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Chapter 5

Proof of Theorem 1

Recall, Theorem 1 says that every irreducible occurring in 1Sn
SboS2

occurs in 1Sn
SdoSc

with

equal or greater multiplicity, where n = 2b = cd and b, c, d ≥ 2.

In Section 3.2 we proved Theorem 7, which showed that the irreducibles occurring

in 1Sn
SboS2

were exactly those corresponding to partitions λ = [n− s, s] for s even and

they occur with multiplicity one. (Since n = 2b is even, it suffices to consider only

the even values of s.) By Remark 2.2.8, to prove Theorem 1, it suffices to construct a

non-zero tableau filled with d copies of c elements for each partition [n− s, s], where

0 ≤ s ≤ n
2
, s even and n = cd.

To do this we will construct some non-zero generic tableaux that when assembled

via Theorem 8 will produce all the shapes and fillings needed. Since we are con-

structing generic tableaux for many partitions and fillings, we will not use a fixed c.

However, we assume that every element listed in the body of the tableau occurs d

times, filling out the tail as needed. We apply weight-set counting to prove a tableau

is non-zero. The tableaux we need are:

Tableau U1

U1 =

a d-a d-a
1 1 2
2

∼
a

1
2

a even

a ≤ d

ω2(U1) = (0,a)
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λ = [2d− a,a]

For this first tableau, we listed U1 both with and without the tail. Normally we

will suppress the tail when writing these tableaux. U1 is non-zero by Lemma 3.2.6

since a is even. It is maximal since (a, 0) is the largest possible weight-set for this

shape.

Tableau U2

U2 =

a a b b

1 3 1 3
2 4 4 2

a + b ≤ d

a, b > 0

ω2 = (0,a+b, 0,a+b)

λ = [4d− 2(a+b), 2(a+b)]

Examining the filling of U2 and a,b > 0 we find the following constraints on any

valid weight assignment: (Recall that U∗ corresponds to a possible tableau τU2.)

• If ω2(1|U∗) = 0 then ω2(2 and 4|U∗) > 0.

• If ω2(2|U∗) = 0 then ω2(1 and 3 |U∗) > 0.

• We must have ω2(1 or 2|U∗) > 0 and ω2(3 or 4|U∗) > 0.

Since any valid weight assignment of (0,a + b, 0,a + b) has exactly two zeros,

the restrictions above show that (1, 2, 3, 4) and (2, 1, 4, 3) are the only valid weight

assignments. These weights-sets correspond to applying τ =
a

()T ×
a

()T ×
b

()T ×
b

()T

and τ =
a

(12)T ×
a

(12)T ×
b

(12)T ×
b

(12)T respectively. As both of these τ have positive

sign, qU2
6= 0. This tableau is maximal since every element x must have ω2(x) ≤ a+b.
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Tableau U3

U3 =

a b b

1 1 2
2 3 3

a even

a + b ≤ d

d even

b = d
2

ω2 = (0,a, d)

λ = [2d− a,a + d]

To show U3 is non-zero we will use weight-set counting on ω2 = (0,a, d). There

are two cases for which we need to determine weight assignments, a + b < d and

a + b = d.

When a + b < d, only the element 3 may be assigned a row two weight of d. So

the distinct weight assignments are (1, 2, 3) and (2, 1, 3), which occur with τ = ()T

and τ =
a

(12)T ×
b

()t ×
b

()T respectively. Since a is even, both τ have positive sign.

Hence U3 is non-zero.

If a + b = d, then a = b = d
2

and d ≡ 0 (mod 4). While every permutation

corresponds to a distinct weight assignment, every weight assignment can only be

obtained by having τ move complete column blocks. Since all of these blocks are

even, τ is positive for every weight assignment and hence U3 is non-zero. This tableau

is maximal since (d,a, 0) is the largest possible weight.

Tableau V (d)

V =
d
1

ω1(V ) = (d)

λ = [d]
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This is just a single row with d ones. Since there are no column permutations,

this tableau is always non-zero. It is obviously maximal.

Having constructed these generic tableaux, we will use the notation Ui(x) to denote

the tableau Ui with the parameter a = x or Ui(x, y) for x = a and y = b in Ui. We

will use fUi to denote the join of f copies of Ui. Note that these tableaux are all in

maximal form.

For the proof of Theorem 1, the parity effects the construction process. To simplify

notation, we define the ∗-function.

x∗ =





x x even

x− 1 x odd

We analyze T by the parameters r = n−2s and s, where λ = [r+s, s]. For reference,

we consider tableau of the following shape, with r and s even.

T = ︸ ︷︷ ︸
r︸ ︷︷ ︸

s

Proof of Theorem 1. To prove Theorem 1 we need to construct a non-zero tableau of

shape λ = [n − s, s] for s ≤ n
2
, with s even and n = cd, c, d ≥ 2. First we construct

a general tableau that covers most s. Suppose s ≤ c∗d∗
2

. We know s is even, so write

s = fd∗ + e, where 0 ≤ e < d∗, e even. Since s, d∗, and e are even, this is possible by

the Euclidean algorithm.

Let T = fU1(d
∗) ∨ U1(e). Note that the bound on s guarantees that 2(f + 1) ≤ c

when e > 0, and 2f ≤ c when e = 0. This insures that there are at most c distinct

elements in T . If there are fewer than c elements in T add all the remaining elements

to the tail of T by joining the appropriate number of V (d)’s. Suppressing the tail

elements from the U1’s and V (d)’s, T looks like:
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T =

d∗ d∗ · · · d∗ v d · · · d

1 3 · · · 2f − 1 2f + 1 2f + 3 · · · c

2 4 · · · 2f 2f + 2

Theorem 8 shows T is non-zero, provided the weight-sets are disjoint. Since the

tableaux are in maximal form, the weights must be disjoint by Lemma 3.4.9. This

covers the majority of the s. The remaining tableaux will be constructed according

to the parity of c and d.

Case I: (c, d even) In this case c∗d∗
2

= cd
2
, so T constructed above covers all

partitions.

Case II: (d even, c odd) By the above construction, we have all tableaux with s up

to (c−1)d
2

. Thus we only need those even partitions with s = cd−k
2

for 0 ≤ k ≤ d − 2,

k ≡ d (mod 4). Take T = c−3
2

U1(d) ∨ U3(a) for 0 ≤ a ≤ d
2

with a even. Then

s = c−3
2

d + a + d = cd−d+2a
2

. Thus we have k = d− 2a, which ranges over the correct

parameters. Since U1 and U3 are in maximal form, Lemma 3.4.9 implies disjointness

and Theorem 8 shows T is non-zero.

Case III: (c even, d odd) Since r = n − 2s = cd − 2s s we need λ = [r + s, s] for

r ≤ cd with r ≡ cd (mod 4). It suffices to construct a non-zero tableau for r < 4d.

When r ≥ 4d, let r′ = r − 4dz with r′ < 4d. Then if we construct a λ′ = [s + r′, s]

tableau T ′ filled with d copies of c − 4z elements, we get the needed tableau by

T = T ′ ∨ 4zV (d). Hence we will take r < 4d.

When c ≡ 0 (mod 4) then r ≡ 0 (mod 4). Take T = c−4
4

U2(d− 1, 1)∨U2(d− r
4
−

1, 1). This construction gives the shape c−4
4

[2d, 2d]+[2d+ r
2
, 2d− r

2
] = [ cd

2
+ r

2
, cd

2
− r

2
] as

desired. The parameters of these tableaux are positive unless r = 4d−4 since r < 4d,

r ≡ 0 (mod 4), and d ≥ 2. If r = 4d − 4 then d − r
4
− 1 = 0, so use U1(2) ∨ 2V (d)

instead of of U2(d− r
4
− 1, 1).

For c ≡ 2 (mod 4) we will assume r < 2d. When 2d ≤ r < 4d let r′ = r−2d. Then
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can construct a λ′ = [r′+s, s] tableau T ′ with c ≡ 0 (mod 4) and use T = T ′∨2V (d).

Take T = c−2
4

U2(d−1, 1)∨U1(
2d−r

2
) with V (d)’s as needed. Note that cd ≡ r (mod 4)

implies that 2d−r
2

is even, while r < 2d insures it is positive. So we get the shape

[ cd
2

+ r
2
, cd

2
− r

2
] as needed. Theorem 8 shows these T ’s are non-zero provided the

weight-sets are disjoint, which follows from maximality.

Note that since cd = n, n even, then c or d is even. Thus we have constructed all

cases.

Although it is not directly apparent from this construction, c or d even is often

a necessary requirement for any non-zero two row tableau with s even to exist. For

instance, when c = 3 and d = 7, the shape [11, 10] has s even, but all tableaux are

zero by Theorem 9.
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