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Abstract

This thesis addresses some of the key challenges in the emerging wireless scenario. It
focuses on the problems of connectivity, coverage, and wave propagation, following
a mathematically rigorous approach. The questions addressed are very basic and
extremely easy to state. Their solution, however, can be difficult and leads to the
development of a new kind of percolation theory, to a new theorem in geometry,
and to a new model of wave propagation in urban environments. The problems are

connected together to provide guidelines in the design of wireless networks.



Chapter 1 Introduction

1.1 The wireless scenario

Any technology that allows exchange of information between two points in absence
of any physical connection between them can be defined as wireless communication.
Nowadays the most striking example of wireless communication is provided by the
cellular telephone system. In this case, the service area is divided into cells that
are served by fixed stations, usually connected to a wired network. Customers in
the service area connect to the fixed stations, switching from one to the other when
crossing a cell boundary. These cellular systems rely on a mature technology, which
is however appropriate only to the particular service they exploit: voice transmission.
This technology is likely to be inadequate to handle the challenges of the very near
future, namely, wide-band wireless transmission and increasing number of customers.

Wide-band transmission allows to merge different types of information: voice,
video, data, to be transmitted along the same channel. One key problem is to design
wireless networks in a way that makes possible to deliver large amounts of data to
many customers in an efficient and cost-effective way. The new emerging scenario
will be characterized by smaller cells providing ad hoc coverage to clusters of homes
and buildings, rather than the current rigidly planned cellular division and uniform
coverage of the entire service area. This leads to a better exploitation of the spatial
resource, and, consequently, to the possibility of handling larger amounts of data and
servicing larger numbers of customers. Small cells also represent a cost-effective solu-
tion to the so-called “last mile” problem, where new service areas must be connected
to a high capacity fiberoptic backbone.

Allowing different types of information, wide-band transmission brings new appli-
cations into the wireless domain. Portable devices can be used to browse the Web,

to watch movies, to play interactive games in real time, and to securely transfer and
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manage private data stored remotely. Inside buildings, distributed laptop computers
can be networked and multi-hop wireless connections can be established. Similar
reconfigurable situations can be envisaged in wireless networks of sensors monitor-
ing the environment, or in emergency situations. These new applications bring new
challenges to the network designer, from hardware (development of portable devices,
sensors, and home terminals) to software (protocol design, modulation and coding
techniques, architecture), with the communication channel in between. This must be
fully characterized by the electromagnetic viewpoint. Electromagnetic signal spatial
decay, time and space dispersion, interference, are all items that must be clarified in
a way that the link design may rely on a solid background, evolving from the today
semi-empirical approach, mainly based on experimental measurements, to a scientific

one.

1.2 Contribution

The contribution of this thesis is to address some of the basic challenges in the emerg-
ing wireless scenario. At the same time, it leads to advances in pure mathematics
(probability and geometry), computation theory (algorithms), and physics (propaga-
tion), opening new directions of research in all of these areas.

We focus on the key problems of connectivity, coverage, and wave propagation in
wireless networks. Despite the simplicity of the questions we ask, their solution can be
difficult and requires the invention of new methods. Our questions not only demon-
strate mathematical ingenuity, but, being inspired by real problems, they provide
a wide picture of wireless networks, from the analysis of their collective behavior,
to the optimization of their design, to the physical modeling of their transmission
mechanism.

The organization of the thesis is as follows. We introduce all the problems in this
chapter, using simple examples that may seem, at first sight, totally unrelated to
wireless networks, but that make a little story and are fun to play with. At the end

of the chapter, we connect all the problems together and show how their combined
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solution can be used in the design of wireless networks. Each problem is then re-
examined as the topic of a separate chapter. The last chapter discusses extensions
and future directions of research.

The first problem we consider is motivated by the question of long-distance multi-
hop connectivity, and leads to the development of a new kind of percolation theory;
this is derived in a mathematically rigorous way in Chapter 2. The second problem
we consider is motivated by the question of efficient network coverage, and leads to a
basic theorem in geometry that can be applied at the early design stage of a wireless
network; this is presented in Chapter 3. The third problem is to give a reliable
model of the electromagnetic signal decay in cluttered environments. This leads to a
new model of the physics of propagation of a wireless signal, related to the classical
theory of radiative transfer, that is applied to predict the propagation loss of an urban
wireless channel in Chapter 4.

There are several publications associated with this thesis. The work on perco-
lation theory and connectivity of wireless networks, written in collaboration with
Lorna Booth, Jehoshua Bruck, and Ronald Meester (2002 a,b), has been presented
at the 2002 IEEE International Symposium of Information Theory, and will appear
in the journal Annals of Applied Probability. The work on coverage and the associ-
ated geometric theorem, written in collaboration with Jehoshua Bruck and Matthew
Cook (2002), is currently under review for publication. The work on wave propa-
gation, written in collaboration with Jehoshua Bruck and Leonard Schulman (2002
a,b,c), has been presented at the 2002 IEEE International Symposium on Antennas

and Propagation, and is under review for journal publication.

1.3 Problem 1. The lazy gardener

Mario is a gardener who waters the flowers in a beautiful large square garden. The
flowers have grown at random locations inside the garden. To minimize his work,
Mario decides to divide the flowers into groups and, using his watering pot, to water

each group individually, each time leaving a circular wet mark on the ground where



Figure 1.1: The lazy gardener. Flowers are randomly distributed in the garden, and discs
represent wet marks on the ground. The line indicates a possible dry crossing of the garden. If
Mario decides to water the flowers as depicted on the right-hand side, the wet area won’t span the
entire garden and he will be able to go back, without getting his feet wet.

the group is located. He starts his watering procedure at one side of the garden,
working his way toward the opposite side. Once he has finished, will he be able to
traverse the garden back to the side where he started, without getting his feet wet?
Note that, for certain locations of the flowers, this may depend on Mario’s watering
strategy, see Fig. 1.1.

The problem above is similar to a simpler one described by Grimmett (1999) to
introduce continuum percolation: lilies inhabit a beautiful large square pond. They
have grown at random locations. Can a snail arriving at the pond traverse it without
falling into the water? A picture of the snail’s route appears in Fig. 1.2. Problems like
these may be rephrased in terms of the following fundamental question of stochastic
geometry: ascertain the minimal density of points in the plane which guarantees, for
a given covering strategy, the existence of an infinite cluster of discs covering all the
points. This question has been studied in the context of continuum percolation, where,
as in the snail’s lily pond example, each point of a two-dimensional Poisson point
process is the center of a disc of given (or random) radius r, but the generalization

to different covering strategies was not, until now.



Figure 1.2: The snail’s lily pond. Discs represent randomly distributed lilies inside the pond.
The line indicates a possible dry crossing of the pond.

1.3.1 Background

Continuum percolation theory was originally introduced by Gilbert (1961), who was
motivated by networks of wireless broadcasting stations. In his formulation, points
of a two-dimensional Poisson point process represent wireless transmitting stations
of range 2r and he asks if the system can provide some long-distance, multi-hop
communication. He shows the existence of a critical value A, for the density of the
transmitters, such that, for A > A., an unbounded connected component of trans-
mitters forms, with probability one, and long-distance multi-hop communication is
possible. A simulation of Gilbert’s model is depicted in Fig. 1.3, where discs of uni-
tary radius are randomly distributed in a large square area. On the left-hand side of
the figure the density of the discs is A = 0.3, the system is below criticality, and only
isolated clusters can be found. On the right-hand side of the figure, the density of
the discs is A = 0.4, the system has reached its percolation threshold, and the largest
cluster spans the entire simulation plane.

Gilbert’s model has attracted the attention, in the past forty years, of mathe-
maticians and physicists. Mathematicians have been attracted by the charm and the
beauty of the apparent simplicity of its open problems. Physicists recognized the

applicability of the model to different phenomena, like impurity conduction in lightly



Figure 1.3: Gilbert’s model. In this simulation discs of radius r = 1 are centered at each
random point. Components are identified by the same color. On the left-hand side of the figure, the
density of the process is A = 0.3; on the right-hand side A = 0.4. Extensive Monte Carlo simulations
show that an unbounded component of discs forms at the critical value A\, = 0.36, see Quintanilla,
Torquato, and Ziff (2000) .

doped semiconductors, ferromagnetism in a dilute system of magnetic atoms in a non
magnetic host crystal, and cross-linking of polymers.

Before Gilbert’s work, other models that exhibit phase transitions had also been
studied. Percolation theory, in its original discrete formulation, considered square
lattices where each pair of adjacent cells can be connected, independently, with prob-
ability p. The first mathematically rigorous paper on the topic is due to Broadbent
and Hammersley (1957), who coined the term “percolation” and proved the existence
of a critical probability p., such that, for p > p., the largest connected cluster is
infinite. Historically, first ideas go back to Flory (1941) and Stockmayer (1943), who
studied (in a less formal framework) gel formation in polymers and introduced what
is known today as percolation on the Bethe lattice, or Cayley tree. Additional studies
of phase transitions connected to percolation, performed by Kadanoff (1966), sparked
the work for which Ken Wilson (1971 a,b) was awarded the Nobel prize in physics
in 1982. These studies are related to the calculation of the critical exponents, which
are observed experimentally and describe how physical quantities vary close to the
critical point. Whereas the critical percolation probability p. depends on the type

of lattice, critical exponents are believed to depend only on the space dimension and
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to be independent from the local details of the structure of the model, i.e., they are
the same for different lattices, and even for continuum and discrete percolation. The
intuition behind Wilson’s work is that the same “fixed point” interaction is reached
at criticality in all of these systems. Recent rigorous results on critical exponents can
be found in the work of Smirnov and Werner (2001) and in the references therein.

Phase transitions were also studied in the context of graph theory by Erdés and
Rényi (1959, 1960, 1961 a, b), who considered a set of n vertices, each pair having
the same probability, regardless of their separation, of being connected by an edge,
and looked at the resulting connectivity of the graph for n — co.

Even if many results in the applied literature have yet to be mathematically
verified, the field of phase transitions is now well developed and excellent mathematics
reference texts for the theory of percolation are Grimmett (1999) and Kesten (1980);
for continuum percolation is Meester and Roy (1996); and for random graphs is
Bolobds (1985). Another book, popular among physicists, is Binney, Dowrick, Fisher,
and Newman (1992).

Recently there has been a renewed interest in the application of these models to
modern wired and wireless networks. See, for example, the works of Fabrikant, Kout-
soupias, and Papadimitriou (2002); Gupta and Kumar (1998, 2000); Newman (2002);
Xue and Kumar (2002). In these works the stochastic models proposed for wireless
networks consider “flat’ networks, in which, as in Gilbert’s formulation, all nodes
cooperate to route each other’s data packets. Our theory provides an extension to
“clustered” networks, in which a subset of the nodes provide coverage to clusters of
clients and route data packets from source to destination. See Fig. 1.4 for a visual

example.

1.3.2 New model

In our clustered model clients are randomly distributed on the plane. They communi-
cate by connecting to wireless base stations that forward their messages to destination

in a multi-hop fashion. All the clients use the same transmission power, therefore any



Figure 1.4: Flat vs. clustered wireless networks. In a flat, ad hoc network (left-hand
side of the figure), all nodes are considered equal, and can route data packets to destination. In a
clustered, wireless backbone network (right-hand side of the figure), a subset of the nodes acts as
wireless base stations, providing coverage to clusters of clients, and routing data packets through
the network.

client that is within a given distance r to a base station can connect to it, and we
say that the client is covered by the base station. The network is completely wire-
less, hence, base stations can connect to other base stations only up to a limited
distance R. A covering algorithm decides where to place the base stations, accord-
ing to the distribution of the clients, in such a way that each client is covered by
at least one station, and each station covers at least one client. In this scenario, we
are interested in determining the conditions on the covering algorithm, and on the
transmission power of the nodes (i.e., on the radii r and R), for which an unbounded
connected component of base stations almost surely (a.s.) forms, when the density
A of the clients exceeds a given threshold, and thus the network can provide some
long-distance multi-hop communication.

This model applies to commercial cellular networks that provide services to clients,
and in which all links are wireless. It also applies to sensor networks, in which a large
number of small sensors is deployed to monitor the activity of a random distribution
of particles. In this case R would be the radius of communication of the sensors and

r would represent their sensing range. One could also think of a dynamic scenario in

which the clients or the particles move, and the covering stations, deployed on a fixed
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grid, are each turned on or off at any given time, to minimize power consumption.
In the study of the model our aim is twofold. On one side, we answer some
very natural questions that arise from a purely mathematical point of view. On the
other side, we note that some of our results can be used as guidelines in the design
of real networks. One key result, from an engineering point of view, is that the
network can provide some long-distance multi-hop communication, regardless of the
algorithm used to place the covering stations, if the density of the clients is high
enough and their communication range is less than half the communication range
of the base stations. As the ratio between the two communication ranges becomes
greater than half, a malicious covering algorithm that never provides long-distance
multi-hop communication in the network exists even if we constrain the base stations
to be placed at the vertices of a fixed grid—which is the typical scenario in the case
of commercial networks. This means that in the latter case one should be careful in
the design of the covering algorithm to avoid the possibility of having a perpetually

disconnected network.

1.3.3 Main results

We group all results into three categories: (non) existence of an unbounded con-
nected component for different classes of covering algorithms, scaling results, and
results regarding the optimality of certain algorithms. We show that, for any cover-
ing algorithm, there is no unbounded connected component for a density of points A
sufficiently small (depending on the algorithm). On the other hand, there are cov-
ering algorithms that never form an unbounded connected component, whatever the
value of A\. Furthermore, we divide covering algorithms into families that do form an
unbounded connected component, for large A, and families that do not. We then show
how this percolation property is affected by the scaling of the radii » and R. Finally,
we show (constructively) that a certain class of practical algorithms can achieve a
density of covering discs arbitrarily close to the minimal one, and we also construct

an optimal algorithm in terms of this minimal density.
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Mario’s plate Luigi’s plate

Figure 1.5: The dinner game. Mario’s plate requires six discs placed at the vertices of the
grid to be fully covered, while Luigi’s plate requires only four. In this case, Mario beats Luigi 5 to
7.

Before looking at all this, we introduce the two remaining problems that are the

subject of this thesis.

1.4 Problem 2. The dinner game

Let’s return to Mario and his beautiful garden. Once he finishes watering the flowers,
Mario returns home where he eats dinner with his brother Luigi. After dinner they
decide to use the grid design of their table cloth and their empty plates to play the
following game. Each of them places a plate on the table and then tries to completely
cover the plate placed by his opponent by new plates of the same size, but centered
only at grid points. The objective of the game is to end up using less plates than
the opposite player. What is the optimal strategy that guarantees Mario’s at least a
tie with Luigi? A winning combination for Mario is depicted in Fig. 1.5. His plate
(represented as a shaded disc) requires six plates placed at the vertices of the grid to
be fully covered, while Luigi’s plate requires only four plates placed on the grid.

A more general version of this problem can be phrased in terms of the following
fundamental question of combinatorial geometry: how many discs of given radius 7,
centered at the vertices of an infinite square grid of given spacing L, are required, in

the worst case, to completely cover an arbitrary disc of radius r placed on the plane,
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Figure 1.6: Geometric disc covering. On the left-hand side of the figure, the dashed line
disc requires six discs centered at lattice vertices to be fully covered. On the right-hand side of the
figure, it requires only three discs.

and how is this worst case achieved?

The answer to this question depends on the ratio of the radius r to the grid spacing
L, as illustrated in Fig. 1.6. On the left-hand side of the figure, six solid line discs,
centered at grid vertices, are required to cover a dashed line disc placed half way
between two adjacent grid vertices. If the ratio of r to the grid spacing L is increased
(right-hand side of the figure), then fewer discs centered at grid vertices are required
to cover the same dashed line disc. We present a geometric theorem that shows that
the number of discs of radius 7 centered at the vertices of a square grid of spacing
L that are necessary and sufficient to completely cover an arbitrary disc of radius r
placed on the plane is an integer N' € {3,4,5,6}, whose value depends on the ratio
r/L. The necessary condition of the theorem is proved constructively, by showing
a disc placement that requires the maximum number of N grid discs to be covered,

thus providing the optimal strategy to play the dinner game.

1.4.1 Application to wireless networks and main result

How can we apply the solution to the geometric disc covering outlined above to the
design of radio cellular networks? Let us consider a scenario in which a telecommu-
nication company plans the deployment of a new network in a city. One key problem

is to decide where to position base stations, according to a distribution of demand
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points, to achieve optimum quality of service, with minimum costs. At the early
design stage, interference effects are neglected, simplistic propagation models are as-
sumed, and the problem is to suggest initial design strategies. We assume that, by
paying a local tax, the company can install base stations at the city traffic lights. In
this way, all base stations are placed at some vertices of a square grid, corresponding
to the street intersections, in a way that each demand point is within a given distance
from a base station. Following this design the company estimates a cost of deploy-
ment of, say, 500 euros (€) per base station. Alternatively, the company can place
the stations optimally, without constraining them to be at the street intersections.
This means identifying a minimum cardinality set of locations of the base stations
that cover all the demand points. This strategy can potentially lead to a smaller
number of installations, but its estimated cost of deployment is, for instance, 1700
€ per base station, due to higher manufacturing and installation costs, and because
the company may need to pay, or to give a discount, to the owner of the building, or
land, where it intends to place a base station. Hence, the company faces the following
dilemma: is it better to choose the grid design that may lead to a larger number of
less expensive base stations, or is it better to choose locations optimally, potentially
using less, but more expensive base stations?

The solution to the puzzle above depends on the ratio of the communication range
r of a base station to the city block length L. Consider the limiting case in which
all demand points lie inside a circle of radius r, thus requiring a single non-grid base
station of cost C,,. Alternatively, we can serve all the points with a number A of
grid base station that depends on the ratio r/L, and that is provided by our theorem.
The corresponding cost is in this case N - Cyy, where C, is the cost of one grid base
station. By applying our geometric result, we are therefore in a position to solve the
puzzle. Accordingly, we will show that the following holds for any distribution of the

demand points:
e For C,, > 6C,, the network grid design is cost-effective if r/L > \/5/2

e For C,, > 5C,, the network grid design is cost-effective if /L > 1/10/4.
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e For C,, > 4C,, the network grid design is cost-effective if /L > 1.
e For C,, > 3C,, the network grid design is cost-effective if r/L > 5v/2/4.

In all remaining cases, a non-grid network design can be cost-effective for some dis-
tribution of demand points. By referring to the cost values given in the example, we
have 1700/500 = 3.4 > 3, hence the company should always choose a grid design if

the ratio of the communication range of the base stations to the city block length is

5V2

greater or equal to YL

1.4.2 Model assumptions

The described scenario relies on several assumptions. We assume a city formed by
regularly spaced blocks; to use existing traffic light poles as potential transmitting
locations; and to identify demand nodes that represent the expected network traf-
fic. A square grid city model better applies to some U.S. urban and suburban areas
than to older, and more irregular, European cities (despite we have used euros in our
example!). The idea of using existing traffic light poles to place base stations in a
city has been exploited by several telecommunication companies in the recent years,
both in the U.S. and Europe, to build microcellular networks with higher capacities
than traditional cellular systems, see Greenstein et al. (1992). Finally, the concept
of demand nodes was introduced by Tutschku and Tran-Gia (1998), and the Inter-
national Telecommunication Union (1999) has recently proposed its standardization.
According to their definition, a demand node represents the center of an area with
a certain traffic demand and each node stands for the same portion of traffic load.
Hence, different traffic patterns correspond to different node distributions: highly
populated business districts typically lead to dense distributions of demand nodes,
while suburban and rural areas lead to sparser distributions. More details on the
identification of demand nodes can be found in the survey of Tran-Gia, Leibnitz, and
Tutschku (2000).

We also point out how one could argue that constraining (as we also did in the

percolation model described in the previous section) each demand point to be within a
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given distance from a base station, corresponds to assuming base station transmitters
to have rotational symmetric range, that is not an accurate physical representation
of what is often in practice an anisotropic and time-varying communication range,
due to shadowing and fading effects. However, we argue that a circle that bounds
the maximal range can be used as a first-order approximation at the early design
stage of the network, as hexagonal cell shapes are universally adopted to approxi-
mate circular radiation patterns in the design and analysis of cellular systems, see
Rappaport (1996); and as circular radiation patterns are assumed in the calculation of
the throughput capacity of ad hoc wireless networks, see Grossglauser and Tse (2001),
Gupta and Kumar (2000), and Kulkarni and Viswanath (2001).

There is no doubt that our model can be improved, relaxing some, or all previous
assumptions. This, however, does not lead to a simple analytical evaluation, as we
provide, of the range of parameters that suggest a grid or non-grid design. Our
contribution consists in suggesting initial design strategies, determining if there is an
early indication of convenience of a grid design that can be later validated by more
accurate numerical solvers.

Before turning to mathematical details, we can still play a little more with another

problem: let’s look at what Mario is up to.

1.5 Problem 3. The sleepy drunk

Thanks to a theorem he read in a Caltech PhD thesis, Mario beats Luigi at their
dinner game and Luigi must then buy him a large flask of wine. Mario drinks the
entire flask and starts wandering around town in a state of supreme intoxication. He
walks in a funny way: initially he proceeds in a straight line, but suddenly he turns
through any angle whatever and walks in a straight line for another while, and so on.
Every time he turns he feels dizzy and risks tripping over and falling asleep. How far
does he get, before finally falling asleep? A picture of Mario’s drunken walk appears
in Fig 1.7.

The problem above is related to wave propagation in cluttered environments.
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Figure 1.7: Mario’s drunken walk. After getting drunk, Mario starts wandering around and
reaches a distance d away from his origin point, before finally falling asleep.

The physics of propagation in rich scattering environments, such as urban areas,
are still largely unknown. We know that the propagation mechanism must obey
Maxwell equations, but we do not know how to analytically solve these equations
in complex environments, where different objects can reflect electromagnetic waves
in many directions and partially absorb them. In this case, simplified models of
propagation that can be analytically or numerically solved are of interest. Mario’s
drunken walk constitutes an example of one such model of propagation in urban

microcellular systems.

1.5.1 Background

Radio microcells used for wireless personal communication have become more and
more popular in the last few years, and today many telecommunication companies
use them to provide coverage to densely populated areas. Internet providers also
started using them to provide high-speed wireless internet access. These microcells
are regions of few hundred meters in diameter, served by radio base stations. They are
one or two orders of magnitude smaller than traditional radio cells used for personal
communication. The reduction in size requires the use of low antennas (typically be-
low 10 m), transmission at low power (typically below 10 W), and has the advantage

of increasing the overall capacity of the system. Another effect of using low transmit-



16
ting antennas is that the propagation mechanism is dominated by the large amount
of scattering and diffraction due to the many objects encountered by the radiated
signal, and exact analytical solutions, obtained by solving Maxwell equations in the
given environment, cannot be sought for. Hence, prediction of propagation loss, es-
sential in the network planning stage, is typically done using empirical formulas that
fit experimental data.

In almost all work done in both line-of-sight (LOS) and non-line-of-sight (NLOS)
conditions, the propagation loss is empirically modeled using an inverse power law
in the distance to the transmitter. This inverse power law model goes back to the
empirical formula given by Hata (1980), following previous work of Okumura et al.
(1968), based on extensive experimental measurements made in the nineteen-sixties
in Japan. When adapting the Okumura-Hata formula to smaller cells, there is exper-
imental evidence of a power law exponent that increases as a function of the distance
between the transmitter and the receiver. To accommodate to this variation, telecom-
munication companies started using path loss models characterized by a breakpoint
distance at which the exponent of the inverse power law is changed. The existence
of such a breakpoint can be theoretically justified, in LOS conditions, using a sim-
plified two-ray propagation model consisting of the direct and ground reflected ray,
see Fig. 1.8. This model predicts the existence of a breakpoint distance 7, at which
the characteristic of power loss with distance r from the transmitter is changed from
the mode r=2 (for 7 < 1) to the mode 7=* (for r > r;), and has been used by Xia
et al. (1993) to predict LOS power attenuation in microcellular systems. The model
can also be refined considering the two additional rays reflected by the buildings
along the street, but this extension does not change the predicted transition to the
r~* mode, see Bertoni et al. (1994). Hence, this simple ray model cannot explain
the experimentally observed power loss modes of 79, with ¢ in the range 4 to 10
beyond the breakpoint, that have been reported, for example, in Blaunstein et al.
(1995,1996,1998), Feurstein et al. (1994), and Green (1989). Recently, a possible
explanation of this phenomenon has been proposed by Blaunstain et al. (1998), intro-

ducing a lossy waveguide model to describe wave propagation along straight streets
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Transmitter

Receiver

Figure 1.8: Two-ray ground reflection model. This model considers the direct signal path
and a ground reflected signal path between transmitter and receiver. At large distances it predicts
a received power that falls off with distance raised at the fourth power.

with randomly distributed walls of buildings and gaps between them. This model

2 mode to an exponential attenuation mode

predicts a smooth transition from an r~
that can explain the empirical high-order power law of r~%, ¢ > 4, obtained in most
experiments.

In NLOS conditions, empirical path loss formulas of the type r~¢ have also been
used, and, by using low transmitting antennas, values of ¢ considerably larger than
4 after a breakpoint have been used to fit experimental data, see for example the
work of Erceg et al. (1999). In this case the propagation mechanism must be based
on multiple scattering and diffraction effects that allow coverage of NLOS locations.
For example, in urban areas, lamp posts, street signs, trees and vegetation, pedestri-
ans, cars, irregularly sited and textured building walls (common in older European
constructions) can scatter energy in many directions, allowing reception of signal in
shaded areas. These effects are difficult to predict, and additional efforts have been
made to develop approximate models that can justify the experimental findings. Ma-
ciel et al. (1993), and Xia and Bertoni (1992) proposed a model based on multiple
forward diffraction over a row of parallel, equispaced buildings of the same height.
Their model, however, can only predict values of the path loss exponent ¢ less than

4.5. Recently, Franceschetti G. et al. (1999) proposed an analytic model based on

random walks, rather than wave interference effects. They model a city as a random
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Figure 1.9: Ray penetration in a random environment. In this model, a city is rep-
resented as a discrete site percolating lattice, where the site occupation probability p. represents
the density of the buildings that are assumed to be perfect reflectors. A plane wave impinging the
lattice penetrates a number of levels that is a function of p. and of the impinging angle 6.
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medium of lossless scatterers and consider a random walk formulation of the problem
of optical ray penetration inside the medium, see Figure 1.9. The idea is to have a
plane wave entering an urban area at a certain incident angle. Their main result is an
approximate analytical formula for the penetration depth as a function of the density
of the scatterers and of the wave’s incident angle. Their study, however, not consid-
ering signal attenuation inside the medium, nor considering locating the transmitter
inside the medium, does not lead to a path loss formula that can be experimentally
validated.

Our work extends the model of Franceschetti G. et al. (1999) considering an
isotropic source placed inside the environment and including in the model signal at-
tenuation and losses due to absorption. It turns out that by solving Mario’s sleepy
drunk problem we can also solve the proposed propagation model and obtain a path
loss formula that can be experimentally validated. The obtained path loss formula
rather accurately (in comparison to other models and to the experimental data) de-
scribes the smooth transition of power attenuation from the free space mode r=2 to
an exponential attenuation, and is, in the medium range, close to the empirical for-
mulas that use high-order power laws, after a breakpoint, to fit experimental data.
Our analytical solution is validated by showing agreement with experimental data

collected by Ericsson SpA in the city of Rome, Italy.
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Figure 1.10: Propagation model. Each photon radiating from an isotropic source propagates
in the environment following a piecewise continuous trajectory, modeled as a random walk. Each
time the photon hits an obstacle, it turns in a random direction, or it is absorbed by the obstacle.

1.5.2 New model and main results

We refer to the canonical scenario depicted in Fig. 1.10. A monochromatic isotropic
wave radiated by a transmitter reaches the intended receiver undergoing multiple
scattering from different obstacles placed in the environment. The scattering mech-
anism is lossy: at each reflection the wave undergoes a prescribed attenuation. This
physical picture is modeled in probabilistic terms as Mario’s drunken walk. The wave
is composed of emitted photons that move following a piecewise linear random walk
inside the medium. We assume that each time a photon hits an obstacle, it has a
probability v of being absorbed, and a probability (1 — 7) of being scattered in a
random direction. We are interested in computing both the power density and the
power flux at distance r from the transmitter. The former equals the number of pho-
tons entering an infinitesimal sphere of radius Ar placed at distance r, normalized
to the sphere surface; the latter is defined as the number of photons leaving a sphere
centered at the transmitter and of radius r, normalized to the sphere surface. Both
quantities are related to the probability density function (p.d.f.) of a photon to be
absorbed at a distance r from the source, which also corresponds to the p.d.f. of Mario
falling asleep and stopping his walk at a distance r from the origin. We derive exact

(in 1-D and 2-D) and approximate (in 2-D and 3-D) analytical formulas for this power
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Figure 1.11: Results of the model compared to free space propagation. The dashed
line curves represent the free space 1/r? attenuation law, the continuous line curves represent the
predicted power flux F, (left-hand side of the figure) and power density P, (right-hand side of the
figure) of our 3-D probabilistic model. We note that the flux model presents a smooth transition
from the 1/1? law to an exponential attenuation; the power density model, although very similar,
predicts slightly higher power near the source. The breakpoint at which the model starts diverging
from the 1/r? law is determined by the values of n and . In the figure these values are determined
from the experiments presented in Chapter 4 of the thesis.

density and power flux, as functions of the absorption coefficient v and of the average
step length 1/7 of the random walk (which is essentially a measure of the density of
obstacles in the environment). Results for the 3-D case are plotted and compared with
free space propagation in Fig. 1.11. We observe how our model predicts a transition
to an exponential propagation loss as the distance between transmitter and receiver
increases, and the absorption of the obstacles starts being a dominant factor.

An advantage of the proposed model is that it does not necessarily rely on exper-
imental data to tune the parameters v and 7 using regression analysis (as is common
with empirical formulas): in principle, these parameters can be chosen by estimating
directly the amount of clutter in the environment and the absorption coefficient of the
scatterers, which can be less expensive than performing experiments. Indeed, when
we compare our model with experimental data, we find values of the parameters that
correspond to having on average one obstacle every ten meters, with an absorption

coefficient of 12% ~ 17%, which is reasonable for the urban area considered.
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1.5.3 Model assumptions

We understand that our probabilistic modeling is an oversimplified version of the real
propagation problem. Our random walk formulation essentially assumes the obstacles
to be small, thus re-radiating as point sources: a stream of photons hitting an obstacle
spreads uniformly because each photon is scattered in a random direction (or it is
absorbed). Popular numerical solvers, based on ray tracing techniques, assume, on the
contrary, that the obstacles are large and planar, thus re-radiating according to the
laws of geometrical optics. However, there is numerical and experimental evidence,
see Tarng and Ju (1999), that these solvers underestimate the real attenuation, when
used to predict the path loss in microcells. Tarng and Ju (1999) show that better
matching with experimental data is obtained by decomposing the large obstacles into
smaller, more uniformly scattering patches.

Finally, we point out the existence of extensive literature on wave propagation in
random media. An excellent, comprehensive reference book on the subject is the one
by Ishimaru (1978). This literature is usually not accounted for in more recent cellular
communication works. This is essentially due to the popular aforementioned assump-
tion that obstacles in cellular systems are mainly large and planar, thus re-radiating
according to the laws of geometrical optics. On the other hand, wave propagation
in random media typically assumes obstacles to be small and to re-radiate almost
as point sources (applications are, for instance, in radiation in foggy atmospheres).
Given our small obstacles approximation, it is interesting to see how our model re-
lates to the classical theory of propagation in random environments. In Chapter 4,
we highlight the similarities between our analytical results and corresponding numer-
ical solutions derived from electromagnetics as described in Ishimaru (1978) and we
show how our model allows an interpretation of the results of the transport theory
of propagation in the light of the recurrence properties of random walks. We believe
that it is quite intriguing to find such relationships between models that are based

on so very different premises.
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1.6 Putting it all together

What is all this theory good for? How do all these puzzles that we solve fit together?
Why is this a thesis in engineering? We claim that the theories developed in this
thesis are useful to give guidelines in the design of wireless networks. The work on
wave propagation can give us an idea of the maximum radius of communication of a
wireless transmitter in an urban area. This information can be used in conjunction
with our geometric disc covering theorem, to determine, at the very early design
stage, conditions for which a grid network design is cost-effective, for any expected
traffic demand. Information on the maximum radius of communication, and on the
network design strategy, can then be used to analyze the connectivity of the network.
For example, if a designer finds out that the communication range of the clients is
larger than half the communication range of the base stations, then our results on
percolation show that he must be careful in the way he decides to position the base
stations to provide coverage to the clients, because a perhaps economically appealing
grid-based covering strategy may lead to a perpetual disconnected network.

We have already pointed out how all of our results hold within the assumptions of
a model. One cannot hope to have a closed-form mathematical solution for every real
engineering problem, including all the details of a real scenario. In practice numerical
solvers can be used to validate, and sometimes complete, or even correct the theory;
and theories can always be improved by the invention of new, more powerful methods
that allow solving more complicated models. The spirit of our work is close to the one
of the applied mathematician that is called to give design guidelines to the practical
engineer and that is forced, by the limited powers of his formal methods, to act within
the limits of a model. At the same time, however, our mathematical spirit sometimes
drifts away from the application to explore concepts (like the optimal algorithms,
or the shift invariant algorithms described in the next chapter) that are interesting
from a pure mathematical point of view. We hope that the reader will forgive us this

weakness, dictated by the pure curiosity to discover some truth.
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Chapter 2 A new model of percolation

In this chapter, we present our new model of percolation. Boolean models, in which
each point of a two-dimensional Poisson point process is the center of a disc of given
(or random) radius 7, have been extensively studied. We consider the generalization
in which a deterministic algorithm (given the points of the point process) places the
discs on the plane, in such a way that each disc covers at least a point of the point
process and that each point is covered by at least one disc.

We look at the percolation properties of this generalized model, focusing on the
(non) existence of an unbounded connected component of discs, for different classes

of covering algorithms. We also explore the notion of optimal covering algorithms.

2.1 Summary of results

We group the results that we present in this chapter in the following four categories:
non-existence results, existence results for different classes of covering algorithms,
scaling results, and results concerning the optimality of certain algorithms. In the
following, we let X be a two-dimensional Poisson point process of density A. The

points of X represent the clients that are covered by base stations.

Non-existence results. Our first results regard the non-existence of an unbounded
component of overlapping covering discs. We show (Theorem 2.1) that for any algo-
rithm covering all the points of X by discs of radius r, there exists a Ay > 0 such that
for all 0 < A < Ag, Py(there is an infinite component) = 0. Then we show that the
symmetric result, i.e., the almost sure (a.s.) existence of an unbounded connected
component for large values of A, is not generally true, but depends on the type of cov-
ering algorithm. It is known that a covering that places a disc centered at each point
of X forms a.s. an unbounded connected component for large values of A (Gilbert

1961). In order to show that this result does not generalize to all coverings, we spec-
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ify a covering algorithm that does not form an unbounded connected component for

any value of \.

Existence results. We proceed by identifying different families of covering algo-
rithms that form an unbounded connected component a.s. for large values of A. One
of such coverings, that is practical for our applications, is a grid covering. We show
(Theorem 2.4) that for any algorithm covering all the points of X by discs of radius
r centered at the vertices of a grid, there exists a A; < oo, such that for all A > Ay,
P, (there is an infinite connected component) = 1.

Another family of coverings that we consider are the flat coverings. A flat covering
has the property that the restriction to any box of size n x n contains at most k(n)
discs, for any value of \. We show in Theorem 2.3 that, for flat coverings, there exists
a A < 0o, such that for all A > A;, P,(there is an infinite connected component) = 1.

A third class of algorithms that we examine are the shift invariant coverings.
These algorithms are defined by the requirement that the covering commutes with
shifts of the points. We ask whether a shift invariant algorithm necessarily forms
a.s. an unbounded connected component for large values of A, and we answer this
question negatively, by constructing a shift invariant algorithm that does not exhibit

this property.

Scaling results. We then introduce a further extension of our model. We note that
when we consider overlapping discs as connected components, then we implicitly as-
sume, in our model of a wireless network, that the maximum radius of communication
between two base stations is twice as large as the maximum radius of communication
between clients and base stations. This observation leads to the natural question of
what would happen if the ratio between the two radii is different from two.

In the standard Poisson Boolean model, that places a disc centered at each point of
a Poisson point process X, considering a different radius for connectivity corresponds
to a simple scaling operation, hence it does not change the basic properties of the
model. In our extended model, however, this leads to more interesting results. Call

r the radius of the discs used to cover the points of X and R the maximum distance
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sufficient to connect disc centers. We show (Theorem 2.9) that

e If R/r < 1, then, for any grid G, there is a covering algorithm that places
discs only at the vertices of G, and a.s. does not form an unbounded connected

component, for any value of .

e If 1 < R/r < 2, then, for some given dense grid G, there is a covering algorithm
that places discs only at the vertices of GG, and a.s. does not form an unbounded

connected component, for any value of .

e If R/r =2, then, for any grid G, any covering algorithm that places discs only
at the vertices of G forms a.s. an unbounded connected component for large

values of .

e If R/r > 2, then any algorithm forms a.s. an unbounded connected component

for large values of A, even if it is not grid-based.

Note that the latter case is useful in practice, because it states that if base sta-
tions can communicate at a distance larger than twice the maximum communication
distance to the clients, an unbounded connected component forms a.s. for large values
of the density of the clients, regardless of the covering algorithm used to build the

cellular network.

Optimality Results. Finally, we show (constructively, in Theorem 2.12) the ex-
istence of algorithms that are optimal in achieving a minimal density of covering
discs. We also show that a certain class of practical algorithms can achieve densities

arbitrarily close to the optimal.

2.2 Notation and definitions

To formally present the results discussed above, we need to introduce some notation
and make some definitions. Let R? be the Euclidean plane, let B? be the o-algebra of
Borel sets in R? and let /(-) be Lebesgue measure in R?. Let N be the collection of
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all counting measures on (R?, 3%), which assign finite measure to bounded Borel sets
and for which the measure of a point is at most 1. In this way, N can be identified
with the set of all configurations of points in R?, without limit points. Let N be the
o-algebra of N generated by sets of the form {vr € N : v(A) = k}, for all integers
k and bounded Borel sets A. A (planar) point process X is defined as a measurable
mapping from a probability space (2, F,P) into (N,N). For A € B? we denote
by X(A) the random number of points inside A. In this paper, X will always be a
Poisson process with density A > 0. We sometimes abuse notation and write = € v,
for z € R? and v € N, to express that z is one of the points of v.

We define a shift operation 7}, : R?> — R? as a translation in R? over the vector
t € R?, such that T;(z) = ¢+« for all x € R?. The shift 7} induces in a natural way a
shift transformation on N, which we also denote by T;. Let, for all z € R? and r > 0,
D(z,7) be the disc of radius r centered at z: D(x,r) = {y e R : [y —z| < r}. A
circle of radius r centered at z is the set {y € R?* : |y — x| = r}. The boundary of a
set A will be denoted by JA.

We call two discs D;, D; adjacent if D;(D; # 0. We write D; <> D if there exists
asequence D; , D, ,....D; ofdiscssuchthat D; = D;, D; = D;, and D, is adjacent

to D, for 1 <1 < k. A (connected) component or cluster is a set {D; : i € J} of

141
discs which is maximal with the property that D; <+ D; for all 7,j € J. We identify
a component with the set of centers of the discs in it.

We next formally define a covering algorithm: A covering algorithm A with discs

of radius r, is a measurable mapping A : N — N with the following properties:
1. for all z € A(v) there exists y € v such that y € D(z,7),
2. for all y € v there exists © € A(v) such that y € D(x,r).

We define the occupied region C of A(v) as the union (J,¢ 4, D(@, 7).

In this paper, we examine different classes of covering algorithms, which we define
as follows:
Grid Algorithms. Let G C R? be the set of all vertices of a two-dimensional lattice.

A grid algorithm A constrains the covering discs to be centered at the vertices of G.
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That is, z € A(v) implies x € G. Naturally we require G to be such that every point
can be covered by a disc centered at some vertex of G.
Flat Algorithms. A flat algorithm A has the property that its restriction to any box
of size n x n contains at most k(n) discs, for some k(n) < co. Note that k(n) < oo for
some n, immediately implies that k(m) < oo, for any m, as we can cover an m x m
square by a finite number of n x n squares.
Finite Horizon Algorithms. Let By, (x) be the box of size n x n centered at x, and let,
for all v € N, v|p,(s) denote the restriction of v to B, (z). In other words, v|p, ;) can
be identified with the set of points {v N B,(z)}. We say that a covering algorithm
A has finite horizon if there exists a constant h > 0 (the horizon), so that whenever
V|Bion(@) = V'|Boion(x)s We have A(V)|p, @) = A(V')|B,(2), for all n and z. In words,
this means that changing v outside B, o5(z) does not change the covering inside
B, ().
Shift Invariant Algorithms. A shift invariant algorithm A is defined by the property
that T;(A(v)) = A(Ty(v)), for all t.
n-Square Algorithms. An n-square algorithm is obtained as follows. Partition the
plane into boxes of size n X n. For each such box B, the covering of the points inside
B,, should use the minimal number of discs possible.

Suppose now that we want to cover the points of X by the covering algorithm A,
that is, we consider the measurable map Ao X : 2 — N. This Boolean model is
denoted by (X, A) = (X, A\, 7, A), where X is the density of X, and r the radius of
the covering discs. The law of this process is denoted by P, ,. The standard Poisson
Boolean model that places a disc of radius r, centered at each point of X is obtained
when we take A to be the identity, and is denoted by (X, A, r). In this model there
exists A\.(r) such that for A < A.(r) we have no infinite cluster a.s., while for A > \.(r)
there is an infinite cluster with probability 1. We often denote A.(1) by A, and scaling
implies that A.(r) = A\e(1)/r? (see Meester and Roy (1996) for more details).

Next, we define the density of (X, A). Let N(x 4)(n) be the (random) number of
discs centered inside the box B, (0). The density of (X, A) is given by lim,,_,o Nx,4y(n)/n?,

whenever this limit exists a.s. and is an a.s. constant.
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Finally, we introduce one more piece of terminology. If (X,.A) contains an un-

bounded component of discs with positive probability, we say that (X,.A) percolates.

2.3 Percolation

In this long section we think of r as being fixed, while A varies. Accordingly, we
sometimes write P\ = P, ,. We also use P to mean P, ;. The expectation under P
we denote by E.

Our first result deals with the lack of percolation for small values of \.

Theorem 2.1 For any covering algorithm A, there exists a Ao(r) > 0 such that for
all 0 < A < Ao, (X, A\, 7, A) does not percolate.

Proof of Theorem 2.1. Assume that, with positive probability, there is an un-
bounded connected component of covering discs for (X, A, 7, A). Then with positive
probability, there is an unbounded connected component in the Poisson Boolean
model (X, A, 2r). That is because two intersecting covering discs in (X, A, r, A) cover
points that are at a distance of at most 4r to each other; and the Poisson Boolean
model (X, A, 2r) places discs of radius 2r at each of the covered points. We then choose
Ao = A¢/(27)%, so that (X, )\, 2r) does not form an unbounded connected component

a.s. for A < Aq. O

A symmetric result to Theorem 2.1, i.e., percolation for large values of A\, depends

on the type of covering algorithm used:

Proposition 2.2 There exists a covering algorithm A, such that for all \, (X, A\, r, A)

does not percolate.

Proof of Proposition 2.2. The proof is constructive. Draw circles of radii {3kr, k €
N} around the origin, and notice that a.s. no Poisson point falls on any of these
circles. Then cover the Poisson points, with discs of radius r, without intersecting

these circles. Notice that the circles divide the plane into finite annuli and, since
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each cluster of discs resides in at most one of these finite annuli, each cluster must be

bounded, whatever the value of \. O

We next look at families of algorithms that do percolate for large values of A, starting
with flat algorithms. Recall that each such algorithm, A, has the property that the
restriction of A to any box of size n X n contains at most k = k(n) discs, for any value
of A\. Note that this really is a weak requirement, since we can completely cover the
box using at most a[(n/r)]? discs, for some o < 1. Any ‘sensible’ algorithm should

therefore be flat.

Theorem 2.3 Let A be a flat covering algorithm. Then there exists A\ < 0o, so that
(X, A\, 1, A) percolates for all X > A;.

At first sight, the statement of the theorem is counterintuitive, since we claim that we
force percolation by restricting the number of discs. The point is that by restricting
the number of discs (independently of \), the requirement of covering all points with
this restricted number of discs makes percolation unavoidable.

Two consequences of Theorem 2.3 and its proof that are important in practice, are

the following theorems.

Theorem 2.4 For any grid covering algorithm A, there exists a Ay < oo, such that

(X, \, 7, A) percolates for all X > \;.

This theorem can be proved by application of Theorem 2.3, as all grid algorithms
are flat. The proof below however is more elegant and offers more insight into the

structure of grid algorithms.

Proof of Theorem 2.4. The proof relies on a construction that maps the covering
discs to a discrete site-percolation model. We illustrate the idea by considering a
square lattice and a distance between two neighboring lattice vertices of one. Call a
covering disc centered at a lattice vertex a grid disc. Clearly, the radius of a disc must
be r > g, in order to be able to cover all possible points on the plane by using only
N
2

grid discs. For any r > %=, the number of grid discs that intersect a lattice square

ABCD is finite and they partition the square into some number k, of small regions



Figure 2.1: Mapping to the site percolation model. The grid discs partition the square
ABCD into a finite number of small areas.

A; (see Figure 2.1). If at least one point of the Poisson point process falls into each
region A;, then the entire square ABC'D must be covered by grid discs. Now view each
lattice square as a site of a site percolation model. Call the site occupied if there is at
least one point of the Poisson process situated inside each region A;, for i =1...k,.

Note that the occupancy of a site is independent of the occupancy of other sites and
kr

the probability of a site being occupied is given by p = H(l — e~ M) Moreover,
if two adjacent sites are both occupied, then the COI”I”GSI;(:)ilding covering discs form
a connected component. Thus, if there is an unbounded component of occupied
adjacent sites, then there is an unbounded connected component of covering discs.
Next, we choose A large enough so that p > p., where p,. is the critical probability for

site percolation on a square lattice. The a.s. existence of an unbounded connected

component of covering discs immediately follows. O

Theorem 2.5 For any n > 0 there exists a A, < oo, such that for any n-square

algorithm A,,, (X, \,r, A,,) percolates for all X > A,,.

Since an n-square algorithm is flat, it follows from Theorem 2.3 that for each n-square
algorithm, we can find such a A,,. The fact that this )\,, depends only on n and not on
the particular n-square algorithm we choose, follows from the proof of this theorem,

by noting that A, in the statement of the theorem only depends on k(n).
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Another version of Theorem 2.3 requires an upper bound on the density of discs,
the shift invariance of the algorithm under a pair of linearly independent shifts and

the algorithm to be finite horizon.

Theorem 2.6 Let A be a finite horizon covering algorithm such that a constant

0 < oo exists such that

number of discs in By,
2

lim sup <0, a.s.

N—00 n

and which s stationary under a pair of linearly independent shifts. Then there exists

A1 < 00, so that (X, \,r, A) percolates for all X > Ay,

Johan Segers (personal communication) has pointed out that although finite hori-
zon algorithms of bounded density which are stationary under any pair of linearly
independent vectors must percolate, for a sufficiently high density of points, there ex-
ist finite horizon covering algorithms of bounded density which are stationary under
shifts of one vector, and do not percolate for any A.

Before we prove Theorems 2.3 and 2.6, we first state and prove a preliminary

geometric lemma.

Lemma 2.7 Consider a collection of discs of radius r, with the property that at most
k(n) < oo discs intersect any box of size n x n. Then there exists an € = €(n,r) > 0
with the following property: if there are, either, at least two clusters that intersect the
boundaries of both By y,(x) and B, 9.(x), or a cluster wholly contained in By, 9. (),
then there is a circle of radius €, contained in By,ys.(x), which is not intersected by

any disc.

Proof of Lemma 2.7. We write B, = B,(z). All discs that intersect B, 3, must be
centered inside B, 5.. Therefore, at most k = k(n + 5r) discs intersect By, 3,. Let C
be a component that intersects the boundaries of both B, ,, and B, 2,. The number
of discs in C that intersect B, o, is denoted by [. Note that [ < k.

Consider a section AB of the perimeter of C, from the boundary of B,,, to the

boundary of B,,.o,, which does not intersect either of these boundaries except at its
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Figure 2.2: Subdividing the arc. An edge AB of a component C connecting the two bound-
aries of By, and Bp4a,, has length at least r/2. This edge contains an arc a of length at least /2.
Arc a is divided up into k sections, and by one of these we can place a small disc of radius € that is
not contained in any cluster.

ends (see Figure 2.2). This section has length at least r/2, and consists of parts of
the boundaries of at most [ discs, each of which appears only once. This latter fact
follows from the observation that, since the distance between the boundaries of the
two boxes is only /2, any disc that contributes to an arc in AB, must overlap the
boundary of at least one box. Moreover, note that were AB to contain two disjoint
arcs from the same disc, then any disc overlapping that disc in order to make these
arcs disjoint, must overlap the boundary of the box not overlapped by the first disc.
Therefore these arcs would be in disjoint sections of 0C N By 1o, /(Bpir U 0By 1a;).
See Figure 2.3. It follows that at least one arc in AB is of length at least r/2[. Call
this arc a.

Note that there are at most £ — 1 discs intersecting B,,.3,, if we do not count
the one that has a as a part of its boundary, and none of them intersect a, except
at its end points. If we divide a into k arcs of equal size, then each of these discs
will be nearest to one of these smaller arcs — assign this arc to this disc. One of the
smaller arcs (of size at least r/2kl ) will, however, have no disc is assigned to it. This

means that the space left by discs tangent to the ends of this smaller arc cannot be
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Figure 2.3: No discs can have two disjoint components in AB. Two disjoint arcs from
the perimeter of one disc, in a component C' connecting the two boundaries of By, and B,
must be in disjoint parts of 0C N B,,12,/(Bntr N 0Bptar).

covered, and we can choose € so small that a disc of radius e fits into this space (see
Figure 2.2). The value of € that we have to choose only depends upon r and n.
The same argument applies to a component wholly contained in B, 9., by con-

sidering its perimeter rather than its boundary between B, ., and B, o,. O

Proof of Theorem 2.3. Let t,u € Z, and denote the box of size n x n centered
at (tn,un) by B,(tn,un), as before. Let € be chosen as in Lemma 2.7. We say that
the vertex (t,u) is a neighbor of (¢, ') if the boxes By, (tn,un) and B, (t'n,u'n) share
an edge or corner. We call a vertex (¢,u) good if all discs of radius e contained in
By, i3, (tn,un) contain at least one point of the Poisson process. Denote the event
that (¢,u) is good by G(¢,u). It is clear that when A — oo, the probability of G(t, u)
converges to 1. It is also clear that G(t,u) and G(¢,u’) are independent whenever
max{[t — '], |u — u|} > [2£], for n larger than 2r. Hence, the configuration of good
sites is formed through a discrete, finite-range dependent percolation process, and
it follows then from Durrett and Griffeath (1983) that for A high enough, the good
vertices percolate, i.e., contain an infinite component of good squares with probabil-
ity one. What does this mean for our covering? Consider a good square B,,. By
Lemma 2.7 any component cannot be wholly contained in B, 9., therefore, a com-
ponent that covers points inside B, o,, must also intersect the boundary of B, o,.

Also by Lemma 2.7, there can be only one component that intersects the boundaries



-----
~

n+2r

Figure 2.4: A good square. There is only one component of discs (represented by the dashed
line) that intersects both Bj,42, and B,,1,. This component must reach to within 2¢ of all edges of
B+, and will therefore intersect a component of an adjacent good square.

of both B, s, and B,,;,. For n larger than 2e such component exists and must reach
to within 2e of all edges of B, ,, as, by the definition of a good square, there is
no disc of radius € inside B, ., without any points of the Poisson process inside it
(see Figure 2.4). Thus, the components associated with adjacent good squares must

overlap, and we must have an infinite component of discs with probability one. O

We thank Johan Segers for the remark that this proof does not depend upon the

algorithm being finite horizon.

Proof of Theorem 2.6. The proof in this case is a little more complicated, but
uses the same idea as that of Theorem 2.3. Without loss of generality assume that
the algorithm be stationary under the shifts T(,, 0y and T(g ), for some m. Let h be
the horizon of the algorithm, and assume m > max(1, h + 57), again without loss of
generality. Choose v > 0 sufficiently small so that 1 — 7y is strictly above the critical
point for site percolation on the lattice {(tm,tu) : t,u € Z} with edges between
neighboring sites. Take n, a multiple of m, so large that the probability that B, s,
is intersected by more than (6 4+ 1)(n + 57)* discs is less than ~, uniformly in A\. We
then use (0 + 1)(n + 57)% as our k in the lemma, and find an € such that, if we have
at most (6 + 1)(n + 5r)? discs intersecting B, 5, in the way described in the lemma,

then we must have a circle of radius € empty of Poisson points.
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In the proof of the theorem we then call B,, good if B3, has both no disc of
radius € empty of Poisson points in it and B, 5, contains at most (6 + 1)(n + 57)?
points. Other boxes are called good analogously. If A is high enough, these boxes

percolate, and we again have an infinite component of discs. O

We have seen that both finite-horizon, shift-invariant algorithms under a bounded
density condition and flat algorithms necessarily percolate for high enough A. It is
natural to ask whether this always holds for shift invariant algorithms. It turns out
that for these algorithms, in general large values of the density A of the points do not
guarantee the a.s. existence of an unbounded connected component. This is shown
by describing a shift invariant covering algorithm that does not form an unbounded

connected component for all A:

Theorem 2.8 There exists a shift invariant covering algorithm A of all the points

of X by discs of radius r, such that for all A\, (X, \,r, A) does not percolate.

The proof of Theorem 2.8 is constructive and rather technical, so we will sketch
the algorithm here, and postpone the proof to the end of the chapter. The covering
we describe can be seen as a shift-invariant variant of that in Theorem 2.2 and will

also have a density of discs centers equal to the density of points.

Sketch of proof of Theorem 2.8. Without loss of generality, consider using cov-
ering discs of radius » = 1. As the covering should be a deterministic function of the
points, we must first calculate A in the realization of the point configuration. We do

this by setting
number of points in B,,(0)

A= lim 5

n—o00 n

if this limit exists and is constant, which happens with probability 1, and otherwise
we take A = 1.

Our construction places circles of radii » = 18™, with m € N, where we see certain
configurations of points in the plane. The resulting structure is composed of clusters

of circles that are finite, but enclose every bounded region of the plane. We then find
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some curves near the boundaries of these clusters and cover all the points with discs
of radius 1, without touching these curves.

Let us define a potential-point to be a Poisson point with at least one other point
in the half-disc of radius % to the right of it, and no points in the disc of radius 1
centered at it, except in the aforementioned half-disc. We then call a potential point
an m-point, for integer m, if it has its nearest neighboring point between b,,, and b,
away, where b; = %, by, bs . .. is a decreasing sequence of positive numbers, such that
the density of m-points is exactly €18 2™, for some small number ¢ > 0. How small
e will be required to depend upon A. Around each m-point we place an m-circle of
radius 18™.

A theorem of Meester and Roy (1994) allows us to show that every bounded region
of the plane is a.s. wholly enclosed in some m-circle. Lots more work, based upon
an idea of Meester and Roy (1996) for fractal continuum percolation, shows us that
each cluster of overlapping m-circles is finite, and moreover the maximal connected
component of points strictly within distance 9 of any m-circle is also finite.

We construct smooth curves based upon the finite m-circle clusters. Consider
some maximal set of m-circles such that, if we take the locus of all points in the plane
at a distance of at most 4 from the circles, then this region forms a connected set,
and run a disc of radius 2 around the outside of this set (see Figure 2.5). The disc
traces out a kind of finite sausage shape around the clusters.

We take the inside edge of this sausage as our curve, and note that a covering
disc (of radius 1) can get arbitrarily close to any point of the curve without touching
it. We construct these smooth curves for each set of sufficiently close clusters, noting
that they surround every bounded area in the plane, are always finite, and never come
within distance 8 < 9 of each other.

We finally cover our Poisson points as follows:

If a point is at a distance more than 2 from every smooth curve, then we center a
covering disc at the point.
If a point is within distance 2 of a smooth curve, then we place a disc so that its

perimeter covers the point, and so that the center of the disc is at the maximum
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Figure 2.5: Sausages. By sliding a disc of radius 2 along the boundary of some cluster, we trace
a kind of sausage shape.

distance away from the smooth curve. If there are a number of such possible positions,
we choose the leftmost.
It immediately follows that, for any given value of A, a.s. there is no percolation.
For more details on the proof, the reader can refer to the last section of this

chapter.

2.4 Scaling

In this section we consider an extension that is useful to model the transmission
power in wireless communication networks. We look at the percolation properties of
our model, for different values of the connectivity range of the base stations and of
the clients.

Let r be the clients’ connectivity range and let R be the base stations’ connectivity
range. It follows that discs of radius r are used to cover the points of X and two
disc centers are considered connected, if their distance is less than, or equal to R
(see Figure 2.6). We are interested in the a.s. existence of an unbounded connected

component of disc centers, for large values of the density A of the Poisson point
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Figure 2.6: Scaling. Points are covered by solid line discs of radius 7. Discs centers are considered
connected if their distance is at most R.

process. Our result is the following.

Theorem 2.9 (The Scaling Theorem) Let G C R? be the set of all vertices of a
square lattice in which the distance between two neighboring lattice vertices is 6. Call
two disc centers connected if their distance is at most R. We have:

Case 1. If% < 1 then, for any 6 > 0, there exists a grid covering algorithm A
that places discs only at the vertices of G, such that, for all A\, (X, \,r, A) does not
percolate.

Case 2. If1 < % < 2 then, there exists a 0 > 0, depending on i—?', such that there
exists a grid covering algorithm A that places discs only at the vertices of G and, for
all A, (X, \,r, A) does not percolate.

Case 3. ]f’r—?' = 2 then, for any 6 > 0, for any grid covering algorithm A, there exists
a A\ < 00, such that, for all A > Ay, (X, A, r, A) percolates.

Case 4. If% > 2 then, for any covering algorithm A, there exists a Ay < 00, such

that, for all A > Ay, (X, \,r, A) percolates.

Note that Case 4 of the theorem states that in a wireless network in which base
stations can communicate at a distance larger than twice the maximum communica-
tion distance to the clients, an unbounded connected component forms a.s. for large
values of the density of the clients, regardless of the covering algorithm used to build

the cellular network.
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Figure 2.7: Theorem 2.9, Case 1. Two tilings of the plane by discs centered on a grid that
do not cover each other’s centers.

Proof of Theorem 2.9.

Case 1. We can restrict our attention to ]7% = 1. That is because if a grid covering
algorithm does not form an unbounded connected component when ’T—?' = 1, then it
does not form such a component when % < 1 either.

Note that, for ]7% = 1, two disc centers are considered connected if and only if
the corresponding discs of radius r cover each other’s centers. Moreover, in order
to be able to cover all points on the plane by using only grid discs of radius r, the
grid spacing 0 must be at most v/2r. We now consider all values of the grid spacing
§ < v/2r, subdivided into intervals.

For r < § < /2r, any grid covering algorithm places discs on the plane that do
not touch each other’s centers.

For % < 0 < r, consider the tiling of the plane depicted in the left part of
Figure 2.7. Discs of this tiling do not cover each other’s centers, therefore, any grid
covering algorithm that covers all the points of X using only the grid discs depicted
in the left part of Figure 2.7 does not form an unbounded connected component, a.s.,
for any value of \.

For r/2 < 6 < =, consider the tiling depicted in the right part of Figure 2.7.

V2’
Discs of this tiling do not cover each other’s centers, therefore, any grid covering
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Figure 2.8: Theorem 2.9, Case 2. A Poisson point P is covered by a disc centered at point
O, that is within 7 from P. The covering disc can be moved to a nearby grid vertex, that is inside
the solid disc and is within v/26 from O, and still covers point P.

algorithm that covers all the points of X using only the grid discs depicted in the
right part of Figure 2.7 does not form an unbounded connected component, a.s., for
any value of \.

For the remaining values of §, we can use the same tiling of the two cases depicted

in Figure 2.7, scaled by the appropriate factor.

Case 2. In this case, two disc centers are considered connected if and only if the
corresponding discs of radius r overlap by a region of measure at least ¢ > 0, where
the value of € depends on the ratio ’T—?'.

We follow a similar construction as that used to prove Proposition 2.4. Draw
circles of radii {3kr, k € N} around the origin, and notice that a.s. no Poisson point
falls on any of these circles. Then cover the Poisson points, each with a disc of radius
r, without intersecting these circles. Notice that the circles divide the plane into
finite annuli, whose boundaries are not covered by discs. We now approximate this
covering using a grid covering. Consider a square grid G and move each disc of the
above covering to the nearest vertex of GG that still allows to cover its corresponding
Poisson point. Note that each disc needs to be translated by at most v/25. That
is because a Poisson point is covered by a disc centered within r from it, and there
is always a grid vertex, within radius » from the Poisson point, that is also within

V26 from this center (see Figure 2.8). By this translation, some discs may intersect
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Figure 2.9: Theorem 2.9, Case 4. A small discs of radius e = R/2 — r around a point of X
must lie inside the disc of radius R/2 around the center of the covering disc.

the boundaries of the annuli, that were previously untouched. We then take the grid
size ¢ so small, that any two discs that intersect these boundaries do not overlap by
an area of measure greater than or equal to ¢, and are therefore not connected. It
immediately follows that, for any given value of the density A, a.s. there is not any

unbounded connected component for this covering.
Case 3. This case is proven by Theorem 2.4.

Case 4. In this case, two discs centers are considered connected if and only they are
at a distance of at most R (see right-hand side of Figure 2.6). In other words, we are
interested in the percolation of large discs of radius R/2 around the disc centers. A
small disc of radius e = R/2 — r > 0 centered at a point of the Poisson process must
be contained in the large disc of radius R/2 around the center of the disc covering
that point. See Figure 2.9. Therefore if these small discs percolate, as they will when

A > A(e), the large discs must also percolate. O

2.5 Optimal algorithms

In this section we explore the notion of optimal algorithms, i.e., those which uses as
few discs as possible, and show that n-square algorithms are asymptotically optimal.
The work in this section is philosophically close to that in Yukich (1998).

Fix the density of points, A, and 7, and extend the definition of the density of a
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covering, A, to be

number of discs centered in B,

5.4 = lim D)
n—00 n
if this exists and is a constant a.s., and oo otherwise. We then define the optimal
density to be

opt — i
0 112‘f 04,

where the infimum runs over all covering algorithms. An optimal algorithm, A, is
one for which, a.s., 6% = § 4o¢. We would not expect in general such an algorithm
to have a finite horizon.

First we show that n-square algorithms can get as close as we like to the optimal
density. Define d,, to be the density of discs under an n-square algorithm. By ergodi-
city 0, < oo exists. Notice that J,, does not depend upon the particular n-square

algorithm we choose.

Theorem 2.10 Given € > 0, there exists ne such that 6,. < 6" + €, and hence

§°Pt = inf,, §,,.

Proof of Theorem 2.10 We prove this theorem by contradiction, so suppose that
we can find an € such that there is no n-square covering with density between §°P
and 67" + ¢. We can find another covering, A say, with density d 4 € [0, 0Pt + ¢ /4],
by the definition of §°P¢.

Choose v > 0 such that (1 —7)(6" +€/2) + v(1 + €/2)/r* < §°P' + €. Note that

. . 2
the number of discs necessary to cover an n-square is at most [n/r]”".

number of discs centered in B,
TL2

As 04 = limy, 0 , a.s., we can choose n, > 1 suf-
ficiently large that a) the number of discs centered in B, is less than n?(6%" + €/2)
with probability larger than 1 — v, and b) [n/r]* (1/n)? < (1 +¢/2)/7>.

Given a finite set of points there are a finite number of distinct possible coverings
of those points, where we call two coverings distinct if there exist a set of points

covered by one disc in one of the coverings but covered by two or more in the other.

Coverings that are not distinct are equivalent. We will occasionally work with the
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equivalence classes of theses coverings.

We now define a covering of the box B,,. which is based upon A but is independent
of the points outside B,,_. Given a point configuration, 7, in B,,_ there is a finite set
of equivalent classes of coverings of these points. Let S, be the subset of equivalence
classes which occur with positive probability if we use A to cover m U X |IB%6’ where
X |,B%e is a Poisson process on By, independent of 7 and X. In each equivalence class
all coverings use the same number of discs so we can choose an equivalence class from
Sy in which the number of discs used is minimal, according to some deterministic
rule. Choose a covering from this class, according to some other deterministic rule.
This is the covering we use to cover B, . Note that this is independent of the actual
point process outside B,,_. The expected number of discs required to cover the points
in B,,, under this algorithm can be at most that under A.

We now divide up the plane into squares of size n., and cover each square indepen-
dently using the same algorithm in each as we use on B,,_. For those squares for which
this requires at most n?(6" + €/2) discs, we use this covering. In the other squares
we cover optimally, which means that we have a density of at most (1 +¢/2)/r? on
these squares.

We have created an algorithm that covers each square of size n. independently,
and which therefore cannot have a density less than ¢, . However, the density of the
covering is at most (1 — 7)(d" + €/2) + v(1 + €/2)/r* < 6" + ¢, and we have a

contradiction. O

Next, we strengthen the previous proposition.

Theorem 2.11 Let 9§, be the density of discs under an n-square algorithm. Then

lim,, o 0, = 0Pt .

Proof of Theorem 2.11 We know that §°°* = inf,, §,,, and that §,n? is the expected
number of discs needed to cover an n-square. For the sake of contradiction suppose
that there exist € > 0 and a sequence {ti,1s,...},lim; #; = co such that §;, > §' + €
for all <. However, we can choose « so that d, < §" + ¢/3. We can also choose i

2
so large that (1 — VEJQ <Q> ) A < €/3. The reason we need this will become clear

ti
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Figure 2.10: Division of the plane into squares of increasing size.

shortly.

We cover the square B;, as follows. We first divide as much of the square as
possible into squares of size a. Each of these we cover optimally. We have an area of
(2 — a? | 4] ?) left, and each of the points in this area we cover with one disc. This

gives us a covering with expected density,

2 () o (- L () revomoan

However, the minimal expected density for any algorithm covering the box B, §;, >

d°P + ¢, so we have a contradiction. O

Note that it is still not clear a priori that an optimal algorithm should exist. The
existence of an optimal density, defined as the infimum over all attainable densities,

does not have to be attainable itself. However, we have the following proposition:
Proposition 2.12 There exists an optimal algorithm.

Proof of Proposition 2.12 Divide the plane into squares of increasing size, as in
Figure 2.10. Cover the points in each of the squares in some optimal way. This gives
a covering of the plane and we claim that it is optimal. To see this choose some € > 0
and notice that by Theorem 2.11 we can find n = 2™ so large that 4, < 6" + e.
The fraction of the plane covered by squares of side length smaller than 7 is 0, so our

algorithm has density at most §°?' + ¢. However, € was arbitrary, and therefore our
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algorithm must be optimal. O

2.6 Open problems

We would like to mention a number of open problems:

e For which classes of algorithms does there exist a critical density? By this we
mean a critical value \., such that percolation occurs for A > A, and does not

occur for A < A..

e For which classes of algorithms is the infinite cluster unique? In other words,

when do we have either 0 or 1 infinite cluster, a.s.”?

e We have shown in Theorem 2.6 that if we have an algorithm with a finite
horizon, which is shift invariant under two linearly independent shifts and has a
bounded density of discs, then we must have percolation for A high enough. We
have also shown in Theorem 2.8 that we can have a completely shift invariant
covering algorithm with an unbounded density of discs and no finite horizon
that does not percolate, even for high values of A\. Do we have percolation for A
high enough for a finite horizon algorithm invariant under a pair of shifts, with
an unbounded density of discs? Do we necessarily have percolation for A high
enough if we have a bounded density of discs and shift invariance but no finite

horizon?

e We have described an optimal algorithm that is not shift invariant. It is rather
simple to design a shift invariant algorithm that works for A less than the critical
density A. of standard continuum percolation. Does there exist a shift invariant

algorithm that is optimal for all \?

2.7 A long counterexample

In this last section of the chapter, we give a formal proof of Theorem 2.8, showing an

example of shift invariant algorithm that never percolates. The proof is constructive
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Figure 2.11: A potential point A potential point is a Poisson point with at least one other
point in the half-disc of radius % to the right of it, and no points in the disc of radius 1 centered at
it, except in that half-disc.

and rather technical. The covering we describe will have density .

Without loss of generality, consider covering discs of radius » = 1. The main
idea is the following: given a realization of the Poisson point process, we first build
a large structure of circles similar to those obtained in continuum fractal percolation
models. We do this by placing circles of radii 18™, with m € N, where we see certain
configurations of points in the plane. The resulting structure is composed of clusters
that are finite, but contain every bounded region of the plane. We then derive a shift
invariant covering of all the points of X by discs of radius » = 1, leaving an empty
space near to the boundaries of these clusters.

We illustrate the proof taking the density A to be 1. The proof for the covering of
a Poisson process of another density follows in the same way (in the proofs to follow,
only the values of the €'s change).

We define a potential-point to be a Poisson point with at least one other point
in the half-disc of radius % to the right of it, and no points in the disc of radius 1
centered at it, except in the aforementioned half-disc (see Figure 2.11). Notice that
the potential points cannot come within distance 1 of each other.

Given a decreasing sequence of positive numbers, b; = %, by, bs . .., an m-point, for
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m € N, is a potential-point which has its nearest neighboring point between b,, and
b1 away.

We start by proving a few lemmas.

Lemma 2.13 For e > 0 sufficiently small, there exists a sequence by = %,bg,bg, s

such that the density of m-points is exactly e18 2™, for each m € N.

Proof of Lemma 2.13. The density of potential points, A,, is calculable. Choose

€ > 0 so that

o0

1
—-2m __
E €18 —6182_1 < Ap.

m=1

We can now define b; inductively, i.e., given b,, we choose b, so that the density of
m-points is exactly 182", O
We consider a circle of radius 18™ around every m-point. Call such a circle an

m-circle.

Lemma 2.14 FEvery bounded region of the plane is a.s. wholly contained in some

m-circle, for some m.

We will use Proposition 7.3 of Meester and Roy (1994). This states:

Proposition 2.15 (Meester and Roy, 1994) Let S be a stationary point process
inRY, and let p be a non-negative random variable. If E(p?) = oo, then in the Boolean

model (S, p) the occupied component is a.s. R?.

Furthermore the proof of the theorem can be adapted to show that, under the con-
ditions of the theorem, every bounded region of the plane is a.s. wholly contained in

some circle.

Proof of Lemma 2.14. Let S be the random collection of m-points, for all m. S
is stationary. Note that the radii associated with points in S are independent, as the
points of S do not come within distance 1 of each other. Let p be the radius distri-

bution of the circles. Then (S, p) is a Boolean model, and the occupied component
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18"

418

Figure 2.12: Sets of possible dependence.

corresponds to all areas contained in some circle. In addition

E(p?) =) (18™)%18 " = o,
m=1

so we can apply the proof of Proposition 2.15 and conclude that every bounded region

is contained in some circle.

O

Now that we have shown that our circles a.s. contain any bounded region, we
want to show that any cluster of intersecting circles is a.s. finite. To do this, we give
a slight variation of a proof for fractal percolation that is in the book by Meester and
Roy (1996) (Theorem 8.1). Again, we proceed by proving a series of lemmas but first
we need a couple of definitions.

We define the sets of possible dependence to the square [0, 18™]? as the rectangles
(I, x I, : I; € {[—4 x 18™71,0], [0,18™]})\[0, 18™]? (see Figure 2.12). Sets of possible
dependence to other squares of the same size are the natural translations of this. Call
a union of sets of possible dependence to a certain square, a known region. Define
Ay, to be the number of m-points in the square [0,18™]% and A-,, to be the number
of k-points, with m < k € N, within distance 4 of the square. Let C/ be the number

of m-points in the known region J to the square.

Lemma 2.16 For any 6 > 0, we can find m' and, uniformly in m > m', ¢ > 0,
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sufficiently small that

P(A,, > 0|As,, =0NCJ =0) <4,

for any known region, J, to the square [0,18™]2.

Proof of Lemma 2.16. We are interested in

P(A, >0NA.,=0nC’ =0)
P(As,=0NnCY =0)
P(A,, >0)

= P(A.,=0NnC’ =0)

< P(A,, >0)

~— 1—=P(As;n > 0) = P(CY, > 0)’

P(A,, > 0|45, =0NC, =0) =

if P(As,, > 0)+ P(C/, > 0) < 1. We recall that, for a non-negative integer-valued
random variable N, P(N > 0) < E(N), obtaining

P(A,, >0)
= T=B(A>n) - B(CJ)
< E(An)
T 1= E(As) - E(CY)

P(A,, > 0|As,, =0NCJ =0)

if B(As,,) + E(C) < 1.

Now, E(Asp) = (187" 4 4(18™ + 1))18 "z, which is the area of the region

within distance 4 of the square multiplied by the total density of k-points, for all
k > m,k € N. Noting that the maximum area of the known region is (18™(1 +
4/18))%* — (18™)2, we see that

E(CZ) < ((18™(1 +4/18))? — (18™)%)e18 2™,

The bound becomes

P(Ap > 0|As, =0NCL =0) <

1— (182 4 4(18™ +1))18 2 —— — ((187(1 + 4/18))% — (18™)2)el8~2m’

182—1




Figure 2.13: The sets Iy187) and Opigny. Imgn) is shown in dark gray and Op(isn) in
light gray.

which we can make uniformly less than 0 by choosing e small enough. O
Let H(18") = [—3 x 18",3 x 18"]*\(—318",318")2. Define Ijign) to be the

maximal connected cluster of (possibly partial) circles and the boundary of the box
[—£18", 11872 fully contained in H(18"), and define Oy igny to be the maximal
connected cluster of circles and the boundary of [—3 x 18", 3 x 18"]%, fully contained
in H(18"). See Figure 2.13.

Let G(18") be the event that there is a gap in H(18"), i.e., the minimal distance

between Ip(1gn) and Opign) is at least 18.

Lemma 2.17 For e > 0 sufficiently small,

lim P(G(18")) >

n—0Q

N | =

We prove Lemma 2.17 in two parts. Let G1(18") be the event that there is a gap
between Ig) and Op(isny in H(18"), when we consider circles only of radius 18" !
or less. The size 18"~ ! is chosen because it is a convenient size comparable to the size
of H(18"). Let G3(18™) be the event that no circles of radius 18" or greater intersects
H(18") at all. Clearly, if G1(18") and G2(18") both occur, then G(18") does also.

Thus, Lemma 2.17 follows from the following two lemmas.
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Lemma 2.18 For e > 0 sufficiently small,

lim P(G1(18")) > Z

n—0oQ

Lemma 2.19 For e > 0 sufficiently small,

lim P(G,(18")) >

n—0oQ

Proof of Lemma 2.18. This proof closely follows that of Theorem 8.1 of Meester
and Roy (1996) for fractal percolation, except for a number of extra technicalities.
We are going to show that we dominate a version of the process which has more
independence.

We first divide H(18") into 8 x 182 sub-squares of size 18"~! in the obvious way.
We call two squares of the same size neighbors if they share an edge or corner.

Suppose for a moment that the probability that a square of size 18™ contains
an m-point, is uniformly ¢, for all m, independently of the occurrence of k-points
anywhere, with £ # m,k € N, and independently of the occurrence of m-points
outside the square. We give our proof initially under this assumption, and then
compare our original process with this.

We consider the 8 x 18%sub-squares of H(18"), and in an order such that for any
two squares, B and B’ say, B is considered before B' if B is neither to the right of
nor above B'. We examine, in this order, these sub-squares of size 18", looking for

(n — 1)-points, in the following inductive fashion:
e to begin, all squares are declared to be neither corrupt nor bad.

e if a sub-square is not corrupt, then we examine the whole of it, looking for
(n — 1)-points. If it contains any, then we call it bad, and its neighboring

squares of the same level corrupt.
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e if a sub-square is corrupt then we do not examine it.

Squares are bad if they contain centers of circles of comparable size to themselves,
which then may extend into the corrupt squares. Corrupt squares may or may not
contain (n — 1)-points. We are careful not to find out this information, as it might
tell us something about the distribution of points in the squares we have not yet
considered.

We can then divide up each of the good squares (those that are neither bad nor
corrupt) into 18% pieces, obtaining at most 8 x 182*? squares of size 18”2, and we
examine those, in an order such those squares nearer the bottom left-hand corner are
considered first, looking for (n — 2)-points, in the same inductive fashion as above.
We end up declaring each of the squares of size 18" 2 that are sub-squares of good
squares in H(18") to be good, bad or corrupt.

We divide up each of the good squares of size 18"~2 into 182 squares of size 18773,
and use the same procedure to declare each good, bad or corrupt. We can then
divide up each of the good squares, and repeat this procedure, while we still have
good squares, and to a minimum square size of 18.

We then work backwards through the squares, starting with the smallest, to de-
clare each either dreadful or not. A square of size 18 is dreadful if it is bad. In an
inductive fashion, a square of size 18™ is dreadful if it is either (a) bad or (b) good
but contains 2 or more dreadful squares of size 18™~1. We call H(18") dreadful if it
contains any dreadful squares of size 18" 1.

Under our temporary independence assumption, a square of size 18 is dreadful
with probability 0, conditioned on the fact that it has not been declared corrupt
before being checked. Thus, the probability that it is dreadful is at most 4. Then the
probability p,, that a square of size 18™ is dreadful, is the probability it is a) bad or
b) good but contains 2 or more dreadful squares of size 18™~'. The probability that
it is bad, is, as for a square of size 18, at most 6. The probability that it is good is at
most 1 — §. It may be that some of the sub-squares of size 18™ ! of this square are
corrupt, due to being neighbors of bad squares of the same size outside this square.

Let N be the number of such squares. As the probability of a square being dreadful
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is maximal when N = 0, it follows that

P <04 (1= 08)((1 = pm1)™® — 18%pp_1(1 = py) 1)

Letting
Fp,0) =6+ (1=6)(1—(1-p)* —18%p(1 —p)" ),

this becomes p,, < f(pm_1,9). Note that p; = d. If we can now show, for all ¢, that
0 < p < b(9) implies 0 < f(p,0) < b(9),

for some b(0) > ¢, it will follow that p,, < b(J) for all m. We need b(d) to be a bound
that tends to 0 with 4.

Note that f(p,d) is continuous in p and d, that f(0,J) = J and that %(07 J)=0.
It follows that f(p,d) = p has a solution in [0, 1] for ¢ sufficiently small. The smallest
such solution we call b(d). Notice that b(d) > 4, as f(0,0) = 0 and %(p, d) > 0 on
0, 1]. %(p, d) > 0 on [0, 1] also tells us that 0 < p < b(0) implies 0 < f(p,d) < b(J).
Since f(0,0) =0, %(0,5) =0 and f is continuous, limgo b(d) = 0.

We have shown that the probability that a square of size 18™ is dreadful is bounded
from above, uniformly in m, by a function of § that we can make arbitrarily small by
choosing § small enough. It then follows that the probability that H(18") is dreadful
(i.e., contains any dreadful squares of size 18""!) can be made as small as we like by
choosing ¢ sufficiently small. We choose ¢ so that this probability is less than i.

We can now come back to our original process, and give up the independence

assumption. We make the following comments:

e The probability that a square of size 18™ contains an m-point, when we come
to check it, given any of the information we already have found, is at most 9,

by Lemma 2.16, and because we never consider a corrupt square.
e By choosing € sufficiently small we can make the bound ¢ as small as we need.

Let us consider what it means for H(18") not to be dreadful. We argue that, in this
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case, we cannot have a connection by circles, of the appropriate sizes, from the inside
to the outside of the box.

We first note that any m-point in H(18") is either in a bad or a corrupt box of
size 18™. An m-circle may thus only intersect a box of size 18", if that box is either
bad, corrupt, or neighbors a corrupt square of the same size, unless it neighbors the
boundary of H(18").

We now give a series of definitions. Call a box of size 18™ dodgy if it is either
bad, corrupt, neighbors a corrupt square of the same size, is dreadful, neighbors a
dreadful square, or neighbors the border of H(18"). Call it clean if it is not dodgy.
Call two boxes of size 18™ adjacent if they share an edge. Define an m-circuit to
be a series of boxes of size 18™, (By, By, Bs, ..., By) where B; is adjacent to B;,; for
1=1,2,...,k—1 and By, is adjacent to B;. We also require that the circuit cuts off
the origin from infinity.

A sub-circuit of boxes of size 18j,(B{, Bg, Bg, cee ng), of a circuit of boxes of size

18™ (with j < m),(B{*, By", By, ..., B} ), is a circuit of boxes of size 18/ inside the

circuit of boxes of size 18™, such that there exists 0 = iy, 99,93, ..., 0, —1, U, = kj,
such that B} . B! ,,, B} 5, ..., Bg“rl are contained in Bj™. This means that the first

few boxes of size 18/ are contained in BJ", the next few are in BY', and so on.

We say that the property F,, holds if any m-circuit consisting of clean boxes of
size 18™ contains a sub-circuit of boxes of size 18 that are not intersected by k-circles,
for all & < m. Our objective is to show that E,, holds for m = 1,2,...,n — 1, by
induction on m.

If m = 1, we have a 1-circuit of clean boxes. Therefore there can be no 1-circle
intersecting any of these boxes, and E; holds.

The inductive hypothesis is that F,,_; holds. In order to perform the induction
step and prove that E,, also holds, consider an m-circuit of clean boxes of size 18™, as
depicted by in Figure 2.14. In this figure, the smallest squares are of size 18™~L. If we
show the existence of a sub-circuit of clean boxes of size 18" ! inside the m-circuit,
then, by the inductive hypothesis, the occurrence of E,, will follow.

By construction, all the boxes of size 18™ in our circuit are clean. This tells us
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Figure 2.14: Avoiding dodgy squares. A circuit of squares of size 18" contains a circuit of
squares of size 181, avoiding dodgy squares.

that none of them intersects an m-circle. It also means that there is at most one
dreadful square inside each box of size 18™ in the circuit. These are depicted in
Figure 2.14 as black squares. A dreadful square may cause a 5 x 5 block of squares of
size 18™~! to be dodgy (gray 5 x 5 blocks in Figure 2.14). This can happen because
the dreadful square can neighbor a corrupt square, which also has neighbors. Finally,
any of the squares of size 18™ ! neighboring the edge of the circuit, or the neighbors
of these squares, may be dodgy, due to the proximity of dreadful squares just outside
the circuit. This latter case is depicted in Figure 2.14 by the two gray circuits of
width 2 x 18™~!, along the edges of the m-circuit. These are all the possibilities for
dodgy squares of size 18™~! in our circuit.

By considering all possible arrangements of the dodgy squares we see that there
must be a circuit of squares of size 18™~! inside our circuit that avoids those dodgy
squares (see Figure 2.14). Then, by the inductive hypothesis, there must also be a
sub-circuit of squares of size 18, so F,, holds.

H g is a circuit of boxes of size 18", and if all are clean, by the argument above,
it follows that we must have a sub-circuit of boxes of size 18 that are not intersected

by any m-circles, for m = 1,2,...,n, which is what we wanted to prove. O
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Figure 2.15: Intersection between circle and box. A circle of radius at least 18" can

touch the boundary of the box [—2 x 18", 2 x 18"]? only if the distance between the center of the
circle and the center of the box is within 3 x 18" x \/ig of the circle’s radius.

Proof of Lemma 2.19. Let X be the number of circles of radius at least 18" that

intersect [—3 x 18", 2 x 187]%. A circle can only intersect the boundary of the box

if the distance between the center of the circle and the center of the box is within

3 x 18" x % of the circle’s radius (see Figure 2.15). Now write

P(X>0) < BE(X)

> 3 x 18"
< €18 207 ((18° +
< Z (( NG

b=n

3 x 18"

)? - (18 7 )%).

We can make this less than 1/4 for all n by our choice of €, implying that the proba-

bility of a large circle intersecting the box is less than 1/4. O

We can now prove the finiteness of our clusters. We define a thickened cluster as

a maximal connected component of points strictly within distance 9 of any circle.
Lemma 2.20 All thickened clusters are finite, for e > 0 sufficiently small.

Proof of Lemma 2.20.

By Lemma 2.17 there is a gap between [—18= 18012 qnq [—2x187 3xI8712 - igh
probability at least 1/2, by our choice of €, for every m.

We now need to show that such a gap exists around the origin a.s., for some m. If

we can do this then we can conclude, by the stationarity of the circle configuration,

that every point will be surrounded by some gap. We need to be careful in showing
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this, so that the negative information gained by the knowledge that there is no such
gap, for a certain m, does not prejudice our attempts to find one in a later m. We

proceed as follows.

We begin by looking whether there is a gap between the boundaries of -2, 18]2

and [—2218 3X1812 Tn order to do this we search for the centers of the circles that

might intersect this area, in order of increasing size. Either there is no gap, in which
case a (random) K; < oo exists, so that these boundaries are connected by circles
of radius up to 18%1, or there is a gap (with probability of at least 1/2). In the

latter case we would be satisfied. In the first case, we can find an M; so large that

18M1 18M1 49 3x18M1  3x18M1
[_ 2 9 ] and [_ p) ) 2

|?, cannot be overlapped by any circle of radius

_ 3x18 3x18

18, 2251812 We know nothing about

up to 1851 that could also have overlapped [

larger circles.

M M
_18M1 18 1]2 and

We have no information about the circles that may connect [—=5—, =5

[_3><18M1 3x18M1

5 g |%; hence, the probability that there is a gap between them is again

18M1 18M1 ]2

at least 1/2. We search for a connection between the boundaries of [—=5—, 5

My My
and [_3><18 3x18

5> Ty ]?, again starting by looking at the smallest circles. Either there

is a gap, or there exists Ky < oo such that there is a connection from one of these

boundaries to the other using circles of size up to 18%2. In this latter case, we can find

Mo Mo Mo Mo
18 18 ]2 and [_3><18 3x18

an My > M, so large that [— 55—, =5 >

2
|%, cannot be overlapped
_ 3x18M2 3><18M2]2

2 0 2 :

18M2  18M219
5 5] and

by any circle of radius up to 1852 that could also have overlapped |

We now search again for a gap, this time between [—

[_3><18M2 3><18M2]2
2 7

5 and repeat. At every stage we have a probability of at least 1/2

of there being a gap, independently of the previous times. If there is no gap (which
happens with a probability of at most 1/2), then we find this out at some time and
search in a larger annulus. It follows that there is almost surely a gap.

O

Finally, we can now give a proof of Theorem 2.8, by describing a shift invariant

covering algorithm that a.s. never forms an unbounded component of covering discs,

for all A.
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Proof of Theorem 2.8. We nearly have a covering algorithm, but everything we
have done up to now depends upon A, the density of points. As the covering should
be a deterministic function of the points, we must first calculate A in the realization

of the point configuration. We do this by setting

\ = lim number of points in B,,(0)
n—o00 n2

if this limit exists and is constant, which happens with probability 1, and otherwise
we take A = 1. Note that this definition is translation invariant.

Fix € at half the supremum of all values of € that allow all our proofs to work at
this particular value of \.

We counstruct smooth curves based upon the finite circle clusters. Consider some
maximal set of circles such that, if we take the locus of points at a maximal distance
of 4 from the points in the circles, then this forms a connected set, and run a disc
of radius two around the outside of this set (see Figure 2.5). The disc traces out a
kind of sausage shape around the clusters. We note that all such sausages must be
finite by Lemma 2.20. In formulas we take a maximal set of circles, C, such that
Uceclz : |# —y| < 4,y € ¢} is connected, and then define the sausage to be the set

on the exterior of C,

{z:Fy:jz—y|<2,Tpe Uc: ly —p| =2, {w: |w—y| <2}ﬁUc:(Z)}.
ceC ceC
We take the inside edge of this sausage as our curve, and note that a covering disc
(of radius 1) can get arbitrarily close to any point of it without touching it.
We construct these smooth curves for each set of sufficiently close clusters, noting
that they surround every region, are always finite, and never come within distance 18
of each other.

We finally cover our Poisson points as follows:

e if a point is at a distance more than 2 from every smooth curve, then we center

a covering disc at the point.
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e if a point is within distance 2 of a smooth curve, then we place a disc so that its
perimeter covers the point, and so that the center of the disc is at the maximum
distance away from the smooth curve. If there are a number of such possible

positions, we choose the leftmost.

It immediately follows that, for any given value of A, a.s. there is no percolation. O
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Chapter 3 The magic numbers in network design

In this chapter we give a proof of the following geometric theorem, that has applica-

tions in wireless network design.

Theorem 3.1 Consider a square lattice where the distance between two neighboring
lattice vertices s L. Call a closed disc of fized radius r, centered at a lattice vertex, a
grid disc. The number N of grid discs that are necessary and sufficient to cover any

disc of radius v placed on the plane, is given by:
e CASE 1. Forr/L < ?, N does not eist.

CASE 2. For ¥ <r/L < ¥ N =6.

CASE 3. For Y0 <y/L <1, N =5.

CASE 4. For1<r/L <2 N =4.

CASE 5. Forr/L> 2 N =3,

The proof makes use of simple geometric arguments, but is by no means trivial.
It involves finding a disc that requires the prescribed number of grid discs to be fully
covered, and then finding different configurations of grid discs that are sufficient to
cover any disc on the plane. The number of these configurations that we need to find

increases with /L. The rest of the chapter contains nothing but proofs.

3.1 Proof of Case 1

To simplify the notation, in the following we fix L = 1. For r < g the grid discs
do not cover the plane compactly, since they do not cover the centers of the lattice
squares. It follows that any number of grid discs is not sufficient to cover any disc

that covers the center of a lattice square. O
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Figure 3.1: Case 2, necessary condition. The four shaded areas exist when AB > r.

3.2 Proof of Case 2

The necessary condition is proven by showing that there exists a disc that requires six
grid discs to be covered. The sufficient condition is proven using a tiling argument:
we first show that there exists a triangle ABC, such that any disc centered inside
triangle ABC is covered by six grid discs, and then we show that, by symmetry, we

can tile the entire plane using triangles that have this property.

3.2.1 Necessary condition

Consider r > g and a disc centered halfway between two neighboring lattice vertices.
Such a disc is the dashed disc depicted in Figure 3.1. We have that the six (solid)
grid discs depicted in Figure 3.1 are necessary to completely cover the dashed disc if
AB > 7, i.e., when the four shaded areas in Figure 3.1 exist. By repeatedly applying

Pythagoras’ theorem, we have

2
1 9
AB = (1— r?—ﬁ) + 15 (3.1)



Figure 3.2: Case 2, sufficient condition. Any disc centered inside triangle ABC' is covered
by the six grid discs.

’1

CP

imposing AB > r, we obtain r < @.

3.2.2 Sufficient condition

Call A the area covered by the six grid discs in Figure 3.2. Any point inside triangle
ABC has distance greater than r from the border of area A. Therefore, a disc can
be centered inside triangle ABC and be covered by the six grid discs depicted in
Figure 3.2. By symmetry, we can tile the plane with triangles inside which discs can

be centered and covered by six grid discs. O

3.3 Proof of Case 3

3.3.1 Necessary condition

Consider r > @ and a disc centered at a distance € to the left from halfway between
two neighboring lattice vertices (dashed disc in figure 3.3). By the same reasoning
as for in Case 2, we have that the five (solid) grid discs depicted in Figure 3.3 are
necessary to completely cover the dashed disc, if AB > r. By repeatedly applying
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-

Figure 3.3: Case 3, necessary condition. The dashed disc is shifted by € to the left from
halfway between two lattice vertices.

Pythagoras’ theorem, we have in this case:

2
AB= | |1 |- (¢
4 2

imposing AB > r we obtain

+ (% + %)2 : (3.2)

e+e b
5 +§>T. (33)

L

5, and for any r < 1 inequality (3.3) is

We can restrict the e range to: 0 < € <

verified.

3.3.2 Sufficient condition

Call A the area covered by the five grid discs in Figure 3.4. Any point inside triangle
AOB has distance greater than r from the border of area A. Therefore, a disc can
be centered inside triangle AOB and be covered by the five grid discs depicted in

Figure 3.4. By symmetry, we can tile the plane with triangles inside which discs can
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Figure 3.4: Case 3, sufficient condition. Point O is halfway between two lattice vertices.
Any disc centered inside triangle AOB is covered by the five grid discs.

be centered and covered by five grid discs. O

3.4 Proof of Case 4

3.4.1 Necessary condition

Consider r > 1 and a disc placed at the center of a lattice square. If we place the grid
discs as depicted in the left section of Figure 3.5, four grid discs are always necessary

to cover the dashed disc placed at the center of a lattice square, because

EF =DF >OF =r; (3.4)

the same holds whenever two grid discs are centered at neighboring lattice vertices
or at lattice vertices on the same diagonal of a lattice square. If we examine the
only remaining possible placement of grid discs, depicted on the right-hand side of

Figure 3.5, we have that four grid discs are necessary only if BC = CD > r. By
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Figure 3.5: Case 4, necessary condition. Point O is at the center of a lattice square. On
the left-hand side of the figure, the dashed disc centered at point O always requires one more grid
disc to be covered. On the right-hand side of the figure, the dashed disc centered at point O requires
one more grid discs to be covered, if BC' > r.

Pythagoras’ theorem, we have in this case:

BC = (7‘—?) + 2 (3.5)

imposing BC' > r we obtain r < 5%.

3.4.2 Sufficient condition

Consider the left-hand side of Figure 3.6. The four grid discs cover any disc centered
inside the shaded area ABC'E. This area is defined by the triangle ABC and by the
circle centered at point P. This circle is the locus of the centers of the discs to be
covered that touch point P. Any disc centered inside the remaining area ACE is not
covered by the four grid discs. Consider now the right-hand side of Figure 3.6, the
four (solid) grid discs cover, in this case, any disc centered inside the shaded area
CDEF'. This area is defined by triangle BC'D and by the circle centered at point ().

This circle is the locus of the centers of the discs to be covered that touch point Q).
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Figure 3.6: Case 4, sufficient condition. Four grid discs cover any disc centered inside the
shaded areas. Intersecting the two shaded areas, we obtain triangle BC'D.

Such circle passes by point E, therefore, adjoining the two shaded areas ABC'E and
CDEF, we fully cover the area of triangle BC'D. Any disc centered inside triangle
BCD is covered by four grid discs: the four depicted on the left-hand side or the
four depicted on the right-hand side of Figure 3.6. By symmetry, the same holds
for triangle ABD and we can tile the plane with triangles inside which discs can be

centered and covered by four grid discs. O

3.5 Proof of Case 5

3.5.1 Necessary condition

By symmetry, any two discs with the same radius, centered at an arbitrary distance
e > 0 apart, cover less than half of each other’s perimeter, therefore, any grid disc
must cover less than half of the perimeter of any other disc not centered at a lattice
point. It follows that any two grid discs must cover less than the entire perimeter

of any other disc not centered at a lattice point. Hence, any disc not centered at a
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lattice point requires at least three grid discs to be covered.

3.5.2 Sufficient condition

It is enough to prove this condition when 7 is minimal, therefore we carry out calcu-
lations fixing r = %ﬁ. We consider three different placements of three grid discs on
the lattice and show that they are enough to cover any disc arbitrarily placed on the
plane. Consider the upper left-hand side of Figure 3.7. Taking point O as the origin of
the coordinate system, the three grid discs are placed at points: (—1,0), (—1,2),(1,0).
The coordinates of point P, given by the intersection of the two lower grid discs in
the upper left-hand side of Fig. 3.7, are calculated by applying Pythagoras’ theorem
to triangle AOP obtaining: P = (0, —@). Therefore, the locus of the centers of
the discs to be covered that touch point P, given by the circle centered at point P,
is defined by the equation:

x2+<y+@> =7r?; (3.6)

_1 \/E—\/s_zi)_

this circle passes by point A and intersects segment BH at point C' = ( ST

Note that any disc centered inside the shaded area ABC'is covered by the three grid
discs centered at points: (—1,0),(—1,2),(1,0).

We now consider the three grid discs depicted on the upper right-hand side of
Figure 3.7, centered at points: (—1,0),(0,1),(0,—1). First, let us focus on point
Q. Its coordinates are calculated by applying Pythagoras’ theorem to triangle OQR,
obtaining: Q) = (@,0). Since HQ = HO + OQ = % + @ > r, the locus of the

centers of the discs to be covered that touch point @), given by the circle centered
at point ), does not intersect triangle ABH. Now, let us focus on point P’. The

coordinates of point P’ are calculated by intersecting the two grid circles:

(z+1)2?+y? = r?
$2+(y—1)2 = T27
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Figure 3.7: Case 5, sufficient condition. Three grid discs cover any disc centered inside the
shaded areas. Intersecting the three shaded areas, we obtain triangle ABH.
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obtaining: P! = (=221 24val)

1 . Therefore, the locus of the centers of the discs to

be covered that touch point P’, given by the circle centered at point P’, is defined by

<x+72+4\/ﬁ> +<y—72+4\/ﬁ) =1 (3.8)

the equation:

. . . B . _ 1 24+v21-v29
this circle passes by point A and intersects segment BH at point C' = (—5, f) .

Note that any disc centered in the shaded area AC'H is covered by the three grid
discs centered at points: (—1,0), (0, 1), (0,—1).
Intersecting the two circles centered at points P and P’, defined by equations (3.6)

and (3.8), respectively, we obtain two points:

(xO;yo) = (_170)
o - (3 2o

4 4

depicted on the left-hand side of Figure 3.8. By the coordinates of these points, (xy, y)
is placed inside triangle ABH. Hence, any disc centered inside the shaded area given
by the intersection of the two discs depicted on the left-hand side of Figure 3.8 is
covered by neither the three grid discs depicted on the upper left-hand side, nor by
the three grid discs depicted on the upper right-hand side of Figure 3.7.

In order to cover such a disc, we consider the three grid discs depicted in the
lower section of Figure 3.7, placed at points: (—1,0),(—1,2),(0,0). In this case, the
coordinates of point @)’ are calculated by applying Pythagoras’ theorem to triangle
Q'OH, obtaining )) = (—%, —\/%) Therefore, the locus of the centers of the discs

to be covered that touch point )', given by the circle centered at (', is defined by

<x+%)2+<y+\/2;3>2:r2; (3.9)

this circle passes by points A and O and intersects segment BH at point D =

<_1 5v/2—/46
27 4

the equation:

). The coordinates of point P” are calculated by intersecting the two
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grid circles:
(r+1)*+(y—2)? =r?

1
2 +y? =12 (3.10)

obtaining P" = (‘/62’1, ‘/‘1“). Therefore, the locus of the centers of the discs to be

covered that touch point P”, given by the circle centered in P”, is defined by the

(x_ “62—1) t <y— “64“‘) _— (3.11)

. : : = : _(_1 44v6 V36
this circle passes by point O and intersects segment BH at point C" = (—5, f) .

equation:

Note that any disc centered inside the shaded area AEC" D is covered by the three grid
discs centered at points: (—1,0),(—1,2),(0,0). In order to check that this placement
of grid discs covers any disc centered inside the shaded area given by the intersection
of the two discs depicted on the left-hand side of Figure 3.8, we intersect the two cir-
cles centered at points P’ and @' in Figure 3.7, defined by equations (3.8) and (3.9)

respectively, obtaining two points:

(xoayo) = (—1=0)

V21 2421 /46
(w2,12) = <_ 4 4 >

depicted on the right-hand side of Figure 3.8. Given the coordinates of these points,
since (z2,ys) is placed outside the area of triangle ABH, we conclude that the three
grid discs placed at points: (—1,0),(—1,2),(0,0), cover any disc centered inside the
shaded area given by the intersection of the two discs depicted on the left-hand
side of Figure 3.8. It follows that intersecting the three shaded areas of Figure 3.7:
ABC,AC'"H,AEC" D, we cover triangle ABH completely. Hence, any disc centered
inside triangle ABH is covered by three grid discs, placed in one of the three config-
urations depicted in Figure 3.7. By symmetry, the same holds for triangle OBH and
we can tile the plane with triangles inside which discs can be centered and covered

by three grid discs. O
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Figure 3.8: Case 5, sufficient condition. Point (x1,y1) is inside triangle ABH , point (x2,y>)
is outside triangle ABH.
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Chapter 4 Wave propagation and random walks

In this chapter we present a model of wave propagation in microcellular urban envi-
ronments, based on random walks.

We model the trajectory of each photon radiating from an isotropic narrow-band
source as a piecewise linear random walk with absorbing probabilities (see Fig. 1.4).
The average step length of the random walk is 1/7, and we assume that each time the
photon is about to turn in a random direction, it can be absorbed, with probability
v, by the reflecting obstacle and hence stop its random walk. Our procedure consists
of finding an expression for the p.d.f. of the site where the random walk stops and
then obtaining an expression for the radiated power flux and power density at a given
distance from the transmitter. The former equals the number of photons entering a
sphere of radius Ar placed at distance r, normalized to the sphere surface, in the limit
for Ar — 0; the latter is defined as the number of photons leaving a sphere centered
at the transmitter and of radius r, normalized to the sphere surface. At the end of
the chapter, a comparison with the classical theory of wave propagation in random

environments is given, and an experimental validation of the model is provided.

4.1 One dimension

We start by looking at the one-dimensional case. In one dimension, the trajectory
of a photon occurs along a single straight line. We imagine each photon to behave
as a sleepy drunk person walking on the line. The drunk starts walking in a random
direction, proceeds at a constant pace, but at random, Poisson distributed intervals,
he trips, at which point with probability v he falls asleep, and with probability (1 —

7)/2 he continues in each direction. Accordingly, let = be the coordinate on the line
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and define H and H to be the p.d.f. s:

H(z)=ne™ (x>0), H(z)=ne"™ (x<0).

The overall p.d.f. of tripping at x, in the first step of the random walk, is given by

_H+H 1 —nla|

where 1/7 is the photon’s average step length.
We are now interested in the p.d.f. G(z) of the site where the drunk falls asleep.

With * indicating convolution, this density can be found by solving the equation:

G(2) = 1Q(2) + (1 - 1)@ * G(a). (4.1)

Use of Eq. (4.1) can be justified as follows. Let us iteratively substitute the
expression for G(z) in the convolution integral. We have G(z) = Go(x) + G1(z) +
Go(z)+. .., with Go(z) = vQ(z), Gi(z) = (1—7)Q(z) *Gy(x), Go(z) = (1—7)Q(x) *
(1 —=79)Q(z) x Go(z), ... Go(x) describes the event that the drunk falls asleep at the
first step of the random walk, hitting a single obstacle. G(z) describes the event
that the drunk falls asleep at the second step, hitting two obstacles and so on. Since
all these events are disjoint, we sum all the G;’s to obtain the overall p.d.f. G(z) of
the site where the drunk falls asleep.

The convolution in Eq. (4.1) suggests examining the Fourier transforms (charac-
teristic functions in the terminology of probability theory) of the probability densities.

Let g(w), h(w), h(w), ¢(w) be the Fourier transforms (FT) of G(z), H(x), H(x), Q(x)
respectively, and h*(w) be the complex conjugate of h(w). We have

0 B » n
h(w) = N =i (] > 0),
(w) 77/0 e e e (n>0)

h(w) = h*(w) (n>0),



aw) = 2 R
Noting that H x H = HQﬂ = (), we can write the analogue of Eq. (4.1) in the Fourier
domain as
9(w) = yh(w)h*(w) + (1 = ) h(w)h*(w)g(w). (4.2)
Solving for g(w) we have
g(w) = ot
w? + 1’
and by inverse F'T' we find
G(z) = @e”ﬁ‘”. (4.3)

Discussion of Eq. (4.3) is now in order. Note that there is only one independent
parameter, 7,/7, for this family of distributions; the absorption probability y and the
obstacle average density 7 can be traded off against each other without affecting the
distribution. As a check on this equation note that, for v = 1 (perfectly opaque ob-
stacles), the drunk falls asleep at the first step, and we have G(x) = Q(z). Moreover,
as the probability v of the drunk falling asleep at each given obstacle tends to zero,
the density spreads more widely over the real line (1,/7 — 0).

Quantitatively, Eq. (4.3) provides an elegant prediction: at any fixed level of clut-
ter in the environment, the effective radius of the signal scales as the square root of
1/7, the expected number of steps taken by the random walk. This phenomenon is
closely related to the square-root-of-time scaling of the distance traveled by a sym-
metric random walk; however, the actual distributions in the two processes are quite
different, being in this case a two-sided exponential rather than a normal distribution.

We can now obtain the average transmitted power flux at a distance xq > 0 from

the origin, when radiating a narrow-band signal of unitary amplitude:

6*77\/7550

Flag) = /oo G(x)dz = |

D)

Note that when there are no obstacles (n — 0), or when there is no absorption

(v = 0), F(zo) = 1/2 as the power splits evenly along the two directions of the
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lossless, obstacle free line.

4.2 Two dimensions

We now turn our attention to the two-dimensional case. The immediate generalization

of Eq. (4.2) to two dimensions is

G(r) =7Q(r) + (1 = 7)Q+ G(r), (4.4)

where G(r) is the probability of the drunk falling asleep at a given radial distance
r from the origin, and the probability density Q(r) of the drunk finding the first

obstacle at a radial distance r from the origin is given by

ne ™

Qr) =

o0rr

For subsequent analysis, the FT of Q(r) is needed:

+oo -y
q(u,v) / / e e_wxe_wydxdy.
o 2T x2 -I- y?

By letting x = rcos ¢, y = rsin ¢, u = wcos Y, v = wsin Y, we have, for w = distance

n 00 2 ]
q(w) — _/ €_de/ 6—1wrcos(¢—1/;)d¢ —
0 0

from the origin:

2m
w1+
:— e"rdr/ Z —i)k Jp(wr)e —h=V)dp =
k=—oc

—77/ e~ Jo(wr)dr,
0

where we use the Bessel functions Ji(-), and exploited the Bessel expansion 8.511.4

in Gradshteyn and Ryzhik (1994). Then, by means of identity 6.611.1 of Gradshteyn
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and Ryzhik (1994), we obtain

Ui

q(w) = 7@

Substituting ¢(w) into the FT of Eq.(4.4), and solving for g(w), we obtain

o

W)= T E A

and by inverse F'T we obtain

iwr cos(P—a¢) CWJ _

G(r) = (;:)2 /OOO \/mw_ (1_7)ndw /0%6

2r  +00

__m Z i T (wr) e V=) o =
k=—

CLE /ooo mw_ B _wnd‘”/o

_m o wdo(wr)
2 Jo  wr+nP—(1—9)n

Note that, for v = 1 (perfectly opaque obstacles), the drunk falls asleep at the

dw. (4.5)

first step, and the integral reduces to

00 —nr
Glr) = n wo(wr) _ne

= — —Faw
27 0 ,/w2—|—n2 2rr

as expected, see identity 6.554.1 in Gradshteyn and Ryzhik (1994).

= Q(r),

In the general case of v # 1 the integral in (4.5) is hard to compute. An exact

solution, expressed in terms of an infinite series of Bessel polynomials is the following:

o

Gy =21 [e;m (1 + nTchﬁn(UT)) + oK\ = a2r)] o 46)

n=0

where
(1= )*nth
Chn = —F5 " 1\
(2n + 1)!!

a=r1(1—7), 0,(-) are the Bessel polynomials, see Grosswald (1980), and Ky(-) is the



7
modified Bessel function, see Gradshteyn and Ryzhik (1994). Derivation of Eq. (4.6)
is reported in Section 4.10. In the following, we show a closed-form approximation.

We look at the Taylor expansion, with respect to 7, of the function:

—(ﬂ—%)r > 1 2\ " gn —nr
£y - <_O‘_> 0 <€_> , (4.7)
T “— n! n) @\ r

and note that the first two terms of this expansion are the same as the first two terms

of <= (1+nr Y ycubn(nr)). Therefore, neglecting higher-order terms, we obtain
the following:

G(r) ~ % c Ty aKo(vn? —a?r)| . (4.8)

r

We discuss the validity of the above approximation, numerically estimating the
series of Bessel polynomials, in Section 4.11. Here we note that, in spite of being an

approximation, Eq. (4.8) integrates to one as expected by a probability density:

n2—a?

27 o - T
/ dqﬁ/ T;—n 674—&1(0(\/7]2—&27“) dr =
0 0 7 r

n a n
777(772—042+772—042) n—

Moreover, when v =1, G(r) = Q(r) as expected.
Finally, exploiting Eq. (4.8), we calculate the average power flux at a distance

ro > 0 from the origin, when radiating a narrow-band signal of unitary amplitude:

1 2m o0
27”"0/0 dqﬁ/m rG(r)dr =

1 1 e /(1 —=7)
_ T K 2 _ A2 4.9
S {2 — 7e 04 A rol (v n? — a?ry)| (4.9)

see identity 5.52.1 in Gradshteyn and Ryzhik (1994).

F(To) ==

It is interesting to check two limiting cases. When there are no obstacles (7 = 0)
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we have

1 1 +1—7 1
27 2—v 2-—v 2]

having used the series expansion 8.446, of Gradshteyn and Ryzhik (1994), for K, (z).

Similarly, when we have no absorption (7 = 0), we have

1 1 1 1
F = —+—| =
(ro) 2mry <2 * 2) 271y’

as in the case of propagation of a cylindrical wave over a free plane.

4.3 Three dimensions

In the three-dimensional case Q(r) becomes

e "

Q) =1

Arr?’

and its FT, ¢(w), is given by

27 I [e%e)
q(w) :/ d¢/ sin@dﬁ/ TQe’iwcoserQ(T)dr =
0 0 0

™ o . ™ : 9
/ sin 0d0 / e~ (rtiweosyr g, 11 / MY g =
0 0 o N+ iwcosl

| w
= — arctan —.
w n

N3

By substituting ¢(w) into the Fourier transform of the equation:

G(r) =7Q(r) + (1 =7)Qx G(r) (4.10)
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and solving for g(w) we obtain

n w
v, arctan p

9(w) (4.11)

T1_(1_" w>
1—(1—~)Larctan

by inverse F'T' we have,

1 2 s [eS] ]
G(r) = —/ dqﬁ/ sin@dﬂ/ w2g(w)eresldy =
") (2m)® Jo 0 0 )
1

* 4 ) 9 oo
— : iwr cos 0 .
= (271')2 /0 w29(w)do.)/0 sinf e df = (271—)2 /0 w2g(OJ)Slnc(wr)dw, (412)

where we have defined sinc z = (sinx) /.
We note that the integrand in Eq. (4.12) oscillates as sin(wr), for w — oo. We
regularize the integrand behavior, making the integral well defined, and compute it

in Section 4.12, thus obtaining the following expression:

m T, 2
6tr) = 2 Lot = eV 2 1 1 - (=}
(4.13)
As a check, note that, in spite of being an approximation, the expression in

Eq. (4.13) integrates to one, and so it is a probability density:

///G(T)dzz/:Wdﬁﬁ/OFSiDQdG/OOOﬂG(T)dr:

=t {(1=0) [TV 2 =) [Tl - a0 -

2 l—n 2 1-(1—9)? _
T T L2 T

_ 12—
1—(1—7)?

having used identity 6.561.16 in Gradshteyn and Ryzhik (1994).

=1,

Finally, exploiting Eq. (4.13), we calculate the average power flux at a distance
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ro > 0 from the origin, when radiating a narrow-band signal of unitary amplitude:

1 27 ™ o0
F(rg) = 1 / dqﬁ/ sin 0d0/ r2G(r)dr =
g 0 7o

re” Vi-(=0%mr gy, 2 TQKU[(l — (1 —y)*)nrldr =

47TT0 47TT0 T or

To

1 1-—
il 7)) ( 1—(1=7)2nro+ 1) e~ V1=(0=?ro . T

:47TT§ 1—(1—n)?

222

+ /OO Ko[(1-(1 - 7)2)nr]dr} ) (4.14)

Letting [1 — (1 — 7)%]n = 3, we use the asymptotic approximation 8.451.6 for Ky(-)
in Gradshteyn and Ryzhik (1994) to calculate the last integral in Eq. (4.14):

Ko(pr)dr = K(] Jdx ~ \/7 e dx =
/0 /6 Bro /B Bro \/_

— % \/ﬂ/\;;o e du = fLw Erfc(+/Bro) (4.15)

having defined v = /z, and Erfc(u) = 1 — Erf(u) = et dt.

2
7

The asymptotic approximation that we have used for Ky(-) is accurate only for
large values of the argument. Hence, accuracy of the integral in (4.15) depends on

the value of frg. If we let Sry — 0 we discover that while

To improve the approximation in Eq. (4.15) for small values of frq, we introduce an

additional factor as follows:

h Ko(z)dx =~ EETfC(\/ﬁTU)M.

4.16
. 2 1+ 108r¢ (4.16)

{roKo[(1 — (1 —)*)nro]+
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Defining
Err; = ‘ Ky(x)dx — gErfc(\/ﬁro) :
Bro
>0 7 1/V2+1085r
Erry = - Ky(z)dx — EErfc(\/ﬂTO)/l+1—(Wf() ,

numerical estimation shows that the additional factor improves the error of the ap-
proximation from Err, < 7/2 — 7/v/2 = 0.65 to Erry < 0.067.
Substituting Eq. (4.16) into Eq. (4.14), we finally have

Fro) = 4737% { I 1(21_—77))2 (v/Brgro + 1)e Voo

il V2
7

* 3

Ko(Bro) + (4.17)

57"0)—1/\/5 + 105ro } .

1+ 1057‘0

It is interesting to check two limiting cases. When there are no obstacles (n = 0),

1 (1 —7) gl _ !
F(TO) = 47”% {1_ (1_,)/)2 + 1-— (1—7)2} N 47TT§

When there is no absorption (7 = 0), we have

1 1 1 1
F = — — — =
(TO) 4777"3 <2 + 2> 47TT§’

as in the case of propagation of a spherical wave in free space.

we have

4.4 Modeling the power density

In the previous sections we derived the expression of the average power flux at a
given distance from the transmitter. In this section we are interested in computing
the corresponding power density. In our probabilistic model this is defined as the
number of photons P(r) per unit area that hit the external surface of a sphere of
radius Ar centered at distance r from the source. The power flux has been related

to G(r); similarly, we want now to find the connection between P(r) and G(r).
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We start by considering the number of photons absorbed inside the sphere of
radius Ar, which is given by G(r)(4n/3)Ar®. Letting | be the average path length
of a photon inside the sphere, this quantity also equals (in the limit for Ar — 0) the
number of photons P(r)4wAr? that enter the sphere times the absorption coefficient
~v and the average number of reflections 7 [ experienced by a single photon inside the
sphere. Clearly, L = P(r)4wAr? [ is the total path length of the photons inside the

sphere, and we have the equation:
4 3
g?TAT G(r) = Lyn. (4.18)

Similarly, in 2-D we have L = P(r)2rAr [, where P(r) is the number of photons per
unit length that enter a circle of radius Ar centered at distance r from the source,
and Eq. (4.18) becomes

TAr*G(r) = Lyn. (4.19)

A simple trigonometric exercise leads to the expression:

4
L= P(r)gwAr3
in 3-D, and similarly in 2-D:
L = P(r)ymAr?.

Substituting the total path length L into Eqgs. (4.18) and (4.19), we find the expression

for the power density:

P(ry= 222 (4.20)

4.5 Results of the theoretical model

The power density and power flux predicted by our three-dimensional model are
compared with free space propagation in Fig. 1.11, for values of the parameters cor-
responding to having on average one reflection every ten meters and an absorption

coefficient of the obstacles of approximately 15%. These values are determined by
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fitting the model using experimental data collected in a microcell located in the city
of Rome, Italy. Details on the data collection method and on the fitting procedure
are given in the subsequent sections. We point out that the point of transition from
an inverse square law to an exponential attenuation depends on the values of the
parameters that can be tuned to different environments. In particular, in the case
of an empty environment without absorbing obstacles, this transition does not occur
and the model correctly predicts an inverse square attenuation law, as appropriate to
isotropic radiation. On the contrary, in the presence of absorbing obstacles, the flux
model presents a smooth transition from the 1/r? law to an exponential attenuation;
the power density model, although providing a very similar fit to the experimental
data, predicts slightly higher power near the source. This is due to having part of
the power being reflected back by the obstacles toward the source. A more detailed

explanation of this phenomenon is given in the next section.

4.6 Relationships with the classical theory

The obvious starting point to characterize propagation in a wireless channel would be
to use Maxwell equations. In principle, these can provide a complete characterization
of the propagation loss in any given media. However, in the case of a rich scattering
environment such as an urban area, this approach does not lead to closed-form solu-
tions. Hence, numerical solvers, empirical formulas, experimental measurements, and
computer simulations are often used in practice.

An alternative approach is to treat the city as a random environment, and consists
in studying propagation in a random medium. We acknowledge the existence of ex-
tensive literature on propagation in random media which dates back to the beginning
of last century, with the study of radiation of light in foggy atmospheres. Historically,
the problem has been investigated from two distinct points of view. One is “radiative
transfer theory” or “transport theory,” and the other is “multiple scattering theory”
or “analytical theory.”

Radiative transfer theory is heuristic and deals directly with the transport of en-
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ergy through a medium containing particles, it is based on the equation of radiative
transfer, which is a differential equation equivalent to the Maxwell-Boltzmann colli-
sion equation used in the kinetic theory of gases and in neutron transport theory.

Analytical theory is more rigorous and starts with the wave equation or with
Maxwell equations, obtains a solution for the scattering by a single particle, introduces
the interaction effects of many particles, and then considers statistical averages.

The two theories deal with the same phenomena, even though their starting points
are different, therefore there are fundamental relationships between them. These are
outlined in the classic book by Ishimaru (1978), which shows (see Chapter 14) that
under certain approximations it is possible to derive the transport equation using
analytical theory.

It is interesting that our proposed wandering photon model can also be related to
transport theory, although it starts from different premises.

The (numerical) solution of the transport theory model in the case of a spherical
wave radiating in a random medium of isotropic scatterers is outlined in Chapter
12 of Ishimaru (1978). The transport equation reduces to an integral equation for
the specific intensity (Eq. (12.4) in Ishimaru(1978)) that is similar to our Eq. (4.10).
However, the terms in the two equations have different meanings in the two models
and are multiplied by different coefficients. Nevertheless, the functional form of the
equation, and hence of the solution, is similar in the two cases. The similarity between
Eq. (12.4) of Ishimaru and our Eq. (4.10) suggests that the p.d.f. of the location where
the random walk stops must be related to the specific intensity in transport theory.
In the following, we explore this relationship.

A graphical comparison of the power density and the power flux, analytically
derived from the p.d.f. of the location where the random walk stops, with the cor-
responding transport theory quantities, numerically derived solving the equation of
radiative transfer, is depicted in Fig. 4.1. Our 3-D formulas (4.17) and (4.20) are
plotted on the right-hand side of the figure, while plots, derived numerically as in
Ishimaru (1978), appear on the left-hand side. Note that to be coherent with Fig.12.3

of Ishimaru (1978), we have normalized both plots by an r? factor.



85

Figure 4.1: Comparison with transport theory. The dashed curves represent the power
density (normalized by an r* factor), and the solid line curves represent the power flux (normalized
by an r? factor). Left-hand side: results from transport theory obtained numerically solving the
equation of transfer. Right-hand side: analytical results according to the wandering photon model.

There is no doubt that the graphical behavior of the two sets of curves is very
similar. However, we limit ourselves only to a qualitative comparison of the two
plots, for two reasons. First, the parameters of the two theories are different: we
use the absorption coefficient (), and the average step length (1/7) of the random
walk, whereas transport theory uses the particles number per unit volume (p) and the
absorption (o,), scattering (o), and total (o0, = 0,+0,) particle cross section. Second,
the transport theory curves are parametrized by the albedo Wy = o,/0y, which is not
independent from the abscissa coordinate po;r; whereas the wandering photon curves
are parametrized by the absorption coefficient 7, that is totally independent from the
abscissa coordinate nr. Another difficulty is in the absence of an analytical solution
for the transport theory approach, so that no direct comparison between equations is
possible.

We now look at some limiting cases. We note that on both plots, when we move
toward a lossless medium (y — 0, W, — 1), the flux (solid line) curves tend to the

1/r? abscissa line; while the density (dashed line) curves tend to diverge, as they tend
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PARAMETERS

OBSTACLES

Power Density, 2-D

Power Density, 3-D

vy—=1,17>0
v—0,nr <oo
n=20

mostly absorbing
mostly scattering
no obstacles

exponential attenuation
o0
~1/r

exponential attenuation
~1/r
~1/r?

Power Flux, 2-D

Power Flux, 3-D

vy—=1,17>0
v—0,nr <oo
n=20

mostly absorbing
mostly scattering
no obstacles

exponential attenuation
~1/r
~1/r

exponential attenuation
~1/r?
~1/r?

Table 4.1:

Power at large distance as predicted by our model.

to 1/r. This phenomenon of 1/r slow decay of the power density is known in transport
theory and is due to part of the energy being reflected back toward the source. It can
also be interpreted, in our model, in terms of recurrent properties of random walks.
Let us look at the decay laws predicted by our model and depicted in Table 4.1, and
let us focus on the power density. According to our formulas, when obstacles are
mostly scattering, the power density attenuates as 1/r in 3-D and diverges, with a
log singularity, in 2-D. The explanation is that random walks in 2-D are recurrent,
hence, when there is no absorption, the same photon visits infinitely many times the
same disc of arbitrary radius e. On the contrary, in 3-D the probability of the random
walk to re-visit the same sphere of arbitrary radius € is less than one, hence, perfectly
reflecting scatterers lead only to a decrease of the rate of decay of the power density
from 1/7% to 1/r, due to a finite number of recurrent visits and eventual diffusion
of photons in space. Note that random walks recurrence properties do not effect
the power flux decay law, because, according to its definition, the power flux simply
measures the number of photons that escape beyond a given radial distance, hence
does not count recurrent photons multiple times. Accordingly, the power density
plots reported in Figure 4.1 can become greater than unity, due to recurrent visits,
but the total power flow in the radial direction, given by the power flux, can never

be greater than one (total source of power).
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4.7 Experiments

We now apply our theoretical model of propagation to predict the path loss of a
wireless channel. By using a non-linear regression algorithm we fit Eq. (4.17) and
Eq. (4.20) to experimental data collected in a microcell located in an urban area
and we measure the accuracy of the prediction by evaluating the root mean square
error o4 of the model on the measured data. The two equations that we use to
fit experimental data correspond to two different ideal measurements: the power
flux equation measures the flux of photons passing through an antenna of given area
oriented toward the source; the power density equation measures the total number of
photons passing through the antenna, coming from any direction. Hence, Eq. (4.17) is
more suited to model directional receiving antennas, while Eq. (4.20) is more suited to
model isotropic receiving antennas. However, we note that Eq. (4.20) counts photons
multiple times, if they are reflected back toward the receiver. Our experimental
analysis shows that in practice both formulas lead to a similar result of a propagation
loss that, due to absorption, presents a smooth transition from free space propagation
to exponential attenuation (see Fig. 1.11).

We summarize our experimental findings as follows:

e The propagation law predicted by our model is in good agreement with ex-
perimental data. To have an idea of the quality of the matching we perform
monotonic regression, see Berlow et al. (1972), to find the best, in mean square,
non-decreasing function fitting the data. This function provides a lower bound
on the minimum value of 0,4 that can be achieved by any theoretical model of
propagation. Comparing the o4y obtained by fitting our model with the one

achieved by monotonic regression, we find a less than 2 dB increase.

e The values found for the parameters n and v when fitting our model to the
experimental data are reasonable when physically interpreted as density and
absorption coefficient of the obstacles in the considered urban area, thus sug-

gesting a possible direct use of our formulas without experimental tuning of the
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parameters. The parameters are are also very stable under random perturbation

of the data.

e We introduce a simplified, exponential path loss formula that proves to be as
powerful for prediction as the complete formulas derived in our model. The
parameters of this simple formula, however, do not have any physical meaning

and must be determined by fitting experimental data.

e We find that our model provides a superior fit to the data than the simple power
law model (Hata (1980) formula). In addition, it provides good theoretical
ground to empirical models that use a transition from low to high order power

laws to fit experimental data.

4.8 Data collection method

Experimental measurements, collected in Rome, Italy, are courtesy of Ericsson Teleco-
municazioni SpA. The transmitting antenna was a vertical dipole located at a height of
6m and transmitting a continuous wave (CW) at a frequency of 900 MHz, with a radi-
ated power P, = 6.3 W, transmitting gain G; = 2 dB, and EIRP = P,G; = 40 dBm.
The antenna was located in “Piazza dei Quiriti,” in the “Prati” district of Rome, near
the Vatican city, at 12.46591E latitude, 41.91017N longitude (see map in Fig. 4.2).
The receiving antenna, a dipole of G, = 2 dB, was mounted on top of a moving
vehicle at a height of approximately 1.5m. The vehicle was equipped with a GPS, to
record the position of each sampled data point, and drove around the transmitting
site (see right-hand side of Fig. 4.2). Each data point consisted of the received power
averaged over 50 measurements along a path of 40 wavelengths (Lee method) .

Fig. 4.3 depicts the collected data: the received power is represented by a vertical
line drawn at each data point. Fig. 4.4 depicts a view of the location where some
of the measurements were taken and shows the presence of different scatterers in
the environment. For subsequent analysis, a reduction in the size of the data was

performed as follows. The receiving equipment rounded the smallest value of received
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Figure 4.2: Measurements location. Measurements were taken in the “Prati” district of
Rome, near the Vatican city. The transmitting antenna was placed in “Piazza dei Quiri/ti, ” which
is highlighted by the black circle in the map on the left-hand side of the figure. The right-hand side
of the figure shows the path taken by the van as it drove around the transmitting site. Each data
point is shown with a gray level proportional to the power of the received signal. Circles centered
at the transmitting site are drawn with increasing radii of 100 m steps. The map on the left-hand
side of the figure is taken from http://www.mapquest.com. Power level measurements are courtesy

of Ericsson Telecomunicazioni SpA.
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Figure 4.3: Plot of the received power. A vertical line is drawn at each data point. The
height of the line corresponds to the value of the received power expressed in dB. Circles centered
at the transmitting site are drawn with increasing radii of 100 m steps.
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Figure 4.4: View of the location. The left-hand side of the figure depicts “piazza dei Quiriti,”
where the transmitting antenna was located. The right-hand side of the picture depicts a view of
“Parco Adriano” and of the surrounding streets where some of the measurements were taken.

power to -114 dB; therefore, in order to have an unbiased set of data, we considered
only points located at a radial distance from the transmitter less than 317m, for
which the received power was always higher than -114 dB. Moreover, the vehicle
moving around the transmitting site collected a larger amount of data points as the
radial distance from the transmitter increased. For example, a larger number of data
points were collected on an ideal circle of radius 200m centered at the transmitting
site, compared to the number of data points collected on an ideal circle of radius 50m.
Hence, in order to remove this unwanted bias toward farther points, we averaged all
data points inside annuli of 5m intervals, generating a uniform set of measurements
along the radial direction. This corresponds to performing a local spatial average
similar to the standard Lee method, but performed on a small annular area.

Finally, we point out that all measurements were taken along the streets of a
fairly regular neighborhood. We expect our model to even better fit data collected
in a more open environment, filled with random scatterers, such as, for example, a

park.
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4.9 Model fitting

In order to fit the propagation loss formulas to the measured data we need to convert
the flux and density in our 3-D model expressed by Eqgs. (4.17) and (4.20) to the actual
received power of the antenna in our system. We do so by adding a multiplicative
factor C' to the formulas that takes into account for the transmitted power, gain
of the transmitting antenna, effective area of the receiving antenna, and additional
hardware losses in the system. Then we perform a non-linear least squares procedure
to determine values of C, 7 and v that minimize the rms error o,y from the sampled
data.

By including the multiplicative factor C' to Eqs. (4.17) and (4.20) we obtain an
expression for the power received by an antenna located at a distance ry from the

transmitter of the type:

C
Precv(TU) = % f(777"0= 7)7 (421)

where f(-), which is 72 times either Eq. (4.17) or (4.20), is a function of the two
dimensionless parameters nry and ~, and C is expressed in [Wm?] units. We use
Eq. (4.21) to define the measured Path Loss for the considered experiments as the

expression in dB:

PL(TU) - _[Precv(TU)]d37 (4.22)

and the rms error of the predicted path loss from the sampled data as

b

o \/zy_l[Pme) ~ PL(r)}

n

where n is the number of measured data points, PL,,(r;) is the measured path loss at
the jth point located at a radial distance r; from the transmitter, and PL(r;) is the
corresponding predicted path loss derived from Eq. (4.22). To minimize the rms error
we use the standard MATLAB procedure 1sqnonlin() that is a fairly sophisticated
non-linear least squares routine based on the Gauss-Newton algorithm. Accordingly

(see Fig. 1.11), we find the values n = 0.09, v = 0.17, C' = 0.065, and a corresponding
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Ostqg = 3.72 dB, for the flux model; and the values n = 0.12, v = 0.12, C' = 0.02,
0sqa = 3.6 dB, for the power density model. These values correspond to having on
average one obstacle every ten meters, with an absorption coefficient of 12% ~ 17%.
These values are reasonable for the considered urban area. In addition, with reference
to the flux model for which the Friis formula is appropriate, see Rappaport(1996), we

can compute the value of C' analytically: the Friis formula becomes

Precv(rﬂ) - (EIRP) A F(TO)a

A being the effective area of the receiving antenna, because F(rq) — 1/(47r?) in the
uncluttered environment. Accordingly, C' = (EIRP)A = 0.069 for the experimental
equipment and radiated power, where we have included the extra factor 0.5 accounting
for the random incident polarization on the receiving dipole.

All of this suggests that, in principle, values of the parameters that match the
characteristics of the environment and of the used equipment can be chosen with-
out performing experiments, but by estimating directly the amount of clutter in the
environment (i.e., the density of the scatterers), the absorption coefficient of the scat-
terers, and the gains and losses in the equipment. This method can be considerably
less expensive than performing experiments, and can be used to obtain rough, initial

guidelines on the path loss of a given environment.

4.9.1 Sensitivity of the model to noise

As indication of robustness of our theoretical model, we check if the physical param-
eters, absorption coefficient () and average number of reflections per meter (n), are
stable under random perturbation of the data. We do so by adding log-normal ran-
dom noise of zero mean and standard deviation o,,;. to the data and determining,
via non-linear regression, the parameters n and v for different values of 7,,,;5.. Results
are presented in Fig. 4.5. We note that the parameters are very stable under pertur-
bations up to 7 dB. This suggests that they capture real physical properties of the

environment that are invariant to random noise. Moreover, we note that the values of
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Figure 4.5: Sensitivity analysis. Predictions of the flux model are indicated with continuous
lines, predictions of the density model are indicated with dotted lines.

the parameters predicted by the power flux model (continuous line) are very close to
the values predicted by the power density model (dotted line), up to perturbations of
13 dB; which implies that either of the two models can be used to fit the parameters.
For higher values of the perturbation noise, the flux model is more stable in predicting
the average number of reflections per meter 7, while the density model is more stable

in predicting the absorption coefficient ~.

4.9.2 A simplified exponential formula

For quick, practical calculation purposes, engineers may prefer to express the path loss
using a simple formula, rather than the more elaborate formulas that we have derived
in our model. The plots of our elaborate formulas, depicted in Fig. 1.11, suggest a
behavior that follows an inverse square law, with a smooth transition to an exponential
law, as the distance between transmitter and receiver increases. Accordingly, we are

led to the following simplified formula for path loss prediction:

(4.23)
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Figure 4.6: Complete vs. simplified formula. The scattered points represent measured
data. The dashed line represents the fit of the data using our flux model. The continuous line
represents the fit of the data using our simplified formula (4.23). The rms error of the flux model,
is 0stq = 3.72 dB; the rms error of the simplified formula is 044 = 3.75 dB.

The above formula proves to be as powerful in fitting the experimental data as the
complete formulas derived directly from the theoretical model. In Fig. 4.6 we compare
results of the simplified formula with the complete formula using the flux model.
Values of the rms errors are practically indistinguishable at oy = 3.72 dB for the
complete formula and o4y = 3.75 dB for the simplified one. The physical meaning of

the parameters is, however, lost in the simplified formula.

4.9.3 Comparison with Hata formula and best fit

Finally, we compare our results with the simple power law model (Hata (1980) for-
mula) and with the result of monotonic regression performed on the measured data.
The monotonic regression of a function is the best, in mean square, nondecreasing
function fitting the data, see Barlow et al. (1972). It provides a lower bound on the
minimum value of g4, that can be achieved by any theoretical model of propagation:
Any path loss prediction that does not depend on specific knowledge of an inhomo-
geneous environment, and in particular that is a function only of distance from the

transmitter and general properties of the environment, must be a nondecreasing func-



95

Path Loss [dB]

w
S

20

10 I I I I I I ]
0 50 100 150 200 250 300 350

TR distance [m]

Figure 4.7: Comparison. The dashed line represents the fit of the data using the simplified
path loss formula. The thin continuous line represents the fit of the data using a power law. The
“staircase” line is the result of the monotonic regression, representing the best nondecreasing function
fitting the data. Values of the rms error are reported in Table 4.2

tion of distance. The comparison is depicted in Fig. 4.7 and Table 4.2, and validates
our model that closely follows the monotonic regression line depicted in Fig. 4.7.

In Fig. 4.7, it is also evident what is the typical problem of applying the simple
Hata formula, popular in cellular systems design, to predict the path loss in micro-
cellular systems: a power law with a fixed exponent (4.66 in this case) overestimates
the real path loss in the close range, where the signal undergoes few reflections to
reach the receiver and propagation is almost as in free space, and it underestimates
the real path loss at larger distances, where there is an exponential attenuation, due
to the absorption of many reflecting obstacles. Empirical formulas characterized by
two different power laws, one with an exponent close to two, to be used close to the
transmitter, and another with a high-order exponent, to be used after a breakpoint
distance, are better suited for prediction in this kind of environments and can be

theoretically justified by our model.
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Model Ostd Ezponent | Multiplicative Factor
PL ™ (r)=A(3)" 6.053 dB | a = 4.66 A =.0034
PL\(r) = B 3.75dB | b=0.028 B = .0765
Monotonic Regression 2.04dB

Table 4.2: Regression Results. The first line of the Table is relative to the Hata formula. The
second line is relative to the simplified formula of Eq. (4.23). The third line is relative to monotonic
regression.

4.10 Exact calculation of G(r), 2-D

In this section we show the exact derivation of G(r) in 2-D, written as a series of

Bessel polynomials. Let o = (1 — 7). We rewrite Eq. (4.5) as follows:
wo(wr)

o=

:ﬂ/ _wh(wr) <w2+772+a)dw:

2m w? 4+ n? — a?

G(r) = 7’7 ~do

27 w24 n? —a? w? 4+ n? —a?

[e%e] e ¢ 2 2
_m [oz/ wo(wr) dw-l—/ wdp(wr)y/w? +n dw] _
0 0

=2 <f1 +f2) = % [ozKo(\/nQ — a?r) +f2} ;

having used identity 6.532.4, in Gradshteyn and Ryzhik (1994), to calculate integral

fl. We can then write integral fg as a series of integrals,

> wJ()( )

\/m< _w2+n>

f2: dw:

© wli(wr) & a®n ) /oo wJO (wr)
- dw =Y o Z,
[ [ wimme
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We have the following recurrence relation:

( * wy(wr) e
== 7d =
° Vw? + n? “ r
g (4.24)
—-a? 10
Ly = S
( (2 +1) 7 9n

We recall that Bessel polynomials are defined, see Grosswald (1980), as
en(z) = Zajzn_jv

=0

where all coefficients are integers given by

—~

n+j)!

From the recurrence (4.24) and the definition of 6, it follows that

n=0

1+nr i cnﬁn(nr)] , (4.25)

where
(1= )*nth

T Tenrn

which gives the exact formula for G(r) reported in Eq. (4.6).

4.11 Estimate of the approximation error, 2-D

In this section we discuss the validity of the approximation in Eq. (4.8), numerically

estimating the series of Bessel polynomials. Letting nr = R, we have

(1 + Rch » ) + (1= 7)Ko(v/1 - (1—1)2R)



Figure 4.8: Estimate of the error. The plot depicts an estimate of the squared error of the
approximation.

2 —R
v e
~ Appr(R) = 5 - |

O (1= ) Ko(VI- (1= 7)2R)| -

Note that it would be misleading to refer to the relative error, because both G(R)
and Appr(R) tend to zero, as R — oo. Accordingly, we evaluate the absolute error.

Letting Err = G — Appr, we depict in Fig. 4.8 a plot of the function:

o Err\? e R
n? V"R

numerical estimation suggests that the error is bounded by

o 2
1+ RZ cnbp(R) — 6(1_7)21‘7’] } ;
n=0

\/0.0027772

|Err| <
T
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4.12 Calculation of G(r), 3-D

In order to compute G(r), we use the following approximation (see Gradshteyn and

Ryzhik (1994), identity 1.644.1) in Eq. (4.12):

arctan ol =~ Wi/ﬁQ
Ui
14 (g)

that does not change the observed oscillatory behavior of the integrand. Note that

b

this approximation is accurate for small values of the argument and has a bounded
error for large values of it. However we show that after regularizing the oscillatory
integrand, the approximation does not introduce any inaccuracy in the evaluation of
the integral even for w >> 1 because, in this case, the integrand provides a negligible
contribution to the integral.

Substituting Eq. (4.11) into Eq. (4.12) we obtain

2

/°° 2 N
@) Jo VP +w?— (=)

G(r)~

sinc(wr)dw =

_m [(1 B 7)77/+°° w?sinc(wr) o+ o wy/n? +wZSinc(w7“)dw]

o WEEn?—(1-7)n oo WA= (1 —7)%?

m (x| = m T A A
= (B 5) = o (=g e VIO 3

having used identities 3.721.1, 3.725.1 in Gradshteyn and Ryzhik (1994) to calculate

, (4.26)

integral fl Note that the oscillatory behavior of the integrand is limited to fz In
the following we first make fg well defined, by integrating its integrand with respect
to 7, and then, by following a similar procedure as the one employed in Section 4.10
for the two-dimensional case, we calculate fg by writing it as a series of integrals and
exploiting a recurrence relation.

Letting o« = n(1 — 7y), we have

R +o0 w /,'72 +w2 eiwr _ e—iwr
I, = dw =

o WA —a? 2ir
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N o~ PR

T ar A —042 7“87“ oo W2 —a?

T coswr  w—
= d =
raq«/ \/mz <w2+n ) “
———Z/+oo " coswr . ZI
 ror w? + ”+1/2 7“87“ "

+00  a2" coswr

where we have defined In = Jo W

dw. Note that the integration with respect
to r performed above introduces a decay of the integrand for large values of w, thus
rendering 7, well defined. We now have a recurrence relation similar to the one

obtained in the two-dimensional case, see equation (4.24):

( o

COS Wr
I(] = de = K0(7]T)
g (4.27)
—a® 190
L= oI,
\ i (2n+1)non

where the expression for Z; has been obtained by exploiting identity 3.754.2 in Grad-
shteyn and Ryzhik (1994). Following the same procedure as in Section 3, we now
look at the first two terms of recurrence (4.27) and note that these correspond to the

first two terms of the Taylor expansion, with respect to 7, of the function:

fo-)]

Hence, neglecting the higher-order terms of the expansion, we have the following:

Ku[(1= (1= 9)%)nr]. (4.28)

Substituting Eq. (4.28) into Eq. (4.26), we finally obtain the expression for G(r) given
in Eq. (4.13).
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Chapter 5 Future Directions

In this chapter we discuss some of the possible extensions of the work in this thesis
that we are currently considering.

One extension to the connectivity model presented in Chapter 2 is to consider more
realistic communication channels. In percolation theory one assumes that two points
are connected if they are at a given distance of each other. This corresponds to making
two assumptions in the underlying wireless network model: reliable communication
and rotational symmetric transmission range. A natural question to ask is what
happens if we drop these assumptions.

We also discuss an extension to our work on propagation, considering the appli-
cation of our random walk model to determine the impulse response of a wireless

channel.

5.1 Ad hoc wireless networks with noisy links

First, we discuss unreliable wireless links. To do this, let us focus on flat ad hoc
networks. Recall that in these kind of networks all nodes are considered equal, and
can route data packets to destination, see Fig. 1.4.

We assume all nodes to be distributed on the plane according to a bi-dimensional
Poisson point process X, and we model imperfect links by considering a random
connection model where each pair of points (z,y) of the point process is connected
with probability g(z — y), for some given function g : R? — [0, 1].

We may, for example, pick a function g(-) such that the probability of existence of a
link between a transmitter and a receiver decreases as the two points get farther away.
For generality, however, we prefer to let g be an arbitrary function. Accordingly, we do
not require g(-) to have bounded support, be spherically symmetric, nor monotonic.

The only requirement (in order to avoid a trivial model) is that its effective area
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e(9) = [,cge 9(x) must be 0 < e(g) < oo. We call H the class of functions that satisfy
this requirement.

The effective area, when multiplied by the density of points, gives the expected
number of points connected to a point of the Poisson process, hence the two cases
e(g) =0, e(g) = oo do not lead to any phase transition —see Meester and Roy (1996),
Chapter 6, for details. However, any function g(-) such that 0 < e(g) < oo, has a
phase transition. Namely, there exists a critical value A.(g) for the density of the

Poisson process, such that
0 < Ac(g) = inf{ A : 3 infinite connected component} < oo.

Note that the standard continuum percolation model, where Poisson points are
connected with probability one, if discs of radius r centered at each point overlap, is

a random connection model with a connection function

1 if |z <2r
0 if |jz|| > 2r.

It is interesting to see how the percolation properties of the model change when
we change the form of the connection function, while preserving its effective area. We

start by “squishing and squashing” the connection function.

5.1.1 Squishing and squashing

Given a function g € H define g3**" by ¢s4“**"(x) = p % g(,/px). This function, as
illustrated in Figure 5.1, is a version of g in which probabilities are reduced by a factor
of p but the function is stretched to give the original effective area. Therefore, the
average number of connections of each point remains the same, but these connections
have a wider range of lengths.

Note that considering the squashed version of a rectangular connection function

as the one in Eq. (5.1), corresponds to connect Poisson points with probability p if
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Figure 5.1: Squishing and squashing. The function g is squished and squashed to give the

function g;q”“h.

discs of radius /pr around them overlap.

We can now state and prove the following theorem:

Theorem 5.1 (The Squishing and Squashing Theorem)
Forallg € H,

Ac(g) = Ac(gpresh).

Proof of Theorem 5.1 Form the graph based upon the connection function g(,/px)
and call it G. Note that if we remove every edge from G independently and with
probability 1 —p we make the graph based upon the connection function g;q“‘“h(x) =
p* g(\/px). Alternatively we can remove each Poisson point independently and with
probability 1 — p, giving a density of points Ap. If we then scale by ,/p in each
direction we find again a density A of points and our connection function has become
g(x). Essentially we are performing site or bond percolation on G with parameter p
and we wish to compare the two.

Based upon the above observations we see that it suffices to give a coupling in
which we simultaneously remove edges in one realization of G and points from a
copy G’ of this, in which we will have an infinite cluster after removing points only
if we have an infinite cluster after removing edges. It is vital that the coupling is

“dynamic”, i.e., it is propagated from edges originating only at vertices that have
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already been determined to survive. We proceed as follows: starting at a root vertex
Zg, we build survivor clusters in G and G’. When the clusters at zy are complete,
another vertex is selected as root and the process is iterated. First we examine all
edges departing from z¢ in G that connect to nodes that are not yet marked in G’.
Each of these edges is marked dead in G, independently, with probability 1 — p, or
it is declared a survivor otherwise. Each time an edge is declared dead, the node
it connects ¢ to is also declared dead in G’, or survivor otherwise. When all edges
departing from x have been marked, we move to a surviving node and do the marking
in the same way. Once all survivors have been examined, another, not yet marked
vertex, is selected as root of a new cluster.

Finally, we can mark the remaining edges in G' and the remaining vertices (roots)
in G', independently, dead with probability 1 — p, or survivors, with probability p.

Now convince yourself that after all of this, if there is a path of survivor nodes in
G’ then there is a (possibly longer) path of survivor edges in G. More details on the

dynamic coupling procedure can be found in Grimmett and Stacey (1998). O

The theorem above has a certain depth. Essentially, it states that unreliable links
are at least as good at providing connectivity as reliable links, if the average number
of connections per node is the same. Another way of looking at this is that the
longer links introduced by stretching the connection function are trading off for the
unreliability of the connections introduced by reducing it.

In some related work Penrose (1993) has shown that (speaking roughly) as a
connection function of effective area 1 gets more spread out, its critical density for
percolation converges to 1. This can be seen as the limiting case of our Theorem 5.1.
Meester, Penrose, and Sarkar (1997) proved a similar result as the dimension tends
to infinity. Philosophically, the idea that some longer connections help to reach
percolation at a lower density of points is also related to the small world networks
described, for example, in the paper by Watts and Strogatz (1998).

The same kind of dynamic coupling used in the proof of the Theorem 5.1 is also

used by Grimmett and Stacey (1998) to show the relationship between the critical
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Figure 5.2: Shifting and squeezing The function g is shifted and squeezed to give the
function ghift,

values of site and bond percolation on graphs. Sites of the discrete model are the
analog of Poisson points in our continuum model. Grimmett and Stacey (1998) show
that bond percolation is strictly easier to percolate than site percolation for quasi-
transitive graphs. We conjecture that also our inequality can be made strict, following

similar reasonings of Grimmett and Stacey (1998):

Conjecture 5.2 (The Squishing and Squashing Conjecture)
Forallge H andp < 1,
)\c(g) > )\c(g;quash).

5.1.2 Shifting and squeezing

shift

shIt(z). Here we shift the function

Another transformation of ¢ that we consider is g
g outwards (so that a disc becomes an annulus, for example) by a distance s, but
squeeze the function so that it has the same effective area. See Figure 5.2 for an

example. Technically we define this through ¢"/!(x) = g(h~!(z)) and

s+h(y) ] Yy
/ ngh’ft(r)dr:/ rg(r)dr.
s 0

Note that the shifting and squeezing transformation maintains on average the
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Figure 5.3: Result of shifting and squeezing the connection function. Left-hand side:
connections between random points at distance at most 1. Right-hand side: connections between
random points at distance between 1 and v/2. Note that it is possible to traverse the graph on the
right-hand side from top to bottom and from left to right, but not the one on the left-hand side.

same number of bonds per node, but makes them all longer. This contrasts with the
squishing and squashing transformation which gives more of a mixture of short and
long edges. Is the stretching of the edges enough to help the percolation process, or
we need the mixture provided by squishing and squashing? We believe (supported by
experimental evidence) that the longer edges introduced by the shifting and squeezing
transformation are enough to help the percolation process. Accordingly, we make the

following conjecture:

Conjecture 5.3 (The Shifting and Squeezing Conjecture)
For allg € H and s > 0,

Ae(g) > Ac(g2hi7Y).

It is easy to check Conjecture 5.3 by simulation, using a rectangular connection func-
tion of the type described by Eq. (5.1). Results in Fig. 5.3 suggest that the shifting
and squeezing conjecture is true (for this connection function), i.e., long bonds are
more useful for percolation than short ones at a given density of points. However,

it must be noted that a scaling of the whole picture will make the bonds longer
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while changing the density of points. Naturally, this process does not change the
connectivity, but is essentially different in that it changes the effective area.

At first sight, it may seem that Conjecture 5.3 does not have an immediate prac-
tical application to wireless networks, as the links unreliability /length trade-off ex-
pressed by Theoerem 5.1. However, we believe that proving it will provide some
insight on how to compare the percolation properties of arbitrary connection func-

tions of the same effective area, which will be of great practical interest.

5.2 Anisotropic radiation patterns

We now discuss another extension to the connectivity model: non-rotational symmet-
ric transmission ranges. In practice, the communication range of a radio transmitter
cannot be perfectly rotationally symmetric. The imperfection is due to the hardware
characteristics of the transmitting antenna, and to the surrounding environment. It is
therefore useful to understand how percolation properties are influenced by the shape
of the transmitter footprint.

We consider centrally symmetric shapes that are not necessarily rotationally sym-
metric. Accordingly, we let B C H be the set of all connection functions of the form
be(x) = 1 if x is inside some convex centrally symmetric shape C of area 1 and 0
otherwise. Let D be the disc of area 1 and let S be the square of area 1.

Centrally symmetric shapes allow us to consider only bi-directional links: a par-
ticularly nice property of centrally symmetric shapes is that two nodes overlap each
other’s centers if and only if the shapes scaled by a factor of two in each direction
overlap each other. This means that if a node falls in the shape of the another node for
connection, also that the reverse is true. This property does not hold for non-centrally
symmetric shapes, see Fig 5.4.

Jonasson (2001) has shown that if any convex shape of area 1 percolates at at
certain density, then triangles (that are not centrally symmetric) of area 1 will also
do so. Roy and Tanemura (2002) strengthened this result to show a strict inequality

between the critical density of triangle and that of any other given convex shape
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Figure 5.4: Central symmetry and asymmetry of shapes. Left-hand side, centrally
asymmetric shapes: the lower point is contained in the triangle around the higher point but not vice
versa. Right-hand side, centrally symmetric shapes. The lower point is contained in the hexagon
around the higher point and vice versa.

of the same area. Jonasson (2001) has also shown that the convex shape with the
highest critical density will be centrally symmetric. It is natural to ask which of the
centrally symmetric shapes percolate most and least easily. We believe the answers

are the square and the disc.

Conjecture 5.4 (The Transubstantiated Shape Conjecture)
For all bo € B we have
)\c(bS) < )\c(bC) < )\c(bD)

There is an important practical consequence that follows if Conjecture 5.4 is true.
If the disc is the centrally symmetric shape that percolates at the highest density, it
follows from Jonasson (2001) that this is also the highest percolating density shape
over all the convex shapes. This means that percolation theory results on the ex-
istence of an unbounded connected cluster, derived in the standard model where
overlapping discs are connected with probability one, are robust. If an ideal model,
where transmission footprints are perfect discs, allows long-distance multi-hop com-
munication, then long-distance multi-hop communication is also possible, under the
same density conditions, in a less idealistic model where transmission footprints can

have any convex shape.



Figure 5.5: Discs vs. squares. In this simulation squares and discs have the same area and
the same density on the left-hand side and on the right-hand side.

We now investigate the validity of Conjecture 5.4 with computer simulations.
Fig. 5.5 depicts simulations of discs and squares shapes of area one at density one.
We have also performed extensive computer simulations with different densities. We
report the size of the largest and second largest clusters found in these simulations in
Fig. 5.6.

We ran overnight on a desktop computer a total of 7000 experiments for discs
(squares) of unit area, using 10000 randomly placed discs (squares) for each experi-
ment. The density of the discs (squares) in the experiments varied from a minimum
of 0.25 to a maximum of 0.32, with a 0.00001 incremental step. Each data point
reported in Fig. 5.6 corresponds to an average of a sliding window of 100 consecutive
experiments, giving a total of 7000 data points for each curve reported.

Results show that the size of the largest cluster of discs tends to diverge at a
smaller value of the density than for squares. If we shift the plot obtained for squares
by 3% (see Fig. 5.7), we find a striking matching of the curves. Accordingly, we
conclude that squares seem to percolate at a value of the density 3% smaller than
discs.

We plan to perform more simulations to determine if other centrally symmetric
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Figure 5.6: Size of larger clusters. We report the size of the largest and second largest
clusters of discs and squares of area one. The size of the largest cluster of discs tends to diverge at

a smaller value of the density than for squares.
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Figure 5.7: Shifting by 3%. After shifting the curves of the size of the largest and second
largest clusters of squares by 3% , we find a striking matching with the corresponding curves plotted

for discs. This indicates that squares percolate at a value of the density 3% smaller than discs.
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shapes also percolate at a density smaller than the critical density for discs percola-

tion, thus confirming the validity of our conjecture.

5.3 Impulse response of Mario’s drunken walk

We now discuss a possible extension of our work on propagation. In Chapter 4 we
have studied power loss in a wireless channel, that is essential to perform link budget
calculations to determine the data rate allowed by the channel. This is not the only
quantity of interest. In general a wireless channel is not only power limited, but also
bandwidth limited. The delay spread of the signal, caused by the limited bandwidth
of the channel, can cause intersymbol interference.

Our idea is to use Mario’s drunken walk model to determine the impulse response,
and hence the bandwidth, of an urban wireless channel. This involves the introduction
of timing constraints into the model.

The main objective is to derive analytical solutions for Mario’s drunken walk
model, when one sends an impulse of a certain width 7" and receives a (deformed)
version of it, at a certain distance r from the transmitter. In the following, we briefly

outline the procedure to do this.

5.3.1 Path length after n reflections

The first step is to determine the p.d.f. of the path length P(R,) of the random
walk after n reflections. This is essentially a one-dimensional problem, as it does not
depend on the direction of the turn taken at each step.

We already know (see Chapter 4) that the p.d.f. of a step of length r is given by

Q(r) =ne™™.

The probability of having walked for a length R, after n steps is immediately obtained
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by convolving Q(r)with itself n times, yelding

(an)n—l —nRn,

P(R,) = (n—1)] ne . (5.2)

5.3.2 Delayed echoes

We can now write the expected value of the delayed impulse after n reflections.

Consider transmitting an impulse of the form:

1

F(E) = e Tu(d)

where u(t) denotes the unit step function. Letting ¢ be the speed of light, the expected

value after n reflections at distance ry = ¢ty from the origin, can be written as

F(#) = / :t F(t— Ry /) p(Ry)dR,. (5.3)

Note that, for any given n, this gives the average echo received at ry after n reflections,
when transmitting the signal f(t).
Letting 7 = 1/(nc) the average time between two successive steps, substituting

Eq. (5.2) into Eq. (5.3), after some calculation we find, for T’ << 7, T << t — t,

Tf(t) = %e‘tﬁu(t — t(]) (54)

Eq. (5.4) is plotted in Fig. 5.8 for different values of n; plots have a physical meaning
for t > ty. We note that as the number of reflections n increases, the echoes are more
delayed and more spread out in time.

Finally, to obtain the impulse response, all of these echoes must be summed over
n, weighting each term of the sum by the probability of reaching 7y in n reflections,
and by an attenuation factor accounting for the absorption of the reflectors and the
geometric attenuation. We are currently investigating how to calculate this sum. The

final objective would be to see how the delay spread at the receiver is influenced by
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Figure 5.8: Delayed echoes. As the number of reflections increases, the echoes are more
delayed and more spread out in time.

the transmitter-receiver distance, obstacles density, and absorption.

I think we are going to stop here, Mario is ready to go to sleep.
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