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Chapter 10

Two Row Partitions and the
Gaussian Polynomial

Let n = ab with a, b ∈ N and take ` ∈ N such that 1 ≤ ` ≤ bn
2
c. Let Pb

a(`) be the

numbers of partitions of n having at most a parts each of size less that or equal to b,

that is partitions of n fitting inside a b × a rectangle. Then Pb
a(`) is the co-efficient

of q` in the Gaussian polynomial
[

a+b
b

]
q
, as in [1]. The Gaussian polynomial,

[
a+b

b

]
q
,

is also called the Gaussian co-efficient or the generalized q-binomial coefficient.

Lemma 10.0.1. Take n = ab and λ = [n − `, `]. Let K = Sb o Sa. The multiplicity

of χλ in 1Sn
K equals Pb

a(`)− Pb
a(`− 1).

Proof. Let H = Sn−` × S` and H ′ = Sn−`+1 × S`−1. Then χ[n−`,`] = 1Sn
H − 1Sn

H′ by the

determinantal formula [14]. So 〈1Sn
K , χ[n−`,`]〉Sn = 〈1Sn

K , 1Sn
H 〉Sn −〈1Sn

K , 1Sn

H′〉Sn . Hence it

suffices to show 〈1Sn
K , 1Sn

H 〉Sn = Pb
a(`).

Now 〈1Sn
K , 1Sn

H 〉Sn is the number of orbits of K acting on the cosets of H in Sn [11].

View the numbers 1 to n in blocks of size b, that is

|1, 2, . . . , b|b + 1, . . . 2b| · · · |(a− 1)b + 1, . . . ab|

The copies of H in Sn correspond to the different ways S` sits in Sn, that is subsets

of {1, . . . n} of size `. Given such a subset L (corresponding to a copy of H) it will be

broken into a parts by intersection with the blocks above. Let µi be the size of the

part of L in the ith block. Since K acts by Sb on each of the blocks, L is equivalent
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(under K) to a subset L′ where the first µi numbers {i · b + 1, . . . i · b + µi} are chosen

from block i (starting with the 0th block). Since K also has the wreath product action

by Sa acting on the blocks, L′ is equivalent to the subset L∗, where the blocks are

reordered so the µi ≥ µi+1. Hence L∗ corresponds to a partition of the number ` into

a parts of size at most b and every such partition corresponds to a copy of H in Sn.

So every such partition is contained in some orbit of K on Sn/H, and every orbit

contains some such partition. Hence it suffices to shows that no two partitions are in

the same orbit. Say µ = [µ0, . . . µa−1] and ν = [ν0, . . . νa−1] are partitions of ` where

we allow 0 ≤ µi, νi ≤ b. If µ and ν are in the same orbit, then there exists g ∈ K

such that g · {i · b+ j|0 ≤ i ≤ a− 1, 1 ≤ j ≤ µi} = {i · b+ j|0 ≤ i ≤ a− 1, 1 ≤ j ≤ νi}.
So g(ib+ j) = ki,jb+ ci,j. Since g moves complete blocks, we must have ki,j = ki,j′ for

all 1 ≤ j, j′ ≤ µi. As the action is injective, we must then have ci,j 6= ci,j′ for j 6= j′.

Hence looking at the image, we have µi = |{ci,j}| ≤ νki
.

Take µ ¥ ν, µ 6= ν. There exists i such that µi > νi and µi′ = νi′ for all i′ < i.

Then there are i such νi′ with νi′ ≥ µi. But if g ·µ = ν then µi = |{ci,j}| ≤ νki
implies

there are at least i+1 such νi′ , which is a contradiction. Hence no orbit contains two

such partitions, which finishes the proof.

The ideas behind this proof are due to J. Saxl stemming from discussions of his

paper [13].

Since the multiplicity of irreducibles in induced characters is non-negative [16],

this lemma implies the well-known unimodality of the Gaussian coefficients [1]. Now

Pb
a(`) = Pa

b (`), since
[

a+b
b

]
q

= [ a+b
a ]q by taking conjugate partitions. Hence this

lemma shows that Foulkes’ Conjecture always holds for two row partitions, which is

discussed in [14].

We can also interpret our results on the generalized Foulkes’ Conjecture in terms

of the Gaussian coefficient. From Theorem 1 we have:

Theorem 12. If n = 2b = cd, with c, d ≥ 2, then for 1 ≤ ` ≤ bn
2
c,

Pd
c(`)− Pd

c(`− 1) ≥ Pb
2(`)− Pb

2(`− 1)
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Similarly, Theorem 3 gives:

Theorem 13. If n = 3b = cd, with c, d ≥ 3, then for 1 ≤ ` ≤ bn
2
c,

Pd
c(`)− Pd

c(`− 1) ≥ Pb
3(`)− Pb

3(`− 1)

Hence our results give insight into the relationship between the rates of growth of

different Gaussian coefficients.
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[3] Emmanuel Briand, Polynômes multisymétriques, Ph. D. dissertation, University

Rennes I, Rennes, France, October 2002.

[4] Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes,

Manuscripta Math. 80 (1993), no. 4, 347–371. MR 95c:20056

[5] C. Coker, A problem related to Foulkes’s conjecture, Graphs Combin. 9 (1993),

no. 2, 117–134. MR 94g:20019

[6] Suzie C. Dent and Johannes Siemons, On a conjecture of Foulkes, J. Algebra

226 (2000), no. 1, 236–249. MR 2001f:20026

[7] William F. Doran, IV, On Foulkes’ conjecture, J. Pure Appl. Algebra 130 (1998),

no. 1, 85–98. MR 99h:20014

[8] H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the

coefficients of the ground form, J. London Math. Soc. 25 (1950), 205–209. MR

12,236e

[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.3,

2002, (http://www.gap-system.org).



198

[10] David A. Gay, Characters of the Weyl group of SU(n) on zero weight spaces and

centralizers of permutation representations, Rocky Mountain J. Math. 6 (1976),

no. 3, 449–455. MR 54 #2886

[11] Larry C. Grove, Groups and characters, Pure and Applied Mathematics, John

Wiley & Sons Inc., New York, 1997, A Wiley-Interscience Publication. MR

98e:20012

[12] Roger Howe, (GLn, GLm)-duality and symmetric plethysm, Proc. Indian Acad.

Sci. Math. Sci. 97 (1987), no. 1-3, 85–109 (1988). MR 90b:22020

[13] N. F. J. Inglis, R. W. Richardson, and J. Saxl, An explicit model for the com-

plex representations of Sn, Arch. Math. (Basel) 54 (1990), no. 3, 258–259. MR

91d:20017

[14] G. James and A. Kerber, Representation theory of the symmetric group, Ency-

clopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading,

MA, 1981.

[15] G. D. James, The representation theory of the symmetric group, Lecture Notes

in Mathematics, vol. 682, Springer, Berlin, 1978.

[16] Serge Lang, Algebra, 3 ed., Addison Wesley, Reading Massachusetts, 1999.

[17] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford

Mathematical Monographs, The Clarendon Press Oxford University Press, New

York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.

MR 96h:05207

[18] Bruce E. Sagan, The symmetric group, The Wadsworth & Brooks/Cole Math-

ematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pa-

cific Grove, CA, 1991, Representations, combinatorial algorithms, and symmetric

functions. MR 93f:05102



199

[19] Richard P. Stanley, Positivity problems and conjectures in algebraic combina-

torics, Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax,

and B. Mazur, eds.), American Mathematical Society, Providence, RI, 2000,

pp. 295–319.

[20] R. M. Thrall, On symmetrized Kronecker powers and the structure of the free

Lie ring, Amer. J. Math. 64 (1942), 371–388. MR 3,262d

[21] Rebecca Vessenes, Foulkes’ conjecture and tableaux construction, J. Albegra

(2004), forthcoming.

[22] David Wales, personal communication.

[23] Jie Wu, Foulkes conjecture in representation theory and its relations in rational

homotopy theory, http://www.math.nus.edu.sg/~matwujie/Foulkes.pdf.


