Generalized Foulkes’ Conjecture and Tableaux Construction

Thesis by
Rebecca Vessenes

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2004
(Submitted May 27, 2004)
Chapter 2

Background

2.1 Tableaux

A partition \(\lambda = [\lambda_1, \ldots, \lambda_\ell] \) of a number \(n \) is an ordered tuple of positive integers such that \(\sum \lambda_i = n \) and \(\lambda_i \geq \lambda_{i+1} > 0 \); it is denoted by \(\lambda \vdash n \). The length of \(\lambda \) is \(\ell \).

A Ferrers diagram is the set \([\lambda] = \{(i, j) \mid 1 \leq i \leq \ell, 1 \leq j \leq \lambda_i\}\). We view \([\lambda]\) as a (left-justified) stack of boxes with row \(i \) having \(\lambda_i \) boxes.

A tableau of shape \(\lambda \) is a filling of the Ferrers diagram \([\lambda]\) with a set of elements, usually the positive integers. It is said to have content \(\alpha = [\alpha_1, \ldots, \alpha_k] \) if the integer \(i \) occurs exactly \(\alpha_i \) times. A tableau is semi-standard if the entries are weakly increasing across the rows and strictly increasing down the columns. This notation is standard and further discussion can be found in [7] and [18].

Example 2.1.1. Consider the following tableaux:

\[
\begin{align*}
P &= 1 & 2 & 5 \\
& 4 & 2 \\
& 3 \\
Q &= 1 & 1 & 5 \\
& 2 & 2 \\
& 3 & 3 \\
R &= 1 & 1 & 2 \\
& 2 & 3 & 3
\end{align*}
\]

\(P \) is a \([3, 2, 1] \)-tableau of content \(\alpha = [1, 2, 1, 1, 1] \), while \(Q \) has shape \(\lambda = [3, 2, 2] \) and content \(\alpha = [2, 2, 2, 0, 1] \). Similarly, \(R \) has shape \([3, 3]\) with content \([2^2] = [2, 2, 2]\). Both \(Q \) and \(R \) are semi-standard, but \(P \) is not.
2.2 Combinatorial Structures

There are two different permutation actions on tableaux: an action permuting the entry positions in the tableau and an action permuting the numbers filling the tableau. These actions commute with each other.

Let T be a λ-tableau filled with the numbers 1 to a, where $\lambda \vdash n$. The permutation of entry positions corresponds to an action of S_n on T. View the entry positions (i.e., boxes) of T as labelled 1 to n. Then $\sigma \in S_n$ acts on T by permuting the entries in the positions moved by σ. To avoid confusion between entry positions and numbers in T, we will denote all entry positions with the subscript T when necessary. The permutation action of the numbers corresponds to their permutation by $\pi \in S_a$.

Example 2.2.1. Take $n = 6$, $\lambda = [3,2,1]$, and $a = 3$. Consider $T = \begin{array}{ccc}3 & 3 & 1 \\ 1 & 2 & \\ 2\end{array}$. In terms of entry positions, we label T as $\begin{array}{ccc}1_T & 2_T & 3_T \\ 4_T & 5_T & \\ 6_T\end{array}$. For $\sigma = (23)_T \in S_6$, we have $\sigma T = \begin{array}{ccc}3 & 1 & 3 \\ 1_2 & & \\ 2\end{array}$, while the action of $\pi = (23) \in S_3$ gives $\pi T = \begin{array}{ccc}2 & 2 & 1 \\ 1 & 3 & \\ 3\end{array}$.

We generally restrict the action of S_n to two subgroups. Let R_T be the subgroup of S_n which set-wise fixes the rows of T, namely, the row permutations. Denote this action by σT for $\sigma \in R_T$. Let C_T be the subgroup of S_n which set-wise fixes the columns of T, namely, the column permutations. This action is denoted τT for $\tau \in C_T$. If λ' is the conjugate partition of λ, (i.e., the partition corresponding to column lengths) we have that $R_T \approx S_{\lambda_1} \times \cdots \times S_{\lambda_i}$ and $C_T \approx S_{\lambda'_1} \times \cdots \times S_{\lambda'_\ell}$. Viewing the subgroups under these isomorphisms, we can label the entry positions by labelling each row (resp. column) with 1 to λ_i (resp. λ'_i). Under these labellings we write σ (resp. τ) as a direct product of the permutations for each row (resp. column).

Example 2.2.2. Let $T = \begin{array}{cc}1 & 1 \\ 2 & 3\end{array}$, then for R_T we view T as labelled $\begin{array}{ccc}1_T & 2_T & 3_T \\ 1_T & 2_T & \end{array}$. Likewise we use the labelling $\begin{array}{ccc}1_T & 1_T & 1_T \\ 2_T & 2_T & \end{array}$ for C_T. Applying these actions to T, gives the following sets:
\{\sigma T \mid \sigma \in R_T\} = \left\{ \begin{array}{cccccc} 1 & 1 & 2 & 1 & 2 & 1 \\ 2 & 3 & 2 & 3 & 3 & 2 \end{array} \right\}

with each element occurring twice.

\{\tau T \mid \tau \in C_T\} = \left\{ \begin{array}{cccccc} 1 & 1 & 2 & 2 & 1 & 2 \\ 2 & 3 & 1 & 3 & 2 & 1 \\ 1 & 3 & 2 & 1 & 1 \end{array} \right\}

\{\pi T \mid \pi \in S_a\} = \left\{ \begin{array}{cccccc} 1 & 1 & 2 & 2 & 1 & 3 \\ 2 & 3 & 1 & 3 & 2 & 1 \\ 2 & 3 & 3 & 2 & 3 & 1 \end{array} \right\}

\quad C_T = \{() \times () \times ()_T, (12) \times () \times ()_T, () \times (12) \times ()_T, (12) \times (12) \times ()_T\}

Note that the actions of \(\sigma\) and \(\tau\) do not commute, but \(\pi\) commutes with both \(\sigma\) and \(\tau\).

Given \(\lambda\) a partition of \(n = ab\), let \(W^{\lambda,a}\) be the set of all tableaux of shape \(\lambda\) and content \([b^a] = [b, \ldots, b]\), where the entries are 1 to \(a\). Let \(S^{\lambda,a}\) be the set of all semi-standard tableaux in \(W^{\lambda,a}\). These sets and the following constructions were developed by Doran in [7]. Note that when \(b = 1\), \(S^\lambda\) give rise to the Specht modules which are discussed extensively in [15] and [18]. The partitions of \(n\) index the Specht modules \(S^\lambda\), which in turn correspond to precisely the irreducible modules of \(S_n\).

From \(W^{\lambda,a}\) we can construct the complex vector space \(W^{\lambda,a}\) with the tableaux as a basis. The action of \(S_n\) on the tableaux give rise to a permutation representation. Inside \(W^{\lambda,a}\) we construct the following objects.

Definition 2.2.3. Let \(T \in W^{\lambda,a}\). Let \(\epsilon(\tau)\) be the sign of \(\tau\) as a permutation. Inside \(W^{\lambda,a}\) we have:

\[e_T = \sum_{\sigma \in R_T} \sum_{\tau \in C_T} \epsilon(\tau) \sigma T \]
b) $q_T = \sum_{\pi \in S} \sum_{\sigma \in R} \sum_{\tau \in C} \epsilon(\tau) \pi \sigma \tau T$

c) $m_T = \sum_{\pi \in S} \sum_{\sigma \in R} \pi \sigma T$

The tableaux are independent basis for $W^{\lambda,a}$, so for $T_1, T_2 \in W^{\lambda,a}$, we have $T_1 + T_1 = 2T_1$ but $T_1 + T_2 = T_1 + T_2$.

Example 2.2.4. Let $T = \begin{pmatrix} 11 \\ 22 \end{pmatrix}$, then

$$e_T = 4 \times \left\{ \begin{pmatrix} 11 \\ 22 \end{pmatrix} + \begin{pmatrix} 22 \\ 11 \end{pmatrix} \right\} - 2 \left\{ \begin{pmatrix} 12 \\ 21 \end{pmatrix} + \begin{pmatrix} 21 \\ 12 \end{pmatrix} + \begin{pmatrix} 12 \\ 12 \end{pmatrix} \right\}$$

Here, symmetry gives $q_T = 2e_T$.

Definition 2.2.5. From e_T and m_T we can construct the following subspaces of $W^{\lambda,a}$:

a) $S^{\lambda,a} = \mathbb{C}[e_T | T \in W^{\lambda,a}]$

b) $M^{\lambda,a} = \mathbb{C}[m_T | T \in W^{\lambda,a}]$

These spaces are S_a-modules. We have $\{e_T | T \in S^{\lambda,a}\}$, a basis for $S^{\lambda,a}$, and $\{m_T | T \in S^{\lambda,a}/S_a\}$, a basis for $M^{\lambda,a}$. The set $\{q_T | T \in W^{\lambda,a}\}$ generates $S^{\lambda,a} \cap M^{\lambda,a}$, but does not form a basis. Background on these spaces and the proofs of the statements may be found in [7].

In [7], Doran uses Gay’s result from [10]:

Lemma 2.2.6 (Gay’s Result). The multiplicity of the irreducible module S^λ in $1_S^{\lambda,b}S_c$ equals the multiplicity of the trivial representation in $S^{\lambda,a}$.

From this, Doran reformulated Foulkes’ Conjecture to:

Lemma 2.2.7. The dimension of $S^{\lambda,a} \cap M^{\lambda,a}$ equals the multiplicity of the irreducible S^λ in $1_S^{\lambda,b}S_c$.

A proof of this lemma in terms of q_T ’s is presented in Appendix A. From this, Foulkes’ Conjecture is equivalent to proving $\dim(S^{\lambda,a} \cap M^{\lambda,a}) \leq \dim(S^{\lambda,b} \cap M^{\lambda,b})$ for $a \leq b$ and all $\lambda \vdash n$. Proving Conjecture 2 is equivalent to showing that for all $\lambda \vdash n$, $\dim(S^{\lambda,a} \cap M^{\lambda,a}) \leq \dim(S^{\lambda,c} \cap M^{\lambda,c})$ when $ab = n = cd$ with $c, d \geq a$.
Remark 2.2.8. In terms of tableaux, proving Theorem 1 is equivalent to exhibiting m_{λ} non-zero linearly independent q_{T}, where T has shape λ and content $[d^c]$, with m_{λ} the multiplicity of S^{λ} in $1_{S_0 S_2}$. Theorem 2 is provable by exhibiting a non-zero q_{T} with T having shape λ and content $[d^c]$ for all λ such that the multiplicity of S^{λ} in $1_{S_0 S_3}$ is non-zero. For Theorem 3 we want m_{λ} linearly independent tableaux T with content $[d^c]$ such that q_{T} is non-zero, where $\lambda = [\lambda_1, \lambda_2]$ and m_{λ} is the multiplicity of S^{λ} in $1_{S_0 S_3}$.
Bibliography

198

[22] David Wales, personal communication.