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Abstract

Foulkes conjectured that for n = ab and a ≤ b, every irreducible module occurring

as a constituent in 1Sn
SboSa

occurs with greater or equal multiplicity in 1Sn
SaoSb

. We

generalize part of this to say those irreducibles also occur in 1Sn
SdoSc

, where cd = n

and c, d ≥ a. We prove the generalized conjecture for a = 2 and a = 3, by explicitly

constructing the corresponding tableaux. We also prove the multiplicity constraint

for certain cases. For these proofs we develop a theory of construction conditions for

tableaux giving rise to Sb o Sa modules and in doing so, completely classify all such

tableaux for a = 2 and a = 3.
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Chapter 1

Introduction and Statement of
Main Results

Foulkes’ Conjecture is an outstanding problem in the areas of plethysms, rational

homotopy theory, multisymmetric functions, and representation theory of symmetric

groups. In representation terms, Foulkes’ Conjecture deals with induced permutation

characters of wreath products of symmetric groups. The wreath product of symmetric

groups Sa and Sb, denoted Sa oSb, is the normalizer of the Young subgroup Sa×· · ·×Sa

(b times) in Sab. Let 1H be the trivial representation of a group H and 1G
H the induced

representation from H to G. From this we can state Foulkes’ Conjecture:

Conjecture 1. (Foulkes’ Conjecture) If a ≤ b then every irreducible character occur-

ring as a constituent in 1Sab
SboSa

occurs in 1Sab
SaoSb

with multiplicity greater than or equal

to its multiplicity in 1Sab
SboSa

.

Foulkes made this conjecture in [8] from his work on plethysms. The a = 2 case

was contained in Thrall’s 1942 work on symmetrized Kronecker powers, [20], and

proved again in [14] by James and Kerber using Gaussian coefficients. Coker also

gives a proof for a = 2 using eigenvalues in [5], while Doran used transition matrices

in [7]. The a = 3 case was proven by Dent and Siemons using mappings of unordered

partitions [6]. In [2], Black and List formulated Foulkes’ Conjecture in terms of ma-

trix incidences and Wu has rephrase it in terms of rational homotopy theory in [23].

Howe, in [12], used a plethystic approach to interpret Foulkes’ Conjecture via canon-

ical morphisms between symmetric power modules. Using this, Brion, [4], showed
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the conjecture holds for b sufficiently large with respect to a and Briand [3] proved

Foulkes’ Conjecture for a = 4. Also using symmetric powers and plethysms, Stanley,

[19], places Foulkes’ Conjecture inside a larger body of open positivity conjectures

in Algebraic Combinatorics. With a more combinatorial approach, Doran gave ad-

ditional formulations in [7] using tableaux spaces. Doran also suggested generalizing

Foulkes’ Conjecture to:

Conjecture 2. (Generalized Foulkes’ Conjecture) Given n = ab, a ≤ b, if c, d are

such that cd = n, and c, d ≥ a, then every irreducible character occurring as a

constituent in 1Sn
SboSa

occurs in 1Sn
SdoSc

with multiplicity at least as large.

For c = a and d = b this becomes the standard Foulkes’ Conjecture. Note that

c, d ≥ a is necessary. This is easily verified by using GAP, [9], which shows that some

irreducibles in 1S12
S4oS3

do not occur in 1S12
S6oS2

. Conjecture 2 holds for small n, (less than

28), by computer verification also using GAP, [9]. In Chapter 5 we will prove it holds

for a = 2 by construction. Namely, we will show:

Theorem 1. Given b ≥ 2, let n = 2b. If c, d are such that cd = n, and c, d ≥ 2, then

every irreducible occurring in 1Sn
SboS2

occurs in 1Sn
SdoSc

with equal or larger multiplicity.

We can also prove the following variation on Conjecture 2 for a = 3. The bulk of

the proof is discussed in Chapter 6 with supporting details in Chapters 7 and 8.

Theorem 2. Let n = 3b = cd, with c, d ≥ 3. Then every irreducible character

occurring in 1Sn
SboS3

occurs in 1Sn
SdoSc

.

This theorem can be strengthened when the irreducibles involved correspond to

two row partitions of n. We prove this version in Chapter 9.

Theorem 3. Let n = 3b = cd, with c, d ≥ 3 and let λ = [λ1, λ2] be a two row

partition of n. Then every irreducible character χλ occurring in 1Sn
SboS3

occurs in 1Sn
SdoSc

with multiplicity at least as large.

In Chapter 2 we describe the necessary concepts to approach the Foulkes’ Con-

jecture combinatorially using tableaux. Much of this framework was developed by
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Doran in [7]. We develop the theory and techniques behind constructing appropriate

tableaux in Chapter 3. In Chapter 4 we completely classify and discuss all tableaux

that occur in 1Sn
SboS3

. The proof of Theorem 1 is given in Chapter 5. We prove The-

orem 2 in Chapter 6, though the required tableau constructions are postponed until

Chapter 7. In Chapter 8 we show that these tableaux suffice to cover all necessary

cases. We prove Theorem 3 in Chapter 9. The corresponding results for the alter-

nating character is given in Chapter 11. Theorems 1 and 3 also can be interpreted

in terms of the Gaussian coefficient; this is discussed in Chapter 10. Further impli-

cations of all these results are listed in Chapter 12. Some of these results appear in a

forthcoming article in the Journal of Algebra, [21], namely, Chapters 1, 2, 3, 5, and

portions of Chapters 4 and 6.
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Chapter 2

Background

2.1 Tableaux

A partition λ = [λ1, . . . , λ`] of a number n is an ordered tuple of positive integers

such that
∑

λi = n and λi ≥ λi+1 > 0; it is denoted by λ ` n. The length of λ is `.

A Ferrers diagram is the set [λ] = {(i, j)|1 ≤ i ≤ `, 1 ≤ j ≤ λi}. We view [λ] as a

(left-justified) stack of boxes with row i having λi boxes.

A tableau of shape λ is a filling of the Ferrers diagram [λ] with a set of elements,

usually the positive integers. It is said to have content α = [α1, . . . , αk] if the integer i

occurs exactly αi times. A tableau is semi-standard if the entries are weakly increasing

across the rows and strictly increasing down the columns. This notation is standard

and further discussion can be found in [7] and [18].

Example 2.1.1. Consider the following tableaux:

P =
1 2 5
4 2
3

Q =
1 1 5
2 2
3 3

R =
1 1 2
2 3 3

P is a [3, 2, 1]-tableau of content α = [1, 2, 1, 1, 1], while Q has shape λ = [3, 2, 2] and

content α = [2, 2, 2, 0, 1]. Similarly, R has shape [3, 3] with content [23] = [2, 2, 2].

Both Q and R are semi-standard, but P is not.
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2.2 Combinatorial Structures

There are two different permutation actions on tableaux: an action permuting the

entry positions in the tableau and an action permuting the numbers filling the tableau.

These actions commute with each other.

Let T be a λ-tableau filled with the numbers 1 to a, where λ ` n. The permutation

of entry positions corresponds to an action of Sn on T . View the entry positions (i.e.,

boxes) of T as labelled 1 to n. Then σ ∈ Sn acts on T by permuting the entries in

the positions moved by σ. To avoid confusion between entry positions and numbers

in T , we will denote all entry positions with the subscript T when necessary. The

permutation action of the numbers corresponds to their permutation by π ∈ Sa.

Example 2.2.1. Take n = 6, λ = [3, 2, 1], and a = 3. Consider T =
3 3 1
1 2
2

. In

terms of entry positions, we label T as
1T 2T 3T

4T 5T

6T

. For σ = (23)T ∈ S6, we have

σT =
3 1 3
1 2
2

, while the action of π = (23) ∈ S3 gives πT =
2 2 1
1 3
3

.

We generally restrict the action of Sn to two subgroups. Let RT be the subgroup

of Sn which set-wise fixes the rows of T , namely, the row permutations. Denote

this action by σT for σ ∈ RT . Let CT be the subgroup of Sn which set-wise fixes

the columns of T , namely, the column permutations. This action is denoted τT for

τ ∈ CT . If λ
′

is the conjugate partition of λ, (i.e., the partition corresponding to

column lengths) we have that RT ≈ Sλ1 × · · · × Sλ`
and CT ≈ Sλ′1 × · · · × Sλ′

`′
.

Viewing the subgroups under these isomorphisms, we can label the entry positions by

labelling each row (resp. column) with 1 to λi (resp. λi′). Under these labellings we

write σ (resp. τ) as a direct product of the permutations for each row (resp. column).

Example 2.2.2. Let T =
1 1 2
2 3

, then for RT we view T as labelled
1T 2T 3T

1T 2T
.

Likewise we use the labelling
1T 1T 1T

2T 2T
for CT . Applying these actions to T , gives

the following sets:
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{σT |σ ∈ RT} =

{
1 1 2
2 3

,

1 2 1
2 3

,

2 1 1
2 3

,

1 1 2
3 2

,

1 2 1
3 2

,

2 1 1
3 2

}

with each element occurring twice.

{τT | τ ∈ CT} =

{
1 1 2
2 3

,

2 1 2
1 3

,

1 3 2
2 1

,

2 3 2
1 1

}

{πT | π ∈ Sa} =

{
1 1 2
2 3

,

2 2 1
1 3

,

3 3 2
2 1

,

1 1 3
3 2

,

2 2 3
3 1

,

3 3 1
1 2

}

CT = {()T × ()T × ()T , (12)T × ()T × ()T , ()T × (12)T × ()T , (12)T × (12)T × ()T}

Note that the actions of σ and τ do not commute, but π commutes with both

σ and τ .

Given λ a partition of n = ab, let Wλ,a be the set of all tableaux of shape λ

and content [ba] = [b, . . . , b], where the entries are 1 to a. Let Sλ,a be the set of

all semi-standard tableaux in Wλ,a. These sets and the following constructions were

developed by Doran in [7]. Note that when b = 1, Sλ give rise to the Specht modules

which are discussed extensively in [15] and [18]. The partitions of n index the Specht

modules Sλ, which in turn correspond to precisely the irreducible modules of Sn.

From Wλ,a we can construct the complex vector space W λ,a with the tableaux as

a basis. The action of Sa on the tableaux give rise to a permutation representation.

Inside W λ,a we construct the following objects.

Definition 2.2.3. Let T ∈ Wλ,a. Let ε(τ) be the sign of τ as a permutation. Inside

W λ,a we have:

a) eT =
∑

σ∈RT

∑
τ∈CT

ε(τ)στT
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b) qT =
∑

π∈Sa

∑
σ∈RT

∑
τ∈CT

ε(τ)πστT

c) mT =
∑

π∈Sa

∑
σ∈RT

πσT

The tableaux are independent basis for W λ,a, so for T1, T2 ∈ Wλ,a, we have

T1 + T1 = 2T1 but T1 + T2 = T1 + T2.

Example 2.2.4. Let T =
11
22

, then

eT = 4×
{

11
22

+
22
11

}
− 2

{
12
21

+
21
12

+
21
21

+
12
12

}

Here, symmetry gives qT = 2eT .

Definition 2.2.5. From eT and mT we can construct the following subspaces of W λ,a:

a) Sλ,a = C[eT |T ∈ Wλ,a]

b) Mλ,a = C[mT |T ∈ Wλ,a]

These spaces are Sa-modules. We have {eT |T ∈ Sλ,a}, a basis for Sλ,a, and

{mT |T ∈ Sλ,a/Sa}, a basis for Mλ,a. The set {qT |T ∈ Wλ,a} generates Sλ,a∩Mλ,a, but

does not form a basis. Background on these spaces and the proofs of the statements

may be found in [7].

In [7], Doran uses Gay’s result from [10]:

Lemma 2.2.6 (Gay’s Result). The multiplicity of the irreducible module Sλ in

1Sab
SboSa

equals the multiplicity of the trivial representation in Sλ,a.

From this, Doran reformulated Foulkes’ Conjecture to:

Lemma 2.2.7. The dimension of Sλ,a∩Mλ,a equals the multiplicity of the irreducible

Sλ in 1Sab
SboSa

.

A proof of this lemma in terms of qT ’s is presented in Appendix A. From this,

Foulkes’ Conjecture is equivalent to proving dim(Sλ,a ∩Mλ,a) ≤ dim(Sλ,b ∩Mλ,b) for

a ≤ b and all λ ` n. Proving Conjecture 2 is equivalent to showing that for all λ ` n,

dim(Sλ,a ∩Mλ,a) ≤ dim(Sλ,c ∩Mλ,c) when ab = n = cd with c, d ≥ a.



8

Remark 2.2.8. In terms of tableaux, proving Theorem 1 is equivalent to exhibiting

mλ non-zero linearly independent qT , where T has shape λ and content [dc], with mλ

the multiplicity of Sλ in 1S2b
SboS2

. Theorem 2 is provable by exhibiting a non-zero qT

with T having shape λ and content [dc] for all λ such that the multiplicity of Sλ in

1S3b
SboS3

is non-zero. For Theorem 3 we want mλ linearly independent tableaux T with

content [dc] such that qT is non-zero, where λ = [λ1, λ2] and mλ is the multiplicity of

Sλ in 1S3b
SboS3

.
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Chapter 3

Theory of Tableaux Construction

Throughout this and subsequent chapters we will use T to represent an arbitrary

tableau, σ an element of RT , τ an element of CT , and π an element of Sa for T filled

with 1 to a.

Remark 3.0.9.

a) eτT = ε(τ)eT

b) eπT = πeT

c) qπT = πqT = qT

d) qT = Σπ∈SaπeT

e) qτT = ε(τ)qT

These are standard computations, which are discussed in [7] and [18]. This remark

shows that we can ignore the effects of permuting entries when constructing the

tableaux. Also, we may order the columns however we choose at the cost of a sign.

3.1 Filling Tableaux

Definition 3.1.1. In T , the weight of a number x in row i, denoted ωi(x), is the num-

ber of times x occurs in row i of T . When T is not clear from context, we write ωi(x|T )

in place of ωi(x). We extend this so that ωi(x1, . . . , xj|T ) = (ωi(x1|T ), . . . , ωi(xj|T )).
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Implicitly, we take ωi(T ) = (ωi(1), . . . , ωi(a)), which is called the row-weight of row i

of T . Similarly, ω(xj) =

(
ω1(xj)

...
ω`(xj)

)
is the weight vector of xj of T . Hence ω(T ) is the

matrix corresponding to ωi(j|T ). Note that row permutations do not effect weight,

so ω(σT ) = ω(T ).

Example 3.1.2. T =
1 2 2
3 4 4
5 5

. We have ω(T ) =
(

1 2 0 0 0
0 0 1 2 0
0 0 0 0 2

)
. From this we can read

that ω2(3) = 1.

Weights for a tableau are only comparable with tableaux of the same shape and

content. Recall that Wλ,a is the set of all λ-tableaux with content [ba]. Let Na be the

set of all a-tuples w with non-negative integer entries and Na,` those `× a matrices.

Then we can view the row-weight function as a linear operator ωi : Z[T |T ∈ Wλ,a] →
Z[w|w ∈ Na], where {w|w ∈ Na} is a Z-basis, or correspondingly, ω : Z[T |T ∈
Wλ,a] → Z[w|w ∈ Na,`], with ` = `(λ).

This means we treat weights like linearly independent basis in Z[w|w ∈ Na,`].

Hence ω(T1 + aT2) = ω(T1) + aω(T2). If T1 =
1 1
2

and T2 =
2 1
1

then ω1(T1) =

(2, 0) and ω1(T2) = (1, 1). So ω1(T1 + T2) = (2, 0) + (1, 1) and ω1(T1 + T1) = (2, 0) +

(2, 0) = 2 · (2, 0). For convenience, we take ω(0) = 0.

Definition 3.1.3. Let rowsumT (i) be the sum of all the entries in row i of T ,
∑

j ωi(j)j.

Lemma 3.1.4. eT = 0 iff T has a repeat entry in a column.

Proof. ⇒ It suffices to show that if T has no repetitions within a column, then eT 6= 0.

By Remark 3.0.9 column permutations only change the sign of eT , so without loss of

generality, we may assume the columns of T are strictly increasing. If eT = 0 then

there exists σ ∈ RT , τ ∈ CT such that ε(τ) = −1 and στT = T , and we say that

T cancels in the summation. Since στT = T , we must have ω(στT ) = ω(T ) and so

ω(τT ) = ω(T ). This implies that rowsumT = rowsumτT for all rows.

Let r be the first row in which τ moves an entry of T . Let αi1 , . . . , αik be the

entries of row r moved by τ . Say τ moves βj to αij . Since r is the first row moved
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by τ , βj > αij . Then rowsumT (r) =
∑k

j=1 αij +
∑

i6=ij
αi <

∑k
j=1 βj +

∑
i6=ij

αi =

rowsumτT (r). Contradiction. Therefore eT 6= 0.

⇐ If T has a repeated entry in a column, then there exists a transposition τ ∈ CT

such that τT = T . Hence eT = eτT = ε(τ)eT = −eT and so eT = 0.

Knowing that any tableau with repeated numbers in a column makes eT = 0 is

very useful for our construction of non-zero tableaux. We summarize this fact as

follows:

Lemma 3.1.5. Any tableau T filled with the numbers 1 to a having more than a

rows will have eT = 0 and qT = 0, as will any T having repetitions within a column.

Hence every tableau T filled with the numbers 1, 2, and 3, with qT 6= 0, will have

at most three rows and all column entries will be distinct. Due to this, from now on

we will assume all tableaux have distinct column entries.

Notation: Many of the tableaux we construct will have multiple identical

columns. We call a group of such columns, a column block. For both clarity and

space we denote a column block by one copy of the column with the number of rep-

etitions listed above. If the number of column copies is omitted, it is assumed to be

one. For example, T =
1 1 1
2 2 2

would be denoted by T =

3

1
2

, while T =

k l m n

1 1 1 2
2 2 3 3
3

has k copies of
1
2
3

and l copies of 1
2
, m copies of 1

3
, and n copies of 2

3
. We call

the columns of T having only one entry the tail of T . When specifying T by column

blocks, we may omit the tail, provided the content of T is known. The rest of T is

called the body. For instance, if T =

2
1 1 2 2 3
3 2 4
4

and we know that T has content
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[3, 3, 3, 3], we can just list the body, T =

2
1 1 2
3 2 4
4

instead. It is assumed that any

entries not specified are contained in the tail.

We also use this abbreviated notation when describing elements of CT . We write

τ ∈ CT as a direct product of permutations on the column blocks. Since the only per-

mutation possible on the tail is the identity, we omit the permutations corresponding

to the tail. Hence for T listed above, τ is of the form
2
τ1 ×τ2 × τ3. We write

k
τi if the

same permutation τi is to be applied to k columns within a column block. When k is

less than the size of the column block, we understand
k
τi to mean that τi is applied to

all k of the columns (determined by context) and the identity permutation is applied

to the remaining columns within the block. For instance, on the previous T , there

are two permutations of the form
1

(13)T ×()T × (12)T , which produce
4 1 1 4
3 3 2 2
1 4

and

1 4 1 4
3 3 2 2
4 1

.

3.2 Showing Tableaux are Non-Zero

Definition 3.2.1. A tableau T is said to be non-zero if qT 6= 0. Two tableaux are

said to be distinct if qT1
6= ±qT2

, otherwise T1 and T2 are said to be equivalent.

Since qT involves many summands, showing qT 6= 0 by direct summation is not

practical. Instead, we use a technique called weight-set counting. Weight-set counting

involves summing only those tableaux with a given weight; if that sum is non-zero,

the entire qT summation must be non zero.

Definition 3.2.2. Given a tableau T , let ω(T ) = (x1, . . . , xa), where xj is the weight

vector ω(j|T ) = xj of the element j in T . A weight assignment of T is a pairing

between the set of elements of T with the multiset of weight vectors of ω(T ). We

denote the pairing of the weight vector xj with the element kj by ω(kj|T ∗) = xj.

(The T ∗ represents a possible tableau which has the weight of kj being xj.) Note
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that if the vectors xj and xj′ are equal, the weight assignment pairing kj with xj is

the same as the weight assignment pairing kj with xj′ . What matters in a weight

assignment is the vector paired with each element, not how we label the vectors.

We usually indicate a weight assignment by writing (k1, . . . , ka), by which we mean

ω(k1, . . . , ka|T ∗) = (x1, . . . , xa) = ω(T ).

Given a permutation π we can create a weight assignment by assigning the element

π(k) to xk, since ω(π(k)|πT ) = ω(k|T ) = xk. Similarly, given such pairing (k1, . . . , ka)

we can construct a permutation π by taking π = (k1, . . . , ka) in one-line notation.

For example, let T =
1 1 1
2 2 3
3

. Then ω(T ) =
(

3 0 0
0 2 1
0 0 1

)
. The weight assignment

(3, 1, 2) means ω(3, 1, 2|T ∗) =
(

3 0 0
0 2 1
0 0 1

)
for some tableau T ∗. This weight assignment

corresponds to the weight permutation π = (132) in cycle notation (from left to right).

Note, however, that such a listing (k1, . . . , ka) of a weight assignment is not nec-

essarily unique. For instance, if x1 = x2 then (k1, k2, k3, . . . ka) and (k2, k1, k3, . . . ka)

represent the same weight assignment (pairing) but give rise to different permutations.

The numbers of such permutations corresponding to the same weight assignment de-

pends only on the vector symmetries of ω(T ). This number is denoted s(ω(T )).

For example, if T = 1 1 2 2 3 , then ωT = (2, 2, 1). There are three distinct

weight assignments of T corresponding to which of the three elements is assigned a

weight of 1. Since there are two permutations arising from such an assignment (for

instance, ω(213|T ) = (2, 2, 1) as well) we have s(ω(T )) = 2.

Definition 3.2.3. A weight assignment (k1, . . . , ka) is valid for T if there exists

τ ∈ CT such that ω(k1, . . . , ka|τT ) = ω(T ), i.e., T ∗ = τT . If this happens we say τ

is valid for (k1, . . . , ka), otherwise τ is invalid. Given a valid τ we say τ is positive if

ε(τ) = 1 and negative if ε(τ) = −1.

Example 3.2.4. Let T =
1 2 2 2 3 3 4
3 1 1
4 4

. We have ω(T ) =
(

1 3 2 1
2 0 1 0
0 0 0 2

)
. Recall that for

CT we use the labelling
1T 1T 1T

2T 2T 2T

3T 3T

(the tail is omitted since all column permutations
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on it are trivial). Now (2, 3, 1, 4) is a valid weight assignment since τ = (12)T×(12)T×

(12)T ∈ CT has τT =
3 1 1 2 3 3 4
1 2 2
4 4

with ω(τT ) =
(

2 1 3 1
1 2 0 0
0 0 0 2

)
, So ω(2, 3, 1, 4|τT ) =

ω(T ). The weight assignment, (2, 3, 1, 4) corresponds to the permutation π = (123)

in cycle notation, meaning ω(1, 2, 3, 4|τT ) = ω(1, 2, 3, 4|πT )

However, (1, 4, 3, 2) is not a valid weight assignment since then we must have

ω3(2|τT ) = 2 for some τ , but there is no column permutation that will put two 2’s in

the third row. We will make frequent use of weight assignments in order to determine

when T is non-zero.

Definition 3.2.5. Given T , consider the following functions:

• P(π(T )) = the number of τ ∈ CT such that ε(τ) = 1 and

ω(π−1(1), . . . , π−1(a)|τT ) = ω(T ).

• N(π(T )) = the number of τ ∈ CT such that ε(τ) = −1 and

ω(π−1(1), . . . , π−1(a)|τT ) = ω(T ).

• P(T ) =
∑

π P(π(T )), where π correspond to distinct weight assignments of ω(T )

• N(T ) =
∑

π N(π(T )), where π correspond to distinct weight assignments of

ω(T )

Theorem 4. (Weight-set Counting) If qT = 0 then P(T ) = N(T ).

Proof. Let D be the set permutations corresponding to distinct weight assignments

of T .

qT = 0 (3.2.1)

⇒
∑

π

∑
σ

∑
τ

ε(τ)ω(σπτT ) = 0 (3.2.2)

⇒
∑

π

∑
τ

ε(τ)ω(πτT ) = 0 (3.2.3)

⇒
∑

π

∑
τ

ε(τ)ω(πτT ) = 0 s.t. ω(1, . . . , a|πτT ) = ω(T ) (3.2.4)
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⇒
∑

π

∑
τ

ε(τ) = 0 s.t. ω(1, . . . , a|πτT ) = ω(T ) (3.2.5)

⇒
∑

π

∑
τ

ε(τ) = 0 s.t. ω(π−1(1), . . . , π−1(a)|τT ) = ω(T ) (3.2.6)

⇒s(ω(T ))
∑

π∈D

(P(πT )−N(πT )) = 0 (3.2.7)

⇒s(ω(T ))(P(T )−N(T )) (3.2.8)

⇒P(T )−N(T ) = 0 (3.2.9)

If qT = 0, taking the weight of both sides gives Eq. (3.2.2). Since row permutations

do not effect weights, we can reduce to Eq. (3.2.3). As distinct weights can not cancel,

we can consider only those tableaux with the same weight as ω(T ), hence we must

have Eq. (3.2.4). Since we are only summing over tableaux of a fixed weight we may

drop the weight from the sum and simply add the sign of τ , for Eq. (3.2.5). By

definition of weight assignments, ω(1, . . . , a|πτT ) = ω(π−1(1), . . . , π−1(a)|τT ) hence

we get Eq. (3.2.6). Restricting the sum to distinct weight-sets gives the factor of

s(ω(T )), and if we split over the sign of τ ′ we get Eq. (3.2.7), which by definition is the

same as Eq. (3.2.8). Factoring out s(ω(T )) yields Eq. (3.2.9). Thus P(T ) = N(T ).

We can also write Theorem 4 as:

Corollary 5. Let A = {τ |ω(τT ) = ω(πT ) for some π ∈ Sa}. If
∑

τ∈A ε(τ) 6= 0, then

qT 6= 0 by weight-set counting on ω(T ).

An easy application of this theorem is the following useful lemma.

Lemma 3.2.6. If T is a tableau consisting of a single column block (and an arbitrary

tail), for instance, T =

k

1
2

, then qT 6= 0 iff k even.

Proof. We have w = ω(T ) = ( k 0
0 k ). So there are two distinct weight assignments for

T , namely, ω(1, 2|T ∗) = w and ω(2, 1|T ∗) = w. We wish to determine for which τ

does T ∗ = τT satisfy one of these equations. For ω(1, 2|τT ) = w, we must have k 2’s

in the second row, hence none of the columns of T may move. The only τ satisfying
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this is τ =
k

()T , which is positive. For ω(2, 1|τT ) = w, we must have k 1’s in the second

row, thus τ must exchange row 1 and row 2 for every column in T . Thus τ =
k

(12)T

and ε(τ) = (−1)k. Hence when k is even, we have P(T ) = 2 and N(T ) = 0, so qT is

non-zero. The same idea applies for T having more than two rows.

When k is odd, however, we have P(T ) = N(T ) so the Theorem 4 does not apply.

Instead, let τ =
k

(12)T and let π ∈ Sa be the corresponding entry transposition (in

our example π = (12)). Then πτT = T and ε(τ) = −1. Thus qπτt = πqτT = qτT =

ε(τ)qT = −qT . So qT = 0.

It is also true that if qT 6= 0, then it is non-zero by weight-set counting on some

weight ω(τT ). That is we can’t have P(τT ) = N(τT ) for all τ ∈ CT and still have

qT 6= 0.

Theorem 6. If qT 6= 0, then it is non-zero by weight set counting on τT for some

τ ∈ CT .

Proof. Recall that qT =
∑

π

∑
σ

∑
τ πσ ε(τ)τT . Since a tableau may be written in

multiple ways (such as T ′ = πστT = π′σ′τ ′T ), we need to be careful of how we denote

a tableau. Consider the terms of qT partitioned in to classes {τT} = {πστT |π ∈
Sa, σ ∈ RT}, using {τT} as the class representative. Note that all tableaux in a

given class have the same sign and generic weight, i.e., the same weight modulo the

action of Sa. Hence if τT = π′σ′τ ′T for some π′, σ′, τ ′, with ε(ττ ′) = −1 then

πστT = ππ′σσ′τ ′T , so the classes are equal set wise, but of opposite sign. This holds

for any element of the class, not just τT .

This means we may view the tableaux which cancel in qT as a matching between

equal classes of opposite sign. So if qT 6= 0, there is a set of tableaux T which are not

canceled in qT . Now for any τT ∈ T either the weight of τT does not cancel, (that

is ω(τT ) 6= πω(π′σ′τ ′T ) for all π ∈ Sa and all π′σ′τ ′T ∈ T with ε(ττ ′) = −1) or the

weight cancels with some π′σ′τ ′T having ε(ττ ′) = −1 (that is ω(τT ) = πω(π′σ′τ ′T )

for some π′σ′τ ′T ∈ T). If the weight does not cancel for some τT , the qT 6= 0 by weight

set counting on τT . Assume all the weights do cancel. Then ω(τT ) = πω(π′σ′τ ′T ),

so for every row, τT and ππ′σ′τ ′T have the same number of each symbol. Hence there
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exists σ ∈ RT such that τT = ππ′σσ′τ ′T . But then, since ε(ττ ′) = −1, the classes

{τT} and {τ ′T} will cancel in qT contradicting τT, π′σ′τ ′T ∈ T. Hence qT 6= 0 by

weight set counting on some τT .

We will not need Theorem 6 for our results; it is included for theoretical interest

and completeness. Theorem 4 is used quite heavily, however. For instance, it allows

use to directly establish the multiplicities of the irreducible characters in 1S2b
SboS2

.

Theorem 7. The only irreducible characters occurring in 12b
SboS2

are those correspond-

ing to all partitions λ = [λ1, λ2] of 2b where λi is even. Moreover, these characters

occur with multiplicity 1.

Proof. By Remark 2.2.8 we need only consider those shapes with qT non-zero. By

Lemma 3.0.9 and Lemma 3.1.5 all distinct non-zero tableaux filled with b 1’s and b

2’s must be equivalent to T =

k

1
2

, (not including tail). Hence there is at most one

distinct non-zero tableau for any shape λ. By Lemma 3.2.6, when λ = [2b−k,k] then

qT 6= 0 iff k is even. Since 〈qT 〉 = Sλ,2 ∩Mλ,2 we must have dim(Sλ,2 ∩Mλ,2) = 1 if

k is even and zero otherwise.

This is a well-known result, appearing in [13] and [17].

The weight-set counting of Theorem 4 is useful for much more complicated

tableaux as well. To illustrate the general usage of the theorem, we list here a slightly

more involved example.

Example 3.2.7. To see directly how weight-set counting works, consider the following

example. The tableau Q∗ is listed below using the column block notation, with the

conditions on the block size listed to the right. Underneath the tableau we list the

weight and shape of the tableau.
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Q∗ =

a a b b c

2 2 2 3 1
1 4 4 1 4
3 3

a + b + c = d

2a + b < d

c even

a,b > 0

ω2,3 = ( a+b 0 0 d
0 0 2a 0 )

λ = [3d− 2a− b, d + a+b, 2a]

We want to show that qQ∗ 6= 0, which we do by showing P(Q∗) − N(Q∗) 6= 0

and applying Theorem 4. Now P(Q∗) is the number of τ ∈ CQ∗ with ε(τ) = 1 such

that ω(i1, i2, i3, i4|τQ∗) = ω(Q∗) for some distinct weight assignment (i1, i2, i3, i4).

(Equivalently, τ is such that {ω(i|τQ∗)‖i = 1, 2, 3, 4} = {ω(i|Q∗)‖i = 1, 2, 3, 4}.)
Similarly, N(Q∗) is those with ε(τ) = −1. The easiest way to count these τ is to use

weight assignments. First we determine which weight assignments might be possible

using some general properties of the tableau. Then we count how many τ correspond

to each weight assignment (i.e., for which τ is the weight assignment valid) and

determine ε(τ). Finally, we add this signed sum to determine P(Q∗)−N(Q∗).

First we want to determine which weight assignments are possible for Q∗. That

is, determine for which 4-tuples x = (i1, i2, i3, i4) there might exist τ ∈ CQ∗ such that

ω2,3(x|τQ∗) = ( a+b 0 0 d
0 0 2a 0 ). Let w = ( a+b 0 0 d

0 0 2a 0 ). Simply looking at Q∗, there are a

few restrictions on what x can be.

Notice the body contains d copies of the elements 1 and 4, but fewer than d copies

of 2 and 3 since 2a+b < d. Also note that the body of τQ∗ contains the same elements

as the body of Q∗. This implies that not all elements can have d copies in row two

of τQ∗ for some τ . If ω2,3(x|τQ∗) = w then either ω2(1|τQ∗) = d or ω2(4|τQ∗) = d;

namely, only the elements 1 and 4 may have ω2(i|τQ∗) = d. Hence any valid weight

assignment must have i4 = 1 or 4. If ω2(1|τQ∗) = d, then there is only one other

non-zero weight to assign in row two. As b > 0 the remaining columns (the second

a block and the first b block) must have the same element in row two, namely, 2 or
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4. That means we must have either ω2(2|τQ∗) = a+b or ω2(4|τQ∗) = a+b, so the

weight assignment must have i1 = 2 or 4. Similarly, if ω2(4|τQ∗) = d, then since

b > 0 we must have either ω2(1|τQ∗) = a+b or ω2(3|τQ∗) = a+b, that is i1 = 1 or

3.

We also consider which elements j may have ω3(j|τQ∗) = 2a. We find that

only with j = 2 or 3 may this occur since these are the only elements for which

both a blocks will be the same in row three. (That is if ω2,3(τQ∗) = w then either

ω3(2|τQ∗) = 2a or ω3(3|τQ∗) = 2a, so any valid weight assignment has i3 = 2 or 3.)

There are six distinct weight assignments x = (i1, i2, i3, i4) meeting these condi-

tions: (1, 2, 3, 4), (1, 3, 2, 4), (4, 3, 2, 1), (3, 1, 2, 4), (4, 2, 3, 1), and (2, 4, 3, 1). In the

table below, for each weight assignment we list for what type of tableau τQ∗ it is

valid, the form τ used, the number of such τ , and the sign of τ . This is an easy way

to summarize the counting of τ and their signs. (We will omit the subscripts Q∗ when

writing τ for easy reading. Remember that τ is labeled by the entry positions of Q∗

and not the elements.)
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ω2,3(x|τQ∗)

= ( a+b 0 0 d
0 0 2a 0 )

τQ∗ τ # ε(τ)

x = (1, 2, 3, 4)

a a b b c

2 2 2 3 1
1 4 4 1 4
3 3

a

() ×
a

() ×
b

() ×
b

() ×
c

() 1 (−1)0

x = (1, 3, 2, 4)

a a b b c

3 3 2 3 1
1 4 4 1 4
2 2

a

(13) ×
a

(13) ×
b

() ×
b

() ×
c

() 1 (−1)2a

x = (3, 1, 2, 4)

a a b b c

1 3 2 1 1
3 4 4 3 4
2 2

a

(132) ×
a

(13) ×
b

() ×
b

(12) ×
c

() 1 (−1)a+b

x = (4, 2, 3, 1)

a a b b c

2 2 2 3 4
1 4 4 1 1
3 3

a

() ×
a

() ×
b

() ×
b

() ×
c

(12) 1 (−1)c

x = (4, 3, 2, 1)

a a b b c

3 3 2 3 4
1 4 4 1 1
2 2

a

(13) ×
a

(13) ×
b

() ×
b

() ×
c

(12) 1 (−1)2a+c

x = (2, 4, 3, 1)

a a b b c

2 4 4 3 4
1 2 2 1 1
3 3

a

() ×
a

(12) ×
b

(12) ×
b

() ×
c

(12) 1 (−1)a+b+c

To see how we obtain such a table, consider the last row. We want a tableau τQ∗

such that ω2,3(2, 4, 3, 1|τQ∗) = w. This means that ω3(3|τQ∗) = 2a so τ cannot move

any entries in row 3. We also have ω2(4|τQ∗) = 0, so examining Q∗, we know that τ

acts non-trivially on the second column block a, the first column block b, and column

block c, namely, τ =
a∗ ×

a

(12)T ×
b

(12)T ×
b∗ ×

c

(12)T . If τ were to act non-trivially on

the first column block a or the second column block b, the number of 1’s in row two of

τQ∗ would decrease. Since we must have ω2(1|τQ∗) = d, this cannot happen. Hence

τ =
a

()T ×
a

(12)T ×
b

(12)T ×
b

()T ×
c

(12)T and has been completely determined for us.

Then we have ω2,3(2, 4, 3, 1|τQ∗) = w, so such a τ exists and is unique. For reference,

τ and τQ∗ are listed. Once τ has been determined, computing ε(τ) = (−1)a+b+c is
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straightforward.

Finally, to compute the weight sum for w, we sum the product of the number of τ

with the sign of τ , that is # · ε(τ). Here the sum is 1+1+(−1)a+b +1+1+(−1)a+b.

This sum is between 2 and 6, depending on the parity of a and b. Since it is non-zero

in all cases, Theorem 4 shows qQ∗ 6= 0.

3.3 Joining Tableaux

Definition 3.3.1. The join of two tableaux, U and V , denoted U ∨ V is a way of

combining tableaux together. If the entries of U and V are not disjoint, renumber

V so that they are. For instance, if U contains the numbers 1 to n and V contains

the numbers 1 to m we first renumber V with the numbers n + 1 to n + m. Then

concatenate the tableaux and sort the columns by length. Note that entries of every

column remain fixed, only the order of the columns change.

Example 3.3.2. U =
1 1 3
2 2 4
3 4

and V =
1 2 3
2 4 4
3

We renumber V to get V =
5 6 7
6 8 8
7

.

Concatenating gives
1 1 3
2 2 4
3 4

5 6 7
6 8 8
7

. When sorted we get T = U ∨ V =
1 1 5 3 6 7
2 2 6 4 8 8
3 4 7

.

Note that since applying permutations of Sa to a tableau has no effect on qT and mT ,

the renumbering of a tableau is irrelevant. Also, any σ ∈ RT that only interchanges

columns will commute with all τ ∈ CT . Hence column sorting has no effect of eT , qT ,

and mT , since there is no sign change for row permutations. This join operation also

joins the weight-sets, namely, ω3(U ∨ V ) = ω3(U), ω3(V ) = (0, 0, 1, 1, 0, 0, 1, 0).

Definition 3.3.3. Let T = U ∨V for tableaux U filled with 1 to m and V filled with

m+1 to a. The weights, ω(U) and ω(V ) are disjoint (equivalently, ω(T ) splits over U

and V ), if every valid weight assignment of ω(T ), can be obtained from concatenating

valid weight assignments of ω(U) and ω(V ).

Say ω(1, . . . , m|U) = (x1, . . . , xm) where the xi are weight vectors and ω(m +

1, . . . , a|V ) = (xm+1, . . . , xa). So ω(1, . . . , a|T ) = (x1, . . . , xa). Consider a valid
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weight assignment of T assigning to the element j the weight vector xkj
. Then

ω(1, . . . , a|τT ) = (xk1 , . . . , xka) for some τ ∈ CT . This restricts to a valid weight as-

signment of τ|U U by considering only the elements 1 to m. This restriction is unique

because a weight assignment is defined by the vector-element pairing, not the label

assigned to the vector. If this restriction corresponds to a weight assignment of ω(U)

(i.e., the weights assigned to elements 1 to m are the same as the weights of ω(U) as

vectors) then the weight assignment of T arose from valid weight assignments of U .

Similarly for V .

By restricting to a weight assignment of ω(U) we mean {xki
|i = 1 . . .m} = {xi|i =

1 . . . m}, i.e., the weights assigned to U are equivalent to those of ω(U). If this result

is a weight assignment of ω(U), it is valid for the tableau τ|U U . If this is true for

all valid weight assignments of T , then ω(T ) splits and the weights of U and V are

disjoint.

Example 3.3.4. Consider U =
1 1
2 2

and V =
3 3 3 3
4 4 4 4

. So T =
1 1 3 3 3 3
2 2 4 4 4 4

and

ω2(1, 2, 3, 4|T ) = (0, 2, 0, 4). There are four valid weight assignments possible for T :

(Recall that T ∗ represents any possible tableau τT .)

ω2(1, 2, 3, 4|T ∗) = (0, 2, 0, 4)

ω2(1, 2, 3, 4|T ∗) = (2, 0, 0, 4)

ω2(1, 2, 3, 4|T ∗) = (0, 2, 4, 0)

ω2(1, 2, 3, 4|T ∗) = (2, 0, 4, 0)

When we restrict these weight assignments to U we get two possible assignments

for U , ω2(1, 2|U∗) = (0, 2) and ω2(1, 2|U∗) = (2, 0). Since the original weight of U is

ω2(1, 2|U) = (0, 2), both of these assignments are assignments of (0, 2) and both are

valid for U (simply take τU = () and τU = (12)T × (12)T ). A similar argument holds

for V . Thus the ω(T ) splits over U and V .

However, weight-set disjointness is highly dependent on the filling of T . Consider

instead, U =
1 1
2 2

and V =
4 3
3 4

. So T =
1 1 4 3
2 2 3 4

and ω2(1, 2, 3, 4|T ) = (0, 2, 1, 1).
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Then ω2(1, 2, 3, 4|T ∗) = (1, 1, 2, 0) is a valid weight assignment for T by T ∗ = τT with

τ = (12)T × ()T × ()T × (12)T . However, ω2(1, 2|U∗) = (1, 1) it is not a valid weight

assignment of ω2(U) = (2, 0), even though there exists τ such that ω2(τU) = (1, 1).

Hence the weights are not disjoint.

Although this definition of disjointness is a bit involved, in Section 3.4 we will

give a sufficient (but not necessary) condition on the tableau which is easier to check.

However, we use disjointness here to obtain the full generality of Theorem 8, which

is one of the fundamental tools we use to construct non-zero tableaux.

Theorem 8. Let U and V be tableaux such that

• elements(U) = {1, . . . m} and elements(V ) = {m + 1, . . . a} (renumber if nec-

essary)

• The weights ω(1, . . . , m|U), ω(m + 1, . . . , a|V ) are such that qU and qV are

non-zero by weight-set counting on ω.

• The weight assignments corresponding to ω(1, . . . , m|U) and ω(m + 1, . . . , a|V )

are disjoint.

Then for T = U ∨ V , we have qT 6= 0 by weight-set counting on ω(T ).

Proof. By weight-set counting on U and V we have P(U) − N(U) 6= 0 and P(V ) −
N(V ) 6= 0. By Theorem 4, showing P(T ) − N(T ) 6= 0 implies qT 6= 0. Thus it

suffices to show P(T )−N(T ) = (P(U)−N(U))(P(V )−N(V )) or equivalently P(T ) =

P(U)P(V ) + N(U)N(V ) and N(T ) = N(U)P(V ) + P(U)N(V ). We will show P(T ) =

P(U)P(V ) + N(U)N(V ). The N(T ) claim follows similarly.

Consider the weight assignment (k1, . . . , ka) of T . If ω(k1, . . . , ka|τT ) =

ω(1, . . . , a|T ) with ε(τ) = 1 (i.e., τ is positive for (k1, . . . , ka)) then it

is counted in P(T ). Since the weight splits, we have ω(k1, . . . , ka|τT ) =

ω(k1, . . . km|τ|U U)ω(km+1, . . . ka|τ|V V ) = ω(1, . . . , m|U)ω(m + 1, . . . , a|V ) =

ω(1, . . . , a|T ) with ε(τ) = ε(τ|U )ε̇(τ|V ) = 1. Hence either ε(τ|U ) = ε(τ|V ) = 1 or

ε(τ|U ) = ε(τ|V ) = −1. If ε(τ|U ) = 1 then since ω(k1, . . . km|τ|U U) = ω(U) is a
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valid weight assignment (because the weights are disjoint), it is counted in P(U).

Similarly for the P(V ) cases. The ε(τ|U ) = −1 cases are counted in N(U). Thus

P(T ) ≤ P(U)P(V ) + N(U)N(V ).

Now any weight assignments ω(k1, . . . , ka|τ|U U) = ω(1, . . . , a|U) in P(U) and

ω(km+1, . . . , a|τ|V V ) = ω(m + 1, . . . , a|V ) in P(V ) must also correspond to the valid

weight assignment ω(k1, . . . , ka|τT ) = ω(1, . . . , a|T ) with τ = τ|U × τ|V . Moreover

ε(τ) = ε(τ|U )ε̇(τ|V ) = 1. So this weight assignment is in P(T ). Similarly for weight

assignments in N(U) and N(V ). Hence P(T ) ≥ P(U)P(V ) + N(U)N(V ). Thus we

have P(T ) = P(U)P(V ) + N(U)N(V ) as desired.

Theorem 8 allows us to construct a non-zero tableau from smaller non-zero

tableaux. The main difficulty in applying this theorem is showing that the weight-sets

are disjoint. To deal with this, we develop an idea of maximality of weights which is

sufficient for weight-set disjointness.

3.4 Maximal Weights

Since the action of Sa on a tableau T does not change the resulting qT , we generalize

the definition of tableau weight to account for this. We put an order on this generic

weight, thus defining maximal weights.

Definition 3.4.1. Given a tableau T , the generic form of ωi(T ) is wi(T ) = ωi(πT ) =

(x1, . . . , xa) for any π ∈ Sa such that xj ≥ xj+1 for all j. In essence, wi(T ) is the

weights of ωi(T ) listed in decreasing order. This definition works for any row of T .

We define the generic form of a weight on the entire tableau (assuming T has at

most three rows) by, w(T ) = ω2,3(πT ) = ( x1 ... xa
y1 ... ya ) for any π ∈ Sa such that yj ≥ yj+1

for all j and if yj = yj+1 then xj ≥ xj+1. We consider only the weight vectors of

the second and third rows and list the vectors so that the row three weights are

decreasing. If two vectors have the same weight for row three, we list the vector with

the larger weight in row two first.
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For instance, if T =
2 2 1
1 1 2
3 3 3

then ω2,3(T ) = ( 2 1 0
0 0 3 ). Hence w(T ) = ( 0 2 1

3 0 0 ).

Definition 3.4.2. We put an order on generic weights by wi(T1) > wi(T2) if when

wi(T1) = (x1, . . . xa), wi(T2) = (v1, . . . va), there exists k ≥ 1 such that xj = vj for

j < k and xk > vk. We say w(T1) > w(T2) if

1. w3(T1) > w3(T2) or

2. w3(T1) = w3(T2) and w2(T1) > w2(T2) or

3. w3(T1) = w3(T2), w2(T1) = w2(T2), and if we have w(T1) = ( y1 ... ya
x1 ... xa ) and

w(T2) = ( z1 ... za
x1 ... xa ) then there exists k ≥ 1 such that yj = zj for j < k and

yk > zk.

We also apply this ordering to sets of weight vectors, by associating to each set

the generic weight vector formed by concatenating the given weights in order. So to

the set A = {(0
2

)
,
(
1
1

)} we associate the weight ( 0 1
2 1 ).

Definition 3.4.3. We define the maximum generic weight of row i of T to be the

maximum with respect to > of {wi(τT )|τ ∈ CT}, where w is the generic weight

defined above. Similarly the maximum generic weight of T is the maximum with

respect to > of {w(τT )|τ ∈ CT}. Note that the maximum generic weight of T is

based only on the weights of rows two and three. As such we ignore the weight of the

first row.

Example 3.4.4. Let T =
1 2
2 1

. Then the generic weights w2(τT ) are (1, 1) and

(2, 0), with (2, 0) (the generic weight of τT =
1 1
2 2

or
2 2
1 1

) as maximum. Here

we’ve suppressed writing w3(T ) since T has only two rows.

If T =
1 1 4 4 4
2 2 3 3 3
3 3

then the maximum generic weight of T (of the second and third

rows) is ( 3 2 0 0
2 0 0 0 ) which is ω2,3(T ) in generic form, w(T ).

Definition 3.4.5. Let T be a tableau having three or fewer rows. Let wm be the

maximum generic weight of T . We say wm is the max weight for T if wm occurs in

qT . That is qT 6= 0 by weight-set counting on wm.
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Unlike the maximum weight, the max weight of a tableau may not exist since the

weight may not occur in qT . For instance, consider T =
1 1 1
2 2 2
3 3 3

. We know qT = 0 by

Lemma 3.2.6, yet T has ( 0 3 0
3 0 0 ) as its maximum weight.

The max weight for T is always the maximum weight for row three of T , but it

need not be the maximum weight for row two of T . Consider T =
5 2 3 3
1 4 4 1
3 3

. The

maximum generic weight of T is ( 0 2 2 0
2 0 0 0 ), but the maximum generic weight of row

two of T is (4, 0, 0, 0) which is not the generic form of (0, 2, 2, 0).

Definition 3.4.6. If wm is the max weight for T , we say T is in maximal form

provided ω2,3(πT ) = wm for some π ∈ Sa. This only requires that some permutation

of the weight vectors of ω2,3(T ) be equal to the max weight of T .

While the max weight may not exist for all tableaux, it is easy to show weight-set

disjointness for those tableaux which are in maximal form. In order to prove this, we

use the following lemmas regarding our ordering.

Lemma 3.4.7. Given two weights, W1 and W2, of the same length, let Ck =

{(x
y

)|(x
y

) ∈ Wk}, k = 1, 2 be the multisets of weight vectors in each of these weights.

Let A = C1 \ (C1 ∩ C2), the weight vectors of W1 not in W2. Similarly, let

B = C2 \ (C1 ∩ C2). If W1 ≥ W2, then A ≥ B.

Proof. Without loss of generality, assume Wi is written in maximal form (i.e., is equal

to its generic weight). If W1 = W2 then A = B = ∅, so the result holds trivially. So

suppose W1 > W2. Then either W1 differs from W2 at some place in the third row,

or the third rows are equal and they differ at some place in the second row (at least

vectorwise).

Define Ay = {(xi

yi

)|(xi

yi

) ∈ A, yi = y} and Bv = {(ui

vi

)|(ui

vi

) ∈ B, vi = v}. Defining

Cy
1 and Cv

2 similarly, we have Ay = Cy
1 \ (Cy

1 ∩ Cy
2 ) and Bv = Cv

2 \ (Cv
1 ∩ Cv

2 ).

Let W1 = ( x1 ... xm
y1 ... ym ) and W2 = ( u1 ... um

v1 ... vm ). If W1 differs from W2 in the third row,

then there exists j such that yj > vj and yi = vi for all i < j. Hence |Cyi
1 | = |Cvi

2 | =
|Cyi

2 | for yi > yj, so |Ayi| = |Bvi| = |Byi|. Then to show A > B it suffices to show
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|Ayj | > |Byj |. But since yj > vj, we have |Cyj

1 | > |Cyj

2 |. Thus w3(A) > w3(B) and

the result follows. Note that when the third rows are equal, this argument shows

w3(A) = w3(B).

If W1 and W2 are equal in the third row but the generic weights of their second

rows differ, we can apply the same argument as above, where Ax, Bx, Cx
i are the

appropriate sets of weight vectors with the second row weight equal to x. This shows

w2(A) > w2(B). Since we’ve already have w3(A) = w3(B), the result follows.

If W1 and W2 have the same generic weights in the second and third rows, then

by above we know the generic weights of rows two and three of A and B are the

same. By definition, A ∩ B = ∅, so the second row of the first vectors in A and

B are different. Now W1 and W2 agree in the third row, so the first vectors where

they differ in the second row must be the first vector in A and B respectively. Since

W1 > W2 we have the large vector occurring in W1 and hence in A. Thus A > B.

The following lemma is an obvious property of the ordering, but is included due

to the non-standard ordering used.

Lemma 3.4.8. Given sets A and B of weight vectors, if A ≥ B and B ≥ A then

A = B.

Proof. View A and B as generic weight vectors WA and WB. Let WA = ( x1 ... xm
y1 ... ym ) and

WB = ( u1 ... um
v1 ... vm ). Since A ≥ B we have (y1, . . . , ym) ≥ (v1, . . . , vm). So either the

rows are equal or there exists j such that yj > vj and yi = vi for all i < j. As B ≥ A

we would similarly get vj ≥ yj, which is a contradiction. Hence w3(A) = w3(B). A

similar argument shows w2(A) = w2(B).

If A 6= B, let j be the first place where they differ. Then A ≥ B implies
(

xj

yj

)
>

(
uj

vj

)
.

Since yj = vj, this means xj > uj. But the same argument on B ≥ A implies uj > xj,

which is a contradiction. Thus A = B.

Now using these lemmas we can show that the max weights of tableaux are nec-

essarily disjoint.
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Lemma 3.4.9. If U and V are tableaux in maximal form, with U containing b copies

of the elements 1 to m and V containing b copies of the elements m + 1 to a (after

renumbering as necessary), then ω(U) and ω(V ) are disjoint.

Proof. Let U and V be in maximal form. Let ω2,3(U ∨ V ) = ( x1 ... xm xm+1 ... xa
y1 ... ym ym+1 ... ya ). To

show that U and V are disjoint, we need to show that any valid weight assignment of

U ∨ V restricts to a valid weight assignment of U and V . Let
(

xk1
... xkm xkm+1

... xka
yk1

... ykm ykm+1
... yka

)

be a valid weight assignment of U ∨ V . That means there exists τ such that

ω2,3(τ [U ∨ V ]) =
(

xk1
... xkm xkm+1

... xka
yk1

... ykm ykm+1
... yka

)
. We want to show it restricts to a valid

weight assignment of U , that is ω2,3(τ|U U) =
( xk1

... xkm
yk1

... ykm

)
= ω2,3(πU) for some π ∈ Sm.

This is equivalent to showing {(xi

yi

)|i = 1 . . .m} = {(xki
yki

)|i = 1 . . . m}.
Let C = {(xi

yi

)|i = 1 . . .m} be set of the weight vectors of ω2,3(U) and D =

{(xki
yki

)|i = 1 . . .m} the set of weight vectors of ω2,3(τ|U U). Define A = C \ (C ∩ D)

and B = D \ (C ∩D). So A consists of those weight vectors of U assigned to V which

are distinct from the weight vectors of V assigned to U under this weight assignment.

That is, the vectors in A occur in ω2,3(U) but not in ω2,3(τ|U U). The set B is the

weight vectors are those vectors coming from ω2,3(τ|UU) which are not in ω2,3(U).

To prove disjointness, we need to show that C = D, which is equivalent to showing

A = B = ∅.

Now U is in maximal form, so ω2,3(U) ≥ ω2,3(τ
′U) for all τ ′. Hence ω2,3(U) ≥

ω2,3(τ|U U). So by Lemma 3.4.7, we have A ≥ B. But we can also view A as the

weight vectors of U in ω2,3(τ|V V ) which are not in ω2,3(V ). Similarly B is the set of

vectors from ω2,3(V ) which are not in ω2,3(τ|V V ). Since V is also in maximal form,

ω2,3(V ) ≥ ω2,3(τ|V V ). Hence by Lemma 3.4.7, we have B ≥ A. Thus Lemma 3.4.8

shows A = B. However, A ∩ B = ∅ by definition, so A = B = ∅. Thus the weights

are disjoint.

Example 3.4.10. Suppose U is a tableau in maximal form such that

ω2,3(1, 2, 3, 4|U) = ( 3 1 0 0
0 2 0 0 ) and V is a tableau in maximal form with

ω2,3(5, 6, 7, 8, 9, 10, 11|V ) = ( 2 1 1 0 0 0 0
0 1 1 0 0 0 0 ). Suppose these weights were not disjoint.

That means we must be able to assign some weight
(

x
y

)
of U to V and some weight
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(

x′
y′
)

of V to U .

First consider the vector
(
1
2

)
of U (i.e., the vector with the largest weight in row

three). Since V is in maximal form, we know that there can be at most one copies of

any element in row three of τV for any τ . Since 2 > 1, this vector cannot be assigned

to V . Similarly, once we know that
(
1
2

)
remains a weight of U , the largest row three

weight we can assign to U is 0. Hence
(
1
1

)
remains with V .

Now consider
(
3
0

)
of U . Having V in maximal form means that when

(
1
1

)
are

assigned to V , a vector
(∗
0

)
assigned to V must have ∗ ≤ 2. Thus

(
3
0

)
is assigned to

U . Therefore the only vectors of U and V that can be assigned to each other are the
(
0
0

)
vectors. However, since a weight assignment is based only on the vector and not

its label, this is the same as a weight assignment arising from U and V . Hence the

weights are disjoint.

Lemma 3.4.9 shows that if U and V are in maximal form, qU∨V 6= 0 by Theorem 8.

We will apply Theorem 8 repeatedly when constructing tableaux. As such, we want

U ∨ V to be in maximal form whenever U and V are.

Lemma 3.4.11. If T1 and T2 are maximal tableaux filled with different elements,

then T1 ∨ T2 is maximal.

Proof. The tableaux have no elements in common so the weight splits over the join.

Hence ω(τ [T1 ∨ T2]) = ω(τ1T1 ∨ τ2T2) = ω(τ1T1)∨ ω(τ2T2). Since each tableau weight

was maximal, so too is their join.

Hence maximality is preserved under the join operation. Through this join oper-

ation, we will construct collections of tableaux. To show these tableaux are linearly

independent (over C), we can simply compare max weights.

Lemma 3.4.12. Let {Bp} be a set of tableaux in maximal form. If the max weights

of these tableaux are distinct, then {qBp} is linearly independent.

Proof. Assume {qBp} is not linearly independent. Let Bk be the tableau with the

largest weight such that qBk
is not linearly independent from the rest of {qBp}. Write
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qBk
=

∑
apqBp . Then ω(qBk

) =
∑

apω(qBp). Since Bk is in maximal form, ω(Bk)

occurs with non-zero coefficient in ω(qBk
). Hence ω(Bk) must occur with non-zero

coefficient in ω(qBp) for some p. However, Bk was chosen such that ω(Bk) ≥ ω(Bp).

By hypothesis these weights are distinct, so the inequality is strict. But the Bp are

in maximal form, so ω(Bp) is the largest weight occurring in qBp . Hence ω(Bk) does

not occurring in
∑

apω(qBp), contradicting the linear dependence.

We will use Lemma 3.4.12 heavily in Chapter 9 to prove Theorem 3. To make use

of this lemma, we need to have distinctness of max weights. When the tableaux are

formed via the join operation, we can sometimes simplify the proof of max weight

distinctness via the following lemma:

Lemma 3.4.13. Suppose we have the two row tableaux T1, T2, T3, and T4, were the

non-zero max weights are as follows: ω(T1) = (A,B), ω(T2) = (C,D), ω(T3) = (a, b),

and ω(T4) = (c, d). Assume ω(T1) 6= ω(T3), ω(T2) 6= ω(T4), but λ2(T1) = λ2(T3) and

λ2(T2) = λ2(T4). If λ2(T1) 6= λ2(T2), then ω(T1 ∨ T2) 6= ω(T3 ∨ T4).

Proof. Since λ2(T1) 6= λ2(T2) and ω(T1) 6= ω(T3), assume A+B > C +D and A > a.

If ω(T1∨T2) = ω(T3∨T4), either A = c or A = d since a ≥ b by maximality of ω(T3).

Consider A = c, then B > d and B 6= c because C + D = c + d. Then A > a and

A + B = a + b, implies B < b ≤ a. Hence there is no weight equal to B, so this

cannot occur. Similarly if A = d then c < B and hence there is no weight equal to

B. Thus the weights are distinct.

Although Lemma 3.4.13 applies directly to the join of only two tableaux, it may

often be applied in a broader context. Namely, if many of the tableaux being joined

are the same, the question of distinct weights reduces to looking only at the weights of

those tableaux which differ. This approach will be used and discussed in Chapter 9.
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Chapter 4

The Tableaux of 1
S3b
SboS3

In this chapter we completely classify and discuss those tableaux occurring in 1S3b
SboS3

.

To begin with, we determine exactly which tableaux associated with this space have

qT 6= 0. This is done in Section 4.1. In Section 4.2, we use this information and

the results from Thrall’s paper, [20], to determine precisely which partitions occur.

Finally in Section 4.3, we construct a complete tableau basis for each the tableaux

space Sλ,3 ∩Mλ,3 associated to the irreducibles of 1S3b
SboS3

4.1 Classification of qT 6= 0, for T filled with 1, 2, 3

Let T be a λ-tableau filled with b copies of the numbers 1, 2, and 3. By Lemma 3.1.5,

T has at most three rows. By Remark 3.0.9 entry permutations, column permutations

and column exchanges do not change whether qT is non-zero. Hence we may take T

to be in the following the form:

T =

k l m n o p q

1 1 1 2 1 2 3
2 2 3 3
3





k + l + m + o = b

k + l + n + p = b

k + m + n + q = b

l ≥ m ≥ n ≥ 0
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However, since we know there are exactly b copies of every number in T , we may omit

the tail and simply write T as T =

k l m n

1 1 1 2
2 2 3 3
3

, retaining the condition l ≥ m ≥ n ≥ 0

and assuming the tail.

Theorem 9. With T as described above,

qT = 0 ⇐⇒





k + l odd l > m = n ≥ 0

k + n odd l = m ≥ n ≥ 0

k+m even l = m+2, n = m-1 ≥ 0

k+l even l = m + 1, m=n ≥ 0

Moreover, when qT 6= 0, it is non-zero by weight-set counting.

Proof. ⇐= Using Remark 3.0.9, to show qT = 0 it suffices to exhibit π ∈ S3, τ ∈ CT ,

ε(τ) = −1, such that πτT = T up to an exchange of columns.

For l > m = n, l + k odd, take τ =
k

(12)T ×
l

(12)T ×
m

()T ×
n

()T and π = (12).

So ε(τ) = (−1)k+l = −1. Then τT =

k l m n

2 2 1 2
1 1 3 3
3

and πτT =

k l m n

1 1 2 1
2 2 3 3
3

. Since m= n,

exchanging columns gives T .

For l = m ≥ n ≥ 0, k + n odd use π = (23), τ =
k

(23)T ×
l

()T ×
m

()T ×
n

(12)T and

interchange columns l and m.

Now consider when l = m+1, m = n with k + l even. Then T =

k m m m

1 1 1 1 2
2 2 2 3 3
3

.

Write T = T ∗ ∨ T1 where T ∗ =

k m m m

1 1 1 2
2 2 3 3
3

and T1 =
1 3
2

. Let T2 =
2 3
1

. Take σ′ ∈

RTi
so σ′T2 =

3 2
1

. Let π′ = (123) ∈ S3 and τ ∗ =
k

(132) ×
m

() ×
m

(12) ×
m

(12)∈ CT ∗ .
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Then via reordering the columns by σ̃, we have σ̃τ ∗π′σ′(T ∗ ∨ T2) = T ∗ ∨ T1. Note

that ε(τ ∗) = 1 and σ̃, σ′, π′ commute with each other and all τ ∈ CT ∗ . Then

qT =
∑

σ∈RT

∑
π∈S3

∑
τ∈CT

σπ ε(τ)τT

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT

σπ ε(τ)τ(T ∗ ∨ T1)

=
∑

σ∈RT

∑
π∈S3

σπ[(
∑

τ∈CT∗

ε(τ)τT ∗) ∨ (
∑

τ ′∈CT1

ε(τ ′)τ ′T1)]

=
∑

σ∈RT

∑
π∈S3

σπ[(
∑

τ∈CT∗

ε(τ)τT ∗) ∨ (T1 − T2)]

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τ(T ∗ ∨ T1 − T ∗ ∨ T2)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T1 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τ σ̃τ ∗π′σ′T ∗ ∨ T2 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ) ε(τ ∗)τT ∗ ∨ T2 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2 −
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

σπ ε(τ)τT ∗ ∨ T2

= 0

Note that where appropriate we commute σ̃, σ′, and π′ to combine with σ and π and

reparameterize. The ε(τ ∗) factor arises from the reparamterization of ττ ∗.

Now consider when l = m+2, n = m-1 with k + m even. So T =
k m-1 m-1 m-1

1 1 1 1 1 1 1 2
2 2 2 2 2 3 3 3
3

. Write T = T ∗ ∨ T1 where T ∗ =

k m-1 m-1 m-1

1 1 1 2
2 2 3 3
3

and

T1 =
1 1 1 1 2 3 3 3
2 2 2 3

.

We will use the idea of the previous case to show qT = 0. However, we need to

sum over all ε(τ)τT1 with τ in CT1 . These tableaux have different symmetry relations
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with each other, so we will list all the ε(τ)τT and their relations. Note that the tail

is omitted for readability.

T1 =
1 1 1 1
2 2 2 3

T2 = − 2 1 1 1
1 2 2 3

T3 = − 1 2 1 1
2 1 2 3

T4 = − 1 1 2 1
2 2 1 3

T5 = − 1 1 1 3
2 2 2 1

T6 =
2 2 1 1
1 1 2 3

T7 =
2 1 2 1
1 2 1 3

T8 =
2 1 1 3
1 2 2 1

T9 =
1 2 2 1
2 1 1 3

T10 =
1 2 1 3
2 1 2 1

T11 =
1 1 2 3
2 2 1 1

T12 = − 1 2 2 3
2 1 1 1

T13 = − 2 1 2 3
1 2 1 1

T14 = − 2 2 1 3
1 1 2 1

T15 = − 2 2 2 1
1 1 1 3

T16 =
2 2 2 3
1 1 1 1

For appropriate σ′ ∈ RT1 we have the following relations. All permutation listed

are from S3.

T1 = −(123)σ′T14 T2 = −(123)σ′T9 T3 = −(123)σ′T6 T4 = −(123)σ′T7

T5 = (12)σ′T13 T8 = (12)σ′T8 T10 = (12)σ′T10 T11 = (12)σ′T11

T12 = (23)σ′T15 T16 = (23)σ′T16

We also have some relations on T ∗, namely that for π∗ ∈ S3 a transposition, then

π∗T ∗ = τπ∗T
∗ for τπ∗ ∈ CT ∗ with ε(τπ∗) = (−1)k+m−1. Also (132)T ∗ = τ(132)T

∗ for

τ(132) ∈ CT ∗ with ε(τ(132)) = (−1)2(m−1) = 1. Then

∑
σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(T ∗ ∨ (π∗)−1σ′Ti)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(π∗T ∗ ∨ σ′Ti)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ) ε(τπ∗)τ(T ∗ ∨ σ′Ti)

=
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ) ε(τπ∗)τ(T ∗ ∨ Ti)
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Hence if Ti = −(123)σ′Tj or Ti = π∗σ′Tj for π∗ a transposition, then
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ [(T ∗ ∨ Ti) + (T ∗ ∨ Tj)] = 0. Also, if Ti = π∗σ′Tj,

then
∑

σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(T ∗ ∨ Ti) = 0. So using the cancellations above,

we have

qT =
∑

σ∈RT

∑
π∈S3

∑
τ∈CT

πσ ε(τ)τ(T ∗ ∨ T1)

=
∑

σ∈RT

∑
π∈S3

πσ[(
∑

τ∈CT∗

ε(τ)τT ∗) ∨ (
∑

τ ′∈CT1

ε(τ ′)τT1)]

=
16∑
i=1

∑
σ∈RT

∑
π∈S3

∑
τ∈CT∗

πσ ε(τ)τ(T ∗ ∨ Ti)

= 0

=⇒ To prove these are the only non-zero cases, we will use weight-set counting

of Theorem 4 to show qT 6= 0 in the remaining cases. Given a weight, for every

weight assignment π ∈ S3 we will count (with sign) the number of τ ∈ CT such that

πω(T ) = ω(τT ) and show the sum of these numbers is non-zero. In some cases it

may be necessary to use ω(τ ′T ) instead of ω(T ) to show the weight-sum is non-zero.

Since applying τ ′ affects only the sign of qT , this will not change our result.

Specifically we wish to show if:

k + l even l > m = n ≥ 0

k + n even l = m ≥ n ≥ 0

l > m > n

then qT 6= 0

unless l=m+1, m=n, k+l even, or l=m+1, m-1=n, k+m even.

Note that if k = l = m = n = 0 then T has only one row and CT = 1. In this

case qσT = qT , so there is exactly one distinct T . Since k + n = 0, so the statement

holds. Similarly, if l = m = n = 0, applying Lemma 3.2.6 gives k even. Hence we

may assume l > 0.
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We will use the first weight-set to illustrate the technique and notation of weight-

set counting. This method of argument will be used extensively throughout the rest

of the paper. We will list our weight-counting in a table of the following form:

ωi = (l,m,n) Tableau # ε τ bound

(x, y, z) T ′ j (−1)ε l
τ1 × m

τ2 × n
τ3 m=n

The column headings are: the weight being used, the form of the tableau, the

number of τ corresponding to this weight, the sign of the τ , the form of τ , and any

bounds required. The subsequent lines correspond to different weight assignments in

line i. By (x, y, z), we mean ωi(x, y, z) = (l,m,n). When m=n, there are j distinct

τ such that τ =
l
τ1 × m

τ2 × n
τ3. All the τ have sign (−1)ε and τT is of the form T ′.

The following is a standard formula that we will use in computing these weight

sums. Its proof is a straightforward inductive application of Pascal’s Identity. For

notation purposes, we take
(
a
b

)
= 0 for b > a or b < 0. We also use the convention

(
0
0

)
= 1.

Lemma 4.1.1.
(
a+h
b

)− (
a
b

)
=

∑h
i=1

(
a+h−i
b−1

)

Consider the cases where k ≥ 0 and at least l > 0. We will apply weight-

set counting to rows two and three. For the most part, the table should be self

explanatory, though we will discuss the first weight-set table for clarity.

We’ll start with T =

k l m n

1 1 1 3
2 2 3 2
3

, ω2,3 = ( 0 k+l+n m
0 0 k )
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ω2,3 Tableau # ε τ bound

(1, 2, 3) T =

k l m n

1 1 1 3
2 2 3 2
3

1 (−1)0
k

()T ×
l

()T ×
m

()T ×
n

()T

(1, 3, 2) T =

k l m n

1 1 1 2
3 2 3 3
2

1 (−1)k+n
k

(23)T ×
l

()T ×
m

()T ×
n

(12)T l = m

(2, 1, 3) T =

k l m n

2 2 31 2
1 1 13 3
3

(
m
n

)
(−1)k+l

k

(12)T ×
l

(12)T ×
n

(12)T ×
n

(12)T

(2, 3, 1) T =

k l m n

2 2 1 2
3 1 3 3
1

1 (−1)l+n
k

(123)T ×
l

(12)T ×
m

()T ×
n

(12)T l = m

(3, 1, 2) T =

k l m n

3 21 3 3
1 12 1 2
2

(
l

m−n

)
(−1)l+n

k

(132)T ×
l+n−m

(12) T ×
m

(12)T ×
n

()T

(3, 2, 1) T =

k l m n

3 1 3 3
2 2 1 2
1

1 (−1)k+m
k

(13)T ×
l

()T ×
m

(12)T ×
n

()T

To understand how these τ are obtained, first apply the permutations needed to

have ω(x) = 0, for the appropriate x. Additionally, apply necessary permutations

so that row three of T has the correct weight. Once this is done, there will only be

one column block whose permutations have not been specified. Apply the number of

permutations needed to get the correct weight.

For the first line of this table, we see that T has the desired weight and any column

permutations will change this. Thus there is exactly one τ and it is positive.

In line two, we have ω3(2) = k and ω2,3(1) = 0. Hence we must apply (23)T to

column block k. Columns 1
2

and 1
3

cannot move since ω2,3(1) = 0. This gives l 2’s

in row two, so we must have l=m and apply (12)T to block n. When l=m, this

completely determines τ , and it has sign (−1)k+n. No such τ exists for l > m.
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Line three counts ω2,3(2, 1, 3). Since there can be no 2’s in either rows two or

three, τ must contain
k

(12)T ×
l

(12)T ×
n

(12)T . As row three already contains k 3’s,

column block k needs no other permutation. Hence column 1
3

is the only column

where τ has not yet been determined. As it stands, we already have k+l 1’s in row

two, hence only n more are required. Thus we need to apply
n

(13)T to 1
3
. There are

(
m
n

)
ways to choose which n columns move within the m block. Hence we get

(
m
n

)

distinct τ of the form described.

In line four we apply (132)T to block k in order to have ω3(1) = k and ω2,3(2) = 0.

Additionally, ω2,3(2) = 0 means we must apply (12)T to block l and (12)T to block

n. This gives l 1’s in row two, so we must have l=m and leave block m unchanged.

In this case there is one such τ ; it has sign (−1)l+n.

Line five is similar to line three. From the constraints ω3(1) = k and ω2,3(3) = 0

we have that τ contains
k

(123)T ×
m

(12)T ×
n

()T . In order to have the correct weight

for row two, we need l+n-m more 2’s. There are
(

l
m-n

)
ways to choose

l+n-m

(12) T from

block l and all these τ have sign (−1)l+n.

The last line has a similar argument to line one. We need only apply τ =
k

(13)T

×
m

(12)T to get the correct weight and this is the only possible τ .

From this table we get the following sums.

1 + (−1)k+l

(
m

m− n

)
+ (−1)l+n

(
l

m− n

)
+ (−1)k+m l 6= m (4.1.1)

1 + (−1)k+n + (−1)k+l

(
l

n

)
+ (−1)l+n + (−1)l+n

(
l

n

)
+ (−1)k+l l = m (4.1.2)

Case I: (l > m > n). Here, (4.1.1) equals zero only if |( l
m−n

) ± (
m

m−n

)| = 0 or 2.

For it to equal 0, we must have m = n or l = m.

To have |( l
m−n

)− (
m

m−n

)| = 2, and (4.1.1) equal to zero, we must have k + m even

and k + n odd. Applying Lemma 4.1.1, we get l = m + 1 or l = m + 2.

If l = m + 1, then (4.1.1) becomes 1− (
m

m−n

)
+

(
m+1
m−n

)
+ 1. Now

(
m+1
m−n

)− (
m

m−n

)
= 2

only if
(

m
m−n−1

)
= 2, that is m = 2 and n = 0. This contradicts k + m even and k + n

odd. Hence (4.1.1) is non-zero for l = m + 1.

If l = m + 2 and k + m even, (4.1.1) becomes 1 − (
m

m−n

)
+ (−1)m+n

(
m+2
m−n

)
+ 1.
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For this expression to be zero we must have n = m− 1, in which case we’ve already

shown qT = 0. Thus (4.1.1) is non-zero unless l = m + 2 and n = m− 1.

Finally,
(

l
m−n

)
+

(
m

m−n

)
= 2 only when m = n.

Case II: (l = m ≥ n, l > 0). We need only show the expression (4.1.2) is non-zero

for k+n even. From this, (4.1.2) becomes 2+(−1)k+l(1+
(
l
n

)
)+(−1)l+n(1+

(
l
n

)
). The

parity of k and n is the same, so we reduce to determining when 1+(−1)k+l((1+
(
l
n

)
) =

0. Since
(
l
n

)
> 0, this cannot occur.

Case III: (l > m = n). We want a non-zero weight sum for k+l even. Under these

conditions, expression (4.1.1) becomes 1 + 1 + (−1)l+n + (−1)k+n. This is non-zero

unless k + n is odd.

It remains to show qT 6= 0 for l > n = m, k + l even, k + m odd.

For this, consider the following weight-set counting on T =

k l m n

1 1 1 2
2 2 3 3
3

with

ω2,3 = ( k+l+m-1 0 n+1
0 0 k ). Note that this weight-set is not the weight of T . We are

counting which permutations τ will correspond to a weight assignment π, where

ω2,3 = πω2,3(τT ).
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ω2,3 Tableau # ε τ Bound

(1, 2, 3) T =

k l m n

2 2 31 2
1 1 13 3
3

(
m

m−1

)
(−1)k+l+m−1

k

(12)T ×
l

(12)T ×
m−1

(12)T ×
n

()T m ≥ 1

(1, 3, 2) T =

k l m n

3 21 3 3
2 12 1 2
1

(
l

l−1

)
(−1)m+n+l−1

k

(132)T ×
l−1

(12)T ×
m

(12)T ×
n

(12)T l ≥ 1

(2, 1, 3) T =

k l m n

1 1 1 32
2 2 3 23
3

(
n

m−1

)
(−1)m−1

k

()T ×
l

()T ×
m

()T ×
m−1

(12)T

m ≥ 1

m− 1 ≤ n

(2, 3, 1) T =

k l m n

3 21 3 2
2 12 1 3
1

(
l

n+1−m

)
(−1)k+1

k

(13)T ×
n+1−m

(12) T ×
m

(12)T ×
n

(12)T

m ≤ n + 1

n + 1−m ≤ l

(3, 1, 2) T =

k l m n

1 1 1 32
3 2 3 23
2

(
n

l−1

)
(−1)k+n+l+1

k

(23)T ×
l

()T ×
m

()T ×
n+1−l

(12) T

l ≥ 1

l− 1 ≤ n

(3, 2, 1) T =

k l m n

2 2 31 2
3 1 13 3
1

(
m

n+1−l

)
(−1)n+1

k

(123)T ×
l

(12)T ×
n+1−l

(12) T ×
n

()T

l ≤ n + 1

n + 1− l ≤ m

Since we previously dealt with the l = n + 1 case, the last two lines of the table

do not contribute. Hence the table gives the weight sum:

(−1)m−1m + (−1)l−1l + (−1)m−1m + (−1)l+1l l 6= n + 1, m 6= 0 (4.1.3)

Consider l > m = n, k + l even, k + n odd. For l 6= n + 1, m 6= 0, (4.1.3) is

2((−1)m−1m + (−1)l−1l), which is non-zero as l 6= m. If m = 0, we must have k

and l odd. This makes (4.1.3) l + l which is not equal to zero since l 6= 0. For

l = n+1 we’ve already shown qT = 0. Thus we determined all the non-zero tableaux

of 1S3b
SboS3

.
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4.2 The Irreducibles Partitions of 1
S3b
SboS3

For Theorem 2, we need to know which irreducibles occur (i.e., have non-zero multi-

plicity) in 1S3b
SboS3

. We call a shape (or partition) non-zero if the multiplicity of the cor-

responding irreducible in 1S3b
SboS3

is non-zero. By Lemma 2.2.7, the non-zero partitions

are those partitions where dim(Sλ,3 ∩Mλ,3) > 0. Since qT generates Sλ,a ∩Mλ,a we

need only determine from Theorem 9 which partitions have non-zero tableaux. These

partitions and their multiplicities were completely determined by Thrall in [20]. We

will first derive them from Theorem 9 and then confirm it with Thrall’s result.

We will only consider shapes [λ] which are partitions of 3b. Consider T =

︸︷︷︸
r︸ ︷︷ ︸

s︸︷︷︸
t

. This labeling will be useful in our later constructions, so we will

derive the non-zero shapes in terms of it. When T is of the form

k l m n

1 1 1 2
2 2 3 3
3

, we have

t = k, s = l+m+n and the tail r = 3b − 2s − 3t. Since 1, 2, and 3 all occur k = t

times in the part of T above t, we will sometimes replace b with b′ = b−k when con-

sidering the multiplicity of elements in columns r and s, since the subtableau formed

by columns r, s and the tail will have the elements 1, 2, and 3 occurring b′ times each.

In partition notation we have λ = [r + s + t, s + t, t].

4.2.1 Non-Zero Partitions from Theorem 9

Definition 4.2.1. For our purposes, we call a partition (or shape) λ of n required if

there is a non-zero λ-tableau T filled with n
3

copies of the elements 1, 2, and 3. These

are precisely the tableaux determined in Theorem 9. Specifically, a required shape is

one for which we must construct an appropriately filled non-zero tableau in order to

prove Theorems 1 and 2. These shapes are explicitly determined in Theorem 10.

To determine the non-zero [λ] = [r + s + t, s + t, t], we analyze the required

partitions that correspond to non-zero tableaux in Theorem 9. We find that:
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Theorem 10. The only partitions [r + s + t, s + t, t] of n = 3b which do not occur in

1Sn
SboS3

are those with s or r = 1 as well as those having s+ t odd and s or r ∈ {0, 2, 4}.
Equivalently, a partition is non-zero if, for r, s 6= 1, when r or s is in {0, 2, 4}, then

s + t is even.

Proof. For a given partition λ = [r + s + t, s + t, t], we need only find (l,m,n) with

l + n + n = s, k = t, and the conditions of Theorem 9 satisfied to show qT 6= 0.

This shows that Sλ must occur in 1S3b
SboS3

. Since all values of t = k can occur when

l > m > n, (if l 6= m + 2), we consider tableaux of this form. Given t, the elements

1, 2 and 3 will occur b′ = b − t times in the remaining columns l, m, n, and the

tail of T . For each t we need to determine which s for 0 ≤ s ≤ b′
2

yield required

non-zero partitions. To do so we will take the following parameterizations of (l,m,n)

and determine the corresponding s.

(l,m,n) = (i + 2, i + 1, i), we get s = 3i + 3 for 0 ≤ i ≤ b′ − 3

2

= (i + 3, i + 2, i) s = 3i + 5 0 ≤ i ≤ b′ − 5

2

= (i + 4, i + 3, i) s = 3i + 7 0 ≤ i ≤ b′ − 7

2

For a given parameterization of (l,m,n) by i, we have s = l+m+n. Since there

are at most b′ 1’s in the r and s sections, we must have l + m] ≤ b′ which gives the

upper bound on i.

These parameterizations of (l,m,n) are non-zero by Theorem 9 since l > m > n

and l 6= m + 2. Moreover, the parameterizations cover all equivalence classes of s

(mod 3). Hence this tells us that all partitions with s ≥ 5 or s = 3 are non-zero,

leaving aside the upper bound on s for now. When s = 4, the possibilities for (l,m,n)

are (4, 0, 0), (2, 2, 0), and (2, 1, 1) which are non-zero only when s+ t, (i.e., k) is even.

For (3, 1, 0) the tableau is always zero since l = m+2, n = m− 1. For s = 2 the only

possibilities are (2, 0, 0) and (1, 1, 0). The non-zero conditions of Theorem 9 require

k = t, and hence s + t, to be even in both cases. Similarly for s = 0, we must have k
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even for T to be non-zero, as shown in Lemma 3.2.6. For s = 1, the only possibility

is (l,m,n) = (1, 0, 0), and such a tableau is always zero.

Determining the upper bounds on s corresponds to determining lower bounds on r.

We will similarly give parameterizations of (l,m,n) which will cover all equivalence

classes of r (mod 3). Using the equation 3b′ − 2s = r we get the corresponding

equations and lower bounds.

For s = 3i + 3, i ≤ b′ − 3

2
then r ≥ 3, r ≡ 0 (mod 3) (4.2.1)

s = 3i + 5, i ≤ b′ − 5

2
r ≥ 5, r ≡ 2 (mod 3) (4.2.2)

s = 3i + 7, i ≤ b′ − 7

2
r ≥ 7, r ≡ 1 (mod 3) (4.2.3)

This is the parameterization table for s rewritten in terms of r. So for r ≥ 5, all

partitions are non-zero, provided the conditions on s are met.

If r = 0, we must have l = m = n = b′
2
. By Theorem 9, this shape is non-zero

only if k+l is even. Thus only the shapes with s+t = k+l+m+n even are non-zero.

For r = 1 we get the constraints l + m = l + n = b′ and m + n = b′ − 1. This means

m = n, and l=m+1. These tableaux are always zero.

When r = 2, we must have either l = m or m = n. These shapes will be non-zero

if k+n or k+l is even respectively. In either case, s + t is even.

For r = 4, we must have either m = n, l = m, or (l,m,n) = ( b′+2
2

, b′−2
2

, b′−4
2

) . In

the first two cases, the non-zero conditions of Theorem 9 force s + t to be even. In

the last case, the tableau is always zero.

If r = 3 or 5 then i = b′−3
2

or i = b′−5
2

is an integer for b′ odd so the parameterization

listed works. For b′ even, these partitions are not required since 3b′ − 2s = r, would

make r even.

In addition, Theorem 9 shows the remaining partitions are zero.
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4.2.2 Partition Multiplicities according to Thrall

In [20], Thrall determines the partitions occurring in 1S3b
SboS3

with multiplicity, which

he calls f(λ). If λ = [λ1, λ2, λ3], he gives the following method to compute f(λ):

To the minimum of 1 + λ1 − λ2 and 1 + λ2 − λ3, add whichever of −2,

0, +2 will give a result divisible by 3. If this result is even, divide by 6

to get f(λ). If the result is odd, add or subtract 3 according to λ2 being

even or odd and then divide by 6 to get f(λ).

Letting λ = [r+s+ t, s+ t, t] we have min(1+λ1−λ2, 1+λ2−λ3) = 1+min(r, s).

Then f(λ) = 1+min(r,s)+x+y
6

where x ∈ {−2, 0, 2} such that 1 + min(r, s) + x ≡ 0

(mod 3), y ∈ {−3, 0, 3} such that 1 + min(r, s) + x + y ≡ 0 (mod 6), and y ≥ 0 if

s + t even and y ≤ 0 if s + t odd.

Theorem 11. Writing s = 6k + j, r = 6h + i with 0 ≤ i, j ≤ 5, then by [20], the

multiplicity of Sλ in 1S3b
SboS3

is f(λ), where

f(λ) =





k s ≤ r i = 0, 2, 4, s + t odd

k s ≤ r i = 1

k + 1 s ≤ r i = 0, 2, 4, s + t even

k + 1 s ≤ r i = 3, 5

h r < s i = 0, 2, 4, s + t odd

h r < s i = 1

h + 1 r < s i = 0, 2, 4, s + t even

h + 1 r < s i = 3, 5

Hence f(λ) 6= 0 for r, s 6= 1, provided s+ t is even when r or s is in {0, 2, 4}. This

agrees with our results in Section 4.1.
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4.3 Construction of Basis Tableaux for c = 3

Recall that the space Sλ,c∩Mλ,c is spanned by {qT} where the T are λ-tableaux filled

with the numbers 1 to c. By Lemma 2.2.7, dim(Sλ,c∩Mλ,c) equals the multiplicity of

Sλ in 1Sn
SdoSc

. Given a partition λ of n = 3b, we want a set of tableaux {Bp} such that

{qBp} is linearly independent and that |{Bp}| is the multiplicity of the irreducible

corresponding to λ in 1Sn
SboS3

. We call these Bp the basis tableaux for c = 3. These

tableaux will be used in Chapter 9 for the proof of Theorem 3. We will build these

tableaux from the following components:

M1 = 1 2 3 M2 =
2 2 3 3 3 3
1 1 1 1 2 2

M3 =
3 3
1 1
2 2

M4 =
3 3 2 3
1 1 1 2
2

Na =

a-1 a-1
2 3 2 3
1 1

1 < a ≤ n
3

= b

In constructing these basis tableaux, we want tableaux filled with only the numbers

1, 2, and 3. We will use Y to denote the joining of tableaux without renumbering

them. For example, M2 Y M1 =
2 2 3 3 3 3 1 2 3
1 1 1 1 2 2

.

Let λ = [r + s + t, s + t, t]. When t is even, write s = 6k + j and r = 6h + i,

with 0 ≤ i, j ≤ 5. Let g = min(k, h). Since λ is a partition of n = 3b we have

3t + 2s + r = 3b. Hence 2j + i ≡ 0 (mod 3). Let δ = i−j
3

. (So δ = 0 for i = j, δ = 1

for i = j + 3, and δ = −1 for i = j − 3.) When t is odd, we proceed as above, except

let s− 3 = 6k′ + j′, δ = i−j′
3

, and g = min(k′, h).

For p = 1, 2, . . . , g, we define the basis tableaux:

Bp = t
2
M3 Y N6p+j Y (k − p)M2 Y (2h− 2p + δ)M1 (t even)

Bp = t−1
2

M3 Y M4 Y N6p+j′ Y (k′ − p)M2 Y (2h− 2p + δ)M1 (t odd)
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Additionally, for j, j′ 6= 1 we have the tableau B0, which is Bp with p = 0 under

certain conditions.

B0 = t
2
M3 Y Nj Y kM2 Y (2h + δ)M1, j > 1 (t even)

B0 = t
2
M3 Y kM2 Y (2h + δ)M1 j = 0 (t even)

B0 = t−1
2

M3 Y M4 Y Nj′ Y k′M2 Y (2h + δ)M1, j′ > 1 (t odd)

B0 = t−1
2

M3 ∨M4 Y k′M2 Y (2h + δ)M1 j′ = 0 (t odd)

Note that if δ = −1, then B0 exists only for h ≥ 1 and Bg exists only for g < h.

To demonstrate that the {Bp} is a basis, we need to verify that they:

• Have the correct shape,

• Are non-zero and maximal,

• Are linearly independent,

• Span the space.

Shape: First consider the shape of these tableaux. We need to show these

tableaux have shape λ = [r + s + t, s + t, t]. For t even:

λ3(Bp) = t
2
λ3(M3) + λ3(N6p+j) + (k − p)λ3(M2) + (2h− 2p + δ)λ3(M1)

= t
2
∗ 2 + (k − p) ∗ 0 + (2h− 2p + δ) ∗ 0

= t

λ2(Bp) = t
2
λ2(M3) + λ2(N6p+j) + (k − p)λ2(M2) + (2h− 2p + δ)λ2(M1)

= t + 6p + j + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 0

= t + 6k + j

= t + s
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λ1(Bp) = t
2
λ1(M3) + λ1(N6p+j) + (k − p)λ1(M2) + (2h− 2p + δ)λ1(M1)

= t + (6p + j) ∗ 2 + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 3

= t + 6k + j + 6h + j + 3δ

= t + s + 6h + j + 3δ

= t + s + 6h + i

= t + s + r

When t is odd we have:

λ3(Bp) = t−1
2

λ3(M3) + λ3(M4) + λ3(N6p+j′) + (k′ − p)λ3(M2) + (2h− 2p + δ)λ3(M1)

= t−1
2
∗ 2 + 1 + (k′ − p) ∗ 0 + (2h− 2p + δ) ∗ 0

= t

λ2(Bp) = t−1
2

λ2(M3) + λ2(M4) + λ2(N6p+j′) + (k′ − p)λ2(M2) + (2h− 2p + δ)λ2(M1)

= t− 1 + 4 + 6p + j + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 0

= t + 3 + 6k′ + j′

= t + s

λ1(Bp) = t
2
λ1(M3) + λ1(M4) + λ1(N6p+j′) + (k′ − p)λ1(M2) + (2h− 2p + δ)λ1(M1)

= t− 1 + 4 + (6p + j′) ∗ 2 + (k − p) ∗ 6 + (2h− 2p + δ) ∗ 3

= t + 3 + 6k′ + j′ + 6h + j′ + 3δ

= t + s + 6h + j′ + 3δ

= t + s + 6h + i

= t + s + r

A similar computation works for the shape of B0. Hence these tableaux have the

correct shape. Moreover, within each component, the same number of 1’s, 2’s and 3’s
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were used. Hence the Bp have the correct number of 1’s 2’s and 3’s.

Maximality: When t is even, a generic basis element (with the tail suppressed)

looks like:

Bp =

t a b c

3 2 3 3
1 1 1 2
2

a = 2(k − p) + 6p + j − 1

b = 2(k − p) + 1

c = 2(k − p)

Then ω2,3(Bp) =
(

t+6p+j+4(k−p) 2(k−p) 0
0 t 0

)
. Since b > c and a > b (for p ≥ 1), this

weight is maximal. Bp is also non-zero, since the only other possible weight assignment

is
(

t+6p+j+4(k−p) 0 2(k−p)
0 0 t

)
. This has sign (−1)t+2(k−p) = 1 as t is even.

When t is even, the tableau B0 is the same as Bp with p = 0 when j > 1. In this

case a > b and the above argument holds. There is no B0 for j = 1. When j = 0,

we have (suppressing the tail):

B0 =

t a a a

3 2 3 3
1 1 1 2
2

a = 2k

Then ω2,3(B0) = ( t+4k 2k 0
0 t 0 ). This weight is clearly maximal. Although there are

many different weight assignments possible for B0, all weight assignments are positive

since each column block is even. Hence B0 is non-zero.

When t is odd, a generic basis element (with the tail suppressed) looks like:

Bp =

t a b c

3 2 3 3
1 1 1 2
2

a = 2(k′ − p) + 6p + j′

b = 2(k′ − p) + 2

c = 2(k′ − p) + 1

Then ω2,3(Bp) =
(

t+6p+j′+4(k′−p)+2 2(k′−p)+1 0
0 t 0

)
. Since b > c and a ≥ b (for p ≥ 1),

this weight is maximal. Bp is also non-zero since the only other possible weight

assignment is
(

t+6p+j′+4(k′−p)+2 0 2(k′−p)+1
0 0 t

)
. This has sign (−1)t+2(k′−p)+1 = 1 as t is

odd.
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When t is odd, the tableau B0 is the same as Bp with p = 0 when j′ > 1. In this

case a ≥ b and the above argument holds. There is no B0 for j′ = 1 (since qB0
is

zero when j′ = 1). When j′ = 0, we have (suppressing the tail):

B0 =

t a a a

3 2 3 3
1 1 1 2
2

a = 2k′ + 1

Then ω2,3(B0) =
(

t+4k′+2 2k′+1 0
0 t 0

)
. This weight is clearly maximal. Although there

are many different weight assignments possible for B0, These weight assignments

always move exactly two or four column blocks. Since the size of the column blocks

is odd, all weight assignments are positive. Hence B0 is non-zero.

Linear Independence: To show the tableaux Bp are linearly independent, by

Lemma 3.4.12 it suffices to show their max weights are distinct. First consider t even.

Say w2,3(Bp) = w2,3(Bp′), with p < p′. Then we must have t + 6p + j + 4(k − p) =

2(k − p′), which forces k = p = j = t = 0. Then our partition is just [n], so only one

tableau is needed. If w2,3(Bp) = w2,3(B0) with p > 0, then we get t + 4k = 2(k − p)

which implies t = k = p = 0. Hence the tableaux are linearly independent. When t

is odd, the max weights must be distinct, since an argument similar to the one above

shows t = 0 which is not possible.

Span: Since the tableaux Bp are linearly independent they will span the space

Sλ,3 ∩Mλ,3 if |{Bp}| = mλ, where mλ = f(λ) as determined by [20]. (We listed f(λ)

explicitly in Theorem 11.)

First consider the case of t even. Given λ = [r + s + t+, s + t, t] with t even,

then mλ depends on the relative sizes of r and s. For s ≤ r, we need k + 1 tableaux

for j 6= 1 and k tableaux for j = 1. When s ≤ r, we have g = k. Thus we get k

different Bp’s and when j 6= 1 we have B0 as well. The restriction on the tableaux

when δ = −1 occurs only when g = h. However, then h = k and i = j − 3 which

contradicts s ≤ r, so this case does not occur here. Hence we have a full set of basis
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tableaux.

If r < s, we have g = h. How many tableaux we have depends on δ. Note that Bh

exists only for δ 6= −1, and B0 requires h > 0 for δ = −1. The number of tableaux

needed according to Theorem 11 also depends on δ.

Since s ≡ j (mod 2) and 3δ = i− j, when δ = 0 we have i ≡ s (mod 2). Then s

is even for i = 0, 2, and 4, hence by [20] we need we need h + 1 tableaux for i 6= 1

and h tableaux for i = 1. Since δ 6= −1, there are h distinct Bp. We also have B0

when i 6= 1 since i = j. Hence we have a full set of basis tableaux.

If δ = 1, all the tableaux described when δ = 0 occur. Since δ = 1, we have

i = j + 3 which implies i = 3, 4 or 5. For i = 4 we need need h tableaux since s is

odd, while for i = 3, 5 we need h + 1 tableaux. When i = 4 we have h different Bp

(though no B0 since j = 1). When i = 3, 5 then j = 0, 2. Hence B0 exists and we

obtain the complete set of basis tableaux.

For δ = −1 we have i = j − 3, so i = 0, 1, 2. We need exactly h tableaux since

either i = 1 or s is odd. However, we no longer have Bh, so we get only h−1 tableaux

from the Bp. In addition, when h ≥ 1 we have B0 since j = i + 3 ≥ 3 and so j > 1.

Hence we have h tableaux for h ≥ 1. If h = 0 then no tableaux are needed since

either r = 1 or r = 0 or r = 2 with s odd. Thus the correct number of tableaux is

given.

Now consider the case when t is odd. When s ≤ r we need k tableaux for

j = 0, 1, 2, or 4 and k + 1 tableaux for j = 3 or 5. If j = 3 or 5, then k′ = k = g so

there are k tableaux Bp, in addition to the tableau B0 (since j′ = j− 3 6= 1). If j < 3

then g = k′ = k − 1, so there are k − 1 tableaux Bp in addition to the tableau B0.

For j = 4, we have k tableaux Bp, since g = k′ = k. However since j′ = 1, B0 does

not exists. The restriction on the tableaux when δ = −1 occurs only when g = h.

However, then h = k′ = k and i = j − 3 which contradicts s ≤ r, so this case does

not occur here. Hence we have a full set of basis tableaux.

When r < s we need h tableaux when i = 1. For i = 0, 2, and 4 we need h

tableaux when s is even and h + 1 tableaux when s is odd. For i = 3 or 5 we need

h + 1 tableaux. Note that s 6≡ j′ (mod 2).
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If δ = 0 then i = j′. We have h tableaux Bp, along with B0 for j′ 6= 1. Hence

we have h tableaux when i = 1, and h + 1 tableaux otherwise. Since s is odd when

i = 0, 2, or 4, this is the correct number.

If δ = 1 then i = j′ + 3, so i = 3, 4 or 5. If i = 3 or 5, then j′ 6= 1 and there are

h + 1 tableaux as desired. If i = 4 then j′ = 1, hence there are only h tableaux Bp.

However, only h tableaux are needed here since s is even.

If δ = −1 then i = j′ − 3, so i = 0, 1 or 2. Since s is even when i 6= 1, only

h tableaux are required in this case. However, we no longer have Bh, so there are

h− 1 tableaux Bp. In addition, when h ≥ 1, we have B0, since j′ > 1, so the correct

number of tableaux are obtained. If h = 0 then no tableaux are needed since either

r = 1 or r = 0 or r = 2 with s+ t odd. Thus the correct number of tableaux is given.
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Chapter 5

Proof of Theorem 1

Recall, Theorem 1 says that every irreducible occurring in 1Sn
SboS2

occurs in 1Sn
SdoSc

with

equal or greater multiplicity, where n = 2b = cd and b, c, d ≥ 2.

In Section 3.2 we proved Theorem 7, which showed that the irreducibles occurring

in 1Sn
SboS2

were exactly those corresponding to partitions λ = [n− s, s] for s even and

they occur with multiplicity one. (Since n = 2b is even, it suffices to consider only

the even values of s.) By Remark 2.2.8, to prove Theorem 1, it suffices to construct a

non-zero tableau filled with d copies of c elements for each partition [n− s, s], where

0 ≤ s ≤ n
2
, s even and n = cd.

To do this we will construct some non-zero generic tableaux that when assembled

via Theorem 8 will produce all the shapes and fillings needed. Since we are con-

structing generic tableaux for many partitions and fillings, we will not use a fixed c.

However, we assume that every element listed in the body of the tableau occurs d

times, filling out the tail as needed. We apply weight-set counting to prove a tableau

is non-zero. The tableaux we need are:

Tableau U1

U1 =

a d-a d-a
1 1 2
2

∼
a

1
2

a even

a ≤ d

ω2(U1) = (0,a)
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λ = [2d− a,a]

For this first tableau, we listed U1 both with and without the tail. Normally we

will suppress the tail when writing these tableaux. U1 is non-zero by Lemma 3.2.6

since a is even. It is maximal since (a, 0) is the largest possible weight-set for this

shape.

Tableau U2

U2 =

a a b b

1 3 1 3
2 4 4 2

a + b ≤ d

a, b > 0

ω2 = (0,a+b, 0,a+b)

λ = [4d− 2(a+b), 2(a+b)]

Examining the filling of U2 and a,b > 0 we find the following constraints on any

valid weight assignment: (Recall that U∗ corresponds to a possible tableau τU2.)

• If ω2(1|U∗) = 0 then ω2(2 and 4|U∗) > 0.

• If ω2(2|U∗) = 0 then ω2(1 and 3 |U∗) > 0.

• We must have ω2(1 or 2|U∗) > 0 and ω2(3 or 4|U∗) > 0.

Since any valid weight assignment of (0,a + b, 0,a + b) has exactly two zeros,

the restrictions above show that (1, 2, 3, 4) and (2, 1, 4, 3) are the only valid weight

assignments. These weights-sets correspond to applying τ =
a

()T ×
a

()T ×
b

()T ×
b

()T

and τ =
a

(12)T ×
a

(12)T ×
b

(12)T ×
b

(12)T respectively. As both of these τ have positive

sign, qU2
6= 0. This tableau is maximal since every element x must have ω2(x) ≤ a+b.
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Tableau U3

U3 =

a b b

1 1 2
2 3 3

a even

a + b ≤ d

d even

b = d
2

ω2 = (0,a, d)

λ = [2d− a,a + d]

To show U3 is non-zero we will use weight-set counting on ω2 = (0,a, d). There

are two cases for which we need to determine weight assignments, a + b < d and

a + b = d.

When a + b < d, only the element 3 may be assigned a row two weight of d. So

the distinct weight assignments are (1, 2, 3) and (2, 1, 3), which occur with τ = ()T

and τ =
a

(12)T ×
b

()t ×
b

()T respectively. Since a is even, both τ have positive sign.

Hence U3 is non-zero.

If a + b = d, then a = b = d
2

and d ≡ 0 (mod 4). While every permutation

corresponds to a distinct weight assignment, every weight assignment can only be

obtained by having τ move complete column blocks. Since all of these blocks are

even, τ is positive for every weight assignment and hence U3 is non-zero. This tableau

is maximal since (d,a, 0) is the largest possible weight.

Tableau V (d)

V =
d
1

ω1(V ) = (d)

λ = [d]
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This is just a single row with d ones. Since there are no column permutations,

this tableau is always non-zero. It is obviously maximal.

Having constructed these generic tableaux, we will use the notation Ui(x) to denote

the tableau Ui with the parameter a = x or Ui(x, y) for x = a and y = b in Ui. We

will use fUi to denote the join of f copies of Ui. Note that these tableaux are all in

maximal form.

For the proof of Theorem 1, the parity effects the construction process. To simplify

notation, we define the ∗-function.

x∗ =





x x even

x− 1 x odd

We analyze T by the parameters r = n−2s and s, where λ = [r+s, s]. For reference,

we consider tableau of the following shape, with r and s even.

T = ︸ ︷︷ ︸
r︸ ︷︷ ︸

s

Proof of Theorem 1. To prove Theorem 1 we need to construct a non-zero tableau of

shape λ = [n − s, s] for s ≤ n
2
, with s even and n = cd, c, d ≥ 2. First we construct

a general tableau that covers most s. Suppose s ≤ c∗d∗
2

. We know s is even, so write

s = fd∗ + e, where 0 ≤ e < d∗, e even. Since s, d∗, and e are even, this is possible by

the Euclidean algorithm.

Let T = fU1(d
∗) ∨ U1(e). Note that the bound on s guarantees that 2(f + 1) ≤ c

when e > 0, and 2f ≤ c when e = 0. This insures that there are at most c distinct

elements in T . If there are fewer than c elements in T add all the remaining elements

to the tail of T by joining the appropriate number of V (d)’s. Suppressing the tail

elements from the U1’s and V (d)’s, T looks like:
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T =

d∗ d∗ · · · d∗ v d · · · d
1 3 · · · 2f − 1 2f + 1 2f + 3 · · · c
2 4 · · · 2f 2f + 2

Theorem 8 shows T is non-zero, provided the weight-sets are disjoint. Since the

tableaux are in maximal form, the weights must be disjoint by Lemma 3.4.9. This

covers the majority of the s. The remaining tableaux will be constructed according

to the parity of c and d.

Case I: (c, d even) In this case c∗d∗
2

= cd
2
, so T constructed above covers all

partitions.

Case II: (d even, c odd) By the above construction, we have all tableaux with s up

to (c−1)d
2

. Thus we only need those even partitions with s = cd−k
2

for 0 ≤ k ≤ d − 2,

k ≡ d (mod 4). Take T = c−3
2

U1(d) ∨ U3(a) for 0 ≤ a ≤ d
2

with a even. Then

s = c−3
2

d + a + d = cd−d+2a
2

. Thus we have k = d− 2a, which ranges over the correct

parameters. Since U1 and U3 are in maximal form, Lemma 3.4.9 implies disjointness

and Theorem 8 shows T is non-zero.

Case III: (c even, d odd) Since r = n − 2s = cd − 2s s we need λ = [r + s, s] for

r ≤ cd with r ≡ cd (mod 4). It suffices to construct a non-zero tableau for r < 4d.

When r ≥ 4d, let r′ = r − 4dz with r′ < 4d. Then if we construct a λ′ = [s + r′, s]

tableau T ′ filled with d copies of c − 4z elements, we get the needed tableau by

T = T ′ ∨ 4zV (d). Hence we will take r < 4d.

When c ≡ 0 (mod 4) then r ≡ 0 (mod 4). Take T = c−4
4

U2(d− 1, 1)∨U2(d− r
4
−

1, 1). This construction gives the shape c−4
4

[2d, 2d]+[2d+ r
2
, 2d− r

2
] = [ cd

2
+ r

2
, cd

2
− r

2
] as

desired. The parameters of these tableaux are positive unless r = 4d−4 since r < 4d,

r ≡ 0 (mod 4), and d ≥ 2. If r = 4d − 4 then d − r
4
− 1 = 0, so use U1(2) ∨ 2V (d)

instead of of U2(d− r
4
− 1, 1).

For c ≡ 2 (mod 4) we will assume r < 2d. When 2d ≤ r < 4d let r′ = r−2d. Then
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can construct a λ′ = [r′+s, s] tableau T ′ with c ≡ 0 (mod 4) and use T = T ′∨2V (d).

Take T = c−2
4

U2(d−1, 1)∨U1(
2d−r

2
) with V (d)’s as needed. Note that cd ≡ r (mod 4)

implies that 2d−r
2

is even, while r < 2d insures it is positive. So we get the shape

[ cd
2

+ r
2
, cd

2
− r

2
] as needed. Theorem 8 shows these T ’s are non-zero provided the

weight-sets are disjoint, which follows from maximality.

Note that since cd = n, n even, then c or d is even. Thus we have constructed all

cases.

Although it is not directly apparent from this construction, c or d even is often

a necessary requirement for any non-zero two row tableau with s even to exist. For

instance, when c = 3 and d = 7, the shape [11, 10] has s even, but all tableaux are

zero by Theorem 9.
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Chapter 6

Proof of Theorem 2

From Remark 2.2.8, to prove Theorem 2, it suffices to construct non-zero tableaux

filled with d copies of c elements for all required partitions of n = cd, c, d ≥ 3. These

partitions were determined in Theorem 10.

Our approach is similar to the proof of Theorem 1 in Chapter 5. Using some

generic non-zero tableaux (like Ui and V in Chapter 5) with c elements, we join

them together by Theorem 8 to form a tableau of the appropriate shape and filling.

However, unlike in Chapter 5, a large number of generic tableaux are needed. Since

the cataloging of non-zero tableaux is quite tedious, we post-pone the construction

until Chapter 7. Namely, our proof here will presuppose the construction of all

tableaux of the required shapes for c ≤ 8 .

The general idea is to write a tableau T as follows:

T = S ∨ T ′ ∨ U ∨ V

for an appropriate T ′, where S, U , and V generic constructions based on the parity

of d. This reduces the construction of T to a construction of T ′ where the shape

parameters, (r, s, and t), of T ′ are small. Thus we only need to construct tableaux

for a limited number of cases corresponding to small shapes. The tableaux S, U,

and V are based on the following non-zero maximal tableaux: (Here U1, U2 and V

occurred in Chapter 5.)
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S0 = P1(d) =

d

1
2
3

d even, S1 =

a a b b b b

5 6 6 6 5 5
4 3 3 4 3 4
1 2 1 1 2 2

a = d−x
3

+ x

b = d−x
3

d ≡ x (mod 3),

x ∈ {0, 1, 2}

U1(d) =

d

1
2

d even, U2 =

a a b b

1 3 1 3
2 4 4 2

a = d− 1

b = 1

V =
d

1

Let λ = [r + s + t, s + t, t]. We can write T = S ∨ T ′ ∨ U ∨ V , for appropriate

T ′ provided T ′ is maximail. Then T ′ will be filled with d copies of c′ elements, for

some c′ < c, which will eventually allow us to reduce to c ≤ 8. If T ′ is non-zero and

maximal then by Lemma 3.4.9 and the Theorem 8 qT 6= 0 as desired. For simplicity,

we will base our construction on the parity of d.

6.1 Case: d even

To see how to write T as T = S ∨ U ∨ V ∨ T ′ for an appropriate T ′ we first discuss

the individual reductions allowing us to write T = S ∨T ′, T = U ∨T ′, or T = V ∨T ′.

Then successive applications of these reductions yield our desired decomposition. An

analysis of these reductions also computes the resulting bounds on the shape of T ′.

An example application follows the reductions listed below. The reader may wish to

refer to Example 6.1.1 while reading these reductions.

Reduction 1: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take f to be the maximum integer such that fd ≤ λ3 and c − 3f ≥ 3.

Let S = fP1(d) be the join of f copies of P1(d). Then by Theorem 8, we may write

T = S ∨ T ′ for T ′ a λ′ = (λ1 − df, λ2 − df, λ3 − df)-tableau filled with d copies of

c′ = c − 3f elements, provided the weight-sets of S and T ′ are disjoint. The choice
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of f means that in T ′, t′ = λ′3 = λ3 − df < d or c′ = c − 3f < 6. Thus we need only

consider tableaux with t = λ3 < d or c < 6. The c < 6 condition coresponds to the

requirement c − 3f ≥ 3. We need this requirement so that there are at least three

elements available with which to fill the remaining tableau, T ′.

Reduction 2: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take g to be the maximum integer such that gd ≤ λ2 − λ3 = s and

c− 2g ≥ 3. Let U = gU1(d) be the join of g copies of U1(d). Then by Theorem 8, we

may write T = U ∨T ′ for T ′ a λ′ = (λ1−dg, λ2−dg, λ3)-tableau filled with d copies of

c′ = c−2g elements, provided the weight-sets of U and T ′ are disjoint. The choice of g

means that in T ′, s′ = λ′2−λ
′
3 = λ2−dg−λ′ 3 < d or c′ = c−2g < 5. However, we will

need the existence of a non-zero T ′ in the specified shape. As was shown in Theorem 9,

this is not always the case for some s. Specifically, when s < 5 non-zero tableaux

do not exist for certain shapes when c = 3. (Consider λ = [6 + d, 2 + d, 1] = [9, 5, 1]

with d = 3 and c = 5. Applying Reduction 2 yields λ′ = [5, 2, 1] with c = 3. All such

tableaux are zero by Theorem 10 since s = 1.) To account for this, we modify the

construction above to use g−1 copies of U1(d) when g > 0 and s′ < 5. In such a case,

the modified T ′ now has s′ < d + 5. Thus we need only consider arbitrary tableaux

with s < d + 5 or c < 5.

Reduction 3: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take h to be the maximum integer such that hd ≤ λ1 − λ2 = r and

c− h ≥ 3. Let V = hV1(d) be the join of h copies of V1(d). Then by Theorem 8, we

may write T = V ∨ T ′ for T ′ a λ′ = (λ1 − dh, λ2, λ3)-tableau filled with d copies of

c′ = c− h elements, provided the weight-sets of V and T ′ are disjoint. The choice of

h means that in T ′, r′ = λ′1 − λ′2 = λ1 − dh − λ2 < d or c′ = c − h < 4. However,

we will need the existence of non-zero T ′ in the specified shape. As was shown in

Theorem 9, this is not always the case for some r. Specifically, when r < 5 non-zero

tableaux do not exist for certain shapes when c = 3. To account for this, we modify

the construction above to use h − 1 copies of U1(d) when h > 0 and r′ < 5. In that
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case, the modified T ′ now has r′ < d + 5. Thus we need only consider arbitrary

tableaux with r < d + 5 or c < 4.

Conclusion: When d is even, we can apply these reductions successively. Take

an arbitrary λ-tableau T filled with d copies of c elements and assume c ≥ 6. We

use T (i) to represent the appropriate T ′ obtained in these reductions. By Reduction

1, T = S ∨ T (1), where S = fP1(d) and T (1)has t = λ3(T
(1)) < d and is filled with

c(1) = c− 3f elements.

Now, if c(1) ≥ 6 apply Reduction 2 to T (1). Since c(1) ≥ 6, then by Reduction 2,

write T (1) = U ∨ T (2) where U = gU1(d) and T (2) has t < d (since T (1) does) and

s < d + 5. Here T (2) is filled with c(2) = c(1) − 2g elements.

Finally if c(2) ≥ 6 apply Reduction 3. This gives T (2) = V ∨T (3), where V = hV1(d)

and T (3) has t < d, s < d + 5, and r < d + 5. Here T (3) is filled with c(3) = c(2) − h

elements.

Hence T = S ∨U ∨ V ∨ T (i) where either T (i) is filled with fewer than 6 elements,

or T (i) has t < d, s < d+5, and r < d+5. In the second case, T (i) must be filled with

3t+2s+ r = cd elements. This is less than or equal to 3(d− 1)+2(d+4)+ (d+4) =

6d + 9 ≤ 8d if d > 4. (If d = 4 we have 6d + 8 ≤ 8d and it’s not possible to have

6d + 9 = 9d when d = 4. For d = 3 additional reductions apply.) Hence we only

need those tableaux with c ≤ 8. Moreover, if r or s < 5 in T (i), then r or s < 5 in

T , because the reductions do not reduce r or s to less than 5. Hence T (i) = T ′ has a

shape occurring in Theorem 10 since all partitions of n with r and s ≥ 5 are needed.

This reduction uses Theorem 8. Our usage only requires verification that the

weight-sets are disjoint. However, the tableaux S, U , and V are in maximal form.

Hence for appropriately chosen tableaux (i.e., ones in maximal form), an application

of Lemma 3.4.9 can easily prove weight-set disjointness.

Example 6.1.1. To see how this reduction works, let us consider a specific shape,

λ = [9d − 2, 5d, d + 2] where d ≥ 6, d even and c = 15. This shape has t = d + 2,

s = 4d − 2, and r = 4d − 2. First we apply Reduction 1, which joins P1(d) in order
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to have t < d.

[9d− 2, 5d, d + 2] = P1(d) ∨ [8d− 2, 4d, 2]

Then we apply Reduction 2 to the shape [8d−2, 4d, 2], which has s = 4d−2 to reduce

to s < d + 5 by joining three copies of U1(d).

[8d− 2, 4d, 2] = 3U1(d) ∨ [5d− 2, d, 2]

Applying Reduction 3 to shape [5d− 2, d, 2], which has r = 4d− 2 we normally want

to reduce r to be between 5 and d + 5. Here we won’t necessarily reduce r fully,

so that the resulting tableau will be familiar. Instead we will reduce to r = 2d − 2

(which may be reduced further depending on d) by joining two copies of V (d).

[5d− 2, d, 2] = 2V (d) ∨ [3d− 2, d, 2]

Hence, when we combine all these reductions, we get

[9d− 2, 5d, d + 2] = P1(d) ∨ 3U1(d) ∨ 2V (d) ∨ [3d− 2, d, 2]

A non-zero tableau of shape [3d − 2, d, 2] is Q∗ of Example 3.2.7 with a = 1, b = 1,

c = d− 2. Therefore, writing

T = P1(d) ∨Q∗(1, 1, d− 2) ∨ 3U1(d) ∨ 2V (d)

and omitting the extra tail of Q∗ we have

T =

d 1 1 1 1 d-2 d d d d d
1 5 5 5 6 4 8 10 12 14 15
2 4 7 7 4 7 9 11 13
3 6 6

As Q∗ is in maximal form, qT 6= 0.
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6.2 Case: d odd

When d is odd, we proceed exactly as in the even case, except the tableaux we use

are slightly different. Namely, we use S1 instead of P1 and U2 instead of U1. These

adjustments are necessary for Reductions 1 and 2 since P1(d) and U1(d) are zero for

d odd. Reduction 3 remains unchanged however. For completeness, we rewrite these

reductions in terms of d odd. However, these reductions alone are not enough to

reduce to c ≤ 8. So after these reductions, we apply a few more in order to reduce

the size of tableaux we need to consider.

Reduction 1′: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take w to be the maximum integer such that w·2d ≤ λ3 and c−6w ≥ 3.

Let S = wS1(d) be the join of w copies of S1(d). Then by Theorem 8, we may write

T = S ∨ T ′ for T ′ a λ′ = (λ1 − 2d · w, λ2 − 2d · w, λ3 − 2d · w)-tableau filled with d

copies of c′ = c− 6w elements, provided the weight-sets of S and T ′ are disjoint. The

choice of w means that in T ′, t′ = λ′3 = λ3 − 2d · w < 2d or c′ = c− 6w < 9. Thus we

need only consider tableaux with t = λ3 < 2d or c < 9.

Reduction 2′: Let T be any λ-tableau with λ = (λ1, λ2, λ3), filled with d copies

of c elements. Take v to be the maximum integer such that v · 2d ≤ λ2 − λ3 = s and

c− 4v ≥ 3. Let U = vU2(d) be the join of v copies of U2(d). Then by Theorem 8, we

may write T = U ∨ T ′ for T ′ a λ′ = (λ1 − 2d · v, λ2 − 2d · v, λ3)-tableau filled with d

copies of c′ = c− 4v elements, provided the weight-sets of U and T ′ are disjoint. The

choice of v means that in T ′, s′ = λ′2 − λ′3 = λ2 − d · v − λ′3 < 2d or c′ = c− 4v < 8.

As in the even case, to account for the shapes s < 5, we modify this reduction to

use v − 1 copies of U1(d) when v > 0 and s′ < 5. Then the modified T ′ now has

s′ < 2d + 5. Thus we need only consider arbitrary tableaux with s < 2d + 5 or c < 8.

Summary: The same argument as in the even case works for the d odd cases,

though the numbers are adjusted slightly. Take an arbitrary λ-tableau T with filled

with d copies of c elements, but this time assume c ≥ 9. Then by applications of
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Reductions 1’, 2’ and 3, T = S ∨ U ∨ V ∨ T (i) where either T (i) is filled with fewer

than 9 elements, or T (i) has t < 2d, s < 2d + 5, and r < d + 5. In the second

case, T (i) must be filled with 3t + 2s + r elements, which is less than or equal to

3(2d − 1) + 2(2d + 4) + (d + 4) = 11d + 9 as d ≥ 3. Moreover, if r or s < 5 in T (i),

then r or s < 5 in T . Hence T (i) has a required shape of Theorem 10. However,

we wish to have T (i) fillable with c ≤ 8. To do this we have additional reduction

techniques. However, these techniques are very sensitive to the parameters in T (i), so

we will categorize them by such. The additional non-zero maximal tableaux we use

are

U1(d− 1) =

d− 1
1
2

d odd ω2 = (0, d− 1)

P1(d− 1) =

d− 1
1
2
3

d odd ω2,3 =
(

0 d−1 0
0 0 d−1

)

P4(d− 2, 1, 1) =

d− 2
1 1 1 3
2 2 3 2
3

d odd ω2,3 =
(

0 d 1
0 0 d−2

)

Start with a tableau T where t ≤ 2d− 1, s ≤ d+4, s 6= 1, r ≤ d+ 4, r 6= 1, d odd

and s + t even if r or s in {0, 2, 4}. (These are the partitions required by Theorem 10

after the previous reductions have been applied.) First consider those tableaux with

r ≥ 10, which implies d ≥ 6.

Case A: Assume r ≥ 10, s < d + 4, t < d − 1. Then 3t + 2s + r ≤ 3(d − 2) +

2(d + 3) + d + 4 = 6d + 4 ≤ 8d. Hence this case is covered by c ≤ 8.

Case B: Assume r ≥ 10, s ≥ d+4, t ≥ d−1. Write T = P1(d−1)∨U1(d−1)∨T ′.

If (r, s, t) are the parameters of T , then T ′ has parameters (r′, s′, t′) = (r− 5, s− (d+

1), t − (d − 1)). Thus 5 ≤ r′ ≤ d − 1, 5 ≤ s′ ≤ d + 5, and 0 ≤ t′ ≤ d. Then
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3t + 2s + r ≤ 3d + 2(d + 5) + d − 1 = 6d + 9 ≤ 8d. Note that no exceptional r or s

cases occur in T ′. Hence this case is covered by c ≤ 8.

Case C: Assume r ≥ 10, s < d+4, t ≥ d−1. Write T = P1(d−1)∨T ′. If (r, s, t)

are the parameters of T , then T ′ has parameters (r′, s′, t′) = (r−3, s, t−(d−1)). Thus

7 ≤ r′ ≤ d + 1, s′ ≤ d + 3, and 0 ≤ t′ ≤ d. Then 3t + 2s + r ≤ 3d + 2(d + 3) + d + 1 =

6d + 7 ≤ 8d. Note that no exceptional r or s cases occur in T ′. Hence this case is

covered by c ≤ 8.

Case D: Assume r ≥ 10, s ≥ d+4, t < d−1. Write T = U1(d−1)∨T ′. If (r, s, t)

are the parameters of T , then T ′ has parameters (r′, s′, t′) = (r − 2, s − (d − 1), t).

Thus 8 ≤ r′ ≤ d + 2, s′ ≤ d + 5, and 0 ≤ t′ ≤ d − 1. Then 3t + 2s + r ≤
3(d− 1)+2(d+5)+ d+2 = 6d+9 ≤ 8d. Note that no exceptional r or s cases occur

in T ′. Hence this case is covered by c ≤ 8.

For r < 10 the arguments depend more on the values of r, but the general idea is

the same.

Case E: Assume r < 10, s < d + 4, t < d − 1. Then 3t + 2s + r ≤ 3(d − 1) +

2(d + 3) + 9 = 5d + 12 ≤ 8d for d ≥ 4. When d = 3, c = 9 is a possibility. Now,

when d = 3, we have r ≤ d + 4 = 7, s ≤ d + 3 = 6, and t ≤ d − 2 = 1. So here

3t + 2s + r ≤ 3 + 2 · 6 + 7 = 22 < 8d. Hence c ≤ 8 tableaux will suffice to cover this

case. Note that the s + t parity is preserved in the exceptional r and s cases.

Case F: Assume r < 10, s ≥ d + 4, t < d − 1. If r = 9, 8, 7, 5 then write

T = U1(d − 1) ∨ T ′. If (r, s, t) are the parameters of T , then T ′ has parameters

(r′, s′, t′) = (r− 2, s− (d− 1), t). Then r′ ∈ {7, 6, 5, 3}, s′ ≤ d + 5, and 0 ≤ t′ ≤ d− 1.

Then 3t′ + 2s′ + r′ ≤ 3(d− 2) + 2(d + 5) + 7 = 5d + 11 ≤ 8d for d > 3. When d = 3,

then s′ ≤ 8, t′ ≤ 1. We have 3t′ + 2s′ + r′ ≤ 3 + 16 + 7 = 26 < 9d. Hence c ≤ 8

tableaux will suffice to cover these case.

If r = 2, 4, or 6, then write T = U1(d− 1)∨T ′. If (r, s, t) are the parameters of T ,
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then T ′ has parameters (r′, s′, t′) = (r−2, s−(d−1), t). Thus r′ ∈ {4, 2, 0}, s′ ≤ d+5,

and 0 ≤ t′ ≤ d− 1. Then 3t′+2s′+ r′ ≤ 3(d− 2)+2(d+5)+4 = 5d+8 ≤ 8d. Hence

c ≤ 8 tableaux will suffice to cover these cases if the tableau exists.

Note that U1(d − 1) preserves the parity of s + t, so if s + t are even (always

the case when r = 2 or 4), we will have s′ + t′ even which is necessary for r′ = 0,

2, or 4. Hence this construction works except when r = 6 and s + t odd. Then

3t+2s+ r ≤ 3(d− 2)+2(2d+4)+6 = 7d+8 ≤ 8d for d ≥ 8 otherwise it is less than

9d unless d = 3. If 3t + 2s + 6 = 9d, then t is odd so write t = d − 2k with k ≥ 1.

Then we have s = 3d + 3k− 3. Since s ≤ 2d + 4, we have d + 3k ≤ 7, so d = 3, k = 1

is the only solution. This corresponds to t = 1, s = 9, r = 6. Since s + t even, this

case has already been done. For d = 3 we also need to consider c = 10. However,

3 + 20 + 6 < 10d so no such partition will occur.

For r = 0 we have s+t even. Then 3t+2s+r ≤ 3(d−2)+2(2d+4) = 7d+2 ≤ 8d,

so this case is covered by c ≤ 8 tableaux.

For r = 3 we 3t+2s+ r ≤ 3(d− 2)+2(2d+4)+3 = 7d+5 ≤ 8d for d ≥ 5. When

d = 3 we have 3 + 20 + 3 < 9d, so such a partition does not occur. Hence r = 3 is

covered by c ≤ 8.

Case G: Assume r < 10, s < d + 4, t ≥ d − 1. If r = 9, 8, 6 then write

T = P1(d − 1) ∨ T ′. If (r, s, t) are the parameters of T , then T ′ has parameters

(r′, s′, t′) = (r − 3, s, t − (d − 1)). Thus r′ ∈ {6, 5, 3}, s′ ≤ d + 3, and 0 ≤ t′ ≤ d.

Then 3t′ + 2s′ + r′ ≤ 3d + 2(d + 3) + 6 = 5d + 12 ≤ 8d for d ≥ 5. When d = 3, then

s′ ≤ 6, t′ ≤ 3. Hence we have 3t′+2s′+r′ ≤ 9+12+6 = 27 = 9d, so the only solution

is t′ = 3, s′ = 6, r′ = 6. This we can further reduce by writing T ′ = V (d)∨ T ′′ where

T ′′ is a c = 8 tableau of parameters t = 3, s = 6, and r = 3. Hence c ≤ 8 tableaux

will suffice.

If r = 7, 5 , or 3 and s + t even then write T = P1(d− 1) ∨ T ′. If (r, s, t) are the

parameters of T , then T ′ has parameters (r′, s′, t′) = (r − 3, s, t − (d − 1)) and the

parity of s′ + t′ is preserved. Thus r′ ∈ {0, 2, 4}, s′ ≤ d + 3, and 0 ≤ t′ ≤ d. Then

3t′ + 2s′ + r′ ≤ 3d + 2(d + 3) + 4 = 5d + 10 ≤ 8d for d ≥ 5. For d = 3 we have
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3t′+2s′+ r′ ≤ 9+12+4 = 25 < 9d, so this does not occur. Hence the c ≥ 8 tableaux

will suffice.

Consider r = 0, 2, 4 with s + t even, or r = 3, 5, 7 with s + t odd. If s ≥ 8 write

T = P4(d − 2, 1, 1) ∨ T ′. If (r, s, t) are the parameters of T , then T ′ has parameters

(r′, s′, t′) = (r, s−3, t−(d−2)) and the parity of s′+t′ is preserved. Thus , 5 ≤ s′ ≤ d,

and 0 ≤ t′ ≤ d+1. Then 3t′+2s′+ r′ ≤ 3(d+1)+2(d)+7 = 5d+10 ≤ 8d for d ≥ 5.

For d = 3 we have 3t′+2s′+ r′ ≤ 12+6+7 = 25 < 9d, so this does not occur. Hence

the c ≥ 8 tableaux will suffice.

For r = 3, 5, or 7, s+ t odd, and s ≤ 7, we have 3t+3s+r ≤ 3(2d−1)+2 ·7+7 =

6d + 18 ≤ 8d for d ≥ 9. If 3t + 2s + r = 9d, then since r is odd, we have t = 2d− 2k

for k ≥ 1. This implies s = d + 3k + d−r
2

. Since s ≤ 7, the only possible solutions are

(r, s, t) = (7, 4, 4), (5, 5, 4), (3, 6, 4), (7, 7, 2) when d = 3 and (7, 4, 8) when d = 5. For

those with s + t even, the case has already been done. For (r, s, t) = (7, 7, 2) write

T = U1(2) ∨ T ′ where T ′ has parameters (5, 5, 2) and is a c = 7 tableau. Hence we

still need (r, s, t) = (5, 5, 4) for d = 3. But this is U1(2) ∨ T ′, where T ′ is a c = 7

tableau of parameters (3, 3, 4).

We also need to consider those partitions with c = 10. Then we have 3t+2s+r =

10d which implies t = 2d − 2k − 1 as t is odd. So s = 2d + 3k + 1 − r−1
2

. The only

solutions with s ≤ 7 are (r, s, t) = (3, 6, 5), (5, 5, 5), (7, 4, 5), and (7, 7, 3) all with

d = 3. The cases with s + t even have been done already. For (r, s, t) = (3, 6, 5), use

T = P4(1, 1, 1)∨T ′ where T ′ is a c = 7 tableau with (r′, s,′ , t′) = (3, 3, 4). For (7, 4, 5)

we have s = 4 and s + t odd, so this case partition is not needed.

When d = 3 we also may have c = 11 or c = 12. Proceeding as above, the only

solutions are (r, s, t) = (7, 7, 4) and (7, 7, 5). The second case has s+ t even and hence

is not needed. The first case can be reduced to T = U1(2) ∨ T ′, where T ′ is a c = 9

case with parameters (5, 5, 4). But this is U1(2) ∨ T ′, where T ′ is a c = 7 tableau of

parameters (3, 3, 4).

If r = 0, 2, 4, s + t even, and s ≤ 7, we have 3t + 3s + r ≤ 3(2d− 1) + 2 · 7 + 4 =

6d + 15 ≤ 8d for d ≥ 9. For c = 9, we have t = 2d− 2k− 1 as t is odd. Then s = d +

3k +1+ d+1−r
2

. Since s ≤ 7 the only solutions are (r, s, t) = (0, 6, 5), (2, 5, 5), (4, 4, 5),
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and (4, 7, 3) with d = 3 and (4, 7, 9). Note that only those with s+ t even are needed.

For these cases write T = U1(d−1)∨T ′, where T ′ is a c′ = 7 tableau with parameters

(r − 2, s − (d − 1), t). Since this preserves the parity of s + t and does not cause

r′, s′ = 1, the tableau exists.

For d = 3 we may also have c = 10 or 11. Proceeding as above, the only solutions

are (r, s, t) = (4, 7, 4) which has s + t odd, hence it is not need, and (4, 7, 5) which is

U1(2) ∨ U1(2) ∨ T ′ where T ′ is a c = 7 tableau with (r, s, t) = (0, 3, 5).

Case H: Assume r < 10, s ≥ d + 4, t ≥ d − 1. If r = 8 or r = 9, 7, 5 and

s + t even then write T = P1(d − 1) ∨ U1(d − 1) ∨ T ′ where T ′ has parameters

(r′, s′, t′) = (r − 5, s − (d − 1), t − (d − 1)). Thus r′ ≤ 4, s′ ≤ d + 5, and t′ ≤ d.

Then 3t′ + 2s′ + r′ ≤ 3d + 2(d + 5) + 4 = 5d + 14 ≤ 8d for d > 3. When d = 3 we

can have 3t′ + 2s′ + r′ = 9d only for (r′, s′, t′) = (2, 8, 3) or (4, 7, 3). But s + t even

means only (4, 7, 3) is needed. This is U1(d − 1) ∨ T ′′ where T ′′ is a c = 7 tableau

with (r, s, t) = (2, 5, 3). Hence we’ve reduced to c ≤ 8 cases.

For r = 9, 7, 5 with s+t odd, write T = P4(d−2, 1, 1)∨U1(d−1)∨T ′ where T ′ has

parameters (r′, s′, t′) = (r−2, s−(d−1)−3, t−(d−2)). Hence r′ ≤ 7, 2 ≤ s′ ≤ d+2,

and t′ ≤ d + 1. We will have s′ 6∈ {0, 1, 2, 4} provided s 6= d + 4 or d + 6. Then

3t′+2s′+r′ ≤ 3(d+1)+2(d+2)+7 = 5d+14 ≤ 8d for d > 3. When s = d+4 or d+6

write T = P4(d−2, 1, 1)∨T ′ where T ′ has parameters (r′, s′, t′) = (r, s−3, t−(d−2)).

Then 3t′ + 2s′ + r ≤ 3(d + 1) + 2(d + 3) + 9 = 5d + 18 ≤ 8d for d ≥ 5.

For d = 5, s′ = d + 3 or d + 1 there are no partitions with t′ ≤ d + 1. Now

consider d = 3 with s′ ≤ d + 3, t′ ≤ d + 1. Since r ≤ d + 4 we have r = 3, 5, or 7.

Given these parameters, solving 3t′ + 2s′ + r′ = 3c for c ≥ 9, the only solutions are

(r′, s′, t′) = (3, 6, 4), (5, 5, 4), and (7, 4, 4). Since s + t odd the only partition we need

to construct is (r′, s′, t′) = (5, 5, 4) with c = 9. But this is U1(2) ∨ T ′ where T ′ is a

c = 7 tableau of parameters (3, 3, 4).

For r = 2, 4, 6 with s + t even, write T = P4(d − 2, 1, 1) ∨ U1(d − 1) ∨ T ′ where

T ′ has parameters (r′, s′, t′) = (r − 2, s − (d − 1) − 3, t − (d − 2)). Thus r′ ≤ 4,

2 ≤ s′ ≤ d + 2, and t′ ≤ d + 1. Since s + t even, we need only that s′ 6= 1. Then
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3t′ + 2s′ + r′ ≤ 3(d + 1) + 2(d + 2) + 4 = 5d + 11 ≤ 8d for d > 3. For d = 3,

d · 4 + 2 · 5 + 4 = 26 < 9d so that case is not needed.

For r = 6, s+ t odd write T = P1(d−1)∨T ′, where T ′ has parameters (r′, s′, t′) =

(3, s, t− (d− 1)). Thus 3t′ + 2s′ + r′ ≤ 3d + 2(2d + 4) + 3 = 7d + 11 ≤ 8d for d ≥ 11.

Solving 3t′+2s′+r′ = 9d given the parameters, the only solution is (r′, s′, t′) = (3, 9, 2).

This is P4(1, 1, 1) ∨ T ′′ where T ′′ is a c = 6 tableau with parameters (3, 6, 1). When

c = 10, we also have (3, 9, 3) as a solution, but this does not have s + t odd.

For r = 3, write T = P4(d − 2, 1, 1) ∨ T ′ where T ′ has parameters (r′, s′, t′) =

(3, s − 3, t − (d − 2)). Thus 3t′ + 2s′ + r′ ≤ 3(d + 1) + 2(2d + 1) + 3 = 7d + 8 ≤ 8d

for d > 5. (The c = 8 constructions will hold unless s − 3 ∈ {0, 1, 2, 4}, but since

s ≥ d + 4 this can only occur with s = d + 1, d = 3. Then our original tableau will

have t ≤ 2d − 1, s = d + 1, r = 3 which is satisfiable by a c ≤ 8 tableau.) Solving

3t′ + 2s′ + r′ = 9d given the parameters, the only solutions are (r′, s′, t′) = (3, 6, 4),

(3, 9, 2), and (3, 12, 6) with d = 5. The (3, 6, 4) case is P4(1, 1, 1) ∨ T ′′ where T ′′ is

a c = 6 tableau with parameters (3, 3, 3). The (3, 9, 2) case is P4(1, 1, 1) ∨ T ′′ where

T ′′ is a c = 6 tableau with parameters (3, 6, 1). When d = 5, the (3, 12, 6) case is

P4(3, 1, 1) ∨ T ′′ where T ′′ is a c = 6 tableau with parameters (3, 9, 3). There are no

tableaux with c > 9.

For r = 0 we have s+t even. Write T = P4(d−2, 1, 1)∨T ′ where T ′ has parameters

(r′, s′, t′) = (3, s− 3, t− (d− 2)). So 3t′+2s′+ r′ ≤ 3(d+1)+2(2d+1) = 7d+5 ≤ 8d

for d > 3. As P4 preserves parity and s + t even, the c = 8 constructions will work

provided s′ 6= 1. But s ≥ d + 4 forces s′ ≥ d + 1 ≥ 4. When d = 3 we have

3 · 4 + 2 · 7 = 26 < 9d, hence all cases are covered.

Conclusion: When d is odd, we need all tableaux with c ≤ 8. The basic

reduction requires those tableaux to be disjoint from multiple copies of S1, U2(d −
1, 1) and V (d). The further reductions also require the tableau to be disjoint from

P1(d−1), U1(d−1), P1(d−1)∨U1(d−1), P4(d−2, 1, 1), and U1(d−1)∨P4(d−2, 1, 1).

For d even we need all tableaux with c ≤ 6, along with those tableaux having

t ≤ d − 1, s ≤ d + 4, r ≤ d + 4 when c = 7 or 8. These tableaux need to be
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disjoint from P1(d), U1(d), and V (d). These tableaux will be listed in Chapter 7. In

Chapter 8, we verify that all necessary tableaux have been produced.



71

Chapter 7

Tableaux Construction

The proof of Theorem 2 in Chapter 6 requires the construction of non-zero maximal

tableaux with c ≤ 8 for the shapes discussed in Theorem 10. In this chapter we

construct all the necessary tableaux and show they are both non-zero and maximal.

Some basic properties of maximality are listed in Section 7.1 and are used throughout

our construction. We construct those tableaux with two rows in Section 7.2. In

Sections 7.3, 7.4, 7.5, and 7.6 we construction the necessary tableaux with c = 3, 4,

5, and 6, respectively. Section 7.7 contains additional tableaux need when c = 7 or 8.

7.1 Maximality of Tableaux

Maximality, as discussed in Lemma 3.4.9, is an important property of the tableaux

we construct to prove Theorem 2. Given certain conditions of a weight, it is easy to

verify that a tableau is in maximal form. We discuss maximality here in general, in

order to simplify the proof of maximal form for the specific tableaux we construct in

the next sections.

Recall that a tableau T is in maximal form if qT 6= 0 by weight-set counting on

ω(T ) and ω(T ) is the largest weight of all ω(τT ) for τ ∈ CT . All tableaux that we

consider in the next sections are shown to be non-zero by weight-set counting prior to

addressing the maximality issue. As such, we only consider the weight condition here.

To summarize the basic conditions of Definition 3.4.2, a tableau weight is maximal

if it has the largest weight possible for row three, and given this, the largest weight
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possible for row two. When multiple weights satisfy this, the weight where rows two

and three have elements in common (e.g., the element 4 appears in both rows) is

considered larger.

In general, to determine the maximal form of a tableau, we start with a given

filling of T and use column operations to produce tableaux τT with larger weights.

The following procedure provides an overview of how to determine the maximality of

a filling.

• First maximize the weight of row three. This usually involves having a weight

of d for as many elements as possible. (This is discussed more extensively

in Lemma 7.1.2.) There may be multiple different fillings having the same

maximum weight for row three. All such fillings should be considered for the

next step.

• Now maximize the weight of row two, given the filling(s) of row three determined

previously. To do this, determine the largest possible row two weight of each

element, provided those elements assigned to row three are not used. For a

given element this is equivalent to the number of copies in the body of T minus

the number of copies used in row three. Fill row two with the element having

the largest weight, then repeat the procedure with the remaining elements and

positions. (This is summarized for weights in Lemma 7.1.4.) There may be

multiple such fillings having the largest weight.

• If there are multiple fillings after step two that have different generic weights,

choose the filling in which an element in row three has the largest weight in row

two. (The weight of their common elements is maximized.) There may not be

a unique such filling, but all such maximal fillings will have the same generic

weight. As such these fillings will differ on by an action of Sa.



73

Example 7.1.1. Consider

T = Q2 =

z+x z z a

3 3 2 3
4 2 4 4
1 1 1 2

ω2,3(T ) =
(

0 z 0 d−z+a+x
d a 0 0

)

where z = d−x
3

, a < z, and some conditions on z,a, and x to insure qT is non-zero.

First we want to maximize row three. Since this occurs when the non-zero weights

of row three are d and a, we check to see which elements can have weight d in row

three. Here, the only option is the element 1. Since any of the remaining elements

can have a weight of a, we leave that column unfilled for now. Thus the maximal

(third row) form for T is 111∗.
To determine the maximal second row form, we consider how many of each element

is available given the third row is partially determined. There are zero 1’s available,

2z+a 2’s available, and 2z+a+x 3’s and 4’s available. Hence we can maximally fill

the second row with either 3’s or 4’s. Since the tableau is symmetric in 3’s and 4’s,

we will use 4’s without loss of generality. Thus we get a maximal (second and third

row) form of
4 * 4 4
1 1 1 *

.

This form gives rise to two different generic weights depending on whether the ∗’s
are the same. These generic weights are

(
0 z d−z+a 0
d a 0 0

)
and

(
0 0 d−z+a z
d a 0 0

)
. The first one,

corresponding to the same element for both ∗’s, is larger. Hence a maximal (second

and third row) form is
4 2 4 4
1 1 1 2

. Note that this filling is not unique. We could have

used
4 3 4 4
1 1 1 3

,
3 4 3 3
1 1 1 4

, or
3 2 3 3
1 1 1 2

instead. All would be in maximal form.

Some fillings can be seen as maximal strictly by examining the weight of the

tableau.

Lemma 7.1.2. If a row has at most one weight not equal to 0 or d, then its row

weight is maximal.

This follows directly from the ordering on weights and the limit of d copies of an

element in a tableau. If we call the weight not equal to 0 or d the non-d weight for

the row, we get the following result on tableau maximality.



74

Lemma 7.1.3. A tableau is maximal if rows two and three satisfy Lemma 7.1.2

and either their non-d weights come from the same element or the sum of the non-d

weights is greater than d.

Proof. Given a tableau satisfying Lemma 7.1.2 for rows two and three, its maximal

generic weight must be either ( 0 b d 0
d a 0 0 ) or ( 0 0 d b

d a 0 0 ) with the appropriate number of

0 and d weights. By our ordering, the first weight is strictly larger than the second

weight. Hence when the non-d weights come from the same element the tableau is

maximal. If a+b is greater than d, the first weight is not possible and so the second

one is maximal.

This lemma is directly applicable to the tableau weights. A more generalized form

of this, depending on the actual filling, is also useful. The following lemma reflects

the technique used in Example 7.1.1.

Lemma 7.1.4. A row is maximal if all except one non-zero weight corresponds to

the largest weights possible for any elements.

This lemma is a generalization of Lemma 7.1.2, where the maximum weight for

each element is no longer d. Using this in Lemma 7.1.3 gives:

Lemma 7.1.5. A tableau is maximal if row three satisfies Lemma 7.1.2, row two

satisfies Lemma 7.1.4, and the non-d weight of row three has the largest possible

weight in row two of all such weights satisfying Lemma 7.1.4.

Example 7.1.1 represents an appropriate use of Lemma 7.1.5. The weight of

row three is (d,a, 0, 0), clearly satisfying Lemma 7.1.2. The weight of row two is

(0, z, 0, d−z+a+ x). That satisfies Lemma 7.1.4, since we checked that d−z+a+ x

was the largest weight possible. Finally, ω3(2) = a is the non-d weight of row three.

Since ω2(2) = z is larger than ω2(2) = 0, the weight is maximal by Lemma 7.1.5.

In general, for the application of Lemma 7.1.5 it is to check that Lemma 7.1.2

and Lemma 7.1.4 apply and then to show that the non-d weight cannot be assigned a

larger row two weight without changing the generic weight of row two. In particular



75

the non-d weight conditions of Lemma 7.1.5 are satisfied if all extra (non-third row)

copies an element in row three are contained in row two. We will refer to these lemmas

for maximality justification of the tableaux constructed in the next section.

7.2 Tableaux for Two Row Partitions

In this section we construct all the two row tableaux needed for the proof of The-

orem 2. For many of these constructions, the parity of d is relevant. Recall the

notation:

d∗ =





d if d is even

d− 1 if d is odd

Since we are constructing tableaux for many partitions, we will not use a fixed c.

However, for every element that is listed in the tableau, we assume it occurs d times,

filling out the tail as needed using only those numbers in the body of T .

Tableau U1

U1 =

a d− a d− a

1 1 2
2

∼
a

1
2

a even

a ≤ d

ω2(U1) = (0,a)

λ = [2d− a,a]

r = 2d− 2a, s = a, t = 0

We showed U1 non-zero in the proof of Theorem 1.

Maximality: This tableau is maximal by Lemma 7.1.4.
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Tableau U2

U2 =

a a b b

1 3 1 3
2 4 4 2

a + b ≤ d

a, b > 0

ω2 = (0,a + b, 0,a + b)

λ = [4d− 2a− 2b, 2a + 2b]

r = 4d− 4a− 4b, s = 2a + 2b, t = 0

We showed U2 non-zero in the proof of Theorem 1.

Maximality: This tableau is maximal by Lemma 7.1.4.

Tableau U3

U3 =

a b b

1 1 2
2 3 3

a even

a + b ≤ d

0 < 2b ≤ d

b ≥ a

ω2 = (0,a, 2b)

λ = [3d− a− 2b,a + 2b]

r = 3d− 2a− 4b, s = a + 2b, t = 0

If b > a, any valid weight assignment must have ω2(3) = 2b. Hence (1, 2, 3) with

sign 1 and (2, 1, 3) with sign (−1)a are the only possible weight assignments. Thus U3

is non-zero. If a = b, we may also have weight assignments: (1, 3, 2) with sign (−1)b;

(2, 1, 3) with sign (−1)a+b; (3, 1, 2) with sign (−1)2b; and (3, 2, 1) with sign (−1)a+2b.

Since a = b and a is even, these are all positive. Hence U3 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.4 since 2b ≥ a + b.
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Tableau U4

U4 =

a b

2 3
1 1

a ≥ b > 0

ω2 = (a + b, 0, 0)

λ = [3d− a− b,a + b]

r = 3d− 2a− 2b, s = a + b, t = 0

Since only the element 1 can have ω2 = a + b, there is exactly one valid weight

assignment, (1, 2, 3). Thus U4 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.4.

Tableau U5

U5 =

a b− 2 a− 1 b

1 1 4 4
2 3 3 2

a ≥ 2

b ≥ 3

a + b ≤ d

ω2 = (0,a + b,a + b− 3, 0)

λ = [4d− 2a− 2b + 3, 2a + 2b− 3]

r = 4d− 4a− 4b + 6, s = 2a + 2b− 3, t = 0

Only the element 2 may have ω2(2)=a+b. Since a ≥ 2 and b ≥ 3, we must have

ω2(3) = a + b − 3. Hence (1, 2, 3, 4) is the only valid weight assignment, so U5 is

non-zero.

Maximality: This tableau is maximal by Lemma 7.1.4 since a+b is the largest

weight possible.
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Tableau U6

U6 =

a b c d

1 3 5 5 5 3 1 3 1 3 5
2 4 4 2 4 5 5 2

a = d− 2

b = d+1
2

c = d−3
2

d = d−5
2

d ≡ 1 (mod 2)

d > 5

ω2 = (0, d, 0, d, d−3
2

)

λ = [3d− d−3
2

, 2d + d+3
2

]

r = 3, s = 2d + d−3
2

, t = 0,

Only the elements 2 and 4 may have ω2 = d. If ω2(5) = 0, then ω2(1 and 3) > 0.

Hence (1, 2, 3, 4, 5) is the only valid weight assignment and so U6 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.2.

Tableau U7

U7 =

2 2 3 2
4 3 5 5 3 4 2 3 4
1 1 1 2 2 3

d = 5

ω2 = (5, 4, 2, 0, 0)

λ = [14, 11]

r = 3, s = 11, t = 0,

The valid weight assignments are (5, 4, 2, 0, 0, 0), (5, 4, 0, 2, 0), (2, 0, 4, 0, 5),

(0, 0, 2, 4, 5), and (0, 0, 4, 2, 5). Since there are an odd number of weight assignments,

this tableau is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.4.

Tableau U8

U8 =
4 3 3 3 3 1 2 2 4 4 4
1 1 1 2 2

d = 4



79

ω2 = (3, 2, 0, 0)

λ = [11, 5]

r = 6, s = 5, t = 0

Then only valid weight assignments are (1, 2, 3, 4), with sign 1, (1, 3, 2, 4), with

sign (−1)2, and (3, 1, 2, 4) with sign (−1)3. Hence the weight sum is 1 and U8 is

non-zero.

Maximality: This tableau is not maximal since ω2 = (0, 0, 4, 1) is larger. How-

ever, in qT , the weight (0, 0, 4, 1) always cancels. This tableau cannot be put in

maximal form, hence we will need to prove directly that it is disjoint from the requi-

site tableaux. This will be done in Section 8.7.
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7.3 Tableaux for c = 3

We know by Theorem 9 which tableaux are non-zero for c = 3. However, using

Theorem 8 on tableaux requires the tableaux to be non-zero by weight-set counting

on ω(T ). We also want the tableaux to be maximal, in order to obtain the disjointness

of Lemma 3.4.9. Here we will list the tableaux used, briefly showing they are non-zero

and maximal. For all these tableaux, any valid weight assignment corresponds to a

unique tableau, so we will not explicitly state how many tableaux correspond to each

weight assignment.

Tableau P1

P1 =

a

1
2
3

0 ≤ a ≤ d

a even

ω2,3 = ( 0 a 0
0 0 a )

λ = [3d− 2a,a,a]

r = 3d− 3a, s = 0, t = a

P1 is non-zero by the Lemma 3.2.6.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau P2

P2 =

a b

1 1
2 2
3

a + b ≤ d

a,b even

ω2,3 = ( 0 a+b 0
0 0 a )

λ = [3d− 2a− b,a+b,a]

r = 3d− 3a− 2b, s = b, t = a
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Only the elements 1 and 2 may have ω2 = a+b. Hence the valid weight assign-

ments are: (1, 2, 3) with sign 1; (3, 2, 1) with sign (−1)a; (2, 1, 3) with sign (−1)a+b;

and (3, 1, 2) with sign (−1)b. Since a and b are even, this weight sum is 4 and qP2
6= 0.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau P3

P3 =

a b+1 b c

2 2 3 2
1 1 1 3
3

0 ≤ a ≤ d

2b + 1 ≤ d− a

0 ≤ c < b

a + c even

ω2,3 = ( 0 a+2b+1 c
0 0 a )

λ = [3d− 2a− 2b− c− 1,a + 2b + c + 1,a]

r = 3d− 3a− 4b− 2c− 2, s = 2b + c + 1, t = a

Only the element 1 may have ω2 = a+2b+1. Hence the valid weight assignments

are (1, 2, 3) with sign 1 and (1, 3, 2) with sign (−1)a+c. Since a+c is even, this weight

sum is positive and hence P3 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau P4

P4 =

a b b c

2 2 3 2
1 1 1 3
3

0 ≤ a ≤ d

2b ≤ d− a

0 ≤ c ≤ b

a + c even

ω2,3 = ( 0 a+2b c
0 0 a )

λ = [3d− 2a− 2b− c,a + 2b + c,a]

r = 3d− 3a− 4b− 2c, s = 2b + c, t = a
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Unless c = b, the only valid weight assignments are (1, 2, 3) with sign 1 and

(1, 3, 2) with sign (−1)a+c = 1. If b = c the tableau is symmetric in 1, 2, and

3. Hence we also get the weight assignments: (2, 1, 3) with sign (−1)a+b+b+c = 1;

(2, 3, 1) with sign (−1)2b = 1; (3, 2, 1) with sign (−1)a+b = 1; and (3, 1, 2) with sign

(−1)2b = 1. Thus the weight sum is always positive and P4 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.
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7.4 Tableaux for c = 4

Tableau Q1

Q1 =

z+x z z a b c d

3 3 2 3 3 2 3
4 2 4 4 4 4 2
1 1 1 2

0 ≤ a < z

b + x ≥ d

c ≥ d

b + c ≤ z− a

z + a + d even

c + d even, if d = b + x

d + b + x even, if d = c

z = d−x
3

d ≡ x (mod 3)

ω2,3 = ( 0 z+d 0 2z+x+a+b+c
d a 0 0 )

λ = [2d− 2a− b− c− d, d + a + b + c + d, d + a]

r = d− 3a− 2b− 2c− 2d, s = b + c + d, t = d + a

Since a < z, any valid weight assignment must have ω3(1) = d. We must have

ω2(4) = 2z+x+a+b+c unless d = c or d = b+x. If d = c, then we may also have

ω2(3) = 2z+x+a+b+c. If d = b+x, then we may also have ω2(2) = 2z+x+a+b+c.

Given these restrictions, we list the valid weight assignments in the table below, along

with the sign corresponding to that assignment. Note that there is a unique tableau

associated to each of these assignments.

Assignment Sign Condition

(1, 2, 3, 4) 1

(1, 3, 2, 4) (−1)z+a+d

(1, 2, 4, 3) (−1)z+x+a+b+c+d d = c

(1, 4, 2, 3) (−1)2z+x+b+d d = c

(1, 3, 4, 2) (−1)2z+x+b+c d = b + x

(1, 4, 3, 2) (−1)z+a+c d = b + x

Given the parity conditions on the parameters, the sign of these terms reduces to

1 in all cases. Hence the weight sum is positive and Q1 is non-zero.

Maximality: Because c ≥ d and b + x ≥ d, the weight 2z + x + a + b + c

of 4 in row two is the largest possible weight given the Maximality of row three by
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Lemma 7.1.2. Hence this tableau is maximal by Lemma 7.1.5.

Tableau Q2

Q2 =

z+x z z a

3 3 2 3
4 2 4 4
1 1 1 2

0 < a ≤ z

z + a even

z = d−x
3

d ≡ x (mod 3)

x ∈ {0, 2, 4}
ω2,3 =

(
0 z 0 d−z+a
d a 0 0

)

λ = [2d− 2a, d + a, d + a]

r = d− 3a, s = 0, t = d + a

For a < z any valid weight assignment must ω3(1) = d. The tableau is symmetric

in 3 and 4, as well as 2 if x = 0. This gives the following signed weight table:

Assignment Sign Condition

(1, 2, 3, 4) 1

(1, 3, 2, 4) (−1)z+a

(1, 2, 4, 3) (−1)3z+x+a

(1, 4, 2, 3) (−1)2z+x

(1, 3, 4, 2) (−1)2z x = 0

(1, 4, 3, 2) (−1)z+a x = 0

Since x is even, all the terms are positive and Q2 is non-zero. If z = a the tableau is

symmetric in 1, 3, and 4, as well as 2 if x = 0. We get all the weight assignments listed

above, in addition to those obtained by interchanging rows or allowing ω2,3(1) = ( z
z ).

Interchanging rows has sign (−1)d+z = 1 since x is even. The other possibility changes

the sign by (−1)z+a = 1. Hence all the terms are positive and Q2 is non-zero.

Maximality: This tableau is maximal as shown in Example 7.1.1.



85

Tableau Q3

Q3 =

a b b

1 4 4
2 3 2
3

0 < a ≤ d− b

2b ≤ d

a ≥ b

a even

ω2,3 = ( 0 a+b b 0
0 0 a 0 )

λ = [4d− 2a− 2b,a + 2b,a]

r = 4d− 3a− 4b, s = 2b, t = a

Since a ≥ b only the elements 2 and 3 may have ω2 = a+b. Hence the only valid

weight assignments are (1, 2, 3, 4) with sign 1 and (1, 3, 2, 4) with sign (−1)a = 1.

Thus all the valid weight assignments are positive and therefore Q3 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau Q4

Q4 =

a a b c c d

3 4 1 3 1 3
2 2 2 2 4 4
1 1

2a + b + c = d

a + c + d ≤ d

a,b,c,d > 0

b + d even

a even, if a + c + d = d

ω2,3 = ( 0 d 0 c+d
2a 0 0 0 )

λ = [3d− 2a− c− d, d + c + d, 2a]

r = 2d− 2a− 2c− 2d, s = b + 2c + d, t = 2a

Any weight assignment must have either ω3(1) = 2a or ω3(2) = 2a. Unless

a + c + d = d, only the elements 1 and 2 may have ω2 = d. This gives the following

weight table:
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Assignment Sign Condition

(1, 2, 3, 4) 1

(2, 1, 4, 3) (−1)b+d

(2, 3, 4, 1) (−1)a+b+d a + c + d = d

(1, 4, 3, 2) (−1)a a + c + d = d

By our parity constraints, the weight sum is always positive. Hence Q4 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau Q5

Q5 =

a b c d e f

4 3 3 4 3 1
2 2 2 2 4 4
1 1

a + b + c + d = d

a,b,e, f > 0

a + b + f ≤ d

b + c + e < d

a + d + e + f < d

If a + b + f = d then:

either c,d > 0

or d = 0 and d + c + e even

or c = 0 and d + d even

ω2,3 =
(

0 d 0 e+f
a+b 0 0 0

)

λ = [3d− a− b− e− f, d + e + f,a + b]

r = 2d− a− b− 2e− 2f, s = c + d + e + f, t = a + b

Unless a + b + f = d, we must have ω2(2) = d. Then since e, f > 0 we have

ω2(4) = e + f. As a,b > 0, we have ω3(1) = a + b. Therefore no other valid weight

assignments exist.

If a + b + f = d, then it is possible to have ω2(1) = d. However, unless c or d

equals zero, there is no element with ω2 = e + f. Hence no such weight assignment

can exist. If d = 0 we can have the weight assignment (2, 1, 4, 3) which has sign

(−1)d+c+e = 1. If c = 0 then we can have the weight assignment (2, 1, 3, 4) which has

sign (−1)d+d = 1. Thus, in either case, the weight sum is positive and Q5 is non-zero.

Maximality: Rows two and three are maximal by Lemma 7.1.2. As no other

fillings may have this row two weight and common elements between rows two and

three, the tableau is maximal.
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Tableau Q6

Q6 =

a b c

1 4 1 1 4
2 2 3 2 3
3

a > 0

a + b ≤ d− 1

b ≥ c

a even, if b = c

b,c not both 0

ω2,3 = ( 0 a+b+1 c+1 0
0 0 a 0 )

λ = [4d− 2a− b− c− 2,a + b + c + 2,a]

r = 4d− 3a− 2b− 2c− 4, s = b + c + 2, t = a

Unless b = c, we must have ω2(2) = a + b + 1. This force ω2,3(3) = ( c+1
a ) and

hence there are no other valid weight assignments.

When c=b then the elements 1, 2, or 3 may have ω2 = a+b+1. If ω2(2) = a+b+1

then only the element 3 may have ω2,3 = ( c+1
a ). If ω2(1) = a + b + 1, then a valid

weight assignment exists only for b = 0. In this case ω2(3) = c+1. If ω2(3) = a+b+1

then we may have ω2(2) = c + 1 or, if c = 0, ω2(1) = c + 1. Since these conditions

are subject to b = c and b and c are never simultaneously zero, the only valid weight

assignments are (1, 2, 3, 4) with sign 1 and (1, 3, 2, 4) with sign (−1)a = 1. Hence the

weight sum is positive and Q6 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau Q7

Q7 =

a b c 2
3 4 4 4 1 4
2 2 3 3 3 2
1 1 1

a + b = d− 2

a + c ≤ d− 2

b + c ≤ d− 3

a,b > 0

ω2,3 =
(

0 d c+2 0
d−1 0 0 0

)

λ = [2d− c− 1, d + c + 2, d− 1]
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r = d− 2c− 3, s = c + 3, t = d− 1

Any valid weight assignment must have ω3(1) = d−1. Therefore ω2(1) = 0, so we

must have ω2(3) > 0. Unless b = c only the element 2 may have ω2 = d, so the only

valid weight assignment is (1, 2, 3, 4) with sign 1. When b = c, we may also have

(1, 3, 2, 4) with sign (−1)a and (1, 3, 4, 2) with sign (−1)a+b+2. Since this sum is odd,

we must have Q7 non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.
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7.5 Tableaux for c = 5

Tableau R1

R1 =

x z z z a b

5 2 4 5 5 5
3 3 3 4 4 3
1 1 1 1 2 2

0 < a ≤ b ≤ z

d + a + z even, if b = z

d even, if a = b, x = 0

z = d−x
3

d ≡ x (mod 3)

ω2,3 =
(

0 0 2z+x+b z+a 0
d a+b 0 0 0

)

λ = [3d− 2a− 2b, d + a + b, d + a + b]

r = 2d− 3a− 3b, s = 0, t = d + a + b

First consider the valid weight assignments with a < z. If b < z then we must

have ω3(1) = d; if b = z we may have ω3(3) = d as well. If we have ω3(1) = d, then

ω3(2 or 5) = a+b because a,b > 0. Since b ≥ a only the elements 1 and 3 may have

ω2 = 2z + x + b unless a = b and x = 0. In that case, the element 4 may also have

this weight. If ω2(3) = 2z + x + b, then ω2(5 or 4) = z + a. If ω2(4) = 2z + b, then

ω2(2 or 3) = z + a. These constraints give the following table of weight assignments:

Assignment Sign Condition

(1, 2, 3, 4, 5) 1

(1, 5, 3, 4, 2) (−1)a+b

(1, 2, 3, 5, 4) (−1)z+a

(1, 2, 4, 3, 5) (−1)z a = b, x = 0

(1, 5, 4, 3, 2) (−1)z+b+a a = b, x = 0

(1, 5, 4, 2, 3) (−1)2z+a a = b, x = 0

(3, 4, 1, 2, 5) (−1)d+z+a b = z

(3, 5, 1, 2, 4) (−1)d b = z

(3, 4, 1, 5, 2) (−1)d b = z

For b < z and a 6= b + x, we get a weight sum of 1 + (−1)a+b + (−1)z+a which is

non-zero. When a = b, x = 0, we get a weight sum of 1+1+(−1)z+a+(−1)z+(−1)z+
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(−1)a. This is non-zero by the parity constraints which imply z even. Similarly, if

a < b = z, then the weight sum is 1+(−1)a+z+(−1)z+a+(−1)d+z+a+(−1)d +(−1)d,

which is also non-zero by the parity constraints.

When a = b = z the tableau has many symmetries. Since the weight of rows two

and three are the same, interchanging rows yields a new weight assignment with a

difference in sign of (−1)d+a+b = 1. Hence we will not count those weight assignments

which are inversions of rows two and three. First consider the possible element pairs

(x, y) that can have ω3(x, y) = (d, 2z). These are (1, 2), (1, 5), (3, 4), (3, 5), (5, 3), and

(5, 1), along with (2, 1), (2, 4), (4, 3), (4, 2) when x = 0. Two of these pairs make up a

weight assignment (not counting row inversion). If x 6= 0 the possible pair assignments

are: (1, 2)(3, 4); (1, 2)(3, 5); (1, 2)(5, 3); (1, 5)(3, 4); and (3, 4)(5, 1). Since there is an

odd number, this weight sum in non-zero. If x = 0, the condition d even, implies z is

even. Hence all the column blocks are even. Since any valid weight assignment moves

full column blocks, all weight assignments are positive and thus R1 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau R2

R2 =

x+z z z a b c c

2 4 4 5 4 4 2
3 5 3 3 5 3 5
1 1 1 2 2

0 ≤ a ≤ z− c

0 ≤ b ≤ z− c

0 < c

b ≤ a

z = d−x
3

d ≡ x (mod 3)

d even, if b = a + x

ω2,3 =
(

0 0 2z+a+c+x 0 z+b+c
d b+a 0 0 0

)

λ = [3d− 2a− 2b− 2c, d + a + b + 2c, d + a + b]

r = 2d− 3a− 3b− 4c, s = 2c, t = d + a + b

A valid weight assignment must have ω3(1) = d since c > 0. Then we must have

ω3(2 or 5) = a + b, or if b = 0, then ω2(3) = a is also possible. There are not

enough 2’s to have ω2(2) = 2z + a + c + x. If we have ω2(3) = 2z + a + c + x, then
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ω2(5) = z + b + c. If we have ω2(4) = 2z + a + c + x, then ω2(2) = z + b + c, and

b = a, x = 0. There are not enough 5’s to have ω2(5) = 2z + a + c + x.

Hence there are two possible weight assignments: (1, 2, 3, 4, 5) with sign 1 and

(1, 5, 4, 3, 2) with sign (−1)d, which occurs only when b = a, x = 0. By our par-

ity constraint, this sum is positive. If b = 0, we also have the weight assignment

(1, 3, 4, 5, 2) when a = b, x = 0. The weight sum is odd and hence the tableau is

non-zero.

Maximality: The tableau is maximal by Lemma 7.1.5. To see this, note that

when row three has the maximum weight d, the largest possible weights for row two

are: 0 for the element 1, z + x + a + b + c for the element 2, 2z + x + a + c for

the element 3, 2z + b + c for the element 4, z + a + b + c for the element 5. Since

z − c ≥ a ≥ b, the weight 2z + x + a + c is the largest. Given this, Lemma 7.1.4

shows that row two is maximal. Moreover rows two and three cannot have elements

in common, given the columns remaining after the largest weight elements have been

assigned. Hence the tableau is maximal.

Tableau R3

R3 =

z+x z z b a

5 2 5 4 5 2 5 2
3 3 4 3 4 3 4 4
1 1 1 2 2

0 ≤ a < b ≤ z− 1
z = d−x

3

d ≡ x (mod 3)

ω2,3 =
(

0 0 2z+x+b+1 z+a+2 0
d a+b 0 0 0

)

λ = [3d− 2a− 2b− 3, d + a + b + 3, d + a + b]

r = 2d− 3a− 3b− 6, s = 3, t = d + a + b,

We must have ω3(1) = d. Since a < b, only the element 3 may have ω2 =

2z + x + b + 1. Then ω2(4) = z + a + 2. Hence there are no other valid weight

assignments. Thus R3 is non-zero.

Maximality: Row two is maximal by Lemma 7.1.2 and row three is maximal

by Lemma 7.1.4. Inspection shows that it is not possible to have the non-d weights
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assigned to the same element. Hence the tableau is maximal by Lemma 7.1.5.

Tableau R4

R4 =

x z− 1 z+1 z z− a z− a a− 1 b a+1 c

2 2 5 5 4 5 5 2 2 5
3 4 4 3 3 3 3 4 3 4
1 1 1 1 2 2

1 ≤ a ≤ z

b ≤ a

c ≤ x

d + a + c even, if a = b

a + b even, if c = x

z = d−x
3

d ≡ x (mod 3)

z ≥ 2

ω2,3 =
(

0 0 d 2z+b+c 0
d 2z−2a 0 0 0

)

λ = [3d− 4z− b− c + 2a, d + 2z + b + c, d + 2z− 2a]

r = 2d− 6z + 2a− 2b− 2c, s = 2a + b + c, t = d + 2z− 2a,

By construction, only the element 1 may have ω3(1) = d. This means any valid

weight assignment must have ω3(2 or 3) = 2z − 2a (unless a = z in which case the

weight assignments are equivalent to those using 2 or 3). Furthermore, the elements

appearing in row two must either be both 3 and 4 or both 2 and 5. Now we apply

weight-set counting.

Assignment Sign Condition

(1, 2, 3, 4, 5) 1

(1, 2, 4, 3, 5) (−1)z−a b = a, c = x

(1, 3, 2, 5, 4) (−1)d+b+c b = a

(1, 3, 5, 2, 4) (−1)x+a+b+c c = x

By our parity constraints, all these terms are positive. Hence R4 is non-zero.

Maximality: Rows two and three are maximal by Lemma 7.1.2. Inspection

shows that it is not possible to have the non-d weights assigned to the same element.

Hence the tableau is maximal.
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Tableau R5

R5 =

y + w− a y− a a a b y y w

4 5 1 4 5 5 4 5
3 2 3 2 1 3 2 2
1 1

a even, if a = b

0 ≤ b ≤ a < y

y = d∗
2

2y + w = d

ω2,3 =
(

b d d 0 0
d−2a 0 0 0 0

)

λ = [2d− b + 2a, 2d + b, d− 2a]

r = 2a− 2b, s = d + 2a + b, t = d− 2a

Since y− a > 0, any weight assignment must have ω3(1) = d− 2a. If ω2(3) = d,

then ω2(2) = d and vice versa. Similarly for the elements 4 and 5, however we may

only have ω2(5) = d if a = b. So unless a = b there is only one valid weight

assignment. When a = b, we also have (1, 4, 5, 3, 2) which has sign (−1)2d+a. Since

a is even in this case, the sum is non-zero. Therefore R5 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau R6

R6 =

x z z z z− a z− a− 1 a b a+1 c

2 2 5 5 4 5 5 2 2 5 2 5 4
3 4 4 3 3 3 3 4 3 4
1 1 1 1 2 2

1 ≤ a ≤ z− 2

0 ≤ b < a

c ≤ x

z = d−x
3

d ≡ x (mod 3)

z ≥ 3

ω2,3 =
(

0 0 d 2z+b+c 0
d 2z−2a−1 0 0 0

)

λ = [3d− 4z− b + 2a + 1, d + 2z + b + x, d + 2z− 2a− 1]

r = 2d− 6z + 2a− 2b− 2c + 1, s = 2a + b + c + 1, t = d + 2z− 2a− 1

Only the element 1 can have ω3=d and then any weight assignment must have

ω2(3) = d. This forces ω2(4) = 2z+a+1+x. Hence ω3(4)=0 which implies ω3(2)> 0.

Thus there are no other valid weight-assignments and R6 is non-zero.

Maximality: Rows two and three are maximal by Lemma 7.1.2. Inspection
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shows that it is non possible to have the non-d weights assigned to the same element.

Hence the tableau is maximal.

Tableau R7

R7 =

y− a y− a a+1 a a− 1 y y+1
4 5 1 4 5 4 5 1 4 5
3 2 3 2 1 3 2
1 1

1 ≤ a < y

y = d−1
2

d odd

d ≥ 5

ω2,3 =
(

a−1 d d 0 0
d−1−2a 0 0 0 0

)

λ = [2d + a + 2, 2d + a− 1, d− 2a− 1]

r = 3, s = d + 3a, t = d− 2a− 1

As y− a > 0, any weight assignment must have ω3(1) = d− 1− 2a . Moreover,

only the elements 2 and 3 can have ω2 = d. Hence there are no other valid weight

assignments, so R7 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau R8

R8 =

y− a− 1 y− a a+1 a a− 1 y y

4 5 1 4 5 4 5 1 4 5
3 2 3 2 1 3 2
1 1

1 ≤ a ≤ y− 2

y = d
2

d even

d ≥ 6

ω2,3 =
(

a−1 d d 0 0
d−1−2a 0 0 0 0

)

λ = [2d + a + 2, 2d + a− 1, d− 2a− 1]

r = 3, s = d + 3a, t = d− 2a− 1

Since a < y− 1, any weight assignment must have ω3(1)=d− 1− 2a. Moreover,
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the only elements 2 and 3 can both have ω2= d. Therefore there are no other valid

weight assignments, so R8 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau R9

R9 =

x z z z z a b c d e

3 4 4 3 2 4 3 4 4 4
2 2 5 5 5 2 2 2 3 5
1 1 1 1 3 3

0 ≤ a < z

b + c, b + d < z− a

c + d + e < z− a + x

0 ≤ e ≤ x

0 ≤ d < x + b

z = d−x
3

d ≡ x (mod 3)

x 6= 0

ω2,3 =
(

0 z+a+b+c+x d 0 3z+e
d 0 z+a 0 0

)

λ = [3d− 2a− b− c− d− e− 2z, d + z + a + b + c + d + e, d + z + a]

r = 2d− 3a− 2b− 2c− 2d− 2e− 3z, s = b + c + d + e, t = d + z + a

Any valid weight assignment must have ω3(1) = d. Only the elements 1 and

5 may have ω2 = 3z + e. If ω2(5) = 3z + e, then only the element 2 may have

ω2 = x + z + a + b + c due to the condition d < b + x.

Examining the tableau in light of these constraints shows that (1, 2, 3, 4, 5) is the

only valid weight assignment. Thus the tableau is non-zero.

Maximality: As the discussion above shows, the tableau weights are as large as

possible. Hence by Lemma 7.1.5, this tableau is maximal.
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Tableau R10

R10 =

x z z z z− a b c d e f x

3 4 4 3 3 2 4 3 4 3 4
2 2 5 5 5 5 3 2 2 5 5
1 1 1 1 2

1 ≤ a ≤ z

b ≤ ba
2
c

c,e ≤ b z
2
c

d ≤ d z
2
e+ ba

2
c

f ≤ da
2
e

c even

d > c

z + b > c + d

z− a + b + f > c + e

z + f > d + e

z = d−x
3

d ≡ x (mod 3)

z ≥ 2

ω2,3 =
(

0 x+z+d+e c 0 3z−a+b+f+x
d z−a 0 0 0

)

λ = [3d− 2z + 2a− b− c− d− e− f− x, d + z− a + b + c + d + e + f + x, d + z− a]

r = d + 3a− 2b− 2c− 2d− 2e− 2f− x, s = b + c + d + e + f + x, t = d + z− a

Any valid weight assignment must have ω3(1) = d. Given the bounding parame-

ters, only the element 5 can have ω2 = 2z + a + b + f + x. When ω2(5) is maximal,

only the element 2 may have ω2 = x + z + d + e.

From this we find that the valid weight assignments are (1, 2, 3, 4, 5) with sign 1,

and (1, 2, 4, 3, 5) with sign (−1)c = 1.

Maximality: The discussion above shows that the row two weights are maxi-

mized. Hence by Lemma 7.1.5, this tableau is maximal.

Tableau R11

R11 =

a b c d e f

3 5 3 5 1 5 3 1 5
4 2 4 2 2 1 4 2 4
1 1

0 < a,b

c ≤ d− a− 2

d ≤ d− b− e− 1

0 < f ≤ e

e + f ≤ d− a− b− 1

b + d > f

a + c ≥ e + f

ω2,3 =
(

f b+d+e+1 a+c+2 0 0
a+b 0 0 0 0

)
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λ = [5d− 2a− 2b− c− d− e− f− 3,a + b + c + d + e + f + 3,a + b]

r = 5d− 3a− 3b− 2c− 2d− 2e− 2f− 6, s = c + d + e + f + 3, t = a + b

Any valid weight assignment must have ω3(1) = a + b and hence ω2(1) = f. This

implies ω2(2) > 0. But to have exactly three non-zero weights in row two, we then

must have ω2(4) > 0. Hence no other weight assignments are possible and hence the

tableau is non-zero.

Maximality: The possible row two weights, given the maximization of row three,

are e + f + 1 for the element 1, b + d + e + 1 for the element 2, a + c + 1 for the

element 3, a+c+2 for the element 4, and b+d+f+1 for the element 5. Given the

conditions on these parameters we see that the weights for 2 and 4 are the largest.

Hence by Lemma 7.1.5, this tableau is maximal.

Tableau R12

R12 =

y− 1 + w y y y a w

1 1 5 4 1 5 5
3 3 3 2 2 4 2
4

0 < a ≤ d− y− 1

y even, if y = a

y = d∗
2

2y + w = d

ω2,3 = ( 0 d d a 0
0 0 0 1 0 )

λ = [3d− a− 1, 2d + a, 1]

r = d− 2a− 1, s = 2d + a− 1, t = 1

Any valid weight assignment must have two of the elements 1, 3, and 4 having

non-zero weight in row two. Hence at least one of them must have ω2 = d. Moreover,

we can not have a row two weight of d for both of these elements. If ω2(1) = d

we may not have ω2(2) = d, so the only option is ω2(5) = d when a = y. This

corresponds to a weight assignment of (3, 1, 5, 4, 2) with sign (−1)2d+a which equals

1 due to the parity constraint. If ω2(3) = d we may not have ω2(5) = d, so the only

option is ω2(2) = d. This corresponds to a weight assignment of (1, 2, 3, 4, 5) with
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sign 1. When ω2(4) = d, neither the element 2 nor the element 5 may have ω2 = d,

so there is no weight assignment with this option. Hence the weight sum is always

positive and thus R12 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau R13

R13 =

a b c d e

1 3 1 3 1
2 4 4 2 2
5 5

a + d + e ≤ d

a + b ≤ d

b + d ≤ d

a,b,c,d,e > 0

d ≥ c

a + e ≥ b

If c = d then a + b + c + d + e even

If b = a + e then a + b + c + d + e even

ω2,3 =
(

0 a+d+e 0 b+c 0
0 0 0 0 a+b

)

λ = [5d− 2a− 2b− c− d− e,a + b + c + d + e,a + b]

r = 5d− 3a− 3b− 2c− 2d− 2e, , s = c + d + e, t = a + b

Since a,b > 0 any valid weight assignment must have ω3(5) = a + b. We must

have ω2(1 or 2) > 0. If ω2(2) > 0, then ω2(4) > 0; if ω2(1) > 0, then ω2(3) > 0.

This shows the only valid weight assignments are (1, 2, 3, 4, 5) and (2, 1, 4, 3, 5).

The second one only occurs when d = c or b = a + e. If that happens, the sign is

(−1)a+b+c+d+e = 1. Hence R13 is non-zero.

Maximality: The possible maximal weights for row two are: a + c + e for the

element 1; a+d+ e for the element 2; b+d for the element 3; b+c for the element

4; and 0 for the element 5. By our parameter conditions, a + d + e is the largest.

Hence by Lemma 7.1.5 the tableau is maximal.

Tableau R14

R14 =

d− 3 2 d− 4
1 4 1 5 1 5 1
2 2 2 3 3 4 4
3

d ≥ 5
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ω2,3 = ( 0 d d−3 2 0
0 0 1 0 0 )

λ = [3d, 2d− 1, 1]

r = d + 1, s = 2d− 2, t = 1

For d > 5, any valid weight assignment must have ω2(2) = d. This forces ω2(3) =

d−3 and ω2(4) = 2. Hence there are no other valid weight assignments. When d = 5,

we may have ω2(1) = d or ω2(1) = d−3 as well. Then the possible weight assignments

are (1, 2, 3, 4, 5), (3, 2, 1, 5, 4, ), and (3, 1, 2, 5, 4). Since there is an odd number, this

sum is non-zero and thus so is R14.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau R15

R15 =

z + x z z

2 5 5 2 2 2
3 4 3 4 3 3
1 1 1

z = d−x
3

d ≡ x (mod 3)

z ≥ 2

ω2,3 = ( 0 0 2z+x+2 z+1 0
d 0 0 0 0 )

λ = [3d− 3, d + 3, d]

r = 2d− 6, s = 3, t = d

Since only the element 1 may have ω3 = d and only the element 3 may have

ω2 = 2z + x + 2, there are no other valid weight assignments. Hence the tableau is

non-zero.

Maximality: Given the row three weight of d, the row two weights are as large

as possible. Thus by Lemma 7.1.5 this tableau is maximal.
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Tableau R16

R16 =

d− 2 a

1 5 5 5 3 1
2 4 4 2 4 2
3 3

1 ≤ a ≤ d− 4

d ≥ 5

ω2,3 =
(

0 d 0 a+2 0
0 0 d−1 0 0

)

λ = [3d− a− 1, d + a + 2, d− 1]

r = 2d− 2a− 3, s = a + 3, t = d− 1

Any valid weight assignment must have ω3(3) = d− 1 and ω2(2) = d. This forces

ω2(4) = a+2. Hence there are no other valid weight assignments and R16 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau R17

R17 =

x z z z z− 1 a z b

2 2 5 5 2 5 2 2 5 2 5 4
3 4 4 3 3 3 4 3 4
1 1 1 1 4

0 ≤ a ≤ z− 2

b ≤ x

z = d−x
3

d ≡ x (mod 3)

z ≥ 2

ω2,3 =
(

0 0 d 2z+a+b 0
d 0 0 1 0

)

λ = [3d− 2z− a− 1, d + 2z + a + x, d + 1]

r = 2d− 4z− 2a− 2b− 1, s = 2z + a + b− 1, t = d + 1

Only the element 1 can have ω3=d and then any weight assignment must have

ω2(3) = d. This forces ω2(4) = 2z+a + 1 + x. Thus there are no other valid weight

assignments and R17 is non-zero.

Maximality: The tableau is maximal by Lemma 7.1.3.
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Tableau R18

R18 =

x z z z z

5 2 4 4 2
3 3 3 5 3
1 1 1 1 5

x even

ω2,3 = ( 0 0 d 0 z
d 0 0 0 z )

λ = [3d− 2z, d + z, d + z]

r = 2d− 3z, s = 0, t = d + z

Only the elements 1 and 3 may have a weight of d. Hence the only valid weight

assignments are (1, 2, 3, 4, 5) and (3, 2, 1, 4, 5), both of which have sign 1 since x is

even. Hence R18 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau R19

R19 =

d− 2 d− 3
1 5 5 3 5 1
2 4 2 2 4 4
3 3

ω2,3 =
(

0 d 0 d−1
0 0 d−1 0

)

λ = [2d + 2, 2d− 1, d− 1]

r = 3, s = d, t = d− 1

Any valid weight assignment must have ω3(3) = d. Then ω2(2) = d. Hence there

are no other weight assignments possible. Thus R19 is non-zero. Maximality: This

tableau is maximal by Lemma 7.1.3.
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7.6 Tableaux for c = 6

Tableau S1

S1 =

x + z x + z z z a a

5 6 5 6 5 6
4 3 3 4 3 4
1 2 1 1 2 2

0 ≤ a ≤ z

z + x even, if a = 0

z = d−x
3

d ≡ x (mod 3)

ω2,3 =
(

0 0 2z+a+x 2z+a+x 0 0
d z+2a+x 0 0 0 0

)

λ = [4d− 2z− 2x− 4a, d + z + 2a + x, d + z + 2a + x]

r = 2d− 2x− 6a, s = 0, t = d + 2a+z + x

The construction of S1 means that any valid weight assignment with a > 0 must

have ωi(j) > 0 if and only if ωi(k) > 0 for the pairs (j, k) = (1, 2), (3, 4), or (5, 6).

These constraints show that the only valid weight assignments are those that inter-

change complete rows in the body of S1. Since the length of these rows t = 4z+2x+2a

is even, all valid weight assignments are positive and hence S1 is non-zero.

When a = 0 we must have ω3(1) = d and ω2(3, 4) > 0 or ω2(5, 6) > 0. Hence

the valid weight assignments are: (1, 2, 3, 4, 5, 6) with sign 1; (1, 6, 3, 4, 5, 2) with sign

(−1)z+x; (1, 2, 5, 6, 3, 4) with sign (−1)4z+2x; and (1, 3, 5, 6, 2, 4) with sign (−1)5z+3x.

Since z + x is even, these assignments are all positive. Hence the tableau is non-zero.

Maximality: By Lemma 7.1.5 this tableau is maximal.

Tableau S2

S2 =

d− 1 a

4 2 2 2 4 2 3
5 1 5 1 1 1 1
6 3 3 6 3

0 ≤ a ≤ d− 4

a ≡ d (mod 2)

d ≥ 4

ω2,3 =
(

a+4 0 0 0 d 0
0 0 a+2 0 0 d

)

λ = [4d− 2a− 6, d + a + 4, d + a + 2]

r = 3d− 3a− 10, s = 2, t = d + a + 2



103

Any valid weight assignment must have ω2(1) = a + 4 since if ω2(1) = 0 then

we must have ω2(2, 3) = (a + 4, d) which is not possible. If ω2(1) = a + 4, then

ω2(5) = d. Thus the only valid weight assignments are (1, 2, 3, 4, 5, 6) with sign 1 and

(1, 3, 2, 6, 5, 4) with sign (−1)d+a+2. Since a ≡ d (mod 2) this sum is positive. Hence

S2 is non-zero.

Maximality: Rows two and three are maximal by Lemma 7.1.2. Since it is not

possible for the non-d element of row three to have a row two weight of a + 2, the

tableau is maximal.

Tableau S3

S3 =

d− 4 a 2 2
5 1 1 3 5 5 5 1 1
2 4 2 4 4 2 4 2 4
6 3 6 6 3 3

0 ≤ a ≤ d− 5

d ≥ 5

ω2,3 =
(

0 d 0 a+5 0 0
0 0 a+2 0 0 d

)

λ = [4d− 2a− 7, d + a + 5, d + a + 2]

r = 3d− 3a− 12, s = 3, t = d + a + 2

Any valid weight assignment must have ω3(6) = d and ω3(3) = a+2 (or ω3(5) = 2

if a = 0). Then only the element 2 may have ω2 = d (or 4 if a = d − 5). Moreover

if ω2(2) = d, then ω2(4) = a + 5. Hence the only valid weight assignments are

(1, 2, 3, 4, 5, 6) with sign 1 and, when a = 0, (1, 2, 5, 4, 3, 6) with sign (−1)2. Therefore

the weight sum is positive and S3 is non-zero.

Maximality: Rows two and three are maximal by Lemma 7.1.2. Since the non-

d element of row two has weight a + 5 and there are only two copies of the element

3 available for row two, the tableau is maximal.
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Tableau S4

S4 =

d− 3 a 2
5 1 5 3 5 1 1 1 1 1
2 4 2 4 4 2 2 3 4 4
6 3 6 6 3 3

0 ≤ a ≤ d− 5

d ≥ 5

ω2,3 =
(

0 d 1 a+5 0 0
0 0 a+2 0 0 d

)

λ = [4d− 2a− 8, d + a + 6, d + a + 2]

r = 3d− 3a− 14, s = 4, t = d + a + 2

Any valid weight assignment must have ω3(6) = d. Now ω3(6) = d implies ω3(3) =

a+2 and ω2(3) = 1. Unless a = d− 5, we must have ω2(2) = d and so ω2(4) = a+5.

When a = d − 5 we may have ω2(1) = d or ω2(4) = d. However, if ω2(1) = d, then

there is no element with ω2 = a + 5. If ω2(4) = d, then ω2(2) = a + 5. This shows

the only weight assignment is (1, 2, 3, 4, 5, 6). Hence S4 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5 and the discussion above.

Tableau S5

S5 =

x + z′ x + z′ z′ z′ z′ z′ a b c

5 6 5 6 5 6 6 5 1
4 3 3 4 3 4 2 4 3
1 2 1 1 2 2

0 < a, b, c ≤ d− e

a even

c even if a = b

b even if a = c

b, c ≥ a

z′ = e−x
3

e ≡ x (mod 3)

3 ≤ e < d

ω2,3 = ( 0 a e+c e+b 0 0
e e 0 0 0 0 )

λ = [6d− 4e− a− b− c, 2e + a + b + c, 2e]

r = 6d− 6e− 2a− 2b− 2c, s = a + b + c, t = 2e
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The construction of S5 forces the following constraints on any valid weight assign-

ment.

• ω3(1) > 0 ⇐⇒ ω3(2) > 0.

• ω3(3) > 0 ⇐⇒ ω3(4) > 0.

• ω3(5) > 0 ⇐⇒ ω3(6) > 0.

• If ω2(j) = a, then ω3(j) > 0.

• If ω2(1) = a, then ω2(5, 6) > 0 and a = c.

• If ω2(2) = a, then ω2(3, 4) > 0.

• If ω2(3) = a, then ω2(5, 6) > 0 and a = c.

• If ω2(4) = a, then ω2(1, 2) > 0 and a = b.

• If ω2(5) = a, then ω2(1, 2) > 0 and a = b.

• If ω2(6) = a, then ω2(3, 4) > 0.

From this we can derive a signed weight table.

Assignment Sign Condition

(1, 2, 3, 4, 5, 6) 1

(2, 1, 6, 5, 4, 3) (−1)2e+a+b+c a = c

(3, 4, 1, 2, 5, 6) (−1)2e+c a = b

(4, 3, 6, 5, 1, 2) (−1)4e+a+b a = c

(5, 6, 3, 4, 1, 2) (−1)2e+a

(6, 5, 1, 2, 3, 4) (−1)4e+b+c a = b

Computing the weight sum we obtain 3 + 3(−1)a = 6 when a = b = c as a is always

even. For a = b 6= c, the sum is 2 + 2(−1)c. This is non-zero as c is even when

a = b. For a = c 6= b, we have 2 + 2(−1)b. This is non-zero as b even when a = c.

Finally if a 6= b, c the sum is 1 + (−1)a which is non-zero. Hence S5 is non-zero.
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Maximality: By Lemma 7.1.4, row three is maximal. Since b, c ≥ a, row two

is maximal by Lemma 7.1.4. As the number of row three elements available for row

two is bounded by a, this is the largest weight and hence the tableau is maximal.

Tableau S6

S6 =

x + z′ x + z′ z′ z′ z′ z′ − 1 a b c

3 4 4 3 3 4 2 3 4
5 6 5 6 5 6 6 5 1
1 2 1 1 2 2

0 < a, b, c ≤ d− e

a, b ≥ c

b ≥ a− 1

z′ = e−x
3

e ≡ x (mod 3)

3 ≤ e ≤ d

ω2,3 =
(

c 0 e+b e+a−1 0 0
e e−1 0 0 0 0

)

λ = [6d− 4e− a− b− c + 2, 2e + a + b + c− 1, 2e− 1]

r = 6d− 6e− 2a− 2b− 2c + 3, s = a + b + c, t = 2e− 1

For any valid weight assignment we can have ω3(j) = e only for j ∈ {1, 3, 5}.
Moreover, ω3(j) = e if and only if ω3(j + 1) = e− 1. If ω3(j) = e then ω2(j) = c. If

ω2(1) = c, then ω2(5, 6) > 0. If ω2(3) = c, then ω2(1, 2) > 0 and b = c. If ω2(5) = c,

then ω2(1, 2) > 0 and b = c.

This means (1, 2, 3, 4, 5, 6) is the only valid weight assignment when b 6= c. If b =

c, then we additionally have weight assignments (3, 4, 1, 2, 5, 6) and (5, 6, 1, 2, 3, 4).

In either case the weight sum is odd and hence non-zero. Thus S6 is non-zero.

Maximality: By Lemma 7.1.4 row three is maximal. Since a, b ≥ c, row two

is maximal by Lemma 7.1.4. As the number of row three elements available for row

two is bounded by c, this is the largest weight and the tableau is maximal.

Tableau S7

S7 =

a b c d e

1 4 3 1 1 1 3 5
2 2 2 4 2 2 4 6
3 3

a + b + c = d− 2

b + d ≤ d− 2

a + d < d− 2

a,b,d > 0

0 ≤ e ≤ d

e even

ω2,3 =
(

0 d 0 d+1 0 e
0 0 a+b 0 0 0

)
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λ = [5d− a− b− d− e− 1, d + d + e + 1,a + b]

r = 4d− a− b− 2d− 2e− 2, s = c + d + e + 3, t = a + b

Any valid weight assignment must have ω2(5 or 6) = e and ω3(3) = a + b. Since

a + d < d − 2, we must have ω2(2) = d. Then, as d > 0 we must have ω2(4) =

d + 1. Hence the only valid weight assignments are (1, 2, 3, 4, 5, 6) with sign 1 and

(1, 2, 3, 4, 6, 5) with sign (−1)e. Since is e is even, this weight sum is positive. Hence

S7 is non-zero.

Maximality: Inspection shows that rows two and three are maximal. Since d > 0

we cannot have any 3’s in a maximal row two. Thus S7 is maximal by Lemma 7.1.5.

Tableau S8

S8 =

d− 4 d− 2 d− 4 2
6 6 6 3 2 1 2 3 6 6 2
3 4 3 4 4 5 5 5 1 5 1
1 1

d ≥ 5

ω2,3 = ( 2 0 d−3 d d 0
2 0 0 0 0 0 )

λ = [3d− 1, 3d− 1, 2]

r = 0, s = 3d− 3, t = 2

Examining the tableau shows that we can only have ω2(j, k) = (d, d) for (j, k) =

(2, 3), (2, 6) or (4, 5). Also, we must have ω2,3(1 or 6) > 0, so ω2(2, 6) = (d, d) and

ω2(1) = 2. This is possible only when d = 6. Hence the valid weight assignments are:

(1, 2, 3, 4, 5, 6) with sign 1; (6, 4, 1, 2, 3, 5) with sign (−1)2d+4; (1, 4, 3, 2, 6, 5) with sign

(−1)3d−1 when d = 6; and (6, 2, 1, 4, 5, 3) with sign (−1)3 when d = 5. In all cases,

the weight sum is positive and hence S8 is non-zero.

Maximality: This tableau is not maximal since ω2,3 = ( 0 0 d−1 d d 0
2 0 0 0 0 0 ). However,

this weight is zero in qT . This tableau cannot be put in maximal form, hence we

will need to prove directly that it is disjoint from the requisite tableaux. This will be

done in Section 8.7.
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Tableau S9

S9 =

a b c d e f g

1 5 1 5 3 6 6 3 6
2 4 2 2 5 4 5 4 2
3 3

a + c + d = d− 1

b + f = d− 1

f + g ≤ d− 1

a + b + e ≤ d− 1

b + d + e + g ≤ d− 1

a, b > 0

e, g > 0 or e = 0 and g even

ω2,3 =
(

0 d 0 d e+g 0
0 0 a+b 0 0 0

)

λ = [4d− a− b− e− g, 2d + e + g,a + b]

r = 2d− a− b− 2e− 2g, s = c + d + e + f + g + 2, t = a + b

Any valid weight assignment must have ω2(3) = a+b because a,b > 0. Only the

elements 2 and 4 may simultaneously have ω2 = d. Then ω2(5) = e + g unless e or

g is 0. If e = 0 we may also have ω2(6) = g. Hence the weight assignments are are

(1, 2, 3, 4, 5, 6) with sign 1 and, if e = 0, (1, 2, 3, 4, 6, 5) with sign (−1)g = 1. Thus S9

is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5 since g > 0.

Tableau S10

S10 =

2 a

1 5 5 1 6 5
2 4 2 2 4 3
3 3

2 ≤ a ≤ 3

d = 4

ω2,3 = ( 0 4 1 a+1 0 0
0 0 3 0 0 0 )

λ = [15− a,a + 6, 3]

r = 9− 2a, s = a + 3, t = 3

Any valid weight assignment must have ω3(3) = 3. Other than 3, the only elements
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that can have ω2 = d is 2, or 4 if a = 3. Thus there are no other valid weight

assignments possible and the tableau is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.

Tableau S11

S11 =

d− 1 d− 3 d− 1
1 5 6 1 6 5
2 2 3 3 4 4
3

ω2,3 = ( 0 d d−2 d 0 0
0 0 1 0 0 0 )

λ = [3d + 1, 3d− 2, 1]

r = 3, s = 3d− 3, t = 1

Any valid weight assignment must have two of the elements 1, 2, and 3 with

ω2 > 0. Since there are not enough 1’s in the body for this to happen, we must have

ω2(2) = d and ω2(3) = d − 2. This force ω2(4) = d. Hence there are no other valid

weight assignments. Thus the tableau is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.

Tableau S12

S12 =

a b c

3 3 1 1 1 3 5
2 2 4 2 2 4 6
4

0 ≤ a ≤ d− 3

0 ≤ b ≤ d− 2

a ≥ b

0 ≤ c ≤ d

c even

ω2,3 = ( 0 a+3 0 b+1 0 c
0 0 0 1 0 0 )

λ = [6d− a− b− c− 5,a + b + c + 4, 1]

r = 6d− 2a− 2b− 2c− 9, s = a + b + c + 3, t = 1

Any valid weight assignment must have ω2(5 or 6) = c. We also must have
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ω2(2) = a + 3 since a ≥ b. Then ω2(4) = b + 1 unless b = 0, in which case

ω2(3) = 1 is possible. Hence the weight assignments are (1, 2, 3, 4, 5, 6) with sign 1

and (1, 2, 3, 4, 6, 5) with sign (−1)c. When b = 0 we also have (1, 2, 4, 3, 5, 6) with

sign (−1)2, and (1, 2, 4, 3, 6, 5) with sign (−1)c+2. Since c is even, this sum is positive.

Hence S12 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.5.

7.7 Tableaux for c = 7 and c = 8

For c = 7 and 8, nearly all the required tableaux can be obtained by joining those

tableaux already constructed. This is demonstrated in Chapter 8. However, we do

need to construct one additional tableau, which is listed below.

Tableau W1

S1 =

x x z z z z z z z z a

7 8 6 7 8 8 3 7 8 7 3
4 5 4 5 6 4 5 6 4 5 6
1 2 1 1 1 2 2 2 3 3

a ≤ x

z = d−x
3

d ≡ x (mod 3)

a = 0, 2

ω2,3 =
(

0 0 0 d d 2z+a 0 0
d d 2z 0 0 0 0 0 0

)

λ = [4d− 4z− a, 2d + 2z + a, 2d + 2z]

r = 2d− 6z− 2a, s = a, t = 2d + 2z

Only the triples (1, 2, 3) and (4, 5, 6) may have ωi = (d, d, 2z) or larger.

Hence the only valid weight assignments are (1, 2, 3, 4, 5, 6, 7, 8) with sign 1, and

(4, 5, 6, 1, 2, 3, 7, 8) with sign (−1)2d+2z+a. Since a is even, the weight sum in pos-

itive. Hence W1 is non-zero.

Maximality: This tableau is maximal by Lemma 7.1.3.
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Chapter 8

Tableau Sufficiency

Our proof of Theorem 2 in Chapter 6 presupposed we had constructed all tableaux

with c ≤ 8 for the shapes of Theorem 10. In Chapter 7 we constructed many non-zero

tableaux. In this chapter we will demonstrate that all the necessary tableaux have

been constructed. Specifically we need all shapes in Theorem 10, that is all partitions

[r + s + t, s + t, t] of n, with r, s 6= 1, such that if r or s is in {0, 2, 4} then s + t is

even. Recall that those required shapes with r or s less than 5 are called exceptional

cases.

8.1 Sufficiency when c = 3

The tableaux we will use for c = 3 are the Pi described in Section 7.3. These

tableaux are all maximal and non-zero by weight-set counting. We will show that

every necessary partition of n = 3d has a corresponding Pi.

First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4}, or r = 3 with no constraints on s and t. Since our shape is a partition

of 3d, we have the condition 3t + 2s + r = 3d. Hence for a given r, we need only to

verify that all the appropriate s in the range 0 ≤ s ≤ 3d−r
2

, with s 6= 1 are obtained.

This condition shows s ≡ r (mod 3).

Table 8.1 below lists the tableaux we are using for these cases. The column

‘Parameters’ indicates the restrictions on the tableaux arising from their construction

in Section 7.3. The column ‘s, t values’ indicates their values in terms of the tableau
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parameters, while the ‘s covered’ lists those cases covered by the given tableau. The

restrictions given on the s covered reflect the listed conditions on the parameters.

Tableau Parameters s, t values s covered

r = 0 P4(d− 2b,b,b)
0 ≤ b ≤ d

2

d− b even

s = 3b

t = d− 2b

0 ≤ s ≤ 3bd
2c

s+ t even

r = 2 P4(d− 2b,b,b− 1)
1 ≤ b ≤ d

2

d− b odd

s = 3b− 1

t = d− 2b

2 ≤ s ≤ 3bd
2c − 1

s+ t even

r = 3 P4(d− 2b− 1,b,b,b)
0 ≤ b ≤ d−1

2

d− b odd

s = 3b

t = d− 2b− 1

0 ≤ s ≤ 3bd−1
2 c

s+ t even

P3(d− 2b− 1,b,b− 1)
1 ≤ b ≤ d−1

2

d− b even

s = 3b

t = d− 2b− 1

3 ≤ s ≤ 3bd−1
2 c

s+ t odd

r = 4 P4(d− 2b,b,b− 2)
2 ≤ b ≤ d

2

d− b even

s = 3b− 2

t = d− 2b

4 ≤ s ≤ 3bd
2c − 2

s+ t even

Table 8.1: Exceptional r cases for c = 3.

To see why Table 8.1 reaches the necessary upper bounds on s, we need to consider

the parity of d. For d and r even, the maximum s needed is 3d
2
− r

2
, which is obtained

in the table. When d is odd, we need s ≤ b3d−r
2
c = 3d−r−1

2
. However, s = 3d−r−1

2
6≡ r

(mod 3), thus the largest s we need is s = 3d−r−3
2

= 3bd
2
c − r

2
. When r = 3, we

need s ≤ 3d−3
2

, which equals 3bd−1
2
c when d is odd. But for d even, the largest s ≡ r

(mod 3) is s = 3d−9
2

= 3bd−1
2
c. Hence the s bounds in Table 8.1 are correct.

For the lower bounds, Table 8.1 shows that all the necessary s are covered, except

possibly some s < 5. Since s ≡ r (mod 3), all s are covered in the r = 2 case. In the

r = 3 case, s = 0 is only necessary when the s + t is even. Similarly, no additional

tableaux are needed in the r = 4 case because s = 1 is not a shape of Theorem 10.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. We still have the condition 3t+2s+r =

3d, so for a given s we need only verify that all the appropriate t in the range

0 ≤ t ≤ d− d2s
3
e, (with t even if s 6= 3) are obtained.

Table 8.2 belows lists the tableaux we are using for these cases. The columns

‘Parameters’ and ‘Conditions’ indicate the restrictions on the tableaux arising from

their construction in Section 7.3. The column ‘t values’ indicates t’s value in terms
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of the tableau parameters, while the ‘t covered’ lists those cases covered by the given

tableau. The restrictions given on the t covered reflect the conditions listed on the

parameters.

Tableau Parameters Conditions t value t covered

s = 0 P2(a, 0) 0 ≤ a ≤ d a even t = a
0 ≤ t ≤ d

t even

s = 2 P2(a, 2) 0 ≤ a ≤ d− 2 a even t = a
0 ≤ t ≤ d− 2

t even

s = 3 P3(a, 1, 0) 0 ≤ a ≤ d− 3 a even t = a
0 ≤ t ≤ d− 3

t even

P4(a, 1, 1) 0 ≤ a ≤ d− 2 a odd t = a
0 ≤ t ≤ d− 2

t odd

s = 4 P2(a, 4) 0 ≤ a ≤ d− 4 a even t = a
0 ≤ t ≤ d− 4

t even

Table 8.2: Exceptional s cases for c = 3.

Table 8.2 shows that all the necessary t are covered, except possibly when s = 3

or 4. When s = 3, the t = d− 2, t even case does not appear. In this case, r = 0 and

s + t is odd, so by Theorem 10 this case is not needed. For s = 4 and t = d− 3, we

have r = 1 which is not a required shape. Hence all the exceptional cases have been

covered.

Finally, consider the general cases remaining. These are tableaux having r, s ≥ 5

and no additional constraints. We still have the condition 3t + 2s + r = 3d, so for a

fixed t we need only verify that all the appropriate s in the range 5 ≤ s ≤ 3d−3t−5
2

,

are obtained. (This accounts for the bounds both on r and on s.)

Table 8.3 belows lists the tableaux we are using for this case. The columns ‘Pa-

rameters’ and ‘Conditions’ indicate the restrictions on the tableaux arising from their

construction in Section 7.3. The column ‘s values’ indicates its value in terms of

the tableau parameters, while the ‘s covered’ lists those cases covered by the given

tableau.

To see how Table 8.3 covers all the necessary shapes, first consider P3. As c varies
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Tableau Parameters Conditions s value s covered

P3(t,b,c)
2 ≤ b ≤ d−t−1

2

0 ≤ c < b
t+ c even s = 2b + c + 1

5 ≤ s ≤ 3bd−t−1
2 c

s+ t odd

P4(t,b,c)
1 ≤ b ≤ d−t

2

0 ≤ c ≤ b
t+ c even s = 2b + c

2 ≤ s ≤ 3bd−t
2 c

s+ t even

Table 8.3: General c = 3 cases.

between 0 and b− 1, we get 2b+ 1 ≤ s ≤ 3b. When b increases to b+ 1, we go from

s = 3b to s = 2b + 3 = 2(b + 1) + 1. There is no gap between these provided b ≥ 2.

Since b = 2 yields a minimum s = 5, we don’t need any smaller cases. Hence P3 will

cover the cases, provided s+ t is odd (equivalently t +c is even). Given a case where

s = 2b+c+ 1 but t +c is odd, use P4(t,b,c+ 1). Then t +c+ 1 is even, and c < b

implies c + 1 ≤ b, so the conditions of P4 are satisfied. (As similar analysis on P4

shows all the s in the range do occur.) To see that the upper bound of s ≤ b3d−3t−5
2

c
is met, first consider P4. Since 3bd−t

2
c ≥ b3d−3t

2
c − 1 = b3d−3t−2

2
c, the upper bound

is obtained. For P3, 3bd−t−1
2
c ≥ 3d−3t−3

2
when d − t is odd. If d − t is even, we have

b3d−3t−5
2

c = 3d−3t−6
2

, which is 3bd−t−1
2
c as desired. Thus all the required shapes are

listed.

8.2 Sufficiency when c = 4

When c = 4, the tableaux we will use are the Qi listed in Section 7.4. We will show

that every partition of n = 4d described in Theorem 10 has a corresponding Qi. Note

that shapes with r ≥ d + 5 can be obtained by Pi ∨ V (d) for the appropriate Pi

filled with c = 3 elements. As such, we will not include these shapes in the following

compilation. Throughout, we will use the convention d = 3z + x, where d ≡ x

(mod 3). Unless otherwise specified, take x ∈ {0, 1, 2}. We also use the notation d∗

from previous chapters (d∗ = 2bd
2
c).

First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4} or r = 3 with no constraints on s and t. Since our shape is a partition of
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4d we have the condition 3t + 2s + r = 4d. Hence for a given r, we need only verify

that all the appropriate t in the range 0 ≤ t ≤ b4d−r
3
c, (with s + t even for r 6= 3) are

obtained.

For the exceptional r cases with s + t even, we only need those t with t ≡ r

(mod 4). Given a shape (r, s, t) the next shape needed is (r, s − 6, t + 4). Consider

Table 8.4. For r = 0 we have all t ≤ 4d
3

when d ≡ 0 (mod 3). When d ≡ 1 (mod 3),

the shape t = d + d−1
3

is not possible and the table provides all t ≤ d + d−1
2
− 1.

Similarly, when d ≡ 2 (mod 3), the shape t = d + d−2
3

corresponds to s = 1, while

t = d + d−2
3
− 1 is not possible. This covers the r = 0 cases. Note when d = 5, the

only shapes needed are t = d − 1 and t = 0. Moreover, t = d − 1 and t = d − 2 are

not possible for d ≤ 4.

For r = 2, Table 8.4 provides tableaux for 0 < t ≤ d + z − 2 − x or t = d + z if

d ≡ 2 (mod 3). Since t ≡ 2 (mod 4), t < 2 is not needed. When d ≡ 2 (mod 3),

t = d+z−1 and t = d+z−3 are not congruent to 2 (mod 4). Similarly, t = d+z−x

and t = d + z− x− 1 are not congruent to 2 (mod 4) for x = 0 and 1.

When r = 3 we no longer have the conditions t ≡ r (mod 4); instead t must be

odd. Table 8.5 accounts for all tableaux with 0 < t ≤ d + d
3
− 3 for d ≡ 0 (mod 3).

For d ≡ 1 (mod 3) Table 8.5 accounts for all t ≤ d + d−1
3
− 4 and for t ≤ d + d−2

3
− 5

when d ≡ 2 (mod 3). Tableaux with larger t correspond to shapes having exceptional

s cases (s 6= 3). Since t is odd, these shapes are not needed according to Theorem 10.

When t ≤ d− 1 and d small, the shapes are either not required by Theorem 10 or are

not possible.

For r = 4, we need all t ≡ 0 (mod 4), where t ≤ d + z− 4 if x = 0, t ≤ d + z− 1

if x = 1, and t ≤ d + z − 2 if x = 2. Table 8.6 provides all these tableaux. Again,

the bounds on d are necessary to produce a valid shape. When d = 5 and t = 4,

the shape has s = 2 and can be found in Table 8.7. Hence these tables cover all the

exceptional r cases.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. When r ≥ d, r 6= d + 1, we may

reduced to Pi ∨ V (d) for some Pi filled with c = 3 elements. (If s = 3 we may only
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reduce when r ≥ d + 5.) Since we have already listed those table with exceptional

r cases, we will take r ≥ 5. Hence for a given s, we need only verify that all the

appropriate t in the range d3d−2s−1
3

e ≤ t ≤ b4d−2s−5
3

c (with t even for s 6= 3) are

obtained.

For the exceptional s cases, consider Table 8.7. When s = 0, all t are covered

except t = d + d−1
3

when x = 4. However, this case is unnecessary as r = 1. If t ≤ d,

the shape is reducible to a c = 3 case.

For s = 2, all t ≥ d − 1 except t = d + d−x
3
− 1 (with x ∈ {0, 2, 4}) are given in

Table 8.7. When that occurs, either the shape is invalid or r < 5. If t ≤ d − 2, the

shape is reducible to a c = 3 case. When d ≤ 7 and t ≥ d the shapes are covered by

the exceptional r cases or are reducible to c = 3 cases.

For s = 3 we want t ≤ d + d−x
3
− 2. However, when t = d + d−x

3
− 2 (x ∈ {0, 2, 4}),

then r < 5. Hence these cases have already been covered. When t < d− 2 the shape

is reducible to a c = 3 case. For d ≤ 6, the cases are covered by c = 3 or exceptional

r cases. The bounds on d for t ≥ d are needed to produce a valid shape.

For s = 4, Table 8.7 provides all tableaux with t ≤ d + d−x
3
− 3 with x ∈ {1, 3, 5}.

Since any t larger than this has r < 5, this covers all shapes not already listed. Note

that for d ≤ 12, all necessary shapes have t < d; those shapes with t = d− 1 are not

needed for d ≤ 6. Hence all the exceptional s cases are accounted for in Table 8.7.

The general cases of r, s ≥ 5 are classified in Table 8.8. When r ≥ d + 5 we

can reduce to a c = 3 tableau. Fix t = d + z − k. Since r and s are greater than

5, we need all t with 5 ≤ k ≤ z. For a t of this form, we need all shapes with

5 ≤ s ≤ k + b x+k−5
2
c. This range is covered in Table 8.8. To see why all such s are

obtained, note that for any fixed c, we always get 2c ≤ s ≤ 3c−1. Since c ≥ 2, there

are no gaps as we increment c. The parameters between the cases are comparable,

so writing s = 2c + d + 1 and using the case corresponding to the parity of s + k

will yield the appropriate tableau. Since x ≤ 2, we find s ≤ k + b x+k−5
2
c implies

s ≤ k + bk−1
2
c − 1 for x = 0 or 2, and s ≤ k + bk

2
c − 2 for x = 1. Comparing the

bounds shows all s are obtained. This takes care of all shapes with t ≥ d.

When 0 < t < d, we require all shapes with 5 ≤ s ≤ 2d− t− b t+5
2
c. The tableaux
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Tableau Parameters t value t covered

s = 0 Q2(a)

0 < a ≤ z

z + a even

x ∈ {0, 2, 4}
t = d + a

d < t ≤ d + z

x ∈ {0, 2, 4}
t even, d 6= 4

s = 2 Q1(a, 1, 1, 0)

0 ≤ a ≤ z− 2

x ∈ {0, 2, 4}
z + a even

t = d + a

d ≤ t ≤ d + z− 2

x ∈ {0, 2, 4}
t even, d ≥ 8

Q3(d− 1, 1) d odd t = d− 1
t = d− 1

t even

s = 3 Q1(a, 2, 1, 0)

0 ≤ a ≤ z− 3

x ∈ {0, 2, 4}
z + a even

t = d + a

d ≤ t ≤ d + z− 3

x ∈ {0, 2, 4}
t even, d ≥ 11

Q1(a, 1, 1, 1)

0 ≤ a ≤ z− 2

z + a odd

x ∈ {0, 2, 4}
t = d + a

d ≤ t ≤ d + z− 2

x ∈ {0, 2, 4}
t odd, d ≥ 8

Q5(
d−1
2

, d−1
2

, 0, 1, 1, 1)
d odd

d ≥ 7
t = d− 1

t = d− 1,

d ≥ 7, d odd

Q5(
d
2
− 1, d

2
, 1, 0, 1, 1)

d even

d ≥ 6
t = d− 1

t = d− 1,

d ≥ 6, d even

Q6(d− 2, 1, 0) t = d− 2 t = d− 2

s = 4 Q1(a, 1, 2, 1)

0 ≤ a ≤ z− 3

z + a odd

x ∈ {1, 3, 5}
t = d + a

d ≤ t ≤ d + z− 3

x ∈ {1, 3, 5}
t even, d ≥ 12

Q5(
d−1
2

, d−1
2

, 1, 0, 2, 1)
d odd

d ≥ 7
t = d− 1

t = d− 1

d odd

d ≥ 7

Q3(a, 2)
2 ≤ a ≤ d− 2

a even, d ≥ 4
t = a

2 ≤ t ≤ d− 2

t even, d ≥ 4

Table 8.7: Exceptional s cases for c = 4.
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listed in Table 8.8 satisfy this. Note that for t ≤ d−3 the bounds on s for Q5 and Q6

overlap, thus guaranteeing all s are covered. For the small d not listed, the shapes are

either not possible, not needed, or result in exceptional cases done previously. When

t = 0 we require all d+ d−5
2
≤ s ≤ 2d− 3. As Table 8.8 shows, this is satisfied. Hence

all necessary cases for c = 4 have been covered.

8.3 Sufficiency for c = 5

When c = 5, the tableaux we will use are the Ri listed in Section 7.5. We will show

that every partition of n = 5d described in Theorem 10 has a corresponding Ri.

Note that shapes with r ≥ d + 5 can be obtained by Qi ∨ V (d) for the appropriate

Qi filled with c = 4 elements. As such, we will not include these shapes in the

following compilation. Throughout, we will use the convention d = 3z + x, where

d ≡ x (mod 3). Unless otherwise specified, take x ∈ {0, 1, 2}.
First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4} or r = 3 with no constraints on s and t. Since our shape is a partition of

5d we have the condition 3t + 2s + r = 5d. Hence for a given r, we need only verify

that all the appropriate t in the range 0 ≤ t ≤ b5d−r
3
c, (with s + t even if r 6= 3) are

obtained.

For the exceptional r cases with s + t even, we only need those t with t ≡ d + r

(mod 4). Hence given a shape (r, s, t) the next shape needed is (r, s − 6, t + 4).

Consider Table 8.9. For r = 0, this table provides all the t, except t = 5d−x
3

, x = 1, 2

and t = d + 2z− 1. These are not a possible shapes. When d < 6 we only need those

shapes with t ≤ d.

For r = 2, Table 8.9 yields all t ≤ d + 2z − 2 with x ∈ {1, 2, 3}. Since t ≡ d + 2

(mod 4). When t = d+2z, for x = 0, 2 we do not get a shape required by Theorem 10;

for x = 1 the tableau is listed in the table. Also, t = d + 2z − 1 is not a shape and

t = d + 2z− 2 with d odd is not needed (the d even case is listed). If d ≤ 6, then all

necessary shapes have t ≤ d− 2. Hence we have accounted for all necessary tableaux

with r = 2.
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Tableau Conditions t value t covered

r = 0 R1(z, z)
x = 0

d even
t = 5d

3

t = 5d
3

d ≡ 0 (mod 3)

d even

R4(a,a, x)
1 ≤ a ≤ z

z + a even

d ≥ 6

t = d+ 2z− 2a
d ≤ t ≤ d+ 2z− 2

t ≡ d (mod 4)

d ≥ 6

R5(a,a)
0 ≤ a ≤ d∗

2 − 1

a even
t = d− 2a

2 ≤ t ≤ d

t ≡ d (mod 4)

R12(d−1
2 ) d ≡ 1 (mod 4) t = 1

t = 1

d ≡ 1 (mod 4)

U1(d) ∨ U3(d
2 ,

d
2) d ≡ 0 (mod 4) t = 0

t = 0

d ≡ 0 (mod 4)

r = 2 R1(z, z)
x = 1

d even
t = 5d−2

3

t = 5d−2
3

d ≡ 1 (mod 3)

d even

R2(z− 1, z− 1, 1)
x = 0

d even
t = d+ 2d

3 − 2

t = d+ 2d
3 − 2

t ≡ d+ 2 (mod 4)

d even

d ≡ 0 (mod 3)

R4(a,a, x− 1)

x ∈ {1, 2, 3}
1 ≤ a ≤ z

d ≥ 7

z+a odd

t = d+ 2z− 2a
d ≤ t ≤ d+ 2z− 2

t ≡ d+ 2 (mod 4)

d ≥ 7

R5(a,a− 1) 1 ≤ a ≤ d∗
2 − 1 t = d− 2a

3 ≤ t ≤ d− 2

t = 2, d even

P4(1, d−1
2 , d−1

2 ) d ≡ 3 (mod 4) t = 1 t = 1, d ≡ 3 (mod 4)

U1(d) ∨ U3(d
2 − 1, d

2) d ≡ 2 (mod 4) t = 0 t = 0, d ≡ 2 (mod 4)

Table 8.9: Exceptional r = 0 and r = 2 cases for c = 5.

For r = 3 consider Table 8.10. In this case, we need t 6≡ d (mod 2). All cases

with t ≤ d + 2z− 3 are covered in the table. In addition we need t = d + 2z− 1 for

d ≡ 0, 2 (mod 3) with d even, which are listed as well. When d < 9 we have t ≤ d+1

or t = d + 2z− 1, and so those cases are covered. Finally, when d = 4, t = d + 1 has

s = 1, so that shape is no needed. When t = 0 and d = 3 then s is even, so this case
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is reducible to c = 4 case with r = 0. Hence all necessary tableaux with r = 3 are

provided by Table 8.10.

For r = 4 we need those tableaux with t ≡ d (mod 4), t ≤ d+2z−4. In addition,

we need t = d+2z when d ≡ 2 (mod 3) and t = d+2z−2 when d ≡ 1 (mod 3). These

are all found in Table 8.10. For d = 5 the needed tableaux are listed individually.

For d = 4, t = d + 2z − 2 and t = 0 are the only shapes required, while d = 3 does

not need any shapes. Thus all the exceptional r cases are contained in Table 8.9 and

Table 8.10.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. When r ≥ d, r 6= d + 1, we may

reduced to Qi ∨ V (d) for some Qi filled with c = 4 elements. (If s = 3 we may only

reduce when r ≥ d + 5.) Since we have already listed the exceptional r cases, we will

also take r ≥ 5. Hence for a given s, we need only verify that all the appropriate t in

the range d4d−2s−1
3

e ≤ t ≤ b5d−2s−5
3

c (with t even if s 6= 3) are obtained.

When s = 0, we need all even t ≤ d + 2z. Table 8.11 provides all tableaux with

t ≥ d+2, t even. For t ≤ d+1 we can use the reduction to a c = 4 case. When s = 2,

we need all tableaux with d + 1 ≤ t ≤ d + 2z− 2 and t even, which Table 8.11 lists.

Those with t ≤ d are reducible to a c = 4 case, while the d ≤ 5 cases correspond to

exceptional r cases or are similarly reducible.

When s = 3 we need those shapes with t ≤ d + 2z − 3 and d + 5 ≥ r ≥ 5. For

other r or r = d + 3 we can reduce to a c = 4 case. Table 8.11 provides tableaux for

all t ≥ d. When t ≤ d− 1, we can reduce to a c = 4 case when d ≥ 8 or d = 6. The

remaining tableaux with r ≥ 5 and d ≤ 7 which are not reducible to a c = 4 case are

listed as well.

For s = 4 we need all even t ≤ d + 2z− 5, along with t = d + 2z− 4 when d 6≡ 0

(mod 3). Table 8.11 provides all those tableaux with t ≥ d + 1 and d ≥ 9. When

t ≤ d we may reduce directly to a c = 4 case when d ≥ 10. Those remaining tableaux

with d ≤ 9 have r ≥ d + 2, r = d or r < 5 and hence are either reducible or listed

previously. Thus Table 8.11 suffices for the exceptional s cases.

The general tableaux with r, s ≥ 5 are classified in Table 8.12 and Table 8.13.
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Since r, s ≥ 5, we only need those tableaux with 0 ≤ t ≤ d + 2z − 5. For a fixed

t, we need all tableaux with 4d−3t−4
2

≤ s ≤ 5d−3t−5
2

because for r ≥ d + 5 we can

reduce to a c = 4 tableau. First consider t = d + z + a of Table 8.12. We need all

s ≤ z − a + x − 2 + bz−a−1
2
c. Letting the parameters of R9 vary in order over their

bounds yields all s up to b + z− a + 2x− 3. Since b ranges to bz−a−x+1
2

c, we get all

s ≤ z− a + x− 3 + bz−a+x−1
2

c. This covers all the necessary s for x > 1. When x = 1

we also get s = z−a− 1 + bz−a
2
c as needed. This tableau requires d ≥ 16, for d < 15

we find there are no shapes with t ≥ d + z, 5 ≤ r ≤ d + 4 and s ≥ 5. When d = 15,

R6 provides t = d + z, the largest t required.

When d ≤ t < d + z, Table 8.12 provides tableau R10. Fix t = d + z − a, then

we need all s ≤ a + z + x + ba+z−5
2
c. To see why this tableau suffices, begin by

taking c = 0. First let b and f vary over their ranges. Taking them maximal, vary

d up to its maximum and then take e up to b z
2
c − 1. This satisfies all the required

inequalities. Then take R10(a, ba
2
c,c, d z

2
e + ba

2
c, b z

2
c − 1, da

2
e) with 0 ≤ c ≤ ba

2
c − 1,

c even. Similarly, use R10(a, ba
2
c,c, d z

2
e+ ba

2
c − 1, b z

2
c − 1, da

2
e) with 0 ≤ c ≤ ba

2
c, c

even. This gives all 5 ≤ s ≤ a+ z+ ba
2
c+ x+ b z

2
c− 2. Since ba+z−5

2
c ≤ ba

2
c+ b z

2
c− 2,

all the necessary s are obtained. This tableau required d ≥ 6. When d < 6, we find

there are no shapes with t ≥ d and r, s within the needed bounds. Table 8.12 also

contains t = d− 1, which requires all s ≤ d− 1, as listed.

When t ≤ d − 2, consider Table 8.13. For t ≤ d − 2, we need all s ≤ 2d − t +

bd−t−1
2
c−2. Tableau R11 provides this by taking the parameters through their ranges

in order, using b = 1 and b = 2 (with e ≥ f). (We need b = 2 in order to obtain

s = 5, otherwise b = 1 suffices.) The only snag is when t = 2. Then we cannot have

c = 1, hence s = 5 is not obtainable in this case. However, t = 2, s = 5 is needed only

when d = 5 and hence is listed separately. Also, d = 3 needs only t = 0, accounting

for d ≤ 4.

For t = 1, we need all 2d− 2 ≤ s ≤ 2d+ d
2
− 6. (The s = 2d− 3 case is a r = d+3

reduction to c = 4.) All these shapes are obtained in Table 8.13. For small d, those

tableaux not listed have s < 5.

For t = 0 we need all 2d − 2 ≤ s ≤ 2d + bd−1
2
c − 2. Table 8.13 provides all the
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necessary tableaux. When d is even, we get all 2d ≤ s ≤ 2d + d
2
, with s even and

2d − 1 ≤ s ≤ 2d + d
2
− 3 with s odd. While s = 2d − 2 is not listed, this shape has

r = d + 4 and s + t even, so we may reduce to a c = 4 case. When d is odd, we get

all 2d − 2 ≤ s ≤ 2d + d−1
2
− 2 with s even and 2d − 1 ≤ s ≤ 2d + d−1

2
− 2 with s

odd. Hence all the required s are listed. Therefore Tables 8.12 and 8.13 provide the

required tableaux for the non-exceptional cases with c = 5.

8.4 Sufficiency for c = 6

When c = 6, the tableaux we will use are the Si listed in Section 7.6. We will show

that every partition of n = 6d described in Theorem 10 has a corresponding Si. Note

that shapes with r ≥ d + 5 can be obtained by Ri ∨ V (d) for the appropriate Ri

filled with c = 5 elements. As such, we will not include these shapes in the following

compilation. Throughout, we will use the convention d = 3z + x, where d ≡ x

(mod 3). Unless otherwise specified, take x ∈ {0, 1, 2}.
First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4} or r = 3 with no constraints on s and t. Since our shape is a partition of

6d, we have the condition 3t + 2s + r = 6d. Hence for a given r, we need only verify

that all the appropriate t in the range 0 ≤ t ≤ b6d−r
3
c, (with s + t even for r 6= 3) are

obtained.

For the exceptional r cases with s + t even, we only need those t with t + r ≡ 2d

(mod 4). Hence given a shape (r, s, t) the next shape needed is (r, s − 6, t + 4).

Moreover, for r even, both s and t must be even. Consider Table 8.14. For r = 0,

this table provides all the all the required partitions. When t = 4 we must have d

even, while we need d odd for t = 2. For d = 3 and 4, only t = 2d, 2d− 4, and t = 0

are required. Hence all the r = 0 cases are provided. When r = 2, Table 8.14 gives

all the necessary tableaux since only those with t ≤ 2d − 2 and t ≡ 2d + 2 (mod 4)

are required.

For r = 3 consider Table 8.15. In this case we need all odd t ≤ 2d − 3 because

t = 2d− 1 has s = 0 and thus is not required by Theorem 10. All such tableaux are
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listed except d = 3 with t ≥ 3. When t = 3 we reduce to a c = 5 case with s = 3

and r = 0. When t = 5 and d = 3 we have s = 0 and hence the shape is not needed.

For r = 4 Table 8.15 provides all necessary tableaux. In this cases we have s and t

even with t ≤ 2d− 4, t ≡ 2d (mod 4). When d = 3 and t = 6 we have s = 1, so that

shape is not required. Hence all the exceptional r cases are listed.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. When r ≥ d, r 6= d + 1, we may

reduced to Ri ∨ V (d) for some Ri filled with c = 5 elements. (If s = 3 we may only

reduce when r ≥ d + 5.) Since we have already listed the exceptional r cases, we will

also take r ≥ 5. Hence for a given s, we need only verify that all the appropriate t in

the range d5d−2s−1
3

e ≤ t ≤ b6d−2s−5
3

c (with t even for s 6= 3) are obtained.

Consider Table 8.16. When s = 0 this provides all tableaux since those tableaux

with t < d∗ have r ≥ d + 2. For s = 2 the table provides all tableaux with t ≥ d + 2.

When t < d + 2 we have r ≥ d + 2 provided d ≥ 5. When d = 3 or d = 4 either r < 5

or we can reduce to a c = 5 case as well.

Similarly when s = 3, those tableaux with t < d + 2 are reducible to a c = 5 case

provided d ≥ 7. When d = 6, t = 7 we may reduce to a c = 5 case with r = 3; for

smaller t we have r ≥ d + 5. When d = 5 and t = 5, we may reduce to a c = 5 case

with r = 4 as s + t even; for smaller t, r ≥ d + 5. When d = 4 and t = 5 we have

r < 5. When d = 3 and t = 2 we may reduce to a c = 5 case with r = 3; for smaller

t we have r ≥ d + 5.

When s = 4 we need all even t ≤ 2d−3. Table 8.16 lists all tableaux with t ≥ d+2

and d ≥ 5. When t ≤ d + 1, t even, we may reduce to a c = 5 case provided d ≥ 6.

When d = 5, t = 6 we have r = 4 and we may reduce using P1(4) to a c = 3 case.

For d = 3 or 4 there are no needed shapes with 5 ≤ r ≤ d + 1. Hence Table 8.16 lists

all the exceptional s cases.

The general cases of r, s ≥ 5 are classified in Table 8.17 and Table 8.19. Since

r, s ≥ 5, we only need those tableaux with 0 ≤ t ≤ 2d − 5. For a fixed t, we need

all tableaux with 5d−3t−4
2

≤ s ≤ 6d−3t−5
2

since if r ≥ d + 5 we can reduce to a c = 5

tableau. When t is odd, write t = 2e− 1 then we need all s ≤ 3d− 3e− 1. Consider
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S6 of Table 8.17. First we let b, a and then c vary over their parameters This yields

all s ≤ 3d − 3e with t ≥ 5. For t = 3, we use S7. First let d vary to its bound of

d− 4. Then take S7(d− 4,e) and S7(d− 5,e) with e varying over the even numbers.

This yields all the required s. For t = 1 we use S12. First vary b over its bounds to

d− 2. Then use S12(d− 3, d− 2,c) and S12(d− 3, d− 3,c) with c even to obtain the

needed s. Note the bounds on d in these tableaux are necessary for coherence. Those

tableaux with d ≤ 5 and shapes with r, s ≥ 5 which are not reducible to a c = 5 case

are listed in Table 8.18. Hence all odd t are covered.

When t is even consider Table 8.19. Write t = 2e, so we want all 2d+ d
2
−3e−2 ≤

s ≤ 3d − 3e − 3. Consider S5. First let b and c vary. Then take S5(a, d − e, d − e)

and S5(a, d − e, d − e − 1) as a varies over all even numbers up to d − e − 1 and

d− e− 2 respectively. This yields all 8 ≤ s ≤ 3d− 3e− 3 as needed when t ≥ 6. For

5 ≤ s ≤ 7 the tableaux are listed individually. For t = 2 or 4, we use S7 which covers

all necessary s (as shown above for t = 3). When t = 0 we need 2d+ d
2
−2 ≤ s ≤ 3d−3

which is provided in the table. Note the bounds on d in these tableaux are necessary

for coherence. Those tableau with d ≤ 5 and shapes with r, s ≥ 5 which are not

reducible to a c = 5 case are listed in Table 8.18. Hence all even t are covered by

Table 8.19. Therefor all the required tableaux with c = 6 have been listed.
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Tableau Conditions t value t covered

r = 3 R1(z− 1, z)
x = 0

d ≥ 6, d odd
t = d+ 2z− 1

t = 2d+ 2z− 1

d ≥ 6, d ≡ 3 (mod 4)

R9(z− 1, 1, 0, 0, 1) x = 2 t = d+ 2z− 1
t = d+ 2z− 1

d ≡ 2 (mod 3)

R6(a,a− 1, x)
1 ≤ a ≤ z− 2

d ≥ 9
t = d+ 2z− 2a− 1

d+ 1 ≤ t ≤ d+ 2z− 3

d ≥ 9

R17(z− 2, x) d ≥ 6 t = d+ 1 t = d+ 1, d ≥ 6

R18 d = 3 or 5 t = d+ 1 t = d+ 1, d = 3, 5

R19 t = d− 1 t = d− 1

R7(a)
1 ≤ a ≤ d−1

2 − 1

d odd, d ≥ 5
t = d− 2a− 1

2 ≤ t ≤ d− 3

t 6≡ d (mod 2)

d odd, d ≥ 5

R8(a)
1 ≤ a ≤ d

2 − 2

d even, d ≥ 6
t = d− 2a− 1

3 ≤ t ≤ d− 3

t 6≡ d (mod 2)

d even, d ≥ 6

R12(d
2 − 2) d even, d 6= 4 t = 1 t = 1, d even, d 6= 4

P4(1, 1, 1) ∨ U1(4) d = 4 t = 1 t = 1, d = 4

U6 d > 5, d odd t = 0 t = 0, d > 5, d odd

U7 d = 5 t = 0 t = 0, d = 5

r = 4 R1(z, z)
x = 2

z even
t = d+ 2d−4

3

t = d+ 2d−4
3

t even

d ≡ 2 (mod 3)

R2(z− 1, z− 1, 1) x = 1 t = d+ 2d−2
3 − 2

t = d+ 2d−2
3 − 2

d ≡ 1 (mod 3),

R4(a,a− 2, x)
2 ≤ a ≤ z

d ≥ 6
t = d+ 2z− 2a

d ≤ t ≤ d+ 2z− 4

d ≥ 6

R5(a,a− 2) 2 ≤ a ≤ d∗
2 − 1 t = d− 2a 2 ≤ t ≤ d− 4, d ≥ 6

R13(3, 2, 1, 1, 1) d = 5 t = 5 t = 5, d = 5

R12(d−5
2 )

d ≥ 7

d odd
t = 1

t = 1

d ≥ 7

d odd

P4(1, 2, 1) ∨ U1(4) d = 5 t = 1 t = 1, d = 5

U1(d) ∨ U3(d
2 − 2, d

2) d ≡ 0 (mod 4) t = 0
t = 0

d ≡ 0 (mod 4)

Table 8.10: Exceptional r = 3 and r = 4 cases for c = 5.
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Tableau Conditions t value t covered

r = 0 S1(z) t = 2d t = 2d

S5(d− e, d− e, d− e)
3 ≤ e ≤ d− 2

d ≡ e (mod 2)
t = 2e

6 ≤ t ≤ 2d− 4

t ≡ 2d (mod 4)

d ≥ 5

Q4(2, 1, d− 5, 3) ∨ U1(d) d ≥ 6, d even t = 4
t = 4

d ≥ 6, d even

P1(4) ∨ U3(2, 2) d = 4 t = 4 t = 4, d = 4

S8 d ≥ 5, d odd t = 2
t = 2

d ≥ 5, d odd

U1(d) ∨ U1(d) ∨ U1(d) d even t = 0 t = 0, d even

r = 2 S5(d− e− 1, d− e, d− e)
e 6≡ d (mod 2)

3 ≤ e ≤ d− 1

d ≥ 4

t = 2e
6 ≤ t ≤ 2d− 2

t ≡ 2 + 2d (mod 4)

d ≥ 4

Q4(2, d−7
2 , d−1

2 , d−5
2 ) ∨ U1(d− 1) d ≥ 9, d odd t = 4

t = 4

d ≥ 9, d odd

P4(3, 3, 3) ∨ P4(1, 2, 1) d = 7 t = 4 t = 4, d = 7

P4(3, 1, 1) ∨ P4(1, 2, 1) d = 5 t = 4 t = 4, d = 5

Q2(1) ∨ U1(2) d = 3 t = 4 t = 4, d = 3

Q4(1, d−2
2 , d−2

2 , d−2
2 ) ∨ U1(d) d even t = 2 t = 2, d even

U2(d− 1, 1) ∨ U1(d− 1) d odd t = 0 t = 0, d odd

Table 8.14: Exceptional r = 0 and r = 2 cases for c = 6.
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Tableau Conditions t value t covered

r = 3 S6(d− e, d− e, d− e)
3 ≤ e ≤ d− 1

d ≥ 4
t = 2e− 1

5 ≤ t ≤ 2d− 3

d ≥ 4

S9(2, 1, d− 4, 1, d− 4, d− 2, 1) d ≥ 5 t = 3 t = 3, d ≥ 5

S10(3) d = 4 t = 3 t = 3, d = 4

S11 t = 1 t = 1

r = 4 S4(d− 6) d ≥ 6 t = 2d− 4
t = 2d− 4

d ≥ 6

S5(d− e− 2, d− e, d− e)
3 ≤ e ≤ d− 4

e ≡ d (mod 2)

d ≥ 7

t = 2e
6 ≤ t ≤ 2d− 8

t ≡ 2d (mod 4)

d ≥ 7

Q2(1) ∨ U1(4) d = 5 t = 6 t = 6, d = 5

Q4(2, d−4
2 , d−4

2 , d−4
2 ) ∨ U1(d) d ≥ 6, d even t = 4

t = 4

d ≥ 6, d even

P1(4) ∨ U4(2, 2) d = 4 t = 4 t = 4, d = 4

Q4(1, d−3
2 , d−1

2 , d−3
2 ) ∨ U1(d− 1) d ≥ 5, d odd t = 2

t = 2

d ≥ 5, d odd

Q3(2, 1, 1) ∨ U1(2) d = 3 t = 2 t = 2, d = 3

U1(d) ∨ U1(d) ∨ U1(d− 2) d even t = 0
t = 0

d even

Table 8.15: Exceptional r = 3 and r = 4 cases for c = 6.

Tableau Conditions t value t covered

s = 0 P1(d∗) ∨ P1(a)
0 ≤ a ≤ d

a even
t = d∗ + a

d∗ ≤ t ≤ 2d∗

t even

s = 2 S2(a)
0 ≤ a ≤ d− 4

a ≡ d (mod 2)

d ≥ 4

t = d+ a + 2
d+ 2 ≤ t ≤ 2d− 2

t even

d ≥ 4

s = 3 S3(a)
0 ≤ a ≤ d− 5

d ≥ 5
t = d+ a + 2

d+ 2 ≤ t ≤ 2d− 3

d ≥ 5

P1(4) ∨ P3(2, 1, 0) d = 5 t = 6 t = 6, d = 5

P1(4) ∨ U4(2, 1) d = 4 t = 4 t = 4, d = 4

s = 4 S4(a)
0 ≤ a ≤ d− 5

d ≥ 5
t = d+ a + 2

d+ 2 ≤ t ≤ 2d− 3

d ≥ 5

Table 8.16: Exceptional s cases for c = 6.
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Tableau Parameters s value s covered

t = 2e− 1

5 ≤ t ≤ 2d− 5

t odd

S6(a,b,c)

1 ≤ a,b,c ≤ d− e

a, b ≥ c

b ≥ a− 1

3 ≤ e ≤ d− 2

d ≥ 5

s = a + b + c
5 ≤ s ≤ 3d− 3e

d ≥ 5

t = 3 S7(1, 2, d− 5,d,e)

0 ≤ e ≤ d

e even

1 ≤ d ≤ d− 4

d ≥ 5

s = d− 2 + d + e
d− 1 ≤ s ≤ 3d− 7

d ≥ 5

t = 1 S12(d− 3,b,c)
0 ≤ c ≤ d

c even

0 ≤ b ≤ d− 2

s = d+ b + c d ≤ s ≤ 3d− 3

Table 8.17: General c = 6 cases for odd t.

d Tableau Shape

d = 5 P3(2, 1, 0) ∨ P3(2, 1, 0) t = 4, s = 6

d = 4 S10(2) t = 3, s = 5

P4(2, 1, 0) ∨ U4(2, 1) t = 2, s = 5

U3(2, 2) ∨ U4(2, 1) t = 0, s = 9

Table 8.18: General c = 6 cases for d ≤ 5.
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8.5 Sufficiency for c > 6, d even

In Chapter 6 we algorithmically demonstrate how to reduce an arbitrary tableau

to one of those tableaux filled with fewer elements. In the case where d is even,

we reduced all tableaux to joins of tableaux with c ≤ 6 to or those tableaux with

t < d, s < d + 5, r < d + 5. Previously we showed all tableaux with c ≤ 6 where

constructed in Chapter 7. Now we will address the remaining cases with d even.

Since any tableau must satisfy cd = 3t + 2s + r, applying the bounds on r, s, and

t we find cd ≤ 3(d− 1) + 2(d + 4) + d + 4 = 6d + 9. Hence for d > 9 all such tableaux

will have c ≤ 6. For d = 8 and d = 6 it may be possible to have c = 7, while for

d = 4, both c = 7 and c = 8 are possible.

When d=8 and c=7, only the shape with (r, s, t) = (11, 12, 7) satisfy the con-

straints. However, we can reduce this shape by V (d) to a c = 6 case with r = 3.

When d = 6 and c = 7, only the shapes with (r, s, t) = (10, 10, 4), (9, 9, 5) and

(7, 10, 5) satisfy the constraints. For (10, 10, 4) we may reduce by V (d) to a c = 6

case with (r, s, t) = (4, 10, 4) since s + t is even. For (9, 9, 5) we may reduce by V (d)

to a c = 6 case with (r, s, t) = (4, 9, 5) since s+ t is even. For (7, 10, 5) we may reduce

by U1(4) to a c = 5 case with (r, s, t) = (3, 6, 5).

When d = 4 and c = 7, only the shapes with (r, s, t) = (7, 6, 3),

(5, 7, 3), (3, 8, 3), (6, 8, 2), and (8, 7, 2) satisfy the constraints. For (7, 6, 3) we may

reduce by V (d) to a c = 6 case of (3, 6, 3). For (3, 8, 3) use R19 ∨ U1(4). For (5, 7, 3)

we may reduce by U1(4) to the c = 5 cases (5, 3, 3). For (6, 8, 2) we may reduce by

V (d) to a c = 6 case of (2, 8, 2) since s + t is even. For (8, 7, 2) we may reduce by

U1(4) to the c = 5 case (8, 3, 2).

When d = 4 and c = 8, only the shape with (r, s, t) = (7, 8, 3) satisfies the

constraints. It can be obtained by S10(3)∨U1(2). Thus when d is even, all shapes are

reducible to tableaux filled with less than or equal to six elements and all the cases

with c ≤ 6 were obtained previously.
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8.6 Sufficiency for c > 6, d odd

When d is odd, the reduction techniques of Chapter 6 work to reduce a tableau to

c ≤ 8. As we’ve already constructed those tableaux with c ≤ 6, we will focus on those

with c = 7 or 8.

First, assume t ≥ d − 1. So long as r 6∈ {0, 2, 3, 4, 5, 7} we may use P1(d − 1) to

reduce to a c− 3 case. If t ≥ d− 1 and r ∈ {0, 2, 3, 4, 5, 7} we may use P4(d− 2, 1, 1)

to reduce to a c− 3 case unless s ∈ {0, 2, 3, 4, 5, 7}. For s = 3, 5, 7 we may still reduce

by P4(d − 2, 1, 1) when t is odd. For r = 0, 2, 4, s = 3, 5, 7 and t even, the shape is

not needed by Theorem 10. For r = 3, 5, 7 and s = 3, 5, 7 with t even, no shapes are

possible for c = 8. When c = 7 we have d ≥ 5 so we may use P3(d− 3, 1, 0) to reduce

to a c = 4 case with s + t even. For s = 0, 2, 4, we only need those shapes with t

even. For r = 3, 5, 7 we may reduce by P1(d − 1) to a c − 3 case. This leaves those

cases with s = 0, 2, 4, r = 0, 2, 4 and t even.

When c = 7 there are no shapes having s = 0, 2, 4, r = 0, 2, 4 and t even as d is

odd. For c = 8, these shapes are obtainable, depending on d (mod 3). We list the

appropriate tableaux in Table 8.20. This completes all cases with t ≥ d− 1

If t < d − 1 and s < d + 4, but r = d + 3 or r ≥ d + 5 we may use V (d) to

reduce to a c − 1 case. When c = 8, there are no valid shapes with r ≤ d + 4 and

t < d− 1, s < d + 4. For c = 7 this is also true provided d ≥ 5. When d = 3 we need

(r, s, t) = (6, 6, 1) which is reducible by V (d) to a c = 6 case with r = 3.

If t < d − 1 and s ≥ d + 4 we may use U1(d − 1) to reduce to a c − 2 case,

provided r 6∈ {0, 2, 3, 4, 6}. Consider those cases with r ∈ {0, 2, 3, 4, 6} If s ≥ 2d + 5

or s = 2d + 3 we may use U2(d, d) to reduce to a c − 4 case. For s ≤ 2d − 1 there

are no shapes with t ≤ d − 2 and r ≤ 6. If s = 2d, 2d + 2 or 2d + 4, then we may

still reduce via U2(d, d), provided t is even (which always occurs if r = 0, 2, 4). Thus

we need only consider those tableaux with s = 2d + 1, or s = 2d, 2d + 2, 2d + 4 with

r = 3 or 6.

For c = 7 and s ≥ 2d, s 6= 2d + 1 only r = 6, s = 2d, t = d − 2 is possible. This

can be obtained by P4(d− 2, 1, 1)∨U5(2, d− 2) provided d ≥ 5. When d = 3 we may
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(r, s) d Tableau

(0, 0) d ≡ 0 (mod 3) Q2(z) ∨Q2(z)

(0, 2) d ≡ 2 (mod 3) W1(2)

(0, 4) d ≡ 1 (mod 3) Q1(z− 1, 0, 1, 1) ∨Q1(z− 1, 0, 1, 1)

(2, 0) d ≡ 1 (mod 3) W1(0)

(2, 2) d ≡ 0 (mod 3), d > 3 Q2(z) ∨Q1(z− 2, 1, 1, 0)

d = 3 S1(1) ∨ U1(2)

(2, 4) d ≡ 2 (mod 3), d > 5 Q2(z) ∨Q1(z− 2, 0, 2, 2)

d = 5 S1(1) ∨ U1(4)

(4, 0) d ≡ 2 (mod 3) Q2(z) ∨Q2(z)

(4, 2) d ≡ 1 (mod 3) Q2(z; x = 4) ∨Q1(z− 1, 0, 1, 1; x = 1)

(4, 4) d ≡ 0 (mod 3), d > 9 Q2(z) ∨Q1(z− 4, 2, 2, 0)

d = 9 Q2(z) ∨Q5(4, 4, 1, 0, 2, 1)

d = 3 Q1(1) ∨ U1(2) ∨ U1(2)

Table 8.20: Exceptional r and s cases for c = 8.

reduced by V (d) to a c = 6 case with r = 3. For c = 8 and s ≥ 2d, s 6= 2d + 1 only

s = 2d + 4, r = 3, d = 5 can occur. In that case, use Q5(2, 1, 2, 0, 1, 1) ∨ U2(5, 5).

This leaves those tableaux with t < d− 1, s = 2d+1 and r ∈ {0, 2, 3, 4, 6}. When

r = 0, 2, 4, we must have t odd, so in the c = 8 case there are no possible shapes. For

c = 7, we get a valid shape only for r = 4, in which case we have t = d− 2. For this

use U1(d − 1) to reduce to a c = 5 case with r = 2, s = d + 1 which will still have

s + t even. For r = 3, there are no shapes satisfying t < d − 1 and s = 2d + 1 for

either c = 7 or 8; similarly for r = 6. Thus all required shapes may be reduced to

those filled with c ≤ 6 elements.
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8.7 Tableaux Disjointness

Our proof of Theorem 2 requires the tableaux we constructed to be disjoint. Since

Lemma 3.4.9 showed that maximal tableaux are always disjoint, we need only be

concerned with those tableaux which could not be put in maximal form, namely, U8

and S8.

Recall that U8 =
4 3 3 3 3 1 2 2 4 4 4

1 1 1 2 2
has d = 4 and ω2 = (3, 2, 0, 0). When

d = 4 the tableaux used in the reduction techniques are P1(4), U1(4), and V (d).

These are the only tableaux that would be joined with U8, so it suffices to show U8 is

disjoint from these tableaux. Note that the weights of these tableaux consist only of

4’s and 0’s.

If U8 were not disjoint from these tableaux, then there is some weight assignment

of U8, not equivalent to ω2 = (3, 2, 0, 0) which uses a weight from at least one of these

tableaux. However, since the only additional weights we may use are 4’s and 0’s,

there is no way to have a weight assignment of length 5 using 0’s, 2’s, 3’s, and 4’s

without being equivalent to (3, 2, 0, 0). Hence the weights are disjoint from U8.

Recall that S8 =

d− 4 d− 2 d− 4 2

6 6 6 3 2 1 2 3 6 6 2

3 4 3 4 4 5 5 5 1 5 1

1 1

with ω2,3 = ( 2 0 d−3 d d 0
2 0 0 0 0 0 ) and

d ≥ 5. When d is even, the tableaux used in the reduction techniques are P1(d),

U1(d), and V (d). When d is odd, the tableaux used in the reduction techniques are

S1(d), U2(d), whose weights are 0’s and d’s, P1(d − 1), U1(d − 1) whose weights are

0’s and d− 1’s, and P4(d− 2, 1, 1) with ω2,3 =
(

0 d 1
0 0 d−2

)
. Hence it suffices to show S8

disjoint from these tableaux.

Now any weight assigned to S8 must have λ3 = 2. Since d ≥ 5, there are no weights

other of the listed tableaux than the weight
(
2
2

)
of S8 for which this is possible. This

means if S8 were not disjoint from these tableaux there would be a weight assignment

of S8 of the form ( 2 ∗ ∗ ∗ ∗ ∗
2 0 0 0 0 0 ) which is not equivalent to ( 2 0 d−3 d d 0

2 0 0 0 0 0 ). The only weights

we may use for the ∗’s are the weights of the listed tableaux, namely, 0’s d’s, d− 1’s

and d− 3. Since the ∗’s sum to 3d− 3, they would have to be three d− 1’s and two
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0’s. That is, the weights of U1(d−1) or P1(d−1). Then the weights of S8 would need

to be assigned to other tableaux, so a weight of d would need to be assigned to either

U1(d − 1) or P1(d − 1), which is not possible as these tableaux are maximal. Hence

there is no other weight assignment for S8 and so the tableau is disjoint as required.

Thus all the tableaux constructed in the proof of Theorem 2 are disjoint as desired.
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Chapter 9

Proof of Theorem 3

Theorem 2 proves the generalized Foulkes’ Conjecture for c = 3 without multiplicities.

We can, however, strengthen this result to include multiplicities for those irreducibles

corresponding to two row partitions. Namely,

Theorem 3. Let n = 3b = cd, with c, d ≥ 3 and let λ = [λ1, λ2] be a two row

partition of n. Then every irreducible character χλ occurring in 1Sn
SboS3

occurs in 1Sn
SdoSc

with multiplicity at least as large.

The proof of this theorem involves constructing the appropriate number of

tableaux, primarily out of the basis elements given in Section 4.3. The tableaux

constructed are maximal so linear independence is assured from Lemma 3.4.12 pro-

vided the weights are distinct. Once we have the basis tableaux for c = 4, 5, and 6,

the procedure generalizes to provide the appropriate number of tableaux for any c.

Take λ = [r + s, s]. The multiplicity mλ of Sλ in 1Sn
SboS3

was determined by Thrall

in [20], which we listed in Theorem 11.

Since the multiplicity depends on the relative sizes of r and s we will handle these

cases separately. Moreover, if s = 6k+j and r = 6h+i, we will often simply construct

k + 1 or h + 1 tableaux when possible to avoid detailed case analysis.

9.1 Case: s ≤ r

Let λ = [r + s, s] be a partition of n with s ≤ r, where n = 3b = cd. We wish to

construct mλ linearly independent tableaux, where mλ is the multiplicity of χλ in
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1Sn
SboS3

as described in Theorem 11. First we will construct these tableaux for c = 4,

5, and 6; then we will use these constructions in proving Theorem 3 for a general

c. We will refer to the tableaux constructed in this way as basis tableaux. These

constructions will make use of the c = 3 basis tableaux constructed in Section 4.3.

9.1.1 Basis Tableaux for c = 4, s ≤ r

Given λ = [r + s, s] a partition of n, we have 2s + r = 4d = 3b. From this equation

and s ≤ r, we have s ≤ d+bd
3
c. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 4. These will be our c = 4 basis tableaux.

When s ≤ r−d, we can use the basis tableaux constructed in Section 4.3. Consider

the partition λ′ = [r′ + s, s] where r′ = r − d. Since s ≤ r′, we have mλ = mλ′ .

In Section 4.3 we constructed mλ′ linearly independent Bp, where Bp are the basis

tableaux for c = 3. Take Bp ∨ d

4
as the basis tableaux for c = 4. This works for

s ≤ r − d, so r ≥ s + d. Hence 4d = 2s + r ≥ 3s + d implies s ≤ d.

When d < s ≤ d + bd
3
c, write s = d + f , with 1 ≤ f ≤ bd

3
c. Consider the tableau

T (a,b,c,d) =

a b c d

4 3 4 3

1 1 2 2

a + b ≤ d

a, b, c, d > 0

a > d

b > c

or a = d, b = c

w(T ) = (a + b,c + d, 0, 0)

If a > d and b > c, no other weight assignments are possible for T , hence this

tableau is non-zero and maximal. If a = d and b = c, we may also have the tableau

obtained by exchanging the rows. However, this has sign (−1)a+b+c+d = 1 and thus

the tableau is still non-zero.

Let Cp = T (d− 2p, p + 1, p, f − 1). Then λ2(T ) = a + b + c + d = d− 2p + p +
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1 + p + f − 1 = d + f = s. Hence these tableaux have the desired shape. Consider Cp

for p = 1, 2, . . . , bd−f
2
c. To insure the Cp are non-zero and maximal we need to check

that the constraints on T are satisfied. For f 6= 1 all the parameters are greater than

zero. Obviously, b = p + 1 > c = p. For a > d, we need d− 2p > f − 1. This is true

provided p < d−f+1
2

. Since p ≤ bd−f
2
c this inequality holds.

The Cp are linearly independent by Lemma 3.4.12 if their max weights are distinct.

We have w(Cp) = (d−p+1, f +p−1, 0, 0). If w(Cp) = w(Cp′) for p > p′, then we must

have d−p+1 = f+p′−1, that is d−f+2 = p+p′. But p+p′ ≤ d−f
2

+ d−f
2
−1 = d−f−1.

Hence this cannot occur. Thus the Cp are linearly independent.

Since s = d + f , we have mλ ≤ bd+f
6
c + 1, so it suffices to construct bd+f

6
c + 1

tableaux. The Cp provide bd−f
2
c tableaux. To show bd−f

2
c ≥ bd+f

6
c + 1, it suffices to

show d−f
2
− 1

2
> d+f

6
, or equivalently, d − 3

2
≥ 2f . This holds for d ≥ 5 as f ≤ bd

3
c.

When d = 3 or d = 4 then f = bd
3
c = 1, which is handled below. Hence for s > d + 1

the Cp provided at least mλ linearly independent tableaux.

For s = d + 1, that is f = 1, take Cp = T (d − p − 2, 2, 1, p), for 1 ≤ p <

bd−2
2
c. Then the conditions on T are satisfied and such p exist for d ≥ 6. We have

w(Cp) = (d − p, p + 1, 0, 0) so the max weights are distinct. These Cp provide at

least bd−2
2
c − 1 linearly independent tableaux and we need bd+1

6
c+ 1 tableaux. Now

bd−2
2
c − 1 ≥ bd+1

6
c + 1 provided d ≥ 8. When d = 7, then s = 8 and two tableaux

are needed. Use T (4, 2, 1, 1) and T (3, 2, 1, 2). When d = 6, then s = 7 and only

one tableau is needed. In this case, use Cp described above for p = 1. When d = 5

then s = 6 so two tableaux are needed. Use T (2, 2, 1, 1) and T (2, 1, 1, 2). When

d = 4 then s = 5 so one tableaux suffices. However, for d = 4, s = 5 there are no

tableaux of maximal form. We will use the tableau U8 constructed in Section 7.2.

This tableau is non-zero but not maximal. Here we use maximal form only to show

linear independence. Since only one tableau is needed for s = 5, this tableau works.

(The d = 4, s = 5 case is actually not needed for the c = 4 basis tableaux since

n = 3b = 4d implies 3|d, but we construct the basis tableaux for all d ≥ 3 in order

to simplify the construction process in Section 9.1.4. However we will not use U8 in

that construction.) When d = 3, then s = 4 and only one tableau is need, hence
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T (1, 1, 1, 1) suffices.

9.1.2 Basis Tableaux for c = 5, s ≤ r

Given λ = [r + s, s] a partition of n, we have 2s + r = 5d = 3b. From this equation

and s ≤ r, we have s ≤ b5d
3
c. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 5. These will be our c = 5 basis tableaux.

When s ≤ r− d, we can use the c = 4 basis tableaux constructed in Section 9.1.1.

Consider the partition λ′ = [r′+s, s] where r′ = r−d. Since s ≤ r′, we have mλ = mλ′ .

In Section 9.1.1 we constructed mλ′ linearly independent Cp, where Cp are the basis

tableaux for c = 4. Take Cp ∨ d

5
as the basis tableaux for c = 5. This works for

s ≤ r − d, so r ≥ s + d. Hence 5d = 2s + r ≥ 3s + d implies s ≤ b4d
3
c.

For b4d
3
c < s ≤ b5d

3
c consider

T1(a,b) =

a bd
2c dd

2e b

4 4 5 4 3 4 5

2 2 2 1 1 3 3

1 ≤ a ≤ d− 2

1 ≤ b ≤ bd
2
c − 3

a > b

s ≥ d + 6

d ≥ 8

w(T1) = (d,a + 2,b + 1, 0, 0)

T1 is defined for s ≥ d+6, d ≥ 8. (When d < 8 then s < d+6 since s ≤ b5d
3
c.) Since

a > b, there are no other weight assignments possible and the tableau T1 is maximal.

Let Ep = T1(s−d−3−p, p) for 1 ≤ p ≤ b s−d
2
c−2. For Ep to be non-zero and maximal

we need the conditions on T1 to be satisfied. We have a > b since p ≤ b s−d
2
c − 2,

while p ≥ 1 implies a = s − d − 3 − p < d − 2. Since d ≥ 8, then b ≤ bd
2
c − 3.

Note a > b implies these max weights are distinct. Hence this construction provides

b s−d
2
c − 2 distinct, linearly independent tableaux when s ≥ d + 6, d ≥ 8.
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We will need an additional tableau, so take:

T2(a,b) =

a b

5 3 5 4

1 1 2 2

1 ≤ a,b ≤ d− 1

s ≥ 4

w(T2) = (a + 1,b + 1, 0, 0)

Clearly T2 is non-zero and maximal. Given s, take E′q = T2(d− q, s−2−d+ q) for

q = 1, 2, . . . , d−b s−2
2
c. To insure E′q is non-zero and maximal we need the conditions

of T2 are satisfied. Since b4d
3
c < s and d ≥ 3, then s ≥ 4. We have 1 ≤ a ≤ d − 1

because q < d since s ≤ b5d
3
c. Similarly the bounds on s show 1 ≤ b ≤ d− 1. The E′q

are linearly independent because a < b for q < d− b s−2
2
c. This provides d− b s

2
c+ 1

tableaux.

We need mλ = b s
6
c + 1 linearly independent tableaux. By Lemma 3.4.12 the

tableaux Ep and E′q are linearly independent since they have different max weights.

First consider s ≥ d + 6 which implies d ≥ 8. Then we have both Ep and E′q, for a

total of b s−d
2
c − 2 + d − b s

2
c + 1 tableaux. This is greater than or equal to b s

6
c + 1,

since s ≤ b5d
3
c and d ≥ 8.

For s < d + 6 we only have E′q, which provides d − b s
2
c + 1 tableaux. This is

greater than or equal to b s
6
c + 1 provided d ≥ 5, since s ≤ d + 5. When d = 4, then

s ≤ b5d
3
c = 6 so the two E′q suffice. When d = 3 then s ≤ 5 and hence one tableau,

E′1 is sufficient. Hence we have constructed at least mλ tableaux as desired.

9.1.3 Basis Tableaux for c = 6, s ≤ r

Given λ = [r + s, s] a partition of n, we have 2s + r = 6d = 3b. From this equation

and s ≤ r, we have s ≤ 2d. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 6. These will be our c = 6 basis tableaux.

When s ≤ r− d, we can use the c = 5 basis tableaux constructed in Section 9.1.2.

Consider the partition λ′ = [r′+s, s] where r′ = r−d. Since s ≤ r′, we have mλ = mλ′ .

In Section 9.1.2 we constructed mλ′ linearly independent Ep, where Ep are the basis
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tableaux for c = 5. Take Ep ∨ d

6
as the basis tableaux for c = 6. This works for

s ≤ r − d, so r ≥ s + d. Hence 6d = 2s + r ≥ 3s + d implies s ≤ d + b2d
3
c.

For d + b2d
3
c < s ≤ 2d we want to construct mλ ≤ b s

6
c + 1 linearly independent

tableaux. We will do this primarily by joining two c = 3 basis tableaux. In addition,

we will use the following tableaux:

G1 =

d− 2 f

5 3 4 6

1 1 2 2

1 ≤ f < d

ω(G1) = (d− 1, f + 1, 0, 0, 0, 0)

G2 =

d− 2 f − 2 2

4 5 4 6 6

1 1 2 2 3

4 ≤ f < d

d ≥ 5

ω(G2) = (d− 1, f − 1, 2, 0, 0, 0)

G3 =

2 d− 4 d− 3 2

6 4 5 6 4 6

1 1 2 2 3 3

d > 6

ω(G3) = (d− 2, d− 2, 3, 0, 0, 0)

G4 =

d− 2 2 d− 5 2

6 4 6 5 5 6

1 1 2 2 3 3

d > 7

ω(G4) = (d− 1, d− 3, 3, 0, 0, 0)

These tableaux are all maximal. Except for G2, no other weight assignments are

possible, hence these tableaux are non-zero. For G2, the weight assignment (d−1, f−
1, 0, 0, 0, 2) is also valid. Since this has sign (−1)2, G2 is also non-zero.
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Consider b5d
3
c < s < 2d. (The s = 2d case will be handled separately.) Write

s = f + d, then b2d
3
c < f < d. This means f > 2 always, and f < 6 only for d ≥ 7.

Moreover f ≥ 4 for d ≥ 5 so the conditions on G2 are satisfied.

We will use the c = 3 basis tableaux for much of our construction. Let Dp′

represent the basis elements for c = 3 of shape [2d, d] as described in Section 4.3. Let

Fp represent the basis elements for c = 3 of shape [3d−f, f ] as described in Section 4.3.

We will use the Dp′ , Fp, and the Gi to construct the mλ linearly independent tableaux

for c = 6. This construction will depend on d and f mod 6. Write d = 6k′ + i′ and

f = 6k + i, with 0 ≤ i′, i ≤ 5. For i′ 6= 1 there exist m[2d,d] = k′ + 1 linearly

independent Dp′ , with p′ = 0, 1, . . . , k′, and k′ tableaux for i′ = 1. Similarly, there

exists m[3d−f,f ] = k + 1 linearly independent Fp with p = 0, 1, . . . , k for i 6= 1 and

k when i = 1. Now s = d + f = 6(k′ + k) + i′ + i = 6k + i, so mλ ≤ k + 1. Since

k ≤ k′ + k + 1 , it suffices to construct k′ + k + 2 linearly independent tableaux. We

will first consider d > 6, f ≥ 6. Since k′, k > 0 consider:

Gp = Dk′ ∨ Fp p = 0, 1, . . . , k

Gp′ = Dp′ ∨ Fk p′ = 0, 1, . . . , k′ − 1

G0 = D0 ∨ F0

There are k + 1 + k′ + 1 = k + k′ + 2 tableaux listed here. By Lemma 3.4.12 if

their max weights are distinct, these tableaux are linearly independent. Since these

tableaux are in maximal form we can simply compare their weights. We have:

ω(Gp) = (d, 0, 0, 2p + i + 4k, 2(k − p), 0) p = 0, 1, . . . , k

ω(Gp′) = (2p′ + i′ + 4k′, 2(k′ − p′), 0, f, 0, 0) p′ = 0, 1, . . . , k′ − 1

ω(G0) = (4k′ + i′, 2k′, 0, 4k + i, 2k, 0)

Now d > f and p′ ≤ k′ − 1, so we have ω(Gp) 6= ω(Gp′) since ω(Gp′) does not

contain a weight of d. Both of these weights are distinct from ω(G0), since they each

contain at least three 0’s while ω(G0) contains only two 0’s. The weights within each
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of these collections of tableaux are distinct because each collection {Dp′} and {Fp}
are linearly independent by Section 4.3.

When all these tableaux G exist we have a set of basis tableaux for c = 6. However,

depending on the conditions on d and f , we may only have k′ or k basis tableaux to

work with. In those situtations we will need to use the appropriate Gi to complete

our set of tableaux. Recall that we are taking d > 6 and that f ≥ 6.

When d 6≡ 1 (mod 6) and f 6≡ 1 (mod 6), all the tableaux G exist. Hence we have

the k′ + k + 2 linearly independent tableaux required.

When d 6≡ 1 (mod 6), f ≡ 1 (mod 6), there exist only k linearly independent Fp

with p = 1, 2, . . . , k. Hence we have all the tableaux listed above except for those with

p = 0 and G0. In place of those basis elements, use G1 and G2. This provided k+k′+2

tableaux. They are linearly independent by Lemma 3.4.12 provided the weights of G1

and G2 are distinct from the weights of Gp. We have ω(G1) = (d − 1, f + 1, 0, 0, 0, 0)

and ω(G2) = (d−1, f−1, 2, 0, 0, 0). Clearly these weights are distinct from eachother.

Now ω(G1) 6= ω(Gp′) since the number of 0’s differ. If ω(G1) = ω(Gp) we must have

f + 1 = d and p = k. Similarly ω(Gp′) will be distinct from ω(G2) unless d − 1 = f ,

p′ = k′ − 1. We have ω(G2) distinct from ω(Gp) since d does not occur in its weight.

Hence for f 6= d− 1 these k + k′ + 2 tableaux are linearly independent.

When f = d−1, use G3 and G4 in place of G1 and G2. Since ω(G3) contains neither

d nor f it is clearly distinct from the weights of Gp. Similarly, ω(G4) is distinct from

ω(Gp) since it does not contain d. While ω(G4) does contain f , Gp′ cannot contain

the weight 3 since d > 7. Thus we have sufficient linearly independent tableaux.

Now consider d ≡ 1 (mod 6) and f 6≡ 1 (mod 6). We have the Gp and Gp′ listed

earlier, for p′ 6= 0, along with G1 and G2. The discussion in the f ≡ 1 (mod 6)

case above shows these are linearly independent provided f 6= d− 1. Similarly when

f = d− 1 we can replace G1 and G2 with G3 and G4. If d = 7 then G4 does not exist.

However, then s = 13 on only two tableaux, D1 ∨ F1 and G3, are needed.

When d ≡ 1 (mod 6) and f ≡ 1 (mod 6), we can write d = 6k′ + 1, f = 6k + 1.

Then s = 6(k′+k)+2 so k′+k +1 tableaux suffice. Use the Gp and Gp′ listed earlier,

for p, p′ 6= 0, along with G1 and G2. This provides the requisite number of tableaux.
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They are linearly independent by the previous discussion since f 6= d − 1, as d ≡ f

(mod 6).

Now consider 3 ≤ d ≤ 6. Then f > b2d
3
c implies f > 2. Since s = d + f , we must

have s ≤ 11. Hence two linearly independent tableaux will suffice, namely, D0 ∨ F0

and G1. As in previous discussions, these weights are distinct provided f 6= d − 1.

When f = d− 1, s = 2d− 1. We need two tableaux only when d = 5 or d = 6. Thus

D0 ∨ F0 suffices for d = 3 and 4. When d = 5 or 6 use D0 ∨ F0 and T, where

T =

2 4 2 2 1

5 6 4 5 6

1 1 3 2 2

d = 6, ω = (6, 3, 2, 0, 0, 0)

T =

4 2 2

5 6 5 4

1 1 2 3

d = 5 ω = (5, 2, 2, 0, 0, 0)

These tableaux are clearly maximal and non-zero. Since f = d− 1 is not a weight of

T, we have that T and D0 ∨ F0 are linearly independent.

When f < 6 we have d ≤ 7 because f > b2d
3
c. Since all d ≤ 6 cases were done

above, only d = 7 remains. In this case we have only f = 5. Thus s = 12 and three

tableaux are required. We can use D1 ∨ F0, G1, and G2. These tableaux are linearly

independent by previous discussions.

Now consider s = 2d. Write d = 6k′+ i, so s = 6(2k′)+2i′. Hence 2k′+2 linearly

independent tableaux will suffice. Let

A1 =

d− 2 d− 2 2

4 5 5 4 6

1 1 2 2 3

ω(A1) = (d− 1, d− 1, 2, 0, 0, 0)

This tableau is maximal. Although there are many valid weight assignments, all such
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assignments have positive sign, hence A1 is non-zero.

When d 6≡ 1 (mod 6) we have k′+1 linearly independent tableaux Dp′ . Hence we

can use:

Dp ∨Dp p = 0, 1, . . . , k′

Dk′ ∨Dp′ p′ = 0, 1, . . . , k′ − 1

A1

with weights:

ω(Dp ∨Dp) = (2p + i′ + 4k′, 2(k′ − p), 0, 2p + i′ + 4k′, 2(k′ − p), 0)

ω(Dk′ ∨Dp′) = (d, 0, 0, 2p + i′ + 4k′, 2(k′ − p), 0)

ω(A1) = (d− 1, d− 1, 2, 0, 0, 0)

This provides 2k′+2 tableaux, provided k′ > 0. Their weights are clearly distinct

so they are linearly independent by Lemma 3.4.12. When d ≡ 1 (mod 6), we have

s = 6(2k′)+2 so only 2k′+1 tableaux are needed. All the tableaux listed above work

except for p = 0 and p′ = 0, providing 2k′ linearly independent tableaux. In addition

use:

A2 =

2 d− 3 d− 4 2 2

5 4 5 6 6 4

1 1 2 2 3 3

d ≥ 6

ω(A2) = (d− 1, d− 2, 3, 0, 0, 0)

This tableau is maximal and non-zero. Since d ≡ 1 (mod 6) we have d > 6. Thus

A2 provides the additional tableau and its weight is distinct from the other tableaux,

insuring linear independence.

When k′ = 0 we have d < 6. Then s < 10 so two tableaux, A1 and D0 ∨ D0,

suffice.
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9.1.4 Basis Tableaux for c > 6, s ≤ r

Let λ = [r + s, s] be a partition of n, with s ≤ r, where 2s + r = cd = n. We want to

construct mλ linearly independent basis tableaux for an arbitrary c. In Sections 4.3,

9.1.1, 9.1.2, and 9.1.3 we constructed basis tableaux for c ≤ 6, which we will make

use of in this construction. In addition we will use the following tableaux:

A1 =

d− 2 d− 2 2

4 5 5 4 6

1 1 2 2 3

ω(A1) = (d− 1, d− 1, 2, 0, 0, 0)

A2 =

2 d− 3 d− 4 2 2

5 4 5 6 6 4

1 1 2 2 3 3

d ≥ 6

ω(A2) = (d− 1, d− 2, 3, 0, 0, 0)

A3 =

2 d− 4 d− 4 2 2 2

5 5 6 6 4 4

1 2 1 3 3 2

d ≥ 6

ω(A3) = (d− 2, d− 2, 4, 0, 0, 0)

A4 =

2 d− 4 d− 5 2 3 2

5 4 5 6 6 4

1 1 2 2 3 3

d ≥ 5

ω(A4) = (d− 2, d− 3, 5, 0, 0, 0)

A5 =

4 2 2

4 5 6

1 2 3

d = 4
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ω(A5) = (4, 2, 2, 0, 0, 0)

These tableaux are all maximal. Although some of these tableaux have addi-

tional valid weight assignments, all such assignments have positive sign. Hence these

tableaux are non-zero.

To construct λ = [r + s, s]-tableaux with s ≤ r, write s = md+ f , with 0 ≤ f < d

and r = md + pd + g with 0 ≤ g ≤ d. Then 3md + pd + 2f + g = cd, so 2f + g = xd

for some x. This means c = 3m + p + x. If p + x ≥ 3, a λ-tableau may be written

D ∨ B ∨ (c − 3m − 3)V (d), where D is a tableau of shape [2md,md] filled with 3m

elements, B is a [3d − f, f ] tableau filled with 3 elements, and V (d) is the one row

tableau. We will first consider this case and handle the p + x < 3 case later.

We have s = md + f , so writing d = 6k′ + i′, f = 6k + i, with 0 ≤ i′, i ≤ 5

gives s = 6(mk′ + k) + mi′ + i. Since bmi′+i
6
c ≤ m, it suffices to construct b s

6
c+ 1 ≤

mk′+k +m+1 linearly independent tableaux. If m < 2 we may simply use the basis

tableaux constructed for c = 6 along with V (d)′s, so assume m ≥ 2.

Let Dp be the c = 3 basis tableaux of shape [2d, d] described in Section 4.3. There

are m[2d,d] = k′ + 1 such tableaux when i′ 6= 1 and k′ for i′ = 1. Let Bq be the c = 3

basis tableaux of shape [3d− f, f ] constructed in Section 4.3. This tableau has s ≤ r

since f < d. There are m[3d−f,f ] = k′ + 1 such tableaux for i 6= 1 and k′ tableaux

when i = 1. Take f > 1 and d ≥ 6. The d < 6 and f ≤ 1 cases will be handled

separately. Consider the following tableaux forms (with the appropriate number of

V (d)’s as necessary):

I. `Dp ∨ (m− `)Dk′ ∨Bq

` = 1, 2, . . . , m

p = 0, 1, . . . , k′ − 1

q = 0, 1, . . . , k
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II. mDk′ ∨Bq q = 0, 1, . . . , k

III. `Aj ∨ (m− 2`)Dk′ ∨Bq

` = 1, 2, . . . , bm
2
c

q = 0, 1, . . . , k

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

Note that those tableaux with p = 0 or q = 0 exist only when i′ 6= 0 or i 6= 0

respectively. We will not make use of these tableaux unless necessary. However, even

when k = 0, at least one Bq exists, so if we regard k as the number of Bq’s, we may

assume k ≥ 1. When d 6≡ 1 (mod 6) we need mk′ + k + m + 1 tableaux. The list

above (taking q 6= 0) provides at least mk′k + k + 4bm
2
ck tableaux, which suffices

since 4bm
2
c ≥ m + 1. When d ≡ 1 (mod 6), we need only mk′ + bm

6
c + 2 tableaux.

If k′ ≥ 2 the list above provides at least m(k′ − 1)k + k + 4bm
2
c tableaux. This is

sufficient for m 6= 3. When m = 3 we need 3k′ + k + 2 tableaux when i = 3, 4, or 5

and 3k′ + k + 1 tableaux for i = 0, 1, and 2. When i ≤ 2 the tableaux listed suffice.

For i ≥ 3 we need an additional tableau so use the tableau of the Form II with q = 0.

When k′ = 1, the tableaux of the Form I don’t exist. Hence we have only k + 4bm
2
c

tableaux when q 6= 0 and we need m + k + bm
6
c + 2. For m 6= 3 this is sufficient.

However, one additional tableau is needed for m = 3, when i = 3, 4, or 5. In this

case we may use q = 0 in Form II for the remaining tableau.

To show linear independence of these tableaux it suffices, by Lemma 3.4.12, to

show that the max weights are distinct. For max weights we have:

I. (4k′ + 2p + i′, 2(k − p), 0)` ∨ (d, 0, 0)(m−`) ∨ (4k + 2q + i, 2(k − q), 0)

II. (d, 0, 0)m ∨ (4k + 2q + i, 2(k − q), 0)
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III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

Consider those tableaux of Form I. If ω(I(`, p, q)) = ω(I(`′, p′, q′)), then counting

the number of d’s shows ` = `′, while counting the number of 4k′ + p + i′’s indicates

` = 1. If p = p′ then q = q′, which is not possible for distinct tableaux. Hence by

Lemma 3.4.13, the weights are distinct because f < d. Those of Form II are distinct

due to the distinct weights of Bq. Similarly those of the Form III − j are distinct by

the number of d’s and distinctness of ω(Bq). If ω(III − i(`, q)) = ω(III − j(`′, q′)),

then by counting the number of d’s we have ` = `′. Then by counting the number of

0’s, d− 1’s, and d− 2’s, we find the weights must be distinct for d > 6. (If d = 6 the

Forms III − 2 and III − 4 have the same weights.) To see the different forms have

distinct weights, first count the number of d’s. Obviously ω(II) 6= ω(I) or ω(III).

If ω(I(`)) = ω(III(`′)) then ` = 2`′. However, counting the number of 0’s shows the

weights are distinct.

When d = 6 then s ≤ 6m + 5, so m + 1 tableaux suffice. Since there are two

D’s and one B, Forms I and II provide the requisite number of linearly independent

tableaux.

Now consider the case where d < 6. Here s = mi′ + i so m + 1 tableaux suffices.

In this case the Aj, j = 2, 3 do not exist. However for d = 5 we have A4 and

for d = 4 we have A5. Moreover, we have exactly one D and one B. Hence the

appropriate Forms II, III − 1, and III − 4 or III − 5 provied 2bm
2
c + 1 tableaux.

This suffices for even m. When m odd we need one additional tableau. For m ≥ 5

use A1 ∨Ai ∨ (m− 4)D0 ∨B0 where i = 4 or 5 as appropriate. If m = 3, then s ≤ 19

so the three tableaux listed will suffice except when d = 5 and f = 3. In this case
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also use the non-zero maximal tableau:

T =

4 4 4 4

5 9 6 9 7 8

1 1 2 2 3 4

ω(T) = (5, 5, 4, 4, 0, 0, , 0, 0, 0)

When d = 3, we have s = 3m + 2 since 1 < f < d. Hence b3m+2
6
c + 1 tableaux

are needed. We have mD0 ∨B0 and `A1 ∨ (m− 2`)D0 ∨B0, which provide bm
2
c+ 1

tableaux. Since m ≥ 2 we have bm
2
c ≥ b3m+2

6
c, so these tableaux suffice.

For linear independence, we need only check distinctness of max weights by

Lemma 3.4.12. First consider d = 4 or 5. Since ω(A5) = ω(A3) our discus-

sion on linear independence for d ≥ 6 still holds. The only additional tableau is

A1 ∨Ai ∨ (m− 4)D0 ∨B0 which clearly has a distinct weight. Similarly, by counting

the number of 5’s and 4’s, the weight of T is also distinct. Hence these tableaux are

linearly independent. When d = 3 the tableaux listed are a subset of the tableaux

for d ≥ 6 and hence are linearly independent by the prior discussion. This covers all

cases with p + x ≥ 3 provided f > 1. The f = 0 and f = 1 cases will be handled

after the p + x < 3 case.

Now assume that p + x < 3. Recall that if s = md + f , with 0 ≤ f < d and

r = md + pd + g, then 3md + pd + 2f + g = cd and 2f + g = xd for some x. This

means c = 3m + p + x, so if p + x < 3 then λ-tableau with s ≤ r may be written as

D ∨ F ∨ (c− 3m− 3)V (d). Here D is a tableau of shape [2(m− 1)d, (m− 1)d] filled

with 3(m− 1) elements and F is a [(3 + x− 1)d− f, f + d] tableau filled with 3 + x

elements. When f > 0, we have x > 0, which means F is a c = 4 or c = 5 tableau.

We will first consider the case where m ≥ 3, d ≥ 6 and f > 1.

If d = 6k′ + i′ and f = 6k + i, with 0 ≤ i′, i ≤ 5, then s = md + f , so we still

need b s
6
c+ 1 ≤ mk′ + k + m + 1 tableaux. The number of tableaux D is the same as

before. Let Fq be the c = 4 or 5 basis tableaux of shape [cd − f − d, f + f ]. There

are at least k′ + k such tableaux. Moreover since d ≥ 6 and f > 1 there is always at
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least 2 such tableaux.

Consider the tableaux of the following forms:

I. `Dp ∨ (m− `− 1)Dk′ ∨ Fq

` = 1, 2, . . . , m− 1

p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k′ + k

II. (m− 1)Dk′ ∨ Fq q = 1, 2, . . . , k′ + k

III. `Aj ∨ (m− 2`− 1)Dk′ ∨ Fq

` = 1, 2, . . . , bm−1
2
c

q = 1, 2, . . . , k′ + k

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

As before, the tableaux with p = 0 exist only for d 6≡ 1 (mod 6). When d 6≡ 1

(mod 6), the construction above provides (m− 1)k′(k′+ k)+ k + k′+4bm−1
2
c(k′+ k).

Now k′ + k denotes the number of F’s, which we can assume is at least 2. Then since

4bm−1
2
c ≥ m + 1 for m 6= 4, this construction provides sufficient tableaux. If m = 4

then 4bm−1
2
c(k′ + k) ≥ 8, so this construction is sufficient.

When d ≡ 1 (mod 6), we need only mk′ + k + bm
6
c + 2 tableaux. For k′ ≥ 2, we

have (m− 1)(k′ − 1)(k′ + k) + k + k′ + 4bm−1
2
c(k′ + k) tableaux by the construction

above, which is sufficient. If k′ = 1, the tableaux of Form I do not exist, so we have

only k′ + k + 4bm−1
2
c(k′ + k) tableaux. However, since we know that there are always

at least two Fq’s, we have k′ + k ≥ 2. Thus the tableaux listed are sufficient.

When d < 6, the tableaux Aj with j = 2 and 3 do not exist. However we do have

A4 for d = 5 and A5 for d = 4. Also, since d < 6, we may no longer assume that there

are at least two Fq’s (unless d = 5 and f = 3 or 4). However there is always at least

one. In addition, there is only one D. Under these constraints we have tableaux of
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the Forms II, III−1, and III−4 or III−5 when d = 5 or 4 respectively. For m ≥ 5

also use A1∨Aj ∨ (m− 5)D0∨F0. This provides 2bm−1
2
c+2 tableaux for m ≥ 5. For

d = 4 we need at most b4m+3
2
c + 1, hence this this suffices. For d = 5 and f = 2 we

need at most b5m+2
6
c + 1 which we have. Our construction suffices except for m = 3

and 4. When m = 3, then s ≤ 17 and three tableaux, II, III − 1, and III − 4 or

III − 5 suffice. For m = 4 we need one additional non-zero maximal tableau, so use

T =

d− 1 1 d− 1 1 d− 1 1 d− 1 1 2

6 7 8 7 9 12 10 12 11

1 1 2 2 3 3 4 4 5

ω(T) = (d, d, d, d, 2, 0, 0, 0)

When d = 5, f ≥ 3 there are two Fq’s hence the Forms II, III − 1 and III − 4

give 4bm−1
2
c+1 tableaux. Since at most b5m+4

6
c+1 tableaux are needed, this suffices.

When d = 3 we need b3m+2
6
c+ 1 tableaux. From Forms II and III − 1, we have

bm−1
2
c + 1 tableaux. This is sufficient except for m odd. When m even we need one

additional tableau, so use T listed above.

Now to consider linear independence. By Lemma 3.4.12 it suffices to show that

the max weights are distinct. First consider when the F are c = 4 basis tableaux.

The max weights are:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

II. (d, 0, 0)m−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)
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Consider those tableaux of Form I. If ω(I(`, p, q)) = ω(I(`′, p′, q′), then counting

the number of 0’s shows ` = `′. By counting the number of different weights we find

` = 1. Now if p = p′ then we must have q = q′, which is not possible for distinct

tableaux. Hence by Lemma 3.4.13, these weights are distinct. The weights of Form II

are distinct by the construction of the F’s in Section 9.1.1.

The weights of Form III − j are distinct by counting the number of 0’s and by

the distinctness of the F’s. If ω(III − j) = ω(III ′ − i) counting the number of 0’s

and different numbers shows ` = `′ = 1. So if the weights are not distinct, then

ω(Aj ∨ Fq) = ω(Ai ∨ Fq′), which implies Ai and Aj must have one non-zero element

in common. Then by Lemma 3.4.13, these weights are distinct if f > 2. When f = 2

the tableaux have the same length and the lemma does not apply. If f = 2 then

ω(III − 3(` = 1, q = 4)) = ω(III − 4(` = 1, q = 3)), though all other weights are

distinct.

We have ω(I) 6= ω(II), by counting the number of 0’s. Forms II and III are also

distinct by counting the number of 0’s. If ω(I) = ω(III ′), counting the number of

0’s shows that ` = `′. Then counting the number of d’s shows that ` = 1, q′ = 1, and

q 6= 1. If the weights are equal, then (4k′ + 2p + i′, 2(k′ − p), d− q + 1, f + q − 1) =

(ω(Aj), f). Since q ≤ bd−f
2
c, these weights are distinct unless f = 2. When f = 2

then ω(I(` = 1, p = k′−1, q = j) = ω(III− j(`′ = 1, q′ = 1)), j 6= 1. Hence for f > 2

all the tableaux listed are linearly independent.

When f = 2 some of the tableaux in our list have the same max weights, and hence

may be linearly dependent. If we eliminate these tableaux with duplicate max weights

from our list we have (m−1)k′(k′+k)+k′+k+4bm−1
2
c(k′+k)−4 linearly independent

tableaux when d 6≡ 1 (mod 6). We need at most bm(6k′+i′)+2
6

c+1 ≤ mk′+m tableaux,

which we have since we may still take k′ + k ≥ 2. If d ≡ 1 (mod 6) then we have

(m− 1)(k′ − 1)(k′ + k) + k′ + k + 4bm−1
2
c(k′ + k)− 4 linearly independent tableaux

for k′ > 1. This is sufficient since only mk′ + bm+2
6
c+ 1 tableaux are needed. When

k′ = 1 those tableaux of Form I don’t exist, so we have k′ + k + 4bm−1
2
c(k′ + k)− 1

linearly independent tableaux, which is sufficient. Thus the d ≥ 6, f > 1, m ≥ 3 case

is finished for c = 4.
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When d < 6 the same tableaux are used with the substitution of A5. However, A5

has the same weight as A3 so the above argument applies. (Note that by the conditions

of Fq, q ≤ bd−f
2
c ≤ 1, so the max weight duplication does not occur.) In addition we

also use the tableaux A1∨Aj ∨ (m−5)D0∨F0, for j = 4 or 5. However, counting the

number of 0’s and d’s shows that this tableau is distinct from our previous collection;

otherwise ω(A1 ∨Aj ∨ F0) = ω(Ai ∨Ai ∨ Fq) which is impossible.

In addition, when m = 4, d = 5 or d = 3, m even, we also have the tableau T.

Counting the number of 0’s and d’s shows this tableau has a distinct max weight as

well. Hence when F is a c = 4 tableau, we have linear independence for f > 1 and

m ≥ 3.

Now consider the case where F is a c = 5 basis tableau. The c = 5 basis tableaux

were constructed in Section 9.1.2. These tableaux have two different types of max

weights corresponding to the T1 and T2 tableaux constructions used. Those of form T1

have weights (d, f − q−1, q +1, 0, 0) where q = 1, 2, . . . , bf
2
c−2 (when f ≥ 6). Those

of the form T2 have weights (d−q+1, f−1+q, 0, 0, 0) with q = 1, 2, d−bd+f−2
2
c. We

will refer to the basis tableaux using the T1 tableaux as q-forms and those using T2

as q-forms. Then the max weights for the general tableaux have the following forms:

I(q). (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

I(q). (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

II(q). (d, 0, 0)m−1 ∨ (d, f − q − 1, q + 1, 0, 0)

II(q). (d, 0, 0)m−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 1(q). (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 1(q). (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 2(q). (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 2(q). (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 3(q). (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 3(q). (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)
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III − 4(q). (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 4(q). (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

These tableaux are linearly independent by Lemma 3.4.12 provided their max weights

are distinct. To show these weights are distinct we will often count the number of 0’s

and d’s in each weight. For convenience we will list these values below:

Form # 0’s # d’s

I(q). 2m− ` m− `

I(q). 2m− `+
m− `− 1 q 6= 1

m− ` q = 1

II(q). 2m m

II(q). 2m + 1
m− 1 q 6= 1

m q = 1

III − j(q). 2m− ` m− 2`

III − j(q). 2m− ` + 1
m− 2`− 1 q 6= 1

m− 2` q = 1

Table 9.1: Weights of 0 or d.

Consider those tableaux of Form I(q). If ω(I(`, p, q)) = I(`′, p′, q′), then Ta-

ble 9.1.4 shows that ` = `′. Then counting the number of different numbers

shows ` = 1. If p = p′ then we must have q = q′ and vice versa, but this

can’t happen since the tableaux are different. Then since f < d, the argument of

Lemma 3.4.13 shows the weights are distinct. The same reason holds for Form I(q).

Table 9.1.4 also shows ω(I(q)) 6= ω(I(q)). The tableaux of Form II are distinct

since the max weights of the F are distinct for c = 5 by Section 9.1.2. More-

over, ω(II(q)) 6= ω(II(q)) by Table 9.1.4. The distinctness of max weights for

Form III− j(q) or III− j(q) follows from Table 9.1.4 and distinctness of c = 5 basis

tableaux max weights. Also from Table 9.1.4 we have ω(III − j(q)) 6= ω(III − j(q)).

Now suppose ω(III − j(q, `)) = ω(III − i(q′, `′)). Table 9.1.4 shows that ` = `′
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and counting the number of different numbers shows ` = 1. Since i 6= j, the

weights of Ai and Aj must have exactly one non-zero weight in common. Thus

the argument of Lemma 3.4.13 applies and hence the weights are distinct. Similarly

ω(III − j(q, `)) 6= ω(III − i(q′, `′)) for f > 2 by Lemma 3.4.13. (When f = 2, ` = 1

the conditions of Lemma 3.4.13 are not met.) The values of Table 9.1.4 are sufficient

to show ω(III− j(q, `)) 6= ω(III− i(q′, `′)). This shows the max weights within each

tableau form are distinct for f > 2. Showing that ω(I) 6= ω(II) 6= ω(III) follows

directly from Table 9.1.4.

When f = 2 our discussion on linear independence holds except for a few tableaux

of the Form III(q). Specifically, ω(III − 2(` = 1, q = 3)) = ω(III − 3(` = 1, q = 2)),

ω(III − 2(` = 1, q = 4)) = ω(III − 4(` = 1, q = 2)), and ω(III − 3(` = 1, q = 4)) =

ω(III−4(` = 1, q = 3)). Thus we have three fewer linearly independent tableaux than

we originally calculated. If we eliminate these tableaux with duplicate max weights

from our list we have (m−1)k′(k′+k)+k′+k+4bm−1
2
c(k′+k)−3 linearly independent

tableaux when d 6≡ 1 (mod 6). We need at most bm(6k′+i′)+2
6

c+1 ≤ mk′+m tableaux,

which we have since we may still take k′ + k ≥ 2. If d ≡ 1 (mod 6) then we have

(m− 1)(k′ − 1)(k′ + k) + k′ + k + 4bm−1
2
c(k′ + k)− 3 linearly independent tableaux

for k′ > 1. This is sufficient since only mk′ + bm+2
6
c+ 1 tableaux are needed. When

k′ = 1 those tableaux of the Form I don’t exist, but we still have 2 + 8bm−1
2
c − 3

linearly independent tableaux, which is sufficient. Hence we have enough tableaux

when f = 2. Thus the d ≥ 6, f > 1, m ≥ 3 case is finished for c = 5.

When d < 6 only the q-form tableaux exist for c = 5. These tableaux have the

same max weights as the c = 4 tableaux F (with the exception of an extra zero.)

Thus by the same argument as in that case, these tableaux are linearly independent.

Hence when F is a c = 5 tableau, we have linear independence for f > 1 and m ≥ 3.

These constructions assumed m ≥ 3. If m = 1, The c = 4 or c = 5 basis tableaux

(joined with sufficient V (d)’s) suffice. However, when m = 2, we need tableaux with

c = 7 or 8 elements. This case must be dealt with separately. (We will still assume
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f > 1.) Tableaux of Form I listed previously (Dp ∨ Fq) still work for this case.

These tableaux are linearly independent by our previous discussion. As before, let

d = 6k′+i′, f = 6k+i, with 0 ≤ i′, i ≤ 5. Since s = 2d+f , we need at most 2k′+k+3

tableaux. The tableaux Fq have λ2 = d+f so there are at least k′+k such tableaux. So

for d 6≡ 1 (mod 6), we have (k′+1)(k′+k) tableaux. This provides sufficient tableaux

unless k′ = 1, k = 1, or k = 0, k′ < 2. When k′ = k = 1, then d + f ≥ 14 so at least

three Fq’s exists. Hence the Form I construction is sufficient. In the remaining cases,

computing exactly how many Fq exist and precisely how many tableaux are needed

shows the Form I tableaux are sufficient except for: d = 11, f = 2, d = 3, f = 2,

d = 4, f = 3, and d = 5, f = 2, 3, 4. (For instance, when d = 6 and f = 5 there

are two F’s and two D’s, so Form I provides 4 tableaux. Since s = 17, only three

tableaux are needed.)

When d = 11 and f = 2, there are two D’s and F’s for a total of 4 Form I tableaux.

Since s = 24, five tableaux are required. In addition to the Form I tableaux, use

T =

10 10 4

4 5 6

1 2 3

ω(T) = (10, 10, 4, 0, 0, 0)

which is non-zero, maximal, and linearly independent.

For d = 3, f = 2, we have c = 8. Since s = 8 two tableaux are needed. In addition

to D0 ∨ F0, use the non-zero maximal tableau:

T =

2 2 2 2

5 6 7 8

1 2 3 4

ω(T) = (2, 2, 2, 2, 0, 0, 0, 0)

When d = 4 and f = 3, then we must have c = 9 as s ≤ r. Since s = 11, we need
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two tableaux. Use D0 ∨ F0 and

T =

2 2 2 2

5 9 6 9 7 8 8

1 1 2 2 3 3 4

ω(T ) = (3, 3, 3, 2, 0, 0, 0, 0)

Counting the number of 4’s shows these tableaux are linearly independent.

When d = 5 we have c = 8 and need three tableaux (except for f = 3 when two

tableaux suffice). In addition to D0 ∨ F0 use:

T =

4 4 4 f − 2

5 6 7 8

1 2 3 4

f 6= 3

ω(T) = (4, 4, 4, f − 2, 0, 0, 0, 0)

T′ =
4 f 2 2

5 6 6 7 6 8

1 1 2 2 3 4

ω(T′) = (5, f + 1, 2, 2)

These tableaux are non-zero. Linear independence follows by counting the number

of 5’s and 2’s. Thus we have sufficient tableaux for d 6≡ 1 (mod 6).

When d ≡ 1 (mod 6) we need 2k′ + k + 2 tableaux. The Form I construction

Dp∨Fq discussed earlier provides at least k′(k′+k+1) linearly independent tableaux

for f 6≡ 0 (mod 6). (When f 6≡ 0 (mod 6) there are k′ + k + 1 tableaux Fq.) This is

sufficient for k′ ≥ 2. When f ≡ 0 (mod 6) Form I provides k′(k′ + k) tableaux, but

only 2k′ + k + 2 tableaux are needed. This is sufficient for k′ ≥ 2 since f 6= 0.

Since d ≥ 3, only d = 7 remains. We need at most 4 tableaux, as s ≤ 20. Consider

the tableaux Bp ∨ Cq where the Bp are c = 3 basis tableaux with λ2 = d− 1 and the

Cq are c = 4 or c = 5 basis tableaux with λ2 = d+f +1. There are two tableaux each

for Bp and Cq so this construction is sufficient. The max weights for Bp are (6, 0, 0)

and (4, 2, 0). The max weights for Cq are (7, f + 1, 0, 0) and (6, f + 2, 0, 0). Hence
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the weights of our construction are distinct unless f = 5. However when f = 5 only

three tableaux are needed and the Form I construction D∨Fq provides three in this

case.

When f = 1 we can proceed as in the p + x < 3 case. We have s = md + 1

and r = md + pd + g. Then 3md + pd + 2f + g = cd, so 2 + g = xd for some x.

Hence x = 1. This means that for both the p + x ≥ 3 and p + x < 3 cases we can

use the c = 4 basis tableaux, proceeding as in the p + x < 3 case when f > 1. As

before, write d = 6k′ + i′ with 0 ≤ i′ ≤ 5. We have at least k′ linearly independent

λ = [3d− 1, d + 1] tableaux Fq, which we use for the following forms:

I. `Dp ∨ (m− `− 1)Dk′ ∨ Fq

` = 1, 2, . . . , m− 1

p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k′

II. (m− 1)Dk′ ∨ Fq q = 1, 2, . . . , k′

III. `Aj ∨ (m− 2`− 1)Dk′ ∨ Fq

` = 1, 2, . . . , bm−1
2
c

q = 1, 2, . . . , k′

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

These tableaux have the following max weights:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d− q, q + 1, 0, 0)

II. (d, 0, 0)m−1 ∨ (d− q, q + 1, 0, 0)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)
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III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

Counting the number of zeros and d’s in these weights gives:

Form #0’s #d’s

I. 2m− ` m− `− 1

II. 2m m− 1

III − j. 2m− ` m− 2`− 1

Then by arguments similar to previous cases and Lemma 3.4.13, these tableaux

have distinct max weights except for III − 1(` = 1, q = 2) and III − 2(` = 1, q =

1) whose weights are the same. Thus by Lemma 3.4.12, these tableaux (omitting

III − 1(` = 1, q = 2)) are linearly independent.

When d ≥ 6 and m ≥ 3, we need mk′ + b5m+1
6
c + 1 tableaux. When k′ ≥ 2,

the forms listed above provided (m − 1)k′k′ + k′ + 4bm−1
2
ck′ − 1, which is sufficient.

When k′ = 1 and d 6≡ 1 (mod 6), we still have these tableaux. If d = 7, then there is

exactly one D so Form I does not exist. However, there are two distinct Fq’s. Thus

Forms II and III provide 8bm−1
2
c tableaux. Since only m + bm+1

6
c+ 1 tableaux are

needed, this suffices.

If m = 2 then only Form I and II tableaux exist. Since s = 2d + 1, then 2k′ + 2

tableaux suffice. Forms I and II provided at least (k′ − 1)k′ + k′, tableaux. When

k′ ≥ 2 this is enough. For d > 7, four tableaux are needed. Since there are at least

two D’s and two F’s, this construction suffices. When d = 6, there are two D’s, but

only one F. However, s = 13 so only two tableaux are needed, which we have. If

d = 7, three tableaux are needed. Since there is only one D and two F’s, an additional
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tableau is required. Use:

H =

6 6 2

4 5 6 7

1 2 3 3

ω(H) = (6, 6, 3, 0, 0, 0, 0)

This tableau is clearly non-zero and maximal and its max weight does not contain

d, so it is linearly independent from our previously constructed tableaux.

When d = 5, there are two distinct Fq’s, which have weights of the form listed

above. However, there is only one D. Thus Forms II, III − 1, and III − 4 provide

at least 1+4bm−1
2
c tableaux. Since only b5m+1

6
c+1 tableaux are needed, this suffices

for m ≥ 3. When m = 2 then s = 11, so the two tableaux of Form II are sufficient.

When d = 3 there is only one F and one D. Moreover, only A1 exists. However, all

the tableaux are linearly independent. Thus we have bm−1
2
c+1 tableaux and we need

b3m+1
6
c+1 tableaux. This is sufficient for m odd. When m even then s = 3m+1 ≡ 1

(mod 6) so only b3m+1
6
c tableaux are required, which we have when m ≥ 3. If m = 2

then s = 7, which means the single tableau of Form II is sufficient.

When d = 4 we need to proceed differently since the c = 4 basis tableaux F is not

in maximal form. First consider m ≥ 4. We will replace F in the previous discussion

with the following c = 7 tableaux, Hq.

H0 =

4 2 2

4 5 6 7

1 2 2 3

ω(H0) = (4, 3, 2, 0, 0, 0, 0)

H1 =

2 2 2

4 7 5 4 6 5

1 1 2 2 3 3

ω(H0) = (3, 3, 3, 0, 0, 0, 0)

The the tableaux we will use are:

II. (m− 2)D0 ∨Hq q = 0, 1
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III. `Aj ∨ (m− 2`− 2)D0 ∨Hq

` = 1, 2, . . . , bm−2
2
c

q = 0, 1

j = 1, 5

Counting the number of 0’s and 4’s in the max weights of these tableaux show

they are linearly independent by Lemma 3.4.12. This can be seen from Table 9.1.4

below:

Form # 0’s # 4’s q

II. 2m m− 1 0

2m m− 2 1

III − j. 2m− ` m− 2`− 1 0

2m− ` m− 2`− 2 1

Table 9.2: Weights of 0 and 4.

Hence for m ≥ 4 this construction provides 4bm−2
2
c + 2 linearly independent

tableaux. Since only b4m+1
6
c+ 1 tableaux are required, this suffices.

When m = 3, then s = 13, so only two tableaux are needed. The two tableaux of

Form II suffices. Hence we have constructed sufficient linearly independent tableaux

when f = 1 and m ≥ 3.

For m = 2, two tableaux are needed, in which case use H0 and H1. Hence all

f = 1 cases are accounted for, since m = 1 may be handled by c ≤ 6 basis tableaux

and V (d)’s.

When f = 0 the construction is similar to earlier cases, particularly the f = 1

case. However, instead of the F tableaux, we use only the c = 3 basis tableaux D of

shape [2d, d]. Again, we may take m ≥ 2, since m = 1 may be handled by c ≤ 6 basis

tableaux and V (d)’s. Writing d = 6k′ + i′, 0 ≤ i′ ≤ 5, our general tableaux are:
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I. `Dp ∨ (m− `)Dk′ p = 0 . . . k′ − 1, ` = 1 . . . m

II. mDk′

III. `Aj ∨ (m− 2`)Dk′ ` = 1 . . . bm
2
c, j = 1 . . . 4, d ≥ 6

These tableaux have max weights:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`

II. (d, 0, 0)m

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`

Counting the number of zeros and d’s in these weights gives:

Form #0’s #d’s

I. 2m− ` m− `

II. 2m m

III − j. 2m− ` m− 2`

Then by arguments similar to previous cases and Lemma 3.4.13, these tableaux

have distinct max weights and are linearly independent by Lemma 3.4.12.

Consider d ≥ 6. If d 6≡ 1 (mod 6), we need mk′ + m tableaux. The above

construction provides mk′ + 1 + 4bm
2
c tableaux, which is sufficient. When d ≡ 1

(mod 6) we need mk′ + bm
6
c+ 1 tableaux. In this case, D0 does not exists, so p > 0.

For k′ 6= 1, we have m(k′ − 1) + 1 + 4bm
2
c which is sufficient. For k′ = 1, we have
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4bm
2
c+ 1 tableaux since Form I is no longer valid. However, this suffices.

When d < 6 not all of the Aj exist and there is exactly one D. For d = 4 and

d = 5 we have Forms II, III − 1, and III − 5 or III − 4 respectively. This provides

2bm
2
c + 1 tableaux. Since at most b5m

6
c + 1 tableaux are needed, this is sufficient.

When d = 3 we have Forms II and III − 1, which yield bm
2
c + 1 tableaux. Since

b3m
6
c + 1 tableaux are required, we have enough. This construction work for m ≥ 2,

hence all f = 0 cases are accounted for.

9.2 Case: r < s

This proof of this case follows similarly to the s ≤ r case. Let λ = [r + s, s] be a

partition of n with r < s, where n = 3b = cd. We wish to construct mλ linearly

independent tableaux, where mλ is the multiplicity of χλ in 1Sn
SboS3

as described in

Theorem 11. First we will construct these tableaux for c = 4, 5, and 6; then we will

use these constructions in proving Theorem 3 for a general c. We will refer to the

tableaux constructed in this way as basis tableaux. These constructions will make

use of the c = 3 basis tableaux constructed in Section 4.3 as well.

9.2.1 Basis Tableaux for c = 4, r < s

Given λ = [r + s, s], a partition of n, we have 2s + r = 4d = 3b. From this equation

and r < s, we have d + bd
3
c < s ≤ 2d. For each λ we will construct mλ linearly

independent λ-tableaux filled with the numbers 1 to 4. These will be our c = 4 basis

tableaux.

When d + bd
3
c ≤ s ≤ 2d, write s = d + f , with bd

3
c ≤ f ≤ d. Consider the tableau

T from Section 9.1.1. This tableau is non-zero and maximal.
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T (a,b,c,d) =

a b c d

4 3 4 3

1 1 2 2

a + b ≤ d

a, b, c, d > 0

a > d

b > c

or a = d, b = c

w(T ) = (a + b,c + d, 0, 0)

Let Cp = T (dd
2
e − p, bd

2
c − p, bf

2
c+ p, df

2
e+ p) for 0 ≤ p ≤ bd−f

4
c. The constraints

on T are satisfied for all p provided f ≥ 2 when p = 0. Hence Cp is non-zero for these

parameters. Let C′p = T (dd
2
e−p+1, bd

2
c−p, bf

2
c+p, df

2
e+p−1), with 0 ≤ p ≤ bd−f

4
c−1.

Here the constraints on T are satisfied providedand d− f ≥ 4 and f ≥ 4 when p = 0.

Hence C′p is non-zero for these parameters. We have ω(Cp) = (d− 2p, f + 2p, 0, 0)

and ω(C′p) = (d − 2p + 1, f + 2p − 1, 0, 0). Thus the weights are distinct and

Lemma 3.4.12 the tableaux are linearly independent.

By Theorem 11, mλ = b r
6
c+1. Hence it suffices to construct b r

6
c+1 ≤ b2d−2f

6
c+1 ≤

d−f
3

+1 linearly independent tableaux since r = 4d−2s and s = d+f . If 4 ≤ f ≤ d−4

then Cp and C′p together provide 2bd−f
4
c + 1 linearly independent tableaux. Since

2bd−f
4
c ≥ bd−f

3
c, this is sufficient. When f > d − 4 we have r ∈ {0, 2, 4, 6} with s

even for r = 0, 4 and odd for r = 2, 6. Therefor, at most one tableau is needed when

f > d− 4, which is C0. Now consider f < 4. Since f ≥ bd
3
c, when d ≥ 3, only f = 2

and f = 3 remain. For d = 3, then f = 1 and we have r = s which was done in

Section 9.1.1. If f = 2, then d ≤ 6. However, by Theorem 11, mλ = 0 for d = 3.

When d = 4 or 5, mλ = 1 and hence C0 suffices. For d = 6, the tableaux C0 and C1

suffice. If f = 3, then d ≤ 9. For d = 9 we have mλ = 3, for d = 7, we have mλ = 2,

while mλ ≤ 1 for the remaining d ≤ 8. Now C0 suffices for those cases with d 6= 7 or

9. When d = 7 we need an additional tableau, however, C1 exists. For d = 9, then

r = s and so this case was done in Section 9.1.1. Hence we have sufficient c = 4 basis
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tableaux for all partitions with r < s.

9.2.2 Basis Tableaux for c = 5, r < s

Given λ = [r+s, s] a partition of n, we have 2s+r = 5d = 3b. From this equation and

r < s, we have 0 ≤ r ≤ b5d
3
c. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 5. These will be our c = 5 basis tableaux.

First consider 0 ≤ r ≤ d. If d is even, then s−d ≡ s (mod 2). Moreover, s−d ≥ r.

Hence if λ′ = [r + s − d, s − d], then there are mλ′ linearly independent c = 3 basis

tableaux and mλ′ = mλ since λ1 = λ2 = λ′1 − λ′2. Therefore we can use U1(d) ∨ T ,

were T are the c = 3 basis tableaux of shape λ′, as the c = 5 basis tableaux.

If d is odd, then s ≡ d− 1 (mod 2) and s − d + 1 ≥ r. Let T be the c = 3 basis

tableaux of shape λ′ = [r + s− d− 1, s− d + 1]. Consider the tableaux U1(d− 1)∨T .

There are mλ′ such tableaux. Now mλ = mλ′ when r 6≡ 0, 3 (mod 6) since then

λ1 − λ2 − 2 = λ′1 − λ′2. Thus for r 6≡ 0, 3 (mod 6) we have constructed sufficient

tableaux. However, 2s + r = 5d and d odd implies r is odd, hence only r ≡ 3

(mod 6) remains. In that case, mλ′ = mλ − 1, so only one additional tableau is

needed. For d, r > 9 use U1(d− 3) ∨B0 where B0 is the c = 3 basis tableau of shape

λ
′′

= [r + s− d− 6, s− d + 3]. To show that U1(d− 3) ∨ B0 is linearly independent

from the U1(d− 1) ∨ T it suffices, by Lemma 3.4.12, to show that their max weights

are distinct. Since d− 1 is a weight of U1(d− 1)∨T for all T , we need only show that

d− 1 is not a weight of U1(d− 3) ∨B0. If we write λ
′′

= [r′ + s′, s′] and s′ = 6k + j,

0 ≤ j ≤ 5, then ω(U1(d− 3) ∨B0) = (d− 3, 4k + j, 2k, 0, 0). If d− 1 is in this weight

then that means d − 1 = 4k + j. Since 2s′ + r′ = 3d, we then must have j = 0 and

r′ = 3. As r′ = r − 6, this implies r = 9. Thus for r > 9, d > 3 these tableaux are

linearly independent.

If d = 3, then only r = 3 is needed because r ≤ d. Only one tableau is required,

which is U2(2, 1). When r = 9 we need two tableaux basis tableaux. The U1(d−3)∨B0
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we constructed above has weight (d− 1, d− 3, d−1
2

) In addition, use

T =

1 a d− a− 1 b + 1 d− b− 2 a b

4 3 5 3 4 5 4

1 1 1 2 2 3 3

a = bd−7
4
c,b = dd−7

4
e, d ≥ 11, d odd

which has weight (d, d−1, d−7
2

, 0, 0). For d < 11, only d = 9 is needed since 9 = r ≤ d

and d is odd. In that case, s = 2d so use U1(d− 3) ∨B0 and

T =

d− 1 d− 1

5 3 5 4

1 1 2 2

Thus we have sufficient tableaux for r ≤ d.

Now consider d < r ≤ b5d
3
c. To construct the c = 5 basis tableaux for these r we

will use two different types of tableaux. These are the same tableaux that were used

in Section 9.1.2 and hence are non-zero and maximal.

T1(a,b) =

a bd
2c dd

2e b

4 4 5 4 3 4 5

2 2 2 1 1 3 3

1 ≤ a ≤ d− 2

1 ≤ b ≤ bd
2
c − 3

a > b

s ≥ d + 6

d ≥ 8

w(T1) = (d,a + 2,b + 1, 0, 0)

T2(a,b) =

a b

5 3 5 4

1 1 2 2

1 ≤ a,b ≤ d− 1

s ≥ 4

w(T2) = (a + 1,b + 1, 0, 0)
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Since d < r ≤ b5d
3
c, then 2d > s ≥ d5d

3
e. Consider Ep = T1(s − d − 3 − p, p)

for 1 ≤ p ≤ b s−d
2
c − 2. For s < 2d − 1, the parameters on T1 are satisfied provided

d ≥ 8. (When s = 2d − 1, we take p ≤ b s−d
2
c − 3.) This provides b s−d

2
c − 2

linearly independent tableaux. We will also use E′q = T2(d − q, s − 2 − d + q) for

1 ≤ q ≤ d − b s−2
2
c. The parameters on T2 are satisfied provided s ≥ d + 2 (which

holds for d > 3). Together, Ep and E′q provide b s−d
2
c−2+d−b s−2

2
c linearly independent

tableaux when d ≥ 8. We need b r
6
c+ 1 = b5d−2s

6
c+ 1 tableaux. When s ≥ d + 6, we

have b5d−2s
6
c+1 ≤ b s−d

2
c−2+d−b s−2

2
c so these tableaux are enough. Since s ≥ d5d

3
e

and d ≥ 8, we have s ≥ d + 6. Thus for d ≥ 8, s < 2d− 1 these tableaux suffice

When s = 2d−1, d ≥ 8 we have b s−d
2
c−3+d−b s−2

2
c = bd−1

2
c−2. This is greater

than or equal to b r
6
c + 1 = bd+2

6
c + 1 provided d > 8. When d = 8, s = 2d − 1 we

have r = 10and only one tableau is needed, which E′q provides. When d = 8 we also

have r = 12. In that case two tableaux are needed, which E′q provides.

Now consider d < 8 with s ≤ 2d − 1. For d ≤ 5, or d = 6 and r = 8 only one

tableau is needed. Here E′q provides this tableau except if d = 3. When d = 3, then

r = s which was done in Section 9.1.2. When d = 7 or d = 6 and r = 10 two tableaux

are needed. In these cases, E′q suffices. Hence for d < 8 all tableaux are provided.

9.2.3 Basis Tableaux for c = 6, r < s

Given λ = [r + s, s] a partition of n, we have 2s + r = 6d = 3b. From this equation

and r < s, we have 0 ≤ r < 2d. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 6. These will be our c = 6 basis tableaux.

First consider 0 ≤ r ≤ d. If d is even, then s − d ≡ s (mod 2). Moreover,

s − d ≥ r. Hence if λ′ = [r + s − d, s − d], then there are at least mλ′ linearly

independent c = 4 basis tableaux and mλ′ = mλ since λ1 = λ2 = λ′1 − λ′2. Therefore

we can use U1(d) ∨ Cp, were Cp are the c = 4 basis tableaux of shape λ′, as the c = 6

basis tableaux.

If d is odd, then s ≡ d− 1 (mod 2) and s− d + 1 ≥ r. Let Cp be the c = 4 basis

tableaux of shape λ′ = [r + s−d− 1, s−d+1]. Consider the tableaux U1(d− 1)∨Cp.
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There are mλ′ such tableaux. Now mλ = mλ′ when r 6≡ 0, 3 (mod 6) since then

λ1 − λ2 − 2 = λ′1 − λ′2. Thus for r 6≡ 0, 3 (mod 6) we have constructed sufficient

tableaux. However, 2s + r = 6d implies r is even, hence only r ≡ 0 (mod 6) remains.

In that case, mλ′ = mλ−1, so only one additional tableau is needed. Since 0 ≤ r ≤ d,

we have b5d
2
c ≤ s ≤ 3d. For r 6= 0 we can write s = 2d + f with bd

2
c ≤ f ≤ d − 3.

Then

T =

d− 2 d− 1 f − 1

4 6 3 5 3 6 4

1 1 1 2 2 3 3

ω(T ) = (d, d, f, 0, 0, 0)

provides the additional tableau needed. Since T does not have a weight of d − 1 it

must be linearly independent from U1(d − 1) ∨ Cp by Lemma 3.4.12. When r = 0,

then s = 3d. However, since d is odd, then so is s and hence no tableaux are required.

Now consider d < r < 2d for arbitrary d. We have 2d < s ≤ b5d
2
c. Write s = 2d+f

for 1 ≤ f ≤ bd
2
c. Consider

Hp =

d− p− 1 p+ 1 d− 2p p p f

4 6 5 4 5 6

1 1 2 2 3 3

0 < p ≤ bd−f
2
c

ω(Hp) = (d, d− p, p + f)

Now Hp is non-zero and maximal. Moreover, for 0 < p ≤ bd−f
2
c, Hp are linearly

independent by Lemma 3.4.12. Hence we have bd−f
2
c tableaux. We need b r

6
c + 1 =

b2d−2f
6
c + 1. Hence it suffices to show that bd−f

2
c > bd−f

3
c. This holds except for

d = 6, f = 3; d = 5, f = 2; and d = 4, f = 1. For d = 4 and 6, only one tableau is

needed, so H1 suffices. When d = 5, f = 2, two tableaux are required. Use H1 and

U1(d − 1) ∨ U1(d− 1) ∨ U1(d − 1). Thus all the necessary c = 6 basis tableaux have

been constructed.

9.2.4 Basis Tableaux for c > 6, r < s

Let λ = [r + s, s] be a partition of n, with r < s, where 2s + r = cd = n. We want to

construct mλ ≤ b r
6
c+ 1 linearly independent basis tableaux for an arbitrary c.
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First write s = s′ + 2dq such that s′ − 2d < r ≤ s′. If c− 4q ≥ 3 then a λ-tableau

[r+s, s] may be written as T = qU2(d−1, 1)∨T ′, where T ′ is a λ′ = [r+s′, s′] tableau

filled with c− 4q elements. Since r ≥ s′ in λ′, we have mλ = mλ′ . Hence it suffices to

construct mλ tableaux T ′. If r = s′, the tableaux T ′ were constructed in Section 9.1.4.

Hence we only need to consider partitions λ = [r + s, s] with s− 2d < r < s and the

case where c− 4q < 3.

If c − 4q < 3 we may write T = (q − 1)U2(d − 1, 1) ∨ T ∗ where T ∗ is a λ′ =

[r + s′ + d, s′ + d] tableau filled with at most 6 elements. Since at least mλ = mλ′

tableaux T ∗ were constructed for c ≤ 6 in previous sections, no additional construction

is needed for this case.

To construct λ = [r + s, s] tableaux with s− 2d < r < s, write r = md + f , with

0 ≤ f < d and s = md + pd + g with 0 ≤ g < d. Then 3md + 2pd + f + 2g = cd, so

f +2g = xd for some x. This means c = 3m+2p+x. If 2p+x ≥ 3, a λ-tableau may be

written D∨F, where D is a tableau of shape [2md,md] filled with 3m elements and F

is a [pd+g+f, pd+g] tableau filled with 2p+x elements. Given the constraints on r,

we have 2p+x ≤ 6. Hence we can use the basis tableaux constructed in Sections 4.3,

9.2.1, 9.2.2, 9.2.3 as the F tableaux. We will first consider this case where 2p + x ≥ 3

and handle the 2p + x < 3 case later.

We have r = md + f , so writing d = 6k′ + i′, f = 6k + i, with 0 ≤ i′, i ≤ 5

gives r = 6(mk′ + k) + mi′ + i. Since bmi′+i
6
c ≤ m, it suffices to construct b s

6
c+ 1 ≤

mk′ + k + m + 1 linearly independent tableaux. If m ≤ 1 we have c ≤ 9. For c ≤ 6

we have constructed the necessary basis tableaux in previous section. c = 7, 8 and 9

will be handled later. Hence assume m ≥ 2

Let Dp be the c = 3 basis tableaux of shape [2d, d] described in Section 4.3. There

are m[2d,d] = k′ + 1 such tableaux when i′ 6= 1 and k′ for i′ = 1. Let Fq be the

c = 2p + x basis tableaux of shape [pd + g + f, pd + g] constructed in Sections 4.3,

9.2.1, 9.2.2, 9.2.3. At least one such tableaux will always exist, provided f 6= 0, 1, 2, 4.

There are at least m[pd+g+f,pd+g] ≤ k′ such tableaux, given the constraints on f . Take

f 6= 0, 1, 2, 4 and d ≥ 6. The d < 6 and f cases will be handled separately. Consider

the following tableaux forms (where the Ai were defined in Section 9.1.4).
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I. `Dp ∨ (m− `)Dk′ ∨ Fq

` = 1, 2, . . . , m

p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k

II. mDk′ ∨ Fq q = 1, 2, . . . , k

III. `Aj ∨ (m− 2`)Dk′ ∨ Fq

` = 1, 2, . . . , bm
2
c

q = 1, 2, . . . , k

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

Table 9.3: Tableaux Forms.

By Lemma 3.4.12, these tableaux are linearly independent provided their max

weights are distinct. The max weights of these tableaux are:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0)(m−`) ∨ ω(Fq)

II. (d, 0, 0)m ∨ ω(Fq)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

The weights of Fq depend on which basis tableaux we are using for F. We cate-

gorize these weights by the number of elements in F.
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c ω(Fq) Range Conditions

3 (4h+ 2q + j, 2(h− q), 0) q = 1, . . . k′ s = 6h+ j

4 (d− q, d−f
2 + q, 0, 0) q = 0, . . . , 2bd+f

8 c

5 (d, 4h+ 2q + j, 2(h− q), 0, 0) q = 1, . . . , k′ s− d = 6h+ j, r ≤ d, d even

(d− 1, 4h+ 2q + j, 2(h− q), 0, 0) q = 1, . . . , k′ s− d+ 1 = 6h+ j, d odd

(d− 3, 4h+ j, 2h, 0, 0) r ≤ d.r > 9ifr ≡ 3 (mod 6)

(d− 1, d− 3, d−1
2 , 0, 0) r = 9, d ≥ 11, d odd

(d, d− 1, d−7
2 , 0, 0)

(d, d, 0, 0, 0) r = 9, d = 9

(d− 1, d− 3, d−1
2 , 0, 0)

(d, d− f
2 − q − 1, q + 1, 0, 0) q = 1, . . . , b2d−f

4 c − 2 r > d

(d− q′ + 1, d− f
2 − 1 + q′, 0, 0, 0) q′ = 1, . . . , bf

4 c+ 1

6 (d, d− q, d−f
2 + q, 0, 0, 0) q = 0, . . . , 2bd+f

8 c r ≤ d, d even

(d− 1, d− q, d−f
2 + q + 1, 0, 0, 0) q = 0, . . . , 2bd+f

8 c r ≤ d, d odd

(d, d, d−f
2 , 0, 0, 0) r ≡ 0 (mod 6)

(d− 1, d− q, d−f
2 + q + 1, 0, 0, 0) q = 0, . . . , 2bd+f

8 c r ≤ d, d odd

(d, d− q, q + d−f
2 , 0, 0, 0) q = 1, . . . , bd+f

4 c r > d

The weights of Forms I, II, III − j are distinct for each Fq listed provided d > 7,

except for the following cases. When F is a c = 5 tableau, we have ω(I(` = 1, p =

k′ − 1,F1)) = ω(III − 4(` = 1,F2)) when d = 11, f = 9. When F is c = 4 or c = 6,

we have some duplicate tableau weights if f = d − 4 or f = d − 2. These weights are

ω(I(` = 1, p = k′ − 1, q = j − 1)) = ω(III − j(` = 1, q = 0)) for j = 2, 3, and 4. Also, when

f = d−4, we have ω(III−2(` = 1, q = 2)) = ω(III−3(` = 1, q = 1)), ω(III−2(` = 1, q =

3)) = ω(III − 4(` = 1, q = 1)), and ω(III − 3(` = 1, q = 3)) = ω(III − 4(` = 1, q = 2)).

When f = d − 2 we have ω(III − 1(` = 1, q = 2)) = ω(III − 2(` = 1, q = 1)) as well. In

these cases we have (at most 6) fewer linearly independent tableaux available than listed.
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These will be called the constrained cases.

The linear independence of the remaining tableaux can be seen by counting the number

of d’s, 0’s in each tableau, determining the number of distinct elements in each tableau, and

applying Lemma 3.4.13 where appropriate. When d = 6, the Forms III − 2 and III − 4

have the same weight. When d = 7 the Forms III − 3 and III − 4 have the same weight.

Hence for d = 6 and 7, Form III − 4 will not be used.

We wish to have b r
6c + 1 linearly independent tableaux. Recall that r = md + f ,

d = 6k′ + i′ and f = 6k+ i, so it suffices to construct mk′ + k+m+ 1 linearly independent

tableaux. We have f 6= 0, 1, 2, 4, d ≥ 6 and m ≥ 2. Note that there is always at least one

F since f 6= 0, 1, 2, 4, so we will take k ≥ 1.

When d > 6, d 6≡ 1 (mod 6), all the tableaux listed in Table 9.2.4 exist and are linearly

independent. This provides mk′k + k + 4bm
2 ck, which is at least mk′ + k +m + 1. Hence

sufficient linearly independent tableaux exist. In the constrained cases, using the full set of

F listed (as opposed to only the first k′) will provide sufficient tableaux.

When d = 6, the tableaux of Forms III − 2 and III − 4 are not linearly independent.

Hence we have mk+k+3bm
2 ck linearly independent tableaux. Then r = 6m+f , so m+k+1

tableaux are sufficient. Since we have k = 1, we have listed sufficient tableaux.

When d ≡ 1 (mod 6) the tableau D0 does not exist. Hence Table 9.2.4 provides m(k′−
1)k+k+4bm

2 ck linearly independent tableaux, provided k′ > 1. In this case r = 6k′m+m+f ,

so mk′+ k+ bm
6 c+2 tableaux suffices. Thus we have enough tableaux unless m = 3, k = 1.

In that case, specifically checking the number of tableaux needed and the number of Fq

that exist, shows this construction is sufficient. When k′ = 1, there are no tableaux of Form

I and we do not use Form III − 4. Hence we have 1 + 3bm
2 c tableaux, which is sufficient

except in the following cases, where an additional tableau is needed If m = 7, f = 5, c = 26

use 6U1(6) ∨ U1(4), if m = 3, f = 3, c = 12 use 5U1(6), if m = 3, f = 5, c = 14 use 6U1(6),

if m = 3, f = 6, c = 13 use 4U1(6) ∨ U4(3, 2), and if m = 3, f = 6, c = 15 use 6U1(6). In the

constrained cases, using the full set of F listed (as opposed to only the first k′) will provide

sufficient tableaux.

Hence for d ≥ 6, f 6= 0, 1, 2, 4, 2p + x ≥ 3, we have constructed the requisite number

of linearly independent tableaux. We will consider the f = 0, 1, 2, 4 case after doing the

2p+ x < 3 case.
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When 2p + x < 3, the procedure described above require Fq to have fewer than three

elements. In that case we use m − 1 in place of m in our construction and take Fq to be

basis tableaux filled with 2p+x+3 elements with shape [pd+2d+ g+ f, pd+d+ g]. There

are at least k′ + k such tableaux, though k may equal 0. Take d ≥ 6, 2p + x < 3, m ≥ 3

Hence from the tableaux of Table 9.2.4 we get Table 9.2.4.

I. `Dp ∨ (m− `− 1)Dk′ ∨ Fq

` = 1, 2, . . . , m− 1

p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k′ + k

II. (m− 1)Dk′ ∨ Fq q = 1, 2, . . . , k′ + k

III. `Aj ∨ (m− 2`− 1)Dk′ ∨ Fq

` = 1, 2, . . . , bm−1
2
c

q = 1, 2, . . . , k′ + k

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

Table 9.4: Tableaux Forms

As before, these tableaux are linearly independent, except in the constrained cases where

the same weight equalities occur. We do not use Form III − 4 when d = 6 or 7. For the

tableaux of Table 9.2.4, we require m ≥ 3 for tableaux of Form III to exist. Since we still

have r = md + f , we want mk′ + k + m + 1 linearly independent tableaux, when d 6≡ 1

(mod 6). When d > 6, d 6≡ 1 (mod 6), this construction provides (m − 1)k′(k + k′) + k +

k′ + 4bm−1
2 c(k + k′) linearly independent tableaux. This is larger than mk′ + k + m + 1,

except when m = 4, k′ = 1, k = 0. However, computing precisely how many Fq exist in

this case and the minimum number of tableaux required, shows these tableaux suffice. In

the constrained cases, using the full set of F listed (as opposed to only the first k′ + k) will

provide sufficient tableau.

When d = 6, Forms III−2 and III−4 are the same so we have only (m−1)+1+3bm−1
2 c

linearly independent tableaux. Since r = 6m + f , f < d, we need m + 1 tableaux, which

we have. In the f = d − 4 and f = d − 2 cases using the full set of F listed will provide

sufficient tableau.
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If d ≡ 1 (mod 6), the tableau D0 does not exist. Hence Table 9.2.4 provides (m−1)(k′−
1)(k+k′)+k+k′+4bm−1

2 c(k+k′) linearly independent tableaux when k′ > 1. In this case

r = 6m+m+ f , so mk′ + k + bm
6 c+ 2 tableaux suffice, which we have. In the constrained

cases, using the full set of F listed will provide sufficient tableau. When k′ = 1, there are

no tableaux of Form I or III − 4. Hence we have k+ 1 + 3bm−1
2 c(k+ 1). This is at least as

large as mk′+ k+ bm
6 c+ 2 unless m ≤ 8. However, computing precisely how many Fq exist

in this case and the minimum number of tableaux required, shows these tableaux suffice in

most cases. When m = 6, f = 3, c = 19 we need an additional tableau; use 6U1(6) ∨ U1(2).

When m = 4, f = 3 we also need an additional tableau; use U4(3, 2) ∨ 7U1(6) ∨ U1(4). In

the constrained cases, using the full set of F listed will provide sufficient tableau.

Thus for d ≥ 6, 2p+ x < 3, m > 2, all necessary tableaux have been constructed.

When 2p+ x < 3 and m = 2, we find that c = 7 or c = 8. In these cases, consider the

tableaux of Forms I and II in Table 9.2.4. We have r = 2d + f , so 2k′ + k + 3 tableaux

are sufficient. For d 6≡ 1 (mod 6), we have at least (k′ + 1)(k′ + k) linearly independent

tableaux of Forms I and II. When this isn’t enough, checking precisely how many tableaux

are needed and how many tableaux of Form I exist, shows that this construction is sufficient

except for the following cases.

When c = 8, d = 8, f = 2 three tableaux are needed; use 2U1(8) ∨ U4(6, 1), U1(8) ∨
U3(2, 3) ∨ U4(6, 1), and U1(8) ∨ U3(2, 4) ∨ U4(4, 1). When c = 8, d = 11, f = 2 five tableaux

are needed. They are 4U1(8), U2(10, 1)∨U1(10), U2(10, 1)∨∨U1(8)∨U1(2), U2(10, 1)∨U1(6)∨
U1(4), and U2(10, 1)∨U2(2, 3). When c = 7, if d = 8 and f = 2, three tableaux are needed,

but Form I provides only two. In addition to those tableaux, use P3(0, 3, 2)∨U1(8)∨U1(2).

If c = 7, d = 9 and f = 1, three tableaux are needed, but Form I provides only two.

In addition to those tableaux, use U1(8) ∨ U1(8) ∨ U1(6). If d = 10 and f = 0, three

tableaux are needed, but Form I provides only two. In addition to those tableaux, use

P3(0, 4, 2) ∨ U1(10) ∨ U1(4).

When d ≡ 1 (mod 6), it is sufficient to construct 2k′ + k + 2 tableaux. We have at

least (k′)(k′ + k) linearly independent tableaux of Forms I and II. When this is less than

2k′ + k + 2, checking precisely how many tableaux are needed and how many tableaux of

Forms I and II exist, shows that this construction is sufficient except for the following

cases. When c = 8, d = 7, f = 4 we need three tableaux; use U2(6, 1) ∨ U4(4, 1), 2U1(6) ∨
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U4(6, 1), and U1(6) ∨ U3(2, 3) ∨ U4(4, 1). When d = 7, f = 2 three tableaux are needed; use

U2(6, 1) ∨ U1(6), U2(6, 1) ∨ U1(4) ∨ U1(2), and 3U1(6) ∨ U1(2). When d = 7, and f = 0,

two tableaux are needed, but Form II provides only one. In addition to that tableau, use

P3(0, 3, 2) ∨ 2U1(6).

For c = 7 if d = 13 and f = 1, five tableaux are needed, but Forms I and II provide

only four. In addition to those tableaux, use U1(12) ∨ U1(12) ∨ U1(8). If d = 7 and f = 1,

three tableaux are needed, but Form I provides only two. In addition to those tableaux,

use P3(0, 3, 2) ∨ U1(6) ∨ U1(2). This completes the cases of c = 7 and c = 8 for d ≥ 6.

Now consider c = 7 and c = 8 when d < 6. When c = 7, d = 5 we need two

tableaux of shapes [23, 12] and [22, 13], and one tableau of shape [21, 14]. Use 3U1(4)

and U2(4, 1) ∨ U1(2), for shape [23, 12]; U2(4, 1) ∨ U4(2, 1) and U4(3, 2) ∨ 2U1(4) for shape

[22, 13]; and U2(4, 1) ∨ U1(4) for shape [21, 14]. When c = 7an d = 4 we need two tableaux

of shape [18, 10], 2U1(4) ∨ U1(2) and U2(2, 1) ∨ U1(4), and one tableau of shape [17, 11],

U4(2, 1) ∨ 2U1(4). When c = 7 and d = 3, we need only one tableau of shape [13, 8],

U2(2, 1) ∨ U1(2).

When c = 8 and d = 5, three tableaux are needed for shape [26, 14], one tableau

for shape [25, 15], and two tableaux for [24, 16]. Use 3U1(4) ∨ U1(2), U2(4, 1) ∨ U1(4), and

U2(2, 1)∨2U1(4) for shape [26, 14]. For shape [25, 15] use U2(4, 1)∨U4(3, 2), while for shape

[24, 16] use 4U1(4) and U2(4, 1)∨U1(4)∨U1(2). When c = 8 and d = 4 we need one tableau

for shapes [21, 11] and [19, 13] and two tableaux for shape [20, 12]. In the first case, use

U4(2, 1) ∨ U2(3, 1) and U1(4) ∨ U4(2, 1) ∨ P4(0, 2, 2), respectively. For [20, 12] use 3U1(4)

and 2U2(2, 1). When c = 8 and d = 3 we need only one tableau of shape [15, 9], which is

U2(2, 1) ∨ U4(2, 1). This completes the m = 2, 2p+ x < 3 case.

Now consider d ≥ 6, 2p+x ≥ 3, f = 0, 1, 2, 4. In this case we cannot guarantee that the

tableaux Fq of shape [2dp+g+f, 2dp+g] exists. However, since d ≥ 6, tableaux F of shape

[pd+ d+ g + f, pd+ d+ g] will exist. Moreover, since s < r+ 2d, this shape is fillable with

c ≤ 6 elements. Hence we can simply use the tableaux constructed in the 2p + x < 3 case

with this F. Since we did not apply any restrictions of f in that case, those computations

hold.
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Now take d < 6. We have r = dm+ f , f < d, s − 2d < r < s. Since d is small, only a

few s are possible for each r. We will consider each case according to the value of d.

If d = 3, we have r = 3m+ f , s = 3m+ 3 + f , and f < 3. First consider f = 0 or 2. If

m = 2 we have the shapes [15, 9] and [19, 11]. In both cases, only one tableau is needed. Use

U2(2, 1)∨U4(2, 1) and U2(2, 1)∨U4(2, 1)∨U1(2). Now take m ≥ 3. Let F be the tableau of

shape [9+2f, 6+f ]. Since f = 0 or 2, one such F always exists. Then consider the tableaux

of Form II and III − 1 in Table 9.2.4. They have weight (2, 2, 2, 0, 0, 0)` ∨ (3, 0, 0)m−2`−1 ∨
ω(F) for ` = 0, 1, . . . , bm−1

2 c and hence are linearly independent by Lemma 3.4.12. This

construction provides bm−1
2 c+ 1 tableaux. Since we need at most b3m+2

6 c+ 1 tableaux for

m odd and b3m+2
6 c for m even, this suffices. When f = 1, let F = U2(2, 1)∨U1(2)∨U1(2). If

m = 2 or 3, one tableau will suffice. In those cases use F and F∨U4(2, 1). When m ≥ 4 we

will use the tableaux `A1 ∨ (m− 2`− 2)U4(2, 1)∨ F for ` = 0, 1, . . . , bm−2
2 c. There are bm

2 c
such tableaux and they are linearly independent. Since only bm

2 c are needed, this suffices.

When d = 4 we have r = 4m + f , s = 4m + h + f , and f < 3. Since s − 8 < r < s,

the only possibilities are f = 0, h = 2, 4, 6 and f = 2, h = 1, 3, 5, 7. Let F be a tableau

of shape [8 + 2f + h, 4 + f + h]. Since F needs at most 8 elements it has already been

constructed. If m = 2, we need one tableau when f = 2, so F suffices. When f = 0, two

tableaux are needed. Use U1(4)∨U1(4)∨U1(2) and U2(2, 1)∨U1(4); U1(4)∨U1(4)∨U1(4)

and U2(2, 1) ∨U1(4)∨U1(2); or U1(4) ∨U1(4) ∨U1(4)∨U1(2) and U2(2, 1) ∨U1(4)∨U1(4);

depending on h. For m ≥ 3, use the tableaux of Forms II and III − 1 of Table 9.2.4 along

with those of form III − 1, with A5 (given in Section 9.1.4) in place of A1. This provides

1 + 2bm−1
2 c linearly independent tableaux, which is sufficient.

When d = 5 we have r = 5m+ f , s = 5m+ h+ f , with f < 5, 0 < h < 10, and h ≡ f

(mod 5). Let F be a tableau of shape [10 + h+ 2f, 5 + h+ f ]. When m ≥ 3, consider the

tableaux of Forms II, III − 1, III − 4 of Table 9.2.4. This provides 1 + 2bm−1
2 c linearly

independent tableaux. Computing precisely how many tableaux are needed for each f and

h we find that this is sufficient except in the following cases. When f = 1,m = 4 we need

one additional tableau. For h = 1 use 4U1(4)∨U1(2) and for h = 6 use 3U4(3, 2)∨3∨U1(4).

When f = 2 and h = 2 we need an additional tableau for m = 8, 6, and 4. Use 11U1(4),

8U1(4) ∨ U1(2), and 6U1(4) respectively. When f = 2 and h = 7, this construction suffices.

When f = 3 and h = 3, one additional tableau is needed for m = 6 and m = 4; use 9U1(4)

and 6U1(4) ∨ U1(2), respectively. When f = 3 and h = 8 we can take F to be a tableau of



184

shape [14, 11] and use the tableaux of Forms II, III − 1, and III − 4 of Table 9.2.4. This

provides 1+2bm
2 c tableaux, which suffices except for m = 3. In that case three tableaux are

needed; use U2(4, 1)∨3U1(2), U2(4, 1)∨2U4(2, 1), and U2(4, 1)∨U1(4)∨U1(2). When f = 4

and h = 9 this construction suffices except when m = 4. In that case we need an additional

tableau, so use 3U2(4, 1) ∨ U4(3, 2). However, when h = 9 the tableau F has 9 elements.

Since we’ve only constructed the basis tableaux for c ≤ 8, use F = U2(4, 1)∨ 2U1(4). When

f = 4 and h = 4 we can take F to be a tableau of shape [12, 8] and use the tableaux of

Forms II, III − 1, and III − 4 of Table 9.2.4. This provides 1 + 2bm
2 c tableaux, which

suffices.

Now consider m = 2 for d = 5. The tableaux will have c ≤ 9 elements unless f =

2, h = 7, f = 3, h = 8, or f = 4. The c ≤ 9 will be constructed later. If f = 2, h = 7

we need two tableaux, U2(4, 1) ∨ U4(3, 2) ∨ U1(4) and U2(4, 1) ∨ U4(2, 1) ∨ P4(0, 2, 2). If

f = 3, h = 8, two tableaux are required. Let F be a basis tableaux of shape [14, 11]; use

A1 ∨ F and A4 ∨ F. If f = 4, h = 9, two tableaux are needed, 2U2(4, 1) ∨ U4(2, 1) and

U2(4, 1)∨U4(2, 1)∨P4(0, 2, 2)∨U1(4). If f = 4, h = 4 we need three tableaux. Let F be the

basis tableau of shape [12, 8]. Then A4 ∨ F, A1 ∨ F and 2U4(3, 2) ∨ F provide the requisite

tableaux. Thus all necessary tableaux for d = 5 have been constructed.

Now consider when m < 2 for arbitrary d. If r < d then since s − 2d < r < s we have

c ≤ 6, which has been done. If r = d + f then we must have c = 7, 8 or 9. First consider

when c = 7 with r = d + f . We get s = 3d − f
2 . For d even use U1(d) ∨ F where F are

the c = 5 tableaux with r = d + f . When d is odd use U1(d − 1) ∨ F where F are the

c = 5 tableaux with r = d+ f − 2. This is sufficient unless d ≡ 1 (mod 6), f ≡ 2 (mod 6),

d ≡ 3 (mod 6), f ≡ 0 (mod 6), or d ≡ 5 (mod 6), f ≡ 4 (mod 6), in which case we need

one additional tableau. For that, use U2(d− 1, 1)∨B where B is a c = 3 basis tableau with

s ≤ r. This construction holds for d > 3. When d = 3, only the shape [12, 9] is needed.

One tableau, U2(2, 1) ∨ U4(2, 1), suffices. Thus the c = 7 case is complete.

Now take c = 8. Since s−2d < r, we have f > bd
3c and s = 3d+ d−f

2 . For d even we can

use U1(d)∨F where F are the c = 6 basis tableaux of shape [3d− d+f
2 , 2d+ d−f

2 ]. When d is

odd, use U1(d− 1)∨ F where F is the c = 6 tableaux of shape [3d− d+f
2 − 1, 2d+ d−f

2 + 1].

This construction suffices unless d + f ≡ 0 (mod 6). (Since d
3 < f , d ≡ f (mod 2) and

d ≥ 6, such an F always exists.) If d + f ≡ 0 (mod 6) use the tableau of Forms I and
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II of Table 9.2.4, with F the c = 5 tableaux of shape [2d + d−f
2 + f, 2d + d−f

2 ]. This

suffices unless d = 13, f = 11, d ≡ 1 (mod 6), f = 5, or d ≡ 5 (mod 6), f = 7. In

the first case, five tableaux are needed; use 2U2(9, 1), U2(9, 1) ∨ U1(12) ∨ U1(8), 3U1(12) ∨
U1(4), 2U1(12)∨U1(10)∨U1(6), U2(12, 1)∨U1(12)∨U1(2). In the f = 5 case use the tableaux

Bp ∨ F where Bp are the c = 3 basis tableaux of shape [2d + 1, d − 1] and F is the c = 5

tableau with r = 3. This suffices for d−f
2 even. When d−f

2 odd, an additional tableau,

U2(d− 1, 1)∨U1(d− 1)∨U1(d−f
2 + 1), is needed. In the f = 7 case use the tableaux Bp ∨F

where Bp are the c = 3 basis tableaux of shape [2d− 1, d+ 1] and F are the c = 5 tableaux

with r = 9.

Now consider when c = 9 with r = d+ f . We get s = 4d− f
2 . Since s− 2d < r < s we

have 2d
3 < f < d

2 and hence this case does not occur. This completes the r < s case. Hence

we have proven Theorem 3.
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Chapter 10

Two Row Partitions and the
Gaussian Polynomial

Let n = ab with a, b ∈ N and take ` ∈ N such that 1 ≤ ` ≤ bn
2 c. Let Pb

a(`) be the numbers

of partitions of n having at most a parts each of size less that or equal to b, that is partitions

of n fitting inside a b × a rectangle. Then Pb
a(`) is the co-efficient of q` in the Gaussian

polynomial
[

a+b
b

]
q
, as in [1]. The Gaussian polynomial,

[
a+b

b

]
q
, is also called the Gaussian

co-efficient or the generalized q-binomial coefficient.

Lemma 10.0.1. Take n = ab and λ = [n − `, `]. Let K = Sb o Sa. The multiplicity of χλ

in 1Sn
K equals Pb

a(`)− Pb
a(`− 1).

Proof. Let H = Sn−` × S` and H ′ = Sn−`+1 × S`−1. Then χ[n−`,`] = 1Sn
H − 1Sn

H′ by the

determinantal formula [14]. So 〈1Sn
K , χ[n−`,`]〉Sn = 〈1Sn

K , 1Sn
H 〉Sn − 〈1Sn

K , 1Sn
H′〉Sn . Hence it

suffices to show 〈1Sn
K , 1Sn

H 〉Sn = Pb
a(`).

Now 〈1Sn
K , 1Sn

H 〉Sn is the number of orbits of K acting on the cosets of H in Sn [11]. View

the numbers 1 to n in blocks of size b, that is

|1, 2, . . . , b|b+ 1, . . . 2b| · · · |(a− 1)b+ 1, . . . ab|

The copies of H in Sn correspond to the different ways S` sits in Sn, that is subsets of

{1, . . . n} of size `. Given such a subset L (corresponding to a copy of H) it will be broken

into a parts by intersection with the blocks above. Let µi be the size of the part of L in the

ith block. Since K acts by Sb on each of the blocks, L is equivalent (under K) to a subset

L′ where the first µi numbers {i · b+ 1, . . . i · b+ µi} are chosen from block i (starting with

the 0th block). Since K also has the wreath product action by Sa acting on the blocks, L′
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is equivalent to the subset L∗, where the blocks are reordered so the µi ≥ µi+1. Hence L∗

corresponds to a partition of the number ` into a parts of size at most b and every such

partition corresponds to a copy of H in Sn.

So every such partition is contained in some orbit of K on Sn/H, and every orbit

contains some such partition. Hence it suffices to shows that no two partitions are in the

same orbit. Say µ = [µ0, . . . µa−1] and ν = [ν0, . . . νa−1] are partitions of ` where we allow

0 ≤ µi, νi ≤ b. If µ and ν are in the same orbit, then there exists g ∈ K such that

g · {i · b + j|0 ≤ i ≤ a − 1, 1 ≤ j ≤ µi} = {i · b + j|0 ≤ i ≤ a − 1, 1 ≤ j ≤ νi}. So

g(ib + j) = ki,jb + ci,j . Since g moves complete blocks, we must have ki,j = ki,j′ for all

1 ≤ j, j′ ≤ µi. As the action is injective, we must then have ci,j 6= ci,j′ for j 6= j′. Hence

looking at the image, we have µi = |{ci,j}| ≤ νki .

Take µ ¥ ν, µ 6= ν. There exists i such that µi > νi and µi′ = νi′ for all i′ < i. Then

there are i such νi′ with νi′ ≥ µi. But if g · µ = ν then µi = |{ci,j}| ≤ νki
implies there are

at least i+1 such νi′ , which is a contradiction. Hence no orbit contains two such partitions,

which finishes the proof.

The ideas behind this proof are due to J. Saxl stemming from discussions of his paper

[13].

Since the multiplicity of irreducibles in induced characters is non-negative [16], this

lemma implies the well-known unimodality of the Gaussian coefficients [1]. Now Pb
a(`) =

Pa
b (`), since

[
a+b

b

]
q

= [ a+b
a ]q by taking conjugate partitions. Hence this lemma shows that

Foulkes’ Conjecture always holds for two row partitions, which is discussed in [14].

We can also interpret our results on the generalized Foulkes’ Conjecture in terms of the

Gaussian coefficient. From Theorem 1 we have:

Theorem 12. If n = 2b = cd, with c, d ≥ 2, then for 1 ≤ ` ≤ bn
2 c,

Pd
c(`)− Pd

c(`− 1) ≥ Pb
2(`)− Pb

2(`− 1)

Similarly, Theorem 3 gives:

Theorem 13. If n = 3b = cd, with c, d ≥ 3, then for 1 ≤ ` ≤ bn
2 c,

Pd
c(`)− Pd

c(`− 1) ≥ Pb
3(`)− Pb

3(`− 1)
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Hence our results give insight into the relationship between the rates of growth of dif-

ferent Gaussian coefficients.
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Chapter 11

The Alternating Character

Since Foulkes’ Conjecture is based on the trivial character, it is natural to ask whether

the ideas hold for the alternating character. The first question is, what we mean by the

alternating character in terms of induced modules.

Consider, the ‘alternating’ character of the form ((−1)Sab
↓SaoSb

) ↑Sab , that is the usual

alternating character of Sab restricted to the subgroup Sa o Sb, which is induced back up

to Sab. A brief computer check of Foulkes’ Conjecture using this character shows it holds

for some small values of a and b. In fact, Foulkes’ Conjecture is equivalent to the following

conjecture using the alternating character.

Conjecture 3 (Foulkes’ Conjecture for Alternating Characters). If a ≤ b then every

irreducible character occurring in ((−1)Sab
↓SboSa) ↑Sab occurs in ((−1)Sab

↓SaoSb
) ↑Sab with

multiplicity greater than or equal to its multiplicity in ((−1)Sab
↓SboSa) ↑Sab .

Naturally, this conjecture also generalizes to:

Conjecture 4 (Generalized Foulkes’ Conjecture for Alternating Characters).

Given n = ab, a ≤ b, if c, d are such that cd = n, and c, d ≥ a, then every irreducible

character occurring in ((−1)Sn ↓SboSa) ↑Sn occurs in ((−1)Sn ↓SdoSc) ↑Sn with multiplicity at

least as large.

Showing the equivalences of Conjecture 1 or Conjecture 2, (Foulkes’ Conjecture for

trivial characters), and Conjectures 3 or 4 (Foulkes’ Conjecture for alternating characters)

is straightforward. We will assume Conjecture 1 (or Conjecture 2) holds and prove the

alternating character version. The same argument shows the reverse equivalence.
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Proof. First recall that if S is a subgroup of finite index in G, F an S-module and E a

G-module over a field, then there is an isomorphism IndG
S (ResS(E) ⊗ F ) ' E ⊗ IndG

S (F ).

(See Chapter XVIII §7 of [16].)

Note that here we have used Ind for induction and Res for restriction of modules. Also,

let G = Sn, S = Sa o Sb and T = Sb o Sa or Sd o Sc as appropriate. Let E be the G-module

corresponding to the character (−1) on G. Since we are working over C, we will use C to

denote the trivial module over any group.

The characters we’re comparing are χS = IndG
S (ResS(E)) =(−1)Sab

↓SboSa↑Sab and χT =

IndG
T (ResT (E)). Then χS ' IndG

S (ResS(E) ⊗ C) ' E ⊗ IndG
S (C) by the isomorphism

mentioned above. Similarly for χT . Switching notation back to characters, we get χS '
(−1)G1G

S and χT ' (−1)G1G
T .

Since we’ve assumed Foulkes’ Conjecture on trivial characters, we have 1G
S = 1G

T +ψ for

some character ψ. Then χS = (−1)G(1G
T + ψ) = (−1)G

T 1G
T + (−1)Gψ. Hence χS ≤ χT as

desired.

Since we’ve proven Theorem 1 the argument above shows:

Theorem 14. If 2 ≤ b then every irreducible character occurring in ((−1)S2b
↓SboS2) ↑S2b

occurs in ((−1)S2b
↓S2oSb

) ↑S2b with multiplicity greater than or equal to its multiplicity in

((−1)S2b
↓SboS2) ↑S2b .

Similarly, Theorem 2 gives:

Theorem 15. Given n = 3b, 3 ≤ b, if c, d are such that cd = n, and c, d ≥ 3, then every

irreducible character occurring in ((−1)Sn ↓SboS3) ↑Sn occurs in ((−1)Sn ↓SdoSc) ↑Sn .

While Theorem 3 shows:

Theorem 16. Let n = 3b = cd, with c, d ≥ 3 and let λ = [λ1, λ2] be a two row parti-

tion of n. Then every irreducible character χλ occurring in ((−1)Sn ↓SboS3) ↑Sn occurs in

((−1)Sn ↓SdoSc) ↑Sn with multiplicity at least as large.

Given the success of replacing the trivial character in Foulkes’ Conjecture with this

‘alternating’ character, it is natural to investigate if other definitions of an alternating

character yield similar results. One suggestion was to try (−1)Sab
SaoAb

− (−1)Sab
SaoSb

for an
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induced alternating character in place of 1Sab
SaoSb

in Foulkes’ Conjecture. Alas, a simple

computer check via GAP [9] shows Foulkes’ Conjecture for this character fails when a = 3

and b = 4. Other variations on this character, such as (−1)Sab
AaoSb

− (−1)Sab
SaoSb

also fail at

those values.
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Chapter 12

Discussion of General Results

Theorems 1, 2, and 3 extend the current research on Foulkes’ Conjecture. Although, the

proof used combinatorial techniques on Young tableaux, the results correspondingly apply

to areas such as Shur functions, Rational Homotopy Theory, and other means of interpret-

ing Foulkes’ Conjecture. In addition we may interpret the Foulkes’ Conjecture using the

alternating character via these theorems, which we discussed in Chapter 11.

While the construction of the tableaux themselves are cumbersome, the development of

the theory illustrates new approaches to Young tableaux. These concepts could be carried

forth in contexts involving tableaux other than its usage here. Although the main theorems

are specific to the cases a = 2 and a = 3, some general results arise from this study.

The main theoretical techniques of this paper are that of weight-set counting in Theo-

rem 4, the application of Theorem 8, and the use of maximality to show linear independence.

The theory and technique of weight-set counting developed in this paper can be im-

plemented in general, as can the concept of maximal form. While we only used tableaux

with three or fewer rows, the theoretical foundations of weight-set counting have been laid

for tableaux of an arbitrary number of rows. Although the computations are impractical

for a random tableau, the counting works smoothly for tableaux with suitable symmetries,

particularly those tableaux in maximal form.

Moreover, the technique of weight-set counting is not dependent on a filling of content

[ba]. However, for non-uniform contents, one must watch carefully the action of Sa; the

weight-set counting may need to count all rows and the definition of maximality will need

adjustment.

Similarly, the usage of Theorem 8 in constructing larger tableaux will also work for other
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contents and row quantities. The use of the Lemma 3.4.9, to show weight-set disjointness by

maximality, however, has only been defined for three row partitions. It should be possible

to generalize it for other partitions.

Tableau maximality is a very useful concept for showing weight-set disjointness and

applying Theorem 8. It is vital in proving linear independence of tableaux. Linear indepen-

dence through tableau maximality should allow more progress on issues such as multiplicity.

The methods of proving Theorem 2 could also apply to proving Conjecture 2 with other

a’s, not including multiplicities. Unfortunately, the computations are likely to be some-

what cumbersome, especially the establishments of non-zero shapes as done by Theorem 9.

However, should those parameters be established through other techniques, the tableaux

constructed for Theorem 2 should provide nearly all the needed shapes with three or fewer

rows, thus reducing the work substantially. Moreover, the reduction procedures will also

apply.

Specifically, given any n = ab = cd, if the shapes having multiplicity zero in Sb o Sa

are bounded, then to prove the generalized Foulkes’ Conjecture for arbitrary c, d ≥ a, we

should only need to prove it for a limited number of c’s. For instance, suppose a shape had

multiplicity zero only if λi−λi+1 ≤ fi. (For n = 3b, we had f1 = f2 = 4.) Assume d is even

(the odd case, though more cumbersome should follows analogously). Then given a tableau,

we can ‘peel off’ a column block of size d with the appropriate row length, for instance,

U1(d) and P1(d) are the two and three row versions. We can repeat this process so long as

λi−λi+1 > d+fi (and there are at least as many elements as there are rows). Hence in the

end, we need only construct a tableau with λi − λi+1 ≤ d + fi. This tableau will need at

most 1
d

∑
i i(d+ fi) elements, hence c will be bounded by this number. This should imply,

given the fi, if the generalized Foulkes’ Conjecture is true for c up to some bound, it is true

for all c. (Presumably, if these tableaux exists, we can find versions with maximal/disjoint

weight sets as needed.) The existence of the fi seems probable since Theorem 2 implies f1,

f2 ≤ 4 if 3|n. It may be the case, as in Theorem 1 that the parity of λi strongly effects the

multiplicity. However, since the ‘peeling off’ does not change the parity, this process should

still go through.

In addition to this procedure, the investigations of Theorems 1 and 2 yield some gen-

eral results. Take the character 1Sab
SaoSb

and consider the irreducible Sλ corresponding to

λ = [λ1, λ2]. Then Sλ always has non-zero multiplicity whenever λ1 and λ2 are even.
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Moreover, this multiplicity is zero whenever λ2 = 1 regardless of the choice of a and b.

These theorems also have implications regarding the generalized Gaussian polynomial, as

discussed in Chapter 10.

Finally, the techniques within the proof of Theorem 3 should extend beyond two row

tableaux. Specifically, Theorem 2 can probably be strengthened to include multiplicities for

all partitions. Such a result should follow the ideas of Theorem 3, though sufficient linearly

independent three row tableaux for c = 4, 5, and 6 must first be established. However,

weight-set maximality should be sufficient to demonstrate linear independence. In all, these

results provide a strong foundation for those wishing to study the representation theory of

wreath products of symmetric groups via tableaux.
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Appendix A

Association between Tableaux
Spaces and Irreducibles

Let n = ab and H = Sb o Sa. Recall that Wλ,a = {T |T a λ-tableau filled with 1 to a, each

b times}. We will explicitly show why the multiplicity of χλ in 1Sn
H equals the dimension of

C{qT |T ∈ Wλ,a}.
View H as a subgroup of Sn, where H acts on

1, 2, . . . b|b+ 1, . . . , 2b| . . . |(a− 1)b+ 1, . . . , ab

by Sb on each block and by Sa permuting the blocks. The elements of H are the form

(π1, . . . πa, σ) with πi ∈ Sb, σ ∈ Sa. Now Sa × Sn acts on Wλ,a with Sa acting on the

numbers 1 to a and Sn acting on the positions (corresponding to labelling across the rows).

Let K = {(σ−1, (π1, . . . πa, σ))|πi ∈ Sb, σ ∈ Sa}. So K ≤ Sa × H ≤ Sa × Sn. Let T

be the λ-tableau filled across the rows with b 1’s, then b 2’s, etc. Then Sa × Sn acting on

T gives Wλ,a and K fixes T . Specifically, StabSa×Sn(T ) = K. Hence as Sa × Sn modules,

Wλ,a ' 1Sa×Sn

Stab(T ) = 1Sa×Sn
K .

Proposition A.0.2. Wλ,a ' ∑
µ`a ϕSa(µ)⊗ (ϕH(µ))Sn where ϕSa(µ) is the irreducible of

Sa indexed by µ and ϕH(µ) is the irreducible of H/(Sb × . . .× Sb) ' Sa indexed by µ.

Proof. Since 1×(Sb× . . .×Sb) ≤ K, it is in the kernel of 1K . As Sb× . . .×Sb£H, it is in the

kernel of 1Sa×H
K . So we can view 1Sa×H

K as an Sa×H/(Sb× . . .×Sb) ' Sa×Sa module. Let

D = {(σ−1, σ)|σ ∈ Sa} be the image of K in Sa×H/(Sb× . . .×Sb). Hence 1Sa×H
K ' 1Sa×Sa

D

as Sa ×H/(Sb × . . .×Sb) modules. Thus we can write 1Sa×Sa
D =

∑
aµ,νφµ ⊗ φν for µ, ν ` a

and some aµ,ν , where φ is the corresponding irreducible of Sa.
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By Frobenius reciprocity aµ,ν = (φµ ⊗ φν , 1Sa×Sa
D ) = (φµ ⊗ φν |D, 1D)D. Now φµ ⊗

φν |D = φµφν . So (φµ ⊗ φν |D, 1D)D = 1
|D|

∑
σ∈Sa

φµ(σ)φν(σ) = |Sa|
|D| · (φµ, φν)Sa . Using row

orthogonality and |Sa| = |D|, we have aµ,ν =





1 if µ = ν

0 otherwise

.

So 1Sa×Sa
D =

∑
µ`a φµ ⊗ φµ. If we lift back to the original module 1Sa×H

K we have

1Sa×H
K =

∑
µ φSa(µ)⊗φH(µ) where φSa(µ) is the irreducible of Sa indexed by µ and φH(µ)

is the irreducible of H/(Sb× · · · ×Sb) ' Sa indexed by µ. Since 1Sa×Sn
K = (1Sa×H

K )Sa×Sn we

get

1Sa×Sn
K = (

∑
µ

φSa(µ)⊗ φH(µ))Sa×Sn =
∑

µ

φSa(µ)⊗ (φH(µ))Sn .

By this proposition we have Wλ,a ' ∑
µ`a ϕSa(µ) ⊗ (ϕH(µ))Sn as Sa × Sn modules.

Consider the submodule on which Sa is trivial, that is, µ = (a). This corresponds to

1Sa ⊗ (1H)Sn . If 1Sn
H =

∑
ν`nmνχν , this module corresponds to

∑
ν`n 1Sa ⊗mνχν . Now

eλ =
∑

σ∈RT

∑
τ∈CT

ε(τ)στ is an idempotent of Sn on λ-tableau T . So the action of eλ

on
∑

1 ⊗mνχν is the same as the action of qλ =
∑

π∈Sa
πeλ on Wλ,a. Then qλ ·Wλ,a '

mλ(eλ ·Sλ) as Sn modules, as eλ ·Sν = 0 for λ 6= ν. Now Sλ is is a cyclic Sn-module generated

by eλ(T ). (Correspondingly, the semi-standard tableaux which span Sλ are equivalent under

the action of Sn.) Therefore dim(eλSλ) = 1 and dim(qλWλ) = mλ. Hence {qT |T ∈ Wλ,a},
spans a module of dimension mλ, the multiplicity of χλ in 1Sn

SboSa
. This proof is due to

Wales, [22].
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