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Chapter 6

Proof of Theorem 2

From Remark 2.2.8, to prove Theorem 2, it suffices to construct non-zero tableaux

filled with d copies of c elements for all required partitions of n = cd, c, d ≥ 3. These

partitions were determined in Theorem 10.

Our approach is similar to the proof of Theorem 1 in Chapter 5. Using some

generic non-zero tableaux (like Ui and V in Chapter 5) with c elements, we join

them together by Theorem 8 to form a tableau of the appropriate shape and filling.

However, unlike in Chapter 5, a large number of generic tableaux are needed. Since

the cataloging of non-zero tableaux is quite tedious, we post-pone the construction

until Chapter 7. Namely, our proof here will presuppose the construction of all

tableaux of the required shapes for c ≤ 8 .

The general idea is to write a tableau T as follows:

T = S ∨ T ′ ∨ U ∨ V

for an appropriate T ′, where S, U , and V generic constructions based on the parity

of d. This reduces the construction of T to a construction of T ′ where the shape

parameters, (r, s, and t), of T ′ are small. Thus we only need to construct tableaux

for a limited number of cases corresponding to small shapes. The tableaux S, U,

and V are based on the following non-zero maximal tableaux: (Here U1, U2 and V

occurred in Chapter 5.)
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S0 = P1(d) =

d

1
2
3

d even, S1 =

a a b b b b

5 6 6 6 5 5
4 3 3 4 3 4
1 2 1 1 2 2

a = d−x
3

+ x

b = d−x
3

d ≡ x (mod 3),

x ∈ {0, 1, 2}

U1(d) =

d

1
2

d even, U2 =

a a b b

1 3 1 3
2 4 4 2

a = d− 1

b = 1

V =
d

1

Let λ = [r + s + t, s + t, t]. We can write T = S ∨ T ′ ∨ U ∨ V , for appropriate

T ′ provided T ′ is maximail. Then T ′ will be filled with d copies of c′ elements, for

some c′ < c, which will eventually allow us to reduce to c ≤ 8. If T ′ is non-zero and

maximal then by Lemma 3.4.9 and the Theorem 8 qT 6= 0 as desired. For simplicity,

we will base our construction on the parity of d.

6.1 Case: d even

To see how to write T as T = S ∨ U ∨ V ∨ T ′ for an appropriate T ′ we first discuss

the individual reductions allowing us to write T = S ∨T ′, T = U ∨T ′, or T = V ∨T ′.

Then successive applications of these reductions yield our desired decomposition. An

analysis of these reductions also computes the resulting bounds on the shape of T ′.

An example application follows the reductions listed below. The reader may wish to

refer to Example 6.1.1 while reading these reductions.

Reduction 1: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take f to be the maximum integer such that fd ≤ λ3 and c − 3f ≥ 3.

Let S = fP1(d) be the join of f copies of P1(d). Then by Theorem 8, we may write

T = S ∨ T ′ for T ′ a λ′ = (λ1 − df, λ2 − df, λ3 − df)-tableau filled with d copies of

c′ = c − 3f elements, provided the weight-sets of S and T ′ are disjoint. The choice
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of f means that in T ′, t′ = λ′3 = λ3 − df < d or c′ = c − 3f < 6. Thus we need only

consider tableaux with t = λ3 < d or c < 6. The c < 6 condition coresponds to the

requirement c − 3f ≥ 3. We need this requirement so that there are at least three

elements available with which to fill the remaining tableau, T ′.

Reduction 2: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take g to be the maximum integer such that gd ≤ λ2 − λ3 = s and

c− 2g ≥ 3. Let U = gU1(d) be the join of g copies of U1(d). Then by Theorem 8, we

may write T = U ∨T ′ for T ′ a λ′ = (λ1−dg, λ2−dg, λ3)-tableau filled with d copies of

c′ = c−2g elements, provided the weight-sets of U and T ′ are disjoint. The choice of g

means that in T ′, s′ = λ′2−λ
′
3 = λ2−dg−λ′ 3 < d or c′ = c−2g < 5. However, we will

need the existence of a non-zero T ′ in the specified shape. As was shown in Theorem 9,

this is not always the case for some s. Specifically, when s < 5 non-zero tableaux

do not exist for certain shapes when c = 3. (Consider λ = [6 + d, 2 + d, 1] = [9, 5, 1]

with d = 3 and c = 5. Applying Reduction 2 yields λ′ = [5, 2, 1] with c = 3. All such

tableaux are zero by Theorem 10 since s = 1.) To account for this, we modify the

construction above to use g−1 copies of U1(d) when g > 0 and s′ < 5. In such a case,

the modified T ′ now has s′ < d + 5. Thus we need only consider arbitrary tableaux

with s < d + 5 or c < 5.

Reduction 3: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take h to be the maximum integer such that hd ≤ λ1 − λ2 = r and

c− h ≥ 3. Let V = hV1(d) be the join of h copies of V1(d). Then by Theorem 8, we

may write T = V ∨ T ′ for T ′ a λ′ = (λ1 − dh, λ2, λ3)-tableau filled with d copies of

c′ = c− h elements, provided the weight-sets of V and T ′ are disjoint. The choice of

h means that in T ′, r′ = λ′1 − λ′2 = λ1 − dh − λ2 < d or c′ = c − h < 4. However,

we will need the existence of non-zero T ′ in the specified shape. As was shown in

Theorem 9, this is not always the case for some r. Specifically, when r < 5 non-zero

tableaux do not exist for certain shapes when c = 3. To account for this, we modify

the construction above to use h − 1 copies of U1(d) when h > 0 and r′ < 5. In that
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case, the modified T ′ now has r′ < d + 5. Thus we need only consider arbitrary

tableaux with r < d + 5 or c < 4.

Conclusion: When d is even, we can apply these reductions successively. Take

an arbitrary λ-tableau T filled with d copies of c elements and assume c ≥ 6. We

use T (i) to represent the appropriate T ′ obtained in these reductions. By Reduction

1, T = S ∨ T (1), where S = fP1(d) and T (1)has t = λ3(T
(1)) < d and is filled with

c(1) = c− 3f elements.

Now, if c(1) ≥ 6 apply Reduction 2 to T (1). Since c(1) ≥ 6, then by Reduction 2,

write T (1) = U ∨ T (2) where U = gU1(d) and T (2) has t < d (since T (1) does) and

s < d + 5. Here T (2) is filled with c(2) = c(1) − 2g elements.

Finally if c(2) ≥ 6 apply Reduction 3. This gives T (2) = V ∨T (3), where V = hV1(d)

and T (3) has t < d, s < d + 5, and r < d + 5. Here T (3) is filled with c(3) = c(2) − h

elements.

Hence T = S ∨U ∨ V ∨ T (i) where either T (i) is filled with fewer than 6 elements,

or T (i) has t < d, s < d+5, and r < d+5. In the second case, T (i) must be filled with

3t+2s+ r = cd elements. This is less than or equal to 3(d− 1)+2(d+4)+ (d+4) =

6d + 9 ≤ 8d if d > 4. (If d = 4 we have 6d + 8 ≤ 8d and it’s not possible to have

6d + 9 = 9d when d = 4. For d = 3 additional reductions apply.) Hence we only

need those tableaux with c ≤ 8. Moreover, if r or s < 5 in T (i), then r or s < 5 in

T , because the reductions do not reduce r or s to less than 5. Hence T (i) = T ′ has a

shape occurring in Theorem 10 since all partitions of n with r and s ≥ 5 are needed.

This reduction uses Theorem 8. Our usage only requires verification that the

weight-sets are disjoint. However, the tableaux S, U , and V are in maximal form.

Hence for appropriately chosen tableaux (i.e., ones in maximal form), an application

of Lemma 3.4.9 can easily prove weight-set disjointness.

Example 6.1.1. To see how this reduction works, let us consider a specific shape,

λ = [9d − 2, 5d, d + 2] where d ≥ 6, d even and c = 15. This shape has t = d + 2,

s = 4d − 2, and r = 4d − 2. First we apply Reduction 1, which joins P1(d) in order
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to have t < d.

[9d− 2, 5d, d + 2] = P1(d) ∨ [8d− 2, 4d, 2]

Then we apply Reduction 2 to the shape [8d−2, 4d, 2], which has s = 4d−2 to reduce

to s < d + 5 by joining three copies of U1(d).

[8d− 2, 4d, 2] = 3U1(d) ∨ [5d− 2, d, 2]

Applying Reduction 3 to shape [5d− 2, d, 2], which has r = 4d− 2 we normally want

to reduce r to be between 5 and d + 5. Here we won’t necessarily reduce r fully,

so that the resulting tableau will be familiar. Instead we will reduce to r = 2d − 2

(which may be reduced further depending on d) by joining two copies of V (d).

[5d− 2, d, 2] = 2V (d) ∨ [3d− 2, d, 2]

Hence, when we combine all these reductions, we get

[9d− 2, 5d, d + 2] = P1(d) ∨ 3U1(d) ∨ 2V (d) ∨ [3d− 2, d, 2]

A non-zero tableau of shape [3d − 2, d, 2] is Q∗ of Example 3.2.7 with a = 1, b = 1,

c = d− 2. Therefore, writing

T = P1(d) ∨Q∗(1, 1, d− 2) ∨ 3U1(d) ∨ 2V (d)

and omitting the extra tail of Q∗ we have

T =

d 1 1 1 1 d-2 d d d d d
1 5 5 5 6 4 8 10 12 14 15
2 4 7 7 4 7 9 11 13
3 6 6

As Q∗ is in maximal form, qT 6= 0.
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6.2 Case: d odd

When d is odd, we proceed exactly as in the even case, except the tableaux we use

are slightly different. Namely, we use S1 instead of P1 and U2 instead of U1. These

adjustments are necessary for Reductions 1 and 2 since P1(d) and U1(d) are zero for

d odd. Reduction 3 remains unchanged however. For completeness, we rewrite these

reductions in terms of d odd. However, these reductions alone are not enough to

reduce to c ≤ 8. So after these reductions, we apply a few more in order to reduce

the size of tableaux we need to consider.

Reduction 1′: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take w to be the maximum integer such that w·2d ≤ λ3 and c−6w ≥ 3.

Let S = wS1(d) be the join of w copies of S1(d). Then by Theorem 8, we may write

T = S ∨ T ′ for T ′ a λ′ = (λ1 − 2d · w, λ2 − 2d · w, λ3 − 2d · w)-tableau filled with d

copies of c′ = c− 6w elements, provided the weight-sets of S and T ′ are disjoint. The

choice of w means that in T ′, t′ = λ′3 = λ3 − 2d · w < 2d or c′ = c− 6w < 9. Thus we

need only consider tableaux with t = λ3 < 2d or c < 9.

Reduction 2′: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take v to be the maximum integer such that v · 2d ≤ λ2 − λ3 = s and

c− 4v ≥ 3. Let U = vU2(d) be the join of v copies of U2(d). Then by Theorem 8, we

may write T = U ∨ T ′ for T ′ a λ′ = (λ1 − 2d · v, λ2 − 2d · v, λ3)-tableau filled with d

copies of c′ = c− 4v elements, provided the weight-sets of U and T ′ are disjoint. The

choice of v means that in T ′, s′ = λ′2 − λ′3 = λ2 − d · v − λ′3 < 2d or c′ = c− 4v < 8.

As in the even case, to account for the shapes s < 5, we modify this reduction to

use v − 1 copies of U1(d) when v > 0 and s′ < 5. Then the modified T ′ now has

s′ < 2d + 5. Thus we need only consider arbitrary tableaux with s < 2d + 5 or c < 8.

Summary: The same argument as in the even case works for the d odd cases,

though the numbers are adjusted slightly. Take an arbitrary λ-tableau T with filled

with d copies of c elements, but this time assume c ≥ 9. Then by applications of
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Reductions 1’, 2’ and 3, T = S ∨ U ∨ V ∨ T (i) where either T (i) is filled with fewer

than 9 elements, or T (i) has t < 2d, s < 2d + 5, and r < d + 5. In the second

case, T (i) must be filled with 3t + 2s + r elements, which is less than or equal to

3(2d − 1) + 2(2d + 4) + (d + 4) = 11d + 9 as d ≥ 3. Moreover, if r or s < 5 in T (i),

then r or s < 5 in T . Hence T (i) has a required shape of Theorem 10. However,

we wish to have T (i) fillable with c ≤ 8. To do this we have additional reduction

techniques. However, these techniques are very sensitive to the parameters in T (i), so

we will categorize them by such. The additional non-zero maximal tableaux we use

are

U1(d− 1) =

d− 1
1
2

d odd ω2 = (0, d− 1)

P1(d− 1) =

d− 1
1
2
3

d odd ω2,3 =
(

0 d−1 0
0 0 d−1

)

P4(d− 2, 1, 1) =

d− 2
1 1 1 3
2 2 3 2
3

d odd ω2,3 =
(

0 d 1
0 0 d−2

)

Start with a tableau T where t ≤ 2d− 1, s ≤ d+4, s 6= 1, r ≤ d+ 4, r 6= 1, d odd

and s + t even if r or s in {0, 2, 4}. (These are the partitions required by Theorem 10

after the previous reductions have been applied.) First consider those tableaux with

r ≥ 10, which implies d ≥ 6.

Case A: Assume r ≥ 10, s < d + 4, t < d − 1. Then 3t + 2s + r ≤ 3(d − 2) +

2(d + 3) + d + 4 = 6d + 4 ≤ 8d. Hence this case is covered by c ≤ 8.

Case B: Assume r ≥ 10, s ≥ d+4, t ≥ d−1. Write T = P1(d−1)∨U1(d−1)∨T ′.

If (r, s, t) are the parameters of T , then T ′ has parameters (r′, s′, t′) = (r− 5, s− (d+

1), t − (d − 1)). Thus 5 ≤ r′ ≤ d − 1, 5 ≤ s′ ≤ d + 5, and 0 ≤ t′ ≤ d. Then
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3t + 2s + r ≤ 3d + 2(d + 5) + d − 1 = 6d + 9 ≤ 8d. Note that no exceptional r or s

cases occur in T ′. Hence this case is covered by c ≤ 8.

Case C: Assume r ≥ 10, s < d+4, t ≥ d−1. Write T = P1(d−1)∨T ′. If (r, s, t)

are the parameters of T , then T ′ has parameters (r′, s′, t′) = (r−3, s, t−(d−1)). Thus

7 ≤ r′ ≤ d + 1, s′ ≤ d + 3, and 0 ≤ t′ ≤ d. Then 3t + 2s + r ≤ 3d + 2(d + 3) + d + 1 =

6d + 7 ≤ 8d. Note that no exceptional r or s cases occur in T ′. Hence this case is

covered by c ≤ 8.

Case D: Assume r ≥ 10, s ≥ d+4, t < d−1. Write T = U1(d−1)∨T ′. If (r, s, t)

are the parameters of T , then T ′ has parameters (r′, s′, t′) = (r − 2, s − (d − 1), t).

Thus 8 ≤ r′ ≤ d + 2, s′ ≤ d + 5, and 0 ≤ t′ ≤ d − 1. Then 3t + 2s + r ≤
3(d− 1)+2(d+5)+ d+2 = 6d+9 ≤ 8d. Note that no exceptional r or s cases occur

in T ′. Hence this case is covered by c ≤ 8.

For r < 10 the arguments depend more on the values of r, but the general idea is

the same.

Case E: Assume r < 10, s < d + 4, t < d − 1. Then 3t + 2s + r ≤ 3(d − 1) +

2(d + 3) + 9 = 5d + 12 ≤ 8d for d ≥ 4. When d = 3, c = 9 is a possibility. Now,

when d = 3, we have r ≤ d + 4 = 7, s ≤ d + 3 = 6, and t ≤ d − 2 = 1. So here

3t + 2s + r ≤ 3 + 2 · 6 + 7 = 22 < 8d. Hence c ≤ 8 tableaux will suffice to cover this

case. Note that the s + t parity is preserved in the exceptional r and s cases.

Case F: Assume r < 10, s ≥ d + 4, t < d − 1. If r = 9, 8, 7, 5 then write

T = U1(d − 1) ∨ T ′. If (r, s, t) are the parameters of T , then T ′ has parameters

(r′, s′, t′) = (r− 2, s− (d− 1), t). Then r′ ∈ {7, 6, 5, 3}, s′ ≤ d + 5, and 0 ≤ t′ ≤ d− 1.

Then 3t′ + 2s′ + r′ ≤ 3(d− 2) + 2(d + 5) + 7 = 5d + 11 ≤ 8d for d > 3. When d = 3,

then s′ ≤ 8, t′ ≤ 1. We have 3t′ + 2s′ + r′ ≤ 3 + 16 + 7 = 26 < 9d. Hence c ≤ 8

tableaux will suffice to cover these case.

If r = 2, 4, or 6, then write T = U1(d− 1)∨T ′. If (r, s, t) are the parameters of T ,
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then T ′ has parameters (r′, s′, t′) = (r−2, s−(d−1), t). Thus r′ ∈ {4, 2, 0}, s′ ≤ d+5,

and 0 ≤ t′ ≤ d− 1. Then 3t′+2s′+ r′ ≤ 3(d− 2)+2(d+5)+4 = 5d+8 ≤ 8d. Hence

c ≤ 8 tableaux will suffice to cover these cases if the tableau exists.

Note that U1(d − 1) preserves the parity of s + t, so if s + t are even (always

the case when r = 2 or 4), we will have s′ + t′ even which is necessary for r′ = 0,

2, or 4. Hence this construction works except when r = 6 and s + t odd. Then

3t+2s+ r ≤ 3(d− 2)+2(2d+4)+6 = 7d+8 ≤ 8d for d ≥ 8 otherwise it is less than

9d unless d = 3. If 3t + 2s + 6 = 9d, then t is odd so write t = d − 2k with k ≥ 1.

Then we have s = 3d + 3k− 3. Since s ≤ 2d + 4, we have d + 3k ≤ 7, so d = 3, k = 1

is the only solution. This corresponds to t = 1, s = 9, r = 6. Since s + t even, this

case has already been done. For d = 3 we also need to consider c = 10. However,

3 + 20 + 6 < 10d so no such partition will occur.

For r = 0 we have s+t even. Then 3t+2s+r ≤ 3(d−2)+2(2d+4) = 7d+2 ≤ 8d,

so this case is covered by c ≤ 8 tableaux.

For r = 3 we 3t+2s+ r ≤ 3(d− 2)+2(2d+4)+3 = 7d+5 ≤ 8d for d ≥ 5. When

d = 3 we have 3 + 20 + 3 < 9d, so such a partition does not occur. Hence r = 3 is

covered by c ≤ 8.

Case G: Assume r < 10, s < d + 4, t ≥ d − 1. If r = 9, 8, 6 then write

T = P1(d − 1) ∨ T ′. If (r, s, t) are the parameters of T , then T ′ has parameters

(r′, s′, t′) = (r − 3, s, t − (d − 1)). Thus r′ ∈ {6, 5, 3}, s′ ≤ d + 3, and 0 ≤ t′ ≤ d.

Then 3t′ + 2s′ + r′ ≤ 3d + 2(d + 3) + 6 = 5d + 12 ≤ 8d for d ≥ 5. When d = 3, then

s′ ≤ 6, t′ ≤ 3. Hence we have 3t′+2s′+r′ ≤ 9+12+6 = 27 = 9d, so the only solution

is t′ = 3, s′ = 6, r′ = 6. This we can further reduce by writing T ′ = V (d)∨ T ′′ where

T ′′ is a c = 8 tableau of parameters t = 3, s = 6, and r = 3. Hence c ≤ 8 tableaux

will suffice.

If r = 7, 5 , or 3 and s + t even then write T = P1(d− 1) ∨ T ′. If (r, s, t) are the

parameters of T , then T ′ has parameters (r′, s′, t′) = (r − 3, s, t − (d − 1)) and the

parity of s′ + t′ is preserved. Thus r′ ∈ {0, 2, 4}, s′ ≤ d + 3, and 0 ≤ t′ ≤ d. Then

3t′ + 2s′ + r′ ≤ 3d + 2(d + 3) + 4 = 5d + 10 ≤ 8d for d ≥ 5. For d = 3 we have
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3t′+2s′+ r′ ≤ 9+12+4 = 25 < 9d, so this does not occur. Hence the c ≥ 8 tableaux

will suffice.

Consider r = 0, 2, 4 with s + t even, or r = 3, 5, 7 with s + t odd. If s ≥ 8 write

T = P4(d − 2, 1, 1) ∨ T ′. If (r, s, t) are the parameters of T , then T ′ has parameters

(r′, s′, t′) = (r, s−3, t−(d−2)) and the parity of s′+t′ is preserved. Thus , 5 ≤ s′ ≤ d,

and 0 ≤ t′ ≤ d+1. Then 3t′+2s′+ r′ ≤ 3(d+1)+2(d)+7 = 5d+10 ≤ 8d for d ≥ 5.

For d = 3 we have 3t′+2s′+ r′ ≤ 12+6+7 = 25 < 9d, so this does not occur. Hence

the c ≥ 8 tableaux will suffice.

For r = 3, 5, or 7, s+ t odd, and s ≤ 7, we have 3t+3s+r ≤ 3(2d−1)+2 ·7+7 =

6d + 18 ≤ 8d for d ≥ 9. If 3t + 2s + r = 9d, then since r is odd, we have t = 2d− 2k

for k ≥ 1. This implies s = d + 3k + d−r
2

. Since s ≤ 7, the only possible solutions are

(r, s, t) = (7, 4, 4), (5, 5, 4), (3, 6, 4), (7, 7, 2) when d = 3 and (7, 4, 8) when d = 5. For

those with s + t even, the case has already been done. For (r, s, t) = (7, 7, 2) write

T = U1(2) ∨ T ′ where T ′ has parameters (5, 5, 2) and is a c = 7 tableau. Hence we

still need (r, s, t) = (5, 5, 4) for d = 3. But this is U1(2) ∨ T ′, where T ′ is a c = 7

tableau of parameters (3, 3, 4).

We also need to consider those partitions with c = 10. Then we have 3t+2s+r =

10d which implies t = 2d − 2k − 1 as t is odd. So s = 2d + 3k + 1 − r−1
2

. The only

solutions with s ≤ 7 are (r, s, t) = (3, 6, 5), (5, 5, 5), (7, 4, 5), and (7, 7, 3) all with

d = 3. The cases with s + t even have been done already. For (r, s, t) = (3, 6, 5), use

T = P4(1, 1, 1)∨T ′ where T ′ is a c = 7 tableau with (r′, s,′ , t′) = (3, 3, 4). For (7, 4, 5)

we have s = 4 and s + t odd, so this case partition is not needed.

When d = 3 we also may have c = 11 or c = 12. Proceeding as above, the only

solutions are (r, s, t) = (7, 7, 4) and (7, 7, 5). The second case has s+ t even and hence

is not needed. The first case can be reduced to T = U1(2) ∨ T ′, where T ′ is a c = 9

case with parameters (5, 5, 4). But this is U1(2) ∨ T ′, where T ′ is a c = 7 tableau of

parameters (3, 3, 4).

If r = 0, 2, 4, s + t even, and s ≤ 7, we have 3t + 3s + r ≤ 3(2d− 1) + 2 · 7 + 4 =

6d + 15 ≤ 8d for d ≥ 9. For c = 9, we have t = 2d− 2k− 1 as t is odd. Then s = d +

3k +1+ d+1−r
2

. Since s ≤ 7 the only solutions are (r, s, t) = (0, 6, 5), (2, 5, 5), (4, 4, 5),



68

and (4, 7, 3) with d = 3 and (4, 7, 9). Note that only those with s+ t even are needed.

For these cases write T = U1(d−1)∨T ′, where T ′ is a c′ = 7 tableau with parameters

(r − 2, s − (d − 1), t). Since this preserves the parity of s + t and does not cause

r′, s′ = 1, the tableau exists.

For d = 3 we may also have c = 10 or 11. Proceeding as above, the only solutions

are (r, s, t) = (4, 7, 4) which has s + t odd, hence it is not need, and (4, 7, 5) which is

U1(2) ∨ U1(2) ∨ T ′ where T ′ is a c = 7 tableau with (r, s, t) = (0, 3, 5).

Case H: Assume r < 10, s ≥ d + 4, t ≥ d − 1. If r = 8 or r = 9, 7, 5 and

s + t even then write T = P1(d − 1) ∨ U1(d − 1) ∨ T ′ where T ′ has parameters

(r′, s′, t′) = (r − 5, s − (d − 1), t − (d − 1)). Thus r′ ≤ 4, s′ ≤ d + 5, and t′ ≤ d.

Then 3t′ + 2s′ + r′ ≤ 3d + 2(d + 5) + 4 = 5d + 14 ≤ 8d for d > 3. When d = 3 we

can have 3t′ + 2s′ + r′ = 9d only for (r′, s′, t′) = (2, 8, 3) or (4, 7, 3). But s + t even

means only (4, 7, 3) is needed. This is U1(d − 1) ∨ T ′′ where T ′′ is a c = 7 tableau

with (r, s, t) = (2, 5, 3). Hence we’ve reduced to c ≤ 8 cases.

For r = 9, 7, 5 with s+t odd, write T = P4(d−2, 1, 1)∨U1(d−1)∨T ′ where T ′ has

parameters (r′, s′, t′) = (r−2, s−(d−1)−3, t−(d−2)). Hence r′ ≤ 7, 2 ≤ s′ ≤ d+2,

and t′ ≤ d + 1. We will have s′ 6∈ {0, 1, 2, 4} provided s 6= d + 4 or d + 6. Then

3t′+2s′+r′ ≤ 3(d+1)+2(d+2)+7 = 5d+14 ≤ 8d for d > 3. When s = d+4 or d+6

write T = P4(d−2, 1, 1)∨T ′ where T ′ has parameters (r′, s′, t′) = (r, s−3, t−(d−2)).

Then 3t′ + 2s′ + r ≤ 3(d + 1) + 2(d + 3) + 9 = 5d + 18 ≤ 8d for d ≥ 5.

For d = 5, s′ = d + 3 or d + 1 there are no partitions with t′ ≤ d + 1. Now

consider d = 3 with s′ ≤ d + 3, t′ ≤ d + 1. Since r ≤ d + 4 we have r = 3, 5, or 7.

Given these parameters, solving 3t′ + 2s′ + r′ = 3c for c ≥ 9, the only solutions are

(r′, s′, t′) = (3, 6, 4), (5, 5, 4), and (7, 4, 4). Since s + t odd the only partition we need

to construct is (r′, s′, t′) = (5, 5, 4) with c = 9. But this is U1(2) ∨ T ′ where T ′ is a

c = 7 tableau of parameters (3, 3, 4).

For r = 2, 4, 6 with s + t even, write T = P4(d − 2, 1, 1) ∨ U1(d − 1) ∨ T ′ where

T ′ has parameters (r′, s′, t′) = (r − 2, s − (d − 1) − 3, t − (d − 2)). Thus r′ ≤ 4,

2 ≤ s′ ≤ d + 2, and t′ ≤ d + 1. Since s + t even, we need only that s′ 6= 1. Then



69

3t′ + 2s′ + r′ ≤ 3(d + 1) + 2(d + 2) + 4 = 5d + 11 ≤ 8d for d > 3. For d = 3,

d · 4 + 2 · 5 + 4 = 26 < 9d so that case is not needed.

For r = 6, s+ t odd write T = P1(d−1)∨T ′, where T ′ has parameters (r′, s′, t′) =

(3, s, t− (d− 1)). Thus 3t′ + 2s′ + r′ ≤ 3d + 2(2d + 4) + 3 = 7d + 11 ≤ 8d for d ≥ 11.

Solving 3t′+2s′+r′ = 9d given the parameters, the only solution is (r′, s′, t′) = (3, 9, 2).

This is P4(1, 1, 1) ∨ T ′′ where T ′′ is a c = 6 tableau with parameters (3, 6, 1). When

c = 10, we also have (3, 9, 3) as a solution, but this does not have s + t odd.

For r = 3, write T = P4(d − 2, 1, 1) ∨ T ′ where T ′ has parameters (r′, s′, t′) =

(3, s − 3, t − (d − 2)). Thus 3t′ + 2s′ + r′ ≤ 3(d + 1) + 2(2d + 1) + 3 = 7d + 8 ≤ 8d

for d > 5. (The c = 8 constructions will hold unless s − 3 ∈ {0, 1, 2, 4}, but since

s ≥ d + 4 this can only occur with s = d + 1, d = 3. Then our original tableau will

have t ≤ 2d − 1, s = d + 1, r = 3 which is satisfiable by a c ≤ 8 tableau.) Solving

3t′ + 2s′ + r′ = 9d given the parameters, the only solutions are (r′, s′, t′) = (3, 6, 4),

(3, 9, 2), and (3, 12, 6) with d = 5. The (3, 6, 4) case is P4(1, 1, 1) ∨ T ′′ where T ′′ is

a c = 6 tableau with parameters (3, 3, 3). The (3, 9, 2) case is P4(1, 1, 1) ∨ T ′′ where

T ′′ is a c = 6 tableau with parameters (3, 6, 1). When d = 5, the (3, 12, 6) case is

P4(3, 1, 1) ∨ T ′′ where T ′′ is a c = 6 tableau with parameters (3, 9, 3). There are no

tableaux with c > 9.

For r = 0 we have s+t even. Write T = P4(d−2, 1, 1)∨T ′ where T ′ has parameters

(r′, s′, t′) = (3, s− 3, t− (d− 2)). So 3t′+2s′+ r′ ≤ 3(d+1)+2(2d+1) = 7d+5 ≤ 8d

for d > 3. As P4 preserves parity and s + t even, the c = 8 constructions will work

provided s′ 6= 1. But s ≥ d + 4 forces s′ ≥ d + 1 ≥ 4. When d = 3 we have

3 · 4 + 2 · 7 = 26 < 9d, hence all cases are covered.

Conclusion: When d is odd, we need all tableaux with c ≤ 8. The basic

reduction requires those tableaux to be disjoint from multiple copies of S1, U2(d −
1, 1) and V (d). The further reductions also require the tableau to be disjoint from

P1(d−1), U1(d−1), P1(d−1)∨U1(d−1), P4(d−2, 1, 1), and U1(d−1)∨P4(d−2, 1, 1).

For d even we need all tableaux with c ≤ 6, along with those tableaux having

t ≤ d − 1, s ≤ d + 4, r ≤ d + 4 when c = 7 or 8. These tableaux need to be



70

disjoint from P1(d), U1(d), and V (d). These tableaux will be listed in Chapter 7. In

Chapter 8, we verify that all necessary tableaux have been produced.
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