Role of Bmi-1 in Epigenetic Regulation During Early Neural Crest Development

Thesis by

Jane I. Khudyakov

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended April 30, 2009)

©2009

Jane I. Khudyakov

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost, I would like to express gratitude to my thesis advisor, Marianne Bronner-Fraser, without whose constant support, motivation, encouragement, and unfailing optimism it would have been impossible to navigate through a complex and challenging project. I am also grateful to my coadvisor, Tatjana Sauka-Spengler, for giving me the opportunity to study an exciting developmental question, providing me with a good balance of independence and support, facilitating my development as a mature scientist, and constantly encouraging me to believe in my own abilities. I would also like to thank members of my thesis committee: Scott Fraser, Angela Stathopoulos, Paul Sternberg, and Kai Zinn, for their critical advice and guidance through my graduate project.

I am grateful to my family, especially my father, Igor Khudyakov, for support during my time at Caltech and for the helpful advice and input that they have provided as fellow scientists. I would also like to thank my fiancé, Joseph Schramm, without whose persistent encouragement, support, kindness, and infinite patience I would never have been able to reach this point. I would like to thank the current and former members of the Bronner-Fraser group that have enriched my years in the lab with interesting discussions, helpful suggestions, motivation, friendship, and constant entertainment. In particular, I am exceedingly grateful to the support and friendship of Meghan Adams, Sonja McKeown, Sujata Bhattacharyya, Lisa Taneyhill, Saku Jayasena, Marcos Simoes-Costa, Ed Coles, and Natalya Nikitina. I am also especially grateful for the invaluable assistance of Mary Flowers and Matt Jones during my time in the Bronner-Fraser lab.

I would also like to thank my undergraduate advisor, Larysa Pevny, for inspiring me to pursue a graduate degree at Caltech, as well as Beverly Koller, in whose lab at UNC-Chapel Hill I first acquired an interest in scientific research. Last but not least, I would like to thank Cortney Tribu, Michael Brown, Jennifer Klamo and the wonderful Schramm family for their encouragement, friendship, cheerleading, and support.

ABSTRACT

The neural crest is a transient, multipotent cell population in the developing vertebrate embryo that migrates extensively and contributes to a staggering diversity of cell lineages. Neural crest progenitors are specified at the neural plate border during gastrulation; however, commitment to the neural crest lineage does not occur for some time. I find that the chick neural plate border is characterized by co-expression of several neural crest specifier genes, previously considered "late" signals, which often overlap with "early" neural plate border genes. This suggests that continuously expressed members of the neural crest gene regulatory network may be modulated or repressed for proper maintenance of the multipotent state. Consistent with this possibility, several members of the Polycomb Group of epigenetic repressors are expressed at these early stages. For example, the stem cell factor Bmi-1 is expressed in the neural plate border, dorsal neural folds, and migrating neural crest, but is extinguished in differentiated derivatives. Morpholino-mediated knock-down of Bmi-1 causes early upregulation of *Msx1*, *FoxD3*, and *Sox9* in the chick neurula without affecting cell proliferation. Conversely, Bmi-1 over-expression causes a downregulation of *Msx1*, suggesting that it negatively regulates neural crest network genes. I find that several alternatively spliced variants of Bmi-1 are expressed in the developing chick and that a truncated N-terminal variant, V4, acts as a dominant-negative regulator of the full-length protein by up-regulating Msx1 expression. Taken together, these results suggest that neural crest progenitors are exposed to numerous signals during gastrulation, some of which are regulated by Polycomb Group factors such as Bmi-1. The activity of Bmi-1, in turn, is modulated by alternatively spliced variants, demonstrating an additional level of regulatory complexity acting during early neural crest development.

TABLE OF CONTENTS

<u>Chapter 1</u>:

Introduction: Molecular and Epigenetic Regulation of Development	.1
Neural crest as a stem cell model	.2
Establishment of the neural plate border	.4
Gene regulatory interactions driving early neural crest development	.7
Epigenetic regulation of embryonic development1	.1
The Polycomb Group of epigenetic repressors1	.3
Structure and function of Bmi-1 in stem cell development1	.5

Chapter 2:

Comprehensive Spatiotemporal Analysis of Early Chick Neural Crest N	Vetwork
Genes	23
ABSTRACT	24
INTRODUCTION	25
MATERIALS AND METHODS	29
Chick embryo incubation	29
Whole-mount <i>in situ</i> hybridization	29
Cryosectioning	29
In situ mRNA probes	30
RESULTS	31

HH	I4	
HH	15	33
HH	H6 and HH7	34
HH	I8	35
HH	19	36
HH	I10	
DISCUSSI	ION	
ACKNOW	VLEDGEMENTS	41

<u>Chapter 3:</u>

Regulation of Neural Crest Network Genes by Stem Cell Factor Bmi-1 During		
Early Chick Development	49	
INTRODUCTION	50	
MATERIALS AND METHODS	57	
Chick embryo incubation	57	
In situ hybridization	57	
In situ mRNA probes	57	
Cryosectioning	58	
Antibodies and immunohistochemistry	58	
Morpholino design and specificity assay	60	
Electroporation	61	
Over-expression constructs	61	
RNA and cDNA preparation	62	

QPCR
RESULTS
<i>Bmi-1</i> is expressed in neural crest progenitors during gastrulation 65
Bmi-1 is maintained in undifferentiated neural crest progenitors66
Multiple members of PRC1 and PRC2 are expressed in neural
crest progenitors in overlapping domains67
Bmi-1 knock-down results in early upregulation of the neural crest
network genes68
Msx1 is specifically upregulated as a result of Bmi-1 MO
electroporation68
The effects of Bmi-1 MO on neural crest specifiers are non-specific
during late neurulation70
Msx1, FoxD3, and Sox9 transcripts are quantifiably increased by
Bmi-1 knock-down at HH671
Upregulation of neural crest genes due to Bmi-1 MO occurs in the
absence of changes in cell proliferation in the dorsal neural folds 73
Co-over-expression of Bmi-1 and Ring1B causes a decrease in <i>Msx1</i>
expression74
DISCUSSION
ACKNOWLEDGEMENTS

<u>Chapter 4:</u>

Characterization	of Alternatively	Spliced Varia	nts of l	Bmi-1 During Ea	arly
Chick Developme	nt		•••••	•••••	96
INTRODUC	CTION				97
MATERIAL	S AND METHOD	9S			103
Seque	ence analysis				103
Geno	mic analysis and	intron sequenci	ng		103
V6 pr	otein translation	assay	•••••		105
Chick	< embryo incubat	.on			105
RT-P	°CR		•••••		106
QPCI	R				107
Over	expression const	ructs	••••••		108
Elect	roporation				109
In sit	tu hybridization.		•••••		109
RESULTS	••••••				111
Bmi-	1 is characterized	by five alternati	ively spl	iced isoforms	111
Bmi-	1 variants are exp	pressed in the ch	icken en	nbryo during early	y
deve	lopment in a stag	e-specific manne	er		112
V4 o	over-expression ca	uses upregulati	on of <i>Ms</i>	x1, mimicking a lo	oss-
of-ft	unction phenotyp	e			115
DISCUSSIC)N		• • • • • • • • • • • •		117
ACKNOWL	LEDGEMENTS				119

<u>Chapter 5:</u>

Summary and Perspectives127
Current molecular definition of the neural plate border progenitor
population128
Prospects for cellular resolution at the neural plate border131
Discovery of epigenetic regulators in the developing chick embryo131
In vivo functional analysis of the Polycomb Group factor Bmi-1133
Optimizing Polycomb loss-of-function approaches
Strategies for large-scale analysis of polycomb function136
Alternative splicing as an additional regulatory mechanism139
Conclusions142

Cited Literature	<u>.</u>	146
------------------	----------	-----

LIST OF FIGURES

<u>Chapter 1</u>

Figure 1.1	
Figure 1.2	20
Figure 1.3	21

<u>Chapter 2</u>

Figure 2.1	
Figure 2.2	44
Figure 2.3	46
Figure 2.4	47
Figure 2.5	

<u>Chapter 3</u>

Figure 3.1	
Figure 3.2	
Figure 3.3	
Figure 3.4	
Figure 3.5	

Figure 3.6	92
Figure 3.7	94

<u>Chapter 4</u>

Figure 4.1	
Figure 4.2	
Figure 4.3	
Figure 4.4	

<u>Chapter 5</u>

gure 5.1
