Chapter 5. Is Automation the Answer? —
The Computational Complexity of Automated

Redistricting

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 221

5.1. Redistricting and Computers

“There is only one way to do reapportionment — feed into the computer @ll the

factors except political registration.” - Ronald Reagan (Goff 1972)

“The rapid advances in computer technology and education during the Igst two
decades make it relatively simple to draw contiguous districts of equal popglation

[and] at the same time to further whatever secondary goals the State Juasic

Brennan, irKarcherv. Daggett(1983)

Ronald Reagan was not the only recent politician or academic to assert that
computers can remove the controversy and politics from redistricting. Computers can
prevent gerrymandering by finding the “optimal” districting plan, given any set of values
that can be specified, claim proponents of automated redistricting. The Supreme Court
seems to express a similar sentiment with the emphasis that it put on such mechanical
principles as contiguity and compactness in the recent redistricting cadéeol.

Johnson(1995) andShawv. Reno(1993).

In Chapter 4, | showed that the mechanical application of compactness standards
has previously unanticipated partisan consequences; in this chapter | examine the general
automation of the districting process, and its consequences. Will we soon be able to write
out a function that captures the social value of a districting arrangement, plug this
function into a computer, and wait for the “optimal” redistricting plan to emerge from
our laser-printers? | argue that this rosy future is unlikely to be realized soon, if at all,

because we are unlikely to solve three problems that face automated redistricting.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 222

In Section 5.2, | show that current redistricting methods are not adequate for the
purposes of automated redistricting. Current automation techniques must resort to
unproved guesswork in order to handle the size of real redistricting plans. Before

automated redistricting produces trustworthy results, large gaps must be filled.

Proponents of automation assume that despite current shortcomings, finding the
optimal redistricting plan simply requires the development of faster computers. In
Sections 5.3 and 5.4, | show that this assumption is false — in general, redistricting is a
far more difficult mathematical problem than has been yet recognized. In fact, the
redistricting problem is so computationally difficult that it is unlikely that any mere

increase in the speed of computers will enable us to solve it.

Even if these complexities are overcome, automated redistricting faces a serious
limitation: To use automated redistricting we must write out a function that meaningfully
captures the social worth of districts, and that at the same time can be put into terms rigid
enough for computer processing. In Section 5.5, | argue that if we do this we will have to
ignore values that are based upon subtle patterns of community and representation, which

cannot be captured mechanically.

5.2. Current Research on Automated Redistricting

Although the literature on automated redistricting is at least thirty-five years old, it
has seen a recent resurgence. This research generally falls into two categories: The first

category addresses the merits of automated redistripéinge and the second category

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 223

suggests methods we can use to create districts automatiediythis section | briefly

summarize the previous research in each of these two categories.

5.2.1. Arguments for Automating the Redistricting Process
In one of the earliest papers on this subject, Vickrey proposed that districting be
automated, and that this automation process be based upon two specific values:
population equality and geographical compactness. Under his proposal political actors
would be permitted to specify or add criteria to a goal function for redistricting, but they
would not be permitted to submit specific redistricting plans. Then plans would be

createcautomatically with no further human input, from census blocks, to meet the goal

150 There is, as well, a third category of literature which indirectly touches on
automated redistricting. Authors in this third category typically suggepartcular
criteria for drawing optimal districts— much of the literature on geographical

compactness falls into this category.

In particular, several authors have argued that gerrymandering can be eliminated by
drawing districts which are maximally compact (Harris 1964; Kaiser 1966; Polsby and
Popper 1991; Stern 1974; Wells 1982). (Also see Young (1988) Niemi et al. (1991) for a
survey of other compactness measures.) While these authors focus primarily on the
criteria for evaluating districts, their core argument is the same as that examined above —
i.e., that redistricting can be performed best by automatically optimizing a pre-specified

representation function.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 224

function. At its heart, automated redistricting is an attempt to push all decision making to

the beginning of the redistricting process.

Vickrey (1961) asserted that automated redistricting provides a simple and
straightforward way to eliminate gerrymandering. More recently, Browdy (1990a)
followed and extended Vickrey’'s arguments, and created what seems to be the best case
for automated redistricting. Five main arguments are offered in the literature, and these

can be easily summarized:

Argument 1. Automated redistricting, in and of itself, createseutral and unbiased

district map (Forrest 1964; Harris 1964; Kaiser 1966).

Argument 2. Automated redistrictingprevents manipulatiomy denying political actors

the opportunity to choose district plans, while simultaneously producing districts that meet
specified social goals (Browdy 1990a; Stern 1974; Tdiiriged Porter1979; Vickrey

1961; Wells 1982)51

Argument 3. Automated redistrictinggromotes fair outcomesy forcing political debate
to be over the general goals of redistricting, and not over particular plans, where selfish

interests are most likely to be manifest (Vickrey 1961).

151 Compactness advocates make a similar argument.

152 In the compactness literature quoted above, it is argued that the compactness

criteria themselves make the automated process fair.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 225

Argument 4. Automated procedures provideexognizablyfair processof meeting any
representational goals that are chosen by the political ptété&3sowdy 1990a; Vickrey
1961). Browdy also argues that such procedural fairnebshelp to curtail legal

challenges to district plans.

Argument 5. Automated redistrictingases judicial and public revielecause the goals
and methods of the districting process are open to view; and because automation process
creates a clear separation between the intent and effect of redistricting (Browdy 1990a;

Issacharoff 1993) .
5.2.2. Criticisms of Automated Redistricting

Automated redistricting has been criticized as well as praised. Previous authors have

raised two central objections to automated redistric¢ihg@he first argument against

153 Polsby and Popper (1991) argusilarly that a mechanistic application of formal

compactness standards is inherently fair.

154 There are also a number of papers arguing against particular formal measurements,
rather than against automated redistricting. Specifically, compactness standards have been
subjected to intense scrutiny. For an introduction to some of the issues surrounding the
use of these standards, see Lijphart 1989, Lowenstein and Steinberg 1985, Mayhew 1970
and Chapter 3 in Cain 1984. As most of these arguments are directed against the use of
particular geographical criteria and not against automated redistricting in general, | have

not included these papers in the preceding summary.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 226

automatic redistricting was originally expressed by Appel (1965). He protested that
automated redistricting should not be viewed as inherently objective. He argues that
redistricting standards and processes embody political values and that automation of this
process hides the fundamental conflict over values. Dixon (1968) as well, pointed out
that automated processes, even if based on nonpolitical criteria, may have politically
significant results. More recently, Anderson and Dahlstrom (1990) cautioned that
political consequences of redistricting goals makes redistricting, whether it is automated

or not, inescapably political.

| believe this objection to be both correct and unavoidable. Automation is a process
for obtaining a given set of redistricting goals. Neutrality, however, is a functibmneaf
factors,the process selected, the goals themselves, and the effects of seeking to obtain
those goals in a particular set of demographic and political circumstances. There is no
general consensus over what “objectively neutral” goals are, or whether thésp axist
all; therefore, no amount of automation can make the redistricting process “objectively

neutral.”

155 Much doubt has been expressed as to whether such goals exist. Furthermore, the
fundamental conflicts between some of the more commonly proposed goals make such a
consensus unlikely. For a discussion of the most commonly proposed goals and some the

conflicts between these, see (Cain 1984; Dixon 1968; Grofman 1985; Lijphart 1989).

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 227

This objection, however, only applies to the first, and most extreme, claim for
automated redistricting. Many proponents of automated redistricting do not make this
type of extreme claim, and instead explicitly acknowledge the political nature of
redistricting goals. They propose that the automated process be used to neutrally and
effectively meet goals generated previously by a political process (Browdy 1990a;
Issacharoff 1993; Vickrey 1961). This proposal seems to meet at least the first objection

abovels6

Anderson, echoing Dixon (Dixon 1968), made a second argument against
automated redistricting by drawing attention to the legislative process used to select
automatically generated plans. He argues that the legislature’s willingness to accept the
plans that are generated by an automated process will be politically motivated —

reintroducing political bias into the process (Anderson and Dahlstrom 1990).

While | believe Anderson to be correct, this specific objection does not seem to me
to be strong. If we mandate that the legislature must accept the results of the automatic
process, we can prevent this particular attempt to reintroduce bias into the system. In
general, however, | believe that researchers have largely underestimated the potential for

political biases to become part of the automation process.

156 And, indeed, Dixon, who argues against the neutrality of automated redistricting,

freely acknowledges its usefulness for this type of situation (Dixon 1968).

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 228

5.2.3. The Core Argument — Automation as a “Veil of Ignorance”
In the arguments for automated redistricting, automation essentially plays the role of
a Rawlsian (Rawls 1971) “veil of ignorance” which creates fairness by hiding each
actor’s position in the final outcome. Like the Rawlsian version, the “veil of automation”
attempts to hide the final outcome (i.e., redistricting plans) from those bargaining over
the social contract (i.e., redistricting goals and procedures). Like the more general veil of
ignorance, the automation process claims to prevent manipulation by promoting a

recognizably fair method that will, on average, promote fair outcomes.

Vickrey, in one of the first arguments for automated redistricting, particularly
emphasized that in order for the automated process to be successful at promoting
fairness, it must bsufficiently unpredictablé’ — it should not be possible for political
actors to deduce the results of the redistricting goals over which they bargain (Vickrey
1961). This property is essential, for if it does not obtain, then the choice of objective

functions collapses into a choice of individual plans, and the incentive to gerrymander

157 Here | use the term “unpredictable” where Vickrey originally used “random.”
Vickrey's concern was that it should not be obvious to the political actors what exact
results derive from a particular value function. Enough randomness in the process would
certainly ensure this concern is met, but the process need not be random to do this. For
example, if the process is sufficientdiiaotic it is not random, but it may still be, for all

intents and purposes, unpredictable — satisfying Vickrey’s central concern.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 229

remains unameliorated by the automation process. If we can predict the plans that will

result from our values, we can pierce the veil of automation.

While proponents of automated redistricting have recognized this need for
unpredictability, they have not mentioned the danger from unpredictable results. An
automated process for creating districts in accordance with agreed upon values must
predictably achieve (or at least approach) the goals that were agreed upon in the

bargaining stage, or lose legitimacy.

The automated redistricting process must maintain a delicate balance. To prevent
manipulation while maintaining fairness, the automated process must predictably
implement the redistricting goals that we have agreed upon in the bargaining process; but
it must be unpredictable every other dimensiothat is of interest to the bargaining
agents. These are difficult requirements to satisfy when the bargaining agents are
individuals who narrowly seek specific, hand-tailored gerrymanders. They become even
more difficult to meet when bargaining agents represent interest groups or political
parties unconcerned with particular incumbents, because such agents are interested in far
more general properties of redistricting plans. Can automated redistricting methods

reliably produce plans that exclusively embody any specific set of redistricting goals?

5.2.4. Why Current Methods Are Inadequate for Automated Redistricting
Initially, many researchers expressed optimism about the ease of achieving
redistricting goals through automation (Nagel 1965; Torricelli and Porter 1979; Vickrey

1961; Weaver and Hess 1963). Vickrey best captures this initial hopefulness:

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 230

“In summary, elimination of gerrymandering would seem to require
the establishment of an automatic and impersonal procedure for
carrying out redistricting. It appears to be not all difficult to devise
rules for doing this which will produce results not markedly inferior to
those which would be arrived at by a genuinely disinterested

commission.” - William Vickrey (Vickrey1961)

While optimism has now dulled somewhagchuse it has been recognized that
purely automated redistricting techniques remain generally unsatisfactory (Backstrom
1982), many authors itassume that automation of the redistricting process is within

reach (Anderson and Dahlstrom 1990; Browdy 1990b; Polsby and Popper 1991).

In his original paper, Vickrey sketched a method for performing automated
redistricting, but did not give develop a precise implementation of this method. Much of
the following work assumed the benefits of automated redistricting and focused primarily
on providing criteria and methods to use in such automation. Liittschwager (1973)
applied Vickrey’s method to the lowa redistricting process. Similarly Weaver and Hess
(1963), and Nagel (1965) developed methods and/or measures for drawing districts in

accordance with principles of population equality and geographical compactidsse

158 See also Chapter 6 in Gudgin and Taylor 1979 (Gudgin and Taylor 1979), and

Papayanopoulos (1973) for a review of early attempts at automated redistricting.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 231

recently, Browdy (1990b) proposed that the methosiratilated annealinghay be

generally applicable to the problem of drawing optimal districts.

Many different methods have been used or suggested for finding optimal districts.
We can put these techniques into two broad categert@stmethods antieuristic
methods. In the remainder of this section, | review the methods used to search for
optimal districts. Although useful for assisting humans, current methods cannot satisfy

the goals of automated redistricting.

Limitations of Exact Methods

Exactmethods systematically examine all legal districts, either explicitly or

implicitly. Explicit enumeration, or “brute force” search methods literally evaluate every
district. More sophisticated methods such as implicit-enumeration, branch-and-bound, or
branch-and-cut techniques exclude classes of solutions that can be inferred to be sub-
optimal without an explicit examination. Finding the optimal districts in this case is then
merely a matter of sorting the list of district scores. These methods have been used by
several authors to approach very small redistricting problems (Garfinkel and Nemhauser
1970; Gudgin and Taylor 1979, Chapter 6; Papayanopoulos 1973; Shepherd and Jenkins

1970)159

159 A close examination of these algorithms reveals that in order to make enumeration
complete in a feasible amount of time, “short-cuts” are used where some sub-classes of

partitions areassumedo be unreasonable, and are disregarded without examination and

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 232

Exact methods have two major shortcomings: First, no exact method has been
developed that will solve redistricting problems for a reasonably sized plan; and as | will
show in Section 4, the mathematical structure of the redistricting problem makes it
unlikely that exact methods will be developed in the future that will be able to solve
reasonably sized plans. Second, even if we find an exact method that works for real
plans, then anyone could use that method to determine the precise plan corresponding to
a particular set of redistricting goals; thus, exact methods would have completely

predictable results, violating our requirements for an automated redistricting method.

Limitations of Heuristic Methods.

Heuristic procedures use a variety of methods to structure the search for high-valued
redistricting plans. None of the heuristic algorithms guarantees convergence to the

optimal district plan in a finite amount of time. At best, they are good guesses.

All of the general redistricting heuristics cited in the literature are based upon

making iterative improvemerif§ to a proposed redistricting plan. The single most

without proof of sub-optimality. Restrictions such as “exclusion distance” in Garfinkel and
Nemhauser (1970) dimiting examination to “amalgamations” in Shepherd and Jenkins

(1970) must be formally classified as heuristic rather than exhaustive.

160 |n the field of computer science, heuristic algorithms are divided into two

categoriesiterative improvemengs above, andivide-and-conquemethods. These two

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 233

popular method seems to bl climbing and its variants, although a few researchers add

more sophisticated featuresrefighborhood searctechniquess!

« Hill climbing methods work by making small improvements on a potential solution until

a local optimum is reached.ltlimbing often starts with the current district plan or with

a randomly generated plan, and it makes improvements through repeatedly!dading
census blocks between districts (Moshman and Kokiko 1973; Nagel 1965). Another
variant of this method selects arbitrary census tracts to form the nuclei of each district, and

then repeatedly adds tracts that most imp¥&uhe current district until each district is

general broad categories include variants such as: simulated annealing and genetic

algorithms, which will be described in Section 5.4.

161 |n addition to general redistricting methods, there are a number of special purpose
methods of note: Tobler develops an iterative graphical remapping process to generate
districts of equal population (Tobler 1973). This process gradually distorts geographical
maps to create new maps where population is equivalent to area, facilitating the creation

of districts with equal population.

162 Usually, improvements are made sequentially for each district, but if the number of

census tracts is small, several trades may be examined simultaneously.

163 Often this is simply the tract that is closest to the selected district center (in
whatever metric used). The Weaver and Hess algorithm uses linear-programming

techniques to select population units to add to the district center.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 234

fully populated (Bodin 1973; Liittschwager 1973; Rose Institute of State and Local
Government 1980; Taylor 1973; Vickrey 1961; Weaver and Hess 1963).

* Neighborhood searcimethods are all similar in that they seek to improve potential
solutions by examining the value of “nearby” solutions; in this they are similar to hill
climbing. Unlike hill climbing algorithms, sophisticated techniques in this class use various
techniques to attempt to avoid becoming stuck at local optima. Browdy (1990b) suggests

the use osimulated annealingf4 a member of this class of methods.

The main difficulty with all heuristics is that they are, at heart, informed guessing
procedures. This is not necessarily bad — when you are faced with a difficult problem,
you may be able to find an adequate solution cheaply much of the time by guessing. If
we use guessing procedures to decide political questions, however, we must show that
our guesses are unbiased and likely to produce good solutions. No researcher in this field
has been able to show, either theoretically or empirically, that the districts produced by
their methods are near optimal, or that they are unbiased. On the contrary, many heuristic

methods produced results that are clearly sub-optimal (Bodin 1973), or depend strongly

164 This and other neighborhood search algorithms will be discussed in more detail in

Section 4.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 235

on starting conditions (Browdy 1990b; Nagel 1965; Weaver 1970; Weaver and Hess

1963)165

Are the inadequacies of current automated redistricting techniques merely
temporary? Will improvements in software design and increasingly powerful computers
make automated redistricting easy? In the next section, | will show that automated
redistricting has been unsuccessful not only because of current techniques but because of
inherent complexities in the structure of the redistricting problem. Furthermore, | will
show that these complexities are unlikely be overcome simply through the use of faster

hardware or more clever software.

5.3. Automated Redistricting May be Intractable

To find “optimal” redistricting plans, as the advocates of automated redistricting
suggest, we must first formulate the redistricting problem mathematical terms and then
solve this mathematical problem. In this section, | will show that, regardless of the
formulation, the redistricting problem is formally computationally intractable — it is

practically impossible to solve exactly.

165 Note that Browdy's proposal for usingmulated annealinghas yet to be

implemented. | will discuss thisiggestion in detail in Section 5.4.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 236

5.3.1. Redistricting is a Large Mathematical Problem
We can mathematically characterize the redistricting problem in a number of
different ways. One simple way to mathematize redistricting is to think of iseis a
partitioning problem. | will use this particular characterization extensively in this
chapter. While there are other characterizations that we could use, spaplas
partition, polygonal dissectioandinteger programmingSee the appendix to this
chapter.), the results in this section are not dependent on the characterization we choose,

since these characterizations are computationally equivalent. (See Section 5.4.)

In particular, we will characterize redistricting as a combinatorial optimization
problemi6é Imagine that census blocks are indivisiffeand that you have complete

information about voting and demographic information for every census block in your

166 This in itself is not original to this chapter. Redistricting has been implicitly
characterized as a combinatorial optimization problem from Vickrey (1961) onward. See
Gudgin and Taylor (1979) and Papayanoupoulos (1973) or previous explicit

characterizations of this problem.

167 Population units are assumed to reflect the most accurate and detailed information
practically and/or legally available, unless otherwise specified. For most of this chapter,

population units can be read as “census blocks” without too much loss of generality.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 237

state. The redistricting problem isgartition168 the entire set of units into districts such
that avalue functions maximizedt® This partitioning problem may be complicated by
the addition of a set of constraints on districts. These constraints, such as contiguity, may

limit the set of legal plang?°

168 A partition divides a set into component groups which are exhaustive and

exclusive. More formally:

For any sek ={x,,X,,....x,}, apartition is defined as
asetof set¥ ={y,,y,,....y,} st.

(1) Ox Ox, Oy, OY,st. x Oy,

(2) 0,0 #i,y, ny, =0

169 More formally:

Given:

* a set of census blocks

* the set of all partitions of, Y

* a value function on partitions, V(y)
The optimal district plan is

D" =max(V(y))

170 These can be represented as formal constraints on membership in the set of
allowable partitions in note 17 above, or may for some approximations, simply be

incorporated in the value function to be optimized.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 238

The redistricting problem poses special difficulties because the size of the solution
set can be enormous. In general, it will be impossible to attack the problem by a brute

force search through all possible districting arrangements.

Formally, the total number of distid¢t plans that can be created usmgopulation

blocks to draw districts is characterized by the functitA:
S r! @ \D
r)= r-=
(n)= Z(T)

Even under the assumption that each district is composed of dxpothulation blocks3
(hence,r =) the number of possible plans is still a rapidly growing function:

S(nr,k)= (r ',)

The magnitude of this problem is often not fully recognized. For even a small

number of census tracts and districts, the number of possible districting arrangements

171 This number reflects districts that are distinct, ignoring the numbering order of
districts. Merely renumbering the districts without changing the composition of at least

one district does not result in a different plan.

172 Sis known as a “Stirling Number of the Second Kind.” See Even (1973) for a

good introduction.

173\Which is not correct, but closer to the real situation than the formula above.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 239

becomes enormous. As an example of this, Table 5-1 lists the number of possible plans

that could be used to divide a small hypothetical state into two districts:

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 240

Type of Population Block Total Number of Blocks Blocks per District ~ Number of Plgns
counties 10 5 945

census tracts 50 25 5.8*10%"

census blocks 250 125 4*10°%

Table 5-1. Number of plans available to divide a hypothetical area into two

districts, by type of population block.

As Table 5-1 shows, the size of the redistricting problem grows rapidly as a function
of the number of population units being used. In fact, this table undets@tgsze of the

problem, because it assumes all districts have an identical numbers of blocks.

The number of districts, is also an important factor in determining how many
plans are possible. The number of plans possible will increasgpimo a point, and then

decrease, as Table 5-2 shows:

Number of Districts Blocks per District Number of Plans
1 24 1

2 12 3.2* 101

3 8 9.2 * 1012

4 6 4.5 * 102

6 4 9.6 * 100

8 3 1.6* 10

12 2 1.3* 1

24 1 1

Table 5-2. Number of Plans possible when dividing 24 population blocks

evenly intoN districts.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 241

An exhaustive search to find the optimal plan will be impractical for all but the
coarsest population units and extreme number of districts per census block. Only by
using a large population unit, such as a county, for our “indivisible” units, can we make
exhaustive search manageable. Unfortunately, using such coarse granularity is likely to
substantially decrease the quality of our solutions. Furthermore, use of such coarse
population divisions is unlikely to lead to solutions where even rough population equality
is maintained between districts. If we want to draw districts using accurate, fine-grained
population units, such as census tracts or blocks, the number of plans involved makes

exhaustive searches unmanageéaifie.

Several proponents of automated redistricting, when faced with a prohibitive number
of possible plans, suggest that other, nonexhaustive procedures be used to generate
districts (Nagel 1972; Papayanopoulos 1973). Certainly, exhaustive search is not
necessarily the only method guaranteed to find optimal districts. However, in the
remainder this section, we will show tlaaty method for finding optimal districts
likely to be computationally hard, and thus impractical for all but the “smallest”

redistricting problems.

174 For a state such as California, where 100,000 census blocks must be assigned to
50 districts, if started at the creation of the universe, a computer that could examine a

million districts a second would still not be finished.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 242

5.3.2. Candidate Value Functions
The difficulty of solving the redistricting problem will depend upon the particular
value function and constraints we use. In the next section, | summarize the most common
candidates for value functions before analyzing the difficulty of the redistricting problem

for each one.

While there are practically no political values that are not subject to debate, a
number of criteria are commonly thought to be good candidates for redistricting goals.
Grofman and Lijphart summarize these, and I list the five most common types below

(Grofman 1985; Lijphart 1989):

1. Population equalitybetween districts is believed by many scholars to be necessary for

political fairness.

2. Contiguityhas received much attention in combination with compactness.

3. Compactnesswhich attempts to capture the geographic regularity of districts also
appears in many state constitutions. Compactness has been defined in many different ways.

(See Niemi et al. (1991), for a survey of these.)

4. Creating fair electoral contests another criteria that is sometimes found in state
constitutions. Of course, there are many possible definitions of a “fair contest”: including

maximal competitivenegmaximizing the number of close electioh®)neutrality (which

175 Here | group together a number of different types of criteria including: “electoral

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 243

specifies that the electoral system should not be biased in favor of any political party in
awarding seats for a certain percentage of the vote), and the goamstant swing ratio

(seats/votes share) for each party.

5. The last set of common redistricting goals dealing directly might be termed
representationagoals, as they are difficult to formulate without referring to a concept of
representation. These inclugeotection of communities of intereahd nondilution of

minority representation.

As well as being theoretically and philosophically important, these values often carry
the weight of law (Grofman 1985): The U.S. Supreme Court has found the constitution
to requirede minimigpopulation deviations between Congressional districts and only
somewhat larger deviations between state legislative or local government districts.
Furthermore, 37 states require districts to be contiguous, 24 states require conipéctness
and 2 states require what might be loosely interpreted as an electoral response

function1’” Representational goals also have some legal force: Protection of communities

responsiveness,” “neutrality,” “competitiveness,” and “constant swing ratio,” which are

often addressed separately in the literature.

176 Only three states formally define “compactness.”

177 These are vaguely defined in the constitutions of these states as directives to “not

unduly favor any person or political party (faction).”

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 244

of interest is required in five states, and nondilution of minority interests is required

under the Voting Rights Act.

Despite the relative popularity of the four types of goals above, there is no political
or academic consensus over them. Nor can formalization or automation somehow make
the goals “objective” — the political consequences of redistricting goals will still exist.
Although many have recognized this before, it cannot be emphasized too strongly that at
best, automation can neutrally implement these goals, once they have been decided upon

by apolitical process.’8

5.3.3. What is a Computationally Hard Problem?

In this section | will show that for any of the aforementioned value functions (or
combinations of them), the problem of finding an optimal districting plan is
computationally complex - any attempt will probably be thwarted by the size and
complexity of the redistricting problem. To prove this result | will have to introduce

some formal definitions from computational complexity theGpy.

178 In this point | agree with two of the main proponents of automated redistricting

(Browdy 1990a; Issacharoff 1993).

179 In order to present the next set of results, it is necessary to define a number of
terms and ideas referring to problems, solution methods, and solution complexity. The

length of this chapter necessitates that this section be limited to what is essential for

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 245

Computational complexity (or “structural complexity”) theory and the related field
of computability theory are two branches of theoretical computer science. These
disciplines are devoted to analyzing the difficulty of solving specified discrete problems

using computer&0

Researchers in computer science and in operations research use computational
complexity theory extensively when they analyze problems. While this type of analysis
has been adopted only recently by political scientists, computational tractability is
becoming recognized as a prerequisite for practical electoral®uleslly (1988a,
1988b) analyzes the complexity of a number of voting rules, and he establishes some
conditions for computable electoral rules (Kelly 1988a; Kelly 1988b). Bartholdi, Tovey

and Trick analyze the complexity of manipulating elections; they argue that while almost

understanding the result. For a more lengthy and formal characterization, see

Papadimitriou 1994).

180 For a review of recent developments in this field, see Book (1994).

For problems that are (unlike partitioning) continuous, rather than discrete, the field
of “information-based complexity” also has relevance. For an introduction to this latter

field, see Traub and Wozniakowski (1992).

181 Also see Deng and Papadimitriod994) on the complexity of different

cooperative solution concepts that are used in some positive political theory models.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 246

all electoral rules are theoretically open to manipulation, some rules may be practically
impervious to manipulation because of the complexity of the calculations a manipulator
would have to perform (Bartholdi, Tovey and Trick 1989; Bartholdi, Tovey and Trick

1992).

Basic to computational complexity theory is the definition of a probleiproilem
is a general question to be answered. In the case of redistricting, the problem is to find
the districting plan that maximizes our value function — formally, we must find the
optimal partitiont82 | will use the ternredistricting sub-problento distinguish the case
where we have pre-specified a particular value function, such as compactness, rather than
taking the value function itself to be a parameter. Hence, redistricting to maximize (a
particularly formally defined measure of) population equality is a sub-problem. A
problem possesses sevgratametersor free variables. For any redistricting sub-
problem, the parameters consist of the population units from which we are to draw the
plan and the vector of values assigned to those population uniisstAnceof a

problem is created by assigning values to all parameters. Finding the arrangement of

182 We can characterize redistricting either as a general problem where the value
function itself is a parameter, or as a class of similar partitioning probésok, with a
separate value function. Our choice of characterization does not affect the results found

below.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 247

lowa’s 1980 census tracts that maximize population equality would then be an instance

of a redistricting sub-problem.

The second set of terms refers to solutions to the preceding problemigjofithm
is a general set of instructions, in a formal computer language that, when executed,
solves a specified problem. An algorithm is saiddtvea problem if and only if it can
be applied tanyinstance of that problem and is guaranteed to produce an exact solution
to that instance. To continue the example above, an algorithm would be said to solve the
population-equality redistricting problem only if it were guaranteed to find a population-

equality-maximizing solution for any set of census blocks that we put into it.

The final set of terms refers to properties of problems and their solutions. A problem
is said to beomputableaf and only if there exist82 an algorithm which solves the

problem?!84 For computable problems we define time-complexityfhereafter

183 Here | use the ternexistsin the formal, mathematical sense — we do not
necessarily have to know which algorithm solves a problem to show that such an

algorithm must exist.

184 Turing (1937) (1937) showed that there are problems for which solutions exist
that are not computable in the sense used above. | am not arguing that practical
redistricting criteria are likely to be noncomputable, although this is a theoretical

possibility.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 248

abbreviated to “complexity”) of an algorithm to be a function that represents the number
of the instructions that algorithm must execute to reach a soldbidihne complexity of

an algorithm is expressed in terms of sieeof the problem, roughly equivalent to the
number of input paramete¥® The size of redistricting is simply the number of

population units that are used as input. An algorithm is said to take polynomial time if its
time-complexity function is a polynomial and is said to take exponential time,

otherwisels”

185This definition assumes a serial (single processor) computation model, but the
results are not altered if we use parallel-processing: The sum of the time needed by a set of
parallel-processors to solve a problem can be no less than the total required in the serial

model.

186 The time complexity of an algorithm is conventionally denoted)(a[s(n)) where

n is the size of the problem. Additive and multiplicative constants are omitted, as these
vary with the computing model used. Thus the number of steps to solve an algorithm of

O(n) complexity is a linear function of the number of inputs.

187 In addition to analyzing the time required to solve a problem, we can formulate
analogous tractability criteria for the storagea@p requirements of a problem (or for
practically any other of its resource requirements). It can be shown that problems that
require exponential space illwalso require exponential time, but not vice-versa.

Fortunately, none of the redistricting sub-problems discussed here needs exponential

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 249

A problem is often said to lmmputationally tractabld there exists an algorithm
which is of polynomial complexity for all instances and which solves the problem.
Conversely, a problem will be said to @@mputationally intractablé¢also
“computationally complex,” or “computationally hard”) if the (provably) optimal

algorithm for solving the problem cannot solve all instances in polynomial time.

Although we have defined complexity in terms of time, we may usefully think of it
as a measure gbstas well. If time is costly, and if there are no exponential economies
of scale associated with time, computationally intractable problems will be prohibitively
expensive, since the cost to solve such problems will also grow at an exponentfél rate.
Obviously, the time-costs of a redistricting are unlikely to exhibit exponential economies
of scale. If anything, wasted time will likely exhibit constant or negative economies of

scale: if redistricting takes too long, it will start to disrupt elections seriously.

This characterization of problem difficulty has two main strengths. It is independent
of any particular computer hardware design technology and it classifies the difficulty of

the problems themselves, not of particular methods used to solve these problems.

space.

188 Alternatively, if we were to use parallel-processors to solve the problem, the
numberof computers would grow exponentially (at least)— thus our costs still grow

exponentially.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 250

First, results under this characterizationiarplementation independemifferent
computer languages (and encoding schemes for the parameters) may alter the time

complexity of an algorithm, but no “reasonaBBflanguage will be convert a

189 All known, physically constructable, computer architectures‘@a@sonable” in
this sense, and it is believed that all possible computers based on classical physical
principles preserve this property (Papadimitrib®94). However, there is some debate
over whether this implementation independence applies to hypothetical computers
designed to utilize unexplored properties of quantum physics. Two authors, in particular,
assert that the above model does not accurately describe all potential problem solving

devices.

Deutsch asserts that under the “many-universes” interpretation of quantum theory,
one could design a device to exploit an infinite number of alternative universes for parallel
calculation (Deutsch 1985). Under this controversial interpretation of quantum theory,
devices may be built which would be able to compute some (but not all) problems in
polynomial time that are computable on all conventional computers only in exponential

time (Deutsch and Jozsa 1992).

Penrose (1989; 1994) makes a somewhat different argument, asserting that currently
unresolved areas of quantum physics may provide fundamentally different ways of solving

problem than is represented by the Turing model. Penrose argument, which is too rich and

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 251

polynomial algorithm to an exponential algorithm. While a more powerful computer may
be able to perform each atomic operation more quickly, it will not alter the time
complexity function of the problem. Intractable problems cannot be made tractable

through improvements in hardware technology.

Second, results under this characterization apply to the problem itself, not to a
particular method used to solve this problem. Problems which are shown to be difficult
under this characterization are difficult f@mmy possible computer method. Since it is the
problem, itself that requires exponential time, these problems cannot be made tractable

through advances in software or algorithmic design.

This characterization is also subject to several important limitations. These
limitations have caused its use as an absolute measure of problem difficulty, especially
for social science problems, to be justly criticized (Page 1994). | will briefly summarize
these limitations here, and in Section 5.5 | will extend the analysis to address the

relevance of these limitations for the redistricting problem.

First, the distinction between tractable and intractable problems is most important
for instances of large size - where the exponential factors in the time requirements of

these problems become dominant. Consider the following two problems. Problem “A” is

detailed to be adequately summarized here, asserts not only that quantum physics allows
mechanisms for problem solving which are fundamentally different from those used in

today’s computers, but that the human brain actually employs such mechanisms.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 252

computationally intractable and takefl.1') steps to solve. Problem “B” is

computationally tractable and tal@(sn“) steps. Although the time needed to solve

problem A will eventually become much greater than the time required for problem B,
for problem sizes less than one thousand, we can actually solve problem A much more

quickly.

Second, when we use this characterization we require that problems be solved
exactly. Some problems that are computationally difficult to solve may®ximated
much more quickly. If the approximation reached is (provably or empirically) close
enough to the optimal solution to the problem, for practical purposes we may not need to

find the exact best solution.

Third, when we use this characterization we require that our algorélwagsreach
acorrectsolution for every problem instance, requirements that make computational
complexity a function of the worst-case problem instance. Since we base our analysis on
the worst-case, we may overstate the complexity of the problem on average.
Furthermore, since we require that our solution-algorithm neither make errors, nor give
up on a problem, we will drop from our analysis some algorithms that are probabilistic.
While such algorithms do not formally “solve” a computationally hard problem, they

may be quite useful if their rates of error and of failure are sufficiently low.

The three caveats above offer to us possible escape routes around computationally

intractable problems, but these are gmbgsibleroutes. And as | will show in Section

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 253

5.5, in general the requirements of automated redistricting procedures make these

avenues unlikely to be fruitful.

5.3.4. Redistricting is a Computationally Hard Problem
In the previous sections, | showed how redistricting is deeply connected to
mathematical partitioning problems. Many researchers in computer science have
examined partition problems and reached some conclusions about their computational
complexity. In this section, | show that the redistricting problem in general, and even

many simpler redistricting sub-problems are likely to be intractable.

Proving that a problem is intractable is difficult — researchers have been unable to
determine whether most problems are tractable (Papadimitriou 1994). There are,
however, a number of large classes of problems that computer scientists believe to be

intractable. The oldest of these is called the cladFe€ompletgroblems.

Cook defined the first NP-complete problem (Cook 1971), which has now been
shown to belong to a large set, consisting of hundreds of problems in many fields. Karp
characterized the most important property of NP-complete problems (Karp 1972):
polynomial-time reducibilityAny NP-complete problem can be transformed into any

other NP-complete problem in polynomial tiA¥@ Thus, if you could prove that any NP-

190 Polynomial reductions are defined so as to preserve space complexity

characteristics as well. Furthermore, there is an even deeper equivalence between all

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 254

complete problem is formally intractable, you would have proved all such problems

intractable, and vice-versa.

Search for a proof of the intractability of NP-complete problems has been of the
most famous open problems in computer science for over two decades. While no proof of
intractability has been found, no polynomial algorithms have ever been found that solve
any of these problems, and because of the breadth of the class of problems, it is widely

believed that no such algorithms exist.

The class of NP-complete problems is not the only class that is believed to be
intractable — there are many other classes of problems that are equivalent to each other
but not to problems in the NP-complete class. For our purposes, however, we need
consider only the NP-complete class and the related cl&8-bhrdproblems: ThéNP-
hard class is a superset containing Mie-completeclass; this class is potentially harder
to solve than NP-complete problems because although if any NP-complete problem is
intractable, then all NP-hard problems are intractable, the reverse is gt irbe.
diagram below illustrates the probable relationship between the NP-complete, NP-hard

and tractable classes of problems. (Figure 5-1)

known NP-complete problems — each problem can be transformed to any other by a

simple functional mapping (technically a “bijection”).

191 Any NP-Hard problem can be shown to be NP-complete for at least some

instances, but not necessarily for all instances.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 255

i

ractable

“ Complet

Figure 5-1. A diagram showing NP-Complete and Related Complexity

Classes

In the appendix to this chapter, | show formally how the most common redistricting
sub-problems, such as finding the optimal set of compact districts, are NP-complete or
NP-hard!®2 Table 5-3 summarizes these formal results; for each sub-problem | give a
short example of its formal characterization, and a reference to the corresponding

problem in complexity theory.

192 This finding contradicts Garfinkels’'s and Nemhauser’'s (1970) (Garfinkel and
Nemhauser 1970) prediction that the time required for their integer pmoymng

technique should be expected to be approximately linear in population units.

Is Automation the Answer? — The Computational Complexity of Automated Redistricting

Redistricting Sub-Problem

Example Characterization

Reference Problems

Equal population districts

set partition divide members of set into
subsets minimizing value function

* population unit: represented by an
integer-valued set member

« district: each subset in partition is a
district

« value function: the largest difference
population between any two districts

Weighted Set Partition
(Karp 1972)

3-Partition

(Garey and Johnson 1983)
Weak Partition

(Johnson 1982)

rinteger Programming
(Garey and Johnson 1983)

Compact districts

set partition:as above

« population unit: represented by a vect
valued set member

« district: as above

« value function:

(a) maximum distance between points i
district

(b) total perimeter of districts

Distance-d Partition of
bPoints in the Plane
(Johnson 1982)
Minimum Perimeter
Partition into Rectangles
n(dohnson 1982)

Competitive districts

set partition:as above

* population unit: represented by a
weighted set member. Weight is
Republican registration - Democratic
registration in each districts.

« district: as above, district weight = sum

of weights of the population units it
contains

« value function:

minimize sum of squared district weigh

Minimum Sum of Squares
(Garey and Johnson 1983)

Contiguous districts
(with population equality)

graph partition divide nodes of a graph
into connected subsets minimizing valu
function

* population unit: represented by a nodg
the graph

« contiguity relationship: population unit
contiguous to each other are connected
edges in graph

« district: as above

« value function: the largest difference i
population between any two districts

Cut into Connected
eComponents of Bounded
Size

p @ohnson 1982; Johnson
1984)

S

by

Table 5-3. Redistricting Problems that are at least NP-Complete

256

While | refer to a number of particular characterizations in Table 5-3, it is important

to realize that none of my results in this chapter is dependent on the use of a particular

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 257

characterizatioA?? Since all of these characterizations are in the set of NP-complete
problems, they are all formally equivalent — any algorithm that solves one problem can
be simply reformulated to solve any other without a change in complexity class. The
advantage of multiple characterizations is that each characterization may suggest various
limitations that can be put on the problem that may make the praasierto solve or

approximate. (See Section 5.4 below.)

While I have focused on sub-problems, you should note, as well, that these
complexity results apply to the general redistricting problem. Since complexity results
describe worst case properties, my results demonstrate that the redistricting piroblem,

its most general fornis at least as difficult as any NP-complete probléta further

193 Reformulating the redistricting problem in other ways, can be useful if it suggest
natural restriction that can be put on the problem in order to simplify it. Restrictions that
re natural in one context, such as planarity or graphs in the graph-partitioning problem,

may not be obvious when the problem is formulated as an integer partition problem.

194 Each of the redistricting sub-problems above is an instance of the redistricting
problem. If some instances of the sub-problems require exponential time, then the general
problem as well must also require this amount of time. Hence, the redistricting problem
has a time complexity at least as large as its sub-problems. We have not shown that these
sub-problems represent worst cases of the redistricting problem, however, so it is possible

that some instances of the general redistricting problem may be worse than NP-complete,

Is Automation the Answer? — The Computational Complexity of Automated Redistricting 258

implication of these results is that finding an optimal district undeicampinationof
these “hard” goals is also hard. In sum, we should not expect automated optimal
redistricting to be tractable for an arbitrary choice of population units, number of

districts, and an arbitrary value functi&f.

or even unsolvable.

195 When making the claim that automated redistricting is formally intractable, it is
sometime objected that this claim cannot be true because political actors are able to
gerrymander so well. If political actors can gerrymander optimally, the argument guess,

then so should computers. | believe this objection is based on three false assumptions:..

» Claim one:Humans already perform (near) optimal gerrymanderifbere is little
evidence for this claim; in fact, there is much evidence to the contrary, and many examples

of attempted gerrymanders that have had far from the intended results.

e Claim two: Automated redistricting is no more difficult than gerrymandering.
Again, the available evidence seems to point toward the opposite conclusion. Automated
redistricting is significantly more complicated than gerrymandering in three important
respects. Gerrymandering usually involv