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Chapter 2

Background

2.1 Tableaux

A partition λ = [λ1, . . . , λ`] of a number n is an ordered tuple of positive integers

such that
∑

λi = n and λi ≥ λi+1 > 0; it is denoted by λ ` n. The length of λ is `.

A Ferrers diagram is the set [λ] = {(i, j)|1 ≤ i ≤ `, 1 ≤ j ≤ λi}. We view [λ] as a

(left-justified) stack of boxes with row i having λi boxes.

A tableau of shape λ is a filling of the Ferrers diagram [λ] with a set of elements,

usually the positive integers. It is said to have content α = [α1, . . . , αk] if the integer i

occurs exactly αi times. A tableau is semi-standard if the entries are weakly increasing

across the rows and strictly increasing down the columns. This notation is standard

and further discussion can be found in [7] and [18].

Example 2.1.1. Consider the following tableaux:

P =
1 2 5
4 2
3

Q =
1 1 5
2 2
3 3

R =
1 1 2
2 3 3

P is a [3, 2, 1]-tableau of content α = [1, 2, 1, 1, 1], while Q has shape λ = [3, 2, 2] and

content α = [2, 2, 2, 0, 1]. Similarly, R has shape [3, 3] with content [23] = [2, 2, 2].

Both Q and R are semi-standard, but P is not.
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2.2 Combinatorial Structures

There are two different permutation actions on tableaux: an action permuting the

entry positions in the tableau and an action permuting the numbers filling the tableau.

These actions commute with each other.

Let T be a λ-tableau filled with the numbers 1 to a, where λ ` n. The permutation

of entry positions corresponds to an action of Sn on T . View the entry positions (i.e.,

boxes) of T as labelled 1 to n. Then σ ∈ Sn acts on T by permuting the entries in

the positions moved by σ. To avoid confusion between entry positions and numbers

in T , we will denote all entry positions with the subscript T when necessary. The

permutation action of the numbers corresponds to their permutation by π ∈ Sa.

Example 2.2.1. Take n = 6, λ = [3, 2, 1], and a = 3. Consider T =
3 3 1
1 2
2

. In

terms of entry positions, we label T as
1T 2T 3T

4T 5T

6T

. For σ = (23)T ∈ S6, we have

σT =
3 1 3
1 2
2

, while the action of π = (23) ∈ S3 gives πT =
2 2 1
1 3
3

.

We generally restrict the action of Sn to two subgroups. Let RT be the subgroup

of Sn which set-wise fixes the rows of T , namely, the row permutations. Denote

this action by σT for σ ∈ RT . Let CT be the subgroup of Sn which set-wise fixes

the columns of T , namely, the column permutations. This action is denoted τT for

τ ∈ CT . If λ
′

is the conjugate partition of λ, (i.e., the partition corresponding to

column lengths) we have that RT ≈ Sλ1 × · · · × Sλ`
and CT ≈ Sλ′1 × · · · × Sλ′

`′
.

Viewing the subgroups under these isomorphisms, we can label the entry positions by

labelling each row (resp. column) with 1 to λi (resp. λi′). Under these labellings we

write σ (resp. τ) as a direct product of the permutations for each row (resp. column).

Example 2.2.2. Let T =
1 1 2
2 3

, then for RT we view T as labelled
1T 2T 3T

1T 2T
.

Likewise we use the labelling
1T 1T 1T

2T 2T
for CT . Applying these actions to T , gives

the following sets:
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{σT |σ ∈ RT} =

{
1 1 2
2 3

,

1 2 1
2 3

,

2 1 1
2 3

,

1 1 2
3 2

,

1 2 1
3 2

,

2 1 1
3 2

}

with each element occurring twice.

{τT | τ ∈ CT} =

{
1 1 2
2 3

,

2 1 2
1 3

,

1 3 2
2 1

,

2 3 2
1 1

}

{πT | π ∈ Sa} =

{
1 1 2
2 3

,

2 2 1
1 3

,

3 3 2
2 1

,

1 1 3
3 2

,

2 2 3
3 1

,

3 3 1
1 2

}

CT = {()T × ()T × ()T , (12)T × ()T × ()T , ()T × (12)T × ()T , (12)T × (12)T × ()T}

Note that the actions of σ and τ do not commute, but π commutes with both

σ and τ .

Given λ a partition of n = ab, let Wλ,a be the set of all tableaux of shape λ

and content [ba] = [b, . . . , b], where the entries are 1 to a. Let Sλ,a be the set of

all semi-standard tableaux in Wλ,a. These sets and the following constructions were

developed by Doran in [7]. Note that when b = 1, Sλ give rise to the Specht modules

which are discussed extensively in [15] and [18]. The partitions of n index the Specht

modules Sλ, which in turn correspond to precisely the irreducible modules of Sn.

From Wλ,a we can construct the complex vector space W λ,a with the tableaux as

a basis. The action of Sa on the tableaux give rise to a permutation representation.

Inside W λ,a we construct the following objects.

Definition 2.2.3. Let T ∈ Wλ,a. Let ε(τ) be the sign of τ as a permutation. Inside

W λ,a we have:

a) eT =
∑

σ∈RT

∑
τ∈CT

ε(τ)στT
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b) qT =
∑

π∈Sa

∑
σ∈RT

∑
τ∈CT

ε(τ)πστT

c) mT =
∑

π∈Sa

∑
σ∈RT

πσT

The tableaux are independent basis for W λ,a, so for T1, T2 ∈ Wλ,a, we have

T1 + T1 = 2T1 but T1 + T2 = T1 + T2.

Example 2.2.4. Let T =
11
22

, then

eT = 4×
{

11
22

+
22
11

}
− 2

{
12
21

+
21
12

+
21
21

+
12
12

}

Here, symmetry gives qT = 2eT .

Definition 2.2.5. From eT and mT we can construct the following subspaces of W λ,a:

a) Sλ,a = C[eT |T ∈ Wλ,a]

b) Mλ,a = C[mT |T ∈ Wλ,a]

These spaces are Sa-modules. We have {eT |T ∈ Sλ,a}, a basis for Sλ,a, and

{mT |T ∈ Sλ,a/Sa}, a basis for Mλ,a. The set {qT |T ∈ Wλ,a} generates Sλ,a∩Mλ,a, but

does not form a basis. Background on these spaces and the proofs of the statements

may be found in [7].

In [7], Doran uses Gay’s result from [10]:

Lemma 2.2.6 (Gay’s Result). The multiplicity of the irreducible module Sλ in

1Sab
SboSa

equals the multiplicity of the trivial representation in Sλ,a.

From this, Doran reformulated Foulkes’ Conjecture to:

Lemma 2.2.7. The dimension of Sλ,a∩Mλ,a equals the multiplicity of the irreducible

Sλ in 1Sab
SboSa

.

A proof of this lemma in terms of qT ’s is presented in Appendix A. From this,

Foulkes’ Conjecture is equivalent to proving dim(Sλ,a ∩Mλ,a) ≤ dim(Sλ,b ∩Mλ,b) for

a ≤ b and all λ ` n. Proving Conjecture 2 is equivalent to showing that for all λ ` n,

dim(Sλ,a ∩Mλ,a) ≤ dim(Sλ,c ∩Mλ,c) when ab = n = cd with c, d ≥ a.
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Remark 2.2.8. In terms of tableaux, proving Theorem 1 is equivalent to exhibiting

mλ non-zero linearly independent qT , where T has shape λ and content [dc], with mλ

the multiplicity of Sλ in 1S2b
SboS2

. Theorem 2 is provable by exhibiting a non-zero qT

with T having shape λ and content [dc] for all λ such that the multiplicity of Sλ in

1S3b
SboS3

is non-zero. For Theorem 3 we want mλ linearly independent tableaux T with

content [dc] such that qT is non-zero, where λ = [λ1, λ2] and mλ is the multiplicity of

Sλ in 1S3b
SboS3

.
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