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Abstract

For a variety of applications, the capability of simultaneous sensing and action in multiple

locations that is inherent to multi-robot approaches offers potential advantages over single

robot systems in robustness, efficiency, and application feasibility.

At the fully distributed and reactive end of the multi-robot system spectrum, I present

mathematical modeling methodologies developed to predict and optimize a self-organized

robotic swarm’s performance for several tasks. These models allow us to better understand

the relationship between agent and group behavior by capturing the dynamics of these

highly stochastic, nonlinear, asynchronous systems at various levels of abstraction, in some

cases even achieving mathematical tractability. The models deliver qualitatively and quan-

titatively correct predictions several orders of magnitude more quickly than an embodied

simulator can. Swarm modeling lays the foundation for more generalized SI system design

methodology by saving time, enabling generalization to different robotic platforms, and

estimating optimal design and control parameters.

In considering more complex target tasks and behaviors, efficiency and completeness of

execution may be of concern, and a swarm approach may not be appropriate. In such cases a

more deliberative approach may be warranted. In that context, I introduce the multi-robot

boundary coverage problem, in which a group of robots is required to completely inspect

the boundary of all two-dimensional objects in a specified environment. To make such



vii

a guarantee, I present a centralized planning approach that constructs a two-component

abstraction of the problem: a graph representing the particular instance of the inspection

task and a graph problem whose solution represents a complete plan for inspection. Using

the building blocks of this approach, related inspection tasks that require the robotic system

to adapt to a changes in team size and task assignment are also explored. The application

of these planning methods to the case of long-term deployment for surveillance applications

that require repetitive coverage is also discussed.

The recurring theme of this thesis is that we must look beyond implementation and

validation of a particular system and ask how its design can contribute to the development

of a more general design methodology.
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Chapter 1

Introduction

In multi-robot systems, the opportunity for simultaneous sensing and action in multiple

locations offers potential advantages over single robot systems in robustness, efficiency, and

application feasibility. In a multi-robot system, unit redundancy may allow a team of robots

to complete a task despite one or more robot failures, while simultaneous action may allow

the team to finish the task more quickly or efficiently than a single robot. In the long

term, especially for applications in which robots are subject to heavy use, damage, and

replacement, multi-robot systems may also offer a cost advantage due to the potential for

mass production. Tasks that allow for cooperation, exploiting this parallelism by allowing

robots to share information or collaborate physically, are a natural choice for a multi-robot

approach. Other tasks requiring capabilities or resources beyond the capacity of a single

robot may also be well-suited to a multi-robot approach.

Though advances in multi-robot system formalism have been made, the design of multi-

robot systems is still largely heuristic. A recent survey of these advances [1] observes that

diverse multi-robot system design approaches may have a common underlying methodology

and notes that “these similarities are encouraging because they suggest that, regardless of

the details of the robots or tasks in use, the various authors are all studying a common,

fundamental problem in autonomous coordination.” The field lacks a general methodology
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for multi-robot system design; indeed, most complex multi-robot task allocation problems

are NP-hard [2]. However, if an appropriate abstraction for a task can be found so that

it might be posed as a known problem, we may exploit related algorithms, heuristics, and

analytical tools. As we create a catalogue of such “building blocks” for a variety of multi-

robot tasks, we may use them to design and implement incrementally more complex multi-

robot systems while we gain a better understanding of methods for their formal classification

and analysis.

The multi-robot systems explored in this thesis range from fully distributed, swarm-

inspired systems to centrally supervised, deliberative systems, adding a diverse set of such

building blocks to the field’s ever-increasing collective understanding of multi-robot sys-

tem design. At the distributed and reactive end of the multi-robot system spectrum, I

present mathematical modeling methodologies developed to predict and optimize a robotic

swarm’s performance for several tasks. These swarm modeling building blocks help lay the

foundation for more generalized SI system design methodology by saving time, enabling

generalization to different robotic platforms, and estimating optimal design and control

parameters. In considering more complex target tasks and behaviors, efficiency and com-

pleteness of execution may become a major concern, and a more deliberative approach may

be warranted. In that context, I develop a graph-based framework to solve a multi-robot

inspection problem. I then apply the building blocks of the graph framework to a related

inspection problems abstracted in a similar way.

1.1 Distributed Robotic Systems

In the last several years, distributed control principles have been successfully applied to a

series of case studies in collective robotics: aggregation [3, 4, 5] and segregation [6], foraging
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[7, 8], collaborative stick pulling [9, 10], cooperative transportation [11, 12, 13, 14], flock-

ing and navigation in formation [8, 15, 16], odor source localization [17, 18], cooperative

mapping [19, 20], cooperative coverage [21] and soccer tournaments [22]. Each of these case

studies used groups of robots or embodied simulated agents acting autonomously based on

their own individual decisions. However, not all the architectures reported in these contri-

butions were designed to control large numbers of robots. For instance, several approaches

extensively exploit global communication capabilities [8, 12, 14, 20, 22], a characteristic

that represents a bottleneck for the scalability of the collective system and may be, under

certain environmental conditions, impossible. In other case studies, although the underly-

ing principles of the control architecture were fully scalable, due to technical difficulties in

experimentation with real robots, local explicit communication [17, 19] or specific environ-

mental information (e.g., nest energy [7]) was obtained with global communication, often

combined with global positioning systems. While global positioning systems, depending on

their specific implementation (e.g., standard GPS or the system used by Billard et al. [19]),

do not necessarily prevent the scalability of the collective system, they require an additional

level of sophistication of the individual unit in order to process the information broadcast

by the central reference device and are not always available in the target environment.

1.1.1 Swarm Robotic Systems

A possible paradigm for overcoming scalability issues and at the same time promoting

robustness and individual simplicity is that proposed by a computational and behavioral

metaphor for solving distributed problems called Swarm Intelligence (SI) [23, 24]. SI takes

its inspiration from the biological examples provided by social insects [25] such as ants,

termites, bees, and wasps and by swarming, flocking, herding, and shoaling phenomena in
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vertebrates [26]. The abilities of such natural systems appear to transcend the abilities of the

constituent individual agents. In most biological cases studied so far, robust and coordinated

group behavior has been found to be mediated by nothing more than a small set of simple

local interactions between individuals, and between individuals and the environment. The

SI approach emphasizes self-organization, distributedness, parallelism, and exploitation of

direct (peer-to-peer) or indirect (via the environment) local communication mechanisms

among relatively simple agents.

The main advantages of the application of the SI approach to the control of multiple

robots are fourfold:

1. Static scalability: The control architecture can be kept exactly the same whether

thousands of robots are deployed or only a few are used.

2. Dynamic scalability: Robots can be added to or removed from the system on the

fly; they may also have the ability to reallocate and redistribute themselves in a self-

organized way.

3. Robustness: In a self-organized system, robustness, rather than efficiency, is pro-

moted; a self-organized system will be robust to a priori unknown environmental

and team changes not only through unit redundancy but also through a balance be-

tween exploratory and exploitative behavior. This balance requires a certain level of

randomness be present in the system, such as noise in signals or sensors, or proba-

bilistic “mistake” in individual behavior. A natural example of this system behavior

is represented by the foraging strategy of ants [25]. It is well-known that recruitment

processes based on trail-laying and -following mechanisms lead an ant colony to focus

its current foraging power on a particular source of food (exploitation). What is,



5

perhaps, less widely known is that not all the ants follow the trail left by teammates

(or by themselves in a previous trip). A small percentage of them, depending on the

ant species and on the environment in which it has evolved, leave the trail and, in

doing so, allow the colony to discover new, possibly richer feeding opportunities close

to the main path of the currently exploited source (exploration).

4. Individual simplicity: Simplicity often increases the individual’s robustness, allows for

a unit’s miniaturization, and reduces overall system cost.

While these features of the SI approach are appealing, we lack a methodology for design-

ing individual agents that will demonstrate a specific coordinated, self-organized behavior.

These SI principles do not provide us with a way to quantitatively predict the swarm perfor-

mance according to a particular metric or analyze further possible optimization margins and

intrinsic limitations of this approach from an engineering point of view. In other words, if we

want to achieve coordinated, self-organized group behavior based on local interactions, we

need to have appropriate tools for understanding how to design and control individual units

so that the swarm can achieve target behaviors and levels of performance. Models allow the

engineer to capture the dynamics of these nonlinear, asynchronous, potentially large-scale

systems at more abstract levels, sometimes achieving even mathematical tractability. More

generally, modeling is a means for saving time, enabling generalization to different robotic

platforms, and estimating optimal system parameters, including control parameters and

number of agents in a team.

Although for a long period early in collective robotics research there was relatively little

work in modeling of multi-robot systems, recently physicists and engineers have dedicated

more attention to this problem (see, for example, related work performed by Kazadi et al.
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[27], Lerman and Galstyan [28], and Sugawara and Sano [29, 30]). Moreover, modeling

methodologies for swarm robotics systems must take into account mobility, local intelli-

gence, intrinsic stochastic properties of the collective coordination based on SI-principles,

and, potentially, several different modalities of interaction among individuals and between

an individual and the environment (e.g., mechanical, electromagnetic, chemical). This ex-

tremely rich combination of system features has drastically reduced the applicability of

modeling techniques developed and commonly used in other fields.

1.1.2 Contributions of the Thesis: Modeling Swarm Dynamics

In Chapter 2, we combine the expertise accumulated in building probabilistic microscopic

[4, 5, 9] and macroscopic models [31, 32, 33, 34] for distributed manipulation experiments

characterized by different robotic platforms and tasks (aggregation, wall building, stick

pulling) in a consistent, thorough, unified framework. This work, previously published in a

collaborator’s thesis [35] and in two journal papers [36, 37], was one of the first attempts

to develop an ad hoc modeling methodology for swarm robotic systems.

The strength of this research lies in the fact that, in contrast to contributions which did

not aim to produce quantitatively correct predictions without free parameters [27, 32] and

to those with fewer implementation levels [28, 29, 30], we present microscopic and macro-

scopic models and we validate them with real robot and/or embodied simulations, precisely

describing the mapping between different implementation levels of the same experiment.

Furthermore, we illustrate the application of the probabilistic modeling methodology with

several examples of incremental complexity, providing building blocks that may be applied

to the construction of models for other experiments. We also investigate the strengths

and limitations of the modeling methodology, particularly in comparison to other popular
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Figure 1.1: Nondestructive inspection of blade surfaces inside a turbine is a motivating
application of the multi-robot boundary coverage problem. The green dots represent robots
engaged in sensing tasks. (Picture courtesy of Nikolaus Correll.)

simulation tools such as sensor-based, embodied simulators.

1.2 Multi-robot Boundary Coverage

As we consider more complex target tasks and behaviors and as efficiency and completeness

of execution become a major concern, a swarm approach may not be appropriate.

1.2.1 Multi-robot Coverage

There are a number of practical mechanical inspection, surveillance, and security appli-

cations where completeness of robotic coverage is of particular concern. In the classical

robotic coverage problem, one or more robots must “cover” the freespace of a bounded

two-dimensional workspace.

The multi-robot approaches to both posing and solving this freespace coverage problem

have been diverse, exploiting many of the advantages offered by multi-robot systems, from

robustness to robot failure [38] to sensor fusion to minimize localization error [39]. Generally,
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in methods guaranteeing some form of completeness, a cellular decomposition of some sort

is applied to the freespace to be covered, dividing it into regions for which coverage can be

guaranteed. This cellular decomposition may be approximate, like the grid-based methods

used by Wagner et al. for ant-inspired coverage algorithms [21], or exact, as in Butler’s

rectilinear coverage work [40]. Further examples may be found in Choset’s survey of single-

and multiple-robot approaches to the freespace coverage problem [41].

In Chapter 3, we pose and solve the complementary problem of boundary coverage, in

which a robot or team of robots must inspect the boundary of a bounded two-dimensional

environment. The initial motivating application for the boundary coverage work is the

problem of inspecting in situ the surfaces of turbine blades inside a jet engine or combustor.

Figure 1.1 shows an idealized view of the interior of a turbine, where the cylindrical geometry

of the turbine has been “flattened.” Using nondestructive sensing technologies, a group of

robots (which may be small mobile robots, or the distal tips of manipulators carrying

the inspecting sensors) must systematically inspect the surface of each turbine blade for

defects. Inspecting the freespace between the blades, as would be done in the classical

coverage problem, is not of concern here.

While collaborators pursued SI [42, 43, 44, 45] and evolutionary [46] approaches to

solving nondeterministic forms of the turbine blade inspection problem, I considered a gen-

eralized, deterministic boundary coverage problem, in which completeness of inspection is

required. The environments considered are two-dimensional, i.e., a horizontal cross-section

slice through this world. The extension of our method to the geometry of Figure 1.1 (where

the robot must inspect the entire height of the turbine blade extrusion) is relatively straight-

forward. Robotic security, surveillance, and “watchman’s route” problems are another class

of applications for boundary coverage techniques. Imagine, for example, that a group of
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robots is tasked with monitoring the walls of an art gallery, or the surfaces of a set of

oil tanks. A multiple-robot approach to such problems should allow the task to be com-

pleted or repeated more quickly than with a single vehicle, while offering flexibility through

redundancy in case a unit should fail.

1.2.2 Use of Graph Theory in Multi-robot Systems

Graph theory has been widely used in muti-robot applications including the control of

vehicles traveling in formation [47, 48, 49], and the description of interactions between self-

assembling reconfigurable robots [50]. As communicating robots may be considered to be

mobile sensor nodes in a network, the application of graph theory common in sensor network

literature is also frequently used to model and analyze the communication in a multi-robot

systems [51, 52, 53]. In navigation tasks, graphs offer a convenient way to represent map

topology [54, 55] and the connectedness of cellular decompositions [56, 38]. This last set of

applications is most relevant to the work presented in this thesis.

1.2.3 Contributions of the Thesis: Designing Inspection Planning Algo-

rithms

In Chapter 3, we formalize the multi-robot boundary coverage problem. In this problem

(which is more fully described in Section 3.1), a group of k robots is required to com-

pletely inspect the boundary of all two-dimensional objects in a specified environment. The

boundary coverage problem complements the freespace coverage problem; analogous to that

problem, the goal is to devise an algorithm that guarantees the completeness of coverage

of all boundary points, i.e., that a solution to the problem will be found and that the con-

ditions guaranteeing the existence of a solution are specified. The efficiency of the robots’
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efforts is also of concern, so the algorithm seeks to balance the workload evenly between the

cooperating robots. The work presented in Chapter 3 was the first to pose the deterministic

multi-robot boundary coverage problem and the first to present a complete algorithm for its

solution. Using a simplified sensor model, the inspection problem is converted to an equiv-

alent graph representation. Once a graph representation of the task has been constructed

in which the undirected, connected graph G has a subset of edges ER, every one of which

must be traversed for inspection to be complete, the edge coverage problem can be posed

as a “postman”-type graph problem. I pose this graph problem, which I term the k-Rural

Postman Problem, then develop a constructive heuristic for its solution. The robots use the

graph solution to plan the their inspection routes.

In Chapter 4, extensions to the boundary inspection planning method are explored.

Using building blocks from the boundary inspection planning algorithm, related inspection

tasks that require the robotic system to adapt to a changes in team size and task assign-

ment are addressed. The application of these planning methods to the case of long-term

deployment for surveillance applications that require repetitive coverage is also discussed.
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Chapter 2

Modeling Swarm Robotic Systems

In this chapter, we present a time-discrete, incremental methodology for modeling the dy-

namics of distributed manipulation experiments using swarms of autonomous robots en-

dowed with reactive controllers; most of the results presented here were previously published

in a collaborator’s thesis [35] and in two journal papers [36, 37].

Because the methodology does not take into account robots’ trajectories or the spatial

distribution of objects in the environment, it is well-suited for nonspatial metrics, where

these factors do not play a role. The strength of the methodology lies in the fact that

it has been generated by considering incremental abstraction steps, from real robots to

macroscopic models, each with well-defined mappings between successive implementation

levels. Though advances in hybrid system abstraction [57, 58] offer insight into the analysis

and design of some classes of hybrid systems, the self-organized systems abstracted here

are not well-suited to current abstraction methodologies. Precise heuristic criteria based

on geometrical considerations and systematic tests with one or two real robots prevent the

introduction of free parameters in the calibration procedure of models. As a consequence,

we are able to generate highly abstracted macroscopic models that can capture the dynam-

ics of a swarm of robots at the behavioral level while still being closely anchored to the

characteristics of the physical setup.
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The methodology is developed incrementally, using an experiment we refer to as the stick

pulling experiment as a modeling testbed. This case study is concerned with pulling sticks

out of the ground, an action that requires the collaboration of two robots to be successful.

Experiments were carried out with teams consisting of two to 600 individuals at different

levels of implementation (real robots, embodied simulations, microscopic and macroscopic

models). Results show that models can deliver both qualitatively and quantitatively cor-

rect predictions at least four orders of magnitude faster than an embodied simulation and

that they represent a useful tool for generalizing the dynamics of these highly stochastic,

asynchronous, nonlinear systems, often outperforming intuitive reasoning.

A case study concerned with object aggregation and worker allocation is also presented

as an example of how the modeling methodology may be applied to other experiments in

distributed manipulation.

Finally, in addition to discussing subtle numerical effects, small prediction discrepancies,

and difficulties in generating the mapping between different abstractions levels, we conclude

the chapter by reviewing the intrinsic limitations of the current modeling methodology

and by reviewing the continuing progress made by collaborators pursuing a swarm robotic

approach to the nondeterministic boundary coverage problem.

2.1 Multi-level Probabilistic Modeling

The central idea of the probabilistic modeling methodology is to describe a multi-robot

experiment as a series of stochastic events with probabilities computed from the robot

interactions’ geometrical properties. In the experiments considered in this chapter, a robot

may be described with a Probabilistic Finite State Machine (PFSM) or Markov chain whose

state-to-state transitions depend on the interaction probabilities of a robot with another
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teammate and with the environment.

While in lower-level microscopic models each robot is represented by its own PFSM,

in the high-level macroscopic models a single PFSM directly describes the whole robotic

team, each of its states representing the average number of teammates in a particular state

at a certain time step. In both types of models, the robots’ PFSM(s) are then coupled

with the environment. This coupling among robots via the environment (or in other exper-

iments, direct peer-to-peer coupling, for example, through explicit communication) shapes

the microscopic-to-macroscopic mapping, in particular determining its linear or nonlinear

properties.

At both modeling levels, the environment can be viewed as a passive, shared resource

reflecting any modifications generated by the parallel actions of the robots. In order to

compute an arbitrary nonspatial performance metric, the modification of the environment

is tracked; each simulated modification is recorded in the microscopic model while the

macroscopic model estimates average environmental quantities.

The current modeling methodology relies on two main, somewhat overlapping, common

assumptions: spatial uniformity and the fulfillment of Markov properties.

We assume that the coverage of the arena by the groups of robots is as uniform as if

the robots could hop around randomly on the surface. Robots’ trajectories or specific robot

spatial distributions therefore are not considered in the current models. We also assume

that the absolute position of a given object to manipulate in the arena does not play a role:

for instance, the object will have the same probability of being manipulated whether it is

placed in the center or in the periphery of the arena. For the random walk implementation

used in the systems explored in this chapter, as we consider the average distribution of the

robots over long periods, this assumption holds true.
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We also assume that the robot’s future state depends only on its present state and

on how much time it has spent in that state. This assumption is correct for a reactive

robot controller extended with a time-out or following a predetermined sequence of actions

(e.g., gripping a stick, dancing) that lasts a certain amount of time. The robots (and the

environment) in the stick pulling case study clearly obey this Markov property if we assume

we are considering all robots’ and environment’s states of interest for computing the desired

nonspatial metric (e.g., trajectory states–position and heading–can be neglected).

Both assumptions are valid in most of the experiments presented in this chapter. The

exceptions can be found in Section 2.6.2.2, where the nonspatial model assumption is ex-

perimentally validated, and in Section 2.6.2.3, where overcrowding is discussed as a case in

which both assumptions are no longer valid.

2.2 A Case Study: The Stick Pulling Experiment

To illustrate the incremental construction of these models, we consider the stick pulling

experiment as a testbed for our modeling methodology. The experiment presented here

follows initial tests presented by Martinoli and Mondada [10]. The task is to locate sticks

in a circular arena and to pull them out of the ground1 using Khepera [60] robots equipped

with grippers and capable of distinguishing the sticks from walls and other robots with their

frontal sensors. Due to the sticks’ length, a single robot cannot pull a stick out of the ground

alone; collaboration between two robots is necessary. As the robots have only local sensing

capabilities and do not exploit a fully connected communication network, there is neither

central nor global coordination among robots. Coordination is purely probabilistic and

1Although the experiment is not intended to reproduce a biological system, it presents several similarities
with the extraction and transportation of twigs performed by some ant colonies [59].
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happens based on local interactions, strictly following the SI principles outlined in Section

1.1. Though all of the described experiments using real robots were conducted with teams

ranging from one to six robots, only the cost of the equipment prevented them from being

carried out with larger team sizes, as we did with the help of an embodied simulator and

with our models. The metric measured to quantitatively investigate and model the effects

of variations of system parameters is the collaboration rate among robots, i.e., the number

of sticks successfully taken out of the ground over time. The metric is nonspatial (i.e., we

consider all the sticks pulled by the robots throughout the arena, independent of the sticks’

placement) and measured by the experimenter rather than by the robots themselves.

The specific interest for the stick pulling experiment lies in its strictly collaborative

nature. In the class of distributed manipulation experiments considered by my collabora-

tors thus far, the stick pulling experiment is unique, since the other tasks studied can be

completed by individual robots, the collective effort allowing the swarm mainly to improve

its performance over time or robustness in task accomplishment. From a modeling point of

view, two coupling mechanisms among robots are present in this experiment. First, robots

modify a “shared blackboard” (i.e., the environment) and each robot’s actions therefore in-

directly influence those of its teammates, as in other distributed manipulation experiments.

Second, when a robot triggers a mutual action with another robot, both robots carry out a

precise temporal sequence of actions culminating in a successful collaboration.

Finally, it is worth noting that similar collaboration dynamics could require an arbitrary

number of robots (see, for example, the description reported in Lerman et al. [32]) and arise

in a completely different experiment, one not involving object manipulation at all. For

example, self-locomoted sensor nodes characterized by pseudo-random movement patterns,

endowed with local communication capabilities, and engaged in a monitoring task over a
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well-delimited area, could be represented in the same abstracted way as robots engaged in

the stick pulling experiment. In this case, the metric used to assess the swarm performance

could be related to the number of successful event detections reported by the swarm to a

base-station knowing that, before emitting an alarm signal, a threshold number of robots

within the swarm should collectively agree to have detected the same event.

2.2.1 The Physical Setup

The experiment is carried out in a circular arena (40 cm in radius) delimited by a white

wall. Four holes situated at the corners of a square with 30 cm edges hold white sticks (15

cm long, diameter of 1.6 cm) that, in their lowest position, protrude 5 cm above the ground

(see Figure 2.1(a)).

Groups of two to six Khepera robots, equipped with gripper turrets, are used to pull

the sticks out of the ground. Because of their thinness, the sticks can be distinguished from

the wall and from other robots using the Khepera’s six frontal infrared proximity sensors.

Because the sticks are too long to be pulled from the ground by a single robot’s lifting

motion, collaboration between two robots is required. After a successful collaboration, the

stick taken out of the ground is released by the robot, and replaced in its hole by the

experimenter.

2.2.2 Embodied Simulations

In order to more systematically investigate the collaboration dynamics, we also implemented

the experiment in Webots [61], a 3-D, kinematic, sensor-based simulator of Khepera robots

(see Figure 2.1(b)). Teams of two to 24 robots were simulated using Webots. The simulator

computes trajectories and sensory input of the robots in an arena corresponding to a given
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(a) (b)

Figure 2.1: (a) Overview of the physical setup for the stick pulling experiments (4 sticks,
arena 40 cm in radius). (b) Corresponding setup in the embodied simulator.

physical setup. The resulting simulation is sufficiently faithful for the controllers to be

transferred to real robots without changes and for the simulated robot behaviors to be very

similar to those of the real robots, as shown in several previous papers [4, 5, 9, 17].

A simulated stick pulling experiment using five robots proceeds on average 18 times

faster than real time on a 900 MHz Pentium III. In comparison, the mean speed-up ratio

for this experiment with five robots between the microscopic model (implemented in C) and

Webots simulations is about 25,000 on a 900 MHz Pentium III machine. The macroscopic

model (implemented in Matlabr) will run approximately 4×N ×R faster than the micro-

scopic model, where N is the total number of robots in the team and R is the total number

of runs used for obtaining the microscopic model’s mean performance.

2.2.3 The Robots’ Controllers

The behavior of a robot is determined by a simple hand-coded program that can be repre-

sented with a standard flow chart or a Finite State Machine (FSM), as depicted in Figure

2.2(a). The behavioral granularity shown in Figure 2.2(a) is arbitrary and is chosen by the

experimenter so that the FSM captures all the details of interest.
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(a) (b)

Figure 2.2: (a) FSM representing the robot controller. Transitions between states are
deterministically triggered by sensory measurements. (b) PFSM representing an agent in
the microscopic model or the whole robotic team in the macroscopic model. The parameters
characterizing probabilistic transitions and states are explained in the text.

In addition to the default search behavior (moving in a straight line) and an obstacle

avoidance behavior, the robot is endowed with a stick-gripping and -pulling procedure. The

robot can determine from its arm elevation speed while pulling whether another robot is

already gripping the same stick. While waiting for collaboration, another robot’s attempt

to lift the stick is similarly detected with the arm elevation sensor. If a single robot is

holding the stick, we call such a grip grip1. If another robot is already holding the stick

and a searching robot finds and grips it, such a grip is called grip2. When a robot makes

a grip1, it holds the stick raised halfway out of the ground and releases it when either

the duration of the grip exceeds the gripping time parameter τg (a failed collaboration), or

another robot comes to make a grip2 (a successful collaboration). Once the stick is released,

the robot turns away, performs obstacle avoidance for a few seconds, then returns to the

search procedure. When a robot makes a grip2, the robot making the grip1 will release

the stick, allowing its teammate to raise the stick completely. The robot making grip2

performs a short “success dance” (moving the arm up and down) to mark the successful
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collaboration, then releases the stick, performs obstacle avoidance for a few seconds, and

resumes searching for sticks.

Because the sticks are recognized only by their thinness, a stick that is held by one

robot can only be recognized as such when approached from the opposite side within a

certain angle (approx. 125 degrees in the physical setup). For the other angles of approach,

both the stick and the robot are detected and the whole is taken for an obstacle. More

details are reported in Ijspeert et al. [9] but we note that the acceptable approach angle,

expressed as a ratio Rg over the whole approaching perimeter, is an important parameter

in the collaboration dynamics of the system.

2.2.4 Calibrating Modeling Parameters

Figure 2.2(b) shows a Probabilistic Finite State Machine (PFSM) describing the stick pulling

behavior whose state-to-state transitions depend on the interaction probabilities of a robot

with another teammate and with the environment.

The models presented are characterized by two different categories of parameters: tran-

sition probabilities and delays. In the following subsections, we will describe how we calcu-

lated and measured all the parameters belonging to either one or the other category.

2.2.4.1 Transition probabilities

Consistent with previous publications [4, 5, 9, 31, 33, 34], we compute the transition prob-

abilities from a state to another based on simple geometrical considerations about the

interaction (e.g., detection areas, approaching perimeters). The numerical values used for

these geometrical parameters correspond to the average values measured in systematic tests

with one or two real robots, as mentioned above. In nonspatial models, robots’ positions on
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the arena are assigned randomly at each new iteration (or time step). At each iteration, the

probability that a robot in the search mode will encounter a wall, a stick, or another robot

is determined by each object’s corresponding detection area divided by the whole arena area

Aa. For instance, the probability of finding a stick can be computed as ps = As/Aa, As

being the detection area of a stick. Similarly, pw = Aw/Aa and pr = Ar/Aa represent the

probability of encountering a wall and another robot, respectively. The total probability of

encountering any other robot on the arena can be computed as pR = (N0 − 1)pr, N0 being

the total number of robots in the arena. Additionally, since robots can perform a grip1

from any angle of approach, pg1 = ps. On the other hand, since a stick available for grip2

can only be approached from a certain angle, as mentioned above, the probability of a grip2

event is pg2 = Rgpg1. The total number of sticks in the arena is M0. See Ijspeert et al. [9]

for more details.

Furthermore, the current implementation of the model does not allow for overlapped

areas of detection between objects of different type (e.g., robot, wall). Equation 2.1 expresses

this limit mathematically:

pw + psM0 + pR ≤ 1. (2.1)

This, in turn, sets a boundary for the maximal detection areas occupied by robots to

pR = 1− pw − psM0. As will be seen in Section 2.6.2.3, this formula is just an approxima-

tion that forces additional robots to “squeeze” into their maximum available freespace. In

overcrowded scenarios, the modeling methodology reaches its limitations.

The numerical values used for the mean robot speed, the mean approaching angle for

grip2, and the different mean detection radii of the objects are summarized in Table 2.1.
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Table 2.1: Parameters used in the models of the stick pulling experiment. Detection dis-
tances are measured from the center of the robot to the center of the object detected.

Mean Mean Mean Mean Mean Arena
robot speed approaching wall detection stick detection robot detection radius

angle ratio distance distance distance
v [cm/s] Rg Rw [cm] Rs [cm] Rr [cm] Ra [cm]

8 0.35 6 6.4 10 40 to 5000

These values are exactly the same as those reported in Ijspeert et al. [9], although a single

arena of 40 cm in radius was used at that time.

2.2.4.2 Time discretization and delays

The current probabilistic methodology generates time-discrete models. In this subsection

we would like to motivate our choice and explain how we establish the discretization interval

T as well as the discretized delays considered in the models.

Time-Discrete vs. Time-Continuous Models At a first glance, we might think that,

since the physical setup operates in continuous, real time and agents operate asynchronously,

the best way to obtain a faithful model would also be to use a time-continuous model.

As usual, we would emulate continuous time in simulation by choosing a small time step

combined with a standard numerical integration algorithm (e.g., Runge-Kutta). However, if

we look more closely, we realize that the description of the system we are interested in (see

Figure 2.2(b)) is at a much higher level than that which would involve mass, speed, forces,

positions, and so on: it is a description characterized by logical operators and behavioral

states. Robots are natural hybrid systems, in a strictly automatic control sense: they

consist of elements whose dynamics evolve continuously (e.g., motors, sensors, and analog

electronics), but they are also endowed with microcontrollers that, in addition to being
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digital and clocked, may also implement high-level, logical control operations. The success

dance in the stick pulling experiment is a typical example: its duration is triggered by a

sensory stimulus and systematically lasts until an incremental timer of the robot reaches

a pre-established time-out. Since we are not interested in modeling the details of the

success dance, a time-discrete model would capture this duration precisely without extra

computation in between. This is the main reason we believe time-discrete models are

the most adequate solution for the level of description we are aiming for, although at the

microscopic level they will force state transitions of the PFSMs to happen at the end of

time steps rather than completely asynchronously. Emulation of time continuity would

simply add simulation time (even macroscopic models, being, in general, nonlinear, must

be solved numerically) without increasing prediction accuracy and prevent the description

of microscopic and macroscopic models under the same temporal framework.

Time Discretization Interval Consistent with previous publications [31, 9, 4, 5, 33, 34],

each iteration of our models corresponds to a time step of a finite duration in real time.

The duration of a time step is equivalent to the time needed for a robot, moving with a

certain mean speed v and having a certain mean detection width wi for the smallest object

in the arena i (in our case, a stick), to cover the smallest object’s detection area. Equation

2.2 shows how to compute the duration T of one time step in the modeling methodology:

T =
As

vws
=

πR2
s

v2Rs
=

πRs

2v
. (2.2)

Choosing the smallest object is a way to ensure that the time granularity is high enough

to capture every occurrence of the system’s fastest detection event. This is an approximation

that links time partitioning with probability-space partitioning and is consistent with the
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Table 2.2: Duration of the different robot maneuvers described in Section 2.2.3.

Delay Centering Success Dance Obstacle Avoidance Interference
Mean measured value [s] τc = 10 τd = 6 τa = 1 τi = 2

Discretized value [iterations] Tc = 8 Td = 5 Ta = 1 Ti = 2

fact that our models are nonspatial.2 Although this method for choosing the time step is

completely heuristic, it has provided, combined with the method of calculating the transition

probabilities explained in Section 2.2.4.1, the best results so far not only in the stick pulling

experiment but also in aggregation [5] and wall-building [4, 5] experiments performed with

different robotic platforms. We will discuss the difficulties inherent to parameter calibration

and time discretization more extensively in Section 2.6.2.1.

Measured and Discretized Delay Values Table 2.2 summarizes the values of delays

used in all the models presented in this chapter. The measured mean delays are exactly

the same used in Ijspeert et al. [9] The time step has been calculated with Equation 2.2:

T = 1.26 s. Of course, any gripping time parameter τg will be also discretized to Tg

iterations in the models.3

2.3 Model Construction: Modeling Key Sub-chains

Before describing implementation details and results of the full-system model, we introduce

two examples of two-state PFSMs. Both examples not only represent key sub-chains of the

full system’s Markov chain we will describe in Section 2.4 but may also be used as basic

2An alternative explanation of this heuristic formula can be found in Martinoli’s Ph.D. thesis [62], Chapter
4. Ijspeert et al. [9] used a slightly different robot detection width (a value that can be considered as a
weighted sum of all the different detection widths specific to different objects in the arena).

3As the time step is different from Ijspeert et al. [9], the corresponding discretized delays used in these
models may be slightly different after rounding.
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elements in constructing models of other swarm robotic experiments.

The first example is concerned with a delay component affecting each robot’s behavior.

The delay could be defined by an internal timer (e.g., the success dance or any finite period

required for processing information) or by a specific interaction with the environment (e.g.,

gripping a stick or any finite period needed for sensing or acting in the environment) or a

teammate (e.g., obstacle avoidance or any finite period needed for information broadcast).

The corresponding difference equations (DEs) at the macroscopic level are linear since

we assume that there is no coupling between agents, either directly (agent-to-agent) or

indirectly (through the environment): the specific action generating the delay lasts always

for a pre-established period independent of the state of the system.

The second example can be considered as a simplified model of the stick pulling ex-

periment, which involves the overlapping of the two nonlinear coupling mechanisms among

the agents and therefore among the DEs: environmental modification and triggering of mu-

tual actions. In contrast to other distributed manipulation experiments concerned with,

for instance, aggregation and segregation of objects based on stigmergic4 mechanisms, the

environmental modification in the stick pulling experiment does not have plastic properties

as result of the action of a single robot. In fact, as soon as a robot releases a gripped stick

because no other robots came to help, the environmental modification performed (the lifting

of the stick) is automatically reversed by the force of gravity as the stick falls back into its

hole. In the version of the stick pulling experiment presented here, the triggering of mu-

tual actions is obtained by the sequence of movements encoded in each robot controller, in

essence, a primitive handshaking protocol that uses the stick as the communication medium.

4The concept of stigmergy was introduced for the first time by P.P. Grassé [63]: it comes from the
Greek stigma (sting) and ergon (work); it describes a phenomenon in which a plastic modification of the
environment introduced by the work of an individual is perceived as a stimulating configuration by other
agents (or by the same agent at a later time).



25

Nothing will prevent us, however, from implementing this handshaking protocol with local

wireless communication and obtaining, at the model level, the same description, with states

simply characterized by different delays.

Unless otherwise stated, experiments using the microscopic model have been repeated

100 times and error bars represent standard deviation among runs. At the macroscopic

level, of course, one run suffices, since only system-level performance (in our case the mean

swarm performance) can be predicted.

2.3.1 Search and Obstacle Avoidance

One key element of the full-system model representing the stick pulling experiment is a

delay state. . A delay state simply represents a behavior the robot will perform for a

certain duration Ta with a probability pa. The probability of leaving the delay state after

Ta is one and is independent of the robot’s interaction with the environment or with the

teammates. Constructing a model for a delay state is not only an important step for

modeling the stick pulling experiment; such a model may also be used as a building block

in modeling other self-organized robotic systems.

As an example of a delay state in the stick pulling experiment, we have chosen a sub-

chain of the system represented by the default search state coupled with an obstacle avoid-

ance state. In reality, depending on the obstacle type, an avoidance maneuver may be

characterized by different durations and different probabilities of performing it. Further-

more, depending on the coverage of the proximity sensors, the collision angle between two

robots, and the type of motion executed by the robot, obstacle avoidance behavior may or

may not be mutually triggered (resulting in a nonlinear coupling in the DEs, as shown in

Lerman and Galstyan [28]). For sake of simplicity, in this subsection we will use a single
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obstacle type and no mutual triggering of obstacle avoidance.5 Values for probabilities and

durations are derived from Table 2.1 and Table 2.2.

Figure 2.3 graphically represents the state diagram of this simple PFSM. Ns and Na

represent the numbers of robots in the search state and obstacle avoidance states, respec-

tively. In the microscopic model, these are binary values at the level of each PFSM since

an agent can be in one single state at the time; they are integer values corresponding to

the actual numbers of robots in each state at the team level. In the macroscopic model, Ns

and Na are real values representing the average numbers of robots in a certain state, at a

given time step, and over multiple runs.

Since the state variables of the macroscopic model are represented by continuous quanti-

ties, the PFSM of Figure 2.3 representing the whole swarm can be described by the following

DE system:

Ns(k + 1) = Ns(k)− paNs(k) + paNs(k − Ta) (2.3)

Na(k + 1) = N0 −Ns(k + 1) (2.4)

The current iteration is represented by k. Nx(k) represents the value of the state variable

Nx at time kT ; the notation Nx(k) instead of Nx(kT ) is standard in the automatic control

literature. Equation 2.3 states that the average number of robots in the search state at

iteration k + 1 is equal to the average number of robots in search at iteration k minus

those that left for an obstacle avoidance maneuver plus those that have terminated their

avoidance. Equation 2.4 simply exploits the conservation of the total number of robots for

5As shown in Section 2.6.2, this linear approximation is quite faithful for a platform such as the Khepera
robot, which is endowed with a proximity sensory belt affected by relevant blind angles on the sides, around
the wheels. Namely, this implies in turn that, depending on the angles of approach, an interaction between
robots may involve only one of them exhibiting obstacle avoidance behavior.
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Figure 2.3: A simple sub-chain consisting of a search and an obstacle avoidance state. The
numerical values used in this example have been derived from the values of Table 2.1 and
Table 2.2 using parameters for a generic obstacle: Ta = 2 iterations and pa is a function of
the setup (for example, pa = 0.63 for the mean probability of encountering an obstacle in
an arena of 40 cm, 4 robots, and 4 sticks; in this case teammates, walls, and sticks are all
considered as obstacles).

calculating the average number of robots in obstacle avoidance.

Unless otherwise stated, we assume that no robots exist before iteration k = 0 (a

standard convention for this type of time-delayed DE). Mathematically speaking:

Ns(k) = Na(k) = 0 if k < 0. (2.5)

As all robots are in the search state at the beginning of the experiment, the initial

conditions for the DE system are N(0) = [Ns(0) Na(0)]T = [N0 0]T.

2.3.1.1 Microscopic and macroscopic results

Figure 2.4(a) shows a comparison between microscopic and macroscopic predictions for the

mean number of searching robots at steady state and different team sizes. As it could be

easily demonstrated mathematically by summing up and averaging individual quantities,

in a linear system the microscopic-macroscopic transformation is straightforward and no

approximation is required for obtaining a closed form. As a consequence, both models’

predictions perfectly coincide on the stationary mean number of robots in search mode, also

for small teams, while the standard deviation among runs and over time of the microscopic

model is about inversely proportional to the swarm size. It is worth noting that the mean
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number of robots in obstacle avoidance mode at steady state can be easily derived with

Equation 2.4.

2.3.1.2 Steady state analysis

Since the DE system in Equations 2.3-2.4 is linear, we can analyze the steady state of the

system either using a z-transform (frequency domain) or in time domain. Both analyses

bring the same result.

Frequency domain Equation 2.3 can be transformed using the right shift and left shift

theorems in the z-space as follows:

zNs(z)− zN0 = Ns(z)− paNs(z) + paNs(z)z−Ta . (2.6)

Solving for Ns(z) and applying the limit theorem we obtain:

N∗
s = lim

k→∞
Ns(k) = lim

z→1
(z − 1)Ns(z) =

N0

1 + paTa
. (2.7)

And therefore through the robots’ conservation law:

N∗
a = N0 −N∗

s =
N0paTa

1 + paTa
. (2.8)

N∗ = [N∗
s N∗

a ]Trepresents the state vector of the DE system in the steady state regime.

Time domain Equation 2.4 could have been written also in the same form as Equation

2.3, i.e., as a DE instead of an equation:

Na(k + 1) = Na(k) + paNs(k)− paNs(k − Ta). (2.9)
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(a)

(b)

Figure 2.4: (a) Comparison of the steady state N∗
s obtained with microscopic and macro-

scopic models for different team sizes and different arenas (density of teammates per surface
unit was kept constant). The height of the microscopic column represents the mean value of
N∗

s over a 1000 s time window and over 100 runs. The slight increase in the mean value for
different team sizes is due the fact that the wall detection surface becomes proportionally
smaller in bigger arenas. The error bars represent a mean standard deviation calculated as
an average of the standard deviations measured on each run over the same time window. (b)
Graphical representation of Equation 2.7 for different delay durations and different prob-
abilities of encountering an obstacle in the 40 cm arena (the greater the swarm size, the
larger pa is).
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Equation 2.9 represents a delay state. A first, intuitive step for calculating the steady

state of this equation could be to set Na(k+1) = Na(k) = N∗
a and Ns(k) = Ns(k−Ta) = N∗

s .

However, we can immediately see that in this case Equation 2.9 will be underdetermined,

i.e., 0 = 0.

A workaround step for this problem is as follows: we can say that after Ta iterations,

every robot that enters the delay state must leave it with probability one. Since no robots

exist for negative iterations (see Equation 2.5), the only time during which Na can be

increased is during the first Ta iterations (full inflow with probability pa and zero outflow).

Although Ns(k) may vary during the first Ta iterations, we can approximate it as a constant

(i.e., as if in steady state) if Ta is small:

N∗
a =

∫ Ta

0
paN

∗
s dk = paN

∗
s

∫ Ta

0
dk = paN

∗
s Ta. (2.10)

By combining Equation 2.10 with the robots’ conservation law it is easy to demonstrate

that N∗
s and N∗

a can be expressed as we calculated via the z-transformation (Equation 2.7

and 2.8). This second method of calculating the steady state vector for delay states is

extremely useful if the whole system involving this type of state is nonlinear. This will be

the case in the full-system model describing the dynamics of the stick pulling experiment.

Figure 2.4(b) shows graphically how the normalized average number of searching robots at

the steady state is influenced by the time delay Ta and different probabilities pa.

2.3.2 Simplified Stick Pulling System: Search and Grip

A second key sub-chain of the full-system model captures the two nonlinear couplings among

agents mentioned before: environmental modification and triggering of mutual actions. The

former mechanism, although it does not generate plastic modifications of the environment,
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Figure 2.5: The key sub-chain representing the dynamics of collaboration in the stick pulling
experiment. The numerical values used in this simplified model have been derived using
Table 2.1.

has indirect consequences on the action of the teammates since the gripping of a stick reduces

the opportunities for other teammates to find free sticks for grip1. The latter mechanism is

instead due to the strictly collaborative nature of the stick pulling experiment and the way

robots communicate through sticks’ manipulation.

If we look carefully the PFSM of Figure 2.2, we notice that several states can be thought

of as simple delay states. The durations of the delays do not exceed a few seconds and are

therefore much shorter than most of the values of the gripping time parameter considered

in our experiments, simulations, and models (up to 600 s). As a consequence, not only does

the sub-chain described in this section represent an example of modeling swarm robotic

experiments that involve both distributed manipulation and local communication, it also

represents the core of the collaboration dynamics in the stick pulling experiment. Indeed,

by neglecting all the minor delays, the full-system model reduces to the very same two

states: search and grip (see Figure 2.5).

The following system of DEs represents the macroscopic model for this search-grip sub-

chain:

Ns(k+1) = Ns(k)−∆g1(k)Ns(k)+∆g2(k)Ns(k)+∆g1(k−Tg)Γ(k−Tg; k)Ns(k−Tg) (2.11)
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Ng(k + 1) = N0 −Ns(k + 1) (2.12)

In words, Equation 2.11 tells us that the mean number of robots in search state at any

time is decreased by the robots transitioning to a gripping state (∆g1) and is increased by

the robots coming back from a successful collaboration (∆g2) and those coming back from

an unsuccessful collaboration (∆g1Γ). Equation 2.12 again exploits the conservation of the

total number of robots for calculating the mean number of robots in the grip state. The

nonlinear coupling between equations is achieved with ∆- and Γ-functions as follows:

∆g1(k) = pg1[M0 −Ng(k)] (2.13)

∆g2(k) = pg2Ng(k) (2.14)

Γ(k − Tg; k) =
k∏

j=k−Tg

[1− pg2Ns(j)] (2.15)

The ∆g1-function characterizes the environmental modification mechanism for single

robots and the ∆g2- and Γ-functions characterize the triggering/non-triggering of mutual

actions. Equation 2.13 indicates that the number of sticks free for gripping is equal to the

total number of sticks M0 minus those that are already “busy”. Equation 2.14 tells us that

we need another robot already gripping a stick, and a correct approaching angle for the

searching robot in order to achieve successful collaboration, while Equation 2.15 represents

the fraction of robots that abandon the grip state after the time spent in this state exceeds

their gripping time parameter Tg. As explained more extensively in Lerman et al. [32], this
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is equivalent to calculating the probability that no other robot came “to help” during the

time interval [k − Tg, k].

Finally, our team metric, the (average) collaboration rate Ct, can be computed from the

cumulative number of successful collaborations C over the maximal number of iterations

Te:

C(k) = pg2Ns(k)Ng(k) (2.16)

Ct =
∑Te

k=0 C(k)
Te

(2.17)

As in the case of the two-state system described in Section 2.3.1, the initial conditions

for the DE system are N(0) = [Ns(0) Na(0)]T = [N0 0]T.

2.3.2.1 Microscopic and macroscopic results

Figure 2.6 shows a comparison between microscopic and macroscopic predictions of the

collaboration rate (left column) and of the steady state number of robots in search (right

column) for different arenas and swarm sizes. A first striking result is the existence of

two different system dynamics as a function of the ratio between number of robots and

number of sticks. When there are more robots than sticks, the collaboration rate increases

monotonically with the gripping time parameter and eventually saturates in a plateau cor-

responding to the optimal collaboration rate. In other words, under these conditions, it is a

good strategy for a robot gripping a stick to wait a very long time for another robot to help,

because there will always be at least one “free” robot available. In contrast, when there are

fewer robots than sticks, waiting a very long time becomes a poor strategy, because all the
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robots lose time holding different sticks while no other robots are available to collaborate.

As an extreme example, an infinite gripping time parameter would lead to a null collabo-

ration rate with all robots eventually holding a different stick permanently. Although this

intuitive explanation is correct for the physical setup considered here, it is not generally

true since the sticks-to-robots ratio at which the system bifurcates is dependent on the Rg

parameter, as we will show in the next subsection and as we have also demonstrated in the

full-system model in a recent publication [34].

A second observation we can make about Figure 2.6 is that, much like the two-state

example presented in Section 2.3.1, the smaller the swarm size is, the larger the standard

deviation is among runs using the microscopic model (visible in both the collaboration

rate and steady state variables). Here we notice, however, that for very small swarm sizes

for which there is at most the same number of robots as sticks, (see Figure 2.6(a), first

row) macroscopic and microscopic models’ predictions diverge quantitatively. Other, much

smaller discrepancies can be observed between microscopic and macroscopic predictions with

larger swarm sizes (400 and 600 robots, Figure 2.6, last row). This is counterintuitive since

one would think that the problem shown in the first row of Figure 2.6 would only have to do

with the small number of robots and sticks used in this scenario, quantities not large enough

to satisfy the law of the large numbers on which macroscopic models base their calculations

of central tendencies. A more careful inspection of the state variables in steady state, much

like what was done in Section 2.3.1.1, reveals that the collaboration rate is not correctly

predicted when, at the source, the steady state variables used for calculating it are different

(see Figure 2.6, right column). In the case of nonlinear systems, we can no longer simply

add and average equations defining individual agent’s PFSMs for obtaining the PFSM

representing the whole team. Approximations for obtaining closed formulas representing
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the macroscopic PFSM depend on the specific nonlinearity involved in the coupling and

this, in combination with the fact that in smaller swarm sizes, the continuous quantities

of the state variables representing the macroscopic level are in stronger contrast with the

integer quantities representing the microscopic level, generates discrepancies between these

two types of models. A quantitative analysis of the discrepancies of prediction between

microscopic and macroscopic models is beyond the scope of this work, but is partially

addressed by Correll and Martinoli [64].

2.3.2.2 Steady state analysis

Since the system of DEs 2.11-2.15 is nonlinear, we cannot analyze it in z-space, as we did

with the previous two-state sub-chain. Much as Lerman et al. have proposed for a time-

continuous version of the same sub-chain [32], we perform a steady state analysis of the

system in time domain.

By setting Ns(i) = N∗
s and Ng(i) = N∗

g for all i between k − Tg and k + 1 in Equations

2.11-2.16 and substituting Equations 2.13 and 2.14 in Equation 2.11, we obtain:

0 = −pg1(M0 −N∗
g )N∗

s + pg2N
∗
g N∗

s + pg1(M0 −N∗
g )N∗

s Γ∗ (2.18)

N∗
g = N0 −N∗

s (2.19)

Γ∗ = (1− pg2N
∗
s )Tg (2.20)

C∗ = pg2N
∗
s N∗

g (2.21)
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Figure 2.6: Comparison between microscopic and macroscopic predictions for the simplified
stick pulling model depicted in Figure 2.5. The density of robots and sticks in each arena
is invariant. Rows one to three represent results obtained in arenas of 40, 80, and 400 cm
in radius, respectively. Left column: the collaboration rate as a function of the gripping
time parameter for different swarm sizes. Right column: the steady state values of the
average number of robots in the search state for different swarm sizes. Steady state values
have been calculated over a window of 1000 s after at least 5τg s from the beginning of the
experiment. The error bars represent a mean standard deviation calculated as an average
of the standard deviations measured on each run over the 1000 s time window.
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First, we determine when the number of collaborations is maximized as a function of

the number of robots in the search state (or in the grip state, respectively). To do this,

we insert Equation 2.19 in Equation 2.21, perform a partial derivative over N∗
s and set the

result equal to zero. C∗ is maximal when N∗
s = N0/2.

By inserting this result, pg2 = Rgpg1, Equations 2.19 and 2.20 in Equation 2.18, we

obtain the following transcendental equation:

0 = −(M0 −N0/2) + Rg
N0

2
+ (M0 −

N0

2
)(1− pg1Rg

N0

2
)T opt

g . (2.22)

Introducing β = N0/M0 and solving the equation for T opt
g , we obtain

T opt
g =

1
ln(1− pg1Rg

N0
2 )

ln
1− β

2 (1 + Rg)

1− β
2

. (2.23)

Equation 2.23 tells us that an optimal Tg exists if all the arguments of the logarithms

are greater than zero. While this condition is met for the first logarithm in all our scenarios,

the argument of the second logarithm depends on β and Rg. It can be demonstrated6 that

an optimum exists if and only if

β < βc =
2

1 + Rg
. (2.24)

For all other cases, the collaboration rate is a monotonically increasing and eventually

saturating function of Tg. Figure 2.7 graphically demonstrates the meaning of Equation

2.24.

Equation 2.24 tells us that the bifurcation of the system (defined by whether an optimal
6While for 2/(1 + Rg) ≤ β ≤ 2 the second logarithm of Equation 2.23 does not exist, more generally,

if β ≥ 2/(1 + Rg), N∗
s in Equation 2.18 will be always greater than N0/2, i.e., a suboptimal value. This

can be easily demonstrated by introducing β = N0/M0 in Equation 2.18, solving for β and comparing with
Equation 2.24.
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Tg exists) is a function of the collaboration parameter Rg. Notice that, for instance, if

the collaboration is very difficult (i.e., Rg is very small), there could be situations where

although we have a greater number of robots than sticks (see Figure 2.7(a), the 20-robot

line), the optimal collaboration rate may still be achieved only with a specific Tg. In other

words, when it is difficult to collaborate, in order to enhance the number of collaborations, it

is worth abandoning the sticks after a while and probabilistically increasing the critical mass

of robots working in another area of the arena. Although the precise team size at which the

bifurcation happens in the real system cannot be correctly computed with Equation 2.24,

this equation allows us to better situate intuitive considerations such as those presented in

Section 2.3.2.1.

2.4 Model Construction: Full Stick Pulling System Model

Having introduced the two key sub-chains characterizing the dynamics of the stick pulling

experiment, we are now ready to analyze the full-system model. We can already imagine

that the description of the full system at the macroscopic level will involve a system of

nonlinear, coupled, time-delayed DEs.

As mentioned above, Figure 2.2(b) shows the PFSM of the full system. The macroscopic

model of the full system can be formalized as follows7:

7The system of DEs presented here is consistent with the description presented in previous publications
[33, 34] with one exception: the number of sticks available for grip1 has been decreased by a factor Nd

since actually, as explained in Section 2.2.3, the experimenter replaces the stick in the hole only when the
success dance of the robot has terminated. Although the collaboration rate changes only minimally with
this correction, the current model is more faithful to the real experiment.
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(a)

(b)

Figure 2.7: Graphical illustration of Equation 2.24 for an arena of 80 cm and 16 sticks
(microscopic and macroscopic predictions overlapped). (a) β < 2/(1+Rg), with Rg = 0.035.
(b) β < 2/(1 + Rg), with Rg = 1.0.
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Ns(k + 1) = Ns(k)− [∆̃g1(k) + ∆g2(k) + pw + pR]Ns(k) (2.25)

+ ∆̃g1(k − Tcga)Γ(k − Tga; k − Ta)Ns(k − Tcga)

+ ∆g2(k − Tca)Ns(k − Tca)

+ ∆g2(k − Tcda)Ns(k − Tcda)

+ pwNs(k − Ta) + pRNs(k − Tia)

Na(k + 1) = Na(k)− ∆̃g1(k − Tcg)Γ(k − Tg; k)Ns(k − Tcg) (2.26)

+ ∆g2(k − Tc)Ns(k − Tc) + ∆g2(k − Tcd)Ns(k − Tcd)

+ pwNs(k) + pRNs(k − Ti)− ∆̃g1(k − Tcga)Γ(k − Tga; k − Ta)Ns(k − Tcga)

−∆g2(k − Tca)Ns(k − Tca)−∆g2(k − Tcda)Ns(k − Tcda)

− pwNs(k − Ta)− pRNs(k − Tia)

Ni(k + 1) = Ni(k) + pRNs(k)− pRNs(k − Ti) (2.27)

Nc(k + 1) = Nc(k) + ∆̃g1(k)Ns(k) + ∆g2(k)Ns(k) (2.28)

− ∆̃g1(k − Tc)Ns(k − Tc)−∆g2(k − Tc)Ns(k − Tc)
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Nd(k + 1) = Nd(k) + ∆g2(k − Tc)Ns(k − Tc)−∆g2(k − Tcd)Ns(k − Tcd) (2.29)

Ng(k + 1) = N0 −Ns(k + 1)−Na(k + 1)−Ni(k + 1)−Nc(k + 1)−Nd(k + 1) (2.30)

where Txyz = Tx +Ty +Tz, Ns represents the mean number of robots in the search state,

Na those in the obstacle avoidance state, Ni those in the interference state, Nc those in the

stick-centering state, Nd those in the success dance state, and Ng those in the grip state.

The ∆g2- function can be calculated with Equation 2.14 and Γ-functions with Equation

2.15, while the ∆g1-function is modified as follows:

∆̃g1(k) = pg1[M0 −Ng(k)−Nd(k)]. (2.31)

Equations 2.25-2.30 can be interpreted in a way similar to that shown for Equations

2.11-2.12. For instance, Equation 2.25 indicates that the mean number of robots in search

state at any time is decreased by the number of robots that transition to a grip state (grip1

and grip2) and by the number that start avoiding a wall or a teammate; Ns is increased

by the number of robots that come back from a successful collaboration either as first or

second robot (the success dance now has a duration greater than zero), those that come

back from an unsuccessful collaboration, and those that finish their wall or robot avoidance

maneuver. It is interesting to notice that all states other than search (the default behavior)

and grip (calculated with the robots’ conservation law) are characterized by an Ns factor
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(either at the current iteration k or delayed) since they are simple delays like those used

in the two-state system described in Section 2.3.1. However, much like the simplified stick

pulling model described in Section 2.3.2, the coefficients with which the state variable Ns

is multiplied are time-variable and functions of other state variables or Ns itself (see Γ and

∆-functions), thus generating nonlinear coupling between the equations.

As in the case of the two-state systems described in Section 2.3, all robots are in the

search state at the beginning of the experiment, so the initial conditions for the DE system

are N(0) = [Ns(0) Na(0) Ni(0) Nc(0) Nd(0) Ng(0)]T = [N0 0 0 0 0 0]T.

2.4.1 Results

We can now compare the results of our microscopic and macroscopic abstraction with those

gathered with lower implementation levels, i.e., embodied simulations and real robots. Real

robot experiments lasted about 20 minutes (duration of the on-board batteries) and were

repeated three times each, while those carried out in the embodied simulator lasted 30

minutes (simulated time) and were repeated 10 times.

Figure 2.8(a) compares results obtained with real robots and embodied simulations.

Although the real robot experiments were repeated only three times, as compared to the

ten runs used for embodied simulations, real robots appear to achieve a slightly lower

collaboration rate than their corresponding simulated agents. Differences between simulated

and real robots’ gripper modules are at the origin of this discrepancy. We will discuss this

type of problem in detail in Section 2.6.1.

Furthermore, Figure 2.8(b) clearly shows that, in contrast to the macroscopic results,

predictions delivered by the microscopic model are in good quantitative agreement with the

data collected using the embodied simulator for all the team sizes.
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Much like the results presented in Section 2.3.2.1, these problems are drastically atten-

uated as soon as we increase the number of robots and sticks, maintaining the same density

of both items per unit area. Figure 2.9(a) shows good quantitative agreement among the

three simulation levels simply by multiplying the robot and stick quantities by four and

increasing the arena size to maintain the same object density, but without changing any

implementation details. However, as soon as we multiply the quantities by 100 (see Figure

2.9(b)), we notice that the problem mentioned in Section 2.3.2.1 arises again, but even more

accentuated. Section 2.6 will address again these problems more in detail.

2.4.2 Steady State Analysis

Like the simplified two-state system described in Section 2.3.2, the DEs describing the full

system are nonlinear and, therefore, we must perform the steady state analysis in the time

domain. Using the same method we adopted in Section 2.3.2.2 for Equations 2.25 and 2.30

and the approximation in time domain introduced in Section 2.3.1.2 for all the delay states

of the full system (Equations 2.26-2.29), we obtain

0 = −pg1(M0 −N∗
g −N∗

d ) + pg1(M0 −N∗
g −N∗

d )Γ∗ + pg2N
∗
g (2.32)

N∗
a = TaN

∗
s [pg1(M0 −N∗

g −N∗
d )Γ∗ + 2pg2N

∗
g + pw + pR] (2.33)

N∗
i = TipRN∗

s (2.34)

N∗
c = TcN

∗
s [pg1(M0 −N∗

g −N∗
d ) + pg2N

∗
g ] (2.35)
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(a)

(b)

Figure 2.8: Collaboration rate as a function of the gripping time parameter for group sizes
of two, four, and six robots in a 40 cm radius arena. (a) Results gathered using real robots
(data for τg = [5, 30, 100, 300] s) and embodied simulations (solid line with τg = [0 : 5 : 300]
s). (b) Microscopic (dashed line) and macroscopic (solid line) models’ predictions overlapped
with the embodied simulations’ results (dotted line) for τg = [0 : 5 : 600] s.
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(a)

(b)

Figure 2.9: (a) Results of embodied simulations, microscopic (dashed line) and macroscopic
(solid line) models for 8, 16, and 24 robots, 16 sticks, and an arena 80 cm in radius. (b)
Predictions obtained using microscopic (dashed line) and macroscopic (solid line) models
for swarms of 200, 400, and 600 robots in an arena 400 cm in radius.
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N∗
d = Tdpg2N

∗
s N∗

g (2.36)

N∗
g = N0 −N∗

s −N∗
a −N∗

i −N∗
c −N∗

d (2.37)

The collaboration rate in steady state becomes

C∗ = pg2N
∗
s N∗

g = pg2N
∗
s (N0 −N∗

s −N∗
a −N∗

i −N∗
c −N∗

d ) (2.38)

Simulating the DE system 2.25-2.30 long enough until a stationary regime is reached

and solving the equation system 2.32-2.37 are two alternative options for obtaining the full

system’s steady state vector N∗ = [N∗
s N∗

a N∗
i N∗

c N∗
d N∗

g ]T. Both of these operations

must be performed numerically. Indeed, if we try to solve the equation system 2.32-2.37

analytically by substitution and introducing all the results in Equation 2.32 we obtain the

following transcendental equation:

P0(N∗
s ) + P1(N∗

s )Γ∗ + P2(N∗
s )Γ∗2 = 0, (2.39)

where P0, P1, and P2 are second order polynomials in N∗
s whose coefficients are a

function of all the system parameters, i.e., pij = pij(M0, N0, pg1, pg2, pw, pR, Ta, Ti, Tc, Td), i

being the polynomial index (i = 0, 1, 2) and j being the term number in a given polynomial

(j = 0, 1, 2).

Like Equation 2.18, Equation 2.39 can be solved for Γ (a quadratic equation here) and

therefore also for Tg. However, unlike the analysis described in Section 2.3.2.2, determining

the value of N∗
s , which achieves an optimal collaboration rate, implies we know what values
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the delay state variables assume in steady state, as shown by Equation 2.38. Unfortunately,

N∗
a , N∗

i , N∗
c , N∗

d , and N∗
g are, in turn, nonlinearly coupled with N∗

s , preventing us from

finding an optimal value without solving 2.39 for N∗
s . Although we can approximate Γ

with a McLaurin series (Γ∗ ≈ e−Tgpg2N∗
s ), Equation 2.39 can be solved, to our knowledge,

only numerically. This prevents us from formulating analytical expressions for the system

bifurcation points (such as that reported in Equation 2.24) or superlinear-linear and linear-

sublinear regime transitions (such as those reported in Ijspeert et al. [9] for the relative

collaboration rate, i.e., the collaboration rate normalized over the total number of robots

used in the experiment).

2.5 A Case Study: The Aggregation Experiment

To demonstrate the versatility of the methodology developed in [36] and presented above,

I will briefly present our application of the methodology to a case study concerned with

multi-robot aggregation. The task is to collect small objects, referred to as “seeds”, in a

square arena and to gather them in a single cluster8. In this case, the model was used for

assessing the efficiency of a worker allocation algorithm. In contrast to most aggregation

work to date [6, 4, 5], in which the size of the working team was kept constant during the

whole aggregation process, this method allows workers to estimate demand and retire based

on that estimate. The experiment uses three primary team performance measurements:

the average cluster size, the average number of clusters, and the average number of active

workers in the environment. Full details and an incremental construction of the model may

be found in [37].

8Although these experiments are not intended to reproduce a biological system, they present several
similarities with the nest cleaning and the clustering of dead ants performed by some ant colonies [65].
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As the robots have only local sensing capabilities and do not exploit a fully connected

communication network, there is neither central nor global coordination among robots.

Collective coordination is purely probabilistic and happens based on local interactions,

strictly following SI principles. The only communication available to the robots is implicit,

stigmergic communication via the aggregation process. Because the robots do not have a

global perception of the environment, they do not know when the task is finished. This

motivates the need for a distributed task allocation mechanism to allow each individual to

stop working based on its own estimate of the availability of work. Robots that decide to

stop working can rest in a dedicated parking zone adjacent to the main arena.

The specific interest for modeling this particular aggregation experiment lies in the

fact that, although the control algorithms used for aggregation and individual activity

regulation are both deterministic (and therefore easy to model), the whole system depends

on and exploits randomness to achieve its final state, i.e., a single cluster with all the robots

resting. Indeed, the stochastic nature of the robot-environment interactions combined with

noisy sensory readings automatically generates probabilistic transitions between system (i.e.,

the robots’ and environment’s) states. Randomness combined with irreversible elimination

of isolated seeds prevents the aggregation process from getting stuck in multiple-cluster

configurations. The irreversible decision to rest achieves a self-regulation of the swarm

activity that gracefully follows the evolution of the aggregation process.

In the aggregation experiments presented here, the arena consists of an inner working

zone of 80 x 80 cm2, in which the cluster formation takes place, and a surrounding parking

zone of 40 cm in width, where the robots that decide to stop working go and stay in an

idle state to save energy. At the beginning of the experiment, 20 seeds, 1.7 cm in diameter

and 2.5 cm in height, are randomly scattered in the working zone. The picture presented
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Figure 2.10: A close-up of a simulated robot equipped with a gripper, ready to grip a seed;
the corresponding setup in the embodied simulator (10 robots, 20 seeds, 178 x 178 cm2

arena), in which the inner area represents the working zone and the surrounding area is the
parking/resting zone where robots that decide to stop working stay idle; and a typical end
state of the aggregation experiment, e.g., 5 hours of simulated time, in a 178 x 178 cm2

arena.

in Figure 2.10 shows a 178 x 178 cm2 working zone; this is chosen for clarity, as robots,

seeds, working zone, and parking zone are more easily distinguishable in this picture than

in a picture of an 80 x 80 cm2 working zone.

Groups of one to ten embodied agents equipped with gripper turrets are used to collect

and cluster the seeds. Agents can distinguish seeds from walls and other robots because of

their thinness, simply using their six frontal proximity sensors. A floor-color sensor allows

each agent to distinguish between the working and parking zones.

2.5.1 Aggregation Experiment without Worker Allocation

In most previous aggregation experiments [3, 4, 5, 6], the size of the working team was

kept constant during the experiment. Furthermore, the experiments were monitored and

terminated when a single cluster arose in the arena. Thus, the (destructive) effect of the

lack of a mechanism to allow the robots to stop working was never clearly studied. Here

we do not end the experiment when the robots create a single cluster of seeds, instead we

let the experiment run for 10 hours. In keeping with previous works in cluster formation
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Figure 2.11: FSM representing the robot controller. Transitions between states are deter-
ministically triggered by sensory measurements. This representation does not include the
distributed worker allocation mechanism.

(a) (b)

Figure 2.12: Results of aggregation experiment with groups of 1 and 5 robots and 20 seeds
in an 80 x 80 cm2 arena. Team sizes are constant. (a) Average cluster size over time. (b)
Average number of clusters over time.
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(a) (b)

Figure 2.13: Results of aggregation experiment with groups of 10 robots and 20 seeds in
an 80 x 80 cm2 arena. Team sizes are constant. (a) Average cluster size over time. (b)
Average number of clusters over time.

and aggregation [3, 4, 5, 31], two primary team performance measurements are used: the

average cluster size and the average number of clusters.

The behavior of each robot is determined by a simple hand-coded program that can

be represented with a standard flow chart or a Finite State Machine (FSM), as depicted

in Figure 2.11. The behavioral granularity shown in Figure 2.11 is arbitrary and is chosen

by the experimenter so that the FSM captures all the details of interest. Each agent’s

behavior can be summarized with the following simple rules. In its default search behavior,

the agent moves straight forward within the working zone looking for seeds. As in the

stick pulling experiment, when at least one of its six frontal proximity sensors is activated,

the agent attempts to identify whether the object it has encountered is a seed or a larger

obstacle, such as another robot or a wall. If the agent is in front of a large object the agent

avoids it with an appropriate maneuver. In the object is a seed, then if the agent is not

already carrying a seed (if it is “free”), it grasps this one with the gripper, otherwise (if it

is “loaded”) it drops the seed it is carrying close to the one it has found; then in both cases,

the agent resumes searching for seeds. With this simple individual behavior, the team is



52

able to gather objects in clusters of increasing size. A cluster is defined as a group of seeds

whose neighboring elements are separated by at most one seed diameter. We note that,

since agents can identify only the two ends of a cluster as seeds (as opposed to obstacles),

clusters are built in a line.

Figures 2.12 and 2.13 show the model predictions and the simulation results of the

aggregation experiment without the use of any worker allocation algorithm with groups of

1, 5, and 10 robots in an 80 x 80 cm2 arena. Figure 2.12(a) and Figure 2.13(a) present the

increasing average size of the clusters over time while Figure 2.12(b) and Figure 2.13(b),

show the decreasing average number of clusters over time. Each experiment characterized

by a different team size has been repeated for 30 runs and the depicted error bars represent

the standard deviation over runs. Good agreement between the results collected at both

implementation levels illustrates the reliability of the macroscopic model’s predictions.

With a team of 10 robots (Figure 2.13(a)), the aggregation process clearly has two

phases. In the first phase, the mean cluster size increases steadily from 1 seed to about 15

seeds and in a second phase, the mean cluster size remains, on average, constant around

15 seeds. Similarly, during the first phase, Figure 2.13(b) shows that the average number

of clusters decreases asymptotically from 20 to about 1 and then remains close to 1 during

the second phase of the aggregation process. This is clearly a side effect of the lack of a

mechanism to allow workers to stop performing the aggregation task once a single cluster

arises, which is confirmed by the fact that 10 hours into the aggregation process, the average

cluster size built by the team of 5 robots (see Figure 2.12(a)) is larger than that obtained

with the team of 10 robots.

The results in Figure 2.12 and Figure 2.13 can be explained by the fact that, once a

single cluster arises only two manipulation sites remain in the environment (i.e., the two
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(a) (b)

Figure 2.14: Results of aggregation experiment with worker allocation and groups of 1 and
5 robots and 20 seeds in an 80 x 80 cm2 arena. (a) Average cluster size over time. (b)
Average number of active workers over time.

tips of that cluster). Because the seed pick-up and drop-off probabilities are empirically

very close, at any given time during the last phase of the aggregation process, on average,

half of the active workers will be carrying a seed and the other half will not.

The results presented in Figures 2.12 and 2.13 justify the need for a distributed mecha-

nism that enables each robot to switch off when the aggregation task is finished.

2.5.2 Aggregation Experiment with Worker Allocation

In threshold-based worker allocation systems, the “propensity” of any agent to act is gov-

erned by a response threshold. If the demand is above the agent’s threshold then that

agent continues to perform the task; conversely, if the demand is below its threshold then

the agent stops performing that particular task. In the algorithm presented here, the time

an agent spends before finding some work to accomplish (i.e., picking up and placing a seed)

represents the agent’s estimation of the demand stimulus associated with the aggregation

task.
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(a) (b)

Figure 2.15: Results of aggregation experiment with worker allocation and groups of 10
robots and 20 seeds in an 80 x 80 cm2 arena. (a) Average cluster size over time. (b)
Average number of active workers over time.

The worker allocation algorithm is as follows. When a robot has not been able to

work for a reasonable amount of time, its propensity to accomplish that particular task is

decreased. If the stimulus falls below a certain threshold (i.e., if the amount of time spent

in search of work is above a given search time-out Ts), a deterministic switching mechanism

prompts the robot to leave the working zone and rest in the surrounding parking zone for

the remaining duration of the experiment. In other words, our worker allocation algorithm

has been specifically designed for an irreversible process such as aggregation: robots become

inactive from an active mode and not vice versa as seeds are irreversibly gathered in clusters

of increasing size. Furthermore, a seed-carrying robot that decides to become inactive

cannot do so until it finds an appropriate spot (i.e., one tip of a cluster) to drop the seed.

Thus, with this simple algorithm characterized by a single threshold, each robot is able to

estimate the aggregation demand locally and decide whether to work or rest with no need

for a centralized supervisory controller. This task allocation mechanism is similar to that

observed in some ant colonies [25] for which it has been shown that an individual performs a
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task as long as the demand stimulus for the task, e.g., a pheromone concentration, exceeds

the individual’s threshold for that particular task.

The threshold distribution among agents could be performed in several ways. In this

case, we use the simplest possible distribution: we assign the same response threshold to all

the agents, obtaining in this way a homogeneous and fully scalable team from a control point

of view. However, the resulting agents’ behavior (rhythm of activity) is not identical since

it is based on the local, private assessment of the aggregation demand, which is represented

by the seed distribution in the environment. In other words, diversity in activity is created

by exploiting the intrinsic noise of the system due to local perception and additional noise

sources on simulated (miniature) sensors and actuators.

Figure 2.14 and Figure 2.15 present the outcome of the aggregation experiment using

the proposed distributed worker allocation algorithm with teams of 1, 5, and 10 robots in

an 80 x 80 cm2 arena. Each aggregation run lasted 10 hours. All error bars represent the

standard deviations among 30 runs. For all the results presented in this subsection, we

hand-coded Ts = 25 minutes. This value of Ts is very close to the optimal threshold value

obtained using a systematic search shown in Section 2.6.5. Figure 2.14 and Figure 2.15 show

that, in contrast to the case without worker allocation, the average cluster size remains an

increasing function of time for all three group sizes within the 10-hour experimental time

window. When using a single worker, the average cluster size over time is the same as that

obtained in the scenario of Section 5 and the robot usually does not leave the working zone;

with a group of 5 workers, although the average cluster size over time is similar to that

obtained in the scenario without worker allocation, here the average number of workers

necessary to obtain the same results is substantially lower, as on average, only about half

of the agents remain in the arena after 10 hours. The most important improvement comes
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with a large team of 10 robots. In fact, with 10 workers, during the second phase of the

aggregation, the average cluster size remains an increasing function of time, eventually

reaching 19 seeds, nearly the largest value possible, while the number of active workers in

the environment decreases such that after 10 hours only about 2 workers remain active.

2.6 Discussion

This section discusses the problems and subtle effects that arise in moving between levels

of abstraction and explores the usefulness and limitations of this modeling methodology as

a tool for optimization.

2.6.1 From Real Robots to Embodied Simulations

Although in general, as demonstrated in several other tasks [4, 5, 66, 17], the embodied,

sensor-based simulator Webots has provided very faithful results, simulation is never reality.

Several effects due to nonlinear physical laws, noise, and small heterogeneities among robots

and components are simply neglected in simulation in order to reduce computational cost.

In particular, when (collaborative) manipulation is performed with miniature robots like

the Khepera, these effects can play a major role: grippers are usually crude, endowed with

only a few degrees of freedom, and sensors are affected by a high level of noise.

In the specific case of the stick pulling experiment, we have observed (but never quan-

tified) that the discrepancies between results obtained using the embodied simulator and

those using real robots shown in Figure 2.8(a) have to be attributed to differences in the

real gripper module and its corresponding embodied simulation. These differences between

simulated and real grippers are twofold. First, reliability: while the simulated gripper never

releases the stick unintentionally (in other words, the trigger for releasing is always either a
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teammate’s help or the internal time-out), the real gripper sometimes drops the stick early

due to the noise in measuring the elevation of the arm. Since the presence of a teammate

is assessed based on the measurement on the arm elevation sensor9, if this measurement is

noisy, the robot performing grip1 may erroneously conclude that a teammate is helping and

release the stick, allowing it to drop into its hole again. The error in elevation is correlated

with the arm PI controller and more probable when the arm is in full swing. Although

the decision to release the stick is based on redundant sensory samples and checks, it still

happens from time to time, but does not occur in Webots. Second, body solidity: in We-

bots 2, collision detection routines are 2-D and grippers never get entangled, instead they

actually pass through each other, whereas entanglement is an occasional problem in the

real robotic experiment. Possible fixes for these discrepancies include implementing more

realistic sensor noise in the gripper in Webots and using a newer version of the Webots sim-

ulator (version 3 or higher), which implements more computationally intensive 3-D collision

detection routines and should therefore eliminate the problem of gripper penetration at the

price of a slower simulation.

2.6.2 From Embodied Simulations to Probabilistic Models

The method of abstraction presented here transforms an embodied, sensor-based agent

in a much simpler agent. In the nonspatial, probabilistic models, an agent assumes a

random position in the arena at each new simulation step instead of being characterized by

a trajectory. The probabilistic agent has a perfectly centered, uniform, and precise range

of detection for each object it may encounter in the arena, in contrast to the individual,

heterogeneously distributed, noisy sensors available to the real robots and in the embodied

9A systematic positive error in the pre-established position is detected by the first robot when the second
robot pulls up on the stick. See Section 2.2.3.
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simulation. The probabilistic agent is characterized by an average speed instead of having

a more complex kinematic controller: at lower levels of implementation, accelerations are

tightly coupled to sensory readings, whereas the probabilistic agent is endowed with a

behavior-based controller that can be represented by a precise PFSM whose state-to-state

transitions follow either precise durations or are triggered by external events, but never

happen with shorter or longer duration due to interrupts or because an event was detected

by the sensors earlier or later.

In the next three subsections we will discuss the role of some of these important approx-

imations in the accuracy of the predictions delivered by the probabilistic models.

2.6.2.1 Parameter calibration and behavioral granularity

As seen in Section 2.2.4, the models’ parameters characterize the microscopic robot-to-robot

and robot-to-environment interactions. They include probabilities of encountering specific

objects, sometimes even considering a preferred angle of approach, and delays required by

specific maneuvers whose details are uninteresting for the metric considered. This implies,

for instance, an effort to summarize belts of noisy, perhaps unevenly spaced sensors as well

as their relative detection and reactive control algorithms with an average detection area

or capture an obstacle avoidance maneuver with a mean duration.

To calculate the probability of encountering an object or robot in the case studies pre-

sented, two different methods were used. The first, used in the stick pulling case study, bases

the parameter calibration on simple geometrical considerations and systematic experiments

with one or two real robots. The second method, similar to one proposed by Lerman and

Galstyan in [28], used in the aggregation case study [37], is based on the area swept out by

the robots’ sensors in a given time step.
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While these heuristic methods are certainly steps in the right direction, none of them

has, thus far, taken into account the fact that model parameters, measured with systematic

tests at lower levels of implementation, may also be characterized by measurement error

and should, therefore, be introduced in the models as a mean value and corresponding

distribution instead of an average value. To do this, we must take a step beyond our

current mean-field approximation and develop an exact statistical formulation, describing

the system a stochastic master equation instead of a rate equation [67]. We note that,

considering the complexity of the models and the propagation of errors in nonlinear, time-

delayed systems, this step will not be trivial.

Further difficulties may arise because of the behavioral granularity captured in the mi-

croscopic model. The robot controller used in the both case studies, developed prior to

the modeling methodology presented here, can be approximated as an FSM, though certain

routines (obstacle avoidance and interference) have been implemented with proximal con-

trollers. Proximal controllers, in our case neural network-based controllers, tightly couple

actuators with sensors without passing through a distal representation as, for instance, is

the case for behavior-based implementations. Parameters used to describe the states corre-

sponding to such routines (in our case, the duration of obstacle avoidance and interference

as well as the probability of detecting an obstacle and a teammate) can still be measured in

systematic tests with one or two robots, as mentioned above, even if this implies some inac-

curacy. For predicting the collaboration rate, our chosen metric for the stick pulling task,

and for predicting “high-level” metrics such as the average cluster size, this approximation

is quite sufficient. Consider, however, a simpler system, for example, a controller consisting

only of a searching mode and the obstacle avoidance and interference routines used in our

proximal controllers. The description of a state as proposed here would probably no longer
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be adequate for such controllers; temporal attractors in the state space rather than static

state definitions may achieve better results.

2.6.2.2 Nonspatial models

The macroscopic modeling method proposed in this chapter is nonspatial, as it does not

make use of the trajectories of the agents, the correlation between the positions occupied

over consecutive time steps, or the spatial distribution of the agents resulting from their

movement pattern and the environmental configuration. Therefore, this model cannot ac-

curately describe swarm-based systems that are sensitive to the trajectories of the agents

or their positions over time. An example of such a system is a team of rovers carrying

out a coverage task in a planetary exploration mission. In such a case, the lifetime of each

robot is crucial and sets a maximal boundary on the time within which the mission must

be accomplished. In this case, the current model would have to be extended to take into

account states defined by the position (and orientation) of the robot in order to be quantita-

tively accurate. Depending on the metric chosen, spatial distributions rather than detailed

trajectory information may suffice to achieve this goal.

The modeling methodology assumes a uniform distribution of objects on the arena and

no relevance of trajectories or robot spatial distribution to the chosen metric. As long

as detection areas do not overlap between the objects placed in the arena (in this case,

walls and sticks) and the metric does not specifically address spatiality, this assumption

is correct. In order to verify this, we ran several stick pulling experiments characterized

by different stick distributions (see Figure 2.16) using the embodied simulator. In each of

these cases, the predictions of both models were as good as those shown in Figure 2.8(b),

the microscopic model reaching quantitative agreement with the embodied simulations. If
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Figure 2.16: Four examples of implemented stick distributions.

needed, the current modeling methodology could be also easily adapted in order to take

into account overlapped detection areas, especially for nonmobile objects. However, subtle

effects due to robot clustering and mutual influence in search and manipulation activities

could arise in densely populated scenarios and, as we will show in Section 2.6.2.3, these

effects are more difficult to incorporate in the models. Specific robots’ distributions (e.g., a

specific pattern of movements at the arena’s boundary) could also be easily introduced at

the price of additional complexity (i.e., more states) in the PFSM(s).

In addition to a robot’s position, its orientation may also play a role in the metric

considered, particularly when either a specific sensor or actuator has a range comparable to

the dimensions of the arena. For instance, in the stick pulling experiment, the introduction

of directional communication for attracting robots [9, 68] and vision capabilities in a limited

cone of view [68] generates additional difficulties for a nonspatial modeling methodology

such as the one presented here. Usually, quantitatively correct predictions using nonspatial,

probabilistic models can still be achieved, but not without using free parameters [9].

2.6.2.3 Overcrowded arenas

The modeling methodology achieves quantitatively correct predictions of nonspatial metrics

based on the assumption that robots are, on average, homogeneously distributed in the
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arena. As soon as this assumption is no longer valid, such as in an overcrowded scenario,

the current methodology reaches its limitations and predictions are no longer quantitatively

correct. Another way to explain why an overcrowded scenario breaks the methodology’s

assumptions is that the models as generated by the methodology are no longer Markovian

in this situation. As the arena becomes crowded with robots, though the robots can still

move around and collaborate, the next transition between controller states is contingent on

each robot’s trajectory and the trajectories of the surrounding robots.

In an overcrowded scenario, the robots form clusters with overlapping detection areas,

which frees space around sticks and seeds that can, in turn, be exploited by other robots. To

maintain Markovian assumptions in this situation, we would have to consider states relative

to robot trajectories, which would result in an explosion of complexity of the models, if

formulated in the same way we proposed in the methodology presented here.

Figure 2.17(a) illustrates this effect for the microscopic model in the stick pulling exper-

iment. The plot shows a clear discrepancy between the microscopic model’s and embodied

simulation’s optimal collaboration rate for group sizes greater than ten robots. While the

embodied simulation results reflect this continuing collaboration mitigated by crowding, the

microscopic model predicts ever-increasing performance. The continual increase here is due

to the fact that the interference area represented by the robots cannot expand into sticks’

and wall’s detection areas and will therefore saturate to a maximal value corresponding

to the free space available in the arena (see Equation 2.1). An alternative option, which

allows the robots’ detection area to grow until the calculated probability of encountering

another robot is one, will also fail to deliver correct predictions since, at a certain point, the

collaboration rate disappears [9, 33] (in the model, the robots can only execute interference

maneuvering) while in the embodied simulation performance continues to be greater than
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zero, as shown in Figure 2.17(a).

Figure 2.17(b) shows the problem from another perspective. The piecewise linear ap-

proximation we do in the model for the probability of encountering another robot per time

step is also approximately correct for teams of up to ten robots, but then, in the saturation

phase, the model’s curve diverges from the likelihood measured using embodied simulations.

2.6.3 From Microscopic to Macroscopic Models

The microscopic and macroscopic models of a distributed manipulation experiment, al-

though they rely on the same abstraction of the individual agent, may deliver slightly

divergent predictions. The discrepancies are fundamentally due to the fact that typical

models of a distributed manipulation experiment are constituted by nonlinear, often time-

delayed DEs and that the average quantities predicted by the macroscopic models cannot

simply be calculated from the linear combination of the individual PFSMs constituting the

microscopic model. This already affects the predicted mean value of state variables, which

in turn introduces more or less relevant discrepancies in the metric used for evaluating the

swarm performance. For instance, the discrepancies between microscopic and macroscopic

models in the collaboration rate (based on Ns and Ng state variables) appear to be slightly

more important in the full-system model (Figure 2.8 and Figure 2.9) than in the simplified

one (Figure 2.6, left column) because in the simplified model, inaccuracies in the Ns state

variable can be directly compensated by the Ng variable, while this is only partially possible

in the full-system model.

In the mathematical description of systems consisting of discrete numbers of agents,

numerical effects can emerge in predictions. For instance, in the calculation of the size

and the number of clusters in the aggregation experiment, using real numbers can result in
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(a)

(b)

Figure 2.17: (a) Comparison of the prediction obtained using embodied simulations and
the microscopic model in an overcrowded arena (up to 20 robots in an arena of 40 cm
in radius). For each group size, the collaboration rate achieved after optimization of τg

(systematic search) is plotted. (b) Probability of encountering a robot in the embodied
simulator as compared to the linear approximation used in the modeling methodology.
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obtaining cluster sizes or numbers of clusters smaller than unity but still greater than zero.

Similarly, in the stick pulling experiment, the macroscopic model predicts a collaboration

rate that is greater than zero for a single robot. These numerical effects may reduce the

meaningfulness of the model’s predictions, in particular with small swarm sizes.

Further discrepancies may have a combinatorial origin: the microscopic model correctly

calculates the allocation of robots at limited, shared manipulation sites by keeping track of

each modification of the environment generated by the actions of the robots. The macro-

scopic model instead summarizes the states of the robotic swarm and environment with

expected value quantities and closed form expressions, a representation that is often only

an approximation of combinatorial series.

Unfortunately, it is difficult to draw general quantitative conclusions on discrepancies

between microscopic and macroscopic models at this point. Only after having carefully

analyzed how errors propagate as a function of the nonlinearities characterizing a given

system, will we be able to evaluate more precisely the effects of this further level of ab-

straction. Moreover, it is currently unclear whether or not we will be able to identify a set

of nonlinearities systematically arising in distributed manipulation or, even more generally,

swarm robotic experiments for which we could develop ad hoc but accurate error estimation

procedures.

2.6.4 Capturing Randomness with Macroscopic Deterministic DEs

Both the stick pulling and aggregation experiments are permeated by randomness. Without

randomness, robots would not spontaneously collaborate to extract a stick, aggregation of

a single cluster could not be achieved, nor could such a simple distributed worker allocation

algorithm be implemented to regulate team activity.
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Qualitatively speaking, randomness decreases the efficiency of the robotic system but

increases its robustness to deadlock situations and unfavorable initial conditions. System

randomness has its origin in the local perception and in the concurrent, autonomous action

of each robot as well as in the intrinsic noise of miniature sensors and actuators faithfully

mimicked in the Webots simulator. Thus, a hand-coded, deterministic robot behavior is un-

avoidably transformed through the interactions between the robot and the environment and

between the robot and its teammates into a stochastic behavior. Our macroscopic models,

which at first glance may appear deterministic, capture the randomness of the system by

using probabilities and probabilistic rates of occurrence of different events. In the rest of

this subsection, we will present a few concrete examples of randomness-based mechanisms

exploited in, and essential to, the distributed manipulation experiments described here.

The first example is the randomness in the robots’ trajectories in both case studies. If

the trajectory of each robot were predetermined and noise-free, a central supervisor with

a view of the entire arena would be required to coordinate the movements of the robots in

such a way that from each possible starting condition, the robots could carry out their task

without getting entangled. Just having deterministic trajectories without a central planner

with a global view of the arena or a powerful on-board navigation system (e.g., GPS)

may allow some solutions, but robot coordination without a central supervisor becomes

problematic.

A second example is concerned with the creation of a single cluster at the end of the

aggregation experiment. Due to the mechanical constraints of the robots, the approach-

ing angles for incrementing and decrementing the size of a cluster are almost the same.

Therefore, without randomness, we could have deadlock situations (e.g., 2 large clusters

consisting of half of the seeds initially scattered in the arena) in which one seed is picked up



67

from one cluster and dropped into the other, picked up again from this latter cluster and

dropped, once again, into the original cluster, and so on. We could see this as a form of

dynamic equilibrium different from the single-cluster situation. Such a scenario has never

appeared in any of our aggregation experiments. This is explained by the fact that the

independent (or uncoordinated) actions of all the robots in the arena generates relevant

variations on the cluster sizes so that, each time any cluster is reduced to a single seed,

that single-seed cluster is irreversibly (and deterministically) removed from the arena. Of

course, this achievement was facilitated by the fact that the number of seeds was never

much larger than the number of robots (the worst case studied is a 20 to 1 ratio). With

a much higher seed-to-robot ratio we would probably have significantly greater difficulty

systematically achieving the single-cluster result.

The third example is concerned with the core principle of the worker allocation algo-

rithm presented in Section 2.5.2. Although all the teammates are endowed with the same

activity threshold (i.e., a homogeneous team), the noise inherent in individual estimation of

the aggregation demand due to local perception of the environment guarantees that robots

deactivate at different times during the aggregation process. Thus, local perception and

other noise sources create diversity in the decision to quit; as a consequence, the occurrence

of deactivation increases gracefully over time as opposed to the sudden, collective with-

drawal that would be seen if all agents were characterized by the same threshold and had

a global perception of the environment. Randomness in combination with an irreversible,

deterministic deactivation algorithm leads to the targeted situation in which all the robots

are eventually inactive.
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2.6.5 Modeling as Tool for Optimization

The modeling methodology presented here can certainly be useful also as an optimization

tool. The models presented here deliver results in time lapses that are at least four orders of

magnitude shorter than a corresponding embodied simulation. The abstraction in general

allows researchers to understand the role of key system parameters, generalize and analyze

underlying principles, and sometimes even enables mathematical tractability and resituates

intuitive considerations.

In assessing performance in the stick pulling experiment, the models are used as an

optimization tool as the gripping time parameter τg is exhaustively explored.

In the aggregation experiment, although we have not investigated whether or not an op-

timal threshold Ts can be derived analytically, we used the full macroscopic model described

in [37] to systematically search for the optimal activity threshold. The advantage of using

the full model is that, although the complexity of the system may render the model analyt-

ically intractable, the optimization results obtained using the model are still quantitatively

correct. The results are presented in Figure 2.18.

Figure 2.18 presents the average cluster size obtained after 10 hours of aggregation for

different values of the activity threshold Ts. This figure illustrates that for a group of 10

robots, an activity threshold value of about 27 minutes provides the optimal cluster size

at time kT = 10 hours. On one hand, when the threshold value is lower than 27 minutes,

the workers stop performing the task too early, before all the seeds have been gathered in

a single cluster. On the other hand, when the threshold value is larger than 27 minutes,

the robots keep working even after a single cluster has been created and, as a consequence,

after 10 hours some seeds are still being carried around by some active agents, decreasing

the efficiency of the team.
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Figure 2.18: Macroscopic model’s prediction of the average cluster size at time kT = 10
hours as a function of the activity threshold Ts. Experiments conducted in an 80 x 80 cm2

arena with a group of 10 robots and Ts varying from 10 to 50 minutes with a 60-second
incremental step.

Although the objects manipulated (fixed stick vs. transportable seeds), the metric used

for assessing the swarm performance (average collaboration rate vs. average cluster size),

and the significance of the threshold (a time-out regulating how long a robot waits for help

vs. a time-out regulating the whole robot activity), the stick pulling experiment and the

aggregation experiment with worker allocation share a few important similarities in their

dynamics that are outlined, in particular, at the macroscopic model level. Some of them

have been pointed out in Section 6 but we believe that the similarities between the profile

of Figure 2.18 and, for instance, Figure 2.7(a) are striking. Describing the two experiments

at a high level, we can say that in both of them there is a dynamical process taking place in

which a specific robot’s control parameter characterizing a threshold-based mechanism plays

a crucial role. We can say that in both experiments the optimization goal is to find the right

threshold (or the right distribution of thresholds) so that the robotic dynamics of the system
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can be optimally coupled with the dynamics of the task accomplishment, which in turn is

constrained by the robot and environmental features. In both cases, the axis defined by all

possible threshold values presents an optimum and, therefore, the model-based optimization

procedure for both experiments is also similar.

The models’ scope as a tool for optimization is constrained, however, by the initial

system design. In swarm systems, which base their principles of self-organized, collective

behavior on multiple interactions among individuals and between individuals and environ-

ment, low-level system parameters such as the sensory configuration, body shape, proximal

control parameters characterizing reactive behavior, and individuals’ heading and positions

may also play an important role, which we may neglect if we try to optimize the system

at higher level. In other words, searching the optimal solution in a larger parameter space,

including also low-level hardware and software parameters, may achieve better results than

those explored with a more or less abstract model. Two concrete examples may illustrate

this point.

A first example is concerned with collective plume tracing [17]. In this experiment, due

to the highly stochastic nature of robot-plume interactions, the unavailability of suitable

plume models for our specific task conditions, and the relevance of robots’ headings and

positions, we have thus far only been able to create models of the whole system characterized

by several free parameters (see Hayes [69] for details), although all of them have a clear

intuitive meaning. Despite being limited to only qualitative system optimization, Hayes

was remarkably successful in optimizing the system using an ad hoc reinforcement learning

algorithm combined with embodied simulations [18].

A second example comes from additional experiments we performed in the framework of

the stick pulling experiment. As Ijspeert et al. [9] have shown using systematic search and



71

embodied simulations and as Li et al. [70] have shown using a simple learning algorithm

combined with the same microscopic model presented here, a homogeneous swarm may not

necessarily achieve the best performance. Subswarms of specialists in grip1 and grip2 may,

for instance, outperform an optimized homogeneous swarm, depending on the ratio of robots

to sticks. Generally speaking, at the macroscopic level, either we know the number of castes

in a heterogeneous team in advance and we introduce a new set of DEs for each new type

of agent caste involved in the system, or it would be impossible to explore heterogeneous

solutions. Therefore, to explore heterogeneous solutions, microscopic models combined

with machine learning algorithms appear to be a more efficient approach than macroscopic

models.

Finally, as shown in Section 2.4.2, even if we are able to produce quantitatively correct

analytical models, nonlinearities and the complexity of a real system, even a simple one

as that used in the stick pulling experiment, often prevent us from going further in the

analysis (and indirectly in the optimization process) with the mathematical tools currently

available.

2.7 Collaborators’ Continued Work

Since the publication of the SI work on which I was co-author [33, 34, 36, 37, 68], collab-

orators have made several notable improvements to the modeling methodology presented

here.

In [42], Correll and Martinoli apply the models to the turbine inspection problem men-

tioned in Section 1.2 and present an improved method for the characterization of the models’

parameters based on encountering rates, as suggested by Lerman and Galstyan in [28]. In

another advance in calibration methods, Correll and Martinoli present a technique for sys-
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tem identification [64], in which the system dynamics are derived from the individual robot

controller and model parameters are estimated, then optimized, based on experimental data,

eliminating the need for additional orthogonal calibration experiments. The result is an ac-

curate predictive macroscopic model for systems that might otherwise be underdetermined,

giving insight as to which parameters in the system govern the swarm dynamics.

Collaboration was introduced to the SI turbine inspection task in [44], allowing robots to

serve as beacons for their teammates, biasing each others’ inspection routes. In seeking an

optimal collaboration policy for minimizing time to completion of inspection and minimizing

energy consumption, Correll and Martinoli find a bifurcation similar to that seen in the stick

pulling experiment, showing that a communication-based collaboration policy used towards

the end of the inspection process can decrease the time needed for task completion, but

only if the ratio of robots to turbine blades is greater than or equal to 1 [45]. This paper

also applies methods from optimal control theory to optimize robot controller parameters.

2.8 Conclusion

This chapter presented a methodology for generating nonspatial, probabilistic microscopic

and macroscopic models of swarm robotic systems. The methodology was explicitly de-

signed for distributed manipulation experiments and is supported with two case studies,

the stick pulling experiment and the aggregation experiment, belonging to this class. We

have shown that models can deliver not only quantitatively correct predictions in periods at

least four order of magnitude shorter than other popular simulation tools, such as sensor-

based, embodied simulation, but can also allow for better understanding of the system

properties and, in some cases, even enable mathematical analysis of the system.

We have also discussed several difficulties one may encounter in moving from one level of
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implementation (real robots, embodied simulations, microscopic and macroscopic models)

to a more abstract one. It is worth noticing that all these abstraction steps were hand-

coded, exploiting a combination of engineering, heuristic, and systematic tests. Although

in this chapter we did not compare the results of the models with those obtained at lower-

level implementations using nonparametric statistical tests (something done in previous,

related publications [62, 4]), we do not believe that we will gain further insight into how

to resolve the difficulties in moving from one level of implementation to another in this

way. However, statistical tests combined with algorithms that can systematically explore

possible abstractions and verify their statistical impact on a chosen metric may allow us to

achieve fundamental breakthroughs in the modeling methodology.
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Chapter 3

Multi-robot Boundary Coverage

This chapter explores the multi-robot boundary coverage problem introduced in Chapter

1.2, wherein a group of k robots must inspect every point on the boundary of a two-

dimensional environment. Section 3.1 describes the boundary coverage problem and the

modeling assumptions. Using a simplified sensor model, this inspection problem is converted

to an equivalent graph representation. Two methods for graph construction are presented.

The first method, termed the visibility region (VR) method, is described in Section 3.2 and

was presented in my first paper addressing the multi-robot boundary coverage problem

[71]. It takes an intuitive approach to the graph construction problem, but results in an

unnecessarily complex graph. The boundary following (BF) method is described in Section

3.5 and is the result of several improvements to the method described in Section 3.2. The

BF method yields more efficient inspection paths, a more compact graph representation,

and can handle environments containing nonconvex objects. Once a graph representation of

the task has been constructed in which the undirected, connected graph G has a subset of

edges ER, every one of which must be traversed for inspection to be complete, the boundary

coverage problem can be posed as the k-Rural Postman Problem (kRPP), a graph edge

coverage problem. Section 3.3, presents a constructive heuristic to solve the kRPP. The

robots use the solution to plan their inspection routes. I then discuss some simple bounds
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on the path lengths traversed by the participating robots and prove the completeness of

the boundary coverage algorithm. In Section 3.4, simulations illustrate the path planning

algorithm’s performance and characteristics using graphs generated with the VR method.

Section 3.6 compares and contrasts the two graph construction methods and the resulting

effects on the performance and capabilities of the path planning algorithm.

3.1 The Boundary Coverage Problem

The task is to be carried out in a bounded two-dimensional environment that is populated

by N objects, O = {O1, . . . ,ON}. Each object boundary is assumed to be a piecewise

smooth, closed, convex curve. This convexity assumption will be relaxed in Section 3.5.

The collective boundary of the objects is termed the “boundary” of the environment, ∂O.

The location and boundary geometry of each object to be inspected is assumed to be known

a priori.

The inspection will be carried out by a group of k identical holonomic point robots, each

equipped with an accurate scheme for localization as well as an omnidirectional “inspection

sensor.” (With an additional path planning step to determine the necessary sensor orienta-

tion at each robot pose, a steerable sensor with a limited angle of view could also be used.)

The inspection sensor can measure phenomena of interest from a distance up to rmax from

the boundary. A point p on the boundary is thus considered inspected when a robot’s path

intersects the imaginary line normal to the boundary at p and the distance from p to that

point of intersection is less than or equal to rmax.

All robots involved in the inspection task deploy from a common “depot” location at

the beginning of the inspection period; they will return to the depot when their inspection

task is complete. At least one robot must inspect each point of the boundary at least



76

once during the group’s inspection tour. The division of the task among the robots is

determined by a centralized, supervisory agent. Once it has received its assignment, each

robot calculates its inspection route, given by a series of waypoints determined by the

constructive heuristic. Each robot has a limited communication capability so that it may

receive its task assignments.

To develop a set of paths whose traversal will complete the inspection task, the sensor’s

visibility constraints are taken into account. Object Oj ’s visibility region consists of the set

of individual robot poses in freespace for which the distance to the nearest point on the

object boundary is less than or equal to rmax. The outer perimeter of each object’s visibility

region is a curve displaced a distance rmax normal to the object boundary, generally called

an “offset curve.”

The intersection of multiple objects’ visibility regions are called multiview regions: from

every pose within such a region the robot is a distance less than rmax from more than one

point on ∂O, and thus may inspect these points simultaneously. The routing strategy takes

advantage of multiview regions when they arise, as simultaneous sensing of multiple object

boundaries may reduce overall travel.

A boundary segment is a connected interval of ∂O. Boundary segments for which each

constituent point can be inspected from within a multiview region are called interior bound-

ary segments, the union of which is ∂Oint. All other intervals of ∂O are referred to as exterior

boundary segments, the union of which is ∂Oext = ∂O\∂Oint.

A continuous sequence of poses within a visibility region is a visibility path for a boundary

segment if and only if every point in the boundary segment will have been viewed when a

robot has assumed every pose in the visibility path. For the sample environment shown in

3.1(a), this terminology is illustrated in Figures 3.1(b) and 3.1(c).
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(a) (b)

(c)

Figure 3.1: (a) Sample environment used to illustrate terminology introduced in Section
3.1 and the VR graph construction method in Section 3.2. (b) The boundaries of visibility
regions are shown with a solid outline. Multiview regions are shaded. A possible visibility
path for the inspection of the boundary of object O4 is shown with a dashed line. (c) Ex-
terior boundary segments, ∂Oext, are indicated with a solid object boundary, while interior
boundary segments, ∂Oint, are indicated with a dashed object boundary.
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3.2 A Graph Representation for Boundary Coverage: The

Visibility Region Method

The graph’s edges come in two varieties: required inspection edges, ER, and connectivity

edges, EC . Each required edge represents an equivalence class of visibility paths, one of

which the robot must traverse in order to inspect the associated boundary segment. This

representation allows flexibility in navigation implementations, as individuals can avoid

one another by taking different paths while “traversing” the same graph edge. The end-

points of each edge are graph vertices, which physically correspond to terminal points for

the equivalence class of visibility paths where a robot may transition locally from a path

represented in one edge to a path represented in another. To simplify the construction of

the graph representation a single, easily defined “preferred visibility path” for each edge is

specified. The cost function assigns each edge a weight equal to the length of the preferred

path along that edge, though other cost functions may be used.

The final result of the construction is an undirected, connected graph G = (V,E, c :

E → R+), where V is the set of the graph’s vertices, E is the set of its edges, and the

cost function c assigns weights to the edges ER ⊆ E. The remaining edges EC = E\ER

represent a collection of paths that provide routes to the depot location and routes between

remote areas where inspection is required.

For simplicity, this method assumes a preferred sensing distance of r = rmax. This

constraint is imposed to make the construction of G easier by limiting the geometry of

initially considered paths to well-defined offset curves.
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(a) (b)

(c)

Figure 3.2: (a) Inspection regions P1,P2, and P3 for the sample environment. (b) Local
components of the GVG. (c) Construction of edges in ER.
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3.2.1 Determining ER: Edges Required for Inspection

Let Sr denote the set of offset curves that are displaced a distance r normal to each object

boundary. For r = rmax, these curves represent the perimeter of each object’s visibility

region, as illustrated in Figure 3.1(b). Let P denote the union of the regions in freespace

that are bounded by these curves. The region P will consist of one or more disjoint regions,

Pi, i ∈ {1, . . . ,m}, termed inspection regions. This is illustrated in Figure 3.2(a) for the

sample environment. The boundary of P, ∂P, is comprised of m constituent closed curves,

∂Pi, i ∈ {1, . . . ,m}. By construction, every point in ∂O is contained within the region P.

Every point in every object’s visibility region and also every point in every object’s visibility

region within distance rmax of the boundary is contained within P.

The edges in ER are constructed as follows:

3.2.1.1 Edges outside multiview regions

Lemma 3.2.1. Traversal of all curves in ∂P will result in the inspection of all exterior

boundary segments, ∂Oext.

Proof. Given the preferred sensing distance rmax, the preferred visibility path for an exterior

boundary segment is an offset curve displaced a distance rmax normal to that boundary

segment, which is, by construction, an interval of one of the curves in S. Exterior boundary

segments cannot be inspected from inside a multiview region, therefore the portions of the

offset curves defining the preferred visibility paths for exterior boundary segments consist

of those curve segments that are a distance d, rmax ≤ d from every object boundary. By

construction, the visibility paths for the exterior boundary segments are the portion of

Srmax that is described by ∂P. A robot traversing ∂P will pass within distance rmax of

every point in each exterior boundary segment, thus the traversal of ∂P will result in the
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inspection of each point in ∂Oext.

Required edges are constructed such that every point in ∂P is included in a visibility

path corresponding to an edge in ER. To construct these edges, each disjoint region Pi is

analyzed in turn.

If Pi incorporates no multiview regions, Pi must contain a single object, Oj . The

preferred visibility path for Oj is the entirety of ∂Pi. In this case, a vertex is placed on the

preferred visibility path at an arbitrarily chosen point. A single self-looping required graph

edge of weight equal to the length of the object’s preferred visibility path, ∂Pi is added to

G. In Figure 3.2(c), vertex v1 and edge e1 illustrate this type of vertex and edge.

The offset curves Srmax intersect at points that are a distance rmax from two or more

objects, allowing a robot to simultaneously inspect points on multiple boundaries. Each of

these intersection points is, therefore, part of a multiview region. When these intersection

points fall on ∂P, they should be included in the preferred visibility path for an exterior

boundary segment, as they represent points from which a robot may access a multiview

region and move on to inspect an interior boundary segment. As these are the only points

on ∂P that are part of a multiview region, they present a convenient choice for placement

of graph vertices joining edges representing the inspection of exterior boundary segments

with those representing interior boundary segments.

Thus, if Pi incorporates one or more multiview regions, consider ∂OPi , the union of

the object boundaries contained within Pi, in terms of the constituent exterior and interior

boundary segments. Vertices are added to G at the points on ∂Pi that coincide with points

where curves in S intersect one another. Required edges are added between these points

representing the preferred visibility paths for the exterior boundary segments, the interval of

∂Pi between the vertices. In Figure 3.2(c), vertices v2 through v8 and edges e2 through e8
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illustrate this type of edge.

3.2.1.2 Edges inside multiview regions

The inspection of interior boundary segments contained in Pi that also incorporate a multi-

view region remains to be considered. A convenient choice for the preferred paths through

the multiview region is the local components of the Generalized Voronoi Graph (GVG) [72],

a graph whose edges consist of points that are equidistant from the two nearest objects.

Vertices in the GVG arise where edges meet, i.e., at points that are equidistant from three or

more objects. Local components of the GVG for the sample environment are illustrated in

Figure 3.2(b). Using these local components, robots are routed through multiview regions

with a preference for paths whose constituent poses are equidistant from the boundaries

currently being inspected. For every point on the GVG within a multiview region, at least

two boundary points can be sensed from a single robot pose.

The graph vertices placed at the terminal points of the visibility paths for the exterior

boundary segments in Pi lie on the GVG by definition, as they are equidistant from two

or more points on ∂O. Edges within multiview regions are established by adding to G all

edges and vertices of the GVG contained within the union of all multiview regions. Weights

equal to the length of the corresponding GVG path are assigned to each edge. Edges only

partially contained in a multiview region are truncated where they exit the multiview region.

In Figure 3.2(c), vertex v9 and edges e9 through e13 illustrate this type of vertex and edge.

Lemma 3.2.2. Traversal of all edges of the GVG contained within the multiview regions

results in the inspection of all interior boundary segments, ∂Oint.

Proof. Every point on every edge of the GVG is equidistant from the two nearest points

on the boundary ∂O. For points on the GVG within a multiview region, this distance is
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less than or equal to rmax. By definition of an interior boundary segment, for every point,

pint, on every interior boundary segment, there exists a point, pGV G, on a local GVG edge

contained within a multiview region that falls within distance rmax of it. Thus, if all edges

of the GVG that lie within multiview regions are traversed, a robot will pass within distance

rmax of every point in every interior boundary segment, resulting in the inspection of each

constituent point.

3.2.2 Determining EC: Edges Providing Connectivity

The group of required edges associated with boundary inspection in each inspection region

Pi forms a distinct connected subgraph of G. The possibly disjoint components of this

construction must be connected to allow for robot transit to all inspection regions.

3.2.2.1 Addition of vertices

To generate these connecting edges, the existing required edges are subdivided into a se-

quence of edges according to a user-selected subdivision step size parameter, dstep, while not

changing the underlying graph geometry. These added access vertices offer opportunities

to divide the inspection of the associated boundary segment among multiple robots, and

some will also allow for more efficient transit to other parts of the graph. A vertex, vdepot,

is added at the depot location at this point in the development of the graph, as shown in

Figure 3.3(b).

3.2.2.2 Addition of connecting edges

A complete graph is then induced on the vertices of G by adding edges connecting each

vertex in G to every other vertex in G if such an edge is not already in place. These new



84

(a) (b)

(c) (d)

Figure 3.3: (a) Inspection regions are contained within inspection cells, defined by a subset
of local components of the GVG; adjacent cells must contain at least one mutually visible
vertex. (b) Placement of access vertices and vdepot, which represents the point of robot
deployment. (c) Without the graph weeding procedure, the resulting final graph may have
a prohibitively large number of edges. (d) A possible final graph representation for the
sample environment from Figure 3.1(a).
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edges are referred to as induced edges. Each induced edge represents a direct path through

the environment from one vertex to another, and is assigned a weight equal to the distance

between those vertices. If an induced edge’s end vertices define a line segment that intersects

a boundary, that edge is excluded from G, as it represents a path that does not lie entirely

in freespace. All other induced edges are added to G and comprise the set of connectivity

edges, EC .

To ensure routes between different inspection regions are created, dstep must be small

enough that if inspection regions Pi and Pj are in line of sight of one another, Pi will

contain a vertex vi that is in line of sight of a vertex vj in Pj . This guarantees that EC

will include at least one edge joining each disjoint component of G to every other graph

component within line of sight, thus guaranteeing the final graph will be connected.

Each object in the environment is contained within a cell of the GVG. We refer to

the union of the cells containing the objects within an inspection region as an inspection

cell. Figure 3.3(a) illustrates the inspection cells for the sample environment. To ensure

routes between different inspection regions are created, dstep must be small enough that if

inspection regions Pi and Pj have adjacent inspection cells, Pi will contain a vertex vi that

is in line of sight of a vertex vj in Pj . This guarantees that EC will include at least one

edge joining each disjoint component of G to every other graph component within line of

sight, thus guaranteeing the final graph will be connected.

3.2.2.3 Reducing graph size: the weeding parameter

As the number of edges in G becomes cumbersomely large, a possibility illustrated in Figure

3.3(c), the constructive heuristic will require a long time to run to completion. The user may

elect to use an optional heuristic step to reduce the graph size while still achieving graph
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connectivity. This step, which incorporates a user-selected weeding parameter, dweed, results

in the inclusion of only a subset of vertices Vinduce ⊆ V in the edge induction process. The

first vertex added to the initially empty set of vertices, Vinduce is the depot vertex, vdepot.

For every other vertex v ∈ V , if the shortest paths from v to every vertex in Vinduce is greater

than the distance specified by dweed, v is added to Vinduce. Because the shortest path from

a vertex within a disconnected graph component to any vertex outside the component is

infinite, the construction of Vinduce will result in the inclusion of at least one vertex from

each disconnected component of G. To guarantee the graph will be connected by edges

associated with paths lying in freespace, dweed is subject to the same upper bound as dstep.

A possible final graph representation of the sample environment from Figures 3.1(a) is

illustrated in Figure 3.3(d).

This is the graph construction method used in [71]. Because the construction of the

graph is directly related to the geometry of the visibility regions for a given instance of the

task, this method of graph construction is termed the Visibility Region (VR) method.

3.3 A Graph Algorithm to Solve the Boundary Coverage

Problem

Based on the graph representation outlined in the previous section, the k-robot boundary

coverage problem can be posed as a graph problem that I term the k-Rural Postman Problem

(kRPP). This problem is concerned with finding a set of k ≥ 1 tours T = {T1, ..., Tk} within

an undirected, connected weighted graph G = (V,E, c : E → R+) such that each edge in a

required subset of edges ER ⊆ E is traversed in at least one tour.

This nomenclature is adapted from a group of Postman Problems in the graph literature.
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In 1962, Kwan posed a problem concerned with finding the minimum length tour of a graph

guaranteeing every edge in the graph is traversed at least once [73]. Due to the routing

applications suggested by Kwan and that paper’s Chinese origin, it is widely referred to

as the Chinese Postman Problem (CPP). Edmonds showed that the undirected CPP is

efficiently solvable in 1965 [74] and Edmonds and Johnson presented an algorithm for solving

the CPP on directed and undirected graphs in 1973 [75].

Many variations of the CPP have been explored, of which the two most closely related

to the graph problem at hand are:

1. The Rural Postman Problem (RPP) [76], an NP-complete problem in which the task

is to find a minimum weight tour that traverses every edge in a required subset of

edges in a connected, undirected graph G, and

2. The Min-Max k-Chinese Postman Problem (MMkCPP), an NP-hard problem in

which the task is to find a set of k tours of a connected, undirected graph G such that

the weight of the longest tour is minimized, each tour starts and finishes at the same

“depot” vertex, and every edge in G is traversed in at least one tour [77, 78].

Observe that for k = 1, the kRPP reduces to the RPP. Because the kRPP can be reduced

to a known NP-complete problem [79], one can deduce that the kRPP is NP-hard, and

that a constructive heuristic approach to its solution is appropriate.

Further note that if ER = E, the kRPP reduces to the kCPP; with the additional aim

of minimizing the longest of the k tours, the MMkCPP is an instance of the kCPP. In [77],

Ahr and Reinelt address this minimization both within the constructive heuristics they

present and with post-construction tour improvement algorithms. While the formulation of

the kRPP does not specifically require minimization of the longest tour, my constructive
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heuristic does attempt to balance the inspection load spatially across the k tours by grouping

neighboring edges into the same tours and seeks to avoid unnecessary redundant coverage.

3.3.1 A Modular Constructive Heuristic to Solve the kRPP

3.3.1.1 Definitions

Given an undirected, connected graph G = (V,E, c : E → R+) set of edges on the shortest

path between vertices u and v, {u, v} ∈ V is denoted SP (u, v). The length of this path

through G is denoted CG(SP (u, v)).

The distance through graph G between a vertex v and an edge e = {x, y} is defined as

d(v, e) = max{CG(SP (v, x)), CG(SP (v, y)))}. (3.1)

The distance between two edges e = {x, y} and g = {u, v} through graph G is defined

as

d(e, g) = max{CG(SP (u, x)), CG(SP (u, y)),

CG(SP (v, x)), CG(SP (v, y))}. (3.2)

3.3.1.2 Partition the required edges ER

The algorithm begins by partitioning the required edges ER into k groups, one for each

robot, F1 ∪ ... ∪ Fk = ER, using a farthest-point clustering method similar to that used in

the “Cluster Algorithm” heuristic for the Min-Max k-Chinese Postman Problem presented

by Ahr and Reinelt [77]. The method is based on an algorithm that aims to minimize the

maximum intra-cluster distance [80].
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Given a set of k representative edges (f1, ..., fk), fi is the first edge assigned to the cluster

Fi that will eventually form the ith robot’s tour. The |ER| − k remaining edges e ∈ ER

are assigned to the group Fj that minimizes d(e, fj). The k representative edges are chosen

such that the first representative edge, f1, is the edge e ∈ ER that maximizes d(vdepot, e).

Subsequent representative edges fi = e are chosen to maximize
∑i−1

j=1 d(e, fj).

After this partitioning step, which is carried out by a centralized, supervisory agent, the

remainder of the planning procedure can take place online, with each robot calculating its

own route.

3.3.1.3 Include edges for connectivity

The task remains to ensure each cluster of edges is connected and, thus, traversable. To

that end, edges are added to each group to create k connected subgraphs of G, each of

which must also include the depot vertex.

Given the subgraph GRi = G[vdepot + Fi], which consists of vdepot and the edges in Fi,

a graph G′
Ri

is constructed with a vertex representing each connected component of GRi .

An edge is added to G′
Ri

between every vertex u and v. The list of vertices contained in

the component of GRi represented by vertex u in G′
Ri

is Vu ⊆ V (GRi) ⊆ V (G). The weight

c(e) of edge e = {u, v} is equal to minq∈Vu,r∈Vv{CG(SP (q, r))}, the length of the shortest

path on G between the component represented by u and component represented by v. The

vertices in G that minimize c(e) are denoted qu,v and ru,v. A minimum spanning tree is

computed on G′
Ri

; the edges in the shortest path in G, SP (qu,v, ru,v), associated with each

edge in the spanning tree, e = {u, v}, are added to Fi, yielding a connected subgraph Gi.
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3.3.1.4 Compute a tour of each subgraph Gi

A single-postman tour Ti is computed on each subgraph Gi, i = {1, ..., k} using the Chinese

Postman algorithm as presented by Gibbons in Algorithmic Graph Theory, page 164 [81].

Each tour Ti ∈ {T1, ..., Tk} originates and terminates at vdepot, and has length CG(Ti) =∑
e∈Ti

c(e).

3.3.1.5 Refine tours

Finally, for each tour Ti, sequences of edges that are retraced in the course of a tour are

replaced with the shortest path in G, if a shorter path between the end vertices of the

sequence exists. When a robot has traversed every required edge in its tour, it returns to

the depot via the shortest path through G. Additional path refinement heuristics could

certainly be implemented.

3.3.2 Path Planning Using the Graph Algorithm

The k robots’ inspection paths are crafted from the graph solution to the kRPP. Because

edges in G specify paths through freespace, the tours found by the graph algorithm each

define a series of waypoints. Each robot visits its tour’s waypoints in sequence. When

a robot detects an unexpected object (i.e., another robot) blocking the way to its next

waypoint, it carries out a brief obstacle avoidance maneuver, then continues to navigate

to its next destination. Such encounters could easily be managed using other navigation

methods, as well.
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3.3.3 Lower Bounds on Tour Lengths

Shortest Path Tour Lower Bound The Shortest Path Tour Lower Bound described

by Ahr and Reinelt [77] for the MMkCPP also applies to the kRPP with minor additional

consideration. Because each required edge must be visited by a robot deployed from vdepot,

the longest tour must be of length greater than or equal to the shortest path from vdepot to

emax and back, where emax = e ∈ ER maximizes d(vdepot, e). For emax = {u, v}, this bound

is CG(SP (vdepot, u)) + c(emax) + CG(SP (v, vdepot)). Solutions will come closest this bound

when k is well-suited to the size of the graph.

Fair Division Lower Bound Consider the length of the tour of ER computed by the

algorithm for k = 1, termed CRPP , as this tour is a solution to the RPP posed on G. A

lower bound on the length of the longest tour implying an equal division of labor among

the k robots is given by CRPP /k.

3.3.4 Completeness of Boundary Coverage

Lemma 3.3.1. Traversal of every edge in ER will result in the inspection of every point in

∂O.

Proof. Recall that every point in ∂O is also contained in P, i.e, ∂OP1∪ ...∪∂OPm = ∂O. By

construction, every point in ∂O is contained either within an exterior or an interior boundary

segment. If every edge constructed and added to ER is traversed, then by Lemma 3.2.1,

every exterior boundary segment in P will be inspected and by Lemma 3.2.2, every interior

boundary segment will be inspected. It follows that traversal of every edge in ER will result

in the inspection of every point in ∂O.
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Lemma 3.3.2. The set of k tours generated by the constructive heuristic guarantees each

edge in the required subset of edges ER is traversed in at least one tour.

Proof. By construction, every edge e ∈ ER is assigned to a cluster Fi. Additional edges

are added to the clusters to ensure each is a connected subgraph of G. A tour of each

cluster is then calculated with the Edmonds and Johnson CPP algorithm, an algorithm

that guarantees every edge in the cluster will be traversed [75]. As every edge in ER is

contained in a cluster, and every edge in every cluster will be traversed by a tour, it follows

that every edge in ER will be traversed in at least one tour.

Proposition 3.3.3. Given a connected, undirected graph G constructed with the VR method,

the paths planned from the kRPP graph solution provide complete coverage of ∂O.

Proof. In Section 3.5.1, each inspection region is considered in turn. By Lemma 3.3.1, if

every edge in ER is traversed (i.e, a robot travels along a visibility path represented by

that edge), every point on the boundary ∂O will be inspected. By Lemma 3.3.2, the kRPP

heuristic gives a graph solution that guarantees the traversal of every edge in ER, thus

complete boundary coverage is guaranteed.

3.4 Results and Discussion: Inspection Planning

This section provides three examples to illustrate some of the key characteristics of this

algorithm and some of the main issues related to its practical use. The distance units used

in simulations are arbitrary, and are intended to show relative distance.
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3.4.1 Division of Labor by Edge Partitioning

This first example illustrates the division of labor imposed by the kRPP approach to routing

the robots. In this example, four robots are tasked to inspect an environment containing

four identical circular boundaries, and each robot’s preferred sensing distance r is small

enough that no multiview regions arise. Applying the algorithm to the configuration of the

disks shown in Figure 3.4(a), results in a counterintuitive division of the task where one

robot is not assigned to individually inspect each disk boundary. This somewhat unusual

division arises from the nature of the farthest-point edge-partitioning method used to divide

the edges among the k tours. While there are four distinct boundaries, the partitioning

algorithm may group the edges in seeming unnatural ways. When the boundaries are

arranged in an equidistant pattern from the depot and are sufficiently separated so that

their inspection edges cluster in a natural way, then an “intuitive” division of labor arises,

as illustrated in 3.4(b).

While the routes are of equal length in this case, the scenario in Figure 3.4(a), in

comparison, yielded a longest route 38% longer than the shortest route and 24% longer

than the average length of the four routes. Though the paths are not intuitive in that

scenario, the load is still roughly balanced among the robots. Because the partitioning

algorithm seeks to minimize the intra-cluster distance of each cluster, it does not “fairly”

distribute the weight of the edges in each group; how evenly the inspection load is balanced

across the robots will be dependent on the weight and concentration of required edges in

proximity to the k representative edges. For an inspection with a relatively homogeneous

distribution of required edges, the routing will, however, certainly be “fair” enough to offer

a tour length advantage with k > 1 robots.

Further tour weight optimization with alternative partitioning methods and post-construction
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(a) (b)

Figure 3.4: The environments in (a) and (b) contain four identical circular boundaries, but
placement has a large effect on the “fairness” of the planned routes. The routes planned for
k = 4 robots are illustrated with waypoints marked by route-specific colors of black, green,
red, and blue.

tour improvement heuristics is certainly possible.

3.4.2 Multiview Regions and More Complex Environments

Consider the following two illustrative examples of routing through more complex envi-

ronments. The first “scattered” environment contains several objects of various sizes and

shapes, while the second “packed” environment contains a closely spaced set of identical

objects. For each environment, consider two values of r, one small enough that no multi-

view regions arise, the other large enough that every boundary has an associated multiview

region. The scattered environment is shown in Figure 3.5(b), while the packed environment

is illustrated in Figure 3.6(b).

The major difference between the two environment examples is the fraction of the re-

quired edges that lies inside multiview regions. As r increases, the total length of each

curve in Sr increases. Due to the assumption of a preferred visibility path, the weight
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(a) (b)

(c) (d)

Figure 3.5: In an environment with several objects of various sizes and shapes, routes
planned for k = 3 robots with (a) r = 5, small enough that no multiview regions arise, and
[(b), (c), and (d)] r = 40, large enough that every boundary is associated with a multiview
region are illustrated. Routes are marked by a route-specific color of blue, black, or red.
Two “snapshots” of the r = 40 inspection in progress are shown at time steps (c) 50 and
(d) 100. A total of 605 time steps is required for the inspection to be completed and for all
robots to return to the depot. The green dots in (c) and (d) represent the robots’ positions
at that given time step.
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(a) (b)

Figure 3.6: In an environment with identical, closely packed objects, routes planned for
k = 3 robots with (a) r = 5, small enough that no multiview regions arise, and (b) r = 20,
large enough that most edges in ER are part of a multiview region are illustrated. Routes
are marked by a route-specific color of black, blue, or red.

of external required edges is directly related to the path length along curves in S. The

weight of required edges within multiview regions will also increase as r increases, but not

as significantly; once the inspection region is saturated by the increase in r (the multiview

regions contain a single connected component of the local GVG), the internal edge weights

will only increase marginally where the GVG components meet external edges.

In the scattered environment, the increase in length of the preferred paths as r increases

outweighs the benefit in path reduction of traversing a multiview region. The tours in the

large-r scattered environment example tend to be longer than in the small-r case because

the total weight of edges in ER was greater than in the small-r case, inflation resulting from

the relatively small fraction of edges in ER associated with multiview regions. A large part

of this disadvantage due to inflation is artificially imposed by the constraint of the preferred

path’s distance rmax from the boundary. The relaxation of this constraint is addressed in

Section 3.5.
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(a)

(b)

Figure 3.7: (a) Comparison of the longest tour lengths vs. number of robots k for r = 5
and r = 40 in the “scattered” environment in Figure 3.5. (b) Comparison of the longest
tour lengths vs. number of robots k for r = 5 and r = 20 in the “packed” environment in
Figure 3.6. For r = 20, the tour lengths are significantly shorter than for the r = 5 case,
illustrating the advantage of exploiting multiview regions in a packed environment.
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The packed environment is reminiscent of the turbine-blade environment (Figure 1.1)

that motivated this inspection task. In this example, the path-length advantage of exploiting

multiview regions in the routing task is evident. For large enough r in a crowded enough

environment, a large portion of the edges in ER will be within multiview regions, allowing

the routing algorithm to avoid multiple passes through the same region. The weight of edges

within multiview regions will not change as significantly as external edges’ weights will as

r increases. The packed environment in Figure 3.6 illustrates the advantage of exploiting

multiview regions in a packed environment, as the large-r tour lengths are significantly

shorter than the small-r tours, as shown in Figure 3.7(b).

In both examples, despite the difference in graph structure between the two r-value

cases, the resulting routes are remarkably similar in their division of the task. This is

evident in Figs. 3.5 and 3.6; each route in the small-r scenario has a corresponding route

in the large-r scenario that inspects approximately the same set of boundary segments.

The effects of team size k on tour lengths are shown in Figs. 3.7(a) and 3.7(b). Despite

the pronounced difference in graph structure introduced by the different r values, the per-

formance is qualitatively similar for both example environments. With the addition of a

few robots, the longest tour length drops dramatically, but the tour length benefit decreases

exponentially with k. As k increases, the average tour length levels off. This is due to the

partitioning method’s requirement that every tour contain at least one required edge. As

a result, as k increases, the heuristic begins developing nearly identical tours for multiple

robots.

For a cost function based on time to completion, a choice in which the path length

of the longest tour will dominate, dividing the task among two or more robots offers a

marked benefit. If, in addition to time concerns, the inspection process itself is more
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time consuming and costly than traveling between inspection regions, dividing the task

and avoiding redundant coverage is particularly beneficial. However, if the cost function is

primarily based on total robot energy output, e.g., distance traveled, using a single robot

will likely offer a lower cost strategy.

3.5 A Graph Representation for Boundary Coverage: The

Boundary Following Method

The graph construction procedure introduced in this section is motivated by the VR method

described in Section 3.2, but key differences provide significant improvements in overall

graph complexity and inspection path length.

While the multiview regions’ potential for reducing the path length of the robots’ in-

spection tours should be exploited, the length of the visibility paths for those boundary

segments not visible from a multiview region could be minimized by following the boundary

as closely as possible. This can be accomplished by removing the constraint that robots

carry out inspection at a preferred sensing distance. Instead, the planning process considers

the entire inspection sensing range, from distance rmin to rmax away from the boundary.

All boundary points in the environment are assumed to accessible to the robot, thus dis-

joint object boundaries must be spaced at least 2rmin apart. Previously, a point p on the

boundary was considered inspected when a robot passed within distance rmax orthogonal

to the boundary. To allow for inspection of concave corners (described in Section 3.5.1.2),

this constraint is relaxed. Though the orthogonal sensing orientation is still preferred, a

point p is considered inspected when a robot passes within distance rmax.

In contrast to the VR method, the approach in this section allows for the inspection
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of objects with nonconvex boundaries. Each object boundary is still assumed to be a

piecewise smooth, closed curve. Nonconvex objects are partitioned into convex objects for

the purposes of calculating the local GVG and constructing the graph representation of the

inspection task. This partitioning creates a new type of boundary segment, the inaccessible

boundary segment, which cannot be and does not need to be inspected. To reflect this, ∂O,

originally defined as the collective boundary of all objects in the environment in Section

3.1, is redefined as the boundary of the union of all objects in the environment. By this

definition, ∂O consists of all exterior boundary segments, ∂Oext, and interior boundary

segments, ∂Oint, and excludes all inaccessible boundary segments.

As in Section 3.2, the inspection graph G is comprised of required inspection edges, ER,

and connectivity edges, EC . Again, a single, easily defined “preferred visibility path” will

be constructed for each edge and its length will be assigned as that edge’s weight. Because

this method is motivated by following the boundary as closely as possible while still making

efficient transitions to the inspection of neighboring boundaries, this graph construction

method is called the Boundary Following (BF) method.

Note that the graph searching and decomposition algorithm presented in Section 3.3 is

independent of the method used for the construction of G; it will accept any connected,

undirected graph G as an input.

3.5.1 Determining ER: Edges Required for Inspection

Let rmin denote the closest distance to an object that yields adequate inspection perfor-

mance (rmin < rmax, and rmin may approach 0). Let Smax,j and Smin,j denote the set of

offset curves that are displaced a distance rmax and rmin normal to the jth object boundary,

∂Oj , respectively. The configuration space for inspection, C, the union of freespace bounded
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by Smin,j and Smax,j for all j ∈ {1, ..., N} is the set of all robot poses from which a bound-

ary point may be inspected. Let PBF denote the union of the regions in freespace that are

bounded by Smax =
⋃

j=1,...,N Smax,j and let PBF
i , i ∈ {1, . . . ,m}, denote the constituent

disjoint inspection regions. Figure 3.8(a) shows a sample environment incorporating non-

convex objects and a value of rmax = 4rmin. The boundaries of the inspection regions are

labeled and C is shown with shaded regions.

The objective in this method of graph construction is to find an efficient way to transition

from paths that closely follow the boundary to paths that exploit multiview regions while

guaranteeing that the path lies within C and passes within rmax of every point in ∂O.

Each disjoint inspection region PBF
i is examined in turn. Consider every object Oj

whose visibility region is contained in PBF
i and denote the list of those objects’ indices with

li. The required edges in G that closely follow the exterior boundaries, termed boundary

following edges, are constructed first, then required edges that lie within multiview regions,

multiview edges, are added. Figure 3.9(a) illustrates the required edges as constructed with

the BF method.

3.5.1.1 Boundary following edges

In order to ensure that the exterior boundary segments for each object Oj , j ∈ li are

completely inspected, each object is considered individually. To construct the preferred

visibility path for the exterior boundary segments of Oj , first consider the outer extremes

of the multivew regions adjacent to the object. These extreme points, Oj ’s multiview

extrema, occur where where Smax,j and Smax,k, j 6= k, intersect. By definition, these points

lie on the GVG, presenting a good opportunity to transition from a path tracing an exterior

boundary segment to a path exploiting a multiview region.
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(a)

(b)

Figure 3.8: (a) Illustration of the inspection regions, PBF
1 through PBF

4 . The configuration
space for inspection, C, is shown with shaded regions. (b) For each inspection region PBF

i ,
∂HSPBF

i

is shown with a solid line. ∂HPBF
i

is shown with a dashed line.
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For each j ∈ li, the region HSj bounded by the convex hull of Smin,j and Oj ’s multiview

extrema is calculated. The intervals of ∂HSj lying outside multiview regions define visibility

paths for Oj ’s exterior boundary segments. Let HSPBF
i

=
⋃

j∈li
HSj . The construction of

HSPBF
i

preserves the intervals of each ∂HSj that define the exterior boundary segments’

visibility paths. The construction also discards the intervals that fall within multiview

regions (corresponding to interior boundary segments, which will be considered below when

multiview regions are examined) or intersect other objects’ boundaries (corresponding to

inaccessible boundary segments, which need not be inspected). Solid lines denote ∂HSPBF
i

in Figure 3.8(b).

If rmax is large relative to the size of the objects to be inspected, for objects at the edge

of PBF
i , ∂HSPBF

i

may describe paths from the boundary following curve to the edge of the

multiview region that take the robot farther away from the objects in the inspection region

than if the robot simply proceeded along a tangent path to an adjacent object. To avoid

this situation, those tangent paths that are part of the convex hull, ∂HPBF
i

, of
⋃

j∈li
Smin,j

are found. This convex hull is illustrated with a dashed line in Figure 3.8(b) and the region

bounded by this convex hull is denoted HPBF
i

. In that example, two segments of ∂HPBF
3

provide a more direct path through C than ∂HSPBF
3

does.

To take advantage of these “shortcuts,” consider Hi = HPBF
i

⋂
HSPBF

i

. The boundary

∂Hi describes the preferred visibility paths for the inspection of all hull boundary segments

within PBF
i , the subset of boundary segments that will not be inspected from within a

multiview region. As such, the set of hull boundary segments includes all exterior boundary

segments in PBF
i and, where HPBF

i
offers a more direct path, the outermost portions of

some interior boundary segments. Graph vertices are placed where the GVG intersects ∂Hi,

then edges are added representing the interval of ∂Hi between those vertices. This method
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of vertex addition ensures the continuity of inspection between interior hull boundary seg-

ments, which will be inspected in the course of traversing ∂Hi, and the remaining interior

boundary segments, which will be inspected from within a multiview region.

If PBF
i incorporates no multiview regions, PBF

i contains a single object, Oj . The pre-

ferred visibility path for ∂Oj is ∂Hi = Smin,j . In this case, a vertex is placed on the preferred

visibility path at an arbitrarily chosen point. A single self-looping required graph edge of

weight equal to the length of Smin,j is added to G.

Let H =
⋃

i={1,...,m}Hi. Because the regions Hi are disjoint, ∂H =
⋃

i={1,...,m} ∂Hi.

Edges in ER representing intervals of H are termed boundary following edges and their

traversal will result in the inspection of all hull boundary segments.

3.5.1.2 Multiview edges

Edges corresponding to the preferred visibility paths for the remaining boundary segments

in ∂O are established by adding to G all edges and vertices of the GVG contained within

H. These edges are assigned a weight equal to the length of the corresponding GVG path.

GVG edges only partially contained in H are truncated at the vertex that was placed at

the point of intersection during the construction of the boundary following edges.

Recall that GVG edges describe the locations that are equidistant from the nearest ob-

ject. Because nonconvex objects have been partitioned into abutting convex objects, the

GVG will incorporate edges that allow for the simultaneous inspection of interior boundary

segments belonging to the same nonconvex object prior to partitioning, ensuring that all

boundary points in such “interior regions” of a nonconvex object are inspected. This par-

titioning also leads to GVG edges that approach concave corners, terminating in a single

degree vertex where the objects meet. Because inspection of points in these “corner regions”
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from a distance of rmax is sufficient, corner GVG edges are truncated a distance rmax from

the point of object intersection. Several examples of such corner regions can be seen in

Figure 3.9(a).

Edges in ER representing intervals of GVG
⋂
H (which defines the preferred visibility

paths for all remaining boundary segments in ∂O) are termed multiview edges.

The collection of preferred visibility paths represented by edges in ER is denoted R =

∂H
⋃

(GVG
⋂
H).

Lemma 3.5.1. Traversal of every edge in ER will result in the inspection of every point in

∂O.

Proof. By construction, the traversal of the visibility paths ∂H associated with boundary

following edges will result in the inspection of every hull boundary segment in ∂O. Also by

construction, the traversal of the visibility paths GVG
⋂
H associated with multiview edges

will result in the inspection of all remaining boundary segments in ∂O. Every preferred

visibility path in R = ∂H
⋃

(GVG
⋂
H) is represented by an edge in ER. Therefore, the

traversal of every edge in ER will result in the traversal of every interval of R, which will

result in the inspection of every point in ∂O.

3.5.2 Determining EC: Edges Providing Connectivity

To connect disjoint inspection regions and allow for more efficient travel within inspection

regions, access vertices are added to G. As in the VR method, mutually visible vertices

must exist between adjacent inspection regions to guarantee G’s connectivity. To meet this

requirement (as well as to add points of access on edges that are long relative to those

constructed with the VF method), for each object Oj in the inspection region, the points
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(a)

(b)

Figure 3.9: (a) Construction of edges in ER. (b) A possible final graph representation for
the sample environment from Figures 3.8(a) and 3.8(b).
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tangent to Smin,j from distant points in the four cardinal directions are found. For any of

these points lying on a preferred visibility path, a vertex will be added to G at that point,

subdividing the edge representing that visibility path.

As with the VR method, the group of required edges associated with boundary inspection

in each inspection region PBF
i forms a distinct connected subgraph of G. The possibly

disjoint components of this construction must be connected to allow for robot transit to

other parts of the graph.

The vertex vdepot is added at the depot location. A complete graph is then induced on

the vertices of G, adding edges connecting each vertex in G to every other vertex in G

if an edge describing a direct path between those vertices does not already exist. These

induced edges are assigned a weight equal to the distance between those vertices. If the

path associated with an induced edge passes through an object, that edge is excluded from

G. The induced edges comprise the set of edges connecting edges, EC . The graph G is now

connected, i.e, a path exists between every vertex in the graph.

A possible final graph representation of the sample environment is illustrated in Figure

3.9.

3.6 Results and Discussion: Impact of the Graph Represen-

tation

3.6.1 Reduction in Graph Complexity

To generate a typical graph representation with the VR method, the user selects a sub-

division step size parameter, dstep, that directly affects the number of vertices |V | in G

and an edge-weeding parameter, dweed, directly affecting the number of edges |E| in G.
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(a) (b)

Figure 3.10: (a) VR graph construction method (blue in Figure 3.11), shown for rmax = 15,
dstep = 1, and dweed = 75. G has 2595 edges and 2455 vertices. (b) BF graph construction
method (yellow in Figure 3.11), shown for rmax = 15. G has 620 edges and 59 vertices.

In that construction technique, edges represent straight paths through freespace and the

waypoints in the tours all correspond to vertices. In the BF method, waypoints along the

paths represented by graph edges are simply a parameter associated with each edge. These

waypoint lists contribute only to the storage space required for the graph and do not add

to its complexity. The user may select the granularity of path information to suit system

memory constraints; for examples presented here, a granularity equivalent to dstep = 1 (in

arbitrary distance units) in the VR method was chosen.

A graph generated using the BF method will have far fewer vertices than a graph

generated with the VR method for typical values of the user-selected parameters. The

example graphs in Figure 3.10 were generated for typical fine granularity (i.e., small step

size) values of these user-selected parameters. The BF method offers reduction in |V | by

more than an order of magnitude while offering an arbitrarily fine spatial resolution of

waypoints. Such savings in |V | were consistently seen in the examples explored.
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3.6.2 Reduction in Computational Complexity

This reduction of graph complexity greatly improves the running time of the constructive

heuristic. The most expensive steps in the algorithm are heavily dependent on the number

of vertices in the graph, especially those incident to the edges in ER:

1. The all pairs shortest path calculation used in the partitioning step (Section 3.3.1.2)

has time complexity O(|VR|3) [77], where VR is the set of vertices incident to ER.

2. The minimum spanning tree calculation used in the connectivity step (Section 3.3.1.3)

has time complexity O(|EFi |log|VFi |) [82] for each group Fi.

3. The single postman tour calculation (Section 3.3.1.4) has time complexity O(|VGi |3)

[75] for each subgraph Gi.

Using the graph generated with the VR method for the example environment shown

in Figure 3.10 for, and running on a Pentium-4 processor (3GHz CPU), the constructive

heuristic runs to completion in 16 minutes 21.0 seconds for rmax = 15 and k = 6. The

constructive heuristic runs to completion nearly 196 times faster using the graph generated

with the BF method for the example environment, requiring only 5.007 seconds on the same

machine.

To further examine the explosion in running time for relatively small changes in user

parameters, graphs were constructed with the VR method for dstep = 1 and dstep = 2; ,

keeping all other parameters fixed (rmax = 15, dweed = 75, and k = 6). The resulting graphs

had |V | = 2455 and |V | = 1511, respectively. For dstep = 2, the constructive heuristic ran

to completion in 4 minutes 28.7 seconds, slightly more than a quarter of the time required

for dstep = 1, showing the major impact of |V | on the algorithm’s running time.
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For the values of k used in simulations (k ≤ 10), team size did not play a large role in

the running time for either construction method.

The vast reduction in G’s complexity offered by the BF method allows the heuristic to

solve the kRPP quickly enough that robots might use it online to revise their paths in light

of changes to the environment or team. This brings about the opportunity to reuse this

graph framework in a variety of related inspection tasks that will be explored in the next

chapter.

3.6.3 Reduction in Total Length of ER

Using the BF method, as the constraint of the preferred sensing distance r is relaxed and

more efficient boundary following paths are exploited, the total length of the preferred

visibility paths represented by ER is reduced. The extreme case of rmax = 65 for the

example environment introduced in Figure 3.10 is shown in Figure 3.11(a) and (b). Figure

3.11(a) clearly illustrates the expanding exterior edges are the source of the monotonic

increase in the total length of ER in the VR method as rmax increases. Figure 3.11(b)

illustrates how using Hi to describe efficient exterior edges curbs this growth in total ER

length. Figure 3.11(c) shows the total length of ER for the VR example (in blue) and the

BF example (in yellow) as a function of rmax. The total length of ER is consistently smaller

in graphs generated with the BF method. In contrast to the monotonic increase in total

ER length seen for graphs constructed with the VR method, the BF method constructs the

same graph for any rmax greater than the rmax for which multiview regions saturate the

interior of every inspection region’s Hi.
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(a) (b)

(c)

Figure 3.11: (a) VR graph construction method shown for rmax = 65. (b) BF graph
construction method shown for rmax = 65. (c) Graph comparing the total length of ER

for VR (blue) and BF (yellow) methods shown in Figure 3.10 as a function of rmax. The
horizontal line indicates the total length of ∂O, the boundary to be inspected.
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(a) (b)

(c) (d)

Figure 3.12: (a) Minimum, mean, and maximum tour lengths for the VR graph example
shown in Figure 3.10(a) for various team sizes. (b) Minimum, mean, and maximum tour
lengths for the BF graph example shown in Figure 3.10(b) for various team sizes. (c) Tours
on VR graph calculated for k = 3. (d) Tours on BF graph calculated for k = 3.
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3.6.4 Tour Length

When the kRPP heuristic is applied to graphs generated with both methods, both types of

graphs yield comparable solutions. In general, as long as the graph edges are adequately

subdivided, the graphs generated with the BF method yield somewhat shorter tours than

VR-generated graphs with r = rmax due to the more efficient preferred visibility paths. This

subdivision (achieved in most cases with the addition of access vertices) allows the task to

be divided among the robots; given too few edges to assign, the task may not be partitioned

well. For the example environment shown in Figure 3.11, the methods come closest in total

ER length for rmax = 15. For that instance of the example, the tours planned for k = 3

robots are illustrated in Figure 3.12. While the spatial division of labor is not similar, the

quality of the solution, as measured by the maximum, mean, and minimum tour lengths is

comparable.

3.6.5 Division of Labor by Edge Partitioning

Another effect of the reduction of the degree of subdivision is notable in certain cases of

labor division. Because the edges constructed with the BF method are not subdivided to

the extent done in the VR method, the resulting division of labor is often more in line

with intuition. Recall the row of circular boundaries in Figure 3.4(a). In contrast to the

nonintuitive division of inspection in that example, when the graph for the same task is

constructed using the BF method, the result is a much more intuitive division, shown in

Figure 3.13 with one robot inspecting each circular object.
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Figure 3.13: In contrast to the nonintuitive division of inspection achieved using a graph
constructed with the VR method in Figure 3.4(a), when the graph for the same task is
constructed using the BF method, the result is a much more intuitive division, with one
robot inspecting each circular object.

3.6.6 Completeness of Boundary Coverage

The BF method, like the VR method, produces a graph representation that includes a

visibility path for the inspection of every point in ∂O.

Proposition 3.6.1. Given a connected, undirected graph G constructed with the BF method,

the paths planned from the kRPP graph solution provide complete coverage of ∂O.

Proof. By Lemma 3.5.1, if every edge in ER is traversed (i.e, a robot travels along a visibility

path represented by that edge), every point on the boundary ∂O will be inspected. By

Lemma 3.3.2, the kRPP heuristic gives a graph solution that guarantees the traversal of

every edge in ER, thus complete boundary coverage is guaranteed.
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Chapter 4

Multi-robot Inspection with Plan
Revision

This chapter revisits the multi-robot boundary coverage problem in which a group of k

robots must inspect every point on the boundary of a two-dimensional environment. As

a result of the considerable computational savings offered by the BF graph construction

method, for graphs describing typical boundary coverage tasks, the kRPP heuristic requires

only a few seconds to run to completion. This vast improvement in running time allows

the kRPP to be solved quickly enough that robots might use it to revise their paths online

in light of changes to the environment or team in a variety of related inspection tasks. In

Section 4.1, modularity in the algorithm is exploited to propose a method for the revision

of paths mid-task, allowing for adaptation of the inspection plan in reaction to changes

in team size or the task assignment. Simulated examples and discussion are presented in

Section 4.3 and open questions and possible extensions are summarized in Section 4.4.

4.1 Plan Revision

In the boundary coverage problem, detailed in Chapter 3, a group of k robots is required to

completely inspect the boundary of all two-dimensional objects in a specified environment.
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Additionally, one would practically seek inspection plans which balance the inspection load,

as much as possible, across the cooperating robots. This section details a path-revision

approach which exploits the reduced complexity of the graph representation and the mod-

ularity of the path planning algorithm to allow for plan revision in response to mid-task

changes in robot team size and/or changes in the environment.

Such changes can occur in a number of practically important situations. The number

of robots cooperating in the inspection task might change during the inspection task due

to robot failure, the retasking of robots to another chore, or the addition of robots to

the inspection team. Robots may encounter new objects that must be inspected, or the

inspection assignment may be changed thereby changing the structure of G. In such cases,

the remainder of the inspection task should be replanned to adapt to the characteristics of

the newly resized inspection team. The replanning capability is a necessary step in making

the approach more robust to failure and uncertainty and introducing complementary or

collaborative subtasks to the problem. The first step in robustly handling these practical

issues is to devise a method for plan revision in the course of task execution.

4.2 A Modular Algorithm to solve the kRPP

To revise the robots’ paths mid-task, one can appeal to the modular structure of the planning

heuristic presented in Section 3.3 to partially reuse prior calculations with modified inputs

based on the current state of inspection.

4.2.1 Repartition Unvisited Required Edges

Let k′ denote that number of cooperating robots that remain after one or more robots has

failed, been retasked, or added. Similarly, let E′
R denote the set of unvisited required edges
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at the time of revision. This set of edges includes edges that have not yet been visited in

the original plan at the time of plan revision, as well as newly required edges that might

arise from changes in the environment’s geometry. The edges in E′
R must be repartitioned

among the k′ robots so that the inspection task can be completed.

The supervisory agent partitions the edges in E′
R into k′ groups, F ′

1∪ ...∪F ′
k = E′

R using

the farthest point clustering algorithm described in Section 3.3.1.2. The k′ representative

edges used as the basis for partitioning are chosen based on the robots’ current positions.

For robot i already engaged in the inspection task and currently traversing the jth edge of its

tour, the representative edge f ′i will be edge j+1 in the robot’s current tour. Representative

edges for robots new to the task, which are deployed from the depot, are chosen from E′
R

such that the sum of the minimum distance through G to the existing representative edges

is maximized.

As in the initial planning process, after the robots are assigned their respective groups

of required edges, the remainder of the planning procedure can take place online.

4.2.2 Make Subset of Edges in G Connected

At the time of path revision, because the robots will not necessarily start their new tours

from the depot vertex, a new effective depot vertex must be specified for each robot. For

robot i already engaged in the inspection task and currently traversing the jth edge, the

end vertex toward which the robot is moving will serve as the new depot v′depot,i. For robots

new to the task, which are deployed from the depot, v′depot,i = vdepot (this need not be the

original depot, but for simplicity we assume it is). This step is executed for the groups

F ′
1, ..., F

′
k, each connected to its respective vdepot,i′ , as described for F1, ..., Fk and the single

vdepot in Section 3.3.1.3.
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4.2.3 Compute Tour of a Connected Subgraph

This step is executed for the subgraphs G′
1, ..., G

′
k, as described for G1, ..., Gk in Section

3.3.1.4, yielding tours T ′
1, ..., T

′
k.

4.2.4 Refine a Tour in G

Because the new tours T ′
i terminate at vdepot,i, if vdepot,i 6= vdepot, once every required edge

in a tour has been visited, the rest of the tour is replaced with the shortest path to the

original point of deployment, vdepot. As in Section 3.3.1.5, for each tour T ′
i , sequences of

edges that are retraced in the course of a tour are replaced with the shortest path in G, if

a shorter path between the end vertices of the sequence exists.

4.3 Simulation Results and Discussion

4.3.1 Revision: Change in Robot Team Size

To illustrate the path revision method, consider the case of robot failure mid-task.

For the first example, consider the sparse environment with several distinct inspection

regions, shown in Figure 4.1. The sensing parameters used are rmin = 5, rmax = 25. For

k = 3, routes planned and executed successfully are shown in Figure 4.1(a), while Figure

4.1(b) illustrates the progress made at the time the robot carrying out the route shown in

blue fails. The complete post-revision paths are shown in Figure 4.2. A second example

environment, featuring a single, densely packed inspection region, with sensing parameters

rmin = 5, rmax = 50, is shown for k = 3 in Figures 4.3 and 4.4.

In the first example, the edges that are “abandoned” by the failed robot are reassigned

to the robot executing the route drawn in green, while in the second, the edges are divided
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(a) Routes planned and carried out successfully, k = 3.

(b) Robot progress at the time of the blue robot’s failure (Sec-
tion 4.3.1) and at the time several edges are removed from ER

(Section 4.3.2).

Figure 4.1: Illustration of examples of path revision presented in Sections 4.3.1 and 4.3.2
for a sparse environment with several inspection regions.
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Figure 4.2: Routes carried out after path revision necessitated by change in k (robot on
blue route fails).

among both remaining robots. This is due to the nature of the partitioning process and

to the structure of the environment: in the first example, at the time of failure, every

required edge in the blue route is closer to the robot following the green route than the

robot following the red. In contrast, the robots in the second example are routed through

a more closely packed environment and the remaining robots share the abandoned edges.

The repartitioning results in such cases depend more heavily on the robots’ positions at the

time of failure.

In the example of Figure 4.1, the differences in the pre- and post-revision red route are

due to the fact that the route is replanned from a new “depot” point, even while the edges

yet to be inspected remain the same. This replanning is not necessary, but is inexpensive

when used with the new graph construction method and, as in this case, may improve upon

the previously planned path.

In addition to the path revision method presented Section 4.1, a method for post-failure

path revision which preserved the partitioning calculated in the initial execution of the
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(a) Routes planned and carried out successfully, k = 3.

(b) Robot progress at the time of the blue robot’s failure (Section
4.3.1) and at the time several edges are removed from ER (Section
4.3.2).

Figure 4.3: Illustration of examples of path revision presented in Sections 4.3.1 and 4.3.2
for a more densely packed environment with a single inspection region.

Figure 4.4: Routes carried out after path revision necessitated by change in k (robot on
blue route fails).
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Figure 4.5: Routes carried out after path revision necessitated by change in ER (several
edges are removed from ER).

constructive heuristic was also explored. This method repartitioned only the unvisited

required edges in Fi initially assigned to the failed robot i. By reducing the number of

edges being partitioned, the time complexity of the repartitioning step taken during path

revision was significantly reduced. This method did not lend itself to extensions such as

revision after addition of robots or changes to G, however, and when the savings in running

time offered by this method offered were overwhelmed by the savings in running time due to

the BF graph representation, the more computationally intensive but more flexible method

presented in Section 4.1 was pursued instead.

4.3.2 Revision: Change in Inspection Task

Path revision can be a useful tool when information is acquired mid-task. Consider an

example where, initially, every boundary point in our example environment must be in-

spected. The examples illustrated in Figures 4.1(a) and 4.3(a) are used again. Mid-task,

again at the point illustrated in Figures 4.1(b) and 4.3(b), the planning system receives a
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Figure 4.6: Routes carried out after path revision necessitated by change in ER (several
edges are removed from ER).

command to ignore some of the boundary segments (for example, information about these

segments comes from other sources, and thus they no longer need to be inspected). Figure

4.1 illustrates an example in which, mid-task, the supervisory agent instructs the team to

ignore the boundary segments in the centermost inspection region. Figure 4.3 illustrates

a case in which, mid-task, the supervisory agent instructs the team to ignore three right-

most objects. The edges associated with these objects are thus removed from ER, and the

traversal of the remaining unvisited edges in ER is divided among the k robots by the path

revision algorithm.

The complete post-revision paths, no longer incorporating inspection of these objects,

are shown in Figures 4.5 and 4.6. In such cases, the revision of the robots’ paths allows

them to bypass now-unnecessary inspection and complete the task more quickly.

4.4 Conclusion

This chapter utilized the considerable computational savings offered by the new representa-

tion to explore plan revision. The path revision capability presented here is a step towards

making the graph-based approach more robust to failure and open to the addition of com-
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plementary or collaborative subtasks. The use of multiple robots offers the opportunity for

transient, but potentially unplanned, collaborations between teammates, a task extension

that may be explored in future work. For example, a robot with a complementary sensory

suite might detour from its assigned task to aid another robot that has found an interesting

target. Plan revision will be a necessary component in the implementation of such exten-

sions. Plan revision necessitated by changes in the underlying graph representation will also

be a necessary component in future work addressing changes to the known environment as

unexpected features are detected during an inspection tour. The ability to replan while

taking into account changes to the team and to the task itself with only a minor delay in

task execution moves the implementation a significant step closer to online planning.
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Chapter 5

Conclusion

5.1 Summary and Outlook

The multi-robot systems explored in this thesis range from fully distributed, swarm-inspired

systems to centrally supervised, deliberative systems, adding a diverse set of “building

blocks” to the field’s ever-increasing collective understanding of multi-robot system design.

5.1.1 Swarm Robotic System Design

At the distributed and reactive end of the multi-robot system spectrum, Chapter 2 describes

mathematical modeling methodologies developed to predict and optimize a robotic swarm’s

performance for several tasks. SI principles do not provide us with a way to quantitatively

predict the swarm performance according to a particular metric or analyze further possible

optimization margins and intrinsic limitations of this approach from an engineering point of

view. In other words, if we want to achieve coordinated, self-organized group behavior based

on local interactions, we need to have appropriate tools for understanding how to design

and control individual units so that the swarm can achieve target behaviors and levels of

performance. Models allow the engineer to capture the dynamics of these nonlinear, asyn-

chronous, potentially large-scale systems at more abstract levels, sometimes achieving even
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mathematical tractability. More generally, modeling is a means for saving time, enabling

generalization to different robotic platforms, and estimating optimal system parameters,

including control parameters and number of agents in a team. This work, previously pub-

lished in a collaborator’s thesis [35] and in two journal papers [36, 37], was one of the first

attempts to develop an ad hoc modeling methodology for swarm robotic systems.

The strength of this research lies in the microscopic and macroscopic models’ quantita-

tively correct predictions in the absence of free parameters. The predictions are validated

with embodied simulations and experiments with real robots. The mapping between dif-

ferent implementation levels of the same experiment is precisely described, allowing the

methodology’s application to other experiments. Furthermore, the application of the prob-

abilistic modeling methodology is illustrated for several examples of incremental complexity,

providing additional building blocks that may be applied to the construction of models for

other experiments. The strengths and limitations of the modeling methodology are ex-

tensively explored, particularly in comparison to other popular simulation tools such as

sensor-based, embodied simulators.

Since the publication of this work, collaborators have made several notable improvements

to the modeling methodology and applied it to several more swarm robotic experiments,

including a swarm approach to the boundary inspection problem considered in Chapter 3.

5.1.2 Planning Algorithms for Multi-robot Inspection

At the centralized, deliberative end of the multi-robot system spectrum, Chapter 3 formal-

izes the multi-robot boundary coverage problem, in which a group of k robots is required to

completely inspect the boundary of all two-dimensional objects in a specified environment.

The boundary coverage problem is relatively new; I am the first to formalize the problem
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and offer a complete algorithm for its solution. The method abstracts the problem into a

graph-based framework. Within this framework, the task can be posed as a “postman”-type

graph problem whose solution describes a complete inspection plan. Initially, a centralized

supervisory agent divides the task among the robots, each of which computes its own graph

solution-based inspection plan using a constructive heuristic algorithm. Improvements to

the initial formulation of the graph representation decrease the required running time of

the planning algorithm by two orders of magnitude, allowing the possibility of using this

planning algorithm as an online route planning tool in addition to its current application

as a pre-deployment route planning method.

My continuing research focuses on the extension of this boundary inspection approach

to the case of long-term deployment for surveillance applications that require repetitive cov-

erage. Motivating applications include security surveillance within structured environments

and the execution of periodic tasks, such as mail delivery or trash collection.

Using the building blocks from the boundary inspection approach, I am exploring corri-

dor inspection tasks posed within a graph framework compatible with the boundary coverage

graph framework, allowing for the straightforward reuse of the planning tools implemented

for boundary coverage. The main focus of this research to develop decentralized meth-

ods for adaptation of routes in response to changes in team size, task assignment, or the

environment over the course of the extended surveillance period.

In considering repetitive coverage, the opportunity for robots to improve and adapt their

routes arises. As repetitive coverage is desirable rather than an inefficient redundancy, the

quality of the initial plan may be less critical and will likely be subject to different metrics

than were considered for a single instance of boundary coverage.

A useful metric for tracking the team performance in such a task is to consider how



128

often specific features are visited (or edges are traversed). For such a metric, a single-robot

solution executed by a team of robots deployed at even time intervals (i.e., the task is

temporally partitioned) could achieve performance similar to that achieved by a spatially-

partitioned multi-robot solution, so a metric demonstrating the benefit of the multi-robot

solution is also necessary. Robot capacity is such a metric; if the task at hand is to collect

trash, a robot patrolling a shorter multi-robot route more frequently will require less storage

capacity than a robot patrolling a long single-robot route. A spatial partitioning approach

will also reduce interference between robots at common points on the graph.

To facilitate this continuing work, the boundary inspection planning methods have been

implemented in Player/Stage [83] and extended to a corridor coverage task, a more intu-

itive choice than boundary coverage for a repetitive coverage task. For a large value of rmax

relative to the width of a corridor, a corridor environment’s graph representation would

resemble the graph representation for a boundary coverage task inside a densely packed

inspection region. Corridor-based test environments lend themselves easily to a graph rep-

resentation, with edges representing the inspection of hallways and vertices representing

hallway intersections. Test environments with wide variations in size and complexity can

also be quickly generated for the purposes of systematic testing of the inspection methods.

Figure 5.1 illustrates the implementation of corridor coverage in Player/Stage, posed within

the graph framework developed for boundary coverage.

5.2 Towards Intelligent, Autonomous Multi-agent Systems

My long-term research interests lie in the design and control of real-world multi-agent sys-

tems, endowing interacting mobile and embedded systems with intelligence and autonomy

while safely keeping humans in control. For a variety of applications, the capability of simul-
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(a) (b)

(c) (d)

Figure 5.1: Corridor coverage in Player/Stage, posed within the graph framework developed
for boundary coverage. (a) The corridor test environment. (b) The graph representation.
(c) Planned inspection routes for k = 3. (d) Screenshot from Player/Stage in which colored
“trail markers” indicate where each robot traveled in the course of inspection.
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taneous sensing and action in multiple locations that is inherent to multi-robot approaches

offers potential advantages over single robot systems in robustness, efficiency, and applica-

tion feasibility. With the proliferation of wireless networks and the increasing prevalence

of intelligent consumer devices, I see a wide array of future opportunities for real-world

multi-agent systems to assist humans in everyday tasks in addition to traditional “dull,

dirty, or dangerous” robotics applications. Work remains to be done in classic coverage

tasks, such as collaborative mapping, surveillance, and demining. There are also opportu-

nities to extend coverage methods to allow for automated inspection of pipelines, cables,

and various structures. Intelligent transportation systems could benefit from multi-agent

approaches, such as congestion control managed collaboratively by passenger vehicles and

embedded sensor networks along roadways. Personal networks of intelligent devices will

have a variety of consumer applications. The cooperative deployment of sensor-network-

based communication and localization infrastructure with a team of robots to carry out

exploration and observation tasks in hazardous environments, such as the deep sea or sur-

faces of other planets, could advance the frontiers of various fields in biology, geology, and

planetary science.

For every multi-agent application, we must find the correct balance of robustness, effi-

ciency, simplicity, and sophistication. As we add to the existing catalogue of building blocks

for a variety of robot tasks, we may use them to design and implement incrementally more

complex multi-robot systems while we gain a better understanding of methods for their

formal classification and analysis. In my research, I will continue to look beyond implemen-

tation and validation of a particular system and ask how its design can contribute to the

development of a more general design methodology.
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