Generalized Foulkes' Conjecture and Tableaux Construction

Thesis by
Rebecca Vessenes

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

Chapter 5

Proof of Theorem 1

Recall, Theorem 1 says that every irreducible occurring in $1_{\mathcal{S}_{b} \mathcal{S}_{2}}^{\mathcal{S}_{n}}$ occurs in $1_{\mathcal{S}_{d} \mathcal{S}_{c}}^{\mathcal{S}_{c}}$ with equal or greater multiplicity, where $n=2 b=c d$ and $b, c, d \geq 2$.

In Section 3.2 we proved Theorem 7, which showed that the irreducibles occurring in $1_{\mathcal{S}_{b} \mathcal{S}_{2}}^{\mathcal{S}_{n}}$ were exactly those corresponding to partitions $\lambda=[n-s, s]$ for s even and they occur with multiplicity one. (Since $n=2 b$ is even, it suffices to consider only the even values of s.) By Remark 2.2.8, to prove Theorem 1, it suffices to construct a non-zero tableau filled with d copies of c elements for each partition $[n-s, s]$, where $0 \leq s \leq \frac{n}{2}, s$ even and $n=c d$.

To do this we will construct some non-zero generic tableaux that when assembled via Theorem 8 will produce all the shapes and fillings needed. Since we are constructing generic tableaux for many partitions and fillings, we will not use a fixed c. However, we assume that every element listed in the body of the tableau occurs d times, filling out the tail as needed. We apply weight-set counting to prove a tableau is non-zero. The tableaux we need are:

$$
\text { Tableau } U_{1}
$$

$$
\begin{aligned}
& U_{1}=\frac{\mathrm{A} \text { d-A d-A }}{1} 1 \quad 2
\end{aligned} \frac{\mathrm{~A}}{1} \quad \begin{aligned}
& \text { A even } \\
& 2
\end{aligned} \quad \text { A } \leq d .
$$

$$
\lambda=[2 d-\mathrm{A}, \mathrm{~A}]
$$

For this first tableau, we listed U_{1} both with and without the tail. Normally we will suppress the tail when writing these tableaux. U_{1} is non-zero by Lemma 3.2.6 since A is even. It is maximal since $(A, 0)$ is the largest possible weight-set for this shape.

$\underline{\text { Tableau } U_{2}}$

$$
\begin{aligned}
& U_{2}=\begin{array}{ll}
\frac{\text { A A B B }}{1313} \\
2442
\end{array} \quad \mathrm{~A}+\mathrm{B} \leq d, \mathrm{~B}>0 \\
& \omega_{2}=(0, A+B, 0, A+B) \\
& \lambda=[4 d-2(\mathrm{~A}+\mathrm{B}), 2(\mathrm{~A}+\mathrm{B})]
\end{aligned}
$$

Examining the filling of U_{2} and $\mathrm{A}, \mathrm{B}>0$ we find the following constraints on any valid weight assignment: (Recall that U^{*} corresponds to a possible tableau τU_{2}.)

- If $\omega_{2}\left(1 \mid U^{*}\right)=0$ then $\omega_{2}\left(2\right.$ and $\left.4 \mid U^{*}\right)>0$.
- If $\omega_{2}\left(2 \mid U^{*}\right)=0$ then $\omega_{2}\left(1\right.$ and $\left.3 \mid U^{*}\right)>0$.
- We must have $\omega_{2}\left(1\right.$ or $\left.2 \mid U^{*}\right)>0$ and $\omega_{2}\left(3\right.$ or $\left.4 \mid U^{*}\right)>0$.

Since any valid weight assignment of ($0, \mathrm{~A}+\mathrm{B}, 0, \mathrm{~A}+\mathrm{B}$) has exactly two zeros, the restrictions above show that $(1,2,3,4)$ and $(2,1,4,3)$ are the only valid weight assignments. These weights-sets correspond to applying $\left.\left.\left.\tau=\stackrel{\mathrm{A}}{(})_{T} \times \stackrel{\mathrm{A}}{(}\right)_{T} \times \stackrel{\mathrm{B}}{(}\right)_{T} \times()_{T}^{\mathrm{B}}\right)^{(}$ and $\left.\tau=(\stackrel{\mathrm{A}}{12})_{T} \times(\stackrel{\mathrm{A}}{12})_{T} \times\left({ }^{\mathrm{B}}\right)^{2}\right)_{T} \times\left({ }_{(12}^{\mathrm{B}}\right)_{T}$ respectively. As both of these τ have positive $\operatorname{sign}, \mathbf{q}_{U_{2}} \neq 0$. This tableau is maximal since every element x must have $\omega_{2}(x) \leq \mathrm{A}+\mathrm{B}$.
$\underline{\text { Tableau } U_{3}}$

$$
\begin{aligned}
& \text { A even }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}=\frac{d}{2} \\
& \omega_{2}=(0, \mathrm{~A}, d) \\
& \lambda=[2 d-\mathrm{A}, \mathrm{~A}+d]
\end{aligned}
$$

To show U_{3} is non-zero we will use weight-set counting on $\omega_{2}=(0, \mathrm{~A}, d)$. There are two cases for which we need to determine weight assignments, $\mathrm{A}+\mathrm{B}<d$ and $\mathrm{A}+\mathrm{B}=d$.

When $\mathrm{A}+\mathrm{B}<d$, only the element 3 may be assigned a row two weight of d. So the distinct weight assignments are $(1,2,3)$ and $(2,1,3)$, which occur with $\tau=()_{T}$ and $\tau=(\stackrel{\mathrm{A}}{12})_{T} \times\left(\stackrel{\mathrm{B}}{)_{t}} \times{\stackrel{\mathrm{B}}{)_{T}}}_{T}\right.$ respectively. Since A is even, both τ have positive sign. Hence U_{3} is non-zero.

If $\mathrm{A}+\mathrm{B}=d$, then $\mathrm{A}=\mathrm{B}=\frac{d}{2}$ and $d \equiv 0(\bmod 4)$. While every permutation corresponds to a distinct weight assignment, every weight assignment can only be obtained by having τ move complete column blocks. Since all of these blocks are even, τ is positive for every weight assignment and hence U_{3} is non-zero. This tableau is maximal since $(d, \mathrm{~A}, 0)$ is the largest possible weight.

Tableau $V(d)$

$$
\begin{aligned}
& V=\frac{\mathrm{d}}{1} \\
& \omega_{1}(V)=(d) \\
& \lambda=[d]
\end{aligned}
$$

This is just a single row with d ones. Since there are no column permutations, this tableau is always non-zero. It is obviously maximal.

Having constructed these generic tableaux, we will use the notation $U_{i}(x)$ to denote the tableau U_{i} with the parameter $\mathrm{A}=x$ or $U_{i}(x, y)$ for $x=\mathrm{A}$ and $y=\mathrm{B}$ in U_{i}. We will use $\mathrm{f} U_{i}$ to denote the join of f copies of U_{i}. Note that these tableaux are all in maximal form.

For the proof of Theorem 1, the parity effects the construction process. To simplify notation, we define the *-function.

$$
x^{*}= \begin{cases}x & x \text { even } \\ x-1 & x \text { odd }\end{cases}
$$

We analyze T by the parameters $r=n-2 s$ and s, where $\lambda=[r+s, s]$. For reference, we consider tableau of the following shape, with r and s even.

Proof of Theorem 1. To prove Theorem 1 we need to construct a non-zero tableau of shape $\lambda=[n-s, s]$ for $s \leq \frac{n}{2}$, with s even and $n=c d, c, d \geq 2$. First we construct a general tableau that covers most s. Suppose $s \leq \frac{c^{*} d^{*}}{2}$. We know s is even, so write $s=\mathrm{f} d^{*}+e$, where $0 \leq e<d^{*}, e$ even. Since s, d^{*}, and e are even, this is possible by the Euclidean algorithm.

Let $T=\mathrm{f} U_{1}\left(d^{*}\right) \vee U_{1}(e)$. Note that the bound on s guarantees that $2(\mathrm{f}+1) \leq c$ when $e>0$, and $2 \mathrm{f} \leq c$ when $e=0$. This insures that there are at most c distinct elements in T. If there are fewer than c elements in T add all the remaining elements to the tail of T by joining the appropriate number of $V(d)$'s. Suppressing the tail elements from the U_{1} 's and $V(d)$'s, T looks like:

$$
T=\begin{array}{ccccccc}
d^{*} & d^{*} & \cdots & d^{*} & v & d & \cdots \\
\hline 1 & 3 & \cdots & 2 \mathrm{f}-1 & 2 \mathrm{f}+1 & 2 \mathrm{f}+3 & \cdots
\end{array}
$$

Theorem 8 shows T is non-zero, provided the weight-sets are disjoint. Since the tableaux are in maximal form, the weights must be disjoint by Lemma 3.4.9. This covers the majority of the s. The remaining tableaux will be constructed according to the parity of c and d.

Case I: $\left(c, d\right.$ even) In this case $\frac{c^{*} d^{*}}{2}=\frac{c d}{2}$, so T constructed above covers all partitions.

Case II: (d even, c odd) By the above construction, we have all tableaux with s up to $\frac{(c-1) d}{2}$. Thus we only need those even partitions with $s=\frac{c d-k}{2}$ for $0 \leq k \leq d-2$, $k \equiv d(\bmod 4)$. Take $T=\frac{\mathrm{c}-3}{2} U_{1}(d) \vee U_{3}(\mathrm{~A})$ for $0 \leq \mathrm{A} \leq \frac{d}{2}$ with A even. Then $s=\frac{c-3}{2} d+\mathrm{A}+d=\frac{c d-d+2 \mathrm{~A}}{2}$. Thus we have $k=d-2 \mathrm{~A}$, which ranges over the correct parameters. Since U_{1} and U_{3} are in maximal form, Lemma 3.4.9 implies disjointness and Theorem 8 shows T is non-zero.

Case III: (c even, d odd) Since $r=n-2 s=c d-2 s$ s we need $\lambda=[r+s, s]$ for $r \leq c d$ with $r \equiv c d(\bmod 4)$. It suffices to construct a non-zero tableau for $r<4 d$. When $r \geq 4 d$, let $r^{\prime}=r-4 d z$ with $r^{\prime}<4 d$. Then if we construct a $\lambda^{\prime}=\left[s+r^{\prime}, s\right]$ tableau T^{\prime} filled with d copies of $c-4 z$ elements, we get the needed tableau by $T=T^{\prime} \vee 4 \mathrm{z} V(d)$. Hence we will take $r<4 d$.

When $c \equiv 0(\bmod 4)$ then $r \equiv 0(\bmod 4)$. Take $T=\frac{c-4}{4} U_{2}(d-1,1) \vee U_{2}\left(d-\frac{r}{4}-\right.$ $1,1)$. This construction gives the shape $\frac{c-4}{4}[2 d, 2 d]+\left[2 d+\frac{r}{2}, 2 d-\frac{r}{2}\right]=\left[\frac{c d}{2}+\frac{r}{2}, \frac{c d}{2}-\frac{r}{2}\right]$ as desired. The parameters of these tableaux are positive unless $r=4 d-4$ since $r<4 d$, $r \equiv 0(\bmod 4)$, and $d \geq 2$. If $r=4 d-4$ then $d-\frac{r}{4}-1=0$, so use $U_{1}(2) \vee 2 V(d)$ instead of of $U_{2}\left(d-\frac{r}{4}-1,1\right)$.

For $c \equiv 2(\bmod 4)$ we will assume $r<2 d$. When $2 d \leq r<4 d$ let $r^{\prime}=r-2 d$. Then
can construct a $\lambda^{\prime}=\left[r^{\prime}+s, s\right]$ tableau T^{\prime} with $c \equiv 0(\bmod 4)$ and use $T=T^{\prime} \vee 2 V(d)$. Take $T=\frac{c-2}{4} U_{2}(d-1,1) \vee U_{1}\left(\frac{2 d-r}{2}\right)$ with $V(d)$'s as needed. Note that $c d \equiv r(\bmod 4)$ implies that $\frac{2 d-r}{2}$ is even, while $r<2 d$ insures it is positive. So we get the shape $\left[\frac{c d}{2}+\frac{r}{2}, \frac{c d}{2}-\frac{r}{2}\right]$ as needed. Theorem 8 shows these T 's are non-zero provided the weight-sets are disjoint, which follows from maximality.

Note that since $c d=n, n$ even, then c or d is even. Thus we have constructed all cases.

Although it is not directly apparent from this construction, c or d even is often a necessary requirement for any non-zero two row tableau with s even to exist. For instance, when $c=3$ and $d=7$, the shape $[11,10]$ has s even, but all tableaux are zero by Theorem 9 .

Bibliography

[1] George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998, Reprint of the 1976 original. MR 99c:11126
[2] S. C. Black and R. J. List, A note on plethysm, European J. Combin. 10 (1989), no. 1, 111-112. MR 89m:20011
[3] Emmanuel Briand, Polynômes multisymétriques, Ph. D. dissertation, University Rennes I, Rennes, France, October 2002.
[4] Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no. 4, 347-371. MR 95c:20056
[5] C. Coker, A problem related to Foulkes's conjecture, Graphs Combin. 9 (1993), no. 2, 117-134. MR 94g:20019
[6] Suzie C. Dent and Johannes Siemons, On a conjecture of Foulkes, J. Algebra 226 (2000), no. 1, 236-249. MR 2001f:20026
[7] William F. Doran, IV, On Foulkes' conjecture, J. Pure Appl. Algebra 130 (1998), no. 1, 85-98. MR 99h:20014
[8] H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc. 25 (1950), 205-209. MR 12,236e
[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3, 2002, (http://www.gap-system.org).
[10] David A. Gay, Characters of the Weyl group of $\operatorname{SU}(n)$ on zero weight spaces and centralizers of permutation representations, Rocky Mountain J. Math. 6 (1976), no. 3, 449-455. MR 54 \#2886
[11] Larry C. Grove, Groups and characters, Pure and Applied Mathematics, John Wiley \& Sons Inc., New York, 1997, A Wiley-Interscience Publication. MR 98e:20012
[12] Roger Howe, $\left(\mathrm{GL}_{n}, \mathrm{GL}_{m}\right)$-duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 85-109 (1988). MR 90b:22020
[13] N. F. J. Inglis, R. W. Richardson, and J. Saxl, An explicit model for the complex representations of S_{n}, Arch. Math. (Basel) 54 (1990), no. 3, 258-259. MR 91d:20017
[14] G. James and A. Kerber, Representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, MA, 1981.
[15] G. D. James, The representation theory of the symmetric group, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978.
[16] Serge Lang, Algebra, 3 ed., Addison Wesley, Reading Massachusetts, 1999.
[17] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. MR 96h:05207
[18] Bruce E. Sagan, The symmetric group, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1991, Representations, combinatorial algorithms, and symmetric functions. MR 93f:05102
[19] Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax, and B. Mazur, eds.), American Mathematical Society, Providence, RI, 2000, pp. 295-319.
[20] R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388. MR 3,262d
[21] Rebecca Vessenes, Foulkes' conjecture and tableaux construction, J. Albegra (2004), forthcoming.
[22] David Wales, personal communication.
[23] Jie Wu, Foulkes conjecture in representation theory and its relations in rational homotopy theory, http://www.math.nus.edu.sg/~matwujie/Foulkes.pdf.

