

Vus fK* Vus fK*
o] = tp| = |—u | ). 8.6
ol = | L rl = | | 2 (59
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The decay B — p(770)*7~ and its charge conjugate give the combination |tp + pp|, where |pp| is
estimated to be around 0.2|tp|. Below, we present a method of subtracting the penguin contribution.
However, we must first manipulate the branching fraction because what is measured experimentally

is the sum of B — p(770)T7n—, B® — p(770)~7t+, and their charge conjugates:

B(p(770)%x ) (fL X 7;—+) = |tp + pp|> + [tv + pv|*. (8.7)
00 0

To isolate |tp + pp|, we turn to the BABAR analysis of B — 777 7° [104]. Since the final
state p(770)*7F can be produced by both B® and B® mesons, mixing-induced time-dependent C'P
asymmetries can arise from the interference of B® — p(770)*nF and B® — B® — p(770)*7 T,
similar to the case of B — ¢ K. Measuring these asymmetries requires that the flavor of the
B — p(770)*7¥F decay be tagged by the other B in the event. Therefore, this analysis can distinguish
between B — p(770)T7~ and B® — p(770)~7t, as well as the conjugate B° decays.

The decay rate distributions for events with a B® or B° tag are parametrized by the coefficients

A, C,AC, S, and AS as follows:

I/

I'ag = (1A —[1+(S£AS)sinAmt - (C £ AC) cos Ami] (8.8)
~lil/r

fh = (1A [1- (S £ AS)sin Amt + (C + AC) cos Am], (8.9)

where ¢ is the time interval between the decay of the p(770)*7T candidate B and the decay of
the tagging B. At t = 0, no mixing has occured, so the flavors of the two B mesons in the event
are perfectly anticorrelated. Therefore, populations of each of the four charge combinations can be

expressed in terms of A, C, and AC:

N(B° = p(770)*77) « (1+A)(1—-C-AC) (8.10)
N(B® = p(770) 7t) o (1-A)(1+C —AC) (8.11)
N(B° = p(770)"77) o« (1—A)(1-C+AC) (8.12)
N(B® = p(770)*77) o (1+A)(1+C+AC) (8.13)

The time-integrated asymmetry between BY — p(770)*7~ and B° — p(770)~ 71 (and between the

corresponding charge conjugate decays) is denoted Apy and is defined as follows:

4 _ NB°=ptn )+ NB° = p at) =NB° = p at) = NB° = pt7n7) (8.14)
PV = N(BY S pta )+ N(B = pnt) + N(BY = p=nt) + N(B® = ptr—)

AC + AC. (8.15)
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We use Apy along with B(p(770)*7F) to obtain the desired branching fraction:

B(p(TT0)1%)p = %[B(BO S p(T70) 1) + B(B® = p(770)~ ] (8.16)
- o7 ({7 Lt Ary
—  B(p(770) ﬁ)( = TO) Arv (8.17)

To extract |tp| from B(p(770)*7TF)p, we must estimate the magnitude and phase of the penguin

amplitude pp. The magnitude, |pp|, can be obtained from |p/s| and from SU(3)-breaking factors:

Via

P:
123 V.

o
ool (8.18)

However, the phase of pp is more difficult to ascertain. The relative weak phase between tp and
pp is v + B, and v is unknown, a priori. Furthermore, there is an unknown strong phase, ¢',
between tp and pp. Since cos+ycosd is not linear in |tp| and vice versa, we apply an iterative
procedure to solve for both quantities simultaneously. We begin by neglecting pp, which implies
[tp| = \/W, and determining cos<ycosd from Equation 8.4. Then, we choose a value
for cosd and use the resultant cos<y to solve for |tp| based on B(p(770)*7F)p and on an assumed
value of cosd’, this time without neglecting pp. In turn, this value of |tp| is used to recalculate
cosycosd. The cycle continues until the convergence criterion of A cos~ycosd < 0.01 has been met.
Convergence occurs in three iterations on average, and we apply this procedure to each trial of the
toy MC.

For the CKM parameters |V;q/V;s| and 8, we avoid using the results of the standard CKM fit [26],
which relies on measurements involving B°-B® mixing. Rather, we determine these parameters
in an internally consistent fashion using the world average |Vip/Vey| [5] and the value of cosvy
determined in each iteration of each toy MC trial. Using the relations |V,,/Ves|? = A2(p% + n?)
and p = |Vyp| cosv/|Ves| A, where p and 7 determine the apex of the Unitarity Triangle (Figure 2.3),
we find

e e (] (8.19)
ts
= A1 —-p)?2+7n? (8.20)
2 [ Vi 1 |V |?
= M/1——= — 21
\/ T, cosv%—)\2 o (8.21)
and
. V;ts Vub .
sin = |— sin 8.22
B i (8-22)
I/ts 1 Vub
= 1—— . 2
cos 3 A Vi ( Nk cos7> (8.23)
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From the expression for the C'P-averaged branching fraction,
B(p(T70)*7%) p = pp[? + [tp]? + 2lpplite| cos(y + B) cos &, (8.24)

we solve for |tp| and apply Equation 8.6 to obtain

ltpl = guz % |p§>|{—008(7+5)COS5'i
+ F 1/2
[cos2(’y+,3) cos? 5'—1+W] } (8.25)
2 1 2 b Vb 2
us | |p! 1+ |1-—=(1- —cosy + o || |+
Vud |pP|y{ y2< |Vus| Vcb v |Vvu.<>‘|2 V;b
1/2
fre-\* B(p(770)*¥)p 896
) WaPwere | [ ©%
P us|”|Pp
where
1 u
y= (|V | ‘;Z —cos7> cosd’. (8.27)

To simplify matters, we assume that §' = 9§, i.e., that the tree-penguin relative strong phase in
AS = 0 transitions is the same as in |AS = 1| transitions. In Section 8.2.6, we verify that the
simulated value of cos~ycosd is insensitive to the choice of §’ used to calculate |t%|. In the future,
precise measurements of the CP asymmetry in both B — K*(892)*7¥ and the B — p(770)*n ¥

system will determine § and ¢', thus eliminating this source of theoretical uncertainty.

8.2.3 CP Asymmetries and the Strong Phase

The CP asymmetry in B — K*(892)*xT provides an additional piece of information that allows us
to disentangle the phases § and . While the C'P-averaged branching fraction for B — K*(892)*7F
is sensitive to cosy cos d, the rate difference between B® — K*(892)~ 7t and B® — K*(892)T 7~ de-
cays is proportional to sin~ysin §. Beginning with the two conjugate amplitudes, from Equations 8.1
and 8.2, we express the observable branching fractions to the two charge states as functions of the

two phases:

[AK*@92)F77)* = [ppl” + [tp]” — 2|plp[[tp| cos(y + 6) (8.28)

[A(K*(892)~7 ) = [ppl|” + [tp]” — 2|pp[|tp| cos(y — ), (8.29)
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which implies

Ppl* + [tp|* — |A(K™(892)Fx ™) 2

cos(y + 0) (8-30)
2|plp |t ]
112 tl 2 _ A(K* 2)— —+1\12
COS(’)/ _ 6) — |pP| +| P| |/ (/ (89 ) m )| . (831)
2|plpl|tp]

Solving for v and J, we obtain

vt [ ppl” + tpl” —JAUC ST | oo IPpl” + el = |A<K*(892>-7r+)|2]
2 21t 2112 da
5= L oo I P AU O 4 Ml AU (052) )
2 20l 2l |
(8.33)

which can be determined from experimental measurements.

8.2.4 Additional Information from B — ¢(1020)K

The possibility of determining v from the decays B — K*(892)*nT and B — ¢(1020)K* was first
noticed by Gronau and Rosner [121]. The concrete formulation of this method was subsequently
put forth by Gronau [58, 122].

The SU(3) decomposition of the B — $(1020)K* amplitude is A(¢(1020)K*t) = plp + s/ =
Pp — %Pg;v to O(X). The weak phase of Py, is the same as that of pp, and its strong phase is
expected to be the same as in ¢} because of the similarity of their flavor topologies. The magnitude
of PiE,, has been calculated under the factorization ansatz [121, 123, 124] to be half that of pl». In
the toy MC, we vary | Py, /p'p| according to an ad hoc, uniform distribution between 1 and Z, which
is a conservative range corresponding to values for m; of 130 GeV and 190 GeV, respectively. Thus,

the C'P-averaged ratio of the B — K*(892)*n~ and B — ¢(1020)K+ amplitudes gives a measure

of v:
R= |A(K*(892)*n)|? + |A(K*(892)"nt)|?  1+41% —2rcosdcosy (8.34)
~ GRG0 poong| |
pp 3pP
or
2 | ot
= 1 — 1 -2 1) .
COSY = 5 +r”—R|1+ 3, cos ‘ 30, , (8.35)

where 7 = |th/pp| is determined from B(B° — p(770)"7t) and B(B* — K/K*(892)°7%), as
described in Section 8.2.2. With this method, we must make some assumptions about the size of §.
It is believed, based on perturbative [125] and statistical [126] calculations, that 0° < § < 90°. The
limits on cos+~y are presented as a function of & over this range. Again, we choose §' = §, but the
iterative procedure involves Equation 8.35 instead of Equation 8.4.

For greater statistical power, we combine the branching fractions for B¥ — ¢(1020)K* and
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BY — $(1020)K°/K° since they receive the same dominant p)» and P}, contributions, differing

only in the spectator quark. Thus, R is expressed as

70

[02K03(¢(1020)Ki) + 024 B(6(1020) K0/ KO) (f;T; x r_+)] /(020 + 0% pcs)

70

B(K*(892)%n¥) (L= x =
ne (5 < %)

. (8.36)

where o4+ and o,k refer to the average of the positive and negative errors on the B(¢(1020)K*)

and B(#(1020)K°/K°) measurements, respectively.

8.2.5 Experimental Inputs

To evaluate the above expressions for cosycosé, 7, and & (using B — K*(892)*nT and its CP
asymmetry), as well as cos~y (using both B — K*(892)*7F and B — ¢(1020)K with assumptions
about §), we propagate the errors on the experimental measurements using a toy MC with the
following inputs: Z5= x Z£, free /£y, [Vusl, |Vasl, [Visl, Apv, Acp(B — K*(892)*n¥), and the
branching fractions for B — p(770)*7 T, K/K*(892)°n*, K*(892)*7F, ¢(1020)K*, and ¢K°/KP°.
The values of these parameters and the resolution functions used in the simulation are summarized
in Table 8.2. The inputs that contribute the largest uncertainties to v are the B — K*(892)*n¥

branching fraction and C' P asymmetry measured in this thesis.

Parameter Value References Resolution Function
ferT; x = 1.11 £0.07 [120, 127] Gaussian
fr+/fo 1.04 £0.02 [84] Gaussian
[Vus | 0.2196 + 0.0023 [5] Gaussian
[Vus| (3.78 £0.37) x 1073 [5] Gaussian
|Ves| (4.07 £0.10) x 10~2 [5] Gaussian
Apy 0.281 £ 0.190 + 0.084 [104] Gaussian
B(B — p(770)%77F) (25.4+42) x 1076 [128, 131, 134] Gaussian
B(B = K/K*(892)°7%)  (12.4+2.5) x 1076  [128, 132, 135] Gaussian
B(B — K*(892)*7T) (16.4752)x10~¢ [129, 136, 137] Bifurcated Gaussian
B(B — ¢(1020)K*) (8.24+1.1) x 10 [130, 133, 138] Gaussian
B(B — $(1020)K°/K?°) (8.7+£1.6) x 107¢ [130, 133, 138] Gaussian
Acp(B — K*(892)*7T) 0.2619:33+0-19 [105] Bifurcated Gaussian
| Py /0] (3, 2] [123, 124] Uniform

Table 8.2: Input parameters to the toy MC used to constrain «. References [129] and [105] are based
on the results in this thesis.

The product == x = is taken from recent CLEO measurements [120, 127]. The ratio fx-/ fois

foo To

derived from 7 decay measurements and standard kinematic factors [84]. For |Vys|, |Vus|, and |Vep|,
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we use the current world averages [5].
The value of Apy is calculated from the BABAR measurements: A = —0.22 + 0.08 + 0.07,
C = 0457518 £0.09, AC = 0.3810:25 £ 0.11. The statistical uncertainties on A, C, and AC are

propagated using the correlation matrix [104],

A c AC
A 1 —0.118 —-0.104
¢ | —-0.118 1 0.239
AC | —-0.104 0.239 1

Because the correlation matrix for the systematic uncertainties on A, C, and AC is not reported,
we assign, ad hoc, a relative systematic uncertainty to Apy of 30%, which is a typical value among
the measurements in the BABAR study. Hence, we arrive at the value Apy = 0.281+0.190 £+ 0.084,
I,

which results in a 24% error on |t} compared to a 20% error on |pp|?> and a 25% error on
P P

B(K*(892)*7F) (ff*T; X TT—:) The correlation between Apy and B(p(770)*7¥) is negligible, since
the tagging requirement reduces the sample size in the time-dependent measurement to one-fourth
of that used in the BABAR branching fraction measurement, which is furthermore combined with
the results of two other experiments.

For the five branching fractions, we combine all the measurements that have been publicly
presented. For B — p(770)*7 ¥, we include the CLEO measurement [128] despite its low statistical
significance (3.60) because it has been used in previous phenomenological studies. Table 8.3 lists
the measurements and their weighted averages, which are calculated with statistical and systematic
errors added in quadrature and assuming bifurcated Gaussian resolution functions on the individual
measurements. Where possible or appropriate, the contribution from f_/foo to the systematic
error has been removed, since it is included coherently in the MC. We neglect all other correlations

among the systematic errors. The CLEO measurements of B(K*(892)*7F) and Acp(K*(892)*7T)

are taken from recent publications [105, 129] based on the work presented in this thesis.

Mode CLEO BABAR Belle Average
p(T70)* 7T 276155442 289+54+43 2088913 254442
K/K*(892)°7+ 76735416 155+ 18735 19.3+32+11 12.4+2.5
* + 0. .+ F +7.5
K*(892)*(K*n0)n¥ 13.015 811 9t8
#(1020)K* 5.5731+0.6 7.7t184+0.8 10.7 £ 1.0192 8.2+ 1.1

#(1020)K°/K° 54%737T+0.7 81731408 10.0179+02 8.7+ 1.6

Table 8.3: Branching fraction measurements used to constrain -, given in units of 10~% and averaged
over charge conjugate states.

We determine A(K*(892)*7~) and A(K*(892) 7n*) from the measurements of the C' P-averaged
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B(B — K*(892)*7T) and Acp(B — K*(892)*7F). To do so, we must account for the correlation
between the CLEQ branching fraction and C'P asymmetry measurements, since they are based on
the same dataset. However, the two charge conjugate branching fractions, denoted B, = B(B° —
K*(892) nt) and B_ = B(B° — K*(892)Tn ) are essentially independent, so we simulate them

directly using

By = B(l+A) (8.37)
B_

B(1— A), (8.38)

where B = B(B — K*(892)*nF) and A = Acp(B — K*(892)*7F) have been smeared by their
systematic uncertainties, which are assumed to be uncorrelated. The statistical uncertainties on By
and B_ are derived from those on B and A, as shown below. First, we express B and A in terms of

By and B_:

g - Bt ‘;‘B— (8.39)
_ By—-B_ _Bi-B_
A= Frr =" (8.40)

Then, we find the uncertainties on B and A in terms of the uncertainties on B, denoted by o:

2 2
0% = % (8.41)
B2o2 +B262

Solving this system of equations, we obtain o4 and o_:

%[(1 +A)’op - B*0)] (8.43)
o2 = %[62034 — (1= AP0 (8.44)

Here, we use the fixed peak values of B and A, not the generated values for each trial. These
uncertainties are then applied to the generated values of By and B_.

We apply Acp determined from CLEO data to Belle’s C'P-averaged measurements, denoted
B,, to obtain branching fractions for each charge state. We combine these results with the CLEO
measurements, By and B_, using the relative weights determined below. We define the average

branching fractions for each charge state, denoted By and B_ as follows:

1 B
By = — 3 [a3+ +53a?+] (8.45)
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1 __ B_
= —— |aB_+8B,—| - 8.46
g |ab- + 8. (5.46)
We choose the weights a, 3, @, and 3 to give the smallest error on the combined branching fractions.
Since the two measurements to be averaged in each case are highly correlated, the optimal weights
are not simply inverses of the variances of the individual measurements. We begin by propagating

the errors on the individual branching fractions:

. 1 ) BB.B_\> ,pB*BB:  ,p°B2
o, = CEYE o (a+ 5B +o2 15 +o; 72 (8.47)
1 B2B2B2 _ BB.Bi\’ 3282
0’%_ = (d—}—B)z lai 44 +0'2, <a+ 2R2 ) +Ui? ; (848)

where o, is the uncertainty on B,, and o_, o4, and o, are averages of the upper and lower errors
on the branching fractions. Differentiating these expressions with respect to a, 3, @, and 3, and

equating them to zero, we find

a = 02B,B_(B,B- —2B% + 02 BB +402B*B2 (8.49)
B = 203B%(2B° — B,B_) (8.50)
a = 03B2B° + 0 BBy (B.By — 2B°) + 402B°B* (8.51)
B = 202B%(2B% - B.By). (8.52)

In determining these weights, we have neglected the correlation between By and B_ arising from

the common systematic errors, which are a factor of 4-5 smaller than the statistical errors.

8.2.6 Results of Simulation

Figure 8.1 shows the simulated distribution of cos~y cosd using B — K*(892)*n ¥ from 50000 MC
trials. In solving for |ts|, we used the value §' = 0°. Fitting this distribution to a bifurcated
Gaussian yields the measurement cosycosd = —0.63+£0.59. For cos~ycosd < 0, the tree and penguin
amplitudes ¢ and p'p interfere constructively. Based on the smallness of direct C'P asymmetries
B — K, one can infer a strong phase between tree and penguin amplitudes in these decays of
8° £+ 10° [28]. If the strong phase in B — PV decays is as small as in B — PP decays, then our
analysis favors cosy < 0. In particular, for 6 = 0°, the peak value corresponds to 7y|s=go = 129°.

The variation of cos~ycosd is roughly linear in the value of cosd’ used to solve for |t’5|, with a slope

dcosycosd

of dcos ¢’

= 0.084. So, when we use §' = 80°, the simulation gives cosycos§ = —0.7079-85 which
results in a change in ~y|s—go of 5°.
Also shown in Figure 8.1 is the distribution of cosy at § = 0° using B — K*(892)*n¥ and

B — ¢(1020)K. With this method, we obtain cos~y|s=¢e = —0.467:20.
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If we forgo the iterative procedure to account for the penguin amplitude in B — p(770)*7— and
take |tp| = \/B(p(770)%7F)p, then we find cosycosd = —0.587353 using B — K*(892)* 7T alone
and cosy|s=oe = —0.381023 using both B — K*(892)*7F and B — ¢K, as shown in Figure 8.1.
The effect of the iterative procedure is to sharpen both of the simulated distributions, reducing the

low-side uncertainty to about the same size as the high-side uncertainty.
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Figure 8.1: Distribution of cosvycosé using B — K*(892)Tn¥F (solid squares) and cosvy at § =
0° using B — K*(892)*7T and B — ¢(1020)K (open circles), with (left) and without (right)
accounting for pp in B — p(770)* 7T iteratively. Overlaid on the histograms are the fits to bifurcated
Gaussians. The vertical lines demarcate the physical region.

We define an upper bound on cos+ycosd or cos+y at a given confidence level to be the value that
lies above no more than that fraction of the distribution, without being restricted to the physical
region. The 90%, 95%, and 99% confidence level (C.L.) upper limits on cos~y cosd from the method
with B — K*(892)*7T alone are 0.13, 0.36, and 0.85, respectively, which, for § = 0° correspond to
lower limits on 7 of 83°, 69°, and 32°. Using B — K*(892)*7T and B — $(1020)K, we find 90%,
95%, and 99% C.L. lower limits on v of 78°, 66°, and 35°, respectively, again for § = 0°.

Figure 8.2 shows the cos vy distributions determined from B — K*(892)*zF and B — ¢(1020)K
at various fixed values of 4, as well as the variations of the peak values and the 90%, 95%, and
99% C.L. upper limits with §. The first two limits become more stringent with increasing 4. So,
restricting the range of § to a window around 0° weakens these two limits but strengthens the last
one. Incorporating the B — ¢(1020)K decays in the measurement of -y results in greater precision
than using B — K*(892)*7T alone, but the theoretical uncertainties incurred are also larger, not
least in the assumed value of §. The validity of this method rests on the applicability of flavor SU(3)
in relating the penguin amplitudes in B — ¢(1020)K to those in B — K*(892)*7T, as well as on
the factorization calculation of the magnitude of Py, .

Figure 8.3 shows the simulated distributions, using Acp(B — K*(892)*7T), of cos(y + §) and
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Figure 8.2: Distributions of cos+y at various values of § (top left), peak values of cosy (top right),
upper limits on cosy (bottom left), and lower limits on ~ in degrees (bottom right) versus d, with
B — $(1020) K included in the determination.

cos(y — d), which are measured to be 0.011] 35 and —1.20%135, respectively. The peak value of y+§
is 89°, whereas the peak value of v — § is unphysical. The fraction of trials where both cos(y + §)
and cos(y — d) attain physical values is 28.6%. Considering only these trials, the distributions of
the weak and strong phases imply v = (106735)° and § = (—=13737)°, as shown in Figure 8.3. The
correlation coefficient between v and § is 3 x 10~*. To calculate [t)s|, we imposed §' = 0° (which is
consistent with (—13%37)°), even for those trials that gave a physical value for § because the peak
value given above cannot be considered representative of the entire allowed region. The variations
of cos(y + d) and cos(y — §) with cosd’ are given by % = 0.005 and % =0.117. The
values of v and § both change by less than 1° between §' = 0° and &' = 80°.

If we omit the Belle measurements of B(B — K*(892)*nT) and use only the results of this
thesis (published in References [105] and [129]), then, for §' = 0°, we find cos(y + §) = —0.0413:39,
cos(y—48) = —1.28%131 v = (103123)°, and § = (—10738)°, with 25.4% of the trials in the physical

region. The precision of the current experimental measurements does not yet permit a meaningful
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extraction of these phases.
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Figure 8.3: Distributions of cos(y + §) (left, solid squares) and cos(y — §) (left, open circles), as well
as 7 (right, solid squares) and § (right, open circles) using the 22.4% of trials with physical values
of both cos(y + §) and cos(y — §). The vertical lines demarcate the physical region.

Using the above simulation, we also determine the ratio of tree to penguin amplitudes in |[AS| =1
decays to be r = 0.3273-97. The inverse ratio for AS = 0 decays is |pp/tp| = %|Vuthd/Vuths| =
0.1919-92. In addition, we find the experimental averages of B — K*(892)* 7T branching fractions
for the two charge states to be By = (20.877%) x 1076 and B_ = (12.175%) x 10~¢ with a correla-
tion coeflicient —0.33 arising from the use of the C'P-averaged Belle measurement. The simulated

distributions of these quantities are shown in Figure 8.4.
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squares) and B_ (right, open circles).
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An alternative method of constraining « [26], mentioned in Chapter 2, involves fits to current
values of |V /Ves|, Amp,, Amp,/Amp,, and €, which delineate an allowed interval at the 95%
confidence level of [34°,82°]. On the other hand, a global fit to the B — K7 and wn branching
fractions in the QCD factorization framework [28, 139] favors values of v near 90°. An analysis of
both branching fractions and CP asymmetries in B — K7 and 777~ employing isospin and SU(3)
flavor symmetries [140] also finds evidence for cosy < 0, which agrees with indications from our
analysis. A discrepancy between the constraints on v derived from charmless hadronic B decays and
from B°-B° mixing might arise from New Physics contributions affecting either B°-B® mixing or
the b — s or b — d penguins. The latter possibility would lead to a difference between the mixing

phases measured in B — J/¢ K% and in B — $(1020)K3.

8.2.7 Resolution of cos«y

In the method using B — K*(892)*7T alone, the width of the cos~ cosé§ distribution is dominated
by experimental uncertainties on the B — p(770)*7F, K/K*(892)%7*, and K*(892)*x branching
fractions and on Apy. The first three entries of Table 8.4 show the effect of improved precision in
these four measurements on the determination of cos-ycosd. The central values of the branching
fractions and Apy are kept constant while their uncertainties are reduced to a fraction of their orig-
inal values, given by "7' (B, Apy). The improvement in the resolution of cos~y cosd is commensurate

with the size of the errors on the branching fractions and Apy until "7’ (B, Apy) reaches 10%. At

oo o T+

this point, the resolution of cosvycosd begins to be dominated by the uncertainty on oo o

Only by lowering "71 (f+—‘ X T—+) can we reduce the width of cosvycosd further. The distributions

foo 70

of cosycosd with various combinations of ";I (B, Apy) and ";I <J;+To_ x TT—:) are shown in Figure 8.5.
In order to constrain 7 to within (O(10°), the combined statistical and systematic errors on the
measurements mentioned above must be reduced by an order of magnitude, and the strong phase §

must be reliably estimated.

7 ! _ + - + -
% (BaAPV) % <f+_ X T_+) o'coé'ycosd 07/

foo 7o
100% 100% 0.59/0.59 28°/31°
50% 100% 0.31/0.32 22°/17°
10% 100% 0.12/0.12  9°/7°
10% 50% 0.08/0.08  6°/5°
10% 10% 0.06/0.06  5°/4°
Table 8.4: Effect of uncertainties in branching fraction and ];JfT; X TT—: measurements on cos-y cos d

resolution, using B — K*(892)* 7T alone. ot and o~ refer to upper and lower widths of a bifurcated
Gaussian resolution function. The values in the last column are evaluated at § = 0°.
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Figure 8.5: Distributions of cos+ycosd using B — K*(892)*xT alone. Histograms on the left are
generated with "7’ (B, Apy) = 100%, 50%, and 10% (solid, dashed, and dotted, respectively) and

a (f+—‘ X %) fixed to 100%. Histograms on the right are generated with "7' (f+—‘ X T—+) = 100%,
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50%, and 10% (solid, dashed, and dotted, respectively) and "7’ (B, Apy) fixed to 10%. The dotted
histogram on the left is identical to the solid histogram on the right.

In the method using both B — K*(892)*nF and B — ¢(1020)K, experimental uncertainties
on branching fractions and Apy also dominate the resolution of cos®y. However, when these uncer-
tainties have been reduced to 10% of their original values, the theoretical uncertainty on the size
of |Pi,, /p’s| becomes the dominant contribution, as illustrated in Table 8.6. Figure 8.6 displays
the distributions of cosy at 6 = 0° with varying "7’ (B, Apy) and with different allowed ranges
of |Pi, /P |- Clearly, if this method is to yield a precise measurement of 7, then the theoretical

uncertainties on | Piyy, /p'p| as well as on § must be controlled.

< (B, Apv) |Pihy/vel  odky  oi/T
100% 0.33,0.67 0.51/0.50 29°/27°

[ ]
50% [0.33,0.67] 0.29/0.30 20°/16°
10% [0.33,0.67] 0.18/0.21 15°/9°
10% [0.40,0.60] 0.13/0.13  8°/7°
10% [0.45,0.55] 0.10/0.09  6°/6°

Table 8.5: Effect of uncertainties in branching fraction measurements and |Pj;, /p/p| on cos~ reso-
lution, evaluated at 6 = 0°, using B — K*(892)*xT and B — ¢(1020)K. o+ and o~ refer to upper
and lower widths of a bifurcated Gaussian resolution function.

In the determination of v and & using Acp(K*(892)%7T), reducing the total uncertainties on
the branching fractions, Apy, and Acp(K*(892)T7F) by an order of magnitude would constrain

both v and § to within less than 10°, as shown in Table 8.6. However, if experimental measurements
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Figure 8.6: Distributions of cosy at § = 0° using B — K*(892)*nF and B — ¢(1020)K . Histograms
on the left are generated with "7' (B, Apy) = 100%, 50%, and 10% (solid, dashed, and dotted,
respectively) and | P, /pp| € [0.33,0.67]. Histograms on the right are generated with [Py, /p/p| €

[0.33,0.67], [0.40,0.60], and [0.45,0.55] (solid, dashed, and dotted, respectively) and "7' (B, Apy)
fixed to 10%. The dotted histogram on the left is identical to the solid histogram on the right.

remain at their present values, then unphysical values of cos(y — §) would be strongly favored, and
this inconsistency would force reexamination of SU(3) breaking or previously neglected amplitudes

as well as indicate the possible presence of New Physics.

+/- +/-

%’ (B, Apv, Acp) U::,/s(_vw) U::)é(_v_(;) oy os fohysical
100% 0.88/0.93 1.01/1.00 230/25° 270/240 0.286
50% 0.47/0.47 0.51/0.55 16°/17° 19°/17°  0.356
10% 0.13/0.13 0.16/0.16 6°/8°  6°/6°  0.190

Table 8.6: Effect of uncertainties in branching fraction and Acp(K*(892)*7F) measurements on +y
and 0 resolution. fphysical refers to the fraction of MC trials with both cos(y + §) and cos(y — d) in
the physical region. 67 and o~ refer to upper and lower widths of a bifurcated Gaussian resolution
function.

8.3 Tests of SU(3) Symmetry

As discussed in Section 2.5, SU(3) invariance leads to a series of relations among CP-violating
rate differences in charmless hadronic B — PV decays. The relations in Equations 2.29 and 2.30
can be evaluated using currently available C'P-averaged branching fraction measurements and the
BABAR time-dependent study of B — 77~ 7° and K*nF7° [104], as well as the CP asymmetry

in B — K*(892)*7T presented above. The degree to which these relations are satisfied gives an
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Figure 8.7: Distributions of v and & using Acp(K*(892)*7F). Histograms are generated with
"7' (B, Apy,Acp) = 100% , 50%, and 10% (solid, dashed, and dotted, respectively).

indication of the validity of the SU(3) assumption.

In the following discussion, we neglect the form factor ratios, as they are expected to be close to
unity. The decay constant ratios are given by fr/fx ~ 0.82 and f,/fx+ =~ 0.96. We neglect the 1%~
3% uncertainties on these ratios, as they are far smaller than the branching fraction uncertainties.
Since, experimentally, A(B° — p(770)t7~) and A(B® — p(770)~7t) are negatively correlated,
their statistical uncertainty is reduced by considering the sum of Equations 2.29 and 2.30, given in
Equation 2.31.

The rate differences A(B° — p(770)*7~), A(B° — p(770)~7%), and A(B® — p(770)*K~)
are given by the BABAR study described in Section 8.2.2. Based on Equations 8.10-8.13, we can

express the two p(770)* 7T rate differences as

—A(B® = p(770) 7)) = (C+ AAC — A)-B(B — p(770)*7T) (8.53)
—A(B® = p(770)~7T) = (C+ AAC + A) - B(B — p(770)%77F). (8.54)

Evaluating these rate differences using the measurements and correlation matrix given in Sec-

tion 8.2.5, we obtain

—A(B® = p(770)*77) = (0.59+£0.1940.18) - (25.4 £ 4.2) x 107 (8.55)
= (132755 x 107 (8.56)
~A(B° = p(770)"7t) = (0.15+£0.204+0.04) - (25.4 +4.2) x 107° (8.57)
= (3.2%38) x 107°¢, (8.58)
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where we have assigned a systematic error of 30% to the asymmetries. In both cases, the rate
difference consists of a product of two Gaussian-distributed variables, which is distributed as a
bifurcated Gaussian. We employ MC simulation to multiply the two Gaussian distribution functions.
For the rate difference relation in Equation 2.31, we sum the two B® — p(770)=xT rate differences

given above:

—AB° = ptr7) = AB° = pah) 2(C + AAC) - B(B = p(770)*n) (8.59)

2(0.37 £ 0.18 +0.11) - (25.4 £ 4.2) x 10~ (8.60)

(16.473%%) x 1075, (8.61)

The BABAR study also includes a measurement of the CP asymmetry in B — p(770)*KT,
A,k =0.19£0.141+0.11. To obtain the rate difference, we combine this quantity with the branching
fraction corresponding to the 3.5¢ yield for B — p(770)* KT found in [128], B(B — p(770)*K¥) =
(16.01%6 +£2.8) x 106:

A(B® = p(7T70)tK ) 24,k - B(B = p(T70)*K7T) (8.62)

2(0.19 £ 0.14 £ 0.11) - (16.075% £ 2.8) x 1075. (8.63)

The correlation coefficients between A,k and the other three asymmetry parameters, A, C, and AC,
are 0.034, —0.013, and —0.011, respectively. We neglect these correlations and treat A,k as an inde-
pendent variable. The quantity A(B® — p(770)* K ™) is a product of a Gaussian-distributed variable
with a bifurcated-Gaussian-distributed variable. The resultant distribution is not well described by
a bifurcated Gaussian. Nonetheless, we represent A(B° — p(770)T K ) by the admittedly poor fit
in Figure 8.8 and assign it a value of (3.11}1) x 1076.

The rate difference for B — K*(892)* 7 is obtained from the MC simulation described in
Section 8.2. The distribution of A(B® — K*(892)~n%) is shown in Figure 8.8, and its value is
found to be (9.27193) x 1076.

With these rate differences in hand, we evaluate Equations 2.29-2.31 as shown in Table 8.7.
When A(B® — p(770)*K~) and A(B° — K*(892)~71) are summed in the right-hand side of
Equation 2.31, the non-Gaussian nature of the A(B® — p(770)* K ~) distribution is masked by the
large uncertainty in A(B® — K*(892)~n), and the full expression is well modeled by a bifurcated
Gaussian. In none of the three Equations do we find a significant departure from the SU(3) pre-
diction, and we conclude that SU(3) symmetry holds at the current level of experimental precision,

thus confirming the validity of the constraints on cos+y constructed in the SU(3) framework.
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Figure 8.8: CP-violating rate differences A(B® — p(770)* K~) (left) and A(B® — K*(892)~7™)
(right).

Equation Left-hand side x108 Right-hand side x10°
2.29 13.2+89 (0.82)%2(3.1+%1) = 2.115]
2.30 3.2%55 (0.96)%(9-2%173) = 8.5157,
2.31 16.411%3 (0.82)*(3.1137) + (0.96)*(9.2417'3) = 12.0%11

Table 8.7: Evaluation of SU(3) rate difference relations.
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Appendix A Search for a Scalar Bottom Quark

A.1 Motivation

Recent years have seen renewed interest in the possibility of a light scalar bottom quark [142, 143],
the supersymmetric partner of the conventional bottom quark. At the LEPC meeting on July 20,
2000, the ALEPH Collaboration presented results [144] on a bottom squark search conducted “as a
result of a communication from CDF.” ALEPH searched for ete™ — I;l:), with b decaying b — ¢~ 7.
They assumed that the 7 is massless and that the bottom squark has mass m; ~ 4 GeV, lifetime
; ~ 1 ps, and branching fractions B(b — cu~ ) = B(b — ce#) = 50%. They measured the rate
for hadronic events containing pairs of oppositely charged leptons and a B tag and found an excess
over that expected from Standard Model processes, with a probability of occurring as a fluctuation
of O(10~3). A subsequent re-evaluation of their lepton identification yielded no excess [145].

Nevertheless, a b with the properties given above is allowed in a small region of MSSM parameter
space [146] and is furthermore accessible to CLEO. In addition, the production cross section of scalar
quarks in ete™~ annihilations, well above threshold, is one-fourth that of spin—% quarks of the same
charge, with an angular distribution of sin?@ rather than 1 + cos?6. Thus, bb production would
contribute % unit to R, the ratio of hadronic cross section to putu~ cross section, and such an
increase cannot be ruled out by existing measurements [147]. Indirect evidence from the measured B
semileptonic branching fraction disfavors the existence of a light b [148]. Throughout this Appendix,
sums over charge-conjugate decays are implied.

If b is the lightest supersymmetric particle (LSP) and if R-parity is conserved, then b would be
stable. If, instead, a scalar neutrino 7 is the LSP, then b will decay b— el i and/or b— ulb.
If R-parity is violated, b will decay b — ¢£~ and/or b — ul~. We have searched for a light b that
decays b — ¢~ and/or b — cl~. Such a particle would dress itself as a supersymmetric B meson.
The dressed decays would be B — DX /¢~ and B — DX/~ where X represents possible additional
conventional hadrons.

The decays we search for, characterized by leptons and charmed mesons, have much in common
with conventional B decays. We perform a direct search, avoiding the B background by using 4.52
fb™! of off-resonance data at /s = 10.52 GeV. Analysis of an additional 2.24 fb™! collected on the
Y(4S5) resonance provides a sample of B mesons, which can mimic the behavior of B mesons, thus
allowing us to verify our experimental technique.

For scalar quark production near threshold, the naive behavior of the cross section is o(ete™ —

bb) ~ 3. However, strong interaction effects could increase o(ete~ — bb) above the naive ex-
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pectations, as occurs in ¢ and bb production. Ignoring these effects, one finds the threshold fac-
tor, 32, to be 0.42 for my = 3.5 GeV, 0.27 for m; = 4.0 GeV, and 0.14 for m; = 4.5 GeV,
where we have used E; = Epeam = 5.26 GeV. Thus, for charge —% squarks, the cross sections are
Ho(ete” — ptp~) = 65 pb multiplied by the threshold factor: 27 pb, 18 pb, 9 pb, for m; = 3.5, 4.0,

and 4.5 GeV, respectively. For comparison, the cross section for ¢¢ production, %a(eJre_ — ptu),
is 1.0 nb. Our off-resonance data sample would contain 81 thousand bb pairs with mj = 4.0, if they

were to exist. It also contains 4.52 x 108 c¢ pairs.

A.2 Experimental Signatures

For the decay mode given, b — ¢/~ each bb event will contain two charmed mesons and two
charged leptons (u or e). The charmed mesons may decay semileptonically, giving events with three
or four leptons. Or, they may decay hadronically, giving events with two leptons and one or two
reconstructable D mesons.

The probable background, i.e., the source of leptons and charmed mesons in continuum data,
is ete™ — cc. This final state can give events with two leptons and no reconstructable D mesons
(both D mesons decaying semileptonically), events with one lepton and one reconstructable D
meson (one D decaying semileptonically, the other hadronically), and events with no leptons and
two reconstructable D mesons (both decaying hadronically). Given this background behavior, we
can form a simple experimental signature for ete™ — bb events, consisting of a reconstructed D in
the presence of a pair of oppositely-charged leptons. We consider charged and neutral D and D*
mesons.

There are mechanisms by which ete~ — ¢z events can give our D*)¢+¢~ signature. For example,
with one real lepton and one fake lepton, ¢¢ events can give a reconstructed D plus two (apparent)
leptons. Also, in principle, a c¢ pair can be popped from the vacuum: etet — cécé. Another
possible background is the two-photon process ete~ — eTe~cé. Other sources of leptons include
kaons that decay in flight, photon conversions, and 7° Dalitz decays.

If the R-parity-violating decay b — ¢£~ were to occur, then some fraction of the time it would
appear as the dressed decay B — D¢~ or B — D*{~. While the D®*)¢*+¢~ signature discussed above
is also sensitive to these decays, we gain greater statistical power by examining the D¢~ and D*{~
invariant mass distributions in D™*)¢+¢~ events for evidence of a peak indicating such two-body

decays.
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A.3 Analysis Details

Hadronic events are selected according to the criteria given in Section 4.1. Events are rejected if they
contain fewer than five reconstructed tracks. Charged tracks and 7° candidates forming D*)¢t¢—
triplets must satisfy the same requirements as those for B candidates, given in Section 4.1. Muon
candidates must penetrate the steel absorber to a depth of at least five nuclear interaction lengths,
which effectively places a lower bound on the muon momentum of 1.2 GeV. Electrons are identified
by a likelihood that includes the fraction of the particle’s energy deposited in the calorimeter and the
spatial distribution of the deposited energy. To reduce contamination from low-momentum hadrons,
the electron momentum is required to be greater than 1.0 GeV. For electrons that are combined
with another lepton satisfying the above criteria, the momentum requirement is lowered to 600 MeV.
Electron pairs from photon conversions are rejected by requiring the dielectron invariant mass to be
greater than 200 MeV. We rely on the detector simulation to estimate the remaining contribution
of hadrons to the lepton sample.

Figure A.1 shows the event-generator-level lepton and D momentum spectrum for B — D¢~
MC. To maximize detection efficiency, no requirements are placed on the momentum of the D
candidate. D mesons are reconstructed in the modes D° - K—7t and Dt — K—ntnt, where
a sum over charge conjugate modes is implied. The daughters of the D candidates must undergo

ionization energy loss consistent with the particle hypothesis at the level of three standard deviations

K/m

( adE/dg”‘ < 3). We reconstruct D* mesons in the modes D** — D% D*t — D%z+ and D*t —

D+t7% When used in the D* modes, D candidates must have invariant masses less than 15 MeV
(about 2.5 standard deviations) from the known mass. The mass resolutions are typically 6.5-7.0
MeV for mp and 0.5-1.0 MeV for mp+« — mp, the D*-D mass difference.

We determine the efficiency for detecting a supersymmetric B meson using MC simulation. A
range of values for the B mass, m 5, from 3.5 to 4.5 GeV, has been explored. Also, the sneutrino
mass, m;, was varied within the kinematically allowed range. In the process ete™ — I;Z, followed
by hadronization, the supersymmetric B mesons have energies Ej distributed from mg to Epeam
according to some unknown fragmentation function, which we approximate by a delta function
0(Eg — Ey), with Ey given a value between mp and Epeam. We simulate both B mesons and their
daughters, as well as the additional hadrons that result from fragmentation. We determine the
dependence of efficiency on mg, ms, and Eg. To simulate the decay B — D¢~ X, we have taken
X to be a single pion and used three-body phase space for the decay. For b — ¢~ 7, we have used
D{~ v three-body phase space. In choosing a naive phase space model, we neglect the theoretical
uncertainty in the decay distribution [149] and facilitate comparison with other models.

These variations affect the B meson detection efficiency primarily through the lepton momentum

spectrum. Figure A.2 contains representative graphs of the efficiency variations for the D°¢*¢~ and
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Figure A.1: Generator-level lepton and D meson momentum spectra in B — D~ decays.

Dtete~ signatures. The efficiency exhibits weak dependence on m g, but lower values of Eq tend to
soften the lepton momentum spectrum, resulting in reduced efficiency. For the smallest value of Eq
we considered (3.7 GeV), the efficiencies are one-fourth of those with Ey = Epeam. For all modes, the
variation of the efficiency with mg is roughly linear between mz = 0 GeV and mj;'** = 0.6mg — 0.8
GeV, where the efficiency vanishes.

The detection efficiency is also affected by the additional particles produced in fragmentation.
From MC studies, we have determined that for each fragmentation particle, the relative decrease
in efficiency is approximately 3% and depends on the momentum and species of the fragmentation
particles. By considering MC simulation of ete™ — ¢, we estimate roughly two fragmentation
particles per GeV of fragmentation energy. The detection efficiency has been corrected accordingly.

To search for the R-parity-violating decay, b — ¢t~ , we apply the same candidate selection critera
as described above, with the additional requirements that the invariant mass of the D candidate

fall within 15 MeV (about 2.50) of the known mass and that mp- — mp lie below 145 MeV for
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Figure A.2: Signal efficiencies (not including D branching fractions) as a function of mpz and E for
DO¢+¢~ (left) and DY+~ (right). The five curves, from top to bottom at Ey = 4.7 GeV, are for
mp = 4.50 GeV, 4.25 GeV, 4.00 GeV, 3.75 GeV, and 3.50 GeV.

D*0 — D70, 147 MeV for D** — D%z, and 144 MeV for D** — D+ 7°. By generating signal MC
at various values of mz and Ey as described above, we parametrize both the signal efficiency and
the mp),- resolution. We have assumed the natural width of the B to be small compared to the
detector resolution. Typical signal efficiencies are 1.5 times larger than for the R-parity-conserving

decay because of the stiffer leptons, and the m )~ resolutions are typically around 10 MeV.

A.4 Results

Figure A.3 shows the K7t and K~ 77t invariant mass distributions of D® and D candidates,
respectively, associated with two oppositely charged leptons. Also shown are the normalizing distri-
butions for D candidates paired with a single lepton of either charge. The analogous distributions
for the D* modes, showing the D*-D mass difference, are given in Figure A.4. The D*)-dilepton
distributions reveal a striking absence of signal. The D) yields are extracted from a fit of each
histogram to a Gaussian distribution over a linear background for the D modes and a quadratic
background for the D* modes. The means and widths of the Gaussians for the D*)-dilepton fit are
fixed to values determined from the normalizing distributions. Table A.1 lists the yields observed in
data as well as the expected yields determined from continuum MC. No significant excess is observed
in any mode. Also given in Table A.1 is a representative set of detection efficiencies and the resultant
95% confidence level upper limits on the cross section, assuming mpz = 4.0 GeV, m; = 0 GeV, and
Eo = Epeam-

In the normalizing distributions there is good agreement between the data and simulated con-

tinuum events. In addition, by analyzing data taken on the T (4S) resonance, we observe the closely
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Figure A.3: Invariant mass distributions for (a) D° — Kot and (b) D¥ — K~ 7" x" candidates
paired with a single lepton of either charge (open histogram) or with two oppositely charged leptons
(shaded histogram). The two D-dilepton distributions have been scaled by a factor of 25 to facilitate
comparison with the normalizing distributions. The fits of each distribution to a Gaussian and a
linear background are shown in the dashed curves.

related semileptonic B decay with yields that agree well with predictions from the detector simula-
tion.

We give the upper limit on the product of the BB production cross section and the B —
D(*)E{w,ﬂ} branching fraction as a function of mg and Ey, assuming mz = 0 GeV. The upper
limits for a finite m; would be those for m; = 0 GeV, but scaled by the factor (1 — m;/mPax)~1.
Upper limits have been inflated to account for uncertainties in the detector simulation and in the
D and D* branching fractions, which amount to systematic errors of 20%. We also assign an error
of 10% to the expected Standard Model yields due to uncertainties in the simulation of both fake
and real leptons. Also, we include a systematic error per fragmentation particle of £2.5% for the D
modes and 5% for the D* modes to allow for the uncertainty in the efficiency correction. The total
systematic uncertainties are small compared to the statistical errors on the background-subtracted
yields.

Figure A.6 shows the 95% confidence level upper limit on the product of o(ete™ — B’é) and
B(B — D™¢{x,7}) as a function of mz and Ey, assuming m; = 0 GeV. The strong rise of the
upper limits with decreasing Eo/FEheam reflects the softening of the lepton spectrum. Because of the
3% dependence of the cross section near threshold, the cross section at /s = 10.52 GeV is heavily
dependent on the assumed mp. These predicted cross sections are shown as the thick curves in
Figure A.6. For both the D-dilepton and D*-dilepton signatures, the upper limits in nearly all of
the kinematically allowed mg-Ey parameter space with mz = 0 GeV fall below the predicted bb

production cross section. Below mg = 3.9 GeV, the D*-dilepton efficiency vanishes, so we exclude
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Figure A.4: Distributions of the D*-D mass difference for (a) D** — D%#%, (b) D** — D%t and
(¢) D** — D* 70 candidates paired with a single lepton of either charge (open histogram) or with
two oppositely charged leptons (shaded histogram). The three D*-dilepton distributions have been
scaled by a factor of 15 to facilitate comparison with the normalizing distributions. The fits of each
distribution to a Gaussian and a quadratic background are shown in the dashed curves.

a B that decays B — D*¢{m, 7} only in the mass range 3.9-4.5 GeV. No portion of the parameter
space is excluded if my is greater than 1.2 GeV and 1.3 GeV for the D-dilepton and D*-dilepton
signatures, respectively.

We search for R-parity-violating decays of B in the mpq),~ distributions shown in Figure A.5.
We find no evidence of a peak. Fitting the distributions to a polynomial background plus a Gaussian
width given by our experimental resolution, and stepping the Gaussian mean over the mass range,
we obtain upper limits on the product of the bb production cross section and the B — D®*)¢~ decay
branching fraction, as a function of mg. These upper limits, which include 15% systematic errors
on the yields, are shown in Figure A.6. For B — D{~, the upper limit is less than 0.3 pb for all
masses except near 4.36 GeV, where it is 1.0 pb. For B — D*{~ the upper limit is weaker, typically
3 pb for masses around 4 GeV, dropping to 0.3 pb for masses near 4.5 GeV.

In conclusion, we have searched for associated BB production in eTe~ collisions with center-of-
mass energy below the BB production threshold. Considering D-dilepton and D*-dilepton combi-
nations, we find no evidence of a light scalar bottom quark produced at /s = 10.52 GeV. Upper
limits on the BB production cross section depend on the assumed mass and energy of the B meson,
as well as the mass of the sneutrino. For m; less than O(1 GeV), the existence of a light scalar
bottom quark with mass between 3.5 GeV and 4.5 GeV has been excluded at the 95% confidence
level. A light scalar quark decaying 100% of the time b — ¢fi and/or b — ¢£ would have escaped
our notice only if its decay matrix element results in a lepton spectrum much softer than three-body
phase space (e.g., if m; approaches 1.2 GeV). This study was published in Physical Review D Rapid

Communications [150].
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o(ete — bb)x

Mode Yield Expected Yield e (%)  B(B — D™e¢{n,})
DAY 476+20.0 337+147+34 0.44+0.02
Dtete- 374+251 583+21.3+58 0.86+0.04

Detre- < 2.7 pb at 95% C.L.
D 49+34 42+26+04 0.08+0.01

D (D7)t 113438  4.0+£20+04  0.12+0.01
D*(D+r%)¢te-  02+36 3.6+23+£04 0.09+0.01
D*¢te- < 3.7 pb at 95% C.L.

Table A.1: Fitted D and D* yields for the D*)-dilepton signature. The expected yields due to
Standard Model processes are obtained from an analysis of simulated continuum events and include
a systematic error of 10% due to uncertainties in the modeling of both fake and real leptons. The
representative signal efficiencies given include the D™ branching fractions and assume m 5 =40
GeV, Ey = Epeam, and my = 0 GeV. The corresponding 95% confidence level upper limits on the
product of the eTe~ — bb production cross section and the B — D™*)¢{x, #} branching fraction are
calculated from the excess in the measured yield over the expected yield. These upper limits include
systematic errors of 20% on the reconstruction efficiency.
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Figure A.5: Distributions of D¢~ (left) and D*¢~ (right) invariant mass in data (points) and simu-
lated continuum events (histogram).
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Figure A.6: Upper limits at the 95% confidence level on the product of the ete~ — BB production
cross section and the B — D™)¢~{r, 7} branching fraction. The energy of the B meson, Eg,
is expected to lie between the energy corresponding to its rest mass, mp, and the beam energy,
Ebeam- The upper limits for the (a) D-dilepton and (b) D*-dilepton signatures are given for the
full kinematic range of Ep/FEpeam as a function of myg, assuming my = 0 GeV. The thick curves
show the theoretically predicted cross sections, derived from the cross section for pointlike fermions

3/2
and scaled by % = (1 - —B) . For finite my, the upper limits are increased by a factor

-1
(1 — 0.67)’141;1”%) . The shaded histograms represent, the largest upper limits, for each given

mp, on an R-parity-violating B that decays B — D®)¢.
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