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5.1. Redistricting and Computers

“There is only one way to do reapportionment — feed into the computer all the

factors except political registration.” - Ronald Reagan (Goff 1972)

“The rapid advances in computer technology and education during the last two

decades make it relatively simple to draw contiguous districts of equal population

[and] at the same time to further whatever secondary goals the State has.” - Justice

Brennan, in Karcher v. Daggett (1983)

Ronald Reagan was not the only recent politician or academic to assert that

computers can remove the controversy and politics from redistricting. Computers can

prevent gerrymandering by finding the “optimal” districting plan, given any set of values

that can be specified, claim proponents of automated redistricting. The Supreme Court

seems to express a similar sentiment with the emphasis that it put on such mechanical

principles as contiguity and compactness in the recent redistricting cases of Miller v.

Johnson (1995) and Shaw v. Reno (1993).

In Chapter 4, I showed that the mechanical application of compactness standards

has previously unanticipated partisan consequences; in this chapter I examine the general

automation of the districting process, and its consequences. Will we soon be able to write

out a function that captures the social value of a districting arrangement, plug this

function into a computer, and wait for the “optimal” redistricting plan to emerge from

our laser-printers? I argue that this rosy future is unlikely to be realized soon, if at all,

because we are unlikely to solve three problems that face automated redistricting.
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In Section 5.2, I show that current redistricting methods are not adequate for the

purposes of automated redistricting. Current automation techniques must resort to

unproved guesswork in order to handle the size of real redistricting plans. Before

automated redistricting produces trustworthy results, large gaps must be filled.

 Proponents of automation assume that despite current shortcomings, finding the

optimal redistricting plan simply requires the development of faster computers. In

Sections 5.3 and 5.4, I show that this assumption is false — in general, redistricting is a

far more difficult mathematical problem than has been yet recognized. In fact, the

redistricting problem is so computationally difficult that it is unlikely that any mere

increase in the speed of computers will enable us to solve it.

Even if these complexities are overcome, automated redistricting faces a serious

limitation: To use automated redistricting we must write out a function that meaningfully

captures the social worth of districts, and that at the same time can be put into terms rigid

enough for computer processing. In Section 5.5, I argue that if we do this we will have to

ignore values that are based upon subtle patterns of community and representation, which

cannot be captured mechanically.

5.2. Current Research on Automated Redistricting

Although the literature on automated redistricting is at least thirty-five years old, it

has seen a recent resurgence. This research generally falls into two categories: The first

category addresses the merits of automated redistricting per se, and the second category
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suggests methods we can use to create districts automatically.150 In this section I briefly

summarize the previous research in each of these two categories.

5.2.1. Arguments for Automating the Redistricting Process

In one of the earliest papers on this subject, Vickrey proposed that districting be

automated, and that this automation process be based upon two specific values:

population equality and geographical compactness. Under his proposal political actors

would be permitted to specify or add criteria to a goal function for redistricting, but they

would not be permitted to submit specific redistricting plans. Then plans would be

created automatically, with no further human input, from census blocks, to meet the goal

                                               

150 There is, as well, a third category of literature which indirectly touches on

automated redistricting. Authors in this third category typically suggest a particular

criteria for drawing optimal districts— much of the literature on geographical

compactness falls into this category.

In particular, several authors have argued that gerrymandering can be eliminated by

drawing districts which are maximally compact (Harris 1964; Kaiser 1966; Polsby and

Popper 1991; Stern 1974; Wells 1982). (Also see Young (1988) Niemi et al. (1991) for a

survey of other compactness measures.) While these authors focus primarily on the

criteria for evaluating districts, their core argument is the same as that examined above —

i.e., that redistricting can be performed best by automatically optimizing a pre-specified

representation function.
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function. At its heart, automated redistricting is an attempt to push all decision making to

the beginning of the redistricting process.

Vickrey (1961) asserted that automated redistricting provides a simple and

straightforward way to eliminate gerrymandering. More recently, Browdy (1990a)

followed and extended Vickrey’s arguments, and created what seems to be the best case

for automated redistricting. Five main arguments are offered in the literature, and these

can be easily summarized:

Argument 1. Automated redistricting, in and of itself, creates a neutral and unbiased

district map (Forrest 1964; Harris 1964; Kaiser 1966).

Argument 2. Automated redistricting prevents manipulation by denying political actors

the opportunity to choose district plans, while simultaneously producing districts that meet

specified social goals (Browdy 1990a; Stern 1974; Torricelli and Porter 1979; Vickrey

1961; Wells 1982).151

Argument 3. Automated redistricting promotes fair outcomes by forcing political debate

to be over the general goals of redistricting, and not over particular plans, where selfish

interests are most likely to be manifest  (Vickrey 1961).152

                                               

151 Compactness advocates make a similar argument.

152 In the compactness literature quoted above, it is argued that the compactness

criteria themselves make the automated process fair.
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Argument 4. Automated procedures provide a recognizably fair process of meeting any

representational goals that are chosen by the political process153 (Browdy 1990a; Vickrey

1961). Browdy also argues that such procedural fairness will help to curtail legal

challenges to district plans.

Argument 5. Automated redistricting eases judicial and public review because the goals

and methods of the districting process are open to view; and because automation process

creates a clear separation between the intent and effect of redistricting (Browdy 1990a;

Issacharoff 1993) .

5.2.2. Criticisms of Automated Redistricting

Automated redistricting has been criticized as well as praised. Previous authors have

raised two central objections to automated redistricting.154 The first argument against

                                               

153 Polsby and Popper (1991) argues similarly that a mechanistic application of formal

compactness standards is inherently fair.

154 There are also a number of papers arguing against particular formal measurements,

rather than against automated redistricting. Specifically, compactness standards have been

subjected to intense scrutiny. For an introduction to some of the issues surrounding the

use of these standards, see Lijphart 1989, Lowenstein and Steinberg 1985, Mayhew 1970

and Chapter 3 in Cain 1984. As most of these arguments are directed against the use of

particular geographical criteria and not against automated redistricting in general, I have

not included these papers in the preceding summary.
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automatic redistricting was originally expressed by Appel (1965). He protested that

automated redistricting should not be viewed as inherently objective. He argues that

redistricting standards and processes embody political values and that automation of this

process hides the fundamental conflict over values. Dixon (1968) as well, pointed out

that automated processes, even if based on nonpolitical criteria, may have politically

significant results. More recently, Anderson and Dahlstrom  (1990) cautioned that

political consequences of redistricting goals makes redistricting, whether it is automated

or not, inescapably political.

I believe this objection to be both correct and unavoidable. Automation is a process

for obtaining a given set of redistricting goals. Neutrality, however, is a function of three

factors, the process selected, the goals themselves, and the effects of seeking to obtain

those goals in a particular set of demographic and political circumstances. There is no

general consensus over what “objectively neutral” goals are, or whether they exist155 at

all; therefore, no amount of automation can make the redistricting process “objectively

neutral.”

                                               

155 Much doubt has been expressed as to whether such goals exist. Furthermore, the

fundamental conflicts between some of the more commonly proposed goals make such a

consensus unlikely. For a discussion of the most commonly proposed goals and some the

conflicts between these, see (Cain 1984; Dixon 1968; Grofman 1985; Lijphart 1989).
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This objection, however, only applies to the first, and most extreme, claim for

automated redistricting. Many proponents of automated redistricting do not make this

type of extreme claim, and instead explicitly acknowledge the political nature of

redistricting goals. They propose that the automated process be used to neutrally and

effectively meet goals generated previously by a political process (Browdy 1990a;

Issacharoff 1993; Vickrey 1961). This proposal seems to meet at least the first objection

above.156

 Anderson, echoing Dixon (Dixon 1968), made a second argument against

automated redistricting by drawing attention to the legislative process used to select

automatically generated plans. He argues that the legislature’s willingness to accept the

plans that are generated by an automated process will be politically motivated —

reintroducing political bias into the process (Anderson and Dahlstrom 1990).

While I believe Anderson to be correct, this specific objection does not seem to me

to be strong. If we mandate that the legislature must accept the results of the automatic

process, we can prevent this particular attempt to reintroduce bias into the system. In

general, however, I believe that researchers have largely underestimated the potential for

political biases to become part of the automation process.

                                               

156 And, indeed, Dixon, who argues against the neutrality of automated redistricting,

freely acknowledges its usefulness for this type of situation (Dixon 1968).
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5.2.3. The Core Argument — Automation as a “Veil of Ignorance”

In the arguments for automated redistricting, automation essentially plays the role of

a Rawlsian (Rawls 1971) “veil of ignorance” which creates fairness by hiding each

actor’s position in the final outcome. Like the Rawlsian version, the “veil of automation”

attempts to hide the final outcome (i.e., redistricting plans) from those bargaining over

the social contract (i.e., redistricting goals and procedures). Like the more general veil of

ignorance, the automation process claims to prevent manipulation by promoting a

recognizably fair method that will, on average, promote fair outcomes.

Vickrey, in one of the first arguments for automated redistricting, particularly

emphasized that in order for the automated process to be successful at promoting

fairness, it must be sufficiently unpredictable157 — it should not be possible for political

actors to deduce the results of the redistricting goals over which they bargain (Vickrey

1961). This property is essential, for if it does not obtain, then the choice of objective

functions collapses into a choice of individual plans, and the incentive to gerrymander

                                               

157 Here I use the term “unpredictable” where Vickrey originally used “random.”

Vickrey’s concern was that it should not be obvious to the political actors what exact

results derive from a particular value function. Enough randomness in the process would

certainly ensure this concern is met, but the process need not be random to do this. For

example, if the process is sufficiently chaotic, it is not random, but it may still be, for all

intents and purposes, unpredictable — satisfying Vickrey’s central concern.
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remains unameliorated by the automation process. If we can predict the plans that will

result from our values, we can pierce the veil of automation.

While proponents of automated redistricting have recognized this need for

unpredictability, they have not mentioned the danger from unpredictable results. An

automated process for creating districts in accordance with agreed upon values must

predictably achieve (or at least approach) the goals that were agreed upon in the

bargaining stage, or lose legitimacy.

The automated redistricting process must maintain a delicate balance. To prevent

manipulation while maintaining fairness, the automated process must predictably

implement the redistricting goals that we have agreed upon in the bargaining process; but

it must be unpredictable in every other dimension that is of interest to the bargaining

agents. These are difficult requirements to satisfy when the bargaining agents are

individuals who narrowly seek specific, hand-tailored gerrymanders. They become even

more difficult to meet when bargaining agents represent interest groups or political

parties unconcerned with particular incumbents, because such agents are interested in far

more general properties of redistricting plans. Can automated redistricting methods

reliably produce plans that exclusively embody any specific set of redistricting goals?

5.2.4. Why Current Methods Are Inadequate for Automated Redistricting

Initially, many researchers expressed optimism about the ease of achieving

redistricting goals through automation (Nagel 1965; Torricelli and Porter 1979; Vickrey

1961; Weaver and Hess 1963). Vickrey best captures this initial hopefulness:
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“In summary, elimination of gerrymandering would seem to require

the establishment of an automatic and impersonal procedure for

carrying out redistricting. It appears to be not all difficult to devise

rules for doing this which will produce results not markedly inferior to

those which would be arrived at by a genuinely disinterested

commission.” - William Vickrey (Vickrey 1961)

While optimism has now dulled somewhat, because it has been recognized that

purely automated redistricting techniques remain generally unsatisfactory (Backstrom

1982), many authors still assume that automation of the redistricting process is within

reach (Anderson and Dahlstrom 1990; Browdy 1990b; Polsby and Popper 1991).

In his original paper, Vickrey sketched a method for performing automated

redistricting, but did not give develop a precise implementation of this method. Much of

the following work assumed the benefits of automated redistricting and focused primarily

on providing criteria and methods to use in such automation. Liittschwager (1973)

applied Vickrey’s method to the Iowa redistricting process. Similarly Weaver and Hess

(1963), and Nagel (1965) developed methods and/or measures for drawing districts in

accordance with principles of population equality and geographical compactness.158 More

                                               

158 See also Chapter 6 in Gudgin and Taylor 1979 (Gudgin and Taylor 1979), and

Papayanopoulos (1973) for a review of early attempts at automated redistricting.
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recently, Browdy (1990b) proposed that the method of simulated annealing may be

generally applicable to the problem of drawing optimal districts.

Many different methods have been used or suggested for finding optimal districts.

We can put these techniques into two broad categories: exact methods and heuristic

methods. In the remainder of this section, I review the methods used to search for

optimal districts. Although useful for assisting humans, current methods cannot satisfy

the goals of automated redistricting.

Limitations of Exact Methods

Exact methods systematically examine all legal districts, either explicitly or

implicitly. Explicit enumeration, or “brute force” search methods literally evaluate every

district. More sophisticated methods such as implicit-enumeration, branch-and-bound, or

branch-and-cut techniques exclude classes of solutions that can be inferred to be sub-

optimal without an explicit examination. Finding the optimal districts in this case is then

merely a matter of sorting the list of district scores. These methods have been used by

several authors to approach very small redistricting problems (Garfinkel and Nemhauser

1970; Gudgin and Taylor 1979, Chapter 6; Papayanopoulos 1973; Shepherd and Jenkins

1970).159

                                               

159 A close examination of these algorithms reveals that in order to make enumeration

complete in a feasible amount of time, “short-cuts” are used where some sub-classes of

partitions are assumed to be unreasonable, and are disregarded without examination and



Is Automation the Answer? – The Computational Complexity of Automated Redistricting 232

Exact methods have two major shortcomings: First, no exact method has been

developed that will solve redistricting problems for a reasonably sized plan; and as I will

show in Section 4, the mathematical structure of the redistricting problem makes it

unlikely that exact methods will be developed in the future that will be able to solve

reasonably sized plans. Second, even if we find an exact method that works for real

plans, then anyone could use that method to determine the precise plan corresponding to

a particular set of redistricting goals; thus, exact methods would have completely

predictable results, violating our requirements for an automated redistricting method.

Limitations of Heuristic Methods.

Heuristic procedures use a variety of methods to structure the search for high-valued

redistricting plans. None of the heuristic algorithms guarantees convergence to the

optimal district plan in a finite amount of time. At best, they are good guesses.

All of the general redistricting heuristics cited in the literature are based upon

making iterative improvements160 to a proposed redistricting plan. The single most

                                                                                                                                           

without proof of sub-optimality. Restrictions such as “exclusion distance” in Garfinkel and

Nemhauser (1970) or limiting examination to “amalgamations” in Shepherd and Jenkins

(1970) must be formally classified as heuristic rather than exhaustive.

160 In the field of computer science, heuristic algorithms are divided into two

categories: iterative improvement, as above, and divide-and-conquer methods. These two
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popular method seems to be hill climbing and its variants, although a few researchers add

more sophisticated features of neighborhood search techniques:161

• Hill climbing methods work by making small improvements on a potential solution until

a local optimum is reached. Hill climbing often starts with the current district plan or with

a randomly generated plan, and it makes improvements through repeatedly trading162

census blocks between districts (Moshman and Kokiko 1973; Nagel 1965). Another

variant of this method selects arbitrary census tracts to form the nuclei of each district, and

then repeatedly adds tracts that most improve163 the current district until each district is

                                                                                                                                           

general broad categories include variants such as: simulated annealing and genetic

algorithms, which will be described in Section 5.4.

161 In addition to general redistricting methods, there are a number of special purpose

methods of note: Tobler develops an iterative graphical remapping process to generate

districts of equal population (Tobler 1973). This process gradually distorts geographical

maps to create new maps where population is equivalent to area, facilitating the creation

of districts with equal population.

162 Usually, improvements are made sequentially for each district, but if the number of

census tracts is small, several trades may be examined simultaneously.

163 Often this is simply the tract that is closest to the selected district center (in

whatever metric used). The Weaver and Hess algorithm uses linear-programming

techniques to select population units to add to the district center.
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fully populated (Bodin 1973; Liittschwager 1973; Rose Institute of State and Local

Government 1980; Taylor 1973; Vickrey 1961; Weaver and Hess 1963).

• Neighborhood search methods are all similar in that they seek to improve potential

solutions by examining the value of “nearby” solutions; in this they are similar to hill

climbing. Unlike hill climbing algorithms, sophisticated techniques in this class use various

techniques to attempt to avoid becoming stuck at local optima. Browdy (1990b) suggests

the use of simulated annealing,164 a member of this class of methods.

The main difficulty with all heuristics is that they are, at heart, informed guessing

procedures. This is not necessarily bad — when you are faced with a difficult problem,

you may be able to find an adequate solution cheaply much of the time by guessing. If

we use guessing procedures to decide political questions, however, we must show that

our guesses are unbiased and likely to produce good solutions. No researcher in this field

has been able to show, either theoretically or empirically, that the districts produced by

their methods are near optimal, or that they are unbiased. On the contrary, many heuristic

methods produced results that are clearly sub-optimal (Bodin 1973), or depend strongly

                                               

164 This and other neighborhood search algorithms will be discussed in more detail in

Section 4.
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on starting conditions (Browdy 1990b; Nagel 1965; Weaver 1970; Weaver and Hess

1963).165

Are the inadequacies of current automated redistricting techniques merely

temporary? Will improvements in software design and increasingly powerful computers

make automated redistricting easy? In the next section, I will show that automated

redistricting has been unsuccessful not only because of current techniques but because of

inherent complexities in the structure of the redistricting problem. Furthermore, I will

show that these complexities are unlikely be overcome simply through the use of faster

hardware or more clever software.

5.3. Automated Redistricting May be Intractable

To find “optimal” redistricting plans, as the advocates of automated redistricting

suggest, we must first formulate the redistricting problem mathematical terms and then

solve this mathematical problem. In this section, I will show that, regardless of the

formulation, the redistricting problem is formally computationally intractable — it is

practically impossible to solve exactly.

                                               

165 Note that Browdy’s proposal for using simulated annealing has yet to be

implemented. I will discuss this suggestion in detail in Section 5.4.
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5.3.1. Redistricting is a Large Mathematical Problem

We can mathematically characterize the redistricting problem in a number of

different ways. One simple way to mathematize redistricting is to think of it as a set

partitioning problem. I will use this particular characterization extensively in this

chapter. While there are other characterizations that we could use, such as graph

partition, polygonal dissection and integer programming (See the appendix to this

chapter.), the results in this section are not dependent on the characterization we choose,

since these characterizations are computationally equivalent. (See Section 5.4.)

In particular, we will characterize redistricting as a combinatorial optimization

problem:166 Imagine that census blocks are indivisible,167 and that you have complete

information about voting and demographic information for every census block in your

                                               

166 This in itself is not original to this chapter. Redistricting has been implicitly

characterized as a combinatorial optimization problem from Vickrey (1961) onward. See

Gudgin and Taylor (1979) and Papayanoupoulos (1973) or previous explicit

characterizations of this problem.

167 Population units are assumed to reflect the most accurate and detailed information

practically and/or legally available, unless otherwise specified. For most of this chapter,

population units can be read as “census blocks” without too much loss of generality.
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state. The redistricting problem is to partition168 the entire set of units into districts such

that a value function is maximized.169 This partitioning problem may be complicated by

the addition of a set of constraints on districts. These constraints, such as contiguity, may

limit the set of legal plans.170

                                               

168 A partition divides a set into component groups which are exhaustive and

exclusive. More formally:

For any set x = x1, x2 ,. ..,xn{ },  a partition is defined as

a set of sets Y = {y1, y2 ,. ..,y
k
} s.t.

(1) ∀xi ∈x,  ∃y j ∈Y,s.t.  xi  ∈y j

(2) ∀i ,∀j ≠ i ,y j ∩ yi = ∅

169 More formally:

Given:

• a set of census blocks x

•  the set of all partitions of  x,  Y

• a value function on partitions, V(y)

The optimal district plan is

D* = max
y∈Y

V(y)( )

170 These can be represented as formal constraints on membership in the set of

allowable partitions in note 17 above, or may for some approximations, simply be

incorporated in the value function to be optimized.
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The redistricting problem poses special difficulties because the size of the solution

set can be enormous. In general, it will be impossible to attack the problem by a brute

force search through all possible districting arrangements.

 Formally, the total number of distinct171 plans that can be created using n population

blocks to draw r districts is characterized by the function:172

S n,r( ) =
1
r !

−1( )i r !

(r − i)! i !

 
 
 

 
 
 r − i( )n

i = 0

r

∑

Even under the assumption that each district is composed of exactly k population blocks173

(hence, 
k

nr = ) the number of possible plans is still a rapidly growing function:

′ S n,r ,k( )=
n!

k! r !( )k .

The magnitude of this problem is often not fully recognized. For even a small

number of census tracts and districts, the number of possible districting arrangements

                                               

171 This number reflects districts that are distinct, ignoring the numbering order of

districts. Merely renumbering the districts without changing the composition of at least

one district does not result in a different plan.

172 S is known as a “Stirling Number of the Second Kind.” See Even (1973) for a

good introduction.

173 Which is not correct, but closer to the real situation than the formula above.
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becomes enormous. As an example of this, Table 5-1 lists the number of possible plans

that could be used to divide a small hypothetical state into two districts:
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Type of Population Block Total Number of Blocks Blocks per District Number of Plans
counties 10 5 945
census tracts 50 25 5.8 *1031

census blocks 250 125 4 *10245

Table 5-1. Number of plans available to divide a hypothetical area into two

districts, by type of population block.

As Table 5-1 shows, the size of the redistricting problem grows rapidly as a function

of the number of population units being used. In fact, this table understates the size of the

problem, because it assumes all districts have an identical numbers of blocks.

The number of districts, r, is also an important factor in determining how many

plans are possible. The number of plans possible will increase in r up to a point, and then

decrease, as Table 5-2 shows:

Table 5-2. Number of Plans possible when dividing 24 population blocks

evenly into N districts.

Number of Districts Blocks per District Number of Plans
1 24 1
2 12 3.2 * 1011

3 8 9.2 * 1012

4 6 4.5 * 1012

6 4 9.6 * 1010

8 3 1.6 * 109

12 2 1.3 * 106

24 1 1
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An exhaustive search to find the optimal plan will be impractical for all but the

coarsest population units and extreme number of districts per census block. Only by

using a large population unit, such as a county, for our “indivisible” units, can we make

exhaustive search manageable. Unfortunately, using such coarse granularity is likely to

substantially decrease the quality of our solutions. Furthermore, use of such coarse

population divisions is unlikely to lead to solutions where even rough population equality

is maintained between districts. If we want to draw districts using accurate, fine-grained

population units, such as census tracts or blocks, the number of plans involved makes

exhaustive searches unmanageable.174

Several proponents of automated redistricting, when faced with a prohibitive number

of possible plans, suggest that other, nonexhaustive procedures be used to generate

districts (Nagel 1972; Papayanopoulos 1973). Certainly, exhaustive search is not

necessarily the only method guaranteed to find optimal districts. However, in the

remainder this section, we will show that any method for finding optimal districts is

likely to be computationally hard, and thus impractical for all but the “smallest”

redistricting problems.

                                               

174 For a state such as California, where 100,000 census blocks must be assigned to

50 districts, if started at the creation of the universe, a computer that could examine a

million districts a second would still not be finished.
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5.3.2. Candidate Value Functions

The difficulty of solving the redistricting problem will depend upon the particular

value function and constraints we use. In the next section, I summarize the most common

candidates for value functions before analyzing the difficulty of the redistricting problem

for each one.

While there are practically no political values that are not subject to debate, a

number of criteria are commonly thought to be good candidates for redistricting goals.

Grofman and Lijphart summarize these, and I list the five most common types below

(Grofman 1985; Lijphart 1989):

1. Population equality between districts is believed by many scholars to be necessary for

political fairness.

2. Contiguity has received much attention in combination with compactness.

3. Compactness, which attempts to capture the geographic regularity of districts also

appears in many state constitutions. Compactness has been defined in many different ways.

(See Niemi et al. (1991), for a survey of these.)

4. Creating fair electoral contests is another criteria that is sometimes found in state

constitutions. Of course, there are many possible definitions of a “fair contest”: including

maximal competitiveness (maximizing the number of close elections),175 neutrality (which

                                               

175 Here I group together a number of different types of criteria including: “electoral
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specifies that the electoral system should not be biased in favor of any political party in

awarding seats for a certain percentage of the vote), and the goal of a constant swing ratio

(seats/votes share) for each party.

5. The last set of common redistricting goals dealing directly might be termed

representational goals, as they are difficult to formulate without referring to a concept of

representation. These include protection of communities of interest and nondilution of

minority representation.

As well as being theoretically and philosophically important, these values often carry

the weight of law (Grofman 1985): The U.S. Supreme Court has found the constitution

to require de minimis population deviations between Congressional districts and only

somewhat larger deviations between state legislative or local government districts.

Furthermore, 37 states require districts to be contiguous, 24 states require compactness176

and 2 states require what might be loosely interpreted as an electoral response

function.177 Representational goals also have some legal force: Protection of communities

                                                                                                                                           

responsiveness,” “neutrality,” “competitiveness,” and “constant swing ratio,” which are

often addressed separately in the literature.

176 Only three states formally define “compactness.”

177 These are vaguely defined in the constitutions of these states as directives to “not

unduly favor any person or political party (faction ).”
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of interest is required in five states, and nondilution of minority interests is required

under the Voting Rights Act.

Despite the relative popularity of the four types of goals above, there is no political

or academic consensus over them. Nor can formalization or automation somehow make

the goals “objective” — the political consequences of redistricting goals will still exist.

Although many have recognized this before, it cannot be emphasized too strongly that at

best, automation can neutrally implement these goals, once they have been decided upon

by a political process.178

5.3.3. What is a Computationally Hard Problem?

In this section I will show that for any of the aforementioned value functions (or

combinations of them), the problem of finding an optimal districting plan is

computationally complex - any attempt will probably be thwarted by the size and

complexity of the redistricting problem. To prove this result I will have to introduce

some formal definitions from computational complexity theory.179

                                               

178 In this point I agree with two of the main proponents of automated redistricting

(Browdy 1990a; Issacharoff 1993).

179 In order to present the next set of results, it is necessary to define a number of

terms and ideas referring to problems, solution methods, and solution complexity. The

length of this chapter necessitates that this section be limited to what is essential for
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Computational complexity (or “structural complexity”) theory and the related field

of computability theory are two branches of theoretical computer science. These

disciplines are devoted to analyzing the difficulty of solving specified discrete problems

using computers.180

Researchers in computer science and in operations research use computational

complexity theory extensively when they analyze problems. While this type of analysis

has been adopted only recently by political scientists, computational tractability is

becoming recognized as a prerequisite for practical electoral rules181: Kelly (1988a,

1988b) analyzes the complexity of a number of voting rules, and he establishes some

conditions for computable electoral rules (Kelly 1988a; Kelly 1988b). Bartholdi, Tovey

and Trick analyze the complexity of manipulating elections; they argue that while almost

                                                                                                                                           

understanding the result.  For a more lengthy and formal characterization, see

Papadimitriou (1994).

180 For a review of recent developments in this field, see Book (1994).

For problems that are (unlike partitioning) continuous, rather than discrete, the field

of “information-based complexity” also has relevance. For an introduction to this latter

field, see Traub and Wozniakowski (1992).

181 Also see Deng and Papadimitriou (1994) on the complexity of different

cooperative solution concepts that are used in some positive political theory models.
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all electoral rules are theoretically open to manipulation, some rules may be practically

impervious to manipulation because of the complexity of the calculations a manipulator

would have to perform (Bartholdi, Tovey and Trick 1989; Bartholdi, Tovey and Trick

1992).

Basic to computational complexity theory is the definition of a problem. A problem

is a general question to be answered. In the case of redistricting, the problem is to find

the districting plan that maximizes our value function — formally, we must find the

optimal partition.182 I will use the term redistricting sub-problem to distinguish the case

where we have pre-specified a particular value function, such as compactness, rather than

taking the value function itself to be a parameter. Hence, redistricting to maximize (a

particularly formally defined measure of) population equality is a sub-problem. A

problem possesses several parameters, or free variables. For any redistricting sub-

problem, the parameters consist of the population units from which we are to draw the

plan and the vector of values assigned to those population units. An instance of a

problem is created by assigning values to all parameters. Finding the arrangement of

                                               

182 We can characterize redistricting either as a general problem where the value

function itself is a parameter, or as a class of similar partitioning problems, each with a

separate value function. Our choice of characterization does not affect the results found

below.
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Iowa’s 1980 census tracts that maximize population equality would then be an instance

of a redistricting sub-problem.

The second set of terms refers to solutions to the preceding problems. An algorithm

is a general set of instructions, in a formal computer language that, when executed,

solves a specified problem. An algorithm is said to solve a problem if and only if it can

be applied to any instance of that problem and is guaranteed to produce an exact solution

to that instance. To continue the example above, an algorithm would be said to solve the

population-equality redistricting problem only if it were guaranteed to find a population-

equality-maximizing solution for any set of census blocks that we put into it.

The final set of terms refers to properties of problems and their solutions. A problem

is said to be computable if and only if there exists183 an algorithm which solves the

problem.184 For computable problems we define the time-complexity (hereafter

                                               

183 Here I use the term exists in the formal, mathematical sense — we do not

necessarily have to know which algorithm solves a problem to show that such an

algorithm must exist.

184 Turing (1937) (1937) showed that there are problems for which solutions exist

that are not computable in the sense used above. I am not arguing that practical

redistricting criteria are likely to be noncomputable, although this is a theoretical

possibility.
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abbreviated to “complexity”) of an algorithm to be a function that represents the number

of the instructions that algorithm must execute to reach a solution.185 The complexity of

an algorithm is expressed in terms of the size of the problem, roughly equivalent to the

number of input parameters.186 The size of redistricting is simply the number of

population units that are used as input. An algorithm is said to take polynomial time if its

time-complexity function is a polynomial and is said to take exponential time,

otherwise.187

                                               

185This definition assumes a serial (single processor) computation model, but the

results are not altered if we use parallel-processing: The sum of the time needed by a set of

parallel-processors to solve a problem can be no less than the total required in the serial

model.

186 The time complexity of an algorithm is conventionally denoted as O f n( )( ) where

n is the size of the problem. Additive and multiplicative constants are omitted, as these

vary with the computing model used. Thus the number of steps to solve an algorithm of

O n( ) complexity is a linear function of the number of inputs.

187 In addition to analyzing the time required to solve a problem, we can formulate

analogous tractability criteria for the storage space requirements of a problem (or for

practically any other of its resource requirements). It can be shown that problems that

require exponential space will also require exponential time, but not vice-versa.

Fortunately, none of the redistricting sub-problems discussed here needs exponential
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A problem is often said to be computationally tractable if there exists an algorithm

which is of polynomial complexity for all instances and which solves the problem.

Conversely, a problem will be said to be computationally intractable (also

“computationally complex,” or “computationally hard”) if the (provably) optimal

algorithm for solving the problem cannot solve all instances in polynomial time.

Although we have defined complexity in terms of time, we may usefully think of it

as a measure of cost as well. If time is costly, and if there are no exponential economies

of scale associated with time, computationally intractable problems will be prohibitively

expensive, since the cost to solve such problems will also grow at an exponential rate.188

Obviously, the time-costs of a redistricting are unlikely to exhibit exponential economies

of scale. If anything, wasted time will likely exhibit constant or negative economies of

scale: if redistricting takes too long, it will start to disrupt elections seriously.

This characterization of problem difficulty has two main strengths. It is independent

of any particular computer hardware design technology and it classifies the difficulty of

the problems themselves, not of particular methods used to solve these problems.

                                                                                                                                           

space.

188 Alternatively, if we were to use parallel-processors to solve the problem, the

number of computers would grow exponentially (at least)— thus our costs still grow

exponentially.
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 First, results under this characterization are implementation independent. Different

computer languages (and encoding schemes for the parameters) may alter the time

complexity of an algorithm, but no “reasonable”189 language will be convert a

                                               

189 All known, physically constructable, computer architectures are “reasonable” in

this sense, and it is believed that all possible computers based on classical physical

principles preserve this property (Papadimitriou 1994). However, there is some debate

over whether this implementation independence applies to hypothetical computers

designed to utilize unexplored properties of quantum physics. Two authors, in particular,

assert that the above model does not accurately describe all potential problem solving

devices.

Deutsch asserts that under the “many-universes” interpretation of quantum theory,

one could design a device to exploit an infinite number of alternative universes for parallel

calculation (Deutsch 1985). Under this controversial interpretation of quantum theory,

devices may be built which would be able to compute some (but not all) problems in

polynomial time that are computable on all conventional computers only in exponential

time (Deutsch and Jozsa 1992).

Penrose (1989; 1994) makes a somewhat different argument, asserting that currently

unresolved areas of quantum physics may provide fundamentally different ways of solving

problem than is represented by the Turing model. Penrose argument, which is too rich and
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polynomial algorithm to an exponential algorithm. While a more powerful computer may

be able to perform each atomic operation more quickly, it will not alter the time

complexity function of the problem. Intractable problems cannot be made tractable

through improvements in hardware technology.

Second, results under this characterization apply to the problem itself, not to a

particular method used to solve this problem. Problems which are shown to be difficult

under this characterization are difficult for any possible computer method. Since it is the

problem, itself that requires exponential time, these problems cannot be made tractable

through advances in software or algorithmic design.

This characterization is also subject to several important limitations. These

limitations have caused its use as an absolute measure of problem difficulty, especially

for social science problems, to be justly criticized (Page 1994). I will briefly summarize

these limitations here, and in Section 5.5 I will extend the analysis to address the

relevance of these limitations for the redistricting problem.

First, the distinction between tractable and intractable problems is most important

for instances of large size - where the exponential factors in the time requirements of

these problems become dominant. Consider the following two problems. Problem “A” is

                                                                                                                                           

detailed to be adequately summarized here, asserts not only that quantum physics allows

mechanisms for problem solving which are fundamentally different from those used in

today’s computers, but that the human brain actually employs such mechanisms.
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computationally intractable and takes O 1.1n( ) steps to solve. Problem “B” is

computationally tractable and takesO n14( ) steps. Although the time needed to solve

problem A will eventually become much greater than the time required for problem B,

for problem sizes less than one thousand, we can actually solve problem A much more

quickly.

Second, when we use this characterization we require that problems be solved

exactly. Some problems that are computationally difficult to solve may be approximated

much more quickly. If the approximation reached is (provably or empirically) close

enough to the optimal solution to the problem, for practical purposes we may not need to

find the exact best solution.

Third, when we use this characterization we require that our algorithms always reach

a correct solution for every problem instance, requirements that make computational

complexity a function of the worst-case problem instance. Since we base our analysis on

the worst-case, we may overstate the complexity of the problem on average.

Furthermore, since we require that our solution-algorithm neither make errors, nor give

up on a problem, we will drop from our analysis some algorithms that are probabilistic.

While such algorithms do not formally “solve” a computationally hard problem, they

may be quite useful if their rates of error and of failure are sufficiently low.

The three caveats above offer to us possible escape routes around computationally

intractable problems, but these are only possible routes. And as I will show in Section
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5.5, in general the requirements of automated redistricting procedures make these

avenues unlikely to be fruitful.

5.3.4. Redistricting is a Computationally Hard Problem

In the previous sections, I showed how redistricting is deeply connected to

mathematical partitioning problems. Many researchers in computer science have

examined partition problems and reached some conclusions about their computational

complexity. In this section, I show that the redistricting problem in general, and even

many simpler redistricting sub-problems are likely to be intractable.

Proving that a problem is intractable is difficult — researchers have been unable to

determine whether most problems are tractable (Papadimitriou 1994). There are,

however, a number of large classes of problems that computer scientists believe to be

intractable. The oldest of these is called the class of NP-complete problems.

Cook defined the first NP-complete problem (Cook 1971), which has now been

shown to belong to a large set, consisting of hundreds of problems in many fields. Karp

characterized the most important property of NP-complete problems (Karp 1972):

polynomial-time reducibility. Any NP-complete problem can be transformed into any

other NP-complete problem in polynomial time.190 Thus, if you could prove that any NP-

                                               

190 Polynomial reductions are defined so as to preserve space complexity

characteristics as well. Furthermore, there is an even deeper equivalence between all
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complete problem is formally intractable, you would have proved all such problems

intractable, and vice-versa.

Search for a proof of the intractability of NP-complete problems has been of the

most famous open problems in computer science for over two decades. While no proof of

intractability has been found, no polynomial algorithms have ever been found that solve

any of these problems, and because of the breadth of the class of problems, it is widely

believed that no such algorithms exist.

The class of NP-complete problems is not the only class that is believed to be

intractable — there are many other classes of problems that are equivalent to each other

but not to problems in the NP-complete class. For our purposes, however, we need

consider only the NP-complete class and the related class of NP-hard problems: The NP-

hard class is a superset containing the NP-complete class; this class is potentially harder

to solve than NP-complete problems because although if any NP-complete problem is

intractable, then all NP-hard problems are intractable, the reverse is not true.191 The

diagram below illustrates the probable relationship between the NP-complete, NP-hard

and tractable classes of problems. (Figure 5-1)

                                                                                                                                           

known NP-complete problems — each problem can be transformed to any other by a

simple functional mapping (technically a “bijection”).

191 Any NP-Hard problem can be shown to be NP-complete for at least some

instances, but not necessarily for all instances.
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Non-Computable

Tractable

NP-
Complete

Computable

Figure 5-1. A diagram showing NP-Complete and Related Complexity

Classes

In the appendix to this chapter, I show formally how the most common redistricting

sub-problems, such as finding the optimal set of compact districts, are NP-complete or

NP-hard.192 Table 5-3 summarizes these formal results; for each sub-problem I give a

short example of its formal characterization, and a reference to the corresponding

problem in complexity theory.

                                               

192 This finding contradicts Garfinkels’s and Nemhauser’s (1970) (Garfinkel and

Nemhauser 1970) prediction that the time required for their integer programming

technique should be expected to be approximately linear in population units.
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Redistricting Sub-Problem Example Characterization Reference Problems
Equal population districts set partition: divide members of set into

subsets minimizing value function
• population unit: represented by an
integer-valued set member
• district: each subset in partition is a
district
•  value function: the largest difference in
population between any two districts

Weighted Set Partition
(Karp 1972)
3-Partition
(Garey and Johnson 1983)
Weak Partition
(Johnson 1982)
Integer Programming
(Garey and Johnson 1983)

Compact districts set partition: as above
• population unit: represented by a vector
valued set member
• district: as above
• value function:
(a) maximum distance between points in a
district
(b) total perimeter of districts

Distance-d Partition of
Points in the Plane
(Johnson 1982)
Minimum Perimeter
Partition into Rectangles
(Johnson 1982)

Competitive districts set partition: as above
• population unit: represented by a
weighted set member. Weight is
Republican registration - Democratic
registration in each districts.
• district: as above, district weight = sum
of weights of the population units it
contains
• value function:
minimize sum of squared district weight

Minimum Sum of Squares
(Garey and Johnson 1983)

Contiguous districts
(with population equality)

graph partition: divide nodes of a graph
into connected subsets minimizing value
function
• population unit: represented by a node of
the graph
• contiguity relationship: population units
contiguous to each other are connected by
edges in graph
• district: as above
• value function: the largest difference in
population between any two districts

Cut into Connected
Components of Bounded
Size
(Johnson 1982; Johnson
1984)

Table 5-3. Redistricting Problems that are at least NP-Complete

While I refer to a number of particular characterizations in Table 5-3, it is important

to realize that none of my results in this chapter is dependent on the use of a particular
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characterization.193 Since all of these characterizations are in the set of NP-complete

problems, they are all formally equivalent — any algorithm that solves one problem can

be simply reformulated to solve any other without a change in complexity class. The

advantage of multiple characterizations is that each characterization may suggest various

limitations that can be put on the problem that may make the problem easier to solve or

approximate. (See Section 5.4 below.)

While I have focused on sub-problems, you should note, as well, that these

complexity results apply to the general redistricting problem. Since complexity results

describe worst case properties, my results demonstrate that the redistricting problem, in

its most general form, is at least as difficult as any NP-complete problem.194 A further

                                               

193 Reformulating the redistricting problem in other ways, can be useful if it suggest

natural restriction that can be put on the problem in order to simplify it. Restrictions that

re natural in one context, such as planarity or graphs in the graph-partitioning problem,

may not be obvious when the problem is formulated as an integer partition problem.

194 Each of the redistricting sub-problems above is an instance of the redistricting

problem. If some instances of the sub-problems require exponential time, then the general

problem as well must also require this amount of time. Hence, the redistricting problem

has a time complexity at least as large as its sub-problems. We have not shown that these

sub-problems represent worst cases of the redistricting problem, however, so it is possible

that some instances of the general redistricting problem may be worse than NP-complete,
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implication of these results is that finding an optimal district under any combination of

these “hard” goals is also hard. In sum, we should not expect automated optimal

redistricting to be tractable for an arbitrary choice of population units, number of

districts, and an arbitrary value function.195

                                                                                                                                           

or even unsolvable.

195 When making the claim that automated redistricting is formally intractable, it is

sometime objected that this claim cannot be true because political actors are able to

gerrymander so well. If political actors can gerrymander optimally, the argument guess,

then so should computers. I believe this objection is based on three false assumptions:.

• Claim one: Humans already perform (near) optimal gerrymandering. There is little

evidence for this claim; in fact, there is much evidence to the contrary, and many examples

of attempted gerrymanders that have had far from the intended results.

• Claim two: Automated redistricting is no more difficult than gerrymandering.

Again, the available evidence seems to point toward the opposite conclusion. Automated

redistricting is significantly more complicated than gerrymandering in three important

respects. Gerrymandering usually involves the maximization of one simple goal. Optimal

redistricting may involve many simultaneous, complicated, and conflicting goals.

Gerrymandering is often limited to relatively small modifications of an existing plan.

Automated redistricting processes must examine a much wider range of possible plans.

Finally, gerrymanders need not be optimal to be politically effective. The social value
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It is also important to note that the redistricting goals I have listed in Table 3 are

common, straightforward, and relatively simple. For example, of all the redistricting

goals specified in the literature, population equality is probably the most straightforward

to quantify, and the easiest to evaluate.196 Yet even the task of drawing a district plan to

minimize population deviation alone is computationally hard.

                                                                                                                                           

function being optimized by an automated process may be much more sensitive to

suboptimality.

• Claim three: If human’s can perform a (mathematical) task well, computers can (at

least theoretically) perform the same task as well. The lack of success in the field of

artificial intelligence is evidence to the contrary. See Dreyfus 1992 (Dreyfus 1992) for a

review of the successes and failures in this field, and a more detailed argument against

claim three. Even advocates of artificial intelligence recognize that such tasks as

recognizing human social and political relationships, and applying “common sense,” are

among the hardest problems for computers.  (See Chapter 3 of  Taylor 1989.)

196 Even this goal can be defined in a number of ways, depending on how you wish to

measure the inequality between two districts. For instance, we might focus on the

maximum differences between the largest and smallest districts, or their ratios, or their

average differences, etc.
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Still, this does not demonstrate that the redistricting problem is hopeless. Section 5.5

explores the avenues available for managing intractable problems and the promise of

these avenues for redistricting.

5.4. Attempts to Escape the Intractability of Automated Redistricting

In Section 5.4 of this chapter I demonstrate that the redistricting problem is NP-

complete, and we briefly reviewed several caveats to our definition of intractability. Do

these caveats allow automated redistricting to escape intractability?

Recall the definition of “ tractability” : A problem is tractable only if a polynomial-

time algorithm exists which is guaranteed to exactly solve all instances of this problem.

Are we being overly demanding? If we demand somewhat less of our solution

algorithms, can we find practical solutions to automated redistricting problems?

NP-completeness is a limited form of intractability,197 and there are a number of

possible avenues for dealing with these types of problems. In Section 5.4 we did not

                                               

197 NP-complete problems certainly do not encompass all intractable problems, nor

are they the “worst” class of intractable problems. The intractability of NP-complete

problems takes a limited form.

A problem may be intractable for a number of different reasons. I list three here, in

order to illustrate several levels of problem difficulty. First it may be that the solution itself
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demonstrate that all possible redistricting sub-problems are intractable: If we restrict our

redistricting values sufficiently, we can certainly find a tractable way of finding optimal

                                                                                                                                           

is unmanageably large or otherwise unmanageable. Second, it may be that the solution in

itself is manageable, but is difficult to both to solve and verify. Third, in the least difficult

case, only finding the solution is difficult — once found it can be easily verified and put to

use.

An example of a problem of the first type, where the solution itself is unmanageable

is: “enumerate the set of all possible district plans.” Simply printing this solution for this

type of problem is untenable for all but the most minuscule instances. This type of problem

is provably intractable. Fortunately, problems of this type are in some ways uninteresting,

in that, even should a solution for the problem eventually be obtained, one would be

unlikely to be able to make use of it.

Problems of the second type are esoteric and too awkward to describe here — see

Bellare and Goldwasser (1994) for a description.

NP-complete problems fall into the third category. An example of a problem in the

third type is: “Does there exist a district plan where the maximum population difference

between districts is less that B, and if so, specify that plan?” For this problem, as long as

computation of the value function f is tractable, finding a satisfactory plan may be difficult

— but given a satisfactory plan, it is easy to verify that the value of the plan exceeds B.
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districts under them. Similarly, if we restrict the set of inputs to our problem enough, we

may find it quite tractable.

Furthermore, we did not in eliminate all practical approaches to general redistricting

problems. If the problem cannot be made tractable through restricting our values or data,

we might be able to find a probabilistic method that solves the problem most of the time,

or a deterministic algorithm that works well on most cases. Alternatively, we may be able

to find a method that quickly finds an approximately-optimal solution.

We must, however, be cautious; although these escape routes are open in theory,

they pose a number of technical and political difficulties. In the remainder of this section,

I will explore these possible escape routes.

5.4.1. Solving NP-Complete Problems — An Example

While all NP-complete problems are reducible to each other, in a practical sense they

are not all equally hard to solve: Some problems can be easily restricted, answered

probabilistically, or closely approximated.

We can use a simple example to show the practical difference between two formally

intractable problems. For this example, imagine that a rich acquaintance has died and that

you have been asked to be executor of the estate. The rich acquaintance was a collector

of art and antiques, and the estate is made up entirely of unique and valuable items. You

are told that you must divide the estate between its inheritors in such a way that (1) you

give away all the items (you cannot sell them and give away the money), (2) each item

goes to a single inheritor, and (3) you must maximize the subjectively equality of the
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division — the monetary value each person assigns to her own share must be as close as

possible to the value another person assigns to his own share.

Formally this is an NP-complete problem,198 but if all inheritors share common

values for each object (perhaps they are all antique dealers who know current market

prices), this problem is not very “hard” for many practical cases: If there are only two

inheritors, and no item is “priceless,” we can find the optimal solution in polynomial

time using dynamic programming (Garey and Johnson 1983). On the other hand, if there

are more inheritors, but all the objects are of approximately equal value, we can easily

minimize the inequality between shares.199

 Now suppose that each inheritor has differing private values200 for sets of objects; it

is especially difficult when the relevant sets differ for each inheritor as well. (For

                                               

198 It is an example of the weighted set partition problem (Garey and Johnson 1983).

199 Even if the antiques differ greatly in value, we may be able to get relatively close

to an even division. While I can find no approximability results for this partition problem,

the following algorithm is quite successful for bin packing, a similar problem: Simply order

all the objects from least to most valuable, then assign each object in this list to each

inheritor in turn, until the list is exhausted (Garey and Johnson 1983).

200 Here I disregard the additional difficult of eliciting the inheritor’s private values for

each set of items — the problem is difficult even if you are completely informed about
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example, aunt Martha attaches great sentimental value to the sofa and end-table

combination, whereas uncle Henry hates the end-table but has always coveted the sofa

and matching wall-hanging.) If you have a lot of antiques to distribute, although the

problem remains much the same in structure to our first problem, it has become much

more difficult to deal with practically.

5.4.2. Problem Size and Computational Complexity

Even problems which are computationally hard may be solved easily for sufficiently

small cases. Are the sizes of the redistricting problem which are typically encountered

small enough that intractability is not a practical issue?

Unfortunately, the answer to this question is probably no. As Section 3 shows, the

number of possible solutions to a problem grows both as a function of the number of

districts being drawn (to a limited extent) and as a function of the number of population

blocks that we use. As the appendix shows, the time necessary to solve redistricting sub-

problems grows exponentially as a factor of both districts and population blocks.

While the number of districts is typically reasonably small, ranging from one to

approximately fifty districts in the United States, the number of population blocks in

practical cases is quite large — ranging from several thousand to approximately one

hundred thousand. Although we can only approximate the time needed to solve these

redistricting problems, the number of solutions that must be searched is large enough that

                                                                                                                                           

each inheritor’s basic private values.
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we can reasonably expect the exponential time-requirements of the algorithm to be

dominant, even if the exponential growth is relatively small.201

5.4.3. Restricting the Redistricting Problem

It is well understood that any problem, when sufficiently generalized, becomes

computationally hard, and conversely, any sufficiently restricted problem becomes

trivial. Because of this common-sense principle, we must consider whether there are any

natural restrictions that we can place on the redistricting problem that would make it

tractable.202

There are three basic types of restrictions that we can place on the redistricting

problem: First, we can restrict the redistricting goals that we will consider. Second, we

can rule out some redistricting plans, such as those containing noncontiguous districts, as

                                               

201 An exponential growth factor as low as 1.001n is likely to make such large

problems intractable.

202 Note that here I use restriction to refer to how we limit the goals and inputs that

we will consider for redistricting problem itself. These restrictions do not necessarily

correspond to constraints on districting that limit electoral manipulation (i.e.,

“gerrymandering”).  For example, restricting the automated redistricting problems to

consider only county-level population data, rather than finer-grained population data,

might actually make electoral manipulation easier.
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illegal — we can throw them out of the analysis. Third, we can restrict the data, or

population units, that we feed into our automated redistricting process.

For purposes of clarity, we will discuss the various types of restrictions separately.

In practice, restrictions of all types are often combined to simplify problems and avoid

computational complexity. But although we can reduce the practical difficulties of

finding a plan by combining multiple restrictions, we cannot use these combinations to

eliminate the political and normative problems we have already encountered.

Restrictions on Value Functions

We may make the computer’s task easier by limiting the number and types of goal

function that it has to optimize. By using such restrictions, we may be able to take

advantage of specially tailored optimization algorithms, or we may be able to eliminate

exponential time requirements for more general optimization algorithms.

While there must exist goal functions that are “easy” to optimize,203 there are two

difficulties with this approach. The first difficulty is a purely practical one — reasonable

candidates for redistricting goals seem to be computationally difficult to optimize. As we

saw in Section 4, even the simplest and most popular value functions are all

                                               

203 For example, a function that assigns the same constant value, although completely

uninteresting, is easy to optimize. Unfortunately, there seem to be no interesting value

functions that are “easy” to optimize on unrestricted inputs.
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computationally hard to optimize. Furthermore, any (simply weighted) combination of

these functions with each other, or with any other function, will also be computationally

hard. In sum, our present goals do not lend themselves to easy computation.

The second difficulty is normative and political. Proponents of automated

redistricting argue that one of the strengths of automation is that it allows goals to be

decided by a political process — automation should only affect the implementation of

goals, not their choice. This separation of goal choice and implementation is violated by

placing restrictions on allowable redistricting goals. Allowing the limitations of a

computerized process to restrict, ex ante, the type of representational goals that society is

allowed to pursue may be normatively and politically unacceptable.

Restrictions on Input

Restrictions on input can also, theoretically, allow us to escape intractability. In this

chapter, as in most automated redistricting research, the basic inputs have been defined in

terms of vector-valued population blocks such as census blocks. We can place restriction

on census blocks directly or indirectly. Restrictions on these population blocks can be

used directly and indirectly for this purpose.

We can use limitations on input directly to reduce the computational complexity of a

problem by eliminating its worst cases — if we can predict what cases create problems

for our redistricting algorithms. For example, if we want to create district plans solely to

minimize population inequalities, we can simplify this problem by restricting all
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population blocks to be equal in size.204 In this restricted case, any of the heuristics listed

in Section 5.2 will quickly find an optimal solution to this problem. While not

completely trivializing the problem, this eliminates the possibility of cases which might

cause the algorithm to take exponential time to complete.

 For more complicated problems, we can use input restricting indirectly, and in

combination with restrictions on redistricting goals, to reduce the number of solutions

that an optimization algorithm needs to consider. Methods such as “branch and bound”

and “ cutting planes methods” use different applications of this general principle (Balas

and Toth 1985; Reinelt 1991). Balas gives a succinct description of these methods:

“Enumerative (branch and bound, implicit enumeration) methods

solve a discrete optimization problem by breaking up its feasible set

into successively smaller subsets, calculating bounds on the objective

                                               

204 A similar alternate strategy for drawing equal population districts is to arbitrarily

split population-blocks in order to make them approximately equal. This method seems to

be one of the most popular in the political arena, where it is not uncommon to find

districts that are based on census blocks or tracts, but which splits these in order to

maintain equality between districts. Since in this chapter “population unit” has been

assumed to reflect the finest grained unit for which census information is available -

splitting population-blocks must be regarded as an approximation method. The limits of

approximations methods are discussed in Section 5.2 below.
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function value over each subset, and using them to discard certain

subsets from further consideration. The bounds are obtained by

replacing the problem over a given subset, with an easier (relaxed)

problem, such that the solution value of the latter bounds that of the

former. The procedure ends when each subset has either been reduced

to a feasible solution, or has been shown to contain no better solution

than the one already in hand. The best solution found during he

procedure is a global optimum.”

These methods are usually very sensitive to our choice of goal functions — we must

know quite a lot about the goal function to derive the “relaxed” problem that we use to

set bounds.205 We must then restrict our input set if we want to guarantee that the branch-

and-bound procedure does not itself take exponential time.

                                               

205 There are many general sorts of “relaxations” that we can apply to redistricting.

For example, if we can formulate our redistricting problem as in integer-linear program,

we might pretend that census blocks are infinitely divisible — converting this into a linear

program that is simple to solve. From the solution to the linear program we might be able

to compute bounds on our linear program. In general, however, choosing a successful

relaxation of a problem requires mathematical intuition and cleverness.
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Although we can make the automated redistricting process easier through

restricting inputs, many useful restrictions may not be practical or possible. To eliminate

the worst case behavior of these programs, we must enforce regularity upon the

population blocks that we use, but many of these characteristics are exogenous. For

example, geographical regularities can help us to draw compact districts. If your state is a

perfect square with people uniformly distributed across it, then drawing equal-sized

compact districts is simple. We might even require that all districts be equal-sized

rectangles. Unfortunately, given the irregular boundaries and irregular distributions of

population in many states, it is impossible to draw such regular districts, and finding the

best set of districts is much harder. In sum, problems may be serendipitously easy, but we

cannot rely on good luck.

Furthermore, we can only rely upon input restriction to eliminate worst-case

behavior when we also carefully restrict our value functions. Restrictions that make the

satisfaction of one goal easier may exacerbate the difficulties involved in satisfying other

goals. There are few restrictions that have been shown to be useful across a variety of

value-functions.206 We may not be able to politically or normatively justify such

restrictions.

                                               

206 There is a notable exception. First, restricting the maximum value (population,

size, etc.) that any one population block can be assigned to can sometimes allow problems

to be solved in polynomial time. NP-complete problems that have been shown easily
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Restrictions on Plans

Instead of trying to restrict goals or data, we might, more reasonably, restrict the

types of districts or plans we will consider. For example, if we only consider districts that

are contiguous rectangles, if our state has no “holes” (e.g., lakes are not counted as part

of the district), and we are interested only in maximizing one form of compactness (in

this case, perimeter-minimizing), we can more easily find “optimal districts” (Johnson

1982). Most political planners, however, would consider such restrictions unrealistic and

overly restrictive.

We should also remember that while stating restrictions in this way is

mathematically convenient, politically and normatively such restrictions imply a set of

restrictions on value functions or inputs. For example, if we require that our plans be

                                                                                                                                           

solvable under this restriction are referred to as “pseudopolynomial.” NP-complete

problems that have been shown to remain intractable under this restriction are termed

“strongly NP-complete.”

A number of redistricting sub-problems, when further restricted to draw only two

districts are “pseudopolynomial” in this sense. That is, if we are trying to divide an area

into exactly two districts, and we can set an upper bound on the value of each population

block, we can compute the optimal plan in polynomial time for many, but not all, sub-

problems. These same problems are strongly NP-complete for more than two districts. See

Appendix A for more details.
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contiguous we exclude any value functions that allows contiguity to be weighed against

other goals. Because of this equivalence, we cannot escape the limitations of value and

input restrictions by reformulating them as plan-restrictions. Although a plan restrictions

may be valuable for formulating issues clearly, we must be careful that these are not used

by political manipulators to obscure the other types of restrictions that they imply.

5.4.4. Can Sub-Optimal Redistricting Help?

When we defined theoretical computational complexity, our solution concept was

very demanding. Political solutions, however, seldom require the precision that we

demand of theory. If we relax our requirements for precision, can we find general, easy,

practical methods of redistricting? Can we find optimal plans most of the time, or find

approximations that are “close enough”?

Optimal Redistricting — Most of the Time

There are two possible ways in which we could quickly perform optimal

redistricting “most” of the time: We might develop a method to get close to optimum for

all cases, or to find the optimum for most cases.

Remember that when we defined computational-complexity, we required that our

algorithms be guaranteed to generate a correct solution to a problem. We might relax this

guarantee of correctness, and allow our methods to make occasional errors.207 The

                                               

207 Technically, we expand our solutions to algorithms which produce the result with
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possibility of “solving” some NP-complete problems has not been theoretically

foreclosed. Unfortunately, it is conjectured that NP-complete problems are not

susceptible to this type of solution208 (Johnson 1984; Papadimitriou 1994).

Instead of relying on probabilistic methods, we might hope for an easy draw of

problems — it might be that an algorithm solves the redistricting problem with certainty

either on average or in practice.209 As long as there exists some case for which

                                                                                                                                           

probability ε — we are not here bounding the magnitude of the error, only the probability

of its occurrence.

208 An algorithm is said to be “boundedly probabilistic polynomial” (BPP) if it

computes a “solution” to all instance of a problem in polynomial time, and the “solution”

computed has a probability strictly greater than 50% of being correct, each time the

algorithm is executed. Because the probability of error on each execution of the algorithm

is independent, algorithms in this class can be executed repeatedly to obtain any desired

probability of correctness. The conjecture referred to above is that no NP-complete

problem is a member of the class BPP.

209 Technically, we might say that an algorithm works well on average when we

describe its behavior upon problems drawn from a theoretical, mathematically-defined

probability distribution; whereas, we would claim an algorithm works well in practice

when we have evaluated it against real empirical data.
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exponential time is required, the problem is still, by definition, computationally

intractable, but it may not be quite easy most of the time.

This is primarily an empirical question: How well do real methods work on real

data? As Section 2 showed, however, the track-record of automated redistricting is not

very good. Researchers’ previous attempts to generate optimal districting plans suggest

that this problem can be quite difficult “in practice,” and the literature reveals no

procedure that is both demonstrably optimal and that has been generally effective on data

sets large enough to be useful for political redistricting.210 Yet, the question of whether

redistricting sub-problems can be solved in practice remains open. Analysis of average-

case complexity requires, in most cases, that we specify a particular distribution function.

My literature search reveals no specific average-case complexity results concerning the

redistricting sub-problems discussed above for any distributions.211 Because of these, A

formal analysis of average case properties of the redistricting problem is beyond the

scope of this chapter.

Finally, a recent theoretical result should give us pause before we place our hopes on

the average case: It has been proved that for the class of simple computable distributions,

                                               

210 See Gudgin and Taylor (1979) for a discussion of some early attempts.

211It is not obvious what mathematical function can be used to accurately describe the

distribution of values over population blocks (though see Gudgin and Taylor (1979)).
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the average-case complexity of all NP-complete problems is exponential  (Li and Vitanyi

1992). For some distributions, average-case complexity cannot be an escape from

intractability.

As the previous section shows, the prospects of discovering a tractable procedure for

optimal redistricting are dim. In practice, automated procedures will almost certainly

result in sub-optimal redistricting. This section discusses both practical and political

implications concerns surrounding approximation methods.

Guaranteed Approximations

Computational complexity is a measure of the difficulty of obtaining optimal

solutions, but it says little about the difficulty of approximation. In fact, NP-complete

problems, while equivalent for optimal solutions, are not equivalent for approximation.

Some problems are much easier to approximate than others. For some NP-complete

optimization problems there are methods that will, in polynomial time, generate a

solution that is guaranteed to be within a particular percentage of the optimal value.212

                                               

212 One must be careful to distinguish between measurements of approximation based

on the value of the solutions produced versus measures based on percentage of solutions

which are excluded. For example, simple hand drawn districts are likely to be in the top

99% of all the possible districts - simply because there are so many possible districts with

little value. However, these simply drawn districts may be much lower in value than the
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Methods that obtain arbitrarily close “solutions” in polynomial time are known as fully

polynomial approximations. Unfortunately, it can be proved that no fully polynomial

approximations exist for many of the redistricting sub-problems discussed above.213

Although the redistricting problem does not allow arbitrarily close approximations,

we have not excluded the possibility of approximating a solution to within some fixed

percentage of the optimum. No such guaranteed approximation procedure for a

redistricting sub-problem has yet been demonstrated, but the question remains open.214

Making an Educated Guess

                                                                                                                                           

optimal district.

213 Epsilon approximations are methods that guarantee that the ratio of the value of

the approximal solution to the value of the true optimum is no less than 1-ε. Fully

polynomial approximations are epsilon approximations which with time requirements

bounded by a polynomial function of ε, for all ε.

It has been shown that no fully polynomial approximations exist for problems which

are strongly NP-complete (Papadimitriou 1994). As Appendix 1 shows, a number of

redistricting sub-problems are at least strongly NP-complete.

214 I conjecture that good guaranteed approximation limits can be obtained for the

problem of minimizing population inequalities between districts.
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By far the most common way of approaching automated redistricting is through the

use of heuristics. A heuristic is any methods that is considered useful for problem

solving, but for which no guarantees of optimality (or approximate optimality) apply.

While heuristic methods give no guarantee of approximate optimality, they can reduce

the set of plans that need to be considered.

As I noted in Section 2, all of the procedures that researchers have used for

automated redistricting are in fact heuristics. The computer science and operations

research literature also offers several heuristics that have been useful in solving

mathematically similar (partition) problems:

• Simulated annealing, a process that is analogous to the slow cooling in metals, has been

suggested for use in the redistricting problem (Browdy 1990b). Zissimopoulos (1991)

uses one variation of this technique on a number of set-partition problems.

• Genetic algorithms use processes analogous to crossover, mutation, and evolutionary

selection to generate solutions to optimization problems.  Chandrasekharam(1993)

examines the performance of some variants of genetic algorithms on selected graph-

partitioning problems.

• (Hershberger 1991) develops a polynomial time algorithm that divides a polygon into

two optimally compact subregions. He suggests a divide-and-conquer heuristic for the

more general polygon-partitioning problem, where his algorithm would be used to

repeatedly subdivide a polygon.
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•(El-Farzi and Mitra 1992) transforms set-partition problems into integer-programming

problems Lagrangean relaxation and other assignment relaxation heuristics as part of

a branch-and-bound solution method.

The heuristics above have been shown to be useful in several sets of test cases and

merit further investigation for redistricting. However, the size of the test problems in the

papers above corresponded approximately to redistricting problems on the order of 10

districts and 100 population units — much smaller than the typical, practical,

redistricting problem. Furthermore, for at least one common sub-problem, drawing

compact districts according to one common definition of compactness, many of these

methods have performed poorly. (See Chapter 2 and Chapter 4.)

Political Implications of Sub-Optimal Redistricting

While sub-optimal redistricting methods offer the only practical means of

implementing automated redistricting, these methods have a number of disturbing

normative and political implications.

In his argument for automated redistricting, Isaccharoff writes (emphasis added):

If reviewing courts use the absence of a verifiable computer

algorithm or some other clear ex-ante articulation of the bases for

reapportionment decisions as presumptive evidence of constitutional

infirmity, the logic of adjudication may - as with the development of

fixed equipopulation rule after Reynolds - propel the states toward the

use of verifiable criteria for reapportionment (Issacharoff 1993).
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All current methods for automated redistricting are heuristic—they offer no

guarantee that a solution is close to the optimum. In practice, we can attempt to gauge the

effectiveness of a heuristic process thorough experimentation and simulation, but such

analyses will depend on the value functions we use. If we cannot place guarantee their

performance, automated redistricting methods lose much of their normative appeal.

 Furthermore, judicial review becomes more difficult, as the quality of the plans that

we generated becomes a very technical question, dependent both on the choice of value

functions used and heuristic methods. It will be difficult to determine whether a method

is biased, and also difficult to determine whether a method is narrowly tailored to pursue

legitimate goals. If, for example, creation of minority-opportunity districts is one of our

goals, how will we determine that it has not been weighed too heavily by the redistricting

algorithm?

Second, guarantees of performance notwithstanding, heuristics and approximation

techniques select from a large body of solutions, and may be biased in their selection.

Even if we select only among methods which arrive at solutions in the top 99.99% of all

possible district plans, the pool of possible solutions is staggeringly large, and the actual

values of such solutions may differ dramatically. Solution methods can be biased toward

certain classes of solutions.

Heuristics may leave plenty of room for manipulation. The Ohio State University

(OSU) is a particularly clear example of a method that both embodies a particular bias

and that can be manipulated for a variety of goals. The OSU method draws plans that are
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arbitrary in their particulars but follow the same general plan: they make one large

central district, and then other districts that radiate out from this central district (Hale

1966) (Figure 1a). In contrast to the OSU method’s ideal, Arizona’s 1980 redistricting

plan used the same type of arrangement for a racial gerrymander (Figure 1b). The final

court approved plan is also based upon the same general lines (Figure 1c) (Congressional

Quarterly Staff 1983; Light 1982).215

                                               

215 I have removed all but the state boundary and district lines from the maps in

Figure 1 in order to maximize the clarity of the illustration.
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A B C

Figure 1: Will The Real Gerrymander Please Stand Up?

Bias can also enter the process in the form of initial conditions from which these

heuristics start. Since most redistricting heuristics are path-dependent, the starting

conditions for these methods can influence the types of plans that they generate. For

example, the two most popular automated redistricting algorithms, the Weaver-Hess

procedure, and the Nagel method, both described in Section 2, are sensitive to initial

conditions. As Weaver writes (Weaver 1970):
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“CROND’s districting technique does work by trial and

error...Different starting points, whether by hand or mechanical

techniques discussed below, will usually produce different sequences

and different sets of districts.”

Unless all district plans near the optimum are very similar in the types of plans they

produce, how we choose starting points matters. These choices offer opportunities for

hidden political manipulation of the outcomes. While individuals may not be able to use

such manipulation to choose a precise plan, interest groups may be able to use methods

that are biased toward those groups. Perversely, this could make partisan gerrymandering

easier, because it would limit the gains that incumbents could make on their own —

giving incumbents in the same party a stronger incentive to cooperate.

The intertwining effects of value functions, methods, and starting points weaken the

distinction between intent and effect that the automation procedure is supposed to make

clear. The veil of automation has been pierced. Judicial review of such intertwined and

technical procedures may be significantly more difficult than judicial review of the

individual districting plans. Furthermore, political groups with large computing resources

will be much better equipped to discover the combinations of methods and functions that

will work to their advantage.

If manipulation cannot be eliminated by automation, perhaps the opportunities to

choose plans can be opened up equally to all parties. Why not make computer resources
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available to all parties, let interested parties submit plans, and select the plan with the

highest value?

This scheme has two shortcomings. First, the incentives remain for strategic

manipulation at the value-choice stage. Automation cannot be used as a “veil of

ignorance” to force participants to bargain fairly. Second, this scheme discourages

compromise. Since under this scheme the plan with the highest value function acts as a

“trump” and is implemented in toto, there is a strong incentive for secrecy. If an

opponent knows the details of your proposed plan, he will be able to know whether more

work needs to be done on his plan. In addition, he may be able to use iterative

improvements to submit a slightly higher valued plan that better suits his goals.

5.5. Automating the Redistricting Process Limits Conflicts with

Representational Goals

Even if we manage to overcome the technical difficulties involved in finding optimal

districts, we will still need to formalize the notion of an “optimal district.” In attempting

this, we are bound to encounter two political and normative problems. First, technical

details of our formulation may be used to manipulate the redistricting process — we will

be able to manipulate by defining our goals in particular ways. Although automated

redistricting may limit incumbent gerrymandering, it is likely to encourage partisan and

interest-group gerrymandering. Second, the very act of formalizing our goals in a form

suitable for computer processing will eliminate from consideration a number of

important representational goals.
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5.5.1. Limit on the Formalization of Redistricting Goals

To automate the redistricting process, the goals we use must first be quantified —

the extent to which a plan meets (or does not meet) each of the goals must be

representable by a number.216 For example, population inequality might be quantified by

subtracting the largest and smallest districts.

Not all goals may be easily quantified, however. In particular, many goals are

representational – they refer not to a directly measurable aspect of a district, such as its

population or shape, but to the role that district plays in creating political fairness. As

Justice White wrote for the court in Gaffney v. Cummings (1973):

The very essence of districting is to produce a different — a more

“politically fair” — result than would be reached with elections at large,

in which the winning party would take 100% of the legislative seats.

Representational goals, such as protection of communities of interest and

nondilution of minority representation, are especially difficult to describe formally.

 The Court has recognized a wide variety of valid goals for redistricting in a number

of cases. In Karcher vs. Daggett (1983), the court’s opinion stated that “any number of

                                               

216 In theory this number might represent either an ordinal or cardinal ranking. In

practice, all of the automated procedures described in the literature have used cardinal

rankings.
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consistently applied legislative policies” might be important enough to justify deviations

from absolute population equality, including compactness, protection of municipal

boundaries, preserving the core of previous districts, and protecting incumbents. In Davis

v. Bandemer (1986), the court determined that “vote dilution” is a relevant and

justiciable factor in redistricting. Most recently, in Miller v. Johnson (1995), the court

chastised the defendents for ignoring “traditional” principles, including (but not limited

to) contiguity, compactness, “respect for political subdivisions or communities defined

by actual shared interests,” and race neutrality217. Could we program a computer to

evaluate and balance all of these factors?

                                               

217 The complexity and subtlety of representational goals is also illustrated by the

court’s commentary on multi-member districts in White v. Regester (1973), and by the

similar commentary found in the Senate report on 1982 amendments to Section 2 of the

Voting Right’s Act.

The high court, in White v. Regester recognized that the “totality of the

circumstances” must be used in the evaluation process. While the court listed a number of

important circumstantial factors including racial motivation for a plan, history of

discrimination and voting patterns, and the number of majority-minority districts, it

stressed that decisions were not limited to these factors.

 After listing the seven well known “totality of the circumstances” factors, the Senate

committee states:
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To evaluate plans with respect to representational goals, we need to be able to

recognize natural geographic, social, and historical patterns, and to use extensive

knowledge about political and social relationships.218 It is exactly such patterns that

computers are least able to recognize, especially when these patterns are dynamic, and

cannot be simply “hard-wired.” In fact, humans perform better than any computer

                                                                                                                                           

While these enumerated factors will often be the most relevant ones, in some

cases other factors will be indicative of the alleged dilutions.

The cases demonstrate, and the Committee intends that there is no requirement

that any particular number of factors be proved, or that a majority of them point

one way or another (U.S. Congress. Senate. Judiciary Committee 1982, emphasis

added).

Although these factors were to be used when evaluating whether multi-member at-

large districts were discriminatory and neither the court nor the Senate report specified

that these factors should be used when drawing district lines, they show how complex the

concept of fair representation can be.

218 Even compactness in some of its forms is difficult to formalize. For example,

Grofman (1993) argues that instead of using purely formal compactness criteria for

evaluating district geography, we should turn to cognizability, the ability of a legislator to

define, in commonsense language, based on geography, the characteristics of her district.
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algorithms in just these sorts of natural recognition tasks (Dreyfus 1992). Evaluation of

any one of the circumstantial factors listed above is beyond the reach of current computer

technology, and it is unlikely that the “totality of the circumstances”219 can be adequately

formalized in the foreseeable future.220 The legislature would be abdicating its

responsibility if it allowed such goals to be jettisoned in favor of automation.

Even goals that may seem to be simple, easily quantified, and even generally agreed

upon may be subject to several different, and unequal, quantifications. For example

Niemi, et al.  (1991) lists close to two dozen quantifications of the goal “compactness,”

most of which will differ (in at least some cases) in the values they assign to districts. For

example, the controversy over apportionment methods (how to allocate representatives

on the basis of population) in the U.S. shows that even seemingly small differences in the

formalization of an informal standard may be of great practical importance.221

                                               

219 Although it might be claimed that the three prongs of Thornburg v. Gingles has

eliminated the need to look at the totality of the circumstances, this is not the case. Growe

v. Emison and Voinovich v. Quilter and Johnson v. DeGrandy clearly assert that these

three conditions are necessary but not sufficient.

220 See also Karlan (1993), for further arguments concerning the limited ability of

formalism to capture representational goals.

221 See Balinski and Young’s excellent book on the politics of choosing an
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Furthermore, redistricting typically involves weight multiple social goals.222 The

number of possible weights and weighting functions is literally infinite. Even should

                                                                                                                                           

apportionment method (Balinski and Young 1982). Also see U.S. Department of

Commerce v. Montana (1992) for an overview of this history and its legal significance.

222 Many state constitutions contain multiple criteria for evaluating districts (Grofman

1985). An extreme example of what an automated procedure would have to accomplish is

illustrated by the Hawaiian constitution, which requires the following:

a. No district shall extend beyond the boundaries of any basic island unit.

b. No district shall be so drawn as to unduly favor a person or political faction.

c. Except in the case of districts encompassing more than one island, districts shall be

contiguous.

d. Insofar as practical, districts shall be compact.

e. Where possible district lines shall follow permanent and easily recognized features,

such as streets, streams, and clear geographical features, and when practicable shall

coincide with census boundaries.

f. Where practicable, representative districts shall be wholly included within senatorial

districts.



Is Automation the Answer? – The Computational Complexity of Automated Redistricting 289

overall redistricting goals and their formulations be agreed upon, the choice of weights

may still be subject to contention. The complexity of weighing different goals should not

be underestimated. It is unreasonable to expect that a dynamic and subtle weighing of

social values can be captured by a simple fixed set of linear weights. A study by Sheth &

Hess in which political scientists were asked to give fixed linear weights to two popular

redistricting goals (Sheth and Hess 1971) provides an example of the dramatic

differences in weighting that can occur even in a relatively homogenous group deciding

among extremely restricted options.

5.5.2. Political Implications of the Formalization of Redistricting Goals

 You might well argue that while these three limits on formalization should not be

ignored, they are not limits on formalization per se, but only limits on the interpretation

of a particular formalization as “objectively neutral.” Some proponents of automated

redistricting (Browdy 1990a; Issacharoff 1993; Vickrey 1961) do not claim that

automation makes redistricting neutral, but instead specify that the decisions involved in

choosing and formalizing redistricting goals must be made by a political process. Even

                                                                                                                                           

g. Not more than four members shall be elected from any district.

h. Where practicable, submergence of an area in a larger district wherein substantially

different socio-economic interests predominate shall be avoided.



Is Automation the Answer? – The Computational Complexity of Automated Redistricting 290

when the goals and formalizations are chosen by a political process, however, we should

expect that this type of formalization will have its disadvantages.

Seemingly simple characterizations of formal criteria, such as geographical

compactness, can have counterintuitive implications for individual cases.223 Given this

fact, and the multiplicity of possible formalizations that we can develop even for such

seemingly intuitive goals as “geographic compactness,” automated redistricting will have

three serious defects:

• First, automation will shift the political debate from redistricting goals to technical details

because there are so many differing characterizations of common goals each with

potentially different political effects. Automation therefore seems likely to engender

extensive and arcane battles over the mathematical details of goal functions. As Richard

Nelson writes in The Moon and the Ghetto (Nelson 1977): “However, there surely is a

tension between the language of optimization... and creative problem solving, which

implicitly is understood to be the proper language for looking at the real decision

process.”

• Second, requiring that all redistricting criteria be formalized will disadvantage social

values that are difficult to mathematize. Representational goals such as preserving

communities of interest or preventing minority vote dilution are particularly difficult to

quantify because they succinctly condense a host of dynamically changeable, interacting

                                               

223 See Young (1988) and Chapter 2 for examples of nonintuitive districts resulting

from seemingly simple compactness measurements.
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social factors. Current sophistication in computer programming is simply insufficient to

capture such goals.

 • Proponents of automated redistricting claim that it eases judicial and public review by

making political purposes clear. Instead, formal characterizations often mask, rather that

clarify, political purposes. In cases where formal criteria have counterintuitive

implications, debate over particular district plans may illuminate political motives much

more clearly than debate over the technical characterizations of redistricting goals.224

5.6. Discussion

Computers are eminently useful tools for many purposes — including redistricting.

Unfortunately, good tools cannot always eliminate political and social problems:

Automated redistricting is neither as simple nor as objective as has been claimed.

In this chapter I have demonstrated that the general redistricting problem and

common sub-problems belong to a class of problems that is widely believed to be

computationally intractable. Practical methods for generating districts automatically will

almost certainly be based on heuristics— procedures which make guesses at solutions.

                                               

224 Since the consequences of particular formulations are often less clear than the

consequences of plans, one might expect that risk averse bargainers would prefer to

bargain over plans than to bargain over goals, ceteris paribus. The ceteris paribus

assumption is a strong one, however, and a formal game model of the bargaining process

is needed to investigate these implications further.
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The current proposals for implementing automated redistricting make exactly such

guesses. This guesswork is disturbing because researchers offer little in the way of

empirical data or theoretical analysis to show that these methods are successful in

implementing our goals, and objective in excluding other considerations.

Even if we develop heuristics with better empirical and theoretical support, or go

beyond heuristics altogether, we will run into political and normative difficulties when

we try to make every districting goal recognizable to a computer algorithm.

Representational goals, which are based upon the analysis of social and political patterns,

are well beyond the current state of computer technology to quantify. Many simpler

goals, such as geographic compactness, can be easily quantified, but are open to a

plethora of conflicting quantifications.

If districts are created in an open political process, we may require only that districts

meet minimum standards, such as population equality, in order to provide a “fair playing

field”; and we may let the political procss determine the rest. If, instead, we override the

political process and substitute for it a  computer program, we must have confidence that

the computer can not only satisfy our minimum standards, but that it can affirmatively

meet our representational goals. There is a vast difference between the two.

Proponents claim that automated redistricting promotes fairness and illuminates the

redistricting process. They assume that social goals for redistricting are easily and simply

characterized. In fact, as this chapter argues, even the most seemingly straightforward of

redistricting goals may be subject to many conflicting and confusing technical



Is Automation the Answer? – The Computational Complexity of Automated Redistricting 293

characterizations. More subtle social goals, especially those goals which are explicitly

representational, may be given short shrift or have to be disregarded altogether to

accommodate the automation process. Thus, the automation process advantages

nonrepresentational goals over representatational one — a telling vice for an attempt to

design a system of representation.

Some proponents also claim that automated redistricting can operate neutrally —

merely implementing social goals chosen in a previous political debate. In fact,

representational values are difficult or impossible to adequately formalize using current

techniques, and no feasible methods for finding optimal plans for arbitrarily specified

value functions have been discovered. Heuristic methods further complicate this picture

because they intertwine our choice of values with how we create districts.

Proponents claim that automated redistricting eases judicial review. In fact, the

technical complexities of characterizing goals formally, and of finding plans to serve

these goals, is a barrier to judicial and public review and to participation in the districting

process.

Finally, proponents have claimed that redistricting will reduce political

manipulation. In fact, automated redistricting may only serve to change the types

political manipulation that occurs. Automation may reduce political manipulation that

uses redistricting plans for the purpose of advantaging particular individuals. It may

promote, however, political manipulation using formal characterization of goals and
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choice of automation methods so as to advantage particular political groups. It may

disadvantage particular politicians, but strengthen partisanship.

Proponents hold up automation as a veil of ignorance that can be used to promote

fairness and prevent manipulation in the redistricting process. Unfortunately, automation

may not eliminate the opportunity to politically manipulate, but instead shift that

opportunity toward those groups that have access to the most extensive computing

facilities. At the same time, automation shrouds this manipulation under the illusion of

neutrality. Even if resources are equal, the potential for political side effects stemming

from the choice of different characterizations of values and different heuristics for

implementing plans, pierces the veil of ignorance and subverts the fairness of the

automated process.



Is Automation the Answer? – The Computational Complexity of Automated Redistricting 295

Appendix: Proofs

The most common way to show that a problem is NP-complete is to show that it can

be polynomially reduced to another problem that is already known to be NP-complete.

Similarly, the most common way to show that a problem is NP-hard is to show that

solving it requires solving a problem that is known to be NP-complete. I will use these

two general methods to show that the redistricting sub-problems discussed in Section 3.5

are NP-hard.

First, we will need some notation:

• We will use xi to refer to the ith census block. These blocks are vector-valued, and we

will assume that blocks comprise population values, partisan registration percentages,

and geographic locations, among other features.

• We will use di to refer to the ith district. A district is a set of census blocks:

di = x j ,xk, ...,xn{ }.

• We will use pi to refer to a particular plan. A plan is a partition, which has been defined

in the Section 3.1 (footnote 20), of the set of all census blocks into a set of districts:

pi = d1, ...,dn{ }.

We can now move to the proofs. As the proofs are repetitive, I will show the first in

more detail, and sketch the remaining three.

Claim 1: Creating Equal Population Districts is NP-Hard
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Definitions: First we need to define a measure of population inequality. We can

compute the population in a district by summing over its census blocks:225

pop di( )= pop xi( )
x i ∈di

∑ . We will use a simple measure of the inequality of a plan,

V(pi), the difference between the population of its largest and its smallest districts:226

V pi( )= sup popdi( )
di ∈pi

− inf pop di( )
di ∈pi

.

Proof: Given a particular set of census blocks that we must district, let us label the

set of all possible plans P. To draw districts that are as  close as possible to this goal,

we must find a plan, p* that minimizes V over all possible plans using those census

blocks, and having a fixed number of districts, k:

p* = arg inf
pi ∈p1 pi = k{ }

V pi( ).

Suppose we produce an algorithm that finds p* , for any set of census blocks. Given

p*  it is trivial to decide the question: “Is there a plan such that V(p*)=0?”

                                               

225 I assume that the population in each census block is fixed and positive.

226 The redistricting problem remains NP-hard as long as V(pi) equals 0 if and only if

we have absolute population equality — my particular measurement of population equality

is only for convenience.
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But if we can answer this question we can solve an NP-complete problem. For k=2,

answering the question is equivalent to solving the following NP-complete problem

(listed in (Garey and Johnson 1983)), simply relabel our census blocks a, relabel our two

plans A' and (A-A'), and relabel our population meaurement s:227

Set Partition

Instance: Finite set A and a size s(a) ∈Z +
for each a ∈ A.

Problem: Is there a subset ′ A ⊆ Asuch that
s a( )

a∈ ′ A ∑ = s a( )
a∈A− ′ A ∑ ?

This problem is NP-complete, but not strongly NP-complete. If we need to create a

plan with more districts, the problem is strongly NP-complete. If we can decide whether

V(p*)=0 for k>2 then we can answer the following strongly NP-complete question (listed

in (Garey and Johnson 1983)), by performing a similar relabeling:

3-Partition

                                               

227 For an alternative formulation of partitioning as an integer program, see El-Farzi

and Mitra (1992).
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Instance:228 Set A of 3m elements, a bound B∈Z+
and a size

s(a) ∈Z
+
for each a ∈ A such that B4 < s a( )< B

2 and such that

s a( )
a∈A∑ = mB.

Question: Can A be partitioned into m disjoint subsets such that for

( ) ?,1 ∑
∈

=≤≤
iAa

Basmi

Claim 2: Creating A Maximally Compact District Plan is NP-Hard

Definition: We will measure the compactness of a district as maximum distance between

the centers of any pair of census blocks in that districts,229 and we will measure the

compactness of a plan by measuring its least compact district.230

                                               

228 Since the 3-Partition problem does assume more restrictions for its set-members

than we put on our census blocks, this shows our redistricting problem to be NP-Hard, but

is not sufficient to show that it is NP-complete.

229 Using this measurement, large values of V indicate the district is ill-compact.

Papayanopoulos (1973) uses a similar definition of compactness. Furthermore, the

maximum distance between census blocks in a plan is used as part of calculating a large

number of other indices, see Niemi et al. (1991).

230 It is a common practice to use the worst district to measure the compactness of an

entire plan (Papayanopoulos 1973).
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V d( )= sup
xi ,x j ∈d

distancex i ,x j( )( )
V p( ) = sup

di ,d j ∈p
V d

i
,d

j( )( )

Proof: Again, suppose we produce an algorithm that finds a p*  that solves our problem

for any set of census blocks. Given p*  it is then trivial to decide the question (for some

given constant D): “Is there a plan such that V(p*)<D?”

But if we can answer this question, we can solve an NP-complete problem.

Answering the question is equivalent to solving the following problem, which is

(strongly) NP-complete for any k>2 (discussed in (Johnson 1982)):

Distance-d Partition of Points in the Plane

Instance: Finite set P ⊂ Z × Z  of integer-coordinate points in the
plane, positive integers D and k.

Problem: Is there a partition P = P1∪...∪Pk  such that if u and v
are distinct points in some set Pi of the partition, then the Euclidean
distance d(u,v)<D?

Claim 3: Creating A Plan with Maximally Competitive Districts is NP-Hard

Definition: Define a maximally competitive plan as one that minimizes the overall

expected difference between Republican (R) and Democratic (D) registration231 in

each district:

                                               

231 Instead of registration, we can use expected Republican and Democratic turnout,

as long as the expected turnout in a census block is independent of the expected turnout in
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V d( )= R(x) - D(x)
x ∈d∑

V p( ) = V d( )( )d ∈p∑ 2

Proof: Again, suppose we produce an algorithm that finds a p*  that solves our problem

for any set of census blocks. Given p*  it is then trivial to decide the question (for some

given constant D): “Is there a plan such that V(p*)<D?”

Again, if we can answer this question, we can solve an NP-complete problem.

Answering the question is equivalent to solving the following problem, which is NP-

complete (discussed in (Garey and Johnson 1983)):

Minimum Sum of Squares

Instance:232 Finite set A, a size s(a) ∈Z
+
for each a, positive

integers k≤ |A| and D.

Problem: Can A be partitioned into k disjoint subsets such that

s a( )
a∈Ai

∑( )2

≤ Di =1

k∑ ?

                                                                                                                                           

the district.

232 Note that the minimum sum of squares problem assumes that each set member is

positively valued. This makes it a subset of the competitive redistricting problem, because

Democrats may outnumber Republicans in a census block. Hence this demonstration

shows that the redistrict is NP-hard but is not sufficient to show that it is NP-complete.
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This problem is NP-complete, but is not strongly NP-complete for fixed k (hence

this is strongly NP-complete in the number of districts not in the number of census

blocks). NP-completeness is preserved if the exponent 2 is replaced by any fixed rational

number α>1.

Claim 4: Creating A Contiguous Equal-Population Redistricting Plan is NP-Hard

Definition: We will use the same measurement of population as we did in the first

problem. In addition, if any two census blocks i,j  are contiguous, we will connect them

with a unique edge ei,j. Our problem in this case is to find a partition into k districts,

such that the edges fully contained in that district form a connected graph, and such

that we minimize V(p), as in problem 1.

Proof: Again, suppose we produce an algorithm that finds a p*  that solves our problem

for any set of census blocks. Given p*  it is then trivial to decide the question (for some

given constant D): “Is there a plan such that all districts are contiguous and

V(p*)<D?”

If we can answer this question, we can solve an NP-complete problem. Answering

the question is equivalent to solving the following problem, which is (strongly) NP-

complete (discussed in (Johnson 1982; Johnson 1984)):

Cut into Connected Components of Bounded Weight
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Instance:233 Graph G=(V,E), a size s(v) ∈ Z
+
for each a.

Problem: Is there a partition of V into disjoint sets V1 and V2 such

that s v( )
v∈V 1

∑ ≤ K and ( ) Kvs
Vv

≤∑
∈ 2

and both V1 and V2 induce

connected subgraphs of G?

                                               

233 Note that the minimum sum of squares problem assumes that each set member is

positively valued. This makes it a subset of the competitive redistricting problem, because

Democrats may outnumber Republicans in a census block. Hence this demonstration

shows that the redistrict is NP-hard but is not sufficient to show that it is NP-complete.


