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Chapter 1

Introduction and Statement of
Main Results

Foulkes’ Conjecture is an outstanding problem in the areas of plethysms, rational

homotopy theory, multisymmetric functions, and representation theory of symmetric

groups. In representation terms, Foulkes’ Conjecture deals with induced permutation

characters of wreath products of symmetric groups. The wreath product of symmetric

groups Sa and Sb, denoted Sa oSb, is the normalizer of the Young subgroup Sa×· · ·×Sa

(b times) in Sab. Let 1H be the trivial representation of a group H and 1G
H the induced

representation from H to G. From this we can state Foulkes’ Conjecture:

Conjecture 1. (Foulkes’ Conjecture) If a ≤ b then every irreducible character occur-

ring as a constituent in 1Sab
SboSa

occurs in 1Sab
SaoSb

with multiplicity greater than or equal

to its multiplicity in 1Sab
SboSa

.

Foulkes made this conjecture in [8] from his work on plethysms. The a = 2 case

was contained in Thrall’s 1942 work on symmetrized Kronecker powers, [20], and

proved again in [14] by James and Kerber using Gaussian coefficients. Coker also

gives a proof for a = 2 using eigenvalues in [5], while Doran used transition matrices

in [7]. The a = 3 case was proven by Dent and Siemons using mappings of unordered

partitions [6]. In [2], Black and List formulated Foulkes’ Conjecture in terms of ma-

trix incidences and Wu has rephrase it in terms of rational homotopy theory in [23].

Howe, in [12], used a plethystic approach to interpret Foulkes’ Conjecture via canon-

ical morphisms between symmetric power modules. Using this, Brion, [4], showed
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the conjecture holds for b sufficiently large with respect to a and Briand [3] proved

Foulkes’ Conjecture for a = 4. Also using symmetric powers and plethysms, Stanley,

[19], places Foulkes’ Conjecture inside a larger body of open positivity conjectures

in Algebraic Combinatorics. With a more combinatorial approach, Doran gave ad-

ditional formulations in [7] using tableaux spaces. Doran also suggested generalizing

Foulkes’ Conjecture to:

Conjecture 2. (Generalized Foulkes’ Conjecture) Given n = ab, a ≤ b, if c, d are

such that cd = n, and c, d ≥ a, then every irreducible character occurring as a

constituent in 1Sn
SboSa

occurs in 1Sn
SdoSc

with multiplicity at least as large.

For c = a and d = b this becomes the standard Foulkes’ Conjecture. Note that

c, d ≥ a is necessary. This is easily verified by using GAP, [9], which shows that some

irreducibles in 1S12
S4oS3

do not occur in 1S12
S6oS2

. Conjecture 2 holds for small n, (less than

28), by computer verification also using GAP, [9]. In Chapter 5 we will prove it holds

for a = 2 by construction. Namely, we will show:

Theorem 1. Given b ≥ 2, let n = 2b. If c, d are such that cd = n, and c, d ≥ 2, then

every irreducible occurring in 1Sn
SboS2

occurs in 1Sn
SdoSc

with equal or larger multiplicity.

We can also prove the following variation on Conjecture 2 for a = 3. The bulk of

the proof is discussed in Chapter 6 with supporting details in Chapters 7 and 8.

Theorem 2. Let n = 3b = cd, with c, d ≥ 3. Then every irreducible character

occurring in 1Sn
SboS3

occurs in 1Sn
SdoSc

.

This theorem can be strengthened when the irreducibles involved correspond to

two row partitions of n. We prove this version in Chapter 9.

Theorem 3. Let n = 3b = cd, with c, d ≥ 3 and let λ = [λ1, λ2] be a two row

partition of n. Then every irreducible character χλ occurring in 1Sn
SboS3

occurs in 1Sn
SdoSc

with multiplicity at least as large.

In Chapter 2 we describe the necessary concepts to approach the Foulkes’ Con-

jecture combinatorially using tableaux. Much of this framework was developed by
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Doran in [7]. We develop the theory and techniques behind constructing appropriate

tableaux in Chapter 3. In Chapter 4 we completely classify and discuss all tableaux

that occur in 1Sn
SboS3

. The proof of Theorem 1 is given in Chapter 5. We prove The-

orem 2 in Chapter 6, though the required tableau constructions are postponed until

Chapter 7. In Chapter 8 we show that these tableaux suffice to cover all necessary

cases. We prove Theorem 3 in Chapter 9. The corresponding results for the alter-

nating character is given in Chapter 11. Theorems 1 and 3 also can be interpreted

in terms of the Gaussian coefficient; this is discussed in Chapter 10. Further impli-

cations of all these results are listed in Chapter 12. Some of these results appear in a

forthcoming article in the Journal of Algebra, [21], namely, Chapters 1, 2, 3, 5, and

portions of Chapters 4 and 6.
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