Generalized Foulkes’ Conjecture and Tableaux Construction

Thesis by

Rebecca Vessenes

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2004
(Submitted May 27, 2004)
Chapter 10

Two Row Partitions and the Gaussian Polynomial

Let \(n = ab \) with \(a, b \in \mathbb{N} \) and take \(\ell \in \mathbb{N} \) such that \(1 \leq \ell \leq \lfloor \frac{n}{2} \rfloor \). Let \(\mathcal{P}_a^b(\ell) \) be the numbers of partitions of \(n \) having at most \(a \) parts each of size less that or equal to \(b \), that is partitions of \(n \) fitting inside a \(b \times a \) rectangle. Then \(\mathcal{P}_a^b(\ell) \) is the co-efficient of \(q^\ell \) in the Gaussian polynomial \([a+b]_q^b \), as in [1]. The Gaussian polynomial, \([a+b]_q^b \), is also called the Gaussian co-efficient or the generalized \(q \)-binomial coefficient.

Lemma 10.0.1. Take \(n = ab \) and \(\lambda = [n-\ell, \ell] \). Let \(K = S_b \wr S_a \). The multiplicity of \(\chi^\lambda \) in \(1_{S_n}^S K \) equals \(\mathcal{P}_a^b(\ell) - \mathcal{P}_a^b(\ell-1) \).

Proof. Let \(H = S_{n-\ell} \times S_\ell \) and \(H' = S_{n-\ell+1} \times S_{\ell-1} \). Then \(\chi^{[n-\ell,\ell]} = 1_{S_n}^{S_H} - 1_{S_n}^{S_H'} \) by the determinantal formula [14]. So \(\langle 1_{S_H}^{S_n}, \chi^{[n-\ell,\ell]} \rangle_{S_n} = \langle 1_{S_H}^{S_n}, 1_{S_H}^{S_H} \rangle_{S_n} - \langle 1_{S_H}^{S_n}, 1_{S_H'}^{S_H} \rangle_{S_n} \). Hence it suffices to show \(\langle 1_{S_H}^{S_n}, 1_{S_H'}^{S_H} \rangle_{S_n} = \mathcal{P}_a^b(\ell) \). Now \(\langle 1_{S_H}^{S_n}, 1_{S_H}^{S_H} \rangle_{S_n} \) is the number of orbits of \(K \) acting on the cosets of \(H \) in \(S_n \) [11]. View the numbers 1 to \(n \) in blocks of size \(b \), that is

\[
|1, 2, \ldots, b|b+1, \ldots 2b| \cdots |(a-1)b+1, \ldots ab|
\]

The copies of \(H \) in \(S_n \) correspond to the different ways \(S_\ell \) sits in \(S_n \), that is subsets of \(\{1, \ldots n\} \) of size \(\ell \). Given such a subset \(L \) (corresponding to a copy of \(H \)) it will be broken into \(a \) parts by intersection with the blocks above. Let \(\mu_i \) be the size of the part of \(L \) in the \(i \)th block. Since \(K \) acts by \(S_b \) on each of the blocks, \(L \) is equivalent
(under K) to a subset L' where the first μ_i numbers $\{i \cdot b + 1, \ldots i \cdot b + \mu_i\}$ are chosen from block i (starting with the 0^{th} block). Since K also has the wreath product action by S_a acting on the blocks, L' is equivalent to the subset L^*, where the blocks are reordered so the $\mu_i \geq \mu_{i+1}$. Hence L^* corresponds to a partition of the number ℓ into a parts of size at most b and every such partition corresponds to a copy of H in S_n.

So every such partition is contained in some orbit of K on S_n/H, and every orbit contains some such partition. Hence it suffices to show that no two partitions are in the same orbit. Say $\mu = [\mu_0, \ldots \mu_{a-1}]$ and $\nu = [\nu_0, \ldots \nu_{a-1}]$ are partitions of ℓ where we allow $0 \leq \mu_i, \nu_i \leq b$. If μ and ν are in the same orbit, then there exists $g \in K$ such that $g \cdot \{i \cdot b + j | 0 \leq i \leq a-1, 1 \leq j \leq \mu_i\} = \{i \cdot b + j | 0 \leq i \leq a-1, 1 \leq j \leq \nu_i\}$. So $g(i b + j) = k_{i,j} b + c_{i,j}$. Since g moves complete blocks, we must have $k_{i,j} = k_{i,j'}$ for all $1 \leq j, j' \leq \mu_i$. As the action is injective, we must then have $c_{i,j} \neq c_{i,j'}$ for $j \neq j'$. Hence looking at the image, we have $\mu_i = |\{c_{i,j}\}| \leq \nu_{k_i}$.

Take $\mu \succeq \nu$, $\mu \neq \nu$. There exists i such that $\mu_i > \nu_i$ and $\mu_i' = \nu_i'$ for all $i' < i$. Then there are i such $\nu_{i'}$ with $\nu_{i'} \geq \mu_i$. But if $g \cdot \mu = \nu$ then $\mu_i = |\{c_{i,j}\}| \leq \nu_{k_i}$ implies there are at least $i + 1$ such $\nu_{i'}$, which is a contradiction. Hence no orbit contains two such partitions, which finishes the proof.

The ideas behind this proof are due to J. Saxl stemming from discussions of his paper [13].

Since the multiplicity of irreducibles in induced characters is non-negative [16], this lemma implies the well-known unimodality of the Gaussian coefficients [1]. Now $P^a_b(\ell) = P^a(\ell)$, since $\left[\begin{smallmatrix} a+b \\ b \end{smallmatrix}\right]_q = \left[\begin{smallmatrix} a+b \\ a \end{smallmatrix}\right]_q$ by taking conjugate partitions. Hence this lemma shows that Foulkes’ Conjecture always holds for two row partitions, which is discussed in [14].

We can also interpret our results on the generalized Foulkes’ Conjecture in terms of the Gaussian coefficient. From Theorem 1 we have:

Theorem 12. If $n = 2b = cd$, with $c, d \geq 2$, then for $1 \leq \ell \leq \lfloor \frac{n}{2} \rfloor$,

$$P^d_c(\ell) - P^d_c(\ell - 1) \geq P^b_c(\ell) - P^b(\ell - 1)$$
Similarly, Theorem 3 gives:

\textbf{Theorem 13.} If \(n = 3b = cd \), with \(c, d \geq 3 \), then for \(1 \leq \ell \leq \lfloor \frac{n}{2} \rfloor \),

\[P^d_c(\ell) - P^d_c(\ell - 1) \geq P^b_3(\ell) - P^b_3(\ell - 1) \]

Hence our results give insight into the relationship between the rates of growth of different Gaussian coefficients.
Bibliography

[22] David Wales, personal communication.