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Chapter 3

Theory of Tableaux Construction

Throughout this and subsequent chapters we will use T to represent an arbitrary

tableau, σ an element of RT , τ an element of CT , and π an element of Sa for T filled

with 1 to a.

Remark 3.0.9.

a) eτT = ε(τ)eT

b) eπT = πeT

c) qπT = πqT = qT

d) qT = Σπ∈SaπeT

e) qτT = ε(τ)qT

These are standard computations, which are discussed in [7] and [18]. This remark

shows that we can ignore the effects of permuting entries when constructing the

tableaux. Also, we may order the columns however we choose at the cost of a sign.

3.1 Filling Tableaux

Definition 3.1.1. In T , the weight of a number x in row i, denoted ωi(x), is the num-

ber of times x occurs in row i of T . When T is not clear from context, we write ωi(x|T )

in place of ωi(x). We extend this so that ωi(x1, . . . , xj|T ) = (ωi(x1|T ), . . . , ωi(xj|T )).



10

Implicitly, we take ωi(T ) = (ωi(1), . . . , ωi(a)), which is called the row-weight of row i

of T . Similarly, ω(xj) =

(
ω1(xj)

...
ω`(xj)

)
is the weight vector of xj of T . Hence ω(T ) is the

matrix corresponding to ωi(j|T ). Note that row permutations do not effect weight,

so ω(σT ) = ω(T ).

Example 3.1.2. T =
1 2 2
3 4 4
5 5

. We have ω(T ) =
(

1 2 0 0 0
0 0 1 2 0
0 0 0 0 2

)
. From this we can read

that ω2(3) = 1.

Weights for a tableau are only comparable with tableaux of the same shape and

content. Recall that Wλ,a is the set of all λ-tableaux with content [ba]. Let Na be the

set of all a-tuples w with non-negative integer entries and Na,` those `× a matrices.

Then we can view the row-weight function as a linear operator ωi : Z[T |T ∈ Wλ,a] →
Z[w|w ∈ Na], where {w|w ∈ Na} is a Z-basis, or correspondingly, ω : Z[T |T ∈
Wλ,a] → Z[w|w ∈ Na,`], with ` = `(λ).

This means we treat weights like linearly independent basis in Z[w|w ∈ Na,`].

Hence ω(T1 + aT2) = ω(T1) + aω(T2). If T1 =
1 1
2

and T2 =
2 1
1

then ω1(T1) =

(2, 0) and ω1(T2) = (1, 1). So ω1(T1 + T2) = (2, 0) + (1, 1) and ω1(T1 + T1) = (2, 0) +

(2, 0) = 2 · (2, 0). For convenience, we take ω(0) = 0.

Definition 3.1.3. Let rowsumT (i) be the sum of all the entries in row i of T ,
∑

j ωi(j)j.

Lemma 3.1.4. eT = 0 iff T has a repeat entry in a column.

Proof. ⇒ It suffices to show that if T has no repetitions within a column, then eT 6= 0.

By Remark 3.0.9 column permutations only change the sign of eT , so without loss of

generality, we may assume the columns of T are strictly increasing. If eT = 0 then

there exists σ ∈ RT , τ ∈ CT such that ε(τ) = −1 and στT = T , and we say that

T cancels in the summation. Since στT = T , we must have ω(στT ) = ω(T ) and so

ω(τT ) = ω(T ). This implies that rowsumT = rowsumτT for all rows.

Let r be the first row in which τ moves an entry of T . Let αi1 , . . . , αik be the

entries of row r moved by τ . Say τ moves βj to αij . Since r is the first row moved
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by τ , βj > αij . Then rowsumT (r) =
∑k

j=1 αij +
∑

i6=ij
αi <

∑k
j=1 βj +

∑
i6=ij

αi =

rowsumτT (r). Contradiction. Therefore eT 6= 0.

⇐ If T has a repeated entry in a column, then there exists a transposition τ ∈ CT

such that τT = T . Hence eT = eτT = ε(τ)eT = −eT and so eT = 0.

Knowing that any tableau with repeated numbers in a column makes eT = 0 is

very useful for our construction of non-zero tableaux. We summarize this fact as

follows:

Lemma 3.1.5. Any tableau T filled with the numbers 1 to a having more than a

rows will have eT = 0 and qT = 0, as will any T having repetitions within a column.

Hence every tableau T filled with the numbers 1, 2, and 3, with qT 6= 0, will have

at most three rows and all column entries will be distinct. Due to this, from now on

we will assume all tableaux have distinct column entries.

Notation: Many of the tableaux we construct will have multiple identical

columns. We call a group of such columns, a column block. For both clarity and

space we denote a column block by one copy of the column with the number of rep-

etitions listed above. If the number of column copies is omitted, it is assumed to be

one. For example, T =
1 1 1
2 2 2

would be denoted by T =

3

1
2

, while T =

k l m n

1 1 1 2
2 2 3 3
3

has k copies of
1
2
3

and l copies of 1
2
, m copies of 1

3
, and n copies of 2

3
. We call

the columns of T having only one entry the tail of T . When specifying T by column

blocks, we may omit the tail, provided the content of T is known. The rest of T is

called the body. For instance, if T =

2
1 1 2 2 3
3 2 4
4

and we know that T has content
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[3, 3, 3, 3], we can just list the body, T =

2
1 1 2
3 2 4
4

instead. It is assumed that any

entries not specified are contained in the tail.

We also use this abbreviated notation when describing elements of CT . We write

τ ∈ CT as a direct product of permutations on the column blocks. Since the only per-

mutation possible on the tail is the identity, we omit the permutations corresponding

to the tail. Hence for T listed above, τ is of the form
2
τ1 ×τ2 × τ3. We write

k
τi if the

same permutation τi is to be applied to k columns within a column block. When k is

less than the size of the column block, we understand
k
τi to mean that τi is applied to

all k of the columns (determined by context) and the identity permutation is applied

to the remaining columns within the block. For instance, on the previous T , there

are two permutations of the form
1

(13)T ×()T × (12)T , which produce
4 1 1 4
3 3 2 2
1 4

and

1 4 1 4
3 3 2 2
4 1

.

3.2 Showing Tableaux are Non-Zero

Definition 3.2.1. A tableau T is said to be non-zero if qT 6= 0. Two tableaux are

said to be distinct if qT1
6= ±qT2

, otherwise T1 and T2 are said to be equivalent.

Since qT involves many summands, showing qT 6= 0 by direct summation is not

practical. Instead, we use a technique called weight-set counting. Weight-set counting

involves summing only those tableaux with a given weight; if that sum is non-zero,

the entire qT summation must be non zero.

Definition 3.2.2. Given a tableau T , let ω(T ) = (x1, . . . , xa), where xj is the weight

vector ω(j|T ) = xj of the element j in T . A weight assignment of T is a pairing

between the set of elements of T with the multiset of weight vectors of ω(T ). We

denote the pairing of the weight vector xj with the element kj by ω(kj|T ∗) = xj.

(The T ∗ represents a possible tableau which has the weight of kj being xj.) Note



13

that if the vectors xj and xj′ are equal, the weight assignment pairing kj with xj is

the same as the weight assignment pairing kj with xj′ . What matters in a weight

assignment is the vector paired with each element, not how we label the vectors.

We usually indicate a weight assignment by writing (k1, . . . , ka), by which we mean

ω(k1, . . . , ka|T ∗) = (x1, . . . , xa) = ω(T ).

Given a permutation π we can create a weight assignment by assigning the element

π(k) to xk, since ω(π(k)|πT ) = ω(k|T ) = xk. Similarly, given such pairing (k1, . . . , ka)

we can construct a permutation π by taking π = (k1, . . . , ka) in one-line notation.

For example, let T =
1 1 1
2 2 3
3

. Then ω(T ) =
(

3 0 0
0 2 1
0 0 1

)
. The weight assignment

(3, 1, 2) means ω(3, 1, 2|T ∗) =
(

3 0 0
0 2 1
0 0 1

)
for some tableau T ∗. This weight assignment

corresponds to the weight permutation π = (132) in cycle notation (from left to right).

Note, however, that such a listing (k1, . . . , ka) of a weight assignment is not nec-

essarily unique. For instance, if x1 = x2 then (k1, k2, k3, . . . ka) and (k2, k1, k3, . . . ka)

represent the same weight assignment (pairing) but give rise to different permutations.

The numbers of such permutations corresponding to the same weight assignment de-

pends only on the vector symmetries of ω(T ). This number is denoted s(ω(T )).

For example, if T = 1 1 2 2 3 , then ωT = (2, 2, 1). There are three distinct

weight assignments of T corresponding to which of the three elements is assigned a

weight of 1. Since there are two permutations arising from such an assignment (for

instance, ω(213|T ) = (2, 2, 1) as well) we have s(ω(T )) = 2.

Definition 3.2.3. A weight assignment (k1, . . . , ka) is valid for T if there exists

τ ∈ CT such that ω(k1, . . . , ka|τT ) = ω(T ), i.e., T ∗ = τT . If this happens we say τ

is valid for (k1, . . . , ka), otherwise τ is invalid. Given a valid τ we say τ is positive if

ε(τ) = 1 and negative if ε(τ) = −1.

Example 3.2.4. Let T =
1 2 2 2 3 3 4
3 1 1
4 4

. We have ω(T ) =
(

1 3 2 1
2 0 1 0
0 0 0 2

)
. Recall that for

CT we use the labelling
1T 1T 1T

2T 2T 2T

3T 3T

(the tail is omitted since all column permutations
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on it are trivial). Now (2, 3, 1, 4) is a valid weight assignment since τ = (12)T×(12)T×

(12)T ∈ CT has τT =
3 1 1 2 3 3 4
1 2 2
4 4

with ω(τT ) =
(

2 1 3 1
1 2 0 0
0 0 0 2

)
, So ω(2, 3, 1, 4|τT ) =

ω(T ). The weight assignment, (2, 3, 1, 4) corresponds to the permutation π = (123)

in cycle notation, meaning ω(1, 2, 3, 4|τT ) = ω(1, 2, 3, 4|πT )

However, (1, 4, 3, 2) is not a valid weight assignment since then we must have

ω3(2|τT ) = 2 for some τ , but there is no column permutation that will put two 2’s in

the third row. We will make frequent use of weight assignments in order to determine

when T is non-zero.

Definition 3.2.5. Given T , consider the following functions:

• P(π(T )) = the number of τ ∈ CT such that ε(τ) = 1 and

ω(π−1(1), . . . , π−1(a)|τT ) = ω(T ).

• N(π(T )) = the number of τ ∈ CT such that ε(τ) = −1 and

ω(π−1(1), . . . , π−1(a)|τT ) = ω(T ).

• P(T ) =
∑

π P(π(T )), where π correspond to distinct weight assignments of ω(T )

• N(T ) =
∑

π N(π(T )), where π correspond to distinct weight assignments of

ω(T )

Theorem 4. (Weight-set Counting) If qT = 0 then P(T ) = N(T ).

Proof. Let D be the set permutations corresponding to distinct weight assignments

of T .

qT = 0 (3.2.1)

⇒
∑

π

∑
σ

∑
τ

ε(τ)ω(σπτT ) = 0 (3.2.2)

⇒
∑

π

∑
τ

ε(τ)ω(πτT ) = 0 (3.2.3)

⇒
∑

π

∑
τ

ε(τ)ω(πτT ) = 0 s.t. ω(1, . . . , a|πτT ) = ω(T ) (3.2.4)
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⇒
∑

π

∑
τ

ε(τ) = 0 s.t. ω(1, . . . , a|πτT ) = ω(T ) (3.2.5)

⇒
∑

π

∑
τ

ε(τ) = 0 s.t. ω(π−1(1), . . . , π−1(a)|τT ) = ω(T ) (3.2.6)

⇒s(ω(T ))
∑

π∈D

(P(πT )−N(πT )) = 0 (3.2.7)

⇒s(ω(T ))(P(T )−N(T )) (3.2.8)

⇒P(T )−N(T ) = 0 (3.2.9)

If qT = 0, taking the weight of both sides gives Eq. (3.2.2). Since row permutations

do not effect weights, we can reduce to Eq. (3.2.3). As distinct weights can not cancel,

we can consider only those tableaux with the same weight as ω(T ), hence we must

have Eq. (3.2.4). Since we are only summing over tableaux of a fixed weight we may

drop the weight from the sum and simply add the sign of τ , for Eq. (3.2.5). By

definition of weight assignments, ω(1, . . . , a|πτT ) = ω(π−1(1), . . . , π−1(a)|τT ) hence

we get Eq. (3.2.6). Restricting the sum to distinct weight-sets gives the factor of

s(ω(T )), and if we split over the sign of τ ′ we get Eq. (3.2.7), which by definition is the

same as Eq. (3.2.8). Factoring out s(ω(T )) yields Eq. (3.2.9). Thus P(T ) = N(T ).

We can also write Theorem 4 as:

Corollary 5. Let A = {τ |ω(τT ) = ω(πT ) for some π ∈ Sa}. If
∑

τ∈A ε(τ) 6= 0, then

qT 6= 0 by weight-set counting on ω(T ).

An easy application of this theorem is the following useful lemma.

Lemma 3.2.6. If T is a tableau consisting of a single column block (and an arbitrary

tail), for instance, T =

k

1
2

, then qT 6= 0 iff k even.

Proof. We have w = ω(T ) = ( k 0
0 k ). So there are two distinct weight assignments for

T , namely, ω(1, 2|T ∗) = w and ω(2, 1|T ∗) = w. We wish to determine for which τ

does T ∗ = τT satisfy one of these equations. For ω(1, 2|τT ) = w, we must have k 2’s

in the second row, hence none of the columns of T may move. The only τ satisfying
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this is τ =
k

()T , which is positive. For ω(2, 1|τT ) = w, we must have k 1’s in the second

row, thus τ must exchange row 1 and row 2 for every column in T . Thus τ =
k

(12)T

and ε(τ) = (−1)k. Hence when k is even, we have P(T ) = 2 and N(T ) = 0, so qT is

non-zero. The same idea applies for T having more than two rows.

When k is odd, however, we have P(T ) = N(T ) so the Theorem 4 does not apply.

Instead, let τ =
k

(12)T and let π ∈ Sa be the corresponding entry transposition (in

our example π = (12)). Then πτT = T and ε(τ) = −1. Thus qπτt = πqτT = qτT =

ε(τ)qT = −qT . So qT = 0.

It is also true that if qT 6= 0, then it is non-zero by weight-set counting on some

weight ω(τT ). That is we can’t have P(τT ) = N(τT ) for all τ ∈ CT and still have

qT 6= 0.

Theorem 6. If qT 6= 0, then it is non-zero by weight set counting on τT for some

τ ∈ CT .

Proof. Recall that qT =
∑

π

∑
σ

∑
τ πσ ε(τ)τT . Since a tableau may be written in

multiple ways (such as T ′ = πστT = π′σ′τ ′T ), we need to be careful of how we denote

a tableau. Consider the terms of qT partitioned in to classes {τT} = {πστT |π ∈
Sa, σ ∈ RT}, using {τT} as the class representative. Note that all tableaux in a

given class have the same sign and generic weight, i.e., the same weight modulo the

action of Sa. Hence if τT = π′σ′τ ′T for some π′, σ′, τ ′, with ε(ττ ′) = −1 then

πστT = ππ′σσ′τ ′T , so the classes are equal set wise, but of opposite sign. This holds

for any element of the class, not just τT .

This means we may view the tableaux which cancel in qT as a matching between

equal classes of opposite sign. So if qT 6= 0, there is a set of tableaux T which are not

canceled in qT . Now for any τT ∈ T either the weight of τT does not cancel, (that

is ω(τT ) 6= πω(π′σ′τ ′T ) for all π ∈ Sa and all π′σ′τ ′T ∈ T with ε(ττ ′) = −1) or the

weight cancels with some π′σ′τ ′T having ε(ττ ′) = −1 (that is ω(τT ) = πω(π′σ′τ ′T )

for some π′σ′τ ′T ∈ T). If the weight does not cancel for some τT , the qT 6= 0 by weight

set counting on τT . Assume all the weights do cancel. Then ω(τT ) = πω(π′σ′τ ′T ),

so for every row, τT and ππ′σ′τ ′T have the same number of each symbol. Hence there
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exists σ ∈ RT such that τT = ππ′σσ′τ ′T . But then, since ε(ττ ′) = −1, the classes

{τT} and {τ ′T} will cancel in qT contradicting τT, π′σ′τ ′T ∈ T. Hence qT 6= 0 by

weight set counting on some τT .

We will not need Theorem 6 for our results; it is included for theoretical interest

and completeness. Theorem 4 is used quite heavily, however. For instance, it allows

use to directly establish the multiplicities of the irreducible characters in 1S2b
SboS2

.

Theorem 7. The only irreducible characters occurring in 12b
SboS2

are those correspond-

ing to all partitions λ = [λ1, λ2] of 2b where λi is even. Moreover, these characters

occur with multiplicity 1.

Proof. By Remark 2.2.8 we need only consider those shapes with qT non-zero. By

Lemma 3.0.9 and Lemma 3.1.5 all distinct non-zero tableaux filled with b 1’s and b

2’s must be equivalent to T =

k

1
2

, (not including tail). Hence there is at most one

distinct non-zero tableau for any shape λ. By Lemma 3.2.6, when λ = [2b−k,k] then

qT 6= 0 iff k is even. Since 〈qT 〉 = Sλ,2 ∩Mλ,2 we must have dim(Sλ,2 ∩Mλ,2) = 1 if

k is even and zero otherwise.

This is a well-known result, appearing in [13] and [17].

The weight-set counting of Theorem 4 is useful for much more complicated

tableaux as well. To illustrate the general usage of the theorem, we list here a slightly

more involved example.

Example 3.2.7. To see directly how weight-set counting works, consider the following

example. The tableau Q∗ is listed below using the column block notation, with the

conditions on the block size listed to the right. Underneath the tableau we list the

weight and shape of the tableau.
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Q∗ =

a a b b c

2 2 2 3 1
1 4 4 1 4
3 3

a + b + c = d

2a + b < d

c even

a,b > 0

ω2,3 = ( a+b 0 0 d
0 0 2a 0 )

λ = [3d− 2a− b, d + a+b, 2a]

We want to show that qQ∗ 6= 0, which we do by showing P(Q∗) − N(Q∗) 6= 0

and applying Theorem 4. Now P(Q∗) is the number of τ ∈ CQ∗ with ε(τ) = 1 such

that ω(i1, i2, i3, i4|τQ∗) = ω(Q∗) for some distinct weight assignment (i1, i2, i3, i4).

(Equivalently, τ is such that {ω(i|τQ∗)‖i = 1, 2, 3, 4} = {ω(i|Q∗)‖i = 1, 2, 3, 4}.)
Similarly, N(Q∗) is those with ε(τ) = −1. The easiest way to count these τ is to use

weight assignments. First we determine which weight assignments might be possible

using some general properties of the tableau. Then we count how many τ correspond

to each weight assignment (i.e., for which τ is the weight assignment valid) and

determine ε(τ). Finally, we add this signed sum to determine P(Q∗)−N(Q∗).

First we want to determine which weight assignments are possible for Q∗. That

is, determine for which 4-tuples x = (i1, i2, i3, i4) there might exist τ ∈ CQ∗ such that

ω2,3(x|τQ∗) = ( a+b 0 0 d
0 0 2a 0 ). Let w = ( a+b 0 0 d

0 0 2a 0 ). Simply looking at Q∗, there are a

few restrictions on what x can be.

Notice the body contains d copies of the elements 1 and 4, but fewer than d copies

of 2 and 3 since 2a+b < d. Also note that the body of τQ∗ contains the same elements

as the body of Q∗. This implies that not all elements can have d copies in row two

of τQ∗ for some τ . If ω2,3(x|τQ∗) = w then either ω2(1|τQ∗) = d or ω2(4|τQ∗) = d;

namely, only the elements 1 and 4 may have ω2(i|τQ∗) = d. Hence any valid weight

assignment must have i4 = 1 or 4. If ω2(1|τQ∗) = d, then there is only one other

non-zero weight to assign in row two. As b > 0 the remaining columns (the second

a block and the first b block) must have the same element in row two, namely, 2 or
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4. That means we must have either ω2(2|τQ∗) = a+b or ω2(4|τQ∗) = a+b, so the

weight assignment must have i1 = 2 or 4. Similarly, if ω2(4|τQ∗) = d, then since

b > 0 we must have either ω2(1|τQ∗) = a+b or ω2(3|τQ∗) = a+b, that is i1 = 1 or

3.

We also consider which elements j may have ω3(j|τQ∗) = 2a. We find that

only with j = 2 or 3 may this occur since these are the only elements for which

both a blocks will be the same in row three. (That is if ω2,3(τQ∗) = w then either

ω3(2|τQ∗) = 2a or ω3(3|τQ∗) = 2a, so any valid weight assignment has i3 = 2 or 3.)

There are six distinct weight assignments x = (i1, i2, i3, i4) meeting these condi-

tions: (1, 2, 3, 4), (1, 3, 2, 4), (4, 3, 2, 1), (3, 1, 2, 4), (4, 2, 3, 1), and (2, 4, 3, 1). In the

table below, for each weight assignment we list for what type of tableau τQ∗ it is

valid, the form τ used, the number of such τ , and the sign of τ . This is an easy way

to summarize the counting of τ and their signs. (We will omit the subscripts Q∗ when

writing τ for easy reading. Remember that τ is labeled by the entry positions of Q∗

and not the elements.)
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ω2,3(x|τQ∗)

= ( a+b 0 0 d
0 0 2a 0 )

τQ∗ τ # ε(τ)

x = (1, 2, 3, 4)

a a b b c

2 2 2 3 1
1 4 4 1 4
3 3

a

() ×
a

() ×
b

() ×
b

() ×
c

() 1 (−1)0

x = (1, 3, 2, 4)

a a b b c

3 3 2 3 1
1 4 4 1 4
2 2

a

(13) ×
a

(13) ×
b

() ×
b

() ×
c

() 1 (−1)2a

x = (3, 1, 2, 4)

a a b b c

1 3 2 1 1
3 4 4 3 4
2 2

a

(132) ×
a

(13) ×
b

() ×
b

(12) ×
c

() 1 (−1)a+b

x = (4, 2, 3, 1)

a a b b c

2 2 2 3 4
1 4 4 1 1
3 3

a

() ×
a

() ×
b

() ×
b

() ×
c

(12) 1 (−1)c

x = (4, 3, 2, 1)

a a b b c

3 3 2 3 4
1 4 4 1 1
2 2

a

(13) ×
a

(13) ×
b

() ×
b

() ×
c

(12) 1 (−1)2a+c

x = (2, 4, 3, 1)

a a b b c

2 4 4 3 4
1 2 2 1 1
3 3

a

() ×
a

(12) ×
b

(12) ×
b

() ×
c

(12) 1 (−1)a+b+c

To see how we obtain such a table, consider the last row. We want a tableau τQ∗

such that ω2,3(2, 4, 3, 1|τQ∗) = w. This means that ω3(3|τQ∗) = 2a so τ cannot move

any entries in row 3. We also have ω2(4|τQ∗) = 0, so examining Q∗, we know that τ

acts non-trivially on the second column block a, the first column block b, and column

block c, namely, τ =
a∗ ×

a

(12)T ×
b

(12)T ×
b∗ ×

c

(12)T . If τ were to act non-trivially on

the first column block a or the second column block b, the number of 1’s in row two of

τQ∗ would decrease. Since we must have ω2(1|τQ∗) = d, this cannot happen. Hence

τ =
a

()T ×
a

(12)T ×
b

(12)T ×
b

()T ×
c

(12)T and has been completely determined for us.

Then we have ω2,3(2, 4, 3, 1|τQ∗) = w, so such a τ exists and is unique. For reference,

τ and τQ∗ are listed. Once τ has been determined, computing ε(τ) = (−1)a+b+c is
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straightforward.

Finally, to compute the weight sum for w, we sum the product of the number of τ

with the sign of τ , that is # · ε(τ). Here the sum is 1+1+(−1)a+b +1+1+(−1)a+b.

This sum is between 2 and 6, depending on the parity of a and b. Since it is non-zero

in all cases, Theorem 4 shows qQ∗ 6= 0.

3.3 Joining Tableaux

Definition 3.3.1. The join of two tableaux, U and V , denoted U ∨ V is a way of

combining tableaux together. If the entries of U and V are not disjoint, renumber

V so that they are. For instance, if U contains the numbers 1 to n and V contains

the numbers 1 to m we first renumber V with the numbers n + 1 to n + m. Then

concatenate the tableaux and sort the columns by length. Note that entries of every

column remain fixed, only the order of the columns change.

Example 3.3.2. U =
1 1 3
2 2 4
3 4

and V =
1 2 3
2 4 4
3

We renumber V to get V =
5 6 7
6 8 8
7

.

Concatenating gives
1 1 3
2 2 4
3 4

5 6 7
6 8 8
7

. When sorted we get T = U ∨ V =
1 1 5 3 6 7
2 2 6 4 8 8
3 4 7

.

Note that since applying permutations of Sa to a tableau has no effect on qT and mT ,

the renumbering of a tableau is irrelevant. Also, any σ ∈ RT that only interchanges

columns will commute with all τ ∈ CT . Hence column sorting has no effect of eT , qT ,

and mT , since there is no sign change for row permutations. This join operation also

joins the weight-sets, namely, ω3(U ∨ V ) = ω3(U), ω3(V ) = (0, 0, 1, 1, 0, 0, 1, 0).

Definition 3.3.3. Let T = U ∨V for tableaux U filled with 1 to m and V filled with

m+1 to a. The weights, ω(U) and ω(V ) are disjoint (equivalently, ω(T ) splits over U

and V ), if every valid weight assignment of ω(T ), can be obtained from concatenating

valid weight assignments of ω(U) and ω(V ).

Say ω(1, . . . , m|U) = (x1, . . . , xm) where the xi are weight vectors and ω(m +

1, . . . , a|V ) = (xm+1, . . . , xa). So ω(1, . . . , a|T ) = (x1, . . . , xa). Consider a valid
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weight assignment of T assigning to the element j the weight vector xkj
. Then

ω(1, . . . , a|τT ) = (xk1 , . . . , xka) for some τ ∈ CT . This restricts to a valid weight as-

signment of τ|U U by considering only the elements 1 to m. This restriction is unique

because a weight assignment is defined by the vector-element pairing, not the label

assigned to the vector. If this restriction corresponds to a weight assignment of ω(U)

(i.e., the weights assigned to elements 1 to m are the same as the weights of ω(U) as

vectors) then the weight assignment of T arose from valid weight assignments of U .

Similarly for V .

By restricting to a weight assignment of ω(U) we mean {xki
|i = 1 . . .m} = {xi|i =

1 . . . m}, i.e., the weights assigned to U are equivalent to those of ω(U). If this result

is a weight assignment of ω(U), it is valid for the tableau τ|U U . If this is true for

all valid weight assignments of T , then ω(T ) splits and the weights of U and V are

disjoint.

Example 3.3.4. Consider U =
1 1
2 2

and V =
3 3 3 3
4 4 4 4

. So T =
1 1 3 3 3 3
2 2 4 4 4 4

and

ω2(1, 2, 3, 4|T ) = (0, 2, 0, 4). There are four valid weight assignments possible for T :

(Recall that T ∗ represents any possible tableau τT .)

ω2(1, 2, 3, 4|T ∗) = (0, 2, 0, 4)

ω2(1, 2, 3, 4|T ∗) = (2, 0, 0, 4)

ω2(1, 2, 3, 4|T ∗) = (0, 2, 4, 0)

ω2(1, 2, 3, 4|T ∗) = (2, 0, 4, 0)

When we restrict these weight assignments to U we get two possible assignments

for U , ω2(1, 2|U∗) = (0, 2) and ω2(1, 2|U∗) = (2, 0). Since the original weight of U is

ω2(1, 2|U) = (0, 2), both of these assignments are assignments of (0, 2) and both are

valid for U (simply take τU = () and τU = (12)T × (12)T ). A similar argument holds

for V . Thus the ω(T ) splits over U and V .

However, weight-set disjointness is highly dependent on the filling of T . Consider

instead, U =
1 1
2 2

and V =
4 3
3 4

. So T =
1 1 4 3
2 2 3 4

and ω2(1, 2, 3, 4|T ) = (0, 2, 1, 1).
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Then ω2(1, 2, 3, 4|T ∗) = (1, 1, 2, 0) is a valid weight assignment for T by T ∗ = τT with

τ = (12)T × ()T × ()T × (12)T . However, ω2(1, 2|U∗) = (1, 1) it is not a valid weight

assignment of ω2(U) = (2, 0), even though there exists τ such that ω2(τU) = (1, 1).

Hence the weights are not disjoint.

Although this definition of disjointness is a bit involved, in Section 3.4 we will

give a sufficient (but not necessary) condition on the tableau which is easier to check.

However, we use disjointness here to obtain the full generality of Theorem 8, which

is one of the fundamental tools we use to construct non-zero tableaux.

Theorem 8. Let U and V be tableaux such that

• elements(U) = {1, . . . m} and elements(V ) = {m + 1, . . . a} (renumber if nec-

essary)

• The weights ω(1, . . . , m|U), ω(m + 1, . . . , a|V ) are such that qU and qV are

non-zero by weight-set counting on ω.

• The weight assignments corresponding to ω(1, . . . , m|U) and ω(m + 1, . . . , a|V )

are disjoint.

Then for T = U ∨ V , we have qT 6= 0 by weight-set counting on ω(T ).

Proof. By weight-set counting on U and V we have P(U) − N(U) 6= 0 and P(V ) −
N(V ) 6= 0. By Theorem 4, showing P(T ) − N(T ) 6= 0 implies qT 6= 0. Thus it

suffices to show P(T )−N(T ) = (P(U)−N(U))(P(V )−N(V )) or equivalently P(T ) =

P(U)P(V ) + N(U)N(V ) and N(T ) = N(U)P(V ) + P(U)N(V ). We will show P(T ) =

P(U)P(V ) + N(U)N(V ). The N(T ) claim follows similarly.

Consider the weight assignment (k1, . . . , ka) of T . If ω(k1, . . . , ka|τT ) =

ω(1, . . . , a|T ) with ε(τ) = 1 (i.e., τ is positive for (k1, . . . , ka)) then it

is counted in P(T ). Since the weight splits, we have ω(k1, . . . , ka|τT ) =

ω(k1, . . . km|τ|U U)ω(km+1, . . . ka|τ|V V ) = ω(1, . . . , m|U)ω(m + 1, . . . , a|V ) =

ω(1, . . . , a|T ) with ε(τ) = ε(τ|U )ε̇(τ|V ) = 1. Hence either ε(τ|U ) = ε(τ|V ) = 1 or

ε(τ|U ) = ε(τ|V ) = −1. If ε(τ|U ) = 1 then since ω(k1, . . . km|τ|U U) = ω(U) is a
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valid weight assignment (because the weights are disjoint), it is counted in P(U).

Similarly for the P(V ) cases. The ε(τ|U ) = −1 cases are counted in N(U). Thus

P(T ) ≤ P(U)P(V ) + N(U)N(V ).

Now any weight assignments ω(k1, . . . , ka|τ|U U) = ω(1, . . . , a|U) in P(U) and

ω(km+1, . . . , a|τ|V V ) = ω(m + 1, . . . , a|V ) in P(V ) must also correspond to the valid

weight assignment ω(k1, . . . , ka|τT ) = ω(1, . . . , a|T ) with τ = τ|U × τ|V . Moreover

ε(τ) = ε(τ|U )ε̇(τ|V ) = 1. So this weight assignment is in P(T ). Similarly for weight

assignments in N(U) and N(V ). Hence P(T ) ≥ P(U)P(V ) + N(U)N(V ). Thus we

have P(T ) = P(U)P(V ) + N(U)N(V ) as desired.

Theorem 8 allows us to construct a non-zero tableau from smaller non-zero

tableaux. The main difficulty in applying this theorem is showing that the weight-sets

are disjoint. To deal with this, we develop an idea of maximality of weights which is

sufficient for weight-set disjointness.

3.4 Maximal Weights

Since the action of Sa on a tableau T does not change the resulting qT , we generalize

the definition of tableau weight to account for this. We put an order on this generic

weight, thus defining maximal weights.

Definition 3.4.1. Given a tableau T , the generic form of ωi(T ) is wi(T ) = ωi(πT ) =

(x1, . . . , xa) for any π ∈ Sa such that xj ≥ xj+1 for all j. In essence, wi(T ) is the

weights of ωi(T ) listed in decreasing order. This definition works for any row of T .

We define the generic form of a weight on the entire tableau (assuming T has at

most three rows) by, w(T ) = ω2,3(πT ) = ( x1 ... xa
y1 ... ya ) for any π ∈ Sa such that yj ≥ yj+1

for all j and if yj = yj+1 then xj ≥ xj+1. We consider only the weight vectors of

the second and third rows and list the vectors so that the row three weights are

decreasing. If two vectors have the same weight for row three, we list the vector with

the larger weight in row two first.
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For instance, if T =
2 2 1
1 1 2
3 3 3

then ω2,3(T ) = ( 2 1 0
0 0 3 ). Hence w(T ) = ( 0 2 1

3 0 0 ).

Definition 3.4.2. We put an order on generic weights by wi(T1) > wi(T2) if when

wi(T1) = (x1, . . . xa), wi(T2) = (v1, . . . va), there exists k ≥ 1 such that xj = vj for

j < k and xk > vk. We say w(T1) > w(T2) if

1. w3(T1) > w3(T2) or

2. w3(T1) = w3(T2) and w2(T1) > w2(T2) or

3. w3(T1) = w3(T2), w2(T1) = w2(T2), and if we have w(T1) = ( y1 ... ya
x1 ... xa ) and

w(T2) = ( z1 ... za
x1 ... xa ) then there exists k ≥ 1 such that yj = zj for j < k and

yk > zk.

We also apply this ordering to sets of weight vectors, by associating to each set

the generic weight vector formed by concatenating the given weights in order. So to

the set A = {(0
2

)
,
(
1
1

)} we associate the weight ( 0 1
2 1 ).

Definition 3.4.3. We define the maximum generic weight of row i of T to be the

maximum with respect to > of {wi(τT )|τ ∈ CT}, where w is the generic weight

defined above. Similarly the maximum generic weight of T is the maximum with

respect to > of {w(τT )|τ ∈ CT}. Note that the maximum generic weight of T is

based only on the weights of rows two and three. As such we ignore the weight of the

first row.

Example 3.4.4. Let T =
1 2
2 1

. Then the generic weights w2(τT ) are (1, 1) and

(2, 0), with (2, 0) (the generic weight of τT =
1 1
2 2

or
2 2
1 1

) as maximum. Here

we’ve suppressed writing w3(T ) since T has only two rows.

If T =
1 1 4 4 4
2 2 3 3 3
3 3

then the maximum generic weight of T (of the second and third

rows) is ( 3 2 0 0
2 0 0 0 ) which is ω2,3(T ) in generic form, w(T ).

Definition 3.4.5. Let T be a tableau having three or fewer rows. Let wm be the

maximum generic weight of T . We say wm is the max weight for T if wm occurs in

qT . That is qT 6= 0 by weight-set counting on wm.
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Unlike the maximum weight, the max weight of a tableau may not exist since the

weight may not occur in qT . For instance, consider T =
1 1 1
2 2 2
3 3 3

. We know qT = 0 by

Lemma 3.2.6, yet T has ( 0 3 0
3 0 0 ) as its maximum weight.

The max weight for T is always the maximum weight for row three of T , but it

need not be the maximum weight for row two of T . Consider T =
5 2 3 3
1 4 4 1
3 3

. The

maximum generic weight of T is ( 0 2 2 0
2 0 0 0 ), but the maximum generic weight of row

two of T is (4, 0, 0, 0) which is not the generic form of (0, 2, 2, 0).

Definition 3.4.6. If wm is the max weight for T , we say T is in maximal form

provided ω2,3(πT ) = wm for some π ∈ Sa. This only requires that some permutation

of the weight vectors of ω2,3(T ) be equal to the max weight of T .

While the max weight may not exist for all tableaux, it is easy to show weight-set

disjointness for those tableaux which are in maximal form. In order to prove this, we

use the following lemmas regarding our ordering.

Lemma 3.4.7. Given two weights, W1 and W2, of the same length, let Ck =

{(x
y

)|(x
y

) ∈ Wk}, k = 1, 2 be the multisets of weight vectors in each of these weights.

Let A = C1 \ (C1 ∩ C2), the weight vectors of W1 not in W2. Similarly, let

B = C2 \ (C1 ∩ C2). If W1 ≥ W2, then A ≥ B.

Proof. Without loss of generality, assume Wi is written in maximal form (i.e., is equal

to its generic weight). If W1 = W2 then A = B = ∅, so the result holds trivially. So

suppose W1 > W2. Then either W1 differs from W2 at some place in the third row,

or the third rows are equal and they differ at some place in the second row (at least

vectorwise).

Define Ay = {(xi

yi

)|(xi

yi

) ∈ A, yi = y} and Bv = {(ui

vi

)|(ui

vi

) ∈ B, vi = v}. Defining

Cy
1 and Cv

2 similarly, we have Ay = Cy
1 \ (Cy

1 ∩ Cy
2 ) and Bv = Cv

2 \ (Cv
1 ∩ Cv

2 ).

Let W1 = ( x1 ... xm
y1 ... ym ) and W2 = ( u1 ... um

v1 ... vm ). If W1 differs from W2 in the third row,

then there exists j such that yj > vj and yi = vi for all i < j. Hence |Cyi
1 | = |Cvi

2 | =
|Cyi

2 | for yi > yj, so |Ayi| = |Bvi| = |Byi|. Then to show A > B it suffices to show
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|Ayj | > |Byj |. But since yj > vj, we have |Cyj

1 | > |Cyj

2 |. Thus w3(A) > w3(B) and

the result follows. Note that when the third rows are equal, this argument shows

w3(A) = w3(B).

If W1 and W2 are equal in the third row but the generic weights of their second

rows differ, we can apply the same argument as above, where Ax, Bx, Cx
i are the

appropriate sets of weight vectors with the second row weight equal to x. This shows

w2(A) > w2(B). Since we’ve already have w3(A) = w3(B), the result follows.

If W1 and W2 have the same generic weights in the second and third rows, then

by above we know the generic weights of rows two and three of A and B are the

same. By definition, A ∩ B = ∅, so the second row of the first vectors in A and

B are different. Now W1 and W2 agree in the third row, so the first vectors where

they differ in the second row must be the first vector in A and B respectively. Since

W1 > W2 we have the large vector occurring in W1 and hence in A. Thus A > B.

The following lemma is an obvious property of the ordering, but is included due

to the non-standard ordering used.

Lemma 3.4.8. Given sets A and B of weight vectors, if A ≥ B and B ≥ A then

A = B.

Proof. View A and B as generic weight vectors WA and WB. Let WA = ( x1 ... xm
y1 ... ym ) and

WB = ( u1 ... um
v1 ... vm ). Since A ≥ B we have (y1, . . . , ym) ≥ (v1, . . . , vm). So either the

rows are equal or there exists j such that yj > vj and yi = vi for all i < j. As B ≥ A

we would similarly get vj ≥ yj, which is a contradiction. Hence w3(A) = w3(B). A

similar argument shows w2(A) = w2(B).

If A 6= B, let j be the first place where they differ. Then A ≥ B implies
(

xj

yj

)
>

(
uj

vj

)
.

Since yj = vj, this means xj > uj. But the same argument on B ≥ A implies uj > xj,

which is a contradiction. Thus A = B.

Now using these lemmas we can show that the max weights of tableaux are nec-

essarily disjoint.
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Lemma 3.4.9. If U and V are tableaux in maximal form, with U containing b copies

of the elements 1 to m and V containing b copies of the elements m + 1 to a (after

renumbering as necessary), then ω(U) and ω(V ) are disjoint.

Proof. Let U and V be in maximal form. Let ω2,3(U ∨ V ) = ( x1 ... xm xm+1 ... xa
y1 ... ym ym+1 ... ya ). To

show that U and V are disjoint, we need to show that any valid weight assignment of

U ∨ V restricts to a valid weight assignment of U and V . Let
(

xk1
... xkm xkm+1

... xka
yk1

... ykm ykm+1
... yka

)

be a valid weight assignment of U ∨ V . That means there exists τ such that

ω2,3(τ [U ∨ V ]) =
(

xk1
... xkm xkm+1

... xka
yk1

... ykm ykm+1
... yka

)
. We want to show it restricts to a valid

weight assignment of U , that is ω2,3(τ|U U) =
( xk1

... xkm
yk1

... ykm

)
= ω2,3(πU) for some π ∈ Sm.

This is equivalent to showing {(xi

yi

)|i = 1 . . .m} = {(xki
yki

)|i = 1 . . . m}.
Let C = {(xi

yi

)|i = 1 . . .m} be set of the weight vectors of ω2,3(U) and D =

{(xki
yki

)|i = 1 . . .m} the set of weight vectors of ω2,3(τ|U U). Define A = C \ (C ∩ D)

and B = D \ (C ∩D). So A consists of those weight vectors of U assigned to V which

are distinct from the weight vectors of V assigned to U under this weight assignment.

That is, the vectors in A occur in ω2,3(U) but not in ω2,3(τ|U U). The set B is the

weight vectors are those vectors coming from ω2,3(τ|UU) which are not in ω2,3(U).

To prove disjointness, we need to show that C = D, which is equivalent to showing

A = B = ∅.

Now U is in maximal form, so ω2,3(U) ≥ ω2,3(τ
′U) for all τ ′. Hence ω2,3(U) ≥

ω2,3(τ|U U). So by Lemma 3.4.7, we have A ≥ B. But we can also view A as the

weight vectors of U in ω2,3(τ|V V ) which are not in ω2,3(V ). Similarly B is the set of

vectors from ω2,3(V ) which are not in ω2,3(τ|V V ). Since V is also in maximal form,

ω2,3(V ) ≥ ω2,3(τ|V V ). Hence by Lemma 3.4.7, we have B ≥ A. Thus Lemma 3.4.8

shows A = B. However, A ∩ B = ∅ by definition, so A = B = ∅. Thus the weights

are disjoint.

Example 3.4.10. Suppose U is a tableau in maximal form such that

ω2,3(1, 2, 3, 4|U) = ( 3 1 0 0
0 2 0 0 ) and V is a tableau in maximal form with

ω2,3(5, 6, 7, 8, 9, 10, 11|V ) = ( 2 1 1 0 0 0 0
0 1 1 0 0 0 0 ). Suppose these weights were not disjoint.

That means we must be able to assign some weight
(

x
y

)
of U to V and some weight
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(

x′
y′
)

of V to U .

First consider the vector
(
1
2

)
of U (i.e., the vector with the largest weight in row

three). Since V is in maximal form, we know that there can be at most one copies of

any element in row three of τV for any τ . Since 2 > 1, this vector cannot be assigned

to V . Similarly, once we know that
(
1
2

)
remains a weight of U , the largest row three

weight we can assign to U is 0. Hence
(
1
1

)
remains with V .

Now consider
(
3
0

)
of U . Having V in maximal form means that when

(
1
1

)
are

assigned to V , a vector
(∗
0

)
assigned to V must have ∗ ≤ 2. Thus

(
3
0

)
is assigned to

U . Therefore the only vectors of U and V that can be assigned to each other are the
(
0
0

)
vectors. However, since a weight assignment is based only on the vector and not

its label, this is the same as a weight assignment arising from U and V . Hence the

weights are disjoint.

Lemma 3.4.9 shows that if U and V are in maximal form, qU∨V 6= 0 by Theorem 8.

We will apply Theorem 8 repeatedly when constructing tableaux. As such, we want

U ∨ V to be in maximal form whenever U and V are.

Lemma 3.4.11. If T1 and T2 are maximal tableaux filled with different elements,

then T1 ∨ T2 is maximal.

Proof. The tableaux have no elements in common so the weight splits over the join.

Hence ω(τ [T1 ∨ T2]) = ω(τ1T1 ∨ τ2T2) = ω(τ1T1)∨ ω(τ2T2). Since each tableau weight

was maximal, so too is their join.

Hence maximality is preserved under the join operation. Through this join oper-

ation, we will construct collections of tableaux. To show these tableaux are linearly

independent (over C), we can simply compare max weights.

Lemma 3.4.12. Let {Bp} be a set of tableaux in maximal form. If the max weights

of these tableaux are distinct, then {qBp} is linearly independent.

Proof. Assume {qBp} is not linearly independent. Let Bk be the tableau with the

largest weight such that qBk
is not linearly independent from the rest of {qBp}. Write
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qBk
=

∑
apqBp . Then ω(qBk

) =
∑

apω(qBp). Since Bk is in maximal form, ω(Bk)

occurs with non-zero coefficient in ω(qBk
). Hence ω(Bk) must occur with non-zero

coefficient in ω(qBp) for some p. However, Bk was chosen such that ω(Bk) ≥ ω(Bp).

By hypothesis these weights are distinct, so the inequality is strict. But the Bp are

in maximal form, so ω(Bp) is the largest weight occurring in qBp . Hence ω(Bk) does

not occurring in
∑

apω(qBp), contradicting the linear dependence.

We will use Lemma 3.4.12 heavily in Chapter 9 to prove Theorem 3. To make use

of this lemma, we need to have distinctness of max weights. When the tableaux are

formed via the join operation, we can sometimes simplify the proof of max weight

distinctness via the following lemma:

Lemma 3.4.13. Suppose we have the two row tableaux T1, T2, T3, and T4, were the

non-zero max weights are as follows: ω(T1) = (A,B), ω(T2) = (C,D), ω(T3) = (a, b),

and ω(T4) = (c, d). Assume ω(T1) 6= ω(T3), ω(T2) 6= ω(T4), but λ2(T1) = λ2(T3) and

λ2(T2) = λ2(T4). If λ2(T1) 6= λ2(T2), then ω(T1 ∨ T2) 6= ω(T3 ∨ T4).

Proof. Since λ2(T1) 6= λ2(T2) and ω(T1) 6= ω(T3), assume A+B > C +D and A > a.

If ω(T1∨T2) = ω(T3∨T4), either A = c or A = d since a ≥ b by maximality of ω(T3).

Consider A = c, then B > d and B 6= c because C + D = c + d. Then A > a and

A + B = a + b, implies B < b ≤ a. Hence there is no weight equal to B, so this

cannot occur. Similarly if A = d then c < B and hence there is no weight equal to

B. Thus the weights are distinct.

Although Lemma 3.4.13 applies directly to the join of only two tableaux, it may

often be applied in a broader context. Namely, if many of the tableaux being joined

are the same, the question of distinct weights reduces to looking only at the weights of

those tableaux which differ. This approach will be used and discussed in Chapter 9.
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