Generalized Foulkes' Conjecture and Tableaux Construction

Thesis by
Rebecca Vessenes

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

Chapter 2

Background

2.1 Tableaux

A partition $\lambda=\left[\lambda_{1}, \ldots, \lambda_{\ell}\right]$ of a number n is an ordered tuple of positive integers such that $\sum \lambda_{i}=n$ and $\lambda_{i} \geq \lambda_{i+1}>0$; it is denoted by $\lambda \vdash n$. The length of λ is ℓ. A Ferrers diagram is the set $[\lambda]=\left\{(i, j) \mid 1 \leq i \leq \ell, 1 \leq j \leq \lambda_{i}\right\}$. We view [λ] as a (left-justified) stack of boxes with row i having λ_{i} boxes.

A tableau of shape λ is a filling of the Ferrers diagram $[\lambda]$ with a set of elements, usually the positive integers. It is said to have content $\alpha=\left[\alpha_{1}, \ldots, \alpha_{k}\right]$ if the integer i occurs exactly α_{i} times. A tableau is semi-standard if the entries are weakly increasing across the rows and strictly increasing down the columns. This notation is standard and further discussion can be found in [7] and [18].

Example 2.1.1. Consider the following tableaux:

$$
P=\begin{aligned}
& 125 \\
& 42 \\
& 3
\end{aligned} \quad Q=\begin{aligned}
& 115 \\
& 22 \\
& 33
\end{aligned} \quad R=\begin{array}{ll}
112 \\
233
\end{array}
$$

P is a $[3,2,1]$-tableau of content $\alpha=[1,2,1,1,1]$, while Q has shape $\lambda=[3,2,2]$ and content $\alpha=[2,2,2,0,1]$. Similarly, R has shape $[3,3]$ with content $\left[2^{3}\right]=[2,2,2]$. Both Q and R are semi-standard, but P is not.

2.2 Combinatorial Structures

There are two different permutation actions on tableaux: an action permuting the entry positions in the tableau and an action permuting the numbers filling the tableau. These actions commute with each other.

Let T be a λ-tableau filled with the numbers 1 to a, where $\lambda \vdash n$. The permutation of entry positions corresponds to an action of \mathcal{S}_{n} on T. View the entry positions (i.e., boxes) of T as labelled 1 to n. Then $\sigma \in \mathcal{S}_{n}$ acts on T by permuting the entries in the positions moved by σ. To avoid confusion between entry positions and numbers in T, we will denote all entry positions with the subscript ${ }_{T}$ when necessary. The permutation action of the numbers corresponds to their permutation by $\pi \in \mathcal{S}_{a}$.

331
Example 2.2.1. Take $n=6, \lambda=[3,2,1]$, and $a=3$. Consider $T=12$. In 2 terms of entry positions, we label T as $\begin{aligned} & 1_{T} 2_{T} 3_{T} \\ & 4_{T} 5_{T} \\ & 6_{T}\end{aligned}$. For $\sigma=(23)_{T} \in \mathcal{S}_{6}$, we have $313 \quad 221$
$\sigma T=12$, while the action of $\pi=(23) \in \mathcal{S}_{3}$ gives $\pi T=13$.
2
We generally restrict the action of \mathcal{S}_{n} to two subgroups. Let R_{T} be the subgroup of \mathcal{S}_{n} which set-wise fixes the rows of T, namely, the row permutations. Denote this action by σT for $\sigma \in R_{T}$. Let C_{T} be the subgroup of \mathcal{S}_{n} which set-wise fixes the columns of T, namely, the column permutations. This action is denoted τT for $\tau \in C_{T}$. If λ^{\prime} is the conjugate partition of λ, (i.e., the partition corresponding to column lengths) we have that $R_{T} \approx \mathcal{S}_{\lambda_{1}} \times \cdots \times \mathcal{S}_{\lambda_{\ell}}$ and $C_{T} \approx \mathcal{S}_{\lambda_{1}^{\prime}} \times \cdots \times \mathcal{S}_{\lambda_{\ell^{\prime}}}$. Viewing the subgroups under these isomorphisms, we can label the entry positions by labelling each row (resp. column) with 1 to λ_{i} (resp. $\lambda_{i^{\prime}}$). Under these labellings we write σ (resp. τ) as a direct product of the permutations for each row (resp. column).

Example 2.2.2. Let $T=\begin{aligned} & 112 \\ & 23\end{aligned}$, then for R_{T} we view T as labelled $\begin{aligned} & 1_{T} 2_{T} 3_{T} \\ & 1_{T} 2_{T}\end{aligned}$. Likewise we use the labelling $\begin{aligned} & 1_{T} 1_{T} 1_{T} \\ & 2_{T} 2_{T}\end{aligned}$ for C_{T}. Applying these actions to T, gives the following sets:
with each element occurring twice.
$C_{T}=\left\{()_{T} \times()_{T} \times()_{T},(12)_{T} \times()_{T} \times()_{T},()_{T} \times(12)_{T} \times()_{T},(12)_{T} \times(12)_{T} \times()_{T}\right\}$
Note that the actions of σ and τ do not commute, but π commutes with both
σ and τ.
Given λ a partition of $n=a b$, let $\mathcal{W}^{\lambda, a}$ be the set of all tableaux of shape λ
and content $\left[b^{a}\right]=[b, \ldots, b]$, where the entries are 1 to a. Let $\mathcal{S}^{\lambda, a}$ be the set of
all semi-standard tableaux in $\mathcal{W}^{\lambda, a}$. These sets and the following constructions were
developed by Doran in [7]. Note that when $b=1, \mathcal{S}^{\lambda}$ give rise to the Specht modules
which are discussed extensively in [15] and [18]. The partitions of n index the Specht
modules S^{λ}, which in turn correspond to precisely the irreducible modules of \mathcal{S}_{n}.
From $\mathcal{W}^{\lambda, a}$ we can construct the complex vector space $W^{\lambda, a}$ with the tableaux as
a basis. The action of \mathcal{S}_{a} on the tableaux give rise to a permutation representation.
Inside $W^{\lambda, a}$ we construct the following objects.

Definition 2.2.3. Let $T \in \mathcal{W}^{\lambda, a}$. Let $\epsilon(\tau)$ be the sign of τ as a permutation. Inside $W^{\lambda, a}$ we have:
a) $\mathbf{e}_{T}=\sum_{\sigma \in R_{T}} \sum_{\tau \in C_{T}} \epsilon(\tau) \sigma \tau T$
b) $\mathbf{q}_{T}=\sum_{\pi \in \mathcal{S}_{a}} \sum_{\sigma \in R_{T}} \sum_{\tau \in C_{T}} \epsilon(\tau) \pi \sigma \tau T$
c) $\mathbf{m}_{T}=\sum_{\pi \in \mathcal{S}_{a}} \sum_{\sigma \in R_{T}} \pi \sigma T$

The tableaux are independent basis for $W^{\lambda, a}$, so for $T_{1}, T_{2} \in \mathcal{W}^{\lambda, a}$, we have $T_{1}+T_{1}=2 T_{1}$ but $T_{1}+T_{2}=T_{1}+T_{2}$.

Example 2.2.4. Let $T=\begin{aligned} & 11 \\ & 22\end{aligned}$, then

$$
\mathbf{e}_{T}=4 \times\left\{\begin{array}{l}
11 \\
22
\end{array}+\begin{array}{l}
22 \\
11
\end{array}\right\}-2\left\{\begin{array}{l}
12 \\
21
\end{array}+\begin{array}{l}
21 \\
12
\end{array}+\begin{array}{l}
21 \\
21
\end{array}+\begin{array}{c}
12 \\
12
\end{array}\right\}
$$

Here, symmetry gives $\mathbf{q}_{T}=2 \mathbf{e}_{T}$.
Definition 2.2.5. From \mathbf{e}_{T} and \mathbf{m}_{T} we can construct the following subspaces of $W^{\lambda, a}$:
a) $S^{\lambda, a}=\mathbb{C}\left[\mathbf{e}_{T} \mid T \in \mathcal{W}^{\lambda, a}\right]$
b) $M^{\lambda, a}=\mathbb{C}\left[\mathbf{m}_{T} \mid T \in \mathcal{W}^{\lambda, a}\right]$

These spaces are \mathcal{S}_{a}-modules. We have $\left\{\mathbf{e}_{T} \mid T \in \mathcal{S}^{\lambda, a}\right\}$, a basis for $S^{\lambda, a}$, and $\left\{\mathbf{m}_{T} \mid T \in \mathcal{S}^{\lambda, a} / \mathcal{S}_{a}\right\}$, a basis for $M^{\lambda, a}$. The set $\left\{\mathbf{q}_{T} \mid T \in \mathcal{W}^{\lambda, a}\right\}$ generates $S^{\lambda, a} \cap M^{\lambda, a}$, but does not form a basis. Background on these spaces and the proofs of the statements may be found in [7].

In [7], Doran uses Gay's result from [10]:
Lemma 2.2.6 (Gay's Result). The multiplicity of the irreducible module S^{λ} in $1_{\mathcal{S}_{b} \mathcal{S}_{a}}^{\mathcal{S}_{a b}}$ equals the multiplicity of the trivial representation in $S^{\lambda, a}$.

From this, Doran reformulated Foulkes' Conjecture to:
Lemma 2.2.7. The dimension of $S^{\lambda, a} \cap M^{\lambda, a}$ equals the multiplicity of the irreducible S^{λ} in $1_{\mathcal{S}_{b} \mathcal{S}_{a}}^{\mathcal{S}_{a b}}$.

A proof of this lemma in terms of \mathbf{q}_{T} 's is presented in Appendix A. From this, Foulkes' Conjecture is equivalent to proving $\operatorname{dim}\left(S^{\lambda, a} \cap M^{\lambda, a}\right) \leq \operatorname{dim}\left(S^{\lambda, b} \cap M^{\lambda, b}\right)$ for $a \leq b$ and all $\lambda \vdash n$. Proving Conjecture 2 is equivalent to showing that for all $\lambda \vdash n$, $\operatorname{dim}\left(S^{\lambda, a} \cap M^{\lambda, a}\right) \leq \operatorname{dim}\left(S^{\lambda, c} \cap M^{\lambda, c}\right)$ when $a b=n=c d$ with $c, d \geq a$.

Remark 2.2.8. In terms of tableaux, proving Theorem 1 is equivalent to exhibiting m_{λ} non-zero linearly independent \mathbf{q}_{T}, where T has shape λ and content $\left[d^{c}\right]$, with m_{λ} the multiplicity of S^{λ} in $1_{\mathcal{S}_{b} \mathcal{S}_{2}}^{\mathcal{S}_{2 b}}$. Theorem 2 is provable by exhibiting a non-zero \mathbf{q}_{T} with T having shape λ and content $\left[d^{c}\right]$ for all λ such that the multiplicity of S^{λ} in $1_{\mathcal{S}_{b} l \mathcal{S}_{3}}^{\mathcal{S}_{3 b}}$ is non-zero. For Theorem 3 we want m_{λ} linearly independent tableaux T with content $\left[d^{c}\right]$ such that \mathbf{q}_{T} is non-zero, where $\lambda=\left[\lambda_{1}, \lambda_{2}\right]$ and m_{λ} is the multiplicity of S^{λ} in $1_{\mathcal{S}_{b} \mathcal{S}_{3}}^{\mathcal{S}_{3 b}}$.

Bibliography

[1] George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998, Reprint of the 1976 original. MR 99c:11126
[2] S. C. Black and R. J. List, A note on plethysm, European J. Combin. 10 (1989), no. 1, 111-112. MR 89m:20011
[3] Emmanuel Briand, Polynômes multisymétriques, Ph. D. dissertation, University Rennes I, Rennes, France, October 2002.
[4] Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no. 4, 347-371. MR 95c:20056
[5] C. Coker, A problem related to Foulkes's conjecture, Graphs Combin. 9 (1993), no. 2, 117-134. MR 94g:20019
[6] Suzie C. Dent and Johannes Siemons, On a conjecture of Foulkes, J. Algebra 226 (2000), no. 1, 236-249. MR 2001f:20026
[7] William F. Doran, IV, On Foulkes' conjecture, J. Pure Appl. Algebra 130 (1998), no. 1, 85-98. MR 99h:20014
[8] H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc. 25 (1950), 205-209. MR 12,236e
[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3, 2002, (http://www.gap-system.org).
[10] David A. Gay, Characters of the Weyl group of $\operatorname{SU}(n)$ on zero weight spaces and centralizers of permutation representations, Rocky Mountain J. Math. 6 (1976), no. 3, 449-455. MR 54 \#2886
[11] Larry C. Grove, Groups and characters, Pure and Applied Mathematics, John Wiley \& Sons Inc., New York, 1997, A Wiley-Interscience Publication. MR 98e:20012
[12] Roger Howe, $\left(\mathrm{GL}_{n}, \mathrm{GL}_{m}\right)$-duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 85-109 (1988). MR 90b:22020
[13] N. F. J. Inglis, R. W. Richardson, and J. Saxl, An explicit model for the complex representations of S_{n}, Arch. Math. (Basel) 54 (1990), no. 3, 258-259. MR 91d:20017
[14] G. James and A. Kerber, Representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, MA, 1981.
[15] G. D. James, The representation theory of the symmetric group, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978.
[16] Serge Lang, Algebra, 3 ed., Addison Wesley, Reading Massachusetts, 1999.
[17] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. MR 96h:05207
[18] Bruce E. Sagan, The symmetric group, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1991, Representations, combinatorial algorithms, and symmetric functions. MR 93f:05102
[19] Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax, and B. Mazur, eds.), American Mathematical Society, Providence, RI, 2000, pp. 295-319.
[20] R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388. MR 3,262d
[21] Rebecca Vessenes, Foulkes' conjecture and tableaux construction, J. Albegra (2004), forthcoming.
[22] David Wales, personal communication.
[23] Jie Wu, Foulkes conjecture in representation theory and its relations in rational homotopy theory, http://www.math.nus.edu.sg/~matwujie/Foulkes.pdf.

