
Generalized Foulkes’ Conjecture and Tableaux

Construction

Thesis by

Rebecca Vessenes

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Submitted May 27, 2004)



31

Chapter 4

The Tableaux of 1
S3b
SboS3

In this chapter we completely classify and discuss those tableaux occurring in 1S3b
SboS3

.

To begin with, we determine exactly which tableaux associated with this space have

qT 6= 0. This is done in Section 4.1. In Section 4.2, we use this information and

the results from Thrall’s paper, [20], to determine precisely which partitions occur.

Finally in Section 4.3, we construct a complete tableau basis for each the tableaux

space Sλ,3 ∩Mλ,3 associated to the irreducibles of 1S3b
SboS3

4.1 Classification of qT 6= 0, for T filled with 1, 2, 3

Let T be a λ-tableau filled with b copies of the numbers 1, 2, and 3. By Lemma 3.1.5,

T has at most three rows. By Remark 3.0.9 entry permutations, column permutations

and column exchanges do not change whether qT is non-zero. Hence we may take T

to be in the following the form:

T =

k l m n o p q

1 1 1 2 1 2 3
2 2 3 3
3





k + l + m + o = b

k + l + n + p = b

k + m + n + q = b

l ≥ m ≥ n ≥ 0
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However, since we know there are exactly b copies of every number in T , we may omit

the tail and simply write T as T =

k l m n

1 1 1 2
2 2 3 3
3

, retaining the condition l ≥ m ≥ n ≥ 0

and assuming the tail.

Theorem 9. With T as described above,

qT = 0 ⇐⇒





k + l odd l > m = n ≥ 0

k + n odd l = m ≥ n ≥ 0

k+m even l = m+2, n = m-1 ≥ 0

k+l even l = m + 1, m=n ≥ 0

Moreover, when qT 6= 0, it is non-zero by weight-set counting.

Proof. ⇐= Using Remark 3.0.9, to show qT = 0 it suffices to exhibit π ∈ S3, τ ∈ CT ,

ε(τ) = −1, such that πτT = T up to an exchange of columns.

For l > m = n, l + k odd, take τ =
k

(12)T ×
l

(12)T ×
m

()T ×
n

()T and π = (12).

So ε(τ) = (−1)k+l = −1. Then τT =

k l m n

2 2 1 2
1 1 3 3
3

and πτT =

k l m n

1 1 2 1
2 2 3 3
3

. Since m= n,

exchanging columns gives T .

For l = m ≥ n ≥ 0, k + n odd use π = (23), τ =
k

(23)T ×
l

()T ×
m

()T ×
n

(12)T and

interchange columns l and m.

Now consider when l = m+1, m = n with k + l even. Then T =

k m m m

1 1 1 1 2
2 2 2 3 3
3

.

Write T = T ∗ ∨ T1 where T ∗ =

k m m m

1 1 1 2
2 2 3 3
3

and T1 =
1 3
2

. Let T2 =
2 3
1

. Take σ′ ∈

RTi
so σ′T2 =

3 2
1

. Let π′ = (123) ∈ S3 and τ ∗ =
k

(132) ×
m

() ×
m

(12) ×
m

(12)∈ CT ∗ .
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Then via reordering the columns by σ̃, we have σ̃τ ∗π′σ′(T ∗ ∨ T2) = T ∗ ∨ T1. Note

that ε(τ ∗) = 1 and σ̃, σ′, π′ commute with each other and all τ ∈ CT ∗ . Then

qT =
∑

σ∈RT

∑
π∈S3

∑
τ∈CT

σπ ε(τ)τT

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT

σπ ε(τ)τ(T ∗ ∨ T1)

=
∑

σ∈RT

∑
π∈S3

σπ[(
∑

τ∈CT∗

ε(τ)τT ∗) ∨ (
∑

τ ′∈CT1

ε(τ ′)τ ′T1)]

=
∑

σ∈RT

∑
π∈S3

σπ[(
∑

τ∈CT∗

ε(τ)τT ∗) ∨ (T1 − T2)]

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τ(T ∗ ∨ T1 − T ∗ ∨ T2)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T1 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τ σ̃τ ∗π′σ′T ∗ ∨ T2 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ) ε(τ ∗)τT ∗ ∨ T2 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

= 0

Note that where appropriate we commute σ̃, σ′, and π′ to combine with σ and π and

reparameterize. The ε(τ ∗) factor arises from the reparamterization of ττ ∗.

Now consider when l = m+2, n = m-1 with k + m even. So T =
k m-1 m-1 m-1

1 1 1 1 1 1 1 2
2 2 2 2 2 3 3 3
3

. Write T = T ∗ ∨ T1 where T ∗ =

k m-1 m-1 m-1

1 1 1 2
2 2 3 3
3

and

T1 =
1 1 1 1 2 3 3 3
2 2 2 3

.

We will use the idea of the previous case to show qT = 0. However, we need to

sum over all ε(τ)τT1 with τ in CT1 . These tableaux have different symmetry relations
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with each other, so we will list all the ε(τ)τT and their relations. Note that the tail

is omitted for readability.

T1 =
1 1 1 1
2 2 2 3

T2 = − 2 1 1 1
1 2 2 3

T3 = − 1 2 1 1
2 1 2 3

T4 = − 1 1 2 1
2 2 1 3

T5 = − 1 1 1 3
2 2 2 1

T6 =
2 2 1 1
1 1 2 3

T7 =
2 1 2 1
1 2 1 3

T8 =
2 1 1 3
1 2 2 1

T9 =
1 2 2 1
2 1 1 3

T10 =
1 2 1 3
2 1 2 1

T11 =
1 1 2 3
2 2 1 1

T12 = − 1 2 2 3
2 1 1 1

T13 = − 2 1 2 3
1 2 1 1

T14 = − 2 2 1 3
1 1 2 1

T15 = − 2 2 2 1
1 1 1 3

T16 =
2 2 2 3
1 1 1 1

For appropriate σ′ ∈ RT1 we have the following relations. All permutation listed

are from S3.

T1 = −(123)σ′T14 T2 = −(123)σ′T9 T3 = −(123)σ′T6 T4 = −(123)σ′T7

T5 = (12)σ′T13 T8 = (12)σ′T8 T10 = (12)σ′T10 T11 = (12)σ′T11

T12 = (23)σ′T15 T16 = (23)σ′T16

We also have some relations on T ∗, namely that for π∗ ∈ S3 a transposition, then

π∗T ∗ = τπ∗T
∗ for τπ∗ ∈ CT ∗ with ε(τπ∗) = (−1)k+m−1. Also (132)T ∗ = τ(132)T

∗ for

τ(132) ∈ CT ∗ with ε(τ(132)) = (−1)2(m−1) = 1. Then

∑
σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(T ∗ ∨ (π∗)−1σ′Ti)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(π∗T ∗ ∨ σ′Ti)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ) ε(τπ∗)τ(T ∗ ∨ σ′Ti)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ) ε(τπ∗)τ(T ∗ ∨ Ti)
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Hence if Ti = −(123)σ′Tj or Ti = π∗σ′Tj for π∗ a transposition, then
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ [(T ∗ ∨ Ti) + (T ∗ ∨ Tj)] = 0. Also, if Ti = π∗σ′Tj,

then
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(T ∗ ∨ Ti) = 0. So using the cancellations above,

we have

qT =
∑

σ∈RT

∑
π∈S3

∑
τ∈CT

πσ ε(τ)τ(T ∗ ∨ T1)

=
∑

σ∈RT

∑
π∈S3

πσ[(
∑

τ∈CT∗

ε(τ)τT ∗) ∨ (
∑

τ ′∈CT1

ε(τ ′)τT1)]

=
16∑
i=1

∑
σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(T ∗ ∨ Ti)

= 0

=⇒ To prove these are the only non-zero cases, we will use weight-set counting

of Theorem 4 to show qT 6= 0 in the remaining cases. Given a weight, for every

weight assignment π ∈ S3 we will count (with sign) the number of τ ∈ CT such that

πω(T ) = ω(τT ) and show the sum of these numbers is non-zero. In some cases it

may be necessary to use ω(τ ′T ) instead of ω(T ) to show the weight-sum is non-zero.

Since applying τ ′ affects only the sign of qT , this will not change our result.

Specifically we wish to show if:

k + l even l > m = n ≥ 0

k + n even l = m ≥ n ≥ 0

l > m > n

then qT 6= 0

unless l=m+1, m=n, k+l even, or l=m+1, m-1=n, k+m even.

Note that if k = l = m = n = 0 then T has only one row and CT = 1. In this

case qσT = qT , so there is exactly one distinct T . Since k + n = 0, so the statement

holds. Similarly, if l = m = n = 0, applying Lemma 3.2.6 gives k even. Hence we

may assume l > 0.



36

We will use the first weight-set to illustrate the technique and notation of weight-

set counting. This method of argument will be used extensively throughout the rest

of the paper. We will list our weight-counting in a table of the following form:

ωi = (l,m,n) Tableau # ε τ bound

(x, y, z) T ′ j (−1)ε l
τ1 × m

τ2 × n
τ3 m=n

The column headings are: the weight being used, the form of the tableau, the

number of τ corresponding to this weight, the sign of the τ , the form of τ , and any

bounds required. The subsequent lines correspond to different weight assignments in

line i. By (x, y, z), we mean ωi(x, y, z) = (l,m,n). When m=n, there are j distinct

τ such that τ =
l
τ1 × m

τ2 × n
τ3. All the τ have sign (−1)ε and τT is of the form T ′.

The following is a standard formula that we will use in computing these weight

sums. Its proof is a straightforward inductive application of Pascal’s Identity. For

notation purposes, we take
(
a
b

)
= 0 for b > a or b < 0. We also use the convention

(
0
0

)
= 1.

Lemma 4.1.1.
(
a+h
b

)− (
a
b

)
=

∑h
i=1

(
a+h−i
b−1

)

Consider the cases where k ≥ 0 and at least l > 0. We will apply weight-

set counting to rows two and three. For the most part, the table should be self

explanatory, though we will discuss the first weight-set table for clarity.

We’ll start with T =

k l m n

1 1 1 3
2 2 3 2
3

, ω2,3 = ( 0 k+l+n m
0 0 k )
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ω2,3 Tableau # ε τ bound

(1, 2, 3) T =

k l m n

1 1 1 3
2 2 3 2
3

1 (−1)0
k

()T ×
l

()T ×
m

()T ×
n

()T

(1, 3, 2) T =

k l m n

1 1 1 2
3 2 3 3
2

1 (−1)k+n
k

(23)T ×
l

()T ×
m

()T ×
n

(12)T l = m

(2, 1, 3) T =

k l m n

2 2 31 2
1 1 13 3
3

(
m
n

)
(−1)k+l

k

(12)T ×
l

(12)T ×
n

(12)T ×
n

(12)T

(2, 3, 1) T =

k l m n

2 2 1 2
3 1 3 3
1

1 (−1)l+n
k

(123)T ×
l

(12)T ×
m

()T ×
n

(12)T l = m

(3, 1, 2) T =

k l m n

3 21 3 3
1 12 1 2
2

(
l

m−n

)
(−1)l+n

k

(132)T ×
l+n−m

(12) T ×
m

(12)T ×
n

()T

(3, 2, 1) T =

k l m n

3 1 3 3
2 2 1 2
1

1 (−1)k+m
k

(13)T ×
l

()T ×
m

(12)T ×
n

()T

To understand how these τ are obtained, first apply the permutations needed to

have ω(x) = 0, for the appropriate x. Additionally, apply necessary permutations

so that row three of T has the correct weight. Once this is done, there will only be

one column block whose permutations have not been specified. Apply the number of

permutations needed to get the correct weight.

For the first line of this table, we see that T has the desired weight and any column

permutations will change this. Thus there is exactly one τ and it is positive.

In line two, we have ω3(2) = k and ω2,3(1) = 0. Hence we must apply (23)T to

column block k. Columns 1
2

and 1
3

cannot move since ω2,3(1) = 0. This gives l 2’s

in row two, so we must have l=m and apply (12)T to block n. When l=m, this

completely determines τ , and it has sign (−1)k+n. No such τ exists for l > m.
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Line three counts ω2,3(2, 1, 3). Since there can be no 2’s in either rows two or

three, τ must contain
k

(12)T ×
l

(12)T ×
n

(12)T . As row three already contains k 3’s,

column block k needs no other permutation. Hence column 1
3

is the only column

where τ has not yet been determined. As it stands, we already have k+l 1’s in row

two, hence only n more are required. Thus we need to apply
n

(13)T to 1
3
. There are

(
m
n

)
ways to choose which n columns move within the m block. Hence we get

(
m
n

)

distinct τ of the form described.

In line four we apply (132)T to block k in order to have ω3(1) = k and ω2,3(2) = 0.

Additionally, ω2,3(2) = 0 means we must apply (12)T to block l and (12)T to block

n. This gives l 1’s in row two, so we must have l=m and leave block m unchanged.

In this case there is one such τ ; it has sign (−1)l+n.

Line five is similar to line three. From the constraints ω3(1) = k and ω2,3(3) = 0

we have that τ contains
k

(123)T ×
m

(12)T ×
n

()T . In order to have the correct weight

for row two, we need l+n-m more 2’s. There are
(

l
m-n

)
ways to choose

l+n-m

(12) T from

block l and all these τ have sign (−1)l+n.

The last line has a similar argument to line one. We need only apply τ =
k

(13)T

×
m

(12)T to get the correct weight and this is the only possible τ .

From this table we get the following sums.

1 + (−1)k+l

(
m

m− n

)
+ (−1)l+n

(
l

m− n

)
+ (−1)k+m l 6= m (4.1.1)

1 + (−1)k+n + (−1)k+l

(
l

n

)
+ (−1)l+n + (−1)l+n

(
l

n

)
+ (−1)k+l l = m (4.1.2)

Case I: (l > m > n). Here, (4.1.1) equals zero only if |( l
m−n

) ± (
m

m−n

)| = 0 or 2.

For it to equal 0, we must have m = n or l = m.

To have |( l
m−n

)− (
m

m−n

)| = 2, and (4.1.1) equal to zero, we must have k + m even

and k + n odd. Applying Lemma 4.1.1, we get l = m + 1 or l = m + 2.

If l = m + 1, then (4.1.1) becomes 1− (
m

m−n

)
+

(
m+1
m−n

)
+ 1. Now

(
m+1
m−n

)− (
m

m−n

)
= 2

only if
(

m
m−n−1

)
= 2, that is m = 2 and n = 0. This contradicts k + m even and k + n

odd. Hence (4.1.1) is non-zero for l = m + 1.

If l = m + 2 and k + m even, (4.1.1) becomes 1 − (
m

m−n

)
+ (−1)m+n

(
m+2
m−n

)
+ 1.
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For this expression to be zero we must have n = m− 1, in which case we’ve already

shown qT = 0. Thus (4.1.1) is non-zero unless l = m + 2 and n = m− 1.

Finally,
(

l
m−n

)
+

(
m

m−n

)
= 2 only when m = n.

Case II: (l = m ≥ n, l > 0). We need only show the expression (4.1.2) is non-zero

for k+n even. From this, (4.1.2) becomes 2+(−1)k+l(1+
(
l
n

)
)+(−1)l+n(1+

(
l
n

)
). The

parity of k and n is the same, so we reduce to determining when 1+(−1)k+l((1+
(
l
n

)
) =

0. Since
(
l
n

)
> 0, this cannot occur.

Case III: (l > m = n). We want a non-zero weight sum for k+l even. Under these

conditions, expression (4.1.1) becomes 1 + 1 + (−1)l+n + (−1)k+n. This is non-zero

unless k + n is odd.

It remains to show qT 6= 0 for l > n = m, k + l even, k + m odd.

For this, consider the following weight-set counting on T =

k l m n

1 1 1 2
2 2 3 3
3

with

ω2,3 = ( k+l+m-1 0 n+1
0 0 k ). Note that this weight-set is not the weight of T . We are

counting which permutations τ will correspond to a weight assignment π, where

ω2,3 = πω2,3(τT ).
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ω2,3 Tableau # ε τ Bound

(1, 2, 3) T =

k l m n

2 2 31 2
1 1 13 3
3

(
m

m−1

)
(−1)k+l+m−1

k

(12)T ×
l

(12)T ×
m−1

(12)T ×
n

()T m ≥ 1

(1, 3, 2) T =

k l m n

3 21 3 3
2 12 1 2
1

(
l

l−1

)
(−1)m+n+l−1

k

(132)T ×
l−1

(12)T ×
m

(12)T ×
n

(12)T l ≥ 1

(2, 1, 3) T =

k l m n

1 1 1 32
2 2 3 23
3

(
n

m−1

)
(−1)m−1

k

()T ×
l

()T ×
m

()T ×
m−1

(12)T

m ≥ 1

m− 1 ≤ n

(2, 3, 1) T =

k l m n

3 21 3 2
2 12 1 3
1

(
l

n+1−m

)
(−1)k+1

k

(13)T ×
n+1−m

(12) T ×
m

(12)T ×
n

(12)T

m ≤ n + 1

n + 1−m ≤ l

(3, 1, 2) T =

k l m n

1 1 1 32
3 2 3 23
2

(
n

l−1

)
(−1)k+n+l+1

k

(23)T ×
l

()T ×
m

()T ×
n+1−l

(12) T

l ≥ 1

l− 1 ≤ n

(3, 2, 1) T =

k l m n

2 2 31 2
3 1 13 3
1

(
m

n+1−l

)
(−1)n+1

k

(123)T ×
l

(12)T ×
n+1−l

(12) T ×
n

()T

l ≤ n + 1

n + 1− l ≤ m

Since we previously dealt with the l = n + 1 case, the last two lines of the table

do not contribute. Hence the table gives the weight sum:

(−1)m−1m + (−1)l−1l + (−1)m−1m + (−1)l+1l l 6= n + 1, m 6= 0 (4.1.3)

Consider l > m = n, k + l even, k + n odd. For l 6= n + 1, m 6= 0, (4.1.3) is

2((−1)m−1m + (−1)l−1l), which is non-zero as l 6= m. If m = 0, we must have k

and l odd. This makes (4.1.3) l + l which is not equal to zero since l 6= 0. For

l = n+1 we’ve already shown qT = 0. Thus we determined all the non-zero tableaux

of 1S3b
SboS3

.
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4.2 The Irreducibles Partitions of 1
S3b
SboS3

For Theorem 2, we need to know which irreducibles occur (i.e., have non-zero multi-

plicity) in 1S3b
SboS3

. We call a shape (or partition) non-zero if the multiplicity of the cor-

responding irreducible in 1S3b
SboS3

is non-zero. By Lemma 2.2.7, the non-zero partitions

are those partitions where dim(Sλ,3 ∩Mλ,3) > 0. Since qT generates Sλ,a ∩Mλ,a we

need only determine from Theorem 9 which partitions have non-zero tableaux. These

partitions and their multiplicities were completely determined by Thrall in [20]. We

will first derive them from Theorem 9 and then confirm it with Thrall’s result.

We will only consider shapes [λ] which are partitions of 3b. Consider T =

︸︷︷︸
r︸ ︷︷ ︸

s︸︷︷︸
t

. This labeling will be useful in our later constructions, so we will

derive the non-zero shapes in terms of it. When T is of the form

k l m n

1 1 1 2
2 2 3 3
3

, we have

t = k, s = l+m+n and the tail r = 3b − 2s − 3t. Since 1, 2, and 3 all occur k = t

times in the part of T above t, we will sometimes replace b with b′ = b−k when con-

sidering the multiplicity of elements in columns r and s, since the subtableau formed

by columns r, s and the tail will have the elements 1, 2, and 3 occurring b′ times each.

In partition notation we have λ = [r + s + t, s + t, t].

4.2.1 Non-Zero Partitions from Theorem 9

Definition 4.2.1. For our purposes, we call a partition (or shape) λ of n required if

there is a non-zero λ-tableau T filled with n
3

copies of the elements 1, 2, and 3. These

are precisely the tableaux determined in Theorem 9. Specifically, a required shape is

one for which we must construct an appropriately filled non-zero tableau in order to

prove Theorems 1 and 2. These shapes are explicitly determined in Theorem 10.

To determine the non-zero [λ] = [r + s + t, s + t, t], we analyze the required

partitions that correspond to non-zero tableaux in Theorem 9. We find that:
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Theorem 10. The only partitions [r + s + t, s + t, t] of n = 3b which do not occur in

1Sn
SboS3

are those with s or r = 1 as well as those having s+ t odd and s or r ∈ {0, 2, 4}.
Equivalently, a partition is non-zero if, for r, s 6= 1, when r or s is in {0, 2, 4}, then

s + t is even.

Proof. For a given partition λ = [r + s + t, s + t, t], we need only find (l,m,n) with

l + n + n = s, k = t, and the conditions of Theorem 9 satisfied to show qT 6= 0.

This shows that Sλ must occur in 1S3b
SboS3

. Since all values of t = k can occur when

l > m > n, (if l 6= m + 2), we consider tableaux of this form. Given t, the elements

1, 2 and 3 will occur b′ = b − t times in the remaining columns l, m, n, and the

tail of T . For each t we need to determine which s for 0 ≤ s ≤ b′
2

yield required

non-zero partitions. To do so we will take the following parameterizations of (l,m,n)

and determine the corresponding s.

(l,m,n) = (i + 2, i + 1, i), we get s = 3i + 3 for 0 ≤ i ≤ b′ − 3

2

= (i + 3, i + 2, i) s = 3i + 5 0 ≤ i ≤ b′ − 5

2

= (i + 4, i + 3, i) s = 3i + 7 0 ≤ i ≤ b′ − 7

2

For a given parameterization of (l,m,n) by i, we have s = l+m+n. Since there

are at most b′ 1’s in the r and s sections, we must have l + m] ≤ b′ which gives the

upper bound on i.

These parameterizations of (l,m,n) are non-zero by Theorem 9 since l > m > n

and l 6= m + 2. Moreover, the parameterizations cover all equivalence classes of s

(mod 3). Hence this tells us that all partitions with s ≥ 5 or s = 3 are non-zero,

leaving aside the upper bound on s for now. When s = 4, the possibilities for (l,m,n)

are (4, 0, 0), (2, 2, 0), and (2, 1, 1) which are non-zero only when s+ t, (i.e., k) is even.

For (3, 1, 0) the tableau is always zero since l = m+2, n = m− 1. For s = 2 the only

possibilities are (2, 0, 0) and (1, 1, 0). The non-zero conditions of Theorem 9 require

k = t, and hence s + t, to be even in both cases. Similarly for s = 0, we must have k
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even for T to be non-zero, as shown in Lemma 3.2.6. For s = 1, the only possibility

is (l,m,n) = (1, 0, 0), and such a tableau is always zero.

Determining the upper bounds on s corresponds to determining lower bounds on r.

We will similarly give parameterizations of (l,m,n) which will cover all equivalence

classes of r (mod 3). Using the equation 3b′ − 2s = r we get the corresponding

equations and lower bounds.

For s = 3i + 3, i ≤ b′ − 3

2
then r ≥ 3, r ≡ 0 (mod 3) (4.2.1)

s = 3i + 5, i ≤ b′ − 5

2
r ≥ 5, r ≡ 2 (mod 3) (4.2.2)

s = 3i + 7, i ≤ b′ − 7

2
r ≥ 7, r ≡ 1 (mod 3) (4.2.3)

This is the parameterization table for s rewritten in terms of r. So for r ≥ 5, all

partitions are non-zero, provided the conditions on s are met.

If r = 0, we must have l = m = n = b′
2
. By Theorem 9, this shape is non-zero

only if k+l is even. Thus only the shapes with s+t = k+l+m+n even are non-zero.

For r = 1 we get the constraints l + m = l + n = b′ and m + n = b′ − 1. This means

m = n, and l=m+1. These tableaux are always zero.

When r = 2, we must have either l = m or m = n. These shapes will be non-zero

if k+n or k+l is even respectively. In either case, s + t is even.

For r = 4, we must have either m = n, l = m, or (l,m,n) = ( b′+2
2

, b′−2
2

, b′−4
2

) . In

the first two cases, the non-zero conditions of Theorem 9 force s + t to be even. In

the last case, the tableau is always zero.

If r = 3 or 5 then i = b′−3
2

or i = b′−5
2

is an integer for b′ odd so the parameterization

listed works. For b′ even, these partitions are not required since 3b′ − 2s = r, would

make r even.

In addition, Theorem 9 shows the remaining partitions are zero.
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4.2.2 Partition Multiplicities according to Thrall

In [20], Thrall determines the partitions occurring in 1S3b
SboS3

with multiplicity, which

he calls f(λ). If λ = [λ1, λ2, λ3], he gives the following method to compute f(λ):

To the minimum of 1 + λ1 − λ2 and 1 + λ2 − λ3, add whichever of −2,

0, +2 will give a result divisible by 3. If this result is even, divide by 6

to get f(λ). If the result is odd, add or subtract 3 according to λ2 being

even or odd and then divide by 6 to get f(λ).

Letting λ = [r+s+ t, s+ t, t] we have min(1+λ1−λ2, 1+λ2−λ3) = 1+min(r, s).

Then f(λ) = 1+min(r,s)+x+y
6

where x ∈ {−2, 0, 2} such that 1 + min(r, s) + x ≡ 0

(mod 3), y ∈ {−3, 0, 3} such that 1 + min(r, s) + x + y ≡ 0 (mod 6), and y ≥ 0 if

s + t even and y ≤ 0 if s + t odd.

Theorem 11. Writing s = 6k + j, r = 6h + i with 0 ≤ i, j ≤ 5, then by [20], the

multiplicity of Sλ in 1S3b
SboS3

is f(λ), where

f(λ) =





k s ≤ r i = 0, 2, 4, s + t odd

k s ≤ r i = 1

k + 1 s ≤ r i = 0, 2, 4, s + t even

k + 1 s ≤ r i = 3, 5

h r < s i = 0, 2, 4, s + t odd

h r < s i = 1

h + 1 r < s i = 0, 2, 4, s + t even

h + 1 r < s i = 3, 5

Hence f(λ) 6= 0 for r, s 6= 1, provided s+ t is even when r or s is in {0, 2, 4}. This

agrees with our results in Section 4.1.
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4.3 Construction of Basis Tableaux for c = 3

Recall that the space Sλ,c∩Mλ,c is spanned by {qT} where the T are λ-tableaux filled

with the numbers 1 to c. By Lemma 2.2.7, dim(Sλ,c∩Mλ,c) equals the multiplicity of

Sλ in 1Sn
SdoSc

. Given a partition λ of n = 3b, we want a set of tableaux {Bp} such that

{qBp} is linearly independent and that |{Bp}| is the multiplicity of the irreducible

corresponding to λ in 1Sn
SboS3

. We call these Bp the basis tableaux for c = 3. These

tableaux will be used in Chapter 9 for the proof of Theorem 3. We will build these

tableaux from the following components:

M1 = 1 2 3 M2 =
2 2 3 3 3 3
1 1 1 1 2 2

M3 =
3 3
1 1
2 2

M4 =
3 3 2 3
1 1 1 2
2

Na =

a-1 a-1
2 3 2 3
1 1

1 < a ≤ n
3

= b

In constructing these basis tableaux, we want tableaux filled with only the numbers

1, 2, and 3. We will use Y to denote the joining of tableaux without renumbering

them. For example, M2 Y M1 =
2 2 3 3 3 3 1 2 3
1 1 1 1 2 2

.

Let λ = [r + s + t, s + t, t]. When t is even, write s = 6k + j and r = 6h + i,

with 0 ≤ i, j ≤ 5. Let g = min(k, h). Since λ is a partition of n = 3b we have

3t + 2s + r = 3b. Hence 2j + i ≡ 0 (mod 3). Let δ = i−j
3

. (So δ = 0 for i = j, δ = 1

for i = j + 3, and δ = −1 for i = j − 3.) When t is odd, we proceed as above, except

let s− 3 = 6k′ + j′, δ = i−j′
3

, and g = min(k′, h).

For p = 1, 2, . . . , g, we define the basis tableaux:

Bp = t
2
M3 Y N6p+j Y (k − p)M2 Y (2h− 2p + δ)M1 (t even)

Bp = t−1
2

M3 Y M4 Y N6p+j′ Y (k′ − p)M2 Y (2h− 2p + δ)M1 (t odd)
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Additionally, for j, j′ 6= 1 we have the tableau B0, which is Bp with p = 0 under

certain conditions.

B0 = t
2
M3 Y Nj Y kM2 Y (2h + δ)M1, j > 1 (t even)

B0 = t
2
M3 Y kM2 Y (2h + δ)M1 j = 0 (t even)

B0 = t−1
2

M3 Y M4 Y Nj′ Y k′M2 Y (2h + δ)M1, j′ > 1 (t odd)

B0 = t−1
2

M3 ∨M4 Y k′M2 Y (2h + δ)M1 j′ = 0 (t odd)

Note that if δ = −1, then B0 exists only for h ≥ 1 and Bg exists only for g < h.

To demonstrate that the {Bp} is a basis, we need to verify that they:

• Have the correct shape,

• Are non-zero and maximal,

• Are linearly independent,

• Span the space.

Shape: First consider the shape of these tableaux. We need to show these

tableaux have shape λ = [r + s + t, s + t, t]. For t even:

λ3(Bp) = t
2
λ3(M3) + λ3(N6p+j) + (k − p)λ3(M2) + (2h− 2p + δ)λ3(M1)

= t
2
∗ 2 + (k − p) ∗ 0 + (2h− 2p + δ) ∗ 0

= t

λ2(Bp) = t
2
λ2(M3) + λ2(N6p+j) + (k − p)λ2(M2) + (2h− 2p + δ)λ2(M1)

= t + 6p + j + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 0

= t + 6k + j

= t + s
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λ1(Bp) = t
2
λ1(M3) + λ1(N6p+j) + (k − p)λ1(M2) + (2h− 2p + δ)λ1(M1)

= t + (6p + j) ∗ 2 + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 3

= t + 6k + j + 6h + j + 3δ

= t + s + 6h + j + 3δ

= t + s + 6h + i

= t + s + r

When t is odd we have:

λ3(Bp) = t−1
2

λ3(M3) + λ3(M4) + λ3(N6p+j′) + (k′ − p)λ3(M2) + (2h− 2p + δ)λ3(M1)

= t−1
2
∗ 2 + 1 + (k′ − p) ∗ 0 + (2h− 2p + δ) ∗ 0

= t

λ2(Bp) = t−1
2

λ2(M3) + λ2(M4) + λ2(N6p+j′) + (k′ − p)λ2(M2) + (2h− 2p + δ)λ2(M1)

= t− 1 + 4 + 6p + j + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 0

= t + 3 + 6k′ + j′

= t + s

λ1(Bp) = t
2
λ1(M3) + λ1(M4) + λ1(N6p+j′) + (k′ − p)λ1(M2) + (2h− 2p + δ)λ1(M1)

= t− 1 + 4 + (6p + j′) ∗ 2 + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 3

= t + 3 + 6k′ + j′ + 6h + j′ + 3δ

= t + s + 6h + j′ + 3δ

= t + s + 6h + i

= t + s + r

A similar computation works for the shape of B0. Hence these tableaux have the

correct shape. Moreover, within each component, the same number of 1’s, 2’s and 3’s
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were used. Hence the Bp have the correct number of 1’s 2’s and 3’s.

Maximality: When t is even, a generic basis element (with the tail suppressed)

looks like:

Bp =

t a b c

3 2 3 3
1 1 1 2
2

a = 2(k − p) + 6p + j − 1

b = 2(k − p) + 1

c = 2(k − p)

Then ω2,3(Bp) =
(

t+6p+j+4(k−p) 2(k−p) 0
0 t 0

)
. Since b > c and a > b (for p ≥ 1), this

weight is maximal. Bp is also non-zero, since the only other possible weight assignment

is
(

t+6p+j+4(k−p) 0 2(k−p)
0 0 t

)
. This has sign (−1)t+2(k−p) = 1 as t is even.

When t is even, the tableau B0 is the same as Bp with p = 0 when j > 1. In this

case a > b and the above argument holds. There is no B0 for j = 1. When j = 0,

we have (suppressing the tail):

B0 =

t a a a

3 2 3 3
1 1 1 2
2

a = 2k

Then ω2,3(B0) = ( t+4k 2k 0
0 t 0 ). This weight is clearly maximal. Although there are

many different weight assignments possible for B0, all weight assignments are positive

since each column block is even. Hence B0 is non-zero.

When t is odd, a generic basis element (with the tail suppressed) looks like:

Bp =

t a b c

3 2 3 3
1 1 1 2
2

a = 2(k′ − p) + 6p + j′

b = 2(k′ − p) + 2

c = 2(k′ − p) + 1

Then ω2,3(Bp) =
(

t+6p+j′+4(k′−p)+2 2(k′−p)+1 0
0 t 0

)
. Since b > c and a ≥ b (for p ≥ 1),

this weight is maximal. Bp is also non-zero since the only other possible weight

assignment is
(

t+6p+j′+4(k′−p)+2 0 2(k′−p)+1
0 0 t

)
. This has sign (−1)t+2(k′−p)+1 = 1 as t is

odd.



49

When t is odd, the tableau B0 is the same as Bp with p = 0 when j′ > 1. In this

case a ≥ b and the above argument holds. There is no B0 for j′ = 1 (since qB0
is

zero when j′ = 1). When j′ = 0, we have (suppressing the tail):

B0 =

t a a a

3 2 3 3
1 1 1 2
2

a = 2k′ + 1

Then ω2,3(B0) =
(

t+4k′+2 2k′+1 0
0 t 0

)
. This weight is clearly maximal. Although there

are many different weight assignments possible for B0, These weight assignments

always move exactly two or four column blocks. Since the size of the column blocks

is odd, all weight assignments are positive. Hence B0 is non-zero.

Linear Independence: To show the tableaux Bp are linearly independent, by

Lemma 3.4.12 it suffices to show their max weights are distinct. First consider t even.

Say w2,3(Bp) = w2,3(Bp′), with p < p′. Then we must have t + 6p + j + 4(k − p) =

2(k − p′), which forces k = p = j = t = 0. Then our partition is just [n], so only one

tableau is needed. If w2,3(Bp) = w2,3(B0) with p > 0, then we get t + 4k = 2(k − p)

which implies t = k = p = 0. Hence the tableaux are linearly independent. When t

is odd, the max weights must be distinct, since an argument similar to the one above

shows t = 0 which is not possible.

Span: Since the tableaux Bp are linearly independent they will span the space

Sλ,3 ∩Mλ,3 if |{Bp}| = mλ, where mλ = f(λ) as determined by [20]. (We listed f(λ)

explicitly in Theorem 11.)

First consider the case of t even. Given λ = [r + s + t+, s + t, t] with t even,

then mλ depends on the relative sizes of r and s. For s ≤ r, we need k + 1 tableaux

for j 6= 1 and k tableaux for j = 1. When s ≤ r, we have g = k. Thus we get k

different Bp’s and when j 6= 1 we have B0 as well. The restriction on the tableaux

when δ = −1 occurs only when g = h. However, then h = k and i = j − 3 which

contradicts s ≤ r, so this case does not occur here. Hence we have a full set of basis
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tableaux.

If r < s, we have g = h. How many tableaux we have depends on δ. Note that Bh

exists only for δ 6= −1, and B0 requires h > 0 for δ = −1. The number of tableaux

needed according to Theorem 11 also depends on δ.

Since s ≡ j (mod 2) and 3δ = i− j, when δ = 0 we have i ≡ s (mod 2). Then s

is even for i = 0, 2, and 4, hence by [20] we need we need h + 1 tableaux for i 6= 1

and h tableaux for i = 1. Since δ 6= −1, there are h distinct Bp. We also have B0

when i 6= 1 since i = j. Hence we have a full set of basis tableaux.

If δ = 1, all the tableaux described when δ = 0 occur. Since δ = 1, we have

i = j + 3 which implies i = 3, 4 or 5. For i = 4 we need need h tableaux since s is

odd, while for i = 3, 5 we need h + 1 tableaux. When i = 4 we have h different Bp

(though no B0 since j = 1). When i = 3, 5 then j = 0, 2. Hence B0 exists and we

obtain the complete set of basis tableaux.

For δ = −1 we have i = j − 3, so i = 0, 1, 2. We need exactly h tableaux since

either i = 1 or s is odd. However, we no longer have Bh, so we get only h−1 tableaux

from the Bp. In addition, when h ≥ 1 we have B0 since j = i + 3 ≥ 3 and so j > 1.

Hence we have h tableaux for h ≥ 1. If h = 0 then no tableaux are needed since

either r = 1 or r = 0 or r = 2 with s odd. Thus the correct number of tableaux is

given.

Now consider the case when t is odd. When s ≤ r we need k tableaux for

j = 0, 1, 2, or 4 and k + 1 tableaux for j = 3 or 5. If j = 3 or 5, then k′ = k = g so

there are k tableaux Bp, in addition to the tableau B0 (since j′ = j− 3 6= 1). If j < 3

then g = k′ = k − 1, so there are k − 1 tableaux Bp in addition to the tableau B0.

For j = 4, we have k tableaux Bp, since g = k′ = k. However since j′ = 1, B0 does

not exists. The restriction on the tableaux when δ = −1 occurs only when g = h.

However, then h = k′ = k and i = j − 3 which contradicts s ≤ r, so this case does

not occur here. Hence we have a full set of basis tableaux.

When r < s we need h tableaux when i = 1. For i = 0, 2, and 4 we need h

tableaux when s is even and h + 1 tableaux when s is odd. For i = 3 or 5 we need

h + 1 tableaux. Note that s 6≡ j′ (mod 2).
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If δ = 0 then i = j′. We have h tableaux Bp, along with B0 for j′ 6= 1. Hence

we have h tableaux when i = 1, and h + 1 tableaux otherwise. Since s is odd when

i = 0, 2, or 4, this is the correct number.

If δ = 1 then i = j′ + 3, so i = 3, 4 or 5. If i = 3 or 5, then j′ 6= 1 and there are

h + 1 tableaux as desired. If i = 4 then j′ = 1, hence there are only h tableaux Bp.

However, only h tableaux are needed here since s is even.

If δ = −1 then i = j′ − 3, so i = 0, 1 or 2. Since s is even when i 6= 1, only

h tableaux are required in this case. However, we no longer have Bh, so there are

h− 1 tableaux Bp. In addition, when h ≥ 1, we have B0, since j′ > 1, so the correct

number of tableaux are obtained. If h = 0 then no tableaux are needed since either

r = 1 or r = 0 or r = 2 with s+ t odd. Thus the correct number of tableaux is given.
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