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ABSTRACT

Mammalian iron homeostasis is maintained by an intricate network of diverse proteins 

that constantly survey systemic iron levels and carefully regulate the uptake of iron from 

the diet.  Control of this uptake is critically important because once iron is absorbed, 

mammals have no regulated mechanism for its removal.  The portal through which iron 

enters the body is ferroportin, a multipass membrane protein expressed on the basolateral 

membrane of epithelial cells in the duodenum.  The iron export function of ferroportin is 

primarily regulated by the serum peptide hormone hepcidin, which is secreted from the 

liver when systemic iron levels are high.  Hepcidin acts as a negative regulator of iron 

uptake by binding to ferroportin at the cell surface and inducing its internalization and 

degradation. Genetic defects in ferroportin, hepcidin, or the proteins involved with 

sensing systemic iron levels lead to iron overload diseases known as hereditary 

hemochromatosis.  Using the tools of biophysics and cell biology, we sought to study 

ferroportin and its interaction with hepcidin in order to better understand this critical 

bottleneck in iron uptake and how genetic defects within ferroportin might lead to 

disease.  We developed the first protocols for the overexpression, detergent-solubilization, 

and purification of recombinant ferroportin.  We determined that detergent-solubilized 

ferroportin is a monomer capable of binding hepcidin in vitro.  We characterized the 

expression and subcellular localization of ferroportin in mammalian tissue culture and 

determined that both the amino- and carboxy-termini of ferroportin are cytosolic.  We 

developed cell-based assays for the hepcidin-induced internalization of ferroportin and 

used these to characterize the route of internalization from the plasma membrane through 
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early endosomes to degradative lysosomal compartments.  Using live-cell imaging 

techniques, we showed that this internalization depended on intact microtubules.  We 

expanded this cell-biological study to include sixteen disease-related ferroportin mutants 

and reported that each mutant was expressed on the plasma membrane like wild-type 

ferroportin, but that only a subset of the mutants were capable of being internalized by 

hepcidin.  These studies form a foundation for future biophysical and cell-biological 

studies of ferroportin function.   
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INTRODUCTION

Iron's Biological Importance

Life, as we know it, depends on iron.  Its relative abundance on Earth, coupled with its 

capacity to facilitate the rapid transfer of electrons and perform redox chemistry under 

physiological conditions has led to its incorporation in many important biological 

pathways.  The roles that iron plays in the fixation of nitrogen, oxidative phosphorylation, 

and the transport of oxygen in higher organisms are briefly highlighted below.   

All life relies on the fixation of nitrogen (N2), the relatively  inert atmospheric gas, to the 

more chemically reactive ammonia (NH3).  This reduction is catalyzed by 

microorganisms harboring the enzyme nitrogenase (Rees and Howard 2000).  

Nitrogenase is a metalloenzyme complex that utilizes the precise redox properties of iron 

(contained within various iron-sulfur clusters) to coordinate the iterative passage of 

electrons from donors to the nitrogenase active site (Tezcan et al. 2005).  Without these 

microorganisms and their iron-containing nitrogenase enzymes, the nitrogen cycle, upon 

which all life depends, would not be maintained.  Furthermore, higher organisms depend 

on iron for the electron transport central to the redox chemistry of aerobic respiration.  As 

was the case with nitrogenase, the transfer of electrons by proteins in the aerobic 

respiration chain of oxidative phophorylation is facilitated by iron.  Each of the integral 

membrane protein complexes I through IV as well as the soluble enzyme cytochrome C 
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utilize iron in the form of iron-sulfur clusters and/or iron-containing heme groups to carry 

out this electron transfer (Hatefi, 1985).  Other important iron proteins include those 

involved in the transportation of O2 to the sites of respiration, such as hemoglobin and 

myoglobin. These proteins utilize iron coordinated by a porphyrin ring heme moiety.  In 

the case of hemoglobin, this large iron-containing hydrophobic ring system is used to 

bind O2 in the capillaries of the lungs and then release it in the deoxygenated capillaries 

of the extremities.  The affinity switch that iron-bound heme exhibits for O2, within the 

proteinaceous context of hemoglobin, makes it  particularly useful for O2 transport 

proteins in the many organisms employing aerobic respiration in tissues too deep for 

diffusion alone to meet the O2 need.   

In each of these examples, iron plays a critical role in the function of proteins necessary 

for life, however, in each of these examples iron is also sequestered in a heme or iron-

sulfur cluster moiety.  In addition, organisms have evolved complicated and diverse 

mechanisms to regulate the uptake, transport, and storage of iron.  It is thought that 

purely  ionic iron is rarely  (if ever) observed in healthy organisms, and extreme care is 

taken to ensure that ionic iron is carefully chaperoned while in transit to more permanent 

cellular and enzymatic locales.  These intricate mechanisms of sequestration, some of 

which will be described further below, are partially  due to the low solubility of ferric 

iron, but also due to the high reactivity  of ionic iron, particularly  its ability  to promote the 

creation of organic free-radicals through Fenton chemistry  (Halliwell and 
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Gutteridge, 1990).  Free radicals are highly reactive species and have been shown to 

damage lipid bilayers, DNA, and proteins (Halliwell and Gutteridge, 1990).  

Iron Uptake

In humans, the regulation of iron homeostasis is tightly  controlled at both systemic and 

cellular levels.  Dietary iron uptake is tightly controlled at the brush border of the 

duodenum portion of the proximal small intestine (figure 1.1).  Dietary iron can be 

absorbed in ionic form by the divalent metal transporter 1 (DMT1, also called NRAMP2 

and DCT1) (Fleming et al. 1997; Gunshin et al. 1997), or by an unidentified heme 

importer.  DMT1 is a proton symporter that utilizes the pH gradient between the slightly 

basic pH of the cytoplasm and the acidic pH of the duodenum to drive the transport of 

Fe2+ and other divalent metal ions (Gunshin et al. 1997).  The vast majority of dietary 

ionic iron is in the ferric state (Fe3+).  Prior to import, these ions are reduced to the 

ferrous state (Fe2+) by  the integral membrane protein ferroreductase duodenal cytochrome 

b (Dcytb) (McKie et al. 2001) and perhaps STEAP3 (Ohgami et al. 2006).  Once Fe2+ is 

transported across the gut-facing apical membrane of the enterocyte, it enters the so-

called labile iron pool (figure 1.1).  Little is known about the iron in this pool. 

Presumably, these highly  reactive ions in this labile pool are chaperoned by  soluble 

carriers to prevent dangerous Fenton chemistry.  From this pool, ionic iron can be 

incorporated into ferritin for long-term storage or it can be exported into the circulation.  

Ferritin, the long-term iron storage protein, is a hetero-oligomeric protein complex 
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containing 24 copies of L- and/or H-ferritin monomers (Theil, 1987).  Each fully 

assembled ferritin can store ~4500 iron atoms (Theil, 1987).  In times of iron need, 

ferritin can be disassembled and its iron released into the labile pool.  In these duodenal 

enterocytes, iron not destined for storage can be transported across the basal membrane 

into the bloodstream through ferroportin (Fpn; figure 1.1) (Abboud and Haile 2000; 

Donovan et al. 2000; McKie et al. 2000).  Fpn is an integral membrane iron exporter, 

although little is known about the specifics of how it functions.  Some details, such as 

whether the process is driven by  active transport or passive diffusion, the identification of 

the pore-forming amino acids, the oligomeric state of the functional transporter, and the 

details of its ion selectivity, are unknown.  It has been suggested by  some experiments 

that this transport is dependent on the extracellular copper-containing iron-oxidase 

ceruloplasmin (Jeong and David 2003; McKie et al. 2000).  Ceruloplasmin is an 

abundant serum protein and can also be expressed as a GPI-linked splice variant in some 

cell types, where it  has been shown to interact functionally  and physically with Fpn 

(Jeong and David 2003).  Hephaestin, an integral membrane protein homologue of 

ceruloplasmin expressed on the basal membrane of duodenal enterocytes, has also been 

implicated as a copper-containing iron-oxidase that  may also interact with ferroportin 

(Vulpe et al. 1999). After Fe2+ has traveled across the basal membrane through 

ferroportin and has been oxidized to Fe3+, it is bound by the soluble serum protein 

transferrin (Tf) (Andrews 2008). Tf is a monomeric protein containing two iron-binding 

sites, each of which can accommodate a single Fe3+ ion. Iron-loaded Tf (Fe-Tf) is the 

primary source of iron for most cell types, and is taken up by cells in need of iron through 
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the well-characterized transferrin-transferrin receptor (TfR1) iron-uptake pathway (figure 

1.1) (Andrews 2008). 

Unlike iron uptake, which is highly regulated, there is no known regulatory mechanism 

for the excretion of iron in humans.  This implies that the integrity  of iron homeostasis 

for a given individual depends entirely on the proper regulation of iron uptake.  Iron is 

primarily  lost through the routine sloughing of epithelial cells in the gastrointestinal tract, 

blood loss, and menstruation in females.  These losses are balanced by a dietary 

absorption of up to approximately one milligram of iron per day (Sayers et al. 1994), 

however this uptake can be greatly increased, with 20–40 milligrams of iron absorbed per 

day in some cases of induced anemia and pregnancy (Finch, 1994).  As will be seen 

below, this absorption is tightly regulated at both the cellular level of the enterocyte and 

the systemic level of the individual.  Defects in this regulatory network lead to iron 

disorders, primarily  a class of iron overload diseases collectively known as hereditary 

hemochromatosis.  

Regulation of Iron Uptake

Duodenal enterocytes have a short life span.  A typical cell differentiates as an enterocyte 

in the villus crypt and matures as it migrates up to the tip  of the villus, where it is 

eventually sloughed off into the lumen of the intestine within a few days (Roy and Enns 

2000).  Any iron acquired by  an enterocyte through DMT1 or the heme importer must be 
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exported through Fpn into the serum before this apoptotic sloughing takes place, or that 

iron will not be a part of the long-term body iron store.  This mechanism allows for the 

absorption of multiple iron sources into the brush border cells through various import 

proteins, but allows for the regulation of a single protein, Fpn, as the bottleneck for 

systemic iron uptake.  There are at least two mechanisms for the regulation of Fpn 

expression, an iron responsive element (IRE)-based regulation of the mRNA transcript 

resulting in more or less Fpn translated by the ribosome, and a post-translational control 

where a 25-residue serum peptide known as hepcidin-25 (also known as LEAP-1) binds 

to surface-localized Fpn causing its internalization and degradation.

The significance of the IRE-based regulation of Fpn in vivo is poorly  understood (figure 

1.2). The identification of Fpn revealed an IRE in the 5´ untranslated region (UTR) of the 

Fpn transcript (Abboud and Haile 2000; McKie et al. 2000).  It was shown that this 

sequence is capable of binding to the iron regulatory proteins IRP1 and IRP2 in gel shift 

assays (McKie et al. 2000), and that this sequence has an iron-dependent effect on the 

expression of a luciferase reporter in vitro (Abboud and Haile 2000).  The functional role 

in translational regulation that this sequence plays in vivo has been the subject of some 

debate (Abboud and Haile 2000; Frazer et al. 2003; Lymboussaki et al. 2003; Rolfs et al. 

2002), however the finding that autosomal dominant iron overload can occur due to a 

mutation in the 5´ UTR of Fpn suggests that it  has an important function in vivo (Liu et 

al. 2005a).   This argument was further bolstered with a recent report in a murine model 

lacking IRP expression in the intestine (Galy et al. 2008).  Using a mouse line harboring 
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a cre/lox recombinase approach for the intestine-specific ablation of IRP1 and IRP2, Galy 

et al. reported that these pups showed severe growth defects and died before weaning 

(Galy et al. 2008).  They also reported the duodenal enterocyte protein expression levels 

were extremely low for DMT1 and TfR1, but extremely  high for Fpn and ferritin (Galy et 

al. 2008).  Whereas the DMT1 protein expression was correlated with a concomitant 

decrease in DMT1 transcript levels, the elevated Fpn protein expression was in the 

presence of similar Fpn mRNA levels and elevated hepcidin levels, strongly  suggesting 

that the cellular IRP/IRE expression control mechanism can overpower or override the 

hepcidin control mechanism for the expression of Fpn in enterocytes (Galy et al. 2008).

The regulation of Fpn cell-surface expression, and thus iron uptake, by the peptide 

hormone hepcidin is now well recognized as a central theme in iron homeostasis 

(Andrews 2008; Brissot et al. 2008; Darshan and Anderson 2009; Ganz 2008; Nemeth 

2008).  The hepcidin gene encodes an 84-residue pre-protein (Krause et al. 2000; Park et 

al. 2001).  Once expressed, the pre-protein can be processed by intracellular proteases 

cleaving off the amino-terminal ~60-residue and resulting in stable 20-, 22-, or 25-residue 

peptides (Park et al. 2001).  These peptides contain several positively charged residues 

and 8 cysteines (Krause et al. 2000; Park et al. 2001).  The solution structure of synthetic 

hepcidin-20 and hepcidin-25 revealed that the final folded conformation has four 

intramolecular disulfide bonds and the overall fold is composed of a beta-ribbon hairpin 

(Hunter et al. 2002). It has been suggested that these disulfides are not all present in the 

mature hepcidin in vivo, and that some of these cysteines may be involved in chelating 
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cationic metal ions such as copper or iron (Farnaud et al. 2006; Farnaud et al. 2008).  

Hepcidin-25 is the only  version capable of binding and causing the internalization and 

destruction of Fpn (Nemeth et al. 2004b).  It is unclear if hepcidin-20 and hepcidin-22 

have functional roles in vivo.  The primary site of hepcidin production is the liver, 

however hepcidin expression has been observed in other tissues, including adipose tissue, 

heart, lungs, spinal cord, and stomach (Bekri et al. 2006; Krause et al. 2000; Park et al. 

2001; Pigeon et al. 2001). Hepcidin is also present in the urine, but whether hepcidin 

levels in the urine are a good measure of serum hepcidin levels is currently unclear (De 

Domenico et al. 2008).  Techniques have been developed for the determination of 

hepcidin concentration in both blood and urine (De Domenico et al. 2008; Kemna et al. 

2005b).

The main site of systemic iron sensing is the liver.  Hepatocytes involved in this process 

employ an intricate network of proteins to sense body iron stores and/or body iron need 

in order to respond appropriately.  While many of the proteins involved in this network 

have been identified and some critical work in the field has recently been reported, the 

exact picture of how these cells respond to systemic iron levels is not  fully  understood.  

Generally, it is known that high iron levels and inflammation induce the expression and 

secretion of hepcidin into the blood, whereas low iron levels, erythropoiesis, and hypoxia 

act to repress hepcidin expression (Darshan and Anderson 2009).  The molecular 

pathways that integrate these signals are poorly understood, but several recent reports 

have made significant progress elucidating the roles that some members of this network 
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play  (figure 1.3).  There are at least two signaling pathways that up-regulate the 

transcription of the hepcidin gene—the bone morphogenetic growth factor protein (BMP) 

receptor complex pathway and the IL-6 receptor pathway, and at least one pathway that 

acts to repress hepcidin expression—the hypoxia-inducible factor (HIF) pathway (figure 

1.3).  These will be discussed below.

Regulation of Hepcidin Expression

The BMP receptor pathway had been previously shown to play important roles in the 

differentiation and maintenance of certain stem cell lines (Wagner 2007), as well as in the 

post-natal development of bone growth (Chen et al. 2004), however the discovery of its 

involvement in the up-regulation of hepcidin came as a surprise (Babitt et al. 2006). The 

hepcidin transcript has several candidate BMP-responsive elements ~120–210 base pairs 

upstream of the hepcidin start codon, and it was shown that the cytokines BMPs 2, 4 and 

9 can activate this pathway by  binding to the BMP-receptor in complex with hemojuvelin 

(HJV) (Babitt  et al. 2006).  HJV is a glycophosphatidylinositol (GPI)-linked protein that 

was recently identified and shown to be involved in iron homeostasis by  virtue of the fact 

that mutations in this gene lead to an autosomal recessive form of juvenile iron overload 

(Type 2 hereditary hemochromatosis) (Papanikolaou et al. 2004).  HJV can be cleaved 

from the membrane by furin-like proteases or by  matriptase-2, and this soluble form of 

HJV is capable of repressing the BMP-receptor pathway by competing for receptor 

binding with GPI-linked HJV, when exogenously  added (Babitt et al. 2006; Lin et al. 
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2005; Silvestri et al. 2008).  The role of soluble HJVs cleaved by either furins or 

matriptase-2 in vivo is unclear.  The activation of this receptor complex initiates a signal 

transduction cascade by phosphorylating R-SMADs. Phosphorylated R-SMADs bind to 

SMAD4 and localize to the nucleus where the complex acts as a transcription factor to 

promote transcription of hepcidin pre-protein mRNA (Babitt et al. 2006).  Mice deficient 

for this signaling pathway, using a cre/lox targeted-disruption of SMAD4 expression in 

the liver, displayed extremely reduced hepcidin expression, increased expression of the 

Fpn and DMT1 in the intestine, and tissue specific iron overload in liver, pancreas, and 

kidney  (Wang et al. 2005).  Wang et al. also showed that hepcidin expression was not 

induced by iron overload or by the addition of BMP or IL-6 in these mice (Wang et al. 

2005).  Reports of preliminary  data suggesting that HFE and transferrin receptor 2 (TfR2) 

also contribute to the BMB/SMAD signaling pathway by binding to HJV have recently 

emerged (Ganz 2008; Nemeth 2008).  These reports, in conjunction with recent  data 

suggesting that HFE and TfR2 act as iron sensors (Goswami and Andrews 2006; Johnson 

and Enns 2004; Robb and Wessling-Resnick 2004), could explain how iron sensing ties 

into a signal transduction pathway regulating hepcidin expression in hepatocytes.  

Briefly, HFE is a ß2-microglobulin-associated MHC class I homologue, which competes 

for the Tf binding site on TfR1 (Feder et al. 1996; Lebron et al. 1998).  TfR2, like TfR1, 

is capable of binding and internalizing iron-loaded transferrin, however unlike TfR1 its 

expression is restricted to only a few tissue types, with the major site of expression being 

the liver (Kawabata et al. 1999).  As will be described in further detail below, defects in 

HFE and TfR2 lead to hereditary hemochromatosis (HH) types I and III, respectively.
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IL-6 is a serum cytokine secreted under conditions of inflammation and infection and 

binds to cells expressing the IL-6-receptor, thus activating the JAK/STAT signaling 

cascade (Murray 2007). There is a STAT-3-responsive element ~70 base pairs upstream 

of the hepcidin gene, and it has been shown that the intravenous administration of IL-6 

will induce the expression of hepcidin and reduce serum iron levels within a few hours 

(Nemeth et al. 2004a; Wrighting and Andrews 2006).  Similarly, lipopolysaccharide 

injection in humans shows a correlation between a rise in IL-6 concentration and a rise in 

urinary  hepcidin along with a drop in serum iron (Kemna et al. 2005a).  The up-

regulation of hepcidin expression under inflammatory conditions has been shown to be 

similarly  high as wild-type in mice with HFE and TfR2 knockouts, thus these genes are 

not required for the activation of this pathway (Frazer et al. 2004; Lee et al. 2004).  The 

lack of IL-6-induced hepcidin expression in BMP-signaling-deficient mice with liver-

specific SMAD4 ablation, suggests that the BMP/SMAD and IL-6/JAK/STAT pathways 

converge (Wang et al. 2005).

Hypoxia has been shown to down-regulate hepcidin expression in vitro in the HepG2 

hepatic cell line and in vivo in hypoxic mice (Nicolas et al. 2002).  Initial clues pointed to 

the hypoxia-inducible factor (HIF) transcriptional regulatory  complex HIF-1 as the 

pathway responsible for this regulation of hepcidin by a study in mice with a liver-

specific disruption of a gene for a member of the protein complex involved in 

inactivating HIF-1, the von Hippel-Lindau (VHL) gene (Peyssonnaux et al. 2007).  The 
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authors showed that these mice, which constitutively expressed HIF-1 in liver, had a 

suppressed hepcidin expression phenotype and furthermore, went on to show that  HIF-1 

is capable of binding to the hepcidin promoter (Peyssonnaux et al. 2007).  A recent study 

in HepG2 cells reports evidence that  this suppression of hepcidin expression under 

hypoxia is independent of HIF-1, suggesting that more work will be required to fully 

elucidate this pathway (Choi et al. 2007).

Erythropoiesis, the production of red blood cells, requires a great deal of iron and leads to 

an increase in iron need, and thus a decrease in hepcidin production.  Several studies have 

focused on determining the molecular basis for this regulation (Pak et al. 2006; Vokurka 

et al. 2006), but no pathway has been fully revealed.  It was shown that serum from 

patients with ß-thalassemia, where erythropoiesis is up-regulated to account for a genetic 

deficiency in hemoglobin production, was able to suppress hepcidin expression in HepG2 

cells suggesting an unidentified component of serum, up-regulated in ß-thalassemia, 

could induce this hepcidin repression despite the associated anemia (Kemna et al. 2008).  

An additional study on a patient group with thalassemia intermedia showed that before 

transfusion, patients have inappropriately  low urinary hepcidin levels (Origa et al. 2007).  

A comparative analysis of the erythroblast transcriptome profiles between controls and 

patients with ß-thalassemia revealed an over-expression of growth differentiation factor 

15 (GDF15) in the thalassemic group (Tanno et al. 2007).  They found that  adding 

GDF15 to serum would recapitulate hepcidin repression and that depletion of GDF15 

would partially  recover hepcidin expression in primary human hepatocytes (Tanno et al. 
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2007).  Determining whether GDF15 is the sole erythropeoitic hepcidin regulator or not 

will require further investigation.  

Genetic Diseases of Iron Homeostasis

Genetic defects in this network of proteins involved in the regulation of iron homeostasis 

leads to iron imbalance in the form of iron overload, known as hereditary 

hemochromatosis (HH), or insufficient iron, known as anemia (table 1.1).  Both types of 

disorders have numerous causes.  Anemias can be caused by  an inadequate supply of 

dietary iron, extensive blood loss, as well as by a slew of genetic diseases.  Some iron 

homeostatic disorders are caused by defects in hemoglobin synthesis and erythropoiesis, 

such as the thalessemias, sickle cell anemia, and diseases of bone marrow failure.  Other 

forms of genetic iron imbalance lead to a so-called iron-loading anemia.  Some of these 

include aceruloplasminemia, hypotransferrinemia (also known as atransferrinemia), 

anemia of chronic inflammation (also known as anemia of chronic disease), and iron-

refractory iron-deficiency anemia.  Aceruloplasminemia is caused by a deficiency of the 

serum iron reductase ceruloplasmin, and is characterized by a serum iron deficiency with 

iron loading in the liver and brain (Harris et al. 1995).
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Table 1.1. Genetic diseases of iron homeostasis
Gene Associated Disease Inheritance Disease Summary

Ceruloplasmin aceruloplasminemia autosomal 
recessive

ceruloplasmin deficiency leading to low 
blood iron levels and iron accumulation 
in liver and brain  

Ferroportin type IV hemochromatosis or ferroportin 
disease

autosomal 
dominant

presents as either anemia associated 
with iron-loading in macrophages or as 
iron overload in blood and liver

Hemoglobin sickle cell anemia autosomal 
recessive

hemoglobin defects cause formation of 
malformed red blood cells, which can 
lead to capillary obstruction, anemia, 
and other complications

Hemoglobin thallassemias autosomal 
recessive

low hemoglobin expression levels lead 
to anemia

Hemojuvelin type II hemochromatosis or juvenile 
hemochromatosis

autosomal 
recessive

severe iron overload in blood and liver, 
presenting in the 2nd or 3rd decade

Hepcidin type II hemochromatosis or juvenile 
hemochromatosis

autosomal 
recessive

severe iron overload in blood and liver, 
presenting in the 2nd or 3rd decade

HFE type I hemochromatosis autosomal 
recessive

accumulation of iron in blood and liver, 
presenting in 4th or 5th decade

Transferrin hypotransferrinemia autosomal 
recessive

transferrin deficiency leading to anemia 
and iron overload in liver and heart, 
presenting in 1st decade

Transferrin 
Receptor 2 type III hemochromatosis autosomal 

recessive
accumulation of iron in blood and liver, 
presenting in 4th or 5th decade

Much like hereditary anemias, hereditary iron overload or hereditary  hemochromatosis 

can have many  causes.  Defects in the expression and function of HFE, hemojuvelin, 

TfR2, hepcidin, and ferroportin all lead to various types of HH.  All of these genes have 

been discovered within the last 15 years, and as each new gene was discovered and its 

corresponding disease characterized, our understanding of iron homeostasis broadened.  

Various schemes for the classification of known HHs have been proposed based on the 

chronology  of identification (Bomford 2002; Camaschella et al. 2002), pathophysiology 

(Pietrangelo 2007), or groupings related to the regulation of hepcidin expression 

(Andrews 2008).  While the latter two grouping schema are very informative and 

potentially helpful toward understanding themes in iron disease, the former will be used 

here below to explain the pathologies of HH.
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The first HH characterized at the molecular level was HFE-related HH, or type I HH. 

Type I HH is an autosomal recessive disease where patients are homozygous for the 

mutant C282Y HFE allele (Feder et al. 1996).  The HFE gene was identified in 1996 by 

an extensive sequencing and analysis of chromosomal regions proximal to the major 

histocompatibility complex (MHC) in patients with HH (Feder et al. 1996).  They 

identified HFE (then called HLA-H) as an MHC class I homologue and identified the 

C282Y mutation in 83% of their 178 HH patient pool (Feder et al. 1996).  Another 

mutation, H63D HFE, is also a clinically relevant HH mutant, however it  rarely  leads to 

HH unless paired with a C282Y allele to form a so-called C282Y/H63D compound 

heterozygote (Ayonrinde et al. 2008).  Like classical MHC class I proteins, HFE folds as 

an obligate heterodimer with the soluble protein ß2-microglobulin (ß2M) as a light chain.  

Subsequent analysis showed that cysteine 282 is involved in a disulfide bridge in the α3 

domain of the HFE heavy chain, thus the C282Y mutation disrupted HFE's ability  to fold 

and complex with ß2M, preventing its presentation on the cell surface (Feder et al. 1997).  

Structural analysis of HFE revealed that the canonical binding cleft is present, but too 

narrow to accommodate a peptide, as observed in classical MHC class I structures, which 

play  a critical role in the immune system by presenting peptide antigens to T cells 

(Lebron et al. 1998).  To date, type I HH is the most prevalent form of HH worldwide, 

and in comparison to HH types 2–4, it  has been the subject of the most extensive 

analyses.  One such analysis studying HFE alleles in northern European populations 

showed that C282Y/C282Y, C282Y/wild-type, and C282Y/H63D were present in the 

population at frequencies of 0.3%–0.5%, 10%–40%, and 2%–4%, respectively (Adams et 
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al. 2005; Olynyk et al. 1999). The penetrance for type I HH in individuals homozygous 

for the C282Y HFE mutation can be as low as 28.4% for men and 1.2% for women 

(Allen et al. 2008). Affected patients show systemic iron loading leading to organ 

damage, morbidity and mortality.  Iron overload in these patients is typically  a slow 

process and often presents in the fourth or fifth decade of life, with initial iron overload in 

the liver parenchyma followed by iron loading in the heart, pancreas and/or the joints.  

Type I HH is a progressive disease, and if untreated, this overload can result in hepatic 

cancer, organ failure, and death.  Even though HFE has been shown to interact with a 

number of proteins involved in iron homeostasis, the molecular basis for this disease has 

been difficult to fully  characterize.  For instance, HFE has been shown to bind TfR1 

(Feder et al. 1998; Lebron et al. 1998), that the HFE binding site on TfR1 overlaps 

significantly but is not identical with the Tf binding site (Bennett et al. 2000; Giannetti et 

al. 2003), and that Tf and HFE directly compete for TfR1 binding at the cell surface 

(Giannetti and Björkman 2004).  An interaction between HFE and the TfR1 homologue, 

TfR2, was initially  hypothesized, however in vitro binding analyses between soluble 

ectodomains of HFE and TfR2 were shown to not interact (West et al. 2000).  Further 

studies using transfected versions of full-length HFE and TfR2 expressed on the cell 

surface of several different cell types have shown that HFE does in fact  interact with 

TfR2, and that this binding is in competition with TfR1 (Goswami and Andrews 2006). 

Recent findings suggest that HFE activates hepcidin expression and that its sequestration 

by binding to TfR1 can prevent this activation (Schmidt et al. 2008).  It has been 

suggested that this dynamic interplay  between HFE, TfR1, TfR2, and Fe-Tf may be the 
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main mechanism by which hepatocytes sense body iron stores (Darshan and Anderson 

2009; Nemeth 2008).  HFE's role as a member of the putative iron sensor will require 

further work to fully establish.  Another report has shown that HFE inhibits iron uptake 

by down-regulation of Zip14, a proposed iron importer (Gao et al. 2008), though the 

importance of this regulation is unclear, as the role of Zip14 in iron homeostasis is not 

well established.  

Another class of HH known as juvenile hemochromatosis or type II HH, has a strong 

iron-overload pathology consisting of cardiopathy, hypogonadism and often skin 

pigmentation presenting in the second or third decade of life (Camaschella et al. 2002; 

Papanikolaou et al. 2004).  The pathology of type II HH is severe, and unless iron levels 

are reduced by phlebotomy, patients typically  die from cardiomyopathy (Camaschella 

1998).  Type II HH is inherited in an autosomal recessive fashion by mutations in either 

the hepcidin (Roetto et al. 2003) or HJV genes (Papanikolaou et al. 2004), though the 

HJV variant appears to be more common (Rivard et al. 2003b).  The mutations identified 

in hepcidin have been point mutations resulting in the introduction of a stop codon or a 

nonsense frame-shift mutation in the pro-hepcidin gene leading to the truncation or 

nonsense expression of the C-terminal sequence of pro-hepcidin (Roetto et al. 2003).  

Mutations in hemojuvelin have typically been missense point mutations resulting in full-

length mutant expression of mutant proteins (Papanikolaou et al. 2004).  Mutations of 

both sorts, in HJV or the hepcidin gene, result in no hepcidin expression, and thus no 

systemic control of iron uptake down-regulation.  
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Type III HH is caused by  mutations in TfR2. Its presentation in affected patients is 

similar to that of HFE-caused type I HH, as is its method of treatment, namely 

phlebotomy.  Type III HH patients have reduced hepcidin levels, despite high serum iron, 

suggesting that  TfR2 is involved in regulating hepcidin expression (Nemeth et al. 2005).  

TfR2 is a homologue of TfR1, and while it has been shown to interact with iron-loaded 

Tf and is capable of facilitating its import, the uptake of iron appears to not be the 

primary purpose for TfR2 (Kawabata et al. 1999).  As described above, TfR2 is now 

thought to interact with HFE at the cell surface (Goswami and Andrews 2006), and 

through the dynamics of the interactions between HFE, Tf, TfR1 and TfR2, it  is thought 

to be involved in the sensing of systemic iron levels (Darshan and Anderson 2009; 

Nemeth 2008).  In addition TfR2 has been shown to localize to lipid raft domains on the 

cell surface by  virtue of its co-localization with caveolin-1 (Calzolari et al. 2006).  This 

same study showed that TfR2 can also initiate signal transduction via the ERK1/ERK2 

and p38 MAPK pathways by  binding iron-loaded Tf at  the cell surface (Calzolari et al. 

2006).  

Type IV HH is an autosomal dominant iron overload disease caused by  point mutations in 

the ferroportin gene, and will be the in-depth subject of the following section.
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Ferroportin Disease

Type IV HH, also known as ferroportin disease, has been difficult  to characterize due to a 

mixture of phenotypes and variations in how different individuals present  their iron 

loading.  Some individuals present with similar symptoms to type I HH, elevated Tf 

saturation and serum ferritin levels in conjunction with hepatocyte iron deposits 

(Pietrangelo 2004). However, other individuals present symptoms more like those seen in 

iron-loading anemia, including low Tf saturation and serum ferritin levels, but also with 

significant iron loading in macrophages of the liver and spleen (Pietrangelo 2004).  These 

phenotypic differences are easiest  identified early in the disease progression as patients 

with advanced ferroportin disease tend to show iron overload in all repositories (Njajou et 

al. 2002; Pietrangelo et al. 1999).  Both forms of the disease are inherited in an 

autosomal dominant manner, unlike the other main forms of HH.  The reported defects in 

the Fpn gene are almost exclusively missense point mutations within the coding region, 

with one example of a truncation after residue 330 (Lee et al. 2007) and one example of a 

mutation within the 5' untranslated region (UTR) of the Fpn mRNA (Liu et al. 2005a).  

More than 15 distinct mutations in the Fpn gene have been reported, however a lack of 

pedigree analysis and liver biopsies for many of the reported mutants have made it 

difficult to fully characterize this disease.  Reports including patient data for the known 

Fpn mutants include (in order of occurrence within the gene): adenine 117 to guanine in 

the 5' UTR of the Fpn transcript (Liu et al. 2005a); Y64N (Jouanolle et al. 2003; Rivard 

et al. 2003a); A77D (Corradini et al. 2005; De Domenico et al. 2006; Montosi et al. 
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2001); G80S (Corradini et al. 2005; De Domenico et al. 2006); N144D (Wallace et al. 

2004); N144H (Njajou et al. 2002; Njajou et al. 2001); N144T (Arden et al. 2003); I152F 

(Girelli et al. 2008); D157G (Hetet et al. 2003); ∆V160 (Cazzola et al. 2002; Devalia et 

al. 2002; Roetto et al. 2002; Wallace et al. 2002); N174I (Corradini et al. 2005; De 

Domenico et al. 2006); Q182H (Hetet et al. 2003); L233P (Girelli et al. 2008); Q248H 

(Beutler et al. 2003; Gordeuk et al. 2003); D270V (Robson et al. 2004); G323V (Hetet et 

al. 2003); C326S (Sham et al. 2005); C326Y (Robson et al. 2004); truncation after G330 

(Lee et al. 2007); and G490D (Jouanolle et al. 2003).  Some of the disease-related data 

for the patients described in these reports are summarized in table 1.2.

In an effort to determine the disease-causing defects associated with some Fpn mutations, 

in vitro analyses of these Fpn mutants have been reported (De Domenico et al. 2006; De 

Domenico et al. 2005; Drakesmith et al. 2005; Girelli et al. 2008; Liu et al. 2005b; 

McGregor et al. 2005; Rice et al. 2009; Schimanski et al. 2005), however linking these 

defects to the disease phenotypes for each case in vivo has been difficult.  

The Fpn gene encodes a protein of 562, 570, or 571 amino acids in zebrafish, mouse, or 

human, respectively.  Fpn has been identified in all vertebrate genomes sequenced, and 

thus far it  the only  protein identified as an ionic iron exporter.  Three groups 

independently reported the discovery of Fpn in the year 2000 (Abboud and Haile 2000; 

Donovan et al. 2000; McKie et al. 2000).  Through a positional cloning effort in 

zebrafish, Donovan et al. showed that mutations in the Fpn gene lead to the 
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hypochromatic weh phenotype caused by a lack of iron import (Donovan et al. 2000).  

They  further showed that this mutant phenotype can be rescued by iron-dextran injections 

or by  Fpn-GFP transfection (Donovan et al. 2000).  Using a subtractive cloning strategy 

involving cDNA libraries from wild-type and the hypotransferrinemic hpx mouse, McKie 

et al. identified Fpn and similarly characterized it as an iron exporter in an iron efflux 

assay with Xenopus oocytes (McKie et al. 2000).  A third study  using an mRNA library of 

sequences enriched for IRP1 binding was used to search for novel transcripts involved in 

iron uptake in the murine duodenum (Abboud and Haile 2000).  These studies each 

showed that Fpn is expressed at the site of dietary iron absorption in mammals—the basal 

membrane of the proximal duodenum, as well as other important sites of iron export, 

namely the liver, spleen, and placenta (Abboud and Haile 2000; Donovan et al. 2000; 

McKie et al. 2000).  They  also reported that Fpn is the likely  iron exporter, either directly 

through radioactive iron efflux analyses in microinjected Xenopus oocytes (Donovan et 

al. 2000; McKie et al. 2000) or indirectly by  observing reduced intracellular ferritin 

levels in transfected HEK293T cells (Abboud and Haile 2000).  Fpn is highly  conserved 

between species, with human Fpn sharing 91.2% identity with mouse Fpn and 76% 

identity with zebrafish Fpn, using the ClustalW algorithm (Larkin et al. 2007). 

The transmembrane domain (TM) topology of Fpn protein has been predicted in 

numerous reports ranging from 9 to 12 TMs (Devalia et al. 2002; Donovan et al. 2000; 

Goncalves et al. 2006; Liu et al. 2005b; McKie et al. 2000; Rice et al. 2009), however a 

consensus has emerged where the 12 TM model proposed by Liu et al. based on 
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insertional mutagenesis has now been widely accepted (De Domenico et al. 2008; Liu et 

al. 2005b; Rice et al. 2009).  

The oligomeric state of Fpn has also been the subject of significant debate.  Reports have 

conflicted, with some reporting Fpn as a monomer (Goncalves et al. 2006; Pignatti et al. 

2006; Schimanski et al. 2008) and others reporting it as a dimer/multimer (De Domenico 

et al. 2007b; De Domenico et al. 2005).  Reports from the Kaplan lab have provided 

evidence that differentially tagged Fpns (wild-type-wild-type or wild-type-∆V160) 

interact by co-immunoprecipitation in co-transfected HEK293T cells (De Domenico et al. 

2007b; De Domenico et al. 2005), however similar experiments in another laboratory did 

not reproduce their results (Goncalves et al. 2006).  Furthermore, a report from 

Schimanski et al. cited a lack of evidence for an interaction between differentially  tagged 

wild-type Fpns in a FRET assay, as well as a lack of interaction between differentially 

tagged wild-type and ∆V160 Fpn in a degradation assay, both performed in co-

transfected HEK293T cells (Schimanski et al. 2008).  Proponents of the dimer/multimer 

Fpn model further cite genetic data in murine systems.  For instance, it has been shown 

that mice heterozygous for an Fpn knockout do not show signs of Type IV HH (Donovan 

et al. 2005), which would be expected in heterozygotes if Fpn haploinsufficiency were 

the cause of disease.  They argue that  if Fpn were a dimer, and heterodimers between 

mutant and wild-type Fpn molecules were inactive, then only  25% of dimers would be 

functional and would more convincingly describe the severe phenotype observed in this 

autosomal dominant disease.  The only report of Fpn overexpression and purification has 
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shown that detergent-solubilized Fpn, capable of binding hepcidin-25, is a monomer 

(Rice et al. 2009).  In summary, the oligomeric status of Fpn in vivo is unresolved.  It 

remains possible that Fpn exists in two distinct oligomeric states at different  stages of its 

function and that the discrepancies in the literature reflect a biologically relevant 

oligomeric equilibrium.  

The regulation of Fpn at the cell surface has been more carefully characterized with 

respect to its interaction with hepcidin-25.  As mentioned above, hepcidin is a 25-residue 

peptide expressed in the liver when systemic iron levels are high and secreted into the 

serum where it  can bind Fpn causing its internalization and degradation (Nemeth et al. 

2004b).  The binding of hepcidin-25 to Fpn appears to be facilitated by a 19-residue 

stretch, termed the hepcidin binding domain (HBD), of Fpn's 4th extracellular loop 

between TMs 7 and 8 (De Domenico et al. 2008).  A 19-residue HBD peptide from this 

region was shown to recapitulate the Fpn-hepcidin interaction in an in vitro bead assay 

and that this binding was temperature dependent (De Domenico et al. 2008), as had been 

previously  described (Nemeth et al. 2004b). Interestingly, the HBD contains only one 

position known to cause Type IV HH upon mutation—cysteine 326.  After hepcidin-25 

binds to Fpn, tyrosine 302 or tyrosine 303 are phosphorylated at  the cell surface and 

internalized (De Domenico et al. 2007a).  Upon internalization, Fpn is dephosphorylated 

and ubiquitinated leading to its degradation in lysosomes (De Domenico et al. 2007a).  

The internalization of Fpn has been shown to progress through early endosomal antigen 

1-positive (EEA1-positive) endosomes on its way to lysosome-associated membrane 
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proteins 1 and 2 (LAMP1 and LAMP2) positive compartments in Fpn-GFP-transfected 

HeLa cells (Rice et al. 2009).  Furthermore, the transport of hepcidin-induced Fpn 

internalization was dependent on intact microtubules (Rice et al. 2009).

Fpn's role as a critical bottleneck in iron uptake and in type IV HH make it  an important 

molecule to study.  Further understanding of its function and regulation are needed to 

understand iron uptake and homeostasis, and those insights could lead to advances in the 

treatment of disorders involving the dysregulation of iron intake.
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Figure 1.1. Iron uptake in the proximal duodenum.  Adapted from Kaplan and Kushner 
2000.
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Figure 1.2. IRE/IRP translational control of proteins in iron homeostasis. Iron responsive 
proteins 1 and 2 (IRP1 and IRP2) bind to iron responsive element (IRE) hairpin loops in 
the untranslated region (UTR) of transcripts when iron levels are low.  The binding of 
IRP to a 5  ́ IRE prevents translation, whereas IRP binding to a 3´ IRE stabilizes the 
transcript and boosts expression.  The effects of the IRE/IRP system are shown for 
ferritin, Fpn, TfR, and DMT1.  Adapted from Muckenthaler et al. 2008.  
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Figure 1.3. The regulatory network of hepcidin transcription.  Adapted from Darshan and 
Anderson 2009.
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Chapter 2:

Investigation of the Biophysical and Cell Biological 

Properties of Ferroportin, a Multipass Integral Membrane 

Protein Iron Exporter

In this paper we report the over-expression, purification, biophysical, and cell biological 

characterization of recombinant human ferroportin.  Michael Mendez and Craig 

Hokanson brought with them expertise in the expression of membrane proteins using 

baculovirus-infected insect cells and helped get this system started for ferroportin 

expression.  

51



Investigation of the Biophysical and Cell Biological
Properties of Ferroportin, a Multipass Integral
Membrane Protein Iron Exporter

Adrian E. Rice1, Michael J. Mendez2,3, Craig A. Hokanson2,
Douglas C. Rees3,4 and Pamela J. Björkman2,4⁎
1Graduate Option in
Biochemistry and Molecular
Biophysics, California Institute
of Technology, Pasadena, CA
91125, USA
2Division of Biology, California
Institute of Technology,
Pasadena, CA 91125, USA
3Division of Chemistry and
Chemical Engineering,
California Institute of
Technology, Pasadena, CA
91125, USA
4Howard Hughes Medical
Institute, California Institute of
Technology, Pasadena, CA
91125, USA

Received 16 October 2008;
received in revised form
3 December 2008;
accepted 22 December 2008
Available online
3 January 2009

Ferroportin is a multipass membrane protein that serves as an iron exporter
in many vertebrate cell types. Ferroportin-mediated iron export is
controlled by the hormone hepcidin, which binds ferroportin, causing its
internalization and degradation. Mutations in ferroportin cause a form of
the iron overload hereditary disease hemochromatosis. Relatively little is
known about ferroportin's properties or the mechanism by which
mutations cause disease. In this study, we expressed and purified human
ferroportin to characterize its biochemical/biophysical properties in
solution and conducted cell biological studies in mammalian cells. We
found that purified detergent-solubilized ferroportin is a well-folded
monomer that binds hepcidin. In cell membranes, the N- and C-termini
were both cytosolic, implying an even number of transmembrane regions,
and ferroportin was mainly localized to the plasma membrane. Hepcidin
addition resulted in a redistribution of ferroportin to intracellular
compartments that labeled with early endosomal and lysosomal, but not
Golgi, markers and that trafficked along microtubules. An analysis of 16
disease-related ferroportin mutants revealed that all were expressed and
trafficked to the plasmamembrane but that somewere resistant to hepcidin-
induced internalization. The characterizations reported here form a basis
upon which models for ferroportin's role in regulating iron homeostasis in
health and disease can be interpreted.

© 2008 Elsevier Ltd. All rights reserved.

Edited by J. Bowie
Keywords: ferroportin; hemochromatosis; hepcidin; membrane protein;
live-cell imaging

Introduction

Hereditary hemochromatosis is an iron overload
disease caused by defects in the regulation of cellular
and systemic iron levels.1,2 One type of hemochro-
matosis, known as type IV hereditary hemochroma-

tosis or ferroportin disease, is caused by missense
mutations in the gene encoding the iron export
protein ferroportin (Fpn, also known as IREG1 or
MTP1; accession number Q9NP59).3 Fpn is a multi-
pass integral membrane protein found in ver-
tebrates.4–6 All cell types that export ionic iron
express Fpn, including duodenal enterocytes, white
blood cells involved in erythrophagocytosis, Kupffer
cells, brain astrocytes, and placental cells.4–7
Although Fpn has been implicated as the iron
exporter in these cells, whether this export process
is active or passive is unknown. Fpn expression
levels are regulated posttranslationally by interac-
tion with hepcidin-25, a peptide hormone8 produced
in the liver9 and secreted into the blood when iron
levels are high.10 Hepcidin binds to Fpn at the cell
surface and is internalized with Fpn.8 In HEK293T

*Corresponding author. E-mail address:
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Abbreviations used: DM, n-decyl-β-D-maltoside; DDM,

n-dodecyl-β-D-maltoside; SEC, size-exclusion
chromatography; LS, light scattering; RI, refractive index;
GFP, green fluorescent protein; MDCK, Madin–Darby
canine kidney; TM, transmembrane; FSEC, fluorescent
SEC; 3D, three-dimensional; PBS, phosphate-buffered
saline.
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cells, and presumably in vivo, the binding of hepcidin
to Fpn results in the phosphorylation, ubiquitina-
tion, and internalization of Fpn,11 ultimately leading
to its degradation in lysosomes.8

Ferroportin disease usually presents as one of
two phenotypes—one in which patients display
macrophage iron loading, low transferrin iron
saturation, and high serum ferritin levels and
another in which patients display hepatocyte iron
loading and high transferrin saturation. A number
of point mutations in the Fpn gene have been
identified.3,12–25 Recent in vitro studies focused on
characterizing subsets of these mutants in an effort
to reveal the nature of the defects caused by the
disease-causing Fpn mutations.26–31

Here, we report recombinant expression of Fpn in
insect cells and a biophysical characterization of
purified detergent-solubilized Fpn, including a
determination of its oligomeric state and its binding
interactions with different forms of hepcidin. We
also compared the expression and subcellular
localization of wild-type and mutant Fpn's in the
presence and in the absence of hepcidin and studied
wild-type Fpn-trafficking using live-cell imaging.

Results

Expression and characterization of Fpn
expressed in insect cells

Human, mouse, and zebrafish Fpn's were
expressed in baculovirus-infected insect cells.
Expression constructs were created encoding
tagged versions of full-length human, mouse, and
zebrafish Fpn's. Addition of an N-terminal Rho tag,
the first 20 aa of bovine rhodopsin, which boosts
expression levels for some eukaryotic membrane
proteins,32 was required for detectable expression
in insect cells. C-terminal FLAG and/or His tags
were added to aid in affinity purification, resulting
in Rho-Fpn-His-FLAG and Rho-Fpn-His constructs.
Insect cell membranes were analyzed by fractiona-
tion analysis using a discontinuous sucrose
gradient,33 and Fpn was found in the plasma
membranes of infected cells (data not shown).
Several detergents could be used to solubilize Fpn
from isolated plasma membranes, including [3-[(3-
cholamidopropyl)-dimethylammonio]-1-propane-
sulfonate (Chaps), 6-cyclohexyl-1-hexyl-β-D-malto-
side (CYMAL-6), lauryldimethylamine-N-oxide
(LDAO) and polyoxyethylene(8)dodecyl ether
(C12E8), n-decyl-β-D-maltoside (DM), and n-dode-
cyl-β-D-maltoside (DDM)]. Human Rho-Fpn-His
and Rho-Fpn-His-FLAG were purified in DM or
DDM using affinity chromatography with yields of
∼50–100 μg of Fpn per liter of insect cell culture.
Similar results were obtained for mouse and
zebrafish Fpn's, but the analyses reported in the
remainder of this study were conducted using
human Fpn. More highly purified Fpn was
obtained from the Rho-Fpn-His-FLAG construct

using a two-step His/FLAG affinity purification
protocol. SDS-PAGE analysis of purified Rho-Fpn-
His and Rho-Fpn-His-FLAG revealed a single
predominant band migrating with an apparent
molecular mass of ∼60 kDa (Fig. 1a). Western
analysis showed this band to be positive for both
the N- and C-terminal tags, thus demonstrating
expression of full-length Fpn (data not shown).
To verify biological activity, we evaluated the

ability of purified detergent-solubilized human Fpn
to bind hepcidin. Rho-Fpn-His was purified from
insect cell membranes in DM or DDM on a cobalt
affinity resin and then captured on a CM5 biosensor
surface with an immobilized anti-Rho antibody.
Hepcidin-25 or a non-Fpn-binding version lacking
the five N-terminal amino acids (hepcidin-20)8 was
injected at 10 μM. In three independent experiments,
we found that ∼10-fold more hepcidin-25 than
hepcidin-20 bound to the Fpn surface (Fig. 1b). In an
attempt to obtain an equilibrium dissociation con-
stant (Kd) for the interaction between Fpn and
hepcidin-25, we performed surface plasmon reso-
nance binding experiments between coupled Fpn
and a dilution series of hepcidin-25 (0.625–10 μM)
(Fig. 1b). While the data did not fit well to a 1:1
binding model, presumably due to complex binding
events related to aggregation of the injected hepci-
din (see Materials and Methods), the results sug-
gested a low micromolar Kd.

Detergent-solubilized Fpn is monomeric

In order to determine the molecular mass and
hence the oligomeric state of purified Fpn, we
performed size-exclusion chromatography (SEC) in
conjunction with multiangle light scattering (LS),
differential refractive index (RI), and ultraviolet
absorption (UV) spectroscopy analysis.34 SEC-LS/
UV/RI can be used to determine the absolute
molecular mass of a protein in complex with non-
UV-absorbing modifiers, such as carbohydrates,
lipids, and detergents.34,35 Purified human Fpn
(Rho-Fpn-His-FLAG) solubilized in DDM was used
for these experiments. The UV chromatogram for
Fpn was observed as a single peak at ∼13.5 mL,
whereas the LS and RI traces were both doublets,
with one peak at∼13.5 mL and another at∼15.5 mL
(Fig. 1c). The first peak in the doublets overlaid with
the UV peak and corresponded to the Fpn–detergent
micelle complex, while the second peak corre-
sponded to free detergent micelles. The free-micelle
peak of DDM detergent gave a calculated molecular
mass of 75.8±6.8 kDa, consistent with the DDM
micelle size measured by the vendor†. Although the
Fpn–detergent peak was not fully resolved from the
DDM free-micelle peak, large regions of each peak
were sufficiently separated and could be selected for
analysis (Fig. 1c). The molecular mass of the Fpn–
detergent complex determined using this method
was 201±18 kDa, with 69.1 ± 6.2 kDa of this

†http://www.anatrace.com
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attributed to protein and 132±12 kDa attributed to
bound detergent plus lipids and/or carbohydrate.
The molecular mass derived for the protein compo-
nent of the Fpn–detergent complex is in agreement
with the predicted molecular mass of 69,015 g/mol
for Rho-Fpn-His-FLAG, thus suggesting that deter-
gent-solubilized Fpn is a monomer.

Topology of Fpn in the plasma membrane

The locations of the N- and C-termini of Fpn have
been the subject of debate, with some studies finding
one or both termini to be extracellular27,28,36 and
others finding one or both termini to be in-
tracellular.26,37,38 In order to resolve this issue, we
expressed N- and C-terminally tagged Fpn [Rho-
Fpn-GFP (green fluorescent protein)] in three mam-

malian cell lines and used confocal immunofluores-
cence microscopy to compare the accessibility of the
tags in permeabilized versus nonpermeabilized cells.
Although the Rho tag was required for expression in
insect cells, we found that Fpn could be expressed in
mammalian cells without this tag, so we evaluated
the location of the C-terminus in independent
experiments. If the N- or C-terminus is extracellular,
we would expect to find no difference in permeabi-
lized versus nonpermeabilized cells when probing
with an antibody against the relevant tag. If a
terminus was intracellular, we would expect to see
antibody staining in permeabilized, but not non-
permeabilized, cells.
Fpn-GFP or Rho-Fpn-GFP constructs were tran-

siently expressed in HEK293T, HeLa, and Madin–
Darby canine kidney (MDCK) cells. Both constructs

Fig. 1. Biophysical characterization of purified Fpn. (a) SDS-PAGE analysis of purified Rho-Fpn-His (estimated to be
∼70% pure) and Rho-Fpn-His-FLAG (estimated to be ∼90% pure) proteins. Samples were run under reducing conditions
in SDS loading buffer without boiling on 15% (Rho-Fpn-His) or 4%–20% (Rho-Fpn-His-FLAG) polyacrylamide gels. (b)
Biosensor analysis of the Fpn–hepcidin interaction. Hepcidin-25 was injected over immobilized Fpn as a series of dilutions
(0.625, 1.25, 2.5, 5.0, 8.0, and 10 μM). Sensorgrams (black lines) are overlaid on the simulated response (red lines) derived
using a 1:1 binding model. The fit of the binding model to the data is poor, perhaps resulting from the presence of
hepcidin-25 aggregates. The inset shows results from injections of 10 μMhepcidin-25 and hepcidin-20. (c) SEC-LS/UV/RI
analysis of DDM-solubilized Fpn. Normalized traces for UV absorbance at 280 nm (red), 90° LS signal (blue), and
differential RI (green) signals are shown. Molecular mass values calculated for the protein–detergent complex (black),
detergent micelle (dark gray), and protein (light gray) are displayed as overlays on the peaks at ∼13.5 and∼15.5 mL, and
the range of calculated molecular masses is projected onto the left and right axes. (d) Comparison of mobility by FSEC for
wild-type Fpn versus disease-related Fpn mutants. Wild-type Fpn and 16 Fpn mutants were transiently expressed as GFP
fusion proteins in HEK293T cells. Whole cell lysates were passed over a gel filtration column, and the migration of each
protein was monitored by fluorescence. Wild-type Fpn-GFP and all the Fpn-GFP mutants exhibited a peak at ∼12 mL,
which was not found in lysates from untransfected HEK293T cells (red curve). The peak at ∼16 mL was found in samples
prepared from both transfected and untransfected cells.
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were used to determine the location of the C-
terminus using a labeled anti-GFP antibody, and the
Rho-Fpn-GFP construct was used to determine the
location of the N-terminus using a labeled anti-Rho
antibody. Full confocal stacks were recorded for
each condition, with representative slices displayed
in Figs. 2 and 3. GFP fluorescence from the C-
terminal tag was visible at the plasma membrane
under permeabilizing and nonpermeabilizing con-
ditions, and it served as a marker for successfully
transfected cells. Antibody staining of the N-
terminal Rho or the C-terminal GFP tag was only
observed under permeabilizing conditions or when
the plasma membrane was compromised by a
visible tear. This result was consistent for both
Rho-Fpn-GFP and Fpn-GFP in three cell lines (Figs.
2 and 3). We conclude that the N- and C-termini of
Fpn are cytosolic in HeLa, HEK293T, and MDCK
cells, implying that Fpn contains an even number of
transmembrane (TM) domains.

Disease-related Fpn mutants behave like the
wild type in detergent and are expressed at the
plasma membrane

To determine if disease-related mutations in Fpn
altered its detergent solubility and oligomeric state,

we expressed 16 Fpn-GFP mutants transiently in
HEK293T cells and compared them with wild-type
Fpn-GFP. Rather than purify each of themutants and
conduct SEC-LS/UV/RI experiments, we used
fluorescent SEC (FSEC), a method to obtain a SEC
profile of a GFP-tagged protein in a complexmixture
of proteins.39 We found that the FSEC traces for Fpn-
GFP and the suite of disease-causingmutant proteins
were similar (Fig. 1d). Given that SEC-LS/UV/RI
analysis demonstrated that wild-type Fpn is well
folded (i.e., it migrates in SEC as a defined peak
outside the void volume) and a monomer (Fig. 1c),
the finding of similar SEC profiles for wild-type and
mutant Fpn's indicates that the mutants were also
well-folded monomers that could be solubilized in
detergent.
We next determined the subcellular localizations

of wild-type and mutant Fpn-GFP proteins
expressed transiently in different cell lines. Expres-
sion of wild-type Fpn-GFP in polarized cells (filter-
grown MDCK cells) revealed that Fpn-GFP was
expressed primarily on the cell surface (Fig. 4).
Expressionwas observed along the entire basolateral
membrane below the tight junctions, but not at the
apical surface, as determined by anti-ZO1 staining of
the tight junctions (data not shown). In a nonpolar-
ized cell line (HeLa), fluorescence for wild-type Fpn-

Fig. 2. Analysis of Fpn mem-
brane topology. Bar represents
10 μm. Rho-Fpn-GFP was transi-
ently expressed in HeLa cells. Fixed
cells were probed against a labeled
antibody against the N-terminal
Rho tag (a) or against the C-terminal
GFP tag (b) under permeabilizing
(+saponin) and nonpermeabilizing
(−saponin) conditions. Similar
results were found for Rho-Fpn-
GFP expressed in HEK293T and
MDCK cells and for Fpn-GFP
expressed in HeLa, HEK293T (Fig.
3), and MDCK cells (data not
shown).
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GFP was found around the entire cell surface as well
as in intracellular compartments (Fig. 2), as pre-
viously described for expression in HeLa and
HEK293T cells.8 Upon treatment with the protein
synthesis inhibitor cycloheximide, a larger propor-
tion of Fpn-GFP localized to the plasma membrane
and the intracellular Fpn-GFP signal that remained
was faint and diffuse compared with the fluores-
cence at the plasma membrane (Fig. 5), suggesting
that much of the intracellular Fpn-GFP signal
observed in untreated cells represented newly
synthesized protein on its way to the cell surface.
The localization of each of the disease-related Fpn

mutants was examined in cycloheximide-treated
HeLa cells (Fig. 5) and in untreated filter-grown
polarized MDCK cells (Fig. 4). Each of the mutants
localized similarly to wild-type Fpn-GFP (i.e., with

little internal fluorescence and a strong cell surface
signal). Evidence for the primarily surface localiza-
tion of Fpn-GFP proteins can be difficult to convey
in two-dimensional images of flat HeLa cells, so we
present side views of cells for all the Fpn mutants
(Fig. 5) and movies of three-dimensional (3D)
reconstructions for selected mutants (Movies S1–
S5). These data suggested that all the disease-related
Fpn mutants examined here trafficked normally to
the plasma membrane.

Effects of hepcidin on disease-related Fpn
mutants

Previous studies demonstrated that wild-type Fpn
is internalized into lysosomes upon treatment with
hepcidin-25.8 To compare the effects of hepcidin on

Fig. 4. Fpn-GFP subcellular localization in MDCK cells. Bar represents 10 μm. Fpn-GFP and disease-related Fpn-
mutants were transiently expressed in filter-grown polarized MDCK cells.
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wild-type and mutant Fpn's, we expressed Fpn-GFP
proteins transiently in HeLa cells, pretreated the
cells with cycloheximide to reduce intracellular
fluorescence, and then incubated them in the
presence or absence of 2 μM hepcidin-25. After 4 h,
the cells were fixed and examined by confocal
fluorescence imaging. Wild-type Fpn-GFP was
internalized in all cells imaged, but the level of
internalization at any tested time point varied from
cell to cell. At the 4-h time point used for this study,
the GFP signal in some cells was observed as fully
internalized puncta, whereas other cells displayed a
portion of their GFP signal at the plasma membrane
(see the two wild-type Fpn-GFP panels in Fig. 5).
The surface signal tended to decrease over time as

the hepcidin-25 incubation progressed (data not
shown). We expect that these differences were due to
varying levels of Fpn-GFP expression from cell to
cell in the transient transfection.
Most of the disease-related Fpn mutants were

internalized upon treatment with hepcidin-25
(Fig. 5), with internalization observed as bright
puncta throughout the cytoplasm. Hepcidin-sensi-
tive Fpn-GFP constructs includedwild-type Fpn and
the A77D, N144D, N144H, N144T, D157G, ΔV160,
N174I, Q182H, Q248H, D270V, and G323V Fpn
mutants. Like wild-type Fpn-GFP, the hepcidin-
sensitive Fpn-GFP mutants displayed a distribution
of internalization completeness, with some cells
within a sample showing residual surface signals.

Fig. 5. Fpn-GFP localization and sensitivity to hepcidin-25. Bar represents 10 μm; the inset is shown at a magnification
of 5×. Fpn-GFP and disease-related Fpn-GFP mutants were transiently expressed in HeLa cells, which were pretreated
with cycloheximide and then incubated for 4 h with or without 2 μMhepcidin-25. Each panel is a representative slice from
a confocal stack. Below each panel is a reconstructed side view for the region in a plane denoted by the thin white line in
the main panel. The side views were elongated by a factor of 2 in the z-direction to facilitate visualization of fluorescence
in these thin cells.
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Representative cells from these experiments can be
found in Fig. 5. The Y64N, G80S, C326S, C326Y, and
G490D Fpn mutants showed no internalized punc-
tum and were therefore classified as resistant to
hepcidin-induced internalization (Fig. 5).

Characterization of hepcidin-induced Fpn
internalization in HeLa cells

To further study the pathway by which Fpn is
internalized upon treatment with hepcidin, we
identified Fpn-positive compartments using anti-
bodies against endosomal and lysosomal markers.
For these experiments, wild-type Fpn-GFP was

transiently expressed in HeLa cells, pretreated
with cycloheximide, and then incubated with
hepcidin-25 for 4 h, as described above. Cells were
fixed and probed with fluorescent antibodies
against the early endosomal marker EEA1, the
lysosomal marker LAMP1 or LAMP2, or a 58-kDa
Golgi-resident protein. Internalized Fpn-GFP
puncta were found to partially co-localize with
EEA1, LAMP1, and LAMP2, but not with the 58-
kDa Golgi marker (Fig. 6).
Hepcidin-induced internalization of Fpn-GFP was

also investigated in live HeLa cells using spinning-
disk confocal microscopy, which enables rapid
image acquisition to monitor dynamic biological
processes.40 Fpn-expressing HeLa cells were grown
in glass-bottomed dishes, and imaging was per-
formed at 37 °C in a temperature-controlled
enclosure. Fpn-GFP-positive intracellular compart-
ments, which were observed within 15 min of
hepcidin addition, were seen to travel throughout
much of the cytoplasm in a relatively random
fashion (data not shown). Over the course of
hours, accumulation of bright puncta in regions
proximal to the nucleus was observed, as seen in the
fixed cell images, which were acquired 4 h after
hepcidin addition (Fig. 5).
When trafficking was monitored for a shorter time

(0.5–5 min), Fpn-GFP compartments traveled in
many directions with no apparent net directionality.
Interestingly, some of the Fpn-GFP-positive com-
partments moved back and forth along what

Fig. 7. Effects of nocodazole on internalized Fpn. Bar
represents 5 μm. Fpn-GFPwas transiently expressed inHeLa
cells, which were pretreated with cycloheximide, incubated
with 2 μMhepcidin-25, and then imaged live in the presence
or absence of 10 μg/mL of nocodazole. GFP-positive
compartments were tracked as described in Materials and
Methods. Tracks throughout a 90-s time course were
overlaid on representative images of an untreated cell (a)
or a nocodazole-treated cell (b).

Fig. 6. Mapping of the intracellular locations of hep-
cidin-internalized Fpn-GFP. Bar represents 10 μm; the inset
is at a magnification of 5×. (a–d) Fpn-GFP was transiently
expressed in HeLa cells, which were pretreated with
cycloheximide and incubated with 2 μM hepcidin-25.
Fixed cells were probed with antibodies against markers
for early endosomes (EEA1; a), lysosomes (LAMP1 and
LAMP2; b and c), and the Golgi (58-kDa Golgi protein; d).
LAMP1 staining adjacent to the Fpn-GFP-positive cell in
(b) represents endogenous LAMP1 from a neighboring cell
that did not express Fpn-GFP.
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appeared to be a track. To determine if the tracks
represented microtubules, we imaged the cells in the
presence and in the absence of the microtubule
depolymerizing agent nocodazole. In the presence
of nocodazole, trafficking of Fpn-GFP-positive
compartments was almost entirely halted (Fig. 7;
Movies S6 and S7). Tracking analyses were per-
formed on N1100 Fpn-positive compartments per
condition, and the disruption of overall trafficking
by nocodazole was evident in terms of a reduction of
mean-square displacement for individual compart-
ments (Fig. 8a) and in a reduction of overall track
displacement length for the full set of tracks (Fig.
8b). In the presence of nocodazole, no compartment
was found more than 0.98 μm from their starting
points, whereas in untreated cells, 178 compart-
ments (15.9%) were located at a distance of 1 μm or
farther from their starting points.

Discussion

Although Fpn plays a key role in the maintenance
and regulation of systemic iron homeostasis, many
of its basic features remain controversial. We sought

to characterize some of the biophysical and cell
biological properties of Fpn using purified deter-
gent-solubilized protein and Fpn expressed in
eukaryotic cells. Here, we report an insect cell
expression system that can be used to produce
recombinant human Fpn for structural and biophy-
sical studies.
The oligomeric state of Fpn has been debated for

several years—the protein has been reported to be a
monomer36,38,41 as well as a dimer/multimer.30,37

Using SEC-LS/UV/RI, a shape- and model-inde-
pendent method to obtain a molecular mass,34 we
determined that purified detergent-solubilized Fpn
is monomeric (Fig. 1c). This result does not explicitly
address the oligomeric state of Fpn in its native
environment of the lipid bilayer. However, in pre-
vious studies of other membrane proteins, including
LacYand GlyT1, the oligomeric state determined for
the purified protein in detergent correlated with the
oligomeric state in the membrane bilayer.42,43 Thus,
although this result cannot rule out a transient
dimerization/multimerization event, it suggests
that homophilic interactions that might exist in the
context of a bilayer are sufficiently weak so as to be
disrupted by a nonionic detergent. A recent report

Fig. 8. Tracking Fpn-GFP-positive compartments in HeLa cells in the presence and in the absence of nocodazole. Cells
were treated and imaged as described in Fig. 7. (a) The mean-square displacement of representative tracks in untreated
(blue) versus nocodazole-treated (red) cells showed that nocodazole treatment produced a marked reduction in Fpn-GFP
trafficking. (b) Track displacements for the set of tracked vesicles in untreated (blue) and nocodazole-treated (red) cells
presented as a histogram.

725Investigation of the Properties of Fpn
60



showed that a 19-aa peptide derived from an
extracellular loop of Fpn (the hepcidin-binding
domain; residues 324–343) is capable of binding
hepcidin-25 but not hepcidin-20.44 In support of the
contention that purified Fpn monomers are func-
tional, we showed that purified Fpn exhibits
physiologically relevant binding to hepcidin-25 but
not hepcidin-20 (Fig. 1b), suggesting that detergent-
solubilized Fpn effectively presents the hepcidin-
binding domain. Although we were unable to
obtain an accurate Kd for the Fpn–hepcidin-25
interaction, the data suggested a low micromolar
affinity, consistent with the ∼ 0.7 μM IC50 value
obtained in in vitro8 and in vivo experiments in
which a serum concentration of 1.4 μM hepcidin-25
induced a prolonged reduction in serum ferritin
levels.45

The membrane topology of Fpn and the related
issue of howmany TMdomains it contains have also
been the subject of debate. In particular, different

results have been obtained for the location of the Fpn
C-terminus. Fluorescent antibodies against a C-
terminal tag on Fpn have been used to label live
cells in flow cytometry experiments,27,28,36 implying
an extracellular location. Immunofluorescence
microscopy has been used to suggest both an
extracellular36 and an intracellular26,37,38 localization
for the Fpn C-terminus. Our results using two
ferroportin constructs in three mammalian cell
lines strongly support an intracellular location for
the N- and C-termini of Fpn. A recent report may
explain the discrepancy in the studies regarding the
accessibility of the Fpn termini: the C-terminus of
Fpn was found to be normally cytosolic but
accessible to labeled antibodies in nonpermeabilized
cells when the cells were undergoing apoptosis due
to reduced intracellular iron levels.38 Thus, previous
reports of the detection of C- and N-terminal tags in
nonpermeabilized cells may have resulted from
inclusion of apoptotic cells in the analyses.

Fig. 9. Prediction of membrane topology of Fpn. Sequences for full-length human, mouse, and zebrafish Fpn's were
submitted to the TMHMM v2.0 prediction server.46 Each sequence was predicted to contain 12 regions that were 21–23 aa
in length with a significant (N60%) probability of being a TM region (see Materials andMethods). TMHMMpredicted that
the N- and C-termini of Fpn are cytosolic, consistent with our data (Figs. 2 and 3). Highlighted amino acids indicate
positions where disease-related mutations have been identified. Red positions indicate hepcidin resistance, whereas blue
positions indicate hepcidin sensitivity. Only the C326Y and C326S mutations fall in the hepcidin-binding domain
(residues 324–343).44
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Assuming that the N- and C-termini of Fpn are
cytosolic, as suggested by our data and some
previous studies,26,37,38 Fpn must have an even
number of TM spanning domains. Using the predic-
tion software TMHMM46 and an alignment of
human, mouse, and zebrafish Fpn sequences, we
predicted that Fpn contains 12 TM domains (Fig. 9),
differing from prior predictions of 9 or 10 membrane
spanning regions4,5,13 but similar to a recent predic-
tion published in conjunction with insertion muta-
genesis analyses.26 Our model places the tyrosines
that become phosphorylated upon hepcidin-25
binding, Y302 and Y303,11 in the middle of TM
region 6 (TM6) and thus not accessible to cytosolic
kinases. The model may be inaccurate in the region
of TM6, or, alternatively, the binding of hepcidin-
25 to the extracellular loop located between TM6
and TM7 could cause a conformational shift that
adjusts the location of TM6 such that Y302 and
Y303 become accessible to the cytosol where they
can be phosphorylated.
Although Fpn has been reported to be predomi-

nantly localized to the plasma membrane in the
absence of the peptide hormone hepcidin, previous
studies showed visible internal staining when Fpn
was stably or transiently expressed in HEK293T
cells.8,27–30,36 Here, we showed that much of the
internal Fpn-GFP signal was eliminated by treat-
ment with the protein synthesis inhibitor cyclohex-
imide when Fpn-GFP was transiently expressed in
HeLa cells (Fig. 5). Having worked out conditions
such that the majority of wild-type Fpn was
localized to the plasma membrane in the absence
of hepcidin, we were able to rapidly screen the
localization of disease-related Fpn mutants in the
presence and in the absence of hepcidin.
We found that wild-type Fpn-GFP and 16 of 16

disease-related Fpn-GFPmutants tested in this assay
localized primarily to the plasmamembrane of HeLa
cells (Fig. 5) upon treatment with cycloheximide in
the absence of hepcidin. These results conflict with
those of some studies conducted in the absence of
cycloheximide, with, for example, one report sug-
gesting that the A77D Fpn mutant is intracellular29
and others suggesting that the A77D,26 D157G,26

ΔV160,26,30,36 N174I,29 G323V,30,36 and G490D30 Fpn
mutants exhibited partial internalization. The dis-
crepancies may reflect cell type-specific differences
in folding rates; thus, slowly folding mutants might
appear to be intracellular in cells that were not
treated with cycloheximide. This is clearly not the
case for all cells, however, as we observed primarily
plasma membrane localization for wild-type Fpn-
GFP and the 16 disease-related mutants in polarized
MDCK cells, in which case the use of cycloheximide
to eliminate intracellular signals was not necessary
(Fig. 4).
Using the cycloheximide treatment procedure for

reproducibly expressing Fpn-GFP on the surface of
HeLa cells, we next investigated the responses of
Fpn mutants to hepcidin treatment. As previously
described,8 we found that wild-type Fpn-GFP was
internalized by the addition of hepcidin-25 to

HeLa cells (Fig. 5). In our experiments, we saw
internalization of the Fpn-GFP signal within 1 h of
incubation with 2.0 μM hepcidin-25, and by 4 h of
incubation, the Fpn-GFP signal in many cells was
entirely intracellular. Our experiments showed that
the internalized Fpn-GFP passes through EEA1-
and LAMP-positive compartments but does not
accumulate in the Golgi (Fig. 6) and that this
trafficking is dependent on intact microtubules
(Fig. 7).
There was some variability in the degree of wild-

type Fpn-GFP internalization in hepcidin-treated
cells, presumably due to different expression levels
in the transiently transfected cells; thus, we did not
attempt to quantify relative levels of Fpn internaliza-
tion for each of the mutants. Instead, we considered
an Fpn mutant to be hepcidin sensitive if we
observed distinct internal Fpn-GFP puncta after 4 h
of incubationwith 2 μMhepcidin-25 (a concentration
chosen to ensure saturation) and to be hepcidin
resistant if no distinct punctumwas observed. Using
these definitions, we report that the Fpn-GFP
mutants A77D, N144D, N144H, N144T, D157G,
ΔV160, N174I, Q182H, Q248H, D270V, and G323V
were hepcidin sensitive and that the Fpn-GFP
mutants Y64N, G80S, C326S, C326Y, and G490D
were hepcidin resistant (Fig. 5). The N144T, D270V,
and C326S Fpn mutants had not been tested for
hepcidin internalization prior to this report. Some of
the results for the othermutants conflict with those of
prior studies, whereas others are in agreement. For
example, one study reported N144H, D157G,
ΔV160, and G323V as hepcidin resistant yet agreed
with our results that G490D was resistant and that
Q182H was sensitive.30 Another study's results
differed from our results by reporting that the
A77D and N174I mutants were hepcidin resistant
and that the G80S mutant was hepcidin sensitive.29

A third study reported A77D, N144H, D157G,
ΔV160, Q182H, and G323V all as hepcidin re-
sistant.26 These discrepancies may have arisen from
different experimental conditions—the analyses
described in these studies were performed without
cycloheximide pretreatment and using a lower
hepcidin-25 concentration of 0.36 or 0.7 μM. How-
ever, an additional study that used cycloheximide
pretreatment and 0.5 μM hepcidin-25 agreed with
our results that Y64N and C326Y were hepcidin
resistant and that N144D, N144H, and Q248H were
at least partially internalized upon hepcidin treat-
ment.28 It should be noted that our analysis does not
distinguish between Fpn mutations within the
hepcidin-binding site that cause a reduced affinity
for hepcidin and mutations that prevent the Fpn–
hepcidin complex from interacting properly with
internalization machinery.
Linking the phenotypic manifestations of iron

overload in patients affected by ferroportin dis-
ease caused by specific mutations with in vitro
analyses on those same Fpn mutants has been
difficult. This is due to the heterogeneity of
patient phenotypes even between family members
sharing the same Fpn mutation, the lack of data
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for patients affected by certain mutations, and the
difficulty of working with Fpn in vitro (as
demonstrated by the conflicting experimental
results reported to date). However, by combining
our results with available clinical data, the data
presented in our study support a model in which
Fpn mutations resulting in hepcidin resistance in
vitro manifest themselves as a disease with high
transferrin saturation (observed in Y64N and
C326S),16,25 low to moderately high serum ferritin
levels (observed in Y64N and C326S),16,25 and
hepatocyte iron loading (observed in Y64N,
C326S, and G490D),16,20,25 whereas Fpn mutations
resulting in hepcidin sensitivity in vitro would
produce disease with low transferrin saturation
(observed in A77D, D157G, ΔV160, N174I,
Q182H, Q248H, and G323V),13–15,17,21,22,47–49 high
serum ferritin (observed in A77D, N144D, N144H,
N144T, D157G, ΔV160, N174I, Q182H, Q248H,
and G323V),13–15,17–19,21,22,47–50 and mostly macro-
phage/Kupffer cell iron loading with additional
hepatocyte iron loading in extreme cases (observed
in A77D, N144D, N144H, N144T, ΔV160, and
N174I).13,14,18,19,47–50

Materials and Methods

Insect cell expression of Fpn

Genes encoding human and mouse Fpn's were gifts of
Alain Townsend (Oxford), and the zebrafish Fpn gene was
the gift of Nancy Andrews (Duke University School of
Medicine). Human, mouse, and zebrafish Fpn's were
expressed in a lytic baculovirus/insect cell expression
system. A Rho tag was added to each construct using PCR
by replacing the Fpn start codon with the first 20 aa of
bovine rhodopsin and a linker (nucleic acid sequence,
ATGAACGGGACCGAGGGCCCAAACTTCTACGTGCC-
TTTCTCCAACAAGACGGGCGTGGTAGGCCGGCCGC-
GGCCGCGA). The C-termini of the insect cell constructs
were tagged with 10×-Histidine (Rho-Fpn-His) or tandem
10×-Histidine and FLAG (Rho-Fpn-His-FLAG) tags and a
linker (nucleic acid sequence, AGCGGCCGC-
GAAAACTTGTACTTTCAAGGCCATCACCATCACCAT-
CACCATCACCATCACGACTACAAGGACGACGACGA-
CAAGGGCGCGCCT). Constructs were subcloned into
pBacPAK8 (Clontech), and viruses were constructed using
ProGreen Baculovirus DNA (AB Vector). GFP expression
was used to titrate the virus required to attain N95%
infection. For protein expression, 5 L ofHighFive insect cells
in ESF 921 medium (Expression Systems) was grown using
a 20/50EH Wave Bioreactor (GE Healthcare) (settings:
rocking speed, 9; angle, 20°; temperature, 27 °C; and
ambient air pumped in at 0.3 L/min). Cells were infected
at a density of 2.5–3.5×106 viable cells/mL and were
harvested 48 h after infection.

Solubilization of Fpn from membranes

All steps were performed on ice or at 4 °C. Cell paste
(110–140 g) was resuspended in 900 mL of resuspension
buffer [50 mM Tris, pH 7.5, 150 mM NaCl, and 18
ethylenediaminetetraacetic acid (EDTA)-free complete
protease inhibitor tablets (Roche)]. Cells were disrupted

by sonication in 50-mL fractions on ice and placed in an ice
bath between sonication rounds. Cell debris and mem-
branes were pelleted at 125,000g.
Membrane pellets were resuspended using a Dounce

homogenizer in 300 mL of detergent-free solubilization
buffer [50 mM Tris, pH 7.5, 500 mM NaCl, 10 mM
imidazole, pH 7.5, and six EDTA-free complete protease
inhibitor tablets (Roche)]. Dry DM (Anatrace) or DDM
(Anatrace) was added to 1% (w/v) to resuspended
membranes and incubated with gentle stirring at 4 °C
for 2.5 h. After pelleting at 125,000g, membrane suspen-
sions were filtered at 0.45 μm.

Affinity purification of Fpn

Detergent-solubilized Fpn was purified by single (Rho-
Fpn-His) or double (Rho-Fpn-His-FLAG) affinity steps.
For His-tag purifications, TALON SuperFlow columns
were preequilibrated with solubilization buffer containing
0.02% (w/v) DDM. Supernatants were passed over the
column and washed to baseline. Nonspecific binders were
washed off with equilibration buffer containing 30 mM
imidazole, and Fpn was eluted with buffer containing
120 mM imidazole.
Rho-Fpn-His-FLAG was further purified using an anti-

FLAGM2 affinity column (Sigma) equilibrated in TALON
elution buffer. TALON eluates were passed over the
affinity column twice, which was washed with M2 buffer
[50 mM Tris, pH 7.5, 150 mM NaCl, and 0.02% (w/v)
DDM] and eluted with M2 buffer containing 0.2 mg/mL
of FLAG peptide (Sigma). Boiling of samples in SDS
sample buffer resulted in aberrant migration near the top
of an SDS-PAGE gel, so gel samples were not boiled prior
to loading.

Molecular mass and oligomeric state determination
by SEC-LS/UV/RI

SEC was conducted with in-line multiangle static LS to
determine the molecular mass of purified Fpn. The FLAG
column eluate was concentrated to 0.5 mL using a 50-kDa
cutoff Amicon Ultra concentrator (Millipore) and passed
over a Superdex 200 10/300 SEC column (GE Healthcare)
preequilibrated in buffer containing 50 mM Tris–HCl,
pH 7.5, 150 mM NaCl, and 0.02% (w/v) DDM at 0.5 mL/
min. The SEC column was plumbed in-line with a
multiangle static LS monitor at 658 nm (DAWN Helios,
Wyatt), a differential RI monitor (Optilab rEX, Wyatt), and
a UV absorbance monitor (AKTA Explorer, GE Health-
care). All calculations of molecular mass were performed
using the protein conjugate template in the ASTRA 5.3.2
software package (Wyatt). The specific RI increment (dn/
dc) values used were 0.185 for protein (Wyatt) and 0.133
for DDM.51 The predicted molecular mass and extinction
coefficient for UV absorbance at 280 nm for Rho-Fpn-His-
FLAG were calculated from the amino acid sequence as
69,015 g/mol and 83,319 M−1 cm−1, respectively.52 Bovine
serum albumin (GE Healthcare) was used as a calibration
standard.

Fpn–hepcidin binding

Experiments evaluating the interaction between human
Fpn and human hepcidin were performed at 25 °C using a
Biacore 2000 Instrument (GE Healthcare). Interactions
between immobilized Fpn on a sensor chip and hepcidin
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injected over the sensor surface were monitored in real
time as resonance units (RUs). An anti-Rho monoclonal
antibody (see below) was immobilized at densities
ranging from 1000 to 3000 RUs to the surface of a CM5
biosensor chip using primary amine chemistry as
described in the Biacore manual. Purified Rho-Fpn-His
in 50 mM Tris, pH 7.5, 150 mMNaCl, and 0.2% (w/v) DM
was injected over the anti-Rho surface, capturing 1000–
1500 RUs of Fpn. Flow cells containing immobilized anti-
Rho antibody without captured Rho-Fpn-His were used
as reference-subtracted negative controls. The sensor
surface was monitored for N12 h in the same buffer until
a stable baseline was reached. Hepcidin-25 (Bachem) or
hepcidin-20 (gift of Prof. T. Ganz, UCLA) diluted in this
buffer was injected over the Fpn surface at various
concentrations. The surface was observed to return to
baseline after 1 h, so no regeneration condition was
required. Experiments directly comparing the binding of
hepcidin-20 and that of hepcidin-25 to immobilized Fpn
were performed using 10 μM hepcidin injections. For
experiments to derive kinetic constants for the hepcidin-
25–Fpn interaction, a dilution series (0.625, 1.25, 2.5, 5.0,
8.0, and 10 μM) of hepcidin-25 were injected, and the
dissociation and association phases of all curves were
simultaneously fit to derive kinetic constants using
BIAevaluation 4.1 (GE Healthcare). The data did not fit
well to a 1:1 bindingmodel, which can result if the injected
analyte is not homogeneous (e.g., the analyte contains a
population of aggregates).53 An approximate equilibrium
dissociation constant (Kd) was calculated from the ratio of
dissociation and association rate constants.

Construction and mutagenesis of mammalian
expression constructs

Fpn-GFP and Rho-Fpn-GFP mammalian expression
vectors were constructed in the pLox+CMV expression
vector, containing the CMV promoter and SV40 polyA
tail. PCR inserts containing the Fpn-GFP or Rho-Fpn-GFP
were produced by bridging PCR using the Fpn gene and
the GFP gene derived from pCGFP-EU.39 Fpn-GFP
mutants were produced using site-directed mutagenesis.
All constructs were verified by sequencing.

Mammalian cell culture and transfections

HEK293T, HeLa, and MDCK cells were grown in
Dulbecco's modified Eagle's medium containing 4.5 g/L
of D-glucose, 4 mM L-glutamine, 110 mg/L of sodium
pyruvate (Gibco) with 1× penicillin/streptomycin (Gibco),
and 10% (v/v) fetal bovine serum (Atlanta Biologicals).
All transfections were performed using Lipofectamine
2000 (Invitrogen) as per the manufacturer's instruction.
MDCK cells grown on transwell filters were initially
seeded into six-well plates and transfected at ∼75%
confluency. Twenty-four hours later, cells were treated
with trypsin-EDTA and 5×105 cells were transferred to 12-
mm polyester transwell permeable supports (Costar) with
0.5 mL of growth medium above and 1.0 mL of growth
medium below the support. Transfected cells were grown
for 4 days postconfluency before imaging to ensure full
polarization and tight junction formation.

FSEC analysis

Wild-type and mutant human Fpn-GFP constructs were
transiently expressed inHEK293Tcells in a six-well format.

Cells were collected by pipetting 36–40 h post-transfection
and then pelleted and resuspended in 500 μL of solubiliza-
tion buffer [50mMTris, pH 7.5, 150mMNaCl, and 1% (w/
v) DDM]. Resuspended cells were lysed by sonication, and
solubilization was performed with gentle agitation for
2.5 h at 4 °C. Unsolubilized material was pelleted at
125,000g. The supernatant was removed and filtered
through a 0.22-μm Ultrafree-MC spin filter (Millipore).
Filtered supernatant was loaded onto a Superdex 200 10/
300 SEC column (GE Healthcare) and Fpn-GFP fluores-
cence was monitored using an online RF-10AXL fluores-
cence detector (488-nm excitation, 507-nm emission;
Shimadzu). SEC was performed at 0.5 mL/min in 50 mM
Tris, pH 7.5, 150 mM NaCl, and 0.2% (w/v) DDM.

Hepcidin-induced Fpn internalization

HeLa cells were seeded onto polylysine-coated glass
coverslips at 106 cells/well in a six-well format, and Fpn-
GFP constructs were transfected at ∼80% confluency.
After 20 h, cells were incubated in medium containing
75 μg/mL of cycloheximide (Sigma) for 2 h. This medium
was then exchanged for medium containing 2.0 μM
hepcidin-25 (Bachem) and 75 μg/mL of cycloheximide.
Each internalization time point included a negative
control in which cells were treated only with cyclohex-
imide. Internalization was stopped by fixing cells at room
temperature (∼22 °C) for 15 min with 4% (v/v)
paraformaldehyde in phosphate-buffered saline (PBS)
containing 1 mM CaCl2, 0.5 mM MgCl2, and 0.25 mM
MgSO4. Fixed samples were washed twice and directly
mounted on glass slides in ProLong GOLD Anti-Fade
mounting medium containing DAPI (4′,6-diamidino-2-
phenylindole) nuclear stain (Invitrogen) or quenched in
PBS containing 75 mM NH4Cl and 20 mM glycine for
10 min prior to blocking and further antibody treatments.
After quenching, samples were incubated in blocking
solution [PBS containing 8% (v/v) goat serum (Gibco) and
0.025% (w/v) saponin (Sigma)] for 30 min at room
temperature. Primary antibody incubations were per-
formed in blocking solution overnight at 4 °C. After
primary incubation, cells were washed three times in PBS
and then incubated in blocking solution containing
secondary antibodies for 1 h at room temperature, fixed
in PBS containing 4% (v/v) paraformaldehyde for 30 min,
washed twice in PBS, and then mounted on glass slides as
described above.

Antibodies

Amousemonoclonal anti-Rho tag antibody (hybridoma
B630N) was purified from ascites fluid using a protein G
affinity column followed by SEC. Other antibodies were
purchased or received as gifts as indicated. Primary
antibodies and the dilutions used for cell staining were
the monoclonal mouse anti-Rho at 1 μg/mL, Alexa-647-
conjugated rabbit polyclonal anti-GFP (Invitrogen, cat. no.
A31852) at 1:500, AC17 mouse monoclonal anti-LAMP2
from E. Rodriguez-Boulan (Cornell University) at 1:1000,
rabbit polyclonal anti-LAMP1 (Abcam, cat. no. ab24170) at
1:500, rabbit polyclonal anti-EEA1 (Santa Cruz Biotech, cat.
no. SC-33585) at 1:100, and mouse monoclonal anti-Golgi
58-kDa protein (Abcam, cat. no. ab6284) at 1:100. Second-
ary antibodies and their dilutions were Alexa-647-con-
jugated goat anti-mouse immunoglobulin G (Invitrogen,
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cat. no. A21235) at 1:500 and Alexa-647-conjugated F(ab′)2
fragment of goat anti-rabbit immunoglobulin G (Invitro-
gen, cat. no. A21246) at 1:500.

Confocal imaging and image processing

Confocal images were recorded on an UltraVIEW ERS
Rapid Confocal Imager (Perkin-Elmer) using 63×(Plan-
APOCHROMAT 1.4 Oil DIC, Zeiss) or 100×( αPlan-
APOCHROMAT 1.46 Oil DIC, Zeiss) objectives. GFP and
Alexa-647 fluorophores were excited at 488 and 647 nm,
respectively, using a 488/548/647 multiline argon/kryp-
ton laser (Melles Griot). All fixed cells that were imaged
had intact nuclei, as determined by DAPI staining (data
not shown). Confocal images shown from fixed samples
are representative images from full 3D confocal stacks
sampled at 0.25-μm spacing in z. Stacks of imaged HeLa,
HEK293T, and MDCK cells were assembled, and thresh-
olds were set in Imaris 6.0.1 (Bitplane) before single
representative slices were exported and assembled into
figures using Photoshop CS3 (Adobe).

Live imaging and tracking

HeLa cells were grown and transfected in 35-mm
polylysine-coated glass-bottomed microwell dishes
(Matek). Two dishes were seeded at a density of
106 cells/dish and transfected at ∼80% confluency on the
following day with Fpn-GFP. After 20 h, the medium was
exchanged for medium containing 75 μg/mL of cyclohex-
imide lacking phenol red. After 2 h, the medium was
exchanged for phenol red-free medium containing 2 μM
hepcidin-25 and 75 μg/mLof cycloheximide. After another
2 h, dishes were chilled on ice and their medium was
exchanged for phenol red-free medium containing 10 μg/
mL of nocodazole, 2 μM hepcidin-25, and 75 μg/mL of
cycloheximide or the same chilled medium lacking
nocodazole. Samples were incubated for 30 min on ice
and then moved to an UltraVIEW ERS Rapid Confocal
Imager (Perkin-Elmer) with a temperature-controlled
housing (Solent Scientific) where they were warmed to
37 °C for imaging. Fluorescent micrographs were collected
at 100×( αPlan-APOCHROMAT 1.46 Oil DIC, Zeiss) in a
single focal plane 1 μm above the glass support and
imaged at 4.5 frames per second for 90 s per cell. Three cells
from each condition were imaged. Fpn-GFP-containing
compartments were tracked using the tracking module in
Imaris 6.0.1 (Bitplane). Spots and tracks were automati-
cally selected using Imaris parameters, estimated
diameter=0.35 μm, threshold=8, Brownian motion track-
ing algorithm, maximum distance=0.66 μm, and gap
size=3, with minimal manual removal required. Tracks
shorter than 10 frames (2.2 s) were filtered out of the data
set. The final data set includes 1295 tracks for the untreated
sample and 1149 tracks for the nocodazole-treated sample.

Transmembrane topology prediction

DNA sequences for full-length human, mouse, and
zebrafish Fpn's were submitted to TransMembrane
Prediction using the Hidden Markov Model (TMHMM
v2.0) prediction server.46 Each sequence was predicted
to contain 12 regions that were 21–23 aa in length with
a significant (N60%) probability of being a TM region.
TMHMM marked 10 of these regions as TMs in human
and mouse Fpn's, and 8 in zebrafish Fpn, which upon

alignment summed to a total of 11 TMs. A final region
with much of its sequence at or above 60% probability
of being a TM was not annotated as a TM in any of the
three Fpn sequences, but we included it in our model
for a final prediction of 12 TMs (Fig. 9). The
approximate starting and ending points for the pre-
dicted TMs (using the residue numbering for human
Fpn) are as follows: 12–34, 58–80, 93–115, 125–147, 175–
195, 199–221, 293–315, 335–357, 373–395, 450–472, 492–
514, and 519–541.
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Chapter 3:

Expression, Detergent Extraction, and Purification of 

Recombinant Human, Mouse, and Zebrafish Ferroportin 

from Bacteria and Baculovirus-Infected Insect Cells

In this chapter we report the over-expression, detergent extraction, purification, and 

preliminary analysis of recombinant ferroportin from various vertebrate species.    
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Introduction

This chapter focuses on the over-expression, detergent-extraction and purification of 

human, mouse, and zebrafish forms of ferroportin (Fpn) for use in various biophysical 

analyses and crystallization attempts.  Prior to our studies, recombinant Fpn expression 

had been limited to small-scale eukaryotic systems.  For example, the initial studies in 

which Fpn was identified and partially characterized involved small-scale recombinant 

expression Fpn utilizing such methods as microinjection in Xenopus oocytes (Donovan et 

al. 2000; McKie et al. 2000) or zebrafish embryos (Donovan et al. 2000), or by transient 

transfection in mammalian tissue culture lines, such as Madin-Darby canine kidney cells 

(MDCK) (McKie et al. 2000), CaCo-2 cells (McKie et al. 2000), or HEK293T cells 

(Abboud and Haile 2000). Fpn expression in these systems was evaluated by sensitive 

detection techniques such as Western blotting, direct  fluorescence (in the case of Fpn-

GFP), or immunofluorescence.  Subsequent Fpn studies used these same small-scale 

eukaryotic expression methods (De Domenico et al. 2005, 2006, 2007a,b,c; Drakesmith 

et al. 2005; Goncalves et al. 2006; Nemeth et al. 2004; Schimanski et al. 2005; 2008), 

and no attempts at Fpn over-expression or purification beyond those reported in chapter 2 

(Rice et al. 2009) have been reported to date. 

Our Fpn over-expression strategy involved both prokaryotic and eukaryotic methods.  

Prokaryotic expression tests were performed in various strains of the bacterium E. coli 

and eukaryotic expression tests were performed using baculoviruses to infect High Five 
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and Sf9 insect cell lines. Initial efforts in both prokaryotic and eukaryotic systems yielded 

no Fpn expression (as assessed by Western blotting), however after extensive testing of 

various Fpn constructs under a large number of expression conditions we were able to 

successfully  over-express human, mouse, and zebrafish Fpns at adequate levels for 

biophysical characterization and crystallization trials as will be described in this chapter.

Once an over-expression protocol was worked out, detergent-extraction protocols were 

developed for the solubilization of Fpn from prokaryotic and eukaryotic membranes.  We 

found that Fpns expressed in insect cell plasma membranes were much more amenable to 

detergent extraction than Fpns expressed in the inner membrane of E. coli.  The 

detergents that were capable of extracting Fpn were then used to develop purification 

protocols.  The eukaryotic expression and purification was reported in Chapter 2 (Rice et 

al. 2009), but due to word limits in the published format, certain details were left out or 

not covered in full.  These details will be discussed in more detail in this chapter.   The 

first section of this chapter reports the expression, extraction, and purification for the 

expression of Fpn in bacteria, and the second portion is devoted to similar studies in 

insect cells.  
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Materials and Methods

Bacterial Expression Constructs

Human and mouse Fpn genes were gifts from Professor Alain Townsend (Oxford, UK) 

and zebrafish Fpn gene was a gift from Professor Nancy Andrews (Duke University). The 

human gene was contained within a mammalian expression construct, with the name 

hfpn1-V571A-myc-His6-pcDNA3.1. It contained an accidentally  introduced V571A 

mutation. This mutation was reversed by site-directed mutagenesis, before sub-cloning of 

this gene continued. The mouse gene was contained within a mammalian expression 

construct, with the name mfpn1-myc-His6-pcDNA3.1. The zebrafish gene was contained 

within a mammalian expression construct  with the name zfpn1-GFP-pEGFP-N1. The 

human and zebrafish genes naturally contained an NdeI restriction enzyme sequence 

within their ORFs, and these were removed by mutagenesis prior to further mutagenesis 

and/or sub-cloning into bacterial expression vectors.  Our cloning strategy for bacterial 

expression constructs was to work with three separate forms of each Fpn: wild-type; 

A77D; and N144H. The A77D and N144H mutants have been identified as disease-

causing Fpn mutations (Montosi et al. 2001; Njajou et al. 2001), however, how these 

mutations lead to disease was unknown.  We surmised that these mutants were worth 

pursuing alongside the wild-type Fpn for initial expression studies, particularly if 

expression of the fully functional wild-type Fpn was toxic due to unregulated iron export 

from cells.  Each Fpn form was then directionally  subcloned into the NdeI and NotI sites 

of pET-23a (Novagen) for a C-terminal 6× His tag, pET-28b (Novagen) for an N-terminal 
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6× His tag, pMAL-p2E (New England Biolabs) for an N-terminal maltose binding 

protein fusion, or alternately into pET-28b adding His and/or StrepTagII tags via PCR.  

Gene expression in these vectors was driven by  the T7 promoter in pET vectors and by 

Ptac promoter in the pMAL vector, both of which were induced by isopropyl β-D-1-

thiogalactopyranoside (IPTG) addition.  Sequencing the constructs revealed an unplanned 

result for two forms of human Fpn in pET-28b (wild-type and N144H), in which the final 

constructs had both N- and C-terminal His tags.  These constructs (pAER113a and 

pAER115a) with affinity tags on both termini were included in the expression screening.  

The bacterial expression constructs are summarized in table 3.1.

Table 3.1. Bacterial expression constructs
Plasmid Name Gene or Insert Name Parent Vector N-terminal tag C-terminal tag

pAER112 human Fpn (w.t.) pET-23a none His6
pAER113a human Fpn (w.t.) pET-28b His6 His6

pAER114 human Fpn N144H pET-23a none His6

pAER115a human Fpn N144H pET-28b His6 myc-His6

pAER116 human Fpn A77D pET-23a none His6

pAER117 human Fpn A77D pET-28b His6 none

pAER118 mouse Fpn (w.t.) pET-23a none His6

pAER119 mouse Fpn (w.t.) pET-28b His6 none

pAER120 mouse Fpn N144H pET-23a none His6

pAER121 mouse Fpn N144H pET-28b His6 none

pAER122 mouse Fpn A77D pET-23a none His6

pAER123 mouse Fpn A77D pET-28b His6 none

pAER124 zebrafish Fpn (w.t.) pET-23a none His6

pAER125 zebrafish Fpn (w.t.) pET-28b His6 none

pAER126 zebrafish Fpn N144H pET-23a none His6

pAER128 zebrafish Fpn A77D pET-23a none His6

pAER136 mouse Fpn (w.t.) pMAL-p2E MBP His6

pDZS110 human Fpn (w.t.) pET-28b His6 Strep

pET-HS-1c human Fpn (w.t.) pET-28b His6-Strep none

pET-HS-3a human Fpn (w.t.) pET-28b His6-Strep His6
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Small-Scale Tests of Fpn Expression in E. coli

Expression constructs were tested for Fpn expression in over 900 expression conditions, 

exploring variables such as: E. coli strain; induction temperature; growth media 

formulation; induction length; concentration of inducer; and aeration levels. Media 

formulations are summarized in table 3.2 and expression tests are summarized in table 

3.3. Overnight cultures in the media of choice were grown from glycerol stocks at 37 ºC 

shaking at 240 rpm.  The following morning, 5 mL cultures in 50 mL plastic conical vials 

(Falcon) with their caps loosely  taped in place to allow adequate aeration were inoculated 

with 100 µL of overnight culture and incubated at 37 ºC and 240 rpm.  The optical 

density, as measured at 600 nm (OD600), of the growth culture was monitored routinely.  

When cultures reached an OD600 between 0.5 and 1.0, cultures were moved to an 

incubator at a preset temperature agitating at 240 rpm, a 1 mL fraction was removed as 

the zero time point, and the remaining 4 mL were induced by  addition of IPTG to a final 

concentration of 0.4 mM IPTG.  Induced cultures were allowed to incubate for various 

times before 1 mL fractions were removed for analysis.  Cells from fractions removed for 

analysis were spun down for 1 min at 13,000×g, after which the supernatant was 

aspirated and the cell pellet frozen at −20 ºC until Western blot analysis could be 

performed, as described below.  Using this technique, a single 5 mL culture would be 

used to test up to 4 time points for a given condition.  The expression tests summarized in 

table 3.3 that report >4 time points were performed in larger volumes but otherwise 

adhered to the protocol described here.
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Table 3.2. Growth media formulations
LB 2×YT SOC TB TB1 TB2 TB3 TB4 TB5 TB6 TB7

bactotryptone  
(g/L) 10 16 20 12 12 12 12 12 12 12 12

yeast extract    
(g/L) 5 10 5 24 24 12 - 8 12 - -

malt extract (g/L) - - - - - - - 8 12 24 12

beef extract (g/L) - - - - - 12 24 8 - - 12

NaCl (g/L) 10 5 0.58 - - - - - - - -

KCl (g/L) - - 0.18 - - - - - - - -

MgCl2•6H20 (g/L) - - 2.03 - - - - - - - -

MgSO4 (g/L) - - 1.20 - - - - - - - -
1M glucose   

(mL/L) - - 20 - - - - - - - -

gycerol (mL/L) - - - 4 8 8 8 8 8 8 8

KH2PO4 (g/L) - - - 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31

K2HPO4 (g/L) - - - 12.54 12.54 12.54 12.54 12.54 12.54 12.54 12.54

Table 3.3. Bacterial expression test summary

Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER112 BL21(DE3) 37 TB - 1, 5 no
pAER114 BL21(DE3) 37 TB - 1, 5 no

pAER116 BL21(DE3) 37 TB - 1, 5 no

pAER118 BL21(DE3) 37 TB - 1, 5 no

pAER120 BL21(DE3) 37 TB - 1, 5 no

pAER122 BL21(DE3) 37 TB - 1, 5 no

pAER124 BL21(DE3) 37 TB - 1, 5 no

pAER113a BL21(DE3) 37 TB - 1, 5 yes

pAER115a BL21(DE3) 37 TB - 1, 5 yes

pAER117 BL21(DE3) 37 TB - 1, 5 no

pAER119 BL21(DE3) 37 TB - 1, 5 no

pAER121 BL21(DE3) 37 TB - 1, 5 no

pAER123 BL21(DE3) 37 TB - 1, 5 no

pAER125 BL21(DE3) 37 TB - 1, 5 no

pAER112 BL21(DE3) 30 TB - 3, 8 no

pAER114 BL21(DE3) 30 TB - 3, 8 no

pAER116 BL21(DE3) 30 TB - 3, 8 no

pAER118 BL21(DE3) 30 TB - 3, 8 no

pAER120 BL21(DE3) 30 TB - 3, 8 no

pAER122 BL21(DE3) 30 TB - 3, 8 no

pAER124 BL21(DE3) 30 TB - 3, 8 no

pAER113a BL21(DE3) 30 TB - 3, 8 no

pAER115a BL21(DE3) 30 TB - 3, 8 yes

pAER117 BL21(DE3) 30 TB - 3, 8 no

pAER119 BL21(DE3) 30 TB - 3, 8 no

pAER121 BL21(DE3) 30 TB - 3, 8 no

pAER123 BL21(DE3) 30 TB - 3, 8 no

pAER125 BL21(DE3) 30 TB - 3, 8 no
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER112 BL21(DE3) 37 LB - 1, 5 no
pAER114 BL21(DE3) 37 LB - 1, 5 no

pAER116 BL21(DE3) 37 LB - 1, 5 no

pAER118 BL21(DE3) 37 LB - 1, 5 no

pAER120 BL21(DE3) 37 LB - 1, 5 no

pAER122 BL21(DE3) 37 LB - 1, 5 no

pAER124 BL21(DE3) 37 LB - 1, 5 no

pAER113a BL21(DE3) 37 LB - 1, 5 no

pAER115a BL21(DE3) 37 LB - 1, 5 no

pAER117 BL21(DE3) 37 LB - 1, 5 no

pAER119 BL21(DE3) 37 LB - 1, 5 no

pAER121 BL21(DE3) 37 LB - 1, 5 no

pAER123 BL21(DE3) 37 LB - 1, 5 no

pAER125 BL21(DE3) 37 LB - 1, 5 no

pAER112 BL21(DE3) 30 LB - 3, 8 no

pAER114 BL21(DE3) 30 LB - 3, 8 no

pAER116 BL21(DE3) 30 LB - 3, 8 no

pAER118 BL21(DE3) 30 LB - 3, 8 no

pAER120 BL21(DE3) 30 LB - 3, 8 no

pAER122 BL21(DE3) 30 LB - 3, 8 no

pAER124 BL21(DE3) 30 LB - 3, 8 no

pAER113a BL21(DE3) 30 LB - 3, 8 no

pAER115a BL21(DE3) 30 LB - 3, 8 no

pAER117 BL21(DE3) 30 LB - 3, 8 no

pAER119 BL21(DE3) 30 LB - 3, 8 no

pAER121 BL21(DE3) 30 LB - 3, 8 no

pAER123 BL21(DE3) 30 LB - 3, 8 no

pAER125 BL21(DE3) 30 LB - 3, 8 no

pAER112 BL21(DE3) 37 SOC - 1, 5 no

pAER114 BL21(DE3) 37 SOC - 1, 5 no

pAER116 BL21(DE3) 37 SOC - 1, 5 no

pAER118 BL21(DE3) 37 SOC - 1, 5 no

pAER120 BL21(DE3) 37 SOC - 1, 5 no

pAER122 BL21(DE3) 37 SOC - 1, 5 no

pAER124 BL21(DE3) 37 SOC - 1, 5 no

pAER113a BL21(DE3) 37 SOC - 1, 5 no

pAER115a BL21(DE3) 37 SOC - 1, 5 no

pAER117 BL21(DE3) 37 SOC - 1, 5 no

pAER119 BL21(DE3) 37 SOC - 1, 5 no

pAER121 BL21(DE3) 37 SOC - 1, 5 no

pAER123 BL21(DE3) 37 SOC - 1, 5 no

pAER125 BL21(DE3) 37 SOC - 1, 5 no

pAER112 BL21(DE3) 30 SOC - 3, 8 no

pAER114 BL21(DE3) 30 SOC - 3, 8 no

pAER116 BL21(DE3) 30 SOC - 3, 8 no

pAER118 BL21(DE3) 30 SOC - 3, 8 no
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER120 BL21(DE3) 30 SOC - 3, 8 no
pAER122 BL21(DE3) 30 SOC - 3, 8 no

pAER124 BL21(DE3) 30 SOC - 3, 8 no

pAER113a BL21(DE3) 30 SOC - 3, 8 no

pAER115a BL21(DE3) 30 SOC - 3, 8 no

pAER117 BL21(DE3) 30 SOC - 3, 8 no

pAER119 BL21(DE3) 30 SOC - 3, 8 no

pAER121 BL21(DE3) 30 SOC - 3, 8 no

pAER123 BL21(DE3) 30 SOC - 3, 8 no

pAER125 BL21(DE3) 30 SOC - 3, 8 no

pAER112 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER114 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER116 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER118 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER120 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER122 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER124 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER113a RosettaBlue(DE3) 37 TB - 1, 5 no

pAER115a RosettaBlue(DE3) 37 TB - 1, 5 no

pAER117 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER119 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER121 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER123 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER125 RosettaBlue(DE3) 37 TB - 1, 5 no

pAER112 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER114 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER116 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER118 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER120 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER122 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER124 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER113a RosettaBlue(DE3) 23 TB - 4, 8 no

pAER115a RosettaBlue(DE3) 23 TB - 4, 8 no

pAER117 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER119 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER121 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER123 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER125 RosettaBlue(DE3) 23 TB - 4, 8 no

pAER112 BL21(DE3) 37 2×YT - 1, 5 no

pAER114 BL21(DE3) 37 2×YT - 1, 5 no

pAER116 BL21(DE3) 37 2×YT - 1, 5 no

pAER118 BL21(DE3) 37 2×YT - 1, 5 no

pAER120 BL21(DE3) 37 2×YT - 1, 5 no

pAER122 BL21(DE3) 37 2×YT - 1, 5 no

pAER124 BL21(DE3) 37 2×YT - 1, 5 no

pAER113a BL21(DE3) 37 2×YT - 1, 5 no
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER115a BL21(DE3) 37 2×YT - 1, 5 no
pAER117 BL21(DE3) 37 2×YT - 1, 5 no

pAER119 BL21(DE3) 37 2×YT - 1, 5 no

pAER121 BL21(DE3) 37 2×YT - 1, 5 no

pAER123 BL21(DE3) 37 2×YT - 1, 5 no

pAER125 BL21(DE3) 37 2×YT - 1, 5 no

pAER112 BL21(DE3) 23 2×YT - 4, 8 no

pAER114 BL21(DE3) 23 2×YT - 4, 8 no

pAER116 BL21(DE3) 23 2×YT - 4, 8 no

pAER118 BL21(DE3) 23 2×YT - 4, 8 no

pAER120 BL21(DE3) 23 2×YT - 4, 8 no

pAER122 BL21(DE3) 23 2×YT - 4, 8 no

pAER124 BL21(DE3) 23 2×YT - 4, 8 no

pAER113a BL21(DE3) 23 2×YT - 4, 8 no

pAER115a BL21(DE3) 23 2×YT - 4, 8 no

pAER117 BL21(DE3) 23 2×YT - 4, 8 no

pAER119 BL21(DE3) 23 2×YT - 4, 8 no

pAER121 BL21(DE3) 23 2×YT - 4, 8 no

pAER123 BL21(DE3) 23 2×YT - 4, 8 no

pAER125 BL21(DE3) 23 2×YT - 4, 8 no

pAER112 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER114 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER116 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER118 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER120 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER122 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER124 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER113a RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER115a RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER117 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER119 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER121 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER123 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER125 RosettaBlue(DE3) 37 2×YT - 1, 5 no

pAER112 RosettaBlue(DE3) 23 2×YT - 10 no

pAER114 RosettaBlue(DE3) 23 2×YT - 10 no

pAER116 RosettaBlue(DE3) 23 2×YT - 10 no

pAER118 RosettaBlue(DE3) 23 2×YT - 10 no

pAER120 RosettaBlue(DE3) 23 2×YT - 10 no

pAER122 RosettaBlue(DE3) 23 2×YT - 10 no

pAER124 RosettaBlue(DE3) 23 2×YT - 10 no

pAER113a RosettaBlue(DE3) 23 2×YT - 10 no

pAER115a RosettaBlue(DE3) 23 2×YT - 10 no

pAER117 RosettaBlue(DE3) 23 2×YT - 10 no

pAER119 RosettaBlue(DE3) 23 2×YT - 10 no

pAER121 RosettaBlue(DE3) 23 2×YT - 10 no
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER123 RosettaBlue(DE3) 23 2×YT - 10 no
pAER125 RosettaBlue(DE3) 23 2×YT - 10 no

pAER112 Rosetta(DE3) 37 TB - 1, 5 no

pAER114 Rosetta(DE3) 37 TB - 1, 5 no

pAER116 Rosetta(DE3) 37 TB - 1, 5 no

pAER118 Rosetta(DE3) 37 TB - 1, 5 no

pAER120 Rosetta(DE3) 37 TB - 1, 5 no

pAER122 Rosetta(DE3) 37 TB - 1, 5 no

pAER124 Rosetta(DE3) 37 TB - 1, 5 no

pAER113a Rosetta(DE3) 37 TB - 1, 5 no

pAER115a Rosetta(DE3) 37 TB - 1, 5 no

pAER117 Rosetta(DE3) 37 TB - 1, 5 no

pAER119 Rosetta(DE3) 37 TB - 1, 5 no

pAER121 Rosetta(DE3) 37 TB - 1, 5 no

pAER123 Rosetta(DE3) 37 TB - 1, 5 no

pAER125 Rosetta(DE3) 37 TB - 1, 5 no

pAER112 Rosetta(DE3) 30 TB - 3, 8 no

pAER114 Rosetta(DE3) 30 TB - 3, 8 no

pAER116 Rosetta(DE3) 30 TB - 3, 8 no

pAER118 Rosetta(DE3) 30 TB - 3, 8 no

pAER120 Rosetta(DE3) 30 TB - 3, 8 no

pAER122 Rosetta(DE3) 30 TB - 3, 8 no

pAER124 Rosetta(DE3) 30 TB - 3, 8 no

pAER113a Rosetta(DE3) 30 TB - 3, 8 no

pAER115a Rosetta(DE3) 30 TB - 3, 8 no

pAER117 Rosetta(DE3) 30 TB - 3, 8 no

pAER119 Rosetta(DE3) 30 TB - 3, 8 no

pAER121 Rosetta(DE3) 30 TB - 3, 8 no

pAER123 Rosetta(DE3) 30 TB - 3, 8 no

pAER125 Rosetta(DE3) 30 TB - 3, 8 no

pAER136 BL21(DE3) 37 TB - 1, 5 no

pAER136 BL21(DE3) 30 TB - 3, 8 no

pAER136 BL21(DE3) 37 2×YT - 1, 5 no

pAER136 BL21(DE3) 30 2×YT - 3, 8 no

pAER118 BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 no

pAER119 BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 no

pAER124 BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 no

pAER125 BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 no

pAER118 BL21(DE3) 37 TB2 - 0.5, 1, 2.5, 5 no

pAER119 BL21(DE3) 37 TB2 - 0.5, 1, 2.5, 5 no

pAER124 BL21(DE3) 37 TB2 - 0.5, 1, 2.5, 5 no

pAER125 BL21(DE3) 37 TB2 - 0.5, 1, 2.5, 5 no

pAER118 BL21(DE3) 30 TB1 - 0.75, 1.5, 4, 8 no

pAER119 BL21(DE3) 30 TB1 - 0.75, 1.5, 4, 8 no

pAER124 BL21(DE3) 30 TB1 - 0.75, 1.5, 4, 8 no

pAER125 BL21(DE3) 30 TB1 - 0.75, 1.5, 4, 8 no
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER118 BL21(DE3) 30 TB2 - 0.75, 1.5, 4, 8 no
pAER119 BL21(DE3) 30 TB2 - 0.75, 1.5, 4, 8 no

pAER124 BL21(DE3) 30 TB2 - 0.75, 1.5, 4, 8 no

pAER125 BL21(DE3) 30 TB2 - 0.75, 1.5, 4, 8 no

pAER118 BL21(DE3) 23 TB1 - 1, 3, 8, 16 no

pAER119 BL21(DE3) 23 TB1 - 1, 3, 8, 16 no

pAER124 BL21(DE3) 23 TB1 - 1, 3, 8, 16 no

pAER125 BL21(DE3) 23 TB1 - 1, 3, 8, 16 no

pAER118 BL21(DE3) 23 TB2 - 1, 3, 8, 16 no

pAER119 BL21(DE3) 23 TB2 - 1, 3, 8, 16 no

pAER124 BL21(DE3) 23 TB2 - 1, 3, 8, 16 no

pAER125 BL21(DE3) 23 TB2 - 1, 3, 8, 16 no

pAER113a BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 yes

pAER115a BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 yes

pAER125 BL21(DE3) 37 TB1 - 0.5, 1, 2.5, 5 no

pAER113a BL21(DE3) 37 TB1 - 1, 3, 5, 7 no

pAER113a BL21(DE3) 30 TB1 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 23 TB1 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 37 TB2 - 1, 3, 5, 7 no

pAER113a BL21(DE3) 30 TB2 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 23 TB2 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 37 TB3 - 1, 3, 5, 7 yes

pAER113a BL21(DE3) 30 TB3 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 23 TB3 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 37 TB4 - 1, 3, 5, 7 no

pAER113a BL21(DE3) 30 TB4 - 3, 5, 7, 9 yes

pAER113a BL21(DE3) 23 TB4 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 37 TB5 - 1, 3, 5, 7 yes

pAER113a BL21(DE3) 30 TB5 - 3, 5, 7, 9 yes

pAER113a BL21(DE3) 23 TB5 - 3, 5, 7, 9 yes

pAER113a BL21(DE3) 37 TB6 - 1, 3, 5, 7 no

pAER113a BL21(DE3) 30 TB6 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 23 TB6 - 3, 5, 7, 9 no

pAER113a BL21(DE3) 37 TB7 - 1, 3, 5, 7 yes

pAER113a BL21(DE3) 30 TB7 - 3, 5, 7, 9 yes

pAER113a BL21(DE3) 23 TB7 - 3, 5, 7, 9 yes

pAER115a BL21(DE3) 37 TB1 - 1, 3, 5, 7 yes

pAER115a BL21(DE3) 30 TB1 - 3, 5, 7, 9 yes

pAER115a BL21(DE3) 23 TB1 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 37 TB2 - 1, 3, 5, 7 yes

pAER115a BL21(DE3) 30 TB2 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 23 TB2 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 37 TB3 - 1, 3, 5, 7 yes

pAER115a BL21(DE3) 30 TB3 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 23 TB3 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 37 TB4 - 1, 3, 5, 7 yes
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER115a BL21(DE3) 30 TB4 - 3, 5, 7, 9 yes
pAER115a BL21(DE3) 23 TB4 - 3, 5, 7, 9 yes

pAER115a BL21(DE3) 37 TB5 - 1, 3, 5, 7 yes

pAER115a BL21(DE3) 30 TB5 - 3, 5, 7, 9 yes

pAER115a BL21(DE3) 23 TB5 - 3, 5, 7, 9 yes

pAER115a BL21(DE3) 37 TB6 - 1, 3, 5, 7 no

pAER115a BL21(DE3) 30 TB6 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 23 TB6 - 3, 5, 7, 9 no

pAER115a BL21(DE3) 37 TB7 - 1, 3, 5, 7 yes

pAER115a BL21(DE3) 30 TB7 - 3, 5, 7, 9 yes

pAER115a BL21(DE3) 23 TB7 - 3, 5, 7, 9 yes

pAER119 BL21(DE3) 37 TB3 - 0.5, 1, 2.5, 5 no

pAER119 BL21(DE3) 30 TB3 - 0.75, 1.5, 4, 8 no

pAER119 BL21(DE3) 23 TB3 - 1, 3, 8, 16 no

pAER119 BL21(DE3) 37 TB4 - 0.5, 1, 2.5, 5 no

pAER119 BL21(DE3) 30 TB4 - 0.75, 1.5, 4, 8 no

pAER119 BL21(DE3) 23 TB4 - 1, 3, 8, 16 no

pAER119 BL21(DE3) 37 TB5 - 0.5, 1, 2.5, 5 no

pAER119 BL21(DE3) 30 TB5 - 0.75, 1.5, 4, 8 no

pAER119 BL21(DE3) 23 TB5 - 1, 3, 8, 16 no

pAER119 BL21(DE3) 37 TB6 - 0.5, 1, 2.5, 5 no

pAER119 BL21(DE3) 30 TB6 - 0.75, 1.5, 4, 8 no

pAER119 BL21(DE3) 23 TB6 - 1, 3, 8, 16 no

pAER125 BL21(DE3) 37 TB3 - 0.5, 1, 2.5, 5 no

pAER125 BL21(DE3) 30 TB3 - 0.75, 1.5, 4, 8 no

pAER125 BL21(DE3) 23 TB3 - 1, 3, 8, 16 no

pAER125 BL21(DE3) 37 TB4 - 0.5, 1, 2.5, 5 no

pAER125 BL21(DE3) 30 TB4 - 0.75, 1.5, 4, 8 no

pAER125 BL21(DE3) 23 TB4 - 1, 3, 8, 16 no

pAER125 BL21(DE3) 37 TB5 - 0.5, 1, 2.5, 5 no

pAER125 BL21(DE3) 30 TB5 - 0.75, 1.5, 4, 8 no

pAER125 BL21(DE3) 23 TB5 - 1, 3, 8, 16 no

pAER125 BL21(DE3) 37 TB6 - 0.5, 1, 2.5, 5 no

pAER125 BL21(DE3) 30 TB6 - 0.75, 1.5, 4, 8 no

pAER125 BL21(DE3) 23 TB6 - 1, 3, 8, 16 no

pAER113a BL21(DE3) 37 TB5 - 1, 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 37 TB5 1% glycine 1, 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 37 TB5
1.5% NaCl 

replacing K-salts 1, 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 37 TB5 50% less K-salts 1, 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 37 TB5 50% more K-salts 1, 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 37 TB5 1% lysine 1, 2, 3, 4, 5, 6 yes

pAER113a C41(DE3) 37 TB5 - 2, 3, 4, 5, 6 no

pAER113a C43(DE3) 37 TB5 - 2, 3, 4, 5, 6 no

pAER113a BL21(DE3) 37 TB5 1% leucine 2, 3, 4, 5, 6 yes
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Construct E. coli Strain Temp. 
(ºC) Media Media Additives Induction 

Length (hr)
Expression 
Observed?

pAER113a BL21(DE3) 37 TB5 1% tryptophan 2, 3, 4, 5, 6 yes
pAER113a BL21(DE3) 37 TB5 1% histidine 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 37 TB5 1% methionine 2, 3, 4, 5, 6 yes

pAER113a BL21(DE3) 30 TB5 1% lysine 1, 2, 3, 4, 5 yes

pAER113a BL21(DE3) 30 TB5
1% lysine, 100 µM 

FeCl 1, 2, 3, 4, 5 yes

pAER113a BL21(DE3) 30 TB5
1% lysine, 100 µM 

ZnCl2 1, 2, 3, 4, 5 yes

pAER113a BL21(DE3) 30 TB5
1% lysine, 50% 

more K-salts 1, 2, 3, 4, 5 yes

pDZS110 BL21(DE3) 37 LB - 1, 3, 5, 7 no

pDZS110 BL21(DE3) 30 LB - 2, 4, 6, 8 no

pDZS110 BL21(DE3) 37 TB - 1, 3, 5, 7 no

pDZS110 BL21(DE3) 30 TB - 2, 4, 6, 8 no

pDZS110 BL21(DE3) 37 TB5 - 1, 3, 5, 7 no

pDZS110 BL21(DE3) 30 TB5 - 2, 4, 6, 8 no

pDZS110 BL21(DE3) 37 TB5 1% lysine 1, 3, 5, 7 no

pDZS110 BL21(DE3) 30 TB5 1% lysine 2, 4, 6, 8 no

pDZS110 BL21(DE3) 37 TB5
1% lysine, 50% 

more K-salts 1, 3, 5, 7 no

pDZS110 BL21(DE3) 30 TB5
1% lysine, 50% 

more K-salts 2, 4, 6, 8 no

pET-HS-1c BL21(DE3) 30 2×YT - 1, 3, 5 no
pET-HS-1c BL21(DE3) 30 TB - 1, 3, 5 no

pET-HS-1c BL21(DE3) 30 TB5 - 1, 3, 5 no

pET-HS-3a BL21(DE3) 30 2×YT - 1, 3, 5 no

pET-HS-3a BL21(DE3) 30 TB - 1, 3, 5 no
pET-HS-3a BL21(DE3) 30 TB5 - 1, 3, 5 no

Freeze-Thaw Lysis Protocol

Bacterial pellets from small-scale expression tests were prepared for analysis by  Western 

blotting using freeze-thaw lysis in the presence of lysozyme and DNAse I.  Lysis buffer 

was made fresh just prior to use: 50 mM Tris pH 7.5; 150 mM NaCl, 5 mM MgCl2; 1 

EDTA-free protease inhibitor cocktail tablet (Roche) per 50 mL of buffer; 0.1 mg/mL 

lysozyme (Sigma); and 0.1 mg/mL DNAse I (Sigma).  Cell pellets were resuspended in 

100 µL lysis buffer and allowed to incubate at room temperature for 15 min.  Samples 
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were treated with 5 cycles of freeze-thaw, freezing in liquid N2 and thawing at 37 ºC.  

The final thaw was postponed until ~1 hr prior to gel loading.  It was observed that Fpn 

migrated with an anomalously  high molecular weight if boiled in SDS loading dye prior 

to gel loading.  We observed that incubating samples in SDS loading dye at  room 

temperature prevented this anomalous migration. Therefore, 50 µL of 4× reducing SDS-

PAGE dye was added and samples were incubated at room temperature for 1 hr prior to 

loading.  

Anti-His Western Blotting Protocol

SDS-PAGE was performed in SDS running buffer at  150 V until the dye front neared the 

bottom of the gel.  The gel was removed from its casing and washed in Western transfer 

buffer: Laemmli buffer + 10% (v/v) MeOH for >5 min before being assembled into the 

filter sandwich and Western transfer apparatus.  Transfer to nitrocellulose was carried out 

at 90 V for 40 min in a chilled Western transfer apparatus.  The nitrocellulose was then 

removed from the apparatus and blocked in TBST (50 mM Tris pH 7.5, 150 mM NaCl, 

and 0.5% (v/v) Tween 20) + 3% (w/v) bovine serum albumin (BSA, Sigma) for >30 min 

at room temperature. Mouse anti-His primary antibody (GE Healthcare) was added to 

blocking solution at 1:10,000 and incubated at room temperature for 1 hr.  Membranes 

were washed twice for 5 min in TBST.  Membranes were incubated with goat anti-mouse 

alkaline phosphatase-conjugated secondary antibody  (Rockland) in TBST + 1% (w/v) 

BSA at 1:10,000 at room temperature for 1 hr.  Membranes were washed twice for 5 min 

with TBST.  Membranes were briefly washed again with developing buffer (100 mM Tris 

82



pH 9.5; 100 mM NaCl; 5 mM MgCl2).  Membranes were developed at room temperature 

in 20 mL developing buffer by adding nitro blue tetrazolium chloride (NBT) (70 µL of 

50 mg/mL NBT in 70% dimethylformamide) and 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP) (40 µL of 50 mg/mL BCIP in 100% dimethylformamide).  

Detergent-Extraction Screening of Recombinant Fpn Expressed in E. coli

Wild-type human Fpn construct pAER113a was transformed into BL21(DE3) E. coli and 

was used to inoculate a 50 mL 2×YT culture containing 100 µg/mL kanamycin.  This 

culture was incubated overnight at 37 ºC while shaking at 240 rpm.  The following 

morning, two beveled 2 L flasks, each containing 500 mL of TB5 media with 1% (w/v) 

D-lysine and 100 µg/mL kanamycin and heated to 37 ºC, were inoculated with 10 mL of 

overnight culture.  Inoculated cultures were shaken at 240 rpm at 37 ºC and OD600 was 

monitored routinely.  When the OD600 reached 0.8, the cultures were shifted to a shaking 

incubator at 30 ºC for 15 min before being induced with 0.4 mM IPTG for 3.5 hr.  After 

induction, cells were harvested by centrifugation, their supernatants were removed and 

the cell pellets were split into 5 g portions and frozen at −20 ºC. Five grams of cell paste 

were thawed and resuspended in 30 mL of buffer containing 50 mM  Tris pH 7.5, 150 mM 

NaCl, and 1 tablet of complete EDTA-free protease inhibitors (Roche). Cells were 

disrupted by sonication on ice (settings: flat  tip; 8 rounds of 30-second pulses; power 8; 

25% duty cycle). Undisrupted cells were pelleted by centrifugation at 11,000×g at 4 ºC 

and membranes were spun down from the supernatant at  125,000×g at 4 ºC.  This 

supernatant was discarded and pelleted membranes were resuspended in 12 mL of buffer 
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containing 50 mM Tris pH 7.5, 150 mM  NaCl, and half a tablet of complete EDTA-free 

protease inhibitors, using a Dounce homogenizer. Resuspended membranes were 

aliquotted into 180 µL fractions in 1.5 mL disposable centrifuge tubes. All detergents 

used in this analysis were prepared as 10% solutions in water (table 3.4).  Twenty 

microliters of stock detergent solution was added to each aliquot of resuspended 

membranes, was mixed, and then was allowed to agitate gently  at 4 ºC for 2 hr.  After 

incubating the membranes in detergent, samples were ultracentrifuged at  140,000×g for 

1 hr at 4 ºC.  Thirty  microliters of each supernatant were removed and mixed with 10 µL 

4× SDS-PAGE loading dye and incubated at room temperature for 1 hr before being 

analyzed by Western blot as described above.   

Table 3.4. Detergent screen for bacterial expression tests
Detergent Name Chemical Name

CHAPS 3-[(3-Cholamidopropyl)-dimethylammonio]-1-propane sulfonate
Cholate 3α,7α,12α-Trihydroxy-5β-cholan-24-oic acid, monosodium salt

Deoxycholate 3α,12α-Dihydroxy-5β-cholan-24-oic acid, monosodium salt

Anzergent-3-12 n-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

Anzergent-3-14 n-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

Cymal-3 3-Cyclohexyl-1-propyl−β−D-maltoside

Cymal-4 4-Cyclohexyl-1-butyl−β−D-maltoside

Cymal-5 5-Cyclohexyl-1-pentyl−β−D-maltoside

Cymal-6 6-Cyclohexyl-1-hexyl−β−D-maltoside

Fos-choline-9 n-Nonylphosphocholine

Fos-choline-10 n-Decylphosphocholine

Fos-choline-12 n-Dodecylphosphocholine

Fos-choline-14 n-Tetradecylphosphocholine

Dodecyldimethyl glycine n-Dodecyl-N,N-dimethylglycine

Fos-choline-16 n-Hexadecylphosphocholine

Cyclofos-7 7-Cyclohexyl-1-heptylphosphocholine

Fos-choline-iso-11 2,8-Dimethyl-5-nonylphosphocholine

LDAO n-Dodecyl-N,N-dimethylamine-N-oxide

Fos-MEA-8 Octylphospho-N-methylethanolamine

Fos-MEA-10 Decylphospho-N-methylethanolamine

Fos-MEA-12 Dodecylphospho-N-methylethanolamine
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Detergent Name Chemical Name

Fosfen-4 Tetraphenylphosphocholine
Fosfen-5 Pentaphenylphosphocholine

Fosfen-9 Nonylphenylphosphocholine

Octyl glucoside n-Octyl−β−D-glucoside

Nonyl glucoside n-Nonyl−β−D-glucoside

HEGA-9 Nonanoyl-N-hydroxyethylglucamide

HEGA-10 Decanoyl-N-hydroxyethylglucamide

MEGA-8 Octanoyl-N-methylglucamide

MEGA-9 Nonanoyl-N-methylglucamide
Nonyl maltoside n-Nonyl−β−D-maltoside
Decyl maltoside n-Decyl−β−D-maltoside
Undecyl maltoside n-Undecyl−β−D-maltoside
Dodecyl maltoside n-Dodecyl−β−D-maltoside
Tridecyl maltoside n-Tridecyl−β−D-maltoside
Tween 20 Polyoxyethylene(20)sorbitan monolaurate
Brij-35 Polyethylene glycol (23) monododecyl ether
Brij-58 Polyethylene glycol (20) monohexadecyl ether
Tween 80 Polyoxyethylene(80)sorbitan monolaurate
C10E6 Polyoxyethylene(6)decyl ether
C10E9 Polyoxyethylene(9)decyl ether
C12E8 Polyoxyethylene(8)dodecyl ether
C12E9 Polyoxyethylene(9)dodecyl ether
C12E10 Polyoxyethylene(10)dodecyl ether
C13E8 Polyoxyethylene(8)tridecyl ether
Triton X-100 α-[4-(1,1,3,3-Tetramethylbutyl)phenyl]-ω-hydroxy-poly(oxy-1,2-ethanediyl)
Triton X-114 α-[(1,1,3,3-Tetramethylbutyl)phenyl]-ω-hydroxy-poly(oxy-1,2-ethanediyl)

Small-Scale Expression, Purification and SEC Detergent Screening of Fpn from E. coli

Wild-type human Fpn construct pAER113a transformed into BL21(DE3) was expressed 

in 500 mL volumes (as described above) and cell paste was divided into 1 g fractions for 

small-scale purification and size exclusion chromatography (SEC) detergent screening.  

All steps were performed on ice or at 4 ºC, unless otherwise indicated. One gram of cell 

paste was resuspended in 7.5 mL of buffer (50 mM Tris pH 7.5, 150 mM NaCl, and 1 

EDTA-free Complete protease inhibitor tablet (Roche) per 50 mL).  Resuspended cells 

were lysed by  sonication on ice (flat tip, power level 8, 45 seconds total process time, 

25% duty  cycle).  Cell debris was removed by  centrifugation at 8,000×g.  Membranes 
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were pelleted at 125,000×g for 1 hr.  The membrane pellet was resuspended in 6 mL of 

the above buffer using a Dounce homogenizer.  Homogenized membranes were 

transferred to a 15 mL plastic conical tube (Falcon).  Fpn was solubilized by adding 1% 

(w/v) detergent and gently agitating ~12 hr at 4 ºC. After the detergent solubilization, 

6 mL of salt-adjustment buffer (50 mM Tris pH 7.5, 425 mM NaCl, 100 mM imidazole 

pH 7.5, and 0.1 % (w/v) detergent) was added such that the final buffer concentration was 

50 mM Tris pH 7.5, 500 mM NaCl, 50 mM  imidazole pH 7.5, and 0.1% detergent.  Pre-

equilibrated Ni-NTA Superflow (Qiagen) resin (~0.25 mL) was added to the mixture and 

Fpn was loaded by  gently  rocking for 3 hr at 4 ºC. Ni-NTA resin slurry was poured over a 

disposable column and the flow through was collected by gravity  flow.  Resin was 

washed with 10 mL Ni-NTA wash buffer (50 mM  Tris pH 7.5, 500 mM NaCl, 50 mM 

imidazole pH 7.5, 2× the critical micelle concentration (CMC) for the detergent being 

tested, and 1 EDTA-free Complete protease inhibitor pellet per 500 mL). Fpn was eluted 

with 10 mL Ni-NTA elution buffer (50 mM  Tris pH 7.5, 50 mM NaCl, 300 mM 

imidazole pH 7.5, detergent at 2× CMC, and 1 EDTA-free Complete protease inhibitor 

pellet per 500 mL).  Eluate was concentrated using a 10,000 molecular weight cut-off 

4 mL Amicon-Ultra spin concentrator (Millipore) to <100 µL volume.  Concentrated 

eluate was centrifuged at 13,000×g for 10 min.  A 50 µL portion was analyzed by SEC 

using a 1.4 mL Superdex 200 SEC column (GE Healthcare) driven by  a SMART System 

FPLC (GE Healthcare) at  50 µL/min in SEC buffer (50 mM  Tris pH 7.5, 150 mM NaCl, 

detergent at 2× CMC, and 1 EDTA-free Complete protease inhibitor pellet per 500 mL). 
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Fractions were collected and analyzed by  SDS-PAGE anti-His Western blot as described 

above.

Large-Scale Expression and Purification of Fpn in E. coli

Sixty-liter expressions were carried out in a New Brunswick fermenter.  BL21(DE3) E. 

coli containing the plasmid pAER113a was expressed in TB5 with 1% lysine and 

100 µg⁄mL kanamycin. The night before fermentation, a 25 mL overnight culture was 

inoculated from a single colony of a fresh transformation.  In the morning, two 2 L flasks 

each containing 1 L of media were inoculated with 10 mL of the overnight culture and 

were grown at 37 ºC until the OD600 reached ~0.4, at  which point it was used to inoculate 

58 L of media warmed to 37 ºC in the fermenter.  The fermenter was run at 300 rpm at 

37 ºC until the OD600 ≈ 0.4 and then the temperature was lowered to 30 ºC and was 

induced by adding 0.1 mM IPTG.  Cells were harvested after 3 hr of induction.

Cells from approximately one-quarter to one-half of a fermenter run were used per 

purification.  The following purification was for ~160 grams of wet cell paste (~half of 

that particular expression). Cells were resuspended by  adding 600 mL resuspension 

buffer: 50 mM Tris pH 7.5; 150 mM NaCl; and 6 complete EDTA-free protease inhibitor 

tablets (Roche). Cells were split into 4 beakers (~175 mL each) and disrupted by 

sonication (on ice, flat tip, power level 10, 25% duty cycle, 2 min per beaker total process 

time). Large cellular debris was spun down at ~12,000×g for 15 min at 4 ºC. The 

membrane-containing supernatant was then ultracentrifuged at 125,000×g for 1 hr at  4 ºC 
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to pellet membranes. The supernatant was discarded and the membrane pellet  was 

resuspended using a Dounce homogenizer in 100 mL resuspension buffer. Dry fos-

choline-16 was added to resuspended membranes to a final concentration of 1.5% and 

solubilization was performed at  4 ºC overnight, with gentle stirring. After solubilization, 

unsolubilized material was pelleted by ultracentrifugation at 125,000×g for 1 hr at 4 ºC. 

The supernatant was carefully removed and its volume measured.  Buffer components 

were carefully added to raise the NaCl concentration to 500 mM  and to add imidazole pH 

7.5 to a concentration of 50 mM.  The final buffer concentration for the solubilized 

protein solution was 50 mM Tris pH 7.5, 500 mM NaCl, 50 mM imidazole pH 7.5, 1.5% 

fos-choline-16 and EDTA-free protease inhibitors.  Two milliliters of pre-equilibrated Ni-

NTA superose beads (Qiagen) were added to the solution and slowly  stirred in batch at 

4 ºC for several hours. Ni-NTA-protein slurry  was loaded onto a glass column by 

peristaltic pump at 0.5 mL/min and 4 ºC, collecting the flow through.  Once fully  loaded 

in the glass column, the beads were washed with 50 mL wash buffer: 50 mM Tris pH 7.5; 

500 mM NaCl; 50 mM  imidazole pH 7.5; 0.01% fos-choline-16; 1/10 EDTA-free 

protease inhibitor tablet.  Fpn was eluted from the Ni-NTA beads with 20 mL low 

imidazole elution buffer (50 mM Tris pH 7.5; 150 mM  NaCl; 150 mM imidazole pH 7.5; 

0.005% fos-choline-16; and 1/25 EDTA-free protease inhibitor tablet), and 20 mL high 

imidazole elution buffer (50 mM Tris pH 7.5; 150 mM  NaCl; 500 mM imidazole pH 7.5; 

0.005% fos-choline-16; and 1/25 EDTA-free protease inhibitor tablet).
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Baculovirus Expression Constructs

Full-length human, mouse, and zebrafish Fpn genes were subcloned into pAcUW51 and 

pBacPAK8 baculovirus shuttle vectors (table 3.5).  Both types of vectors utilized the 

polyhedron promoter to drive Fpn expression and included the consensus KOZAK 

sequence GCCGCCGCC.  Fpn constructs subcloned into the pAcUW51 vector contained 

a C-terminal 6× His tag.  Fpn constructs subcloned into pBacPAK8 contained an N-

terminal Rho tag and C-terminal FLAG tag and/or a 10× His tag (table 3.5). The Rho tag 

is the first 20 amino acids of bovine rhodopsin, and has been shown to boost expression 

for some eukaryotic membrane proteins (Krautwurst et al. 1998). Baculoviruses were 

constructed and supplied by the Caltech Protein Expression Center. Baculoviruses 

constructed from the pBacPAK8 shuttle vectors were done so with ProGreen Baculovirus 

DNA (AB Vector), which included a soluble green fluorescent protein (GFP) driven by 

the p10 promoter.  GFP expression was used to monitor and optimize infection for these 

baculoviruses.

Table 3.5. Baculovirus expression vectors
Plasmid Name Gene or Insert Name Parent Vector N-terminal tag C-terminal tag

pAER105 human Fpn (w.t.) pAcUW51 none His6
pAER106 human Fpn N144H pAcUW51 none His6
pAER107 human Fpn A77D pAcUW51 none His6

Rho-hFpn-His human Fpn (w.t.) pBacPAK8 Rho His10
Rho-mFpn-His mouse Fpn (w.t.) pBacPAK8 Rho His10
Rho-zFpn-His zebrafish Fpn (w.t.) pBacPAK8 Rho His10

Rho-hFpn-His-FLAG human Fpn (w.t.) pBacPAK8 Rho His10-FLAG
Rho-mFpn-His-FLAG mouse Fpn (w.t.) pBacPAK8 Rho His10-FLAG
Rho-zFpn-His-FLAG zebrafish Fpn (w.t.) pBacPAK8 Rho His10-FLAG
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Small-Scale Tests of Fpn Expression in Baculovirus-Infected Insect Cells

High titer virus stocks were generated at  the Caltech Protein Expression Center. 

Suspension-cultured High Five or Sf9 cells (Invitrogen) were grown in ESF 921 media 

(Expression Systems) with 1× penicillin/streptomycin (Gibco) and split daily  in a shaking 

incubator at  27 ºC and shaking at 233 rpm.  Two-liter beveled filter-capped Erlenmeyer 

flasks (Corning) containing 1 L media were seeded with insect cells to a starting density 

of 0.5·106 viable cells/mL and cultured until the density reached ~3.5·106 viable cells⁄mL 

before enough virus to infect over 95% of cells was added.  The infection was allowed to 

proceed for ~48 hr before cells were harvested by centrifugation.  Cells from 1 mL of 

culture at the time of harvest were removed and frozen for later analysis by Western blot, 

probing against the Rho or His tags.  

Sucrose Gradient Analysis of Fpn Expression in Insect Cell Membranes

Fpn constructs Rho-hFpn-His, Rho-mFpn-His, and Rho-zFpn-His were expressed in 1 L 

volumes of High Five insect cells as described above and split into thirds.  The following 

protocol is adapted from Hu and Kaplan, 2000 (Hu and Kaplan 2000). Cells from one-

third of a liter were resuspended in 50 mL ice-cold resuspension/lysis buffer (50 mM Tris 

pH 7.5, 150 mM  NaCl, 2 EDTA-free Complete protease inhibitors (Roche), 1 mM EDTA 

pH 8.0).  Cells were lysed by sonication (flat tip, power level 6, 3 min total process time, 

25% duty cycle) and cellular debris was removed by centrifugation at  12,000×g for 

20 min at 4 ºC.  The supernatant was subject to ultracentrifugation at 125,000×g for 1 hr 
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at 4 ºC to spin down insect cell membranes.  The ultracentrifugation supernatant was 

discarded and the pellet was resuspended with a Dounce homogenizer in 18 mL of 

membrane resuspension buffer (66.7 mM  Tris pH 7.5, 200 mM NaCl, 1 EDTA-free 

Complete protease inhibitor tablet, 1.33 mM EDTA pH 8.0) and 11.5 grams of dry 

sucrose was added and agitated at 4 ºC until fully dissolved.  The final volume of this 

membrane suspension was ~24 mL and the final buffer composition was 50 mM Tris pH 

7.5, 150 mM NaCl, 1 mM EDTA, and 1.4 M sucrose.  A step  sucrose gradient was poured 

into thin-walled Ultra Clear ultracentrifuge tubes (Beckman) as follows: 3 mL 1.6 M 

sucrose; 12 mL 1.4 M sucrose-containing membranes; 12 mL 1.2 M sucrose; 6 mL 0.8 M 

sucrose; and 3 mL 0.4 M sucrose.  Step gradients were subject to ultracentrifugation at 

96,000×g for 2.5 hr at 4 ºC in a L8-80M Ultracentrifuge (Beckman) using a swinging 

bucket SW32 rotor (Beckman).  Insect cell plasma membranes are known to migrate 

between the 0.8 and 1.2 M sucrose steps, whereas ER membranes are known to migrate 

between 1.2 and 1.4 M  sucrose steps (Hu and Kaplan 2000).  We found the junctions 

between these steps to have a buildup of off-white material, and they were harvested by 

puncturing the side of the thin-walled ultracentrifuge tube with a syringe. These layers 

were analyzed by Western blotting against the N- and C-terminal tags. 

Detergent-Extraction Screening of Recombinant Fpn Expressed in Insect Cells

Plasma and ER membrane fractions from one-third liter of baculovirus-infected High 

Five cells were harvested from a step sucrose gradient as described above.  Plasma and 

ER membrane fractions from Rho-mFpn-His constructs were each diluted to 20 mL with 
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dilution buffer (100 mM  Tris pH 7.5, 300 mM NaCl, 2 mM EDTA, and 2 EDTA-free 

protease inhibitor tablets). These fractions were aliquoted into 400 µL fractions and 

50 µL of 10% detergent stocks (table 3.4) were added to each.  The detergent-membrane 

mixtures were allowed to incubate for 12 hr at 4 ºC with gentle agitation.  After the 

detergent incubation, unsolubilized material was pelleted by ultracentrifugation at 

140,000×g for 20 min at 4 ºC.  The supernatant was removed and 15 µL was mixed with 

5 µL reducing SDS-PAGE loading dye and incubated for 1 hr at room temperature before 

Western blot analysis.  

Scaled-up Expression and Purification of Human, Mouse, and Zebrafish Fpn in Insect 

Cells

Expression and purification of human, mouse and zebrafish Fpns in baculovirus-infected 

insect cells was performed as described (Rice et al. 2009). 

Results and Discussion

Recombinant Expression of Human, Mouse, and Zebrafish Fpn in E. coli

Small-scale human, mouse, and zebrafish Fpn expression tests were performed using 20 

different expression constructs (table 3.1), in 5 different strains of E. coli, grown in over 

10 types of expression media (table 3.2), under several different temperatures, induction 

conditions, and induction time points. Over 900 separate expression tests were performed 

(table 3.3) and Fpn expression was monitored by  Western blotting against a His or 
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StrepTagII tag. Expression constructs each contained the full-length human, mouse, or 

zebrafish sequence in the presence of affinity tags on the N- and/or C-termini. We 

focused mainly on utilizing 6× His tags, but also screened constructs containing 

StrepTagII, myc epitope, or maltose binding protein fusions. We reasoned that if Fpn 

were expressed in E. coli and functional as an iron exporter, it might be toxic and thus 

difficult to express at high levels. In an attempt to prevent this toxicity, we also expressed 

two mutant forms of Fpn that had been shown to cause ferroportin disease in humans—

A77D and N144H. At the time of cloning, these mutations had been freshly discovered, 

and we did not know if these mutants were unable to act as exporters, but went ahead and 

included them in our expression testing. Out of twenty  Fpn expression constructs 

screened (table 3.1), we observed expression detectable by  Western blot in only  two—

pAER113a and pAER115a (figure 3.1). The pAER113a construct  encoded the wild-type 

human Fpn gene with N- and C-terminal His tags.   The pAER115a construct encoded the 

N144H human Fpn gene containing an N-terminal His tag and a C-terminal myc-His tag.  

Both pAER113a and pAER115a yielded expression of an Fpn band at ~60 kDa.  Both of 

these expression vectors were constructed from the pET-28b expression plasmid 

(Novagen) driven by  the IPTG-inducible T7 promoter.  Interestingly, pAER113a and 

pAER115a were the only Fpn variants screened with both N- and C-terminal His tags. 

They  were the product of a mis-annealed PCR and were only identified upon sequencing, 

but were added to the library of expression constructs because of their unique tagging 

configurations.  We did not re-clone mouse Fpn, zebrafish Fpn, nor other Fpn mutants 

with both N- and C-terminal His tags to further test bacterial expression of Fpn, however 
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we expect that these other Fpn forms are capable of being expressed in E. coli with His 

tagging on both termini. 

 

While the details of the expression construct played an important part in bacterial 

expression of Fpn, we found that expression strain and media type were observed to be 

similarly  critical parameters for obtaining detectable expression.  We found that 

BL21(DE3) E. coli was suitable for Fpn expression, but we did not observe expression in 

any other bacterial strain tested. Other strains tested include Rosetta(DE3) (Novagen) and  

RosettaBlue(DE3) (Novagen) strains, which express rare E. coli codon machinery and 

have been shown to help boost the expression of some eukaryotic proteins, and 

C41(DE3) and C43(DE3) strains, which have been shown to be capable of over-

expressing eukaryotic membrane proteins (Arechaga et al. 2003). The culture media 

formulation also had an important effect on expression. We tested Fpn expression using 

11 different media formulations (table 3.2). These media formulations were based on the 

common media formulations known as LB, SOC, 2×YT, and TB. The media formulations 

TB1-TB7 (also called GM1-GM7) were developed by Yan Poon (Poon 2008).  They  were 

derivatives of TB where some or all of the yeast extract was replaced with malt and/or 

beef extracts (table 3.2). Fpn expression was observed in some conditions with the TB, 

TB1, TB2, TB3, TB4, TB5, and TB7 media formulations, but not in the 2×TY, LB, SOC, 

or TB6 media formulations (table 3.3).
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After screening and optimizing Fpn expression as described above, the best expression 

condition observed was using the pAER113a or pAER115a vector, BL21(DE3) strain, 

grown in TB5 media and induced at 30 ºC for 3 hr.  We sought to further enhance 

expression by varying amino acid and salt additives in this formulation.  We varied the 

salts in TB5 by increasing or reducing the amount of potassium phosphate salt solution or 

by replacing them with sodium chloride. Separate tests screened amino acid additives, 

where pure powdered L-glycine, L-lysine, L-tryptophan, L-leucine, L-histidine, or L-

methionine were added to a level of 1% (w/v). Fpn expression was observed in all these 

tests, and the addition L-lysine lead to a small increase in expression (figure 3.2). Further 

tests were performed to test  if the further addition of 100 µM FeCl2 or ZnCl2 would 

increase expression, however they did not. 

 

The final optimized and scaled-up Fpn expression condition in E. coli was in BL21(DE3) 

cells transfected with pAER113a, grown in TB5 media with an additional 1% L-lysine, 

and induced by 0.1 mM IPTG for 3 hr at 30 ºC.  Typical 55 L fermenter runs yielded 

~320–350 grams of wet bacterial cell paste.

Boiling Fpn in Loading Dye Results in Aberrant SDS-PAGE Migration

Fpn expressed in E. coli was found to run at an anomalously high molecular weight if 

SDS-PAGE sample preparation protocol involved the usual 95–100 ºC incubation in 

SDS-containing loading dye.  Under these conditions Fpn was observed to run at an 

apparent molecular weight  of 150–250 kDa (figure 3.3).  Fpn samples incubated at room 
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temperature for >20 min were shown to migrate with an apparent mass of 60 kDa, which 

was much closer to the predicted Fpn molecular weight of 65–70 kDa (depending on 

affinity tag configuration).  Unless otherwise noted, Fpn samples analyzed by SDS-PAGE 

for subsequent Coomassie staining or Western blotting were all incubated at room temp 

for 20 min to 1 hr prior to loading.  

Detergent-Extraction of Recombinant Fpn from E. coli Membranes

Human Fpn expressed in BL21(DE3) from the expression plasmid pAER113a was 

screened for its ability to be solubilized by 48 detergents as described above (table 3.4).  

Membranes solubilization was performed at 4 ºC for 2 hr, after which unsolubilized 

material was centrifuged and supernatants were analyzed by  Western blot, probing with 

an anti-His antibody  against the affinity tags on this Fpn construct.  Comparing detergent 

extractions with non-detergent controls allowed for the clear identification of small 

amounts of solubilized Fpn in the presence of a subset of detergents screened. The 

detergents fos-choline-14, fos-choline-16, cyclofos-7, anzergent-3-12, anzergent-3-14, 

and to a lesser extent cymal-4, were capable of extracting Fpn from bacterial membranes 

to yield a band at ~60 kDa as detected by Western blot (figure 3.4).  Interestingly, the 

Western blots of this analysis revealed that some detergents extracted Fpn in a form that 

was aggregated at >200 kDa as determined by SDS-PAGE, much like the bands observed 

when samples are boiled in SDS-PAGE loading dye.  These high molecular weight Fpn 

aggregates were detected by  Western blot upon solubilization with the detergents 
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anzergent-3-14, fos-choline-10, -12, -14, and -16, LDAO, dodecyldimethyl glycine, 

cyfos-7, and almost all polyoxyethylene detergents (table 3.6) (figure 3.4).  

Table 3.6. Detergent extraction of Fpn expressed in E. coli and insect cells 

Detergent Name
Bacterial Expression Insect Cell Expression

Extracted As: Extracted As:

60 kDa band Aggregates 60 kDa band Aggregates
CHAPS   +  
Cholate   +  

Deoxycholate   +  

Anzergent-3-12 +  + +

Anzergent-3-14 + + + +

Cymal-3   +  

Cymal-4  n.d. n.d.

Cymal-5 +  +  

Cymal-6   +  

Fos-choline-9   n.d. n.d.

Fos-choline-10  + + +

Fos-choline-12  + + +

Fos-choline-14 + + + +

Dodecyldimethyl glycine  + + +

Fos-choline-16 + + +  

Cyclofos-7 + + n.d. n.d.

Fos-choline-iso-11   n.d. n.d.

LDAO  + + +

Fos-MEA-8   +  

Fos-MEA-10   +  

Fos-MEA-12   +  

Fosfen-4   +  

Fosfen-5     

Fosfen-9   n.d. n.d.

Octyl glucoside     

Nonyl glucoside     

HEGA-9   + +

HEGA-10     

MEGA-8     

MEGA-9   +  

Nonyl maltoside   +  

Decyl maltoside   +  

Undecyl maltoside   +  

Dodecyl maltoside   +  
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Detergent Name
Bacterial Expression Insect Cell Expression

Tridecyl maltoside   +  

Tween 20  + +  

Brij-35  + +  

Brij-58  + + +

Tween 80     

C10E6  + n.d. n.d.

C10E9  + + +

C12E8  + + +

C12E9  + + +

C12E10  + + +

C13E8  + + +

Triton X-100  + + +

Triton X-114  + n.d. n.d.

Based on these results, a subset of the detergents screened was selected to move forward 

with small-scale preparations of Fpn.  Samples were solubilized, purified by Ni-affinity 

chromatography, and analyzed by analytical size exclusion chromatography  (SEC) using 

a 1.4 mL Superdex 200 column (GE Healthcare) performed using a Smart  System FPLC 

(GE Healthcare), as described in the methods.  The detergents chosen for the next phase 

of analysis included each detergent that  was capable of extracting Fpn as an 

approximately 60 kDa band in the solubilization screen (fos-choline-14, fos-choline-16, 

cyclofos-7, anzergent-3-12, anzergent-3-14, and cymal-4), as well as a subset  of the 

detergents that were shown to extract  Fpn as a high molecular weight band (fos-

choline-10, and fos-choline-12). Analytical SEC profiles revealed that fos-choline-14 and 

fos-choline-16 were capable of stabilizing solubilized Fpn as a predominantly  single 

peak, suggesting a single species, though without accurate knowledge of the detergent 

micelle size, we were not capable of determining the oligomeric state of solubilized Fpn 

with these data (figure 3.5).  The analytical SEC trace for the fos-choline-16 
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solubilization was the most symmetric, with the fos-choline-14 solubilization having a 

small high molecular weight shoulder in its trace.  Extracting with fos-choline-12 

revealed a complicated trace with much more material eluting at higher molecular 

weights, as well as in the void volume.  We found that fos-choline-10 was poor at 

solubilizing Fpn from these membranes, with the little Fpn that was extracted being 

observed in the void volume.  Cyclofos-7 was also a very  poor Fpn extractor as assessed 

by this method.  Anzergent-3-12 and anzergent-3-14 both yielded complicated SEC 

traces, indicative of heterogeneity in the aggregation state of these Fpn samples. We 

concluded that fos-choline-16 was the best detergent for the solubilization of Fpn from 

bacterial membranes into a homogenous population of solubilized protein-detergent 

complexes.  

Purification of Recombinant Fpn from E. coli

Doubly His-tagged Fpn was expressed in BL21(DE3) E. coli as described above.  Cells 

were harvested, lysed by sonication and whole-cell membranes were separated from 

soluble proteins and cellular debris by centrifugation.  Purified membranes were 

incubated with fos-choline-16 detergent to extract  Fpn and then unsolubilized membranes 

were removed by  centrifugation. Fpn was then purified by Ni affinity  chromatography 

and eluted with imidazole (figure 3.6). After Ni chromatography, Fpn purity was assessed 

by SDS-PAGE to be ~50%–60%.  Fpn expression was verified by  Western blotting 

against the His tag, as well as by proteolytic peptide sequencing by  mass spec at the 

PPMAL facility  in the Beckman Institute at Caltech.  Yields were estimated at ~10–30 µg 
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purified Fpn per liter of bacterial culture.  Further purification efforts using ion exchange 

chromatography  or SEC were made as well, however due to the low initial yield, protein 

losses during these extra steps resulted in very little final protein.  While the bacterial 

expression of Fpn was possible, it was not suitable for its production in milligram 

quantities at high purity for biophysical analysis and crystallization attempts.  

Recombinant Expression of Human, Mouse, and Zebrafish Fpn in Insect Cells

Small-scale tests screening the expression of human, mouse and zebrafish Fpn were 

carried out  in shaking flasks of High Five cells grown in suspension.  Baculoviruses used 

to infect these insect cells (table 3.5) encoded Fpn variants with or without an N-terminal 

Rho tag (Krautwurst et al. 1998). Each baculovirus tested utilized the polyhedron 

promoter to drive Fpn expression.  We observed Fpn expression by Western blot for each 

baculovirus containing an N-terminal Rho tag, whereas no Fpn expression was observed 

for baculoviruses coding for Fpn lacking this tag.  Western blotting was performed using 

probes against both the N-terminal Rho tag and C-terminal affinity tags, verifying full-

length Fpn expression (figure 3.7).  Differences between the C-terminal affinity tags 

included in these constructs had minimal effect  on expression levels.  Constructs with 

either a 10× His tag or a 10× His tag in tandem with a FLAG tag were expressed at 

similar levels.  Furthermore, the three Fpn homologues were found to express at 

comparable levels, as determined by Western blot.  Both High Five (derived from 

Trichoplusia ni) and Sf9 (derived from Spodoptera frugiperda) insect cell lines were 
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capable of expressing Fpn (figure 3.7), however all scaled-up expressions were 

performed in High Five cells (Rice et al. 2009).

While full-length Fpn expression was observed when baculovirus-infected insect cells 

were analyzed by Western blot, we sought to learn the subcellular location of this 

expressed Fpn.  In particular, we wanted to determine if Fpn was fully processed and 

transported to the plasma membrane, or if it  was building up  within the cell at a 

processing organelle such as the endoplasmic reticulum.  To assess the location of Fpn 

within these insect cells, we performed a coarse sucrose gradient fractionation.  We 

observed that a large fraction of the expressed Fpn was fully  processed and trafficked to 

the plasma membrane, with some significant fraction present in the ER (figure 3.8). 

These results indicated that insect cells were capable of expressing, processing and 

trafficking human, mouse, and zebrafish Fpn to the plasma membrane.  Because we 

observed such a large fraction of Fpn in the plasma membrane, we suggest that  the Fpn 

contained within subcellular compartments was proceeding along the biosynthetic 

pathway without significant bottlenecks.  

Detergent Extraction of Recombinant Fpn from Insect Cell Membranes

In contrast to bacterially expressed Fpn, which was only capable of being extracted by a 

few detergents, insect  cell–expressed Fpn was broadly extractable by many detergents 

screened (table 3.6) (figure 3.9).  Some detergents, such as cymals, maltosides, fos-

choline-16, fos-MEAs, and MEGA-9, extracted Fpn as a band migrating with an apparent 
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mass of ~60 kDa with little to no aggregate observed by Western blot.  Other detergents, 

such as the lower chain length fos-cholines, polyoxyethylenes, anzergents and LDAO, 

were capable of extracting Fpn as an ~60 kDa band, but also extracted a significant 

portion of Fpn as aggregates (table 3.6).  These high molecular weight aggregates were 

not observed in samples treated without detergent, and perhaps suggests that some 

detergents extract Fpn in a partially unstable form tending toward aggregation.  

Purification of Recombinant Fpn from Insect Cells

The expression, detergent extraction, and purification of human Fpn to levels suitable for 

biophysical characterization has been described (Rice et al. 2009).  Mouse and zebrafish 

Fpns were purified using identical methods, with similar results (figures 3.10 and 3.11).  

Numerous crystallization attempts (>5,000) were carried out with purified human, mouse 

and zebrafish Fpn (see appendix), however no Fpn crystals were observed.  
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Figure 3.1.  Western blot of small-scale bacterial expression of wild-type (panel A) and 
N144H (panel B) Fpns. As described in the methods, BL21(DE3) E. coli were 
transformed with either pAER113a or pAER115a, cultured in TB5 media at 37 ºC, shifted 
to the final temperature, induced with IPTG, and harvested after the time shown, in hours.  
Panel C shows a schematic depicting the tagging orientation of the constructs used.  The 
~60 kDa Fpn bands are indicated (red arrows).
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Figure 3.2. Western blot of test for the affect of growth media additives to bacterial 
cultures.  BL21(DE3) E. coli was transformed with wild-type Fpn (pAER113a) and was 
cultured in TB5 media with 1% L-glycine, 1% L-lysine or 50% extra salt as additives, as 
indicated in the methods.  Induction length is indicated in hours, for each lane.  “Control” 
is expression in TB5 media alone.  The ~60 kDa Fpn bands are indicated (red arrow).

104



Figure 3.3.   Boiling samples in loading dye leads to aberrant SDS-PAGE migration.  A 
Western blot is shown for an expression time course of N144H Fpn (pAER115a) in 
BL21(DE3) E coli.  Samples loaded in the “boiled” or “room temp” lanes were taken 
from the same time course, with the only difference being their treatment immediately 
prior to gel loading.  Samples were either boiled in loading dye for 1 min or incubated at 
room temperature for 1 hr prior to SDS-PAGE.  Induction length is indicated in hours, for 
each lane.  The ~60 kDa Fpn band is noted by a red arrow. 
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Figure 3.4. Detergent solubilization screen of Fpn expressed in BL21(DE3) E.coli.  
Samples were incubated in water or 1% detergent and Western blots against the His tag 
were performed.  Fpn bands at ~60 kDa are noted by red arrows.  See table 3.6 for a full 
summary of these data.
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Figure 3.5.  Quality  analysis by SEC for fos-choline extraction of Fpn from E. coli 
membranes. Fos-choline 10, 12, 14, and 16 were used to extract Fpn from BL21(DE3) E. 
coli.  Extracts were purified by Ni affinity chromatography, concentrated, and analyzed 
by SEC using a SMART system FPLC.  Traces for molecular weight standards are shown 
in gray or black for reference (MW1 and MW2), and the molecular weight, in kDa, 
corresponding to each peak is labeled. 
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Figure 3.6. Ni-NTA purification of N144H human Fpn (pAER115a) expressed in 
BL21(DE3) E. coli.  Purified Fpn was eluted with imidazole (see Methods) and 5, 15, or 
30 µL were loaded on a 12% polyacrilamide gel and analyzed by SDS-PAGE.  Coomasie 
staining revealed a Fpn band at ~60 kDa (red arrow).  Molecular weight standards are 
shown at left and labeled in kDa.   
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Figure 3.7.  Expression of Fpn in baculovirus-infected insect  cells.  Baculoviruses 
encoding full-length human, mouse, or zebrafish Fpn with an N-terminal Rho tag and a 
C-terminal His tag (H, M, and Z, respectively) or only a C-terminal His tag (H (no rho)), 
were used to infect Sf9 and High Five insect cells.    Cells were harvested 48 hr post-
infection and Westerns against the His (panel A) or Rho (panel B) tags were performed.  
Molecular weight markers are labeled on the left in kDa.  Panel C shows a schematic 
depicting the tagging orientation of the constructs used. 
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Figure 3.8.  Sucrose gradient of membranes from Fpn-expressing baculovirus-infected 
insect cells.  A Western blot against the Rho tag of human, mouse, and zebrafish Fpn 
reveals that Fpn was found in both plasma membrane (PM) and endoplasmic reticulum 
(ER) fractions.  Molecular weight standards are shown in kDa.
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Figure 3.9. Detergent solubilization screen of Fpn expressed in insect cells.  
Solubilization was performed in water (“no det.”) or 1% detergent (see methods) and 
Western blots against  the Rho tag were performed.  Fpn bands at ~60 kDa were observed 
for solubilization for many detergents tested.  See table 3.6 for a full summary of these 
data.
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Figure 3.10. Coomassie-stained SDS-PAGE analysis of purified Fpn expressed in 
baculovirus-infected High Five cells.  Full-length human, mouse and zebrafish Fpn with 
an N-terminal Rho tag, and a C-terminal tandem 10×His-FLAG tag were expressed in 
insect cells.  Panel A shows human, mouse, and zebrafish Fpns after TALON and FLAG 
column purification.  Panel B shows human and mouse Fpns after an additional SEC 
separation.  Molecular weight standards are shown at left and labeled in kDa.
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Figure 3.11.  SEC analysis of mouse Fpn after purification over TALON and FLAG 
columns.  The mouse Fpn elution profile is a symmetrical peak with a small high 
molecular weight shoulder. 
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Chapter 4:

Lack of Evidence for Interactions between Ferroportin and 

the Hereditary Hemochromatosis Protein, HFE

In this chapter we report various assays aimed at detecting a physical and/or functional 

interaction between Fpn and HFE.    
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Introduction

Since the initial identification and cloning of the HFE gene, its precise role in iron 

homeostasis has been a mystery  (Feder et al. 1996).  Clearly HFE plays a critical role in 

regulating iron stores, as recessive mutations within this gene were shown to account for 

the majority of worldwide hereditary  hemochromatosis (HH) (Feder et al. 1996).  It was 

also shown that HFE interacted with transferrin receptor (TfR), that this binding reduced 

TfR's affinity  for transferrin (Tf), and that the disease-causing HFE mutations interfere 

with this interaction (Feder et al. 1998).  The discovery of the HFE-TfR interaction gave 

clear evidence that HFE could play a role in regulating cellular iron levels by modulating 

the TfR-Tf iron uptake pathway, but it  was still unclear how mutations in HFE might lead 

to the severe iron overload observed in HH patients.  In 2000, three groups independently 

identified the only known vertebrate ionic iron exporter, ferroportin (Fpn) (Abboud and 

Haile 2000; Donovan et al. 2000; McKie et al. 2000).  It was shown that both HFE 

(Parkkila et al. 1997) and Fpn (Donovan et al. 2000) are expressed on the basolateral 

membrane of duodenal enterocytes, the main site of systemic iron uptake.  It was also 

noted that HFE expression in the duodenum was highest in the duodenal crypt cells 

(Parkkila et al. 1997), whereas Fpn expression was highest at the villus tips, though still 

present in the crypts at lower levels (Donovan et al. 2000).  It  had been hypothesized that 

body iron stores were sensed in the duodenal crypt cells (Roy and Enns 2000), and this 

lead Townsend and Drakesmith to introduce the hypothesis that HFE could act as an iron 

sensor by negatively regulating the functions of both TfR and Fpn in duodenal crypt cells 
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(Townsend and Drakesmith 2002).  A schematic for this hypothesis is depicted in figure 

4.1.  In brief, the hypothesis predicted that HFE was capable of reducing iron uptake by 

binding to and inhibiting the iron export function of Fpn.  It suggested that HFE could 

bind to either TfR or Fpn and these three proteins (along with serum Tf) were in a 

dynamic equilibrium on the basolateral serum-facing membrane (figure 4.1A).  If iron 

stores in an individual were low (and thus Tf iron saturation was low) then Tf would be 

unable to bind tightly  to TfR at the cell surface, and thus HFE would be sequestered by 

TfR.  This would prevent HFE from binding to and inhibiting Fpn and would allow iron 

uptake to proceed as normal (figure 4.1B).  On the other hand, if iron stores were high 

(and thus Tf iron-saturation was high) Tf would bind tightly  to TfR, competing away any 

HFE.  HFE would then be allowed to bind Fpn and iron uptake would be prevented 

(figure 4.1C).  This hypothesis was further strengthened by a study in macrophage-like 

cells reporting that soluble HFE added to iron-loaded cells was capable of inhibiting iron 

export (Drakesmith et al. 2002).  Following from this, I pursued a line of investigation 

aimed at identifying a physical or functional interaction between Fpn and HFE.  While I 

was ultimately unsuccessful, the experiments described here may prove useful for future 

scientists interested in pursuing a similar line of research.  
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Materials and Methods

Analytical Size-Exclusion Chromatography

Analytical size-exclusion chromatography (SEC) was performed using a SMART system 

FPLC (GE Healthcare) with a 1.4 mL Superdex 200 column (GE Healthcare) with a flow 

rate of 50 µL/min equilibrated in 50 mM Tris pH 7.5, 150 mM NaCl, 0.05% fos-

choline-16, and EDTA-free protease inhibitors (Roche).  His-tagged human Fpn was 

expressed in one liter of pAER113a-transformed BL21(DE3) E. coli grown in TB5 media 

(see chapter 3).  Fpn was solubilized in fos-choline-16, purified by  Ni-NTA 

chromatography  as described in chapter 3, concentrated to ~120 µL, centrifuged at 

16,000×g for 10 min, and then split into two 60 µL fractions. Soluble HFE was purified 

from Chinese hamster ovary (CHO) cell supernatants as described (Lebrón et al. 1998).  

One Fpn-containing fraction was mixed with soluble HFE at a concentration of 18 µM.  

No additions were made to the other Fpn fraction and it acted as the Fpn-only control.  A 

similar control for HFE alone was prepared by diluting it as above into 60 µL running 

buffer.  All samples were incubated at 4 ºC for 3 hr prior to size-exclusion 

chromatography.  SEC was performed by injecting 50 µL of each sample over the column 

in sequence. Traces were compared to molecular weight standards of known mass run in 

similar conditions: Blue Dextran (2000 kDa), thyroglobulin (670 kDa), ferritin 

(440 kDa), catalase (200 kDa), and albumin (67 kDa) (all standards from GE Healthcare's 

SEC MW standard kit). 
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Testing for binding between Fpn and HFE by surface plasmon resonance

Experiments evaluating the interaction between human Rho-Fpn-His and soluble human 

HFE were performed at 10 ºC using a Biacore 2000 Instrument (GE Healthcare). 

Interactions between immobilized Fpn on a sensor chip  and soluble HFE injected over 

the sensor surface were monitored in real time as response units (RU).  Biosensor chips 

were prepared as described in chapter 2 (Rice et al. 2009).  Briefly, two flow cells of a 

CM5 biosensor chip were prepared by covalently  coupling ~2000 RU of B630N mouse 

monoclonal anti-Rho antibody. Rho-Fpn-His expressed in baculovirus-infected insect 

cells was purified by Ni-NTA metal affinity  chromatography followed by size-exclusion 

chromatography  in 50 mM  Tris pH 7.5, 150 mM NaCl, 0.2% (w/v) DM and injected over 

the anti-Rho surface, capturing ~500 RU to the antibody surface of one flow cell, leaving 

the other flow cell as antibody-only  reference. After capturing Fpn, the sensor surface 

was monitored for 3 hr in the same buffer at a flow rate of 5 µL/min, at which time Fpn 

was slowly shedding from the surface at a constant rate of ~0.3 RU/min. A serial dilution 

series of HFE was prepared (15.1 µM, 7.55 µM, and 3.775 µM) by  diluting concentrated 

HFE in the above buffer.  Samples containing 0, 3.775, 7.55, and 15.1 µM HFE were 

injected simultaneously over control and experimental surfaces at 5 µL/min for 90 s and 

then allowed to dissociate for an additional 90 s.  Sensorgrams were analyzed in Scrubber 

(BioLogic Software Pty. Ld.).
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Transferrin Iron-Loading

Aqueous solutions of ferric iron chloride (FeCl3, 25 mM) and nitrilotriacetic acid (NTA, 

50 mM) were freshly  prepared and filtered at 0.22 µm.  Dry human holo-transferrin (Tf, 

Sigma) was dissolved in 1.5 mL 100 mM ammonium bicarbonate and filtered at 0.22 µm.  

Tf concentration was approximated spectrophotometrically  to be 150 µM  using an 

extinction coefficient of 5000 cm−1 M−1 for absorbance at 454 nm.  Buffer was prepared 

by mixing 100 mM ammonium bicarbonate, adjusting its pH to 7.5, and filtering at 

0.22 µm.  Two milliliters of 1:2 FeCl3·NTA were prepared by mixing 1 mL FeCl3 with 

1 mL NTA solutions.  The FeCl3·NTA levels of the Tf solution were raised to 300 µM by 

adding 36.9 µL 12.5 mM FeCl3·NTA to the 1.5 mL Tf solution.  Tf was incubated in the 

presence of FeCl3·NTA for 2 hr before excess FeCl3·NTA was removed by overnight 

serial dialysis in 100 mM ammonium bicarbonate, pH 7.5.  After dialysis, the 

concentration of iron-loaded Tf was again measured and the degree of iron incorporation 

was estimated to be complete by the ratio of spectrophotometric absorbances at 465 and 

280 nm equaling approximately 0.050 (A465/A280 = 0.052) (He and Mason 2002).

Investigating a Possible Effect by HFE on the Hepcidin-Induced Internalization of Fpn

HeLa cells were grown in Dulbelcco's modified Eagle's medium containing 4.5 g/L of D-

glucose, 4 mM L-glutamine, 110 mg/L of sodium pyruvate (Gibco), with 1× penicillin/

streptomycin (Gibco), and 10% (v/v) fetal bovine serum (Atlanta Biologicals).  All 

transfections were performed using lipofectamine 2000 (Invitrogen) as per the 

manufacturer's instruction.  HeLa cells were seeded onto poly-L-lysine-treated glass 
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coverslips in 6-well format (0.5·106 cells/well), transfected with human Fpn-GFP the 

following day, and then ~20 hr post-transfection were used to test  the effects of soluble 

human HFE on the hepcidin-induced internalization of Fpn. All internalizations were 

performed in growth media supplemented with cycloheximide, hepcidin-25 (Bachem), 

and/or soluble human HFE purified from CHO supernatants as described (Lebrón et al. 

1998).  Internalizations were performed after a 2 hr 75 µg/mL cycloheximide 

pretreatment, followed by  4 hr of 0 or 2 µM  hepcidin-25 (Bachem) internalization, as 

described (Rice et al. 2009).  As measured relative to the start of the hepcidin-25 

incubation, HFE incubation time was initiated at t equals −2, −0.5, and 0 hr.  HFE was 

added at a concentration of 300 nM.  At the 4 hr time point after hepcidin-25 addition, the 

internalization was stopped by  quickly washing three times with PBS followed by 20 min 

of fixing in 4% PFA at room temperature.  After fixing, the cover slips were mounted in 

DAPI-containing Prolong Gold anti-fade mounting media (Invitrogen), sealed with nail 

polish, and then imaged by confocal fluorescence microscopy. Imaging was performed on 

an UltraVIEW ERS Rapid Confocal Imager (Perkin-Elmer) using a 100× objective lens 

(αPlan-APOCHROMAT 1.46 Oil DIC, Zeiss).  Full confocal stacks were imaged for 

GFP fluorescence at 0.25 µm spacing in z and representative slices are shown.

Internalization reactions were repeated, as above, with an increased HFE concentration 

(690 nM) and an excess of iron-loaded Tf (400 nM) to saturate transferrin receptor (TfR) 

and out-compete its HFE-binding capabilities.  Tf was added 30 min prior to hepcidin-25 

addition. HFE was added 15 min prior to hepcidin-25 addition.  This set of experiments 
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varied hepcidin-25 concentration, testing 0 or 2 µM hepcidin-25 concentrations.  

Incubations were stopped, fixed, mounted, and imaged as described above.

Results and Discussion

Analytical Size-Exclusion Chromatography

The potential binding between wild-type human Fpn expressed and purified from E. coli 

and soluble human HFE expressed in CHO cells was assessed by  analytical SEC (figure 

4.2).  As described in chapter 3, Fpn extracted in fos-choline-16 elutes as a broad peak 

centered at approximately 1.2 mL (see chapter 3, figure 3.5).  We found that soluble HFE 

eluted as a symmetrical peak centered at approximately 1.6 mL (figure 4.2). Fpn and HFE 

were pre-mixed at a high HFE concentration (18.2 µM).  After pre-incubation the mixture 

was analyzed by analytical SEC, however no evidence of a Fpn-HFE complex was 

detected (see figure 4.2, blue curve).  

These results are not conclusive.  If fos-choline-16 interfered with an Fpn-HFE 

interaction, we would expect to not detect it under these conditions.  Also, Fpn contains 

potential glycosylation sites (Devalia et al. 2002) and these carbohydrate moieties would 

be absent in bacterially expressed Fpn.  If glycosylation of Fpn was necessary for an 

interaction with HFE, we would not expect to observe binding in this assay.  Finally, a 

weak interaction might not be detectable by a technique like analytical SEC, which 

allows time for dissociation before detection.
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Testing for an Interaction between Fpn and HFE by Surface Plasmon Resonance

The potential binding between wild-type human Fpn expressed and purified from 

baculovirus-infected insect cells and soluble human HFE was assessed by surface 

plasmon resonance (figure 4.3).  Rho-tagged Fpn was coupled to an anti-Rho antibody 

surface, soluble HFE was injected at various concentrations (0–15.1 µM HFE), and the 

response was continuously monitored in an effort to detect binding.  Despite high levels 

of HFE injected over the Fpn surface, no binding was observed (figure 4.3).  

As with the analytical SEC experiments above, these results are not fully  conclusive.  

Unlike analytical SEC, surface plasmon resonance is capable of detecting weak 

interactions with quick dissociation rates, however detergent or improper glycosylation 

could still be potentially interfering with a Fpn-HFE interaction.  

Investigating a Possible Effect by HFE on Hepcidin-Induced Internalization of Fpn

We were unable to detect an interaction between Fpn and HFE with biophysical methods 

using detergent solubilized Fpn, and thus we moved on to cell-based assays.  In these 

experiments we attempted to detect a functional interaction between Fpn and HFE.  After 

developing a hepcidin-induced Fpn-GFP internalization assay in HeLa cells (Rice et al. 

2009), we asked if this internalization was disrupted in the presence of soluble HFE.  We 

used 300 nM  HFE, a concentration shown to have an inhibitory effect on iron export in 

macrophage-like cells (Drakesmith et al. 2002).  In this experiment we asked whether 
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soluble HFE would prevent the internalization of Fpn-GFP by hepcidin-25; however we 

saw no internalization defect (figure 4.4).  This internalization assay was performed in the 

presence of Tf-containing fetal calf serum, however to ensure that our HFE was not being 

sequestered by  endogenous TfR on the surface of these cells, we performed another 

experiment with elevated HFE concentration (690 nM) and an additional 400 nM  iron-

loaded human Tf added on top of the bovine Tf that is naturally present in the serum 

(figure 4.5).  Under these conditions, hepcidin-induced internalization of Fpn was not 

prevented.   
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Figure 4.1.  Townsend-Drakesmith HFE hypothesis.  A regulatory role for HFE is 
proposed whereby a dynamic equilibrium exists between HFE, Fpn, TfR, and iron-loaded 
Tf on the basolateral membrane of duodenal crypt cells.  Panel A depicts this hypothetical 
equilibrium.  When Tf saturation is low (panel B), HFE binds TfR and iron is exported.  
When Tf saturation is high (panel C), HFE is unable to bind TfR and instead binds Fpn, 
inhibiting iron export.  Figure adapted from Townsend and Drakesmith 2002.  
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Figure 4.2.  Potential interactions between bacterially expressed Fpn and soluble HFE 
was screened by analytical size-exclusion chromatography as described in the methods.  
Traces for molecular weight standards are shown (MW 1 in black and MW 2 in grey) and 
are labeled in kDa.  
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Figure 4.3. Potential interactions between Fpn expressed in baculovirus-infected insect 
cells and soluble HFE were screened by surface plasmon resonance.  A dilution series of 
soluble human HFE (0, 3.8, 7.8, and 15.1 µM) was injected over a biosensor surface 
containing ~500 RU human Rho-Fpn-His.  Reference-subtracted response curves are 
shown.
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Figure 4.4.  Fpn-GFP was transiently transfected into HeLa cells, as described in the 
methods.  Hepcidin-induced internalization of Fpn-GFP was performed in the presence of 
300 nM HFE and analyzed by confocal microscopy.  HFE was added either 2 hr prior to, 
30 min prior to, or together with hepcidin-25 addition.

131



Figure 4.5.  Fpn-GFP was transiently transfected into HeLa cells, as described in the 
methods.  Under conditions of Tf saturation (400 nM iron-loaded Tf) hepcidin-induced 
internalization of Fpn-GFP was performed in the presence or absence of 690 nM HFE 
and analyzed by confocal microscopy.
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Appendix:

Crystallization Attempts of Ferroportin and the

Ferroportin:Hepcidin-25 Complex   
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Construct Detergent Purification Conc.  
(mg/mL)

Temp. 
(ºC) Screen Method

Rho-hFpn-His DDM TALON 11 20 Index vapor diffusion
Rho-hFpn-His DDM TALON 11 20 Wizard I&II vapor diffusion

Rho-hFpn-His DDM TALON 11 20
Crystal Screen 

I&II vapor diffusion
Rho-hFpn-His DDM TALON 11 20 Cation Screen vapor diffusion
Rho-zFpn-His DDM TALON 4 20 Index vapor diffusion
Rho-zFpn-His DDM TALON 4 20 Wizard I&II vapor diffusion

Rho-zFpn-His DDM TALON 4 20
Crystal Screen 

I&II vapor diffusion
Rho-zFpn-His DDM TALON 4 20 Cation Screen vapor diffusion
Rho-zFpn-His DDM TALON 4 20 Cryo I&II vapor diffusion
Rho-zFpn-His DDM TALON 8 20 PEG I vapor diffusion
Rho-zFpn-His DDM TALON 8 20 PEG II vapor diffusion
Rho-zFpn-His DDM TALON 8 20 Index vapor diffusion

Rho-zFpn-His DDM TALON 8 20
Crystal Screen 

I&II vapor diffusion
Rho-zFpn-His DDM TALON 8 20 Salt Rx vapor diffusion
Rho-zFpn-His DDM TALON 8 20 pH Clear vapor diffusion

Rho-zFpn-His DDM TALON 10 20
Crystal Screen 

I&II vapor diffusion
Rho-zFpn-His DDM TALON 10 20 Memfac vapor diffusion
Rho-zFpn-His DDM TALON 10 20 PEG Ion vapor diffusion
Rho-zFpn-His DDM TALON 10 20 Wizard I&II vapor diffusion
Rho-zFpn-His DDM TALON 10 20 Index vapor diffusion

Rho-zFpn-His + 0.16 mM 
hepcidin-25 DDM TALON 10 20

Crystal Screen 
I&II vapor diffusion

Rho-zFpn-His + 0.16 mM 
hepcidin-25 DDM TALON 10 20 Memfac vapor diffusion

Rho-zFpn-His + 0.16 mM 
hepcidin-25 DDM TALON 10 20 PEG Ion vapor diffusion

Rho-zFpn-His + 0.16 mM 
hepcidin-25 DDM TALON 10 20 Wizard I&II vapor diffusion

Rho-zFpn-His + 0.16 mM 
hepcidin-25 DDM TALON 10 20 Index vapor diffusion

Rho-hFpn-His-FLAG DDM TALON-FLAG 9 20 Wizard I&II fluidigm
Rho-hFpn-His-FLAG DDM TALON-FLAG 9 20 Index fluidigm
Rho-hFpn-His-FLAG DDM TALON-FLAG 9 20 Memfac fluidigm
Rho-hFpn-His-FLAG DDM TALON-FLAG 9 20 Nextal PEG fluidigm

Rho-hFpn-His-FLAG + 0.14 
mM hepcidin-25 DDM TALON-FLAG 9 20 Wizard I&II fluidigm

Rho-hFpn-His-FLAG + 0.14 
mM hepcidin-25 DDM TALON-FLAG 9 20 Index fluidigm

Rho-hFpn-His-FLAG + 0.14 
mM hepcidin-25 DDM TALON-FLAG 9 20 Memfac fluidigm

Rho-hFpn-His-FLAG + 0.14 
mM hepcidin-25 DDM TALON-FLAG 9 20 Nextal PEG fluidigm

Rho-mFpn-His-FLAG DDM TALON-FLAG 7.5 20 Wizard I&II fluidigm
Rho-mFpn-His-FLAG DDM TALON-FLAG 7.5 20 Index fluidigm
Rho-mFpn-His-FLAG DDM TALON-FLAG 7.5 20 Memfac fluidigm
Rho-mFpn-His-FLAG DDM TALON-FLAG 7.5 20 Nextal PEG fluidigm
Rho-zFpn-His-FLAG DDM TALON-FLAG 5.2 20 Wizard I&II fluidigm
Rho-zFpn-His-FLAG DDM TALON-FLAG 5.2 20 Index fluidigm
Rho-zFpn-His-FLAG DDM TALON-FLAG 5.2 20 Memfac fluidigm
Rho-zFpn-His-FLAG DDM TALON-FLAG 5.2 20 Nextal PEG fluidigm
Rho-hFpn-His-FLAG CHAPS TALON-FLAG 4 20 Wizard I&II fluidigm

Rho-hFpn-His-FLAG + 0.06 
mM hepcidin-25 CHAPS TALON-FLAG 4 20 Wizard I&II fluidigm

Rho-hFpn-His-FLAG CHAPS TALON-FLAG 4 20 Index fluidigm
Rho-hFpn-His-FLAG + 0.06 

mM hepcidin-25 CHAPS TALON-FLAG 4 20 Index fluidigm

Rho-hFpn-His-FLAG CHAPS TALON-FLAG 4 20
Crystal Screen 

I&II fluidigm
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Construct Detergent Purification Conc.  
(mg/mL)

Temp. 
(ºC) Screen Method

Rho-hFpn-His-FLAG + 0.06 
mM hepcidin-25 CHAPS TALON-FLAG 4 20

Crystal Screen 
I&II fluidigm

Rho-hFpn-His-FLAG cymal-6 TALON-FLAG 4 20 Wizard I&II fluidigm
Rho-hFpn-His-FLAG + 0.06 

mM hepcidin-25 cymal-6 TALON-FLAG 4 20 Wizard I&II fluidigm
Rho-hFpn-His-FLAG cymal-6 TALON-FLAG 4 20 Index fluidigm

Rho-hFpn-His-FLAG + 0.06 
mM hepcidin-25 cymal-6 TALON-FLAG 4 20 Index fluidigm

Rho-hFpn-His-FLAG cymal-6 TALON-FLAG 4 20
Crystal Screen 

I&II fluidigm
Rho-hFpn-His-FLAG + 0.06 

mM hepcidin-25 cymal-6 TALON-FLAG 4 20
Crystal Screen 

I&II fluidigm
Rho-hFpn-His-FLAG DDM TALON-FLAG-SEC 9 20 MacKinnon #1 vapor diffusion
Rho-hFpn-His-FLAG DDM TALON-FLAG-SEC 9 20 MacKinnon #2 vapor diffusion
Rho-mFpn-His-FLAG DDM TALON-FLAG-SEC 8 20 MacKinnon #3 vapor diffusion
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