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Chapter 9

Proof of Theorem 3

Theorem 2 proves the generalized Foulkes’ Conjecture for c = 3 without multiplicities.

We can, however, strengthen this result to include multiplicities for those irreducibles

corresponding to two row partitions. Namely,

Theorem 3. Let n = 3b = cd, with c, d ≥ 3 and let λ = [λ1, λ2] be a two row

partition of n. Then every irreducible character χλ occurring in 1Sn
SboS3

occurs in 1Sn
SdoSc

with multiplicity at least as large.

The proof of this theorem involves constructing the appropriate number of

tableaux, primarily out of the basis elements given in Section 4.3. The tableaux

constructed are maximal so linear independence is assured from Lemma 3.4.12 pro-

vided the weights are distinct. Once we have the basis tableaux for c = 4, 5, and 6,

the procedure generalizes to provide the appropriate number of tableaux for any c.

Take λ = [r + s, s]. The multiplicity mλ of Sλ in 1Sn
SboS3

was determined by Thrall

in [20], which we listed in Theorem 11.

Since the multiplicity depends on the relative sizes of r and s we will handle these

cases separately. Moreover, if s = 6k+j and r = 6h+i, we will often simply construct

k + 1 or h + 1 tableaux when possible to avoid detailed case analysis.

9.1 Case: s ≤ r

Let λ = [r + s, s] be a partition of n with s ≤ r, where n = 3b = cd. We wish to

construct mλ linearly independent tableaux, where mλ is the multiplicity of χλ in
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1Sn
SboS3

as described in Theorem 11. First we will construct these tableaux for c = 4,

5, and 6; then we will use these constructions in proving Theorem 3 for a general

c. We will refer to the tableaux constructed in this way as basis tableaux. These

constructions will make use of the c = 3 basis tableaux constructed in Section 4.3.

9.1.1 Basis Tableaux for c = 4, s ≤ r

Given λ = [r + s, s] a partition of n, we have 2s + r = 4d = 3b. From this equation

and s ≤ r, we have s ≤ d+bd
3
c. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 4. These will be our c = 4 basis tableaux.

When s ≤ r−d, we can use the basis tableaux constructed in Section 4.3. Consider

the partition λ′ = [r′ + s, s] where r′ = r − d. Since s ≤ r′, we have mλ = mλ′ .

In Section 4.3 we constructed mλ′ linearly independent Bp, where Bp are the basis

tableaux for c = 3. Take Bp ∨ d
4

as the basis tableaux for c = 4. This works for

s ≤ r − d, so r ≥ s + d. Hence 4d = 2s + r ≥ 3s + d implies s ≤ d.

When d < s ≤ d + bd
3
c, write s = d + f , with 1 ≤ f ≤ bd

3
c. Consider the tableau

T (a,b,c,d) =

a b c d

4 3 4 3
1 1 2 2

a + b ≤ d

a, b, c, d > 0

a > d

b > c

or a = d, b = c

w(T ) = (a + b,c + d, 0, 0)

If a > d and b > c, no other weight assignments are possible for T , hence this

tableau is non-zero and maximal. If a = d and b = c, we may also have the tableau

obtained by exchanging the rows. However, this has sign (−1)a+b+c+d = 1 and thus

the tableau is still non-zero.

Let Cp = T (d− 2p, p + 1, p, f − 1). Then λ2(T ) = a + b + c + d = d− 2p + p +

1 + p + f − 1 = d + f = s. Hence these tableaux have the desired shape. Consider Cp

for p = 1, 2, . . . , bd−f
2
c. To insure the Cp are non-zero and maximal we need to check
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that the constraints on T are satisfied. For f 6= 1 all the parameters are greater than

zero. Obviously, b = p + 1 > c = p. For a > d, we need d− 2p > f − 1. This is true

provided p < d−f+1
2

. Since p ≤ bd−f
2
c this inequality holds.

The Cp are linearly independent by Lemma 3.4.12 if their max weights are distinct.

We have w(Cp) = (d−p+1, f +p−1, 0, 0). If w(Cp) = w(Cp′) for p > p′, then we must

have d−p+1 = f+p′−1, that is d−f+2 = p+p′. But p+p′ ≤ d−f
2

+ d−f
2
−1 = d−f−1.

Hence this cannot occur. Thus the Cp are linearly independent.

Since s = d + f , we have mλ ≤ bd+f
6
c + 1, so it suffices to construct bd+f

6
c + 1

tableaux. The Cp provide bd−f
2
c tableaux. To show bd−f

2
c ≥ bd+f

6
c + 1, it suffices to

show d−f
2
− 1

2
> d+f

6
, or equivalently, d − 3

2
≥ 2f . This holds for d ≥ 5 as f ≤ bd

3
c.

When d = 3 or d = 4 then f = bd
3
c = 1, which is handled below. Hence for s > d + 1

the Cp provided at least mλ linearly independent tableaux.

For s = d + 1, that is f = 1, take Cp = T (d − p − 2, 2, 1, p), for 1 ≤ p <

bd−2
2
c. Then the conditions on T are satisfied and such p exist for d ≥ 6. We have

w(Cp) = (d − p, p + 1, 0, 0) so the max weights are distinct. These Cp provide at

least bd−2
2
c − 1 linearly independent tableaux and we need bd+1

6
c+ 1 tableaux. Now

bd−2
2
c − 1 ≥ bd+1

6
c + 1 provided d ≥ 8. When d = 7, then s = 8 and two tableaux

are needed. Use T (4, 2, 1, 1) and T (3, 2, 1, 2). When d = 6, then s = 7 and only

one tableau is needed. In this case, use Cp described above for p = 1. When d = 5

then s = 6 so two tableaux are needed. Use T (2, 2, 1, 1) and T (2, 1, 1, 2). When

d = 4 then s = 5 so one tableaux suffices. However, for d = 4, s = 5 there are no

tableaux of maximal form. We will use the tableau U8 constructed in Section 7.2.

This tableau is non-zero but not maximal. Here we use maximal form only to show

linear independence. Since only one tableau is needed for s = 5, this tableau works.

(The d = 4, s = 5 case is actually not needed for the c = 4 basis tableaux since

n = 3b = 4d implies 3|d, but we construct the basis tableaux for all d ≥ 3 in order

to simplify the construction process in Section 9.1.4. However we will not use U8 in

that construction.) When d = 3, then s = 4 and only one tableau is need, hence

T (1, 1, 1, 1) suffices.
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9.1.2 Basis Tableaux for c = 5, s ≤ r

Given λ = [r + s, s] a partition of n, we have 2s + r = 5d = 3b. From this equation

and s ≤ r, we have s ≤ b5d
3
c. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 5. These will be our c = 5 basis tableaux.

When s ≤ r− d, we can use the c = 4 basis tableaux constructed in Section 9.1.1.

Consider the partition λ′ = [r′+s, s] where r′ = r−d. Since s ≤ r′, we have mλ = mλ′ .

In Section 9.1.1 we constructed mλ′ linearly independent Cp, where Cp are the basis

tableaux for c = 4. Take Cp ∨ d
5

as the basis tableaux for c = 5. This works for

s ≤ r − d, so r ≥ s + d. Hence 5d = 2s + r ≥ 3s + d implies s ≤ b4d
3
c.

For b4d
3
c < s ≤ b5d

3
c consider

T1(a,b) =

a bd
2c dd

2e b

4 4 5 4 3 4 5
2 2 2 1 1 3 3

1 ≤ a ≤ d− 2

1 ≤ b ≤ bd
2
c − 3

a > b

s ≥ d + 6

d ≥ 8

w(T1) = (d,a + 2,b + 1, 0, 0)

T1 is defined for s ≥ d+6, d ≥ 8. (When d < 8 then s < d+6 since s ≤ b5d
3
c.) Since

a > b, there are no other weight assignments possible and the tableau T1 is maximal.

Let Ep = T1(s−d−3−p, p) for 1 ≤ p ≤ b s−d
2
c−2. For Ep to be non-zero and maximal

we need the conditions on T1 to be satisfied. We have a > b since p ≤ b s−d
2
c − 2,

while p ≥ 1 implies a = s − d − 3 − p < d − 2. Since d ≥ 8, then b ≤ bd
2
c − 3.

Note a > b implies these max weights are distinct. Hence this construction provides

b s−d
2
c − 2 distinct, linearly independent tableaux when s ≥ d + 6, d ≥ 8.

We will need an additional tableau, so take:

T2(a,b) =

a b

5 3 5 4
1 1 2 2

1 ≤ a,b ≤ d− 1

s ≥ 4

w(T2) = (a + 1,b + 1, 0, 0)
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Clearly T2 is non-zero and maximal. Given s, take E′q = T2(d− q, s−2−d+ q) for

q = 1, 2, . . . , d−b s−2
2
c. To insure E′q is non-zero and maximal we need the conditions

of T2 are satisfied. Since b4d
3
c < s and d ≥ 3, then s ≥ 4. We have 1 ≤ a ≤ d − 1

because q < d since s ≤ b5d
3
c. Similarly the bounds on s show 1 ≤ b ≤ d− 1. The E′q

are linearly independent because a < b for q < d− b s−2
2
c. This provides d− b s

2
c+ 1

tableaux.

We need mλ = b s
6
c + 1 linearly independent tableaux. By Lemma 3.4.12 the

tableaux Ep and E′q are linearly independent since they have different max weights.

First consider s ≥ d + 6 which implies d ≥ 8. Then we have both Ep and E′q, for a

total of b s−d
2
c − 2 + d − b s

2
c + 1 tableaux. This is greater than or equal to b s

6
c + 1,

since s ≤ b5d
3
c and d ≥ 8.

For s < d + 6 we only have E′q, which provides d − b s
2
c + 1 tableaux. This is

greater than or equal to b s
6
c + 1 provided d ≥ 5, since s ≤ d + 5. When d = 4, then

s ≤ b5d
3
c = 6 so the two E′q suffice. When d = 3 then s ≤ 5 and hence one tableau,

E′1 is sufficient. Hence we have constructed at least mλ tableaux as desired.

9.1.3 Basis Tableaux for c = 6, s ≤ r

Given λ = [r + s, s] a partition of n, we have 2s + r = 6d = 3b. From this equation

and s ≤ r, we have s ≤ 2d. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 6. These will be our c = 6 basis tableaux.

When s ≤ r− d, we can use the c = 5 basis tableaux constructed in Section 9.1.2.

Consider the partition λ′ = [r′+s, s] where r′ = r−d. Since s ≤ r′, we have mλ = mλ′ .

In Section 9.1.2 we constructed mλ′ linearly independent Ep, where Ep are the basis

tableaux for c = 5. Take Ep ∨ d
6

as the basis tableaux for c = 6. This works for

s ≤ r − d, so r ≥ s + d. Hence 6d = 2s + r ≥ 3s + d implies s ≤ d + b2d
3
c.

For d + b2d
3
c < s ≤ 2d we want to construct mλ ≤ b s

6
c + 1 linearly independent

tableaux. We will do this primarily by joining two c = 3 basis tableaux. In addition,

we will use the following tableaux:
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G1 =

d− 2 f

5 3 4 6
1 1 2 2

1 ≤ f < d

ω(G1) = (d− 1, f + 1, 0, 0, 0, 0)

G2 =

d− 2 f − 2 2
4 5 4 6 6
1 1 2 2 3

4 ≤ f < d

d ≥ 5

ω(G2) = (d− 1, f − 1, 2, 0, 0, 0)

G3 =

2 d− 4 d− 3 2
6 4 5 6 4 6
1 1 2 2 3 3

d > 6

ω(G3) = (d− 2, d− 2, 3, 0, 0, 0)

G4 =

d− 2 2 d− 5 2
6 4 6 5 5 6
1 1 2 2 3 3

d > 7

ω(G4) = (d− 1, d− 3, 3, 0, 0, 0)

These tableaux are all maximal. Except for G2, no other weight assignments are

possible, hence these tableaux are non-zero. For G2, the weight assignment (d−1, f−
1, 0, 0, 0, 2) is also valid. Since this has sign (−1)2, G2 is also non-zero.

Consider b5d
3
c < s < 2d. (The s = 2d case will be handled separately.) Write

s = f + d, then b2d
3
c < f < d. This means f > 2 always, and f < 6 only for d ≥ 7.

Moreover f ≥ 4 for d ≥ 5 so the conditions on G2 are satisfied.

We will use the c = 3 basis tableaux for much of our construction. Let Dp′

represent the basis elements for c = 3 of shape [2d, d] as described in Section 4.3. Let

Fp represent the basis elements for c = 3 of shape [3d−f, f ] as described in Section 4.3.

We will use the Dp′ , Fp, and the Gi to construct the mλ linearly independent tableaux
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for c = 6. This construction will depend on d and f mod 6. Write d = 6k′ + i′ and

f = 6k + i, with 0 ≤ i′, i ≤ 5. For i′ 6= 1 there exist m[2d,d] = k′ + 1 linearly

independent Dp′ , with p′ = 0, 1, . . . , k′, and k′ tableaux for i′ = 1. Similarly, there

exists m[3d−f,f ] = k + 1 linearly independent Fp with p = 0, 1, . . . , k for i 6= 1 and

k when i = 1. Now s = d + f = 6(k′ + k) + i′ + i = 6k + i, so mλ ≤ k + 1. Since

k ≤ k′ + k + 1 , it suffices to construct k′ + k + 2 linearly independent tableaux. We

will first consider d > 6, f ≥ 6. Since k′, k > 0 consider:

Gp = Dk′ ∨ Fp p = 0, 1, . . . , k

Gp′ = Dp′ ∨ Fk p′ = 0, 1, . . . , k′ − 1

G0 = D0 ∨ F0

There are k + 1 + k′ + 1 = k + k′ + 2 tableaux listed here. By Lemma 3.4.12 if

their max weights are distinct, these tableaux are linearly independent. Since these

tableaux are in maximal form we can simply compare their weights. We have:

ω(Gp) = (d, 0, 0, 2p + i + 4k, 2(k − p), 0) p = 0, 1, . . . , k

ω(Gp′) = (2p′ + i′ + 4k′, 2(k′ − p′), 0, f, 0, 0) p′ = 0, 1, . . . , k′ − 1

ω(G0) = (4k′ + i′, 2k′, 0, 4k + i, 2k, 0)

Now d > f and p′ ≤ k′ − 1, so we have ω(Gp) 6= ω(Gp′) since ω(Gp′) does not

contain a weight of d. Both of these weights are distinct from ω(G0), since they each

contain at least three 0’s while ω(G0) contains only two 0’s. The weights within each

of these collections of tableaux are distinct because each collection {Dp′} and {Fp}
are linearly independent by Section 4.3.

When all these tableaux G exist we have a set of basis tableaux for c = 6. However,

depending on the conditions on d and f , we may only have k′ or k basis tableaux to

work with. In those situtations we will need to use the appropriate Gi to complete

our set of tableaux. Recall that we are taking d > 6 and that f ≥ 6.

When d 6≡ 1 (mod 6) and f 6≡ 1 (mod 6), all the tableaux G exist. Hence we have
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the k′ + k + 2 linearly independent tableaux required.

When d 6≡ 1 (mod 6), f ≡ 1 (mod 6), there exist only k linearly independent Fp

with p = 1, 2, . . . , k. Hence we have all the tableaux listed above except for those with

p = 0 and G0. In place of those basis elements, use G1 and G2. This provided k+k′+2

tableaux. They are linearly independent by Lemma 3.4.12 provided the weights of G1

and G2 are distinct from the weights of Gp. We have ω(G1) = (d − 1, f + 1, 0, 0, 0, 0)

and ω(G2) = (d−1, f−1, 2, 0, 0, 0). Clearly these weights are distinct from eachother.

Now ω(G1) 6= ω(Gp′) since the number of 0’s differ. If ω(G1) = ω(Gp) we must have

f + 1 = d and p = k. Similarly ω(Gp′) will be distinct from ω(G2) unless d − 1 = f ,

p′ = k′ − 1. We have ω(G2) distinct from ω(Gp) since d does not occur in its weight.

Hence for f 6= d− 1 these k + k′ + 2 tableaux are linearly independent.

When f = d−1, use G3 and G4 in place of G1 and G2. Since ω(G3) contains neither

d nor f it is clearly distinct from the weights of Gp. Similarly, ω(G4) is distinct from

ω(Gp) since it does not contain d. While ω(G4) does contain f , Gp′ cannot contain

the weight 3 since d > 7. Thus we have sufficient linearly independent tableaux.

Now consider d ≡ 1 (mod 6) and f 6≡ 1 (mod 6). We have the Gp and Gp′ listed

earlier, for p′ 6= 0, along with G1 and G2. The discussion in the f ≡ 1 (mod 6)

case above shows these are linearly independent provided f 6= d− 1. Similarly when

f = d− 1 we can replace G1 and G2 with G3 and G4. If d = 7 then G4 does not exist.

However, then s = 13 on only two tableaux, D1 ∨ F1 and G3, are needed.

When d ≡ 1 (mod 6) and f ≡ 1 (mod 6), we can write d = 6k′ + 1, f = 6k + 1.

Then s = 6(k′+k)+2 so k′+k +1 tableaux suffice. Use the Gp and Gp′ listed earlier,

for p, p′ 6= 0, along with G1 and G2. This provides the requisite number of tableaux.

They are linearly independent by the previous discussion since f 6= d − 1, as d ≡ f

(mod 6).

Now consider 3 ≤ d ≤ 6. Then f > b2d
3
c implies f > 2. Since s = d + f , we must

have s ≤ 11. Hence two linearly independent tableaux will suffice, namely, D0 ∨ F0

and G1. As in previous discussions, these weights are distinct provided f 6= d − 1.

When f = d− 1, s = 2d− 1. We need two tableaux only when d = 5 or d = 6. Thus
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D0 ∨ F0 suffices for d = 3 and 4. When d = 5 or 6 use D0 ∨ F0 and T, where

T =

2 4 2 2 1
5 6 4 5 6
1 1 3 2 2

d = 6, ω = (6, 3, 2, 0, 0, 0)

T =

4 2 2
5 6 5 4
1 1 2 3

d = 5 ω = (5, 2, 2, 0, 0, 0)

These tableaux are clearly maximal and non-zero. Since f = d− 1 is not a weight of

T, we have that T and D0 ∨ F0 are linearly independent.

When f < 6 we have d ≤ 7 because f > b2d
3
c. Since all d ≤ 6 cases were done

above, only d = 7 remains. In this case we have only f = 5. Thus s = 12 and three

tableaux are required. We can use D1 ∨ F0, G1, and G2. These tableaux are linearly

independent by previous discussions.

Now consider s = 2d. Write d = 6k′+ i, so s = 6(2k′)+2i′. Hence 2k′+2 linearly

independent tableaux will suffice. Let

A1 =

d− 2 d− 2 2
4 5 5 4 6
1 1 2 2 3

ω(A1) = (d− 1, d− 1, 2, 0, 0, 0)

This tableau is maximal. Although there are many valid weight assignments, all such

assignments have positive sign, hence A1 is non-zero.

When d 6≡ 1 (mod 6) we have k′+1 linearly independent tableaux Dp′ . Hence we

can use:

Dp ∨Dp p = 0, 1, . . . , k′

Dk′ ∨Dp′ p′ = 0, 1, . . . , k′ − 1

A1
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with weights:

ω(Dp ∨Dp) = (2p + i′ + 4k′, 2(k′ − p), 0, 2p + i′ + 4k′, 2(k′ − p), 0)

ω(Dk′ ∨Dp′) = (d, 0, 0, 2p + i′ + 4k′, 2(k′ − p), 0)

ω(A1) = (d− 1, d− 1, 2, 0, 0, 0)

This provides 2k′+2 tableaux, provided k′ > 0. Their weights are clearly distinct

so they are linearly independent by Lemma 3.4.12. When d ≡ 1 (mod 6), we have

s = 6(2k′)+2 so only 2k′+1 tableaux are needed. All the tableaux listed above work

except for p = 0 and p′ = 0, providing 2k′ linearly independent tableaux. In addition

use:

A2 =

2 d− 3 d− 4 2 2
5 4 5 6 6 4
1 1 2 2 3 3

d ≥ 6

ω(A2) = (d− 1, d− 2, 3, 0, 0, 0)

This tableau is maximal and non-zero. Since d ≡ 1 (mod 6) we have d > 6. Thus

A2 provides the additional tableau and its weight is distinct from the other tableaux,

insuring linear independence.

When k′ = 0 we have d < 6. Then s < 10 so two tableaux, A1 and D0 ∨ D0,

suffice.

9.1.4 Basis Tableaux for c > 6, s ≤ r

Let λ = [r + s, s] be a partition of n, with s ≤ r, where 2s + r = cd = n. We want to

construct mλ linearly independent basis tableaux for an arbitrary c. In Sections 4.3,

9.1.1, 9.1.2, and 9.1.3 we constructed basis tableaux for c ≤ 6, which we will make

use of in this construction. In addition we will use the following tableaux:
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A1 =

d− 2 d− 2 2
4 5 5 4 6
1 1 2 2 3

ω(A1) = (d− 1, d− 1, 2, 0, 0, 0)

A2 =

2 d− 3 d− 4 2 2
5 4 5 6 6 4
1 1 2 2 3 3

d ≥ 6

ω(A2) = (d− 1, d− 2, 3, 0, 0, 0)

A3 =

2 d− 4 d− 4 2 2 2
5 5 6 6 4 4
1 2 1 3 3 2

d ≥ 6

ω(A3) = (d− 2, d− 2, 4, 0, 0, 0)

A4 =

2 d− 4 d− 5 2 3 2
5 4 5 6 6 4
1 1 2 2 3 3

d ≥ 5

ω(A4) = (d− 2, d− 3, 5, 0, 0, 0)

A5 =

4 2 2
4 5 6
1 2 3

d = 4

ω(A5) = (4, 2, 2, 0, 0, 0)

These tableaux are all maximal. Although some of these tableaux have addi-

tional valid weight assignments, all such assignments have positive sign. Hence these

tableaux are non-zero.
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To construct λ = [r + s, s]-tableaux with s ≤ r, write s = md+ f , with 0 ≤ f < d

and r = md + pd + g with 0 ≤ g ≤ d. Then 3md + pd + 2f + g = cd, so 2f + g = xd

for some x. This means c = 3m + p + x. If p + x ≥ 3, a λ-tableau may be written

D ∨ B ∨ (c − 3m − 3)V (d), where D is a tableau of shape [2md,md] filled with 3m

elements, B is a [3d − f, f ] tableau filled with 3 elements, and V (d) is the one row

tableau. We will first consider this case and handle the p + x < 3 case later.

We have s = md + f , so writing d = 6k′ + i′, f = 6k + i, with 0 ≤ i′, i ≤ 5

gives s = 6(mk′ + k) + mi′ + i. Since bmi′+i
6
c ≤ m, it suffices to construct b s

6
c+ 1 ≤

mk′+k +m+1 linearly independent tableaux. If m < 2 we may simply use the basis

tableaux constructed for c = 6 along with V (d)′s, so assume m ≥ 2.

Let Dp be the c = 3 basis tableaux of shape [2d, d] described in Section 4.3. There

are m[2d,d] = k′ + 1 such tableaux when i′ 6= 1 and k′ for i′ = 1. Let Bq be the c = 3

basis tableaux of shape [3d− f, f ] constructed in Section 4.3. This tableau has s ≤ r

since f < d. There are m[3d−f,f ] = k′ + 1 such tableaux for i 6= 1 and k′ tableaux

when i = 1. Take f > 1 and d ≥ 6. The d < 6 and f ≤ 1 cases will be handled

separately. Consider the following tableaux forms (with the appropriate number of

V (d)’s as necessary):

I. `Dp ∨ (m− `)Dk′ ∨Bq

` = 1, 2, . . . , m

p = 0, 1, . . . , k′ − 1

q = 0, 1, . . . , k

II. mDk′ ∨Bq q = 0, 1, . . . , k

III. `Aj ∨ (m− 2`)Dk′ ∨Bq

` = 1, 2, . . . , bm
2
c

q = 0, 1, . . . , k

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1
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Note that those tableaux with p = 0 or q = 0 exist only when i′ 6= 0 or i 6= 0

respectively. We will not make use of these tableaux unless necessary. However, even

when k = 0, at least one Bq exists, so if we regard k as the number of Bq’s, we may

assume k ≥ 1. When d 6≡ 1 (mod 6) we need mk′ + k + m + 1 tableaux. The list

above (taking q 6= 0) provides at least mk′k + k + 4bm
2
ck tableaux, which suffices

since 4bm
2
c ≥ m + 1. When d ≡ 1 (mod 6), we need only mk′ + bm

6
c + 2 tableaux.

If k′ ≥ 2 the list above provides at least m(k′ − 1)k + k + 4bm
2
c tableaux. This is

sufficient for m 6= 3. When m = 3 we need 3k′ + k + 2 tableaux when i = 3, 4, or 5

and 3k′ + k + 1 tableaux for i = 0, 1, and 2. When i ≤ 2 the tableaux listed suffice.

For i ≥ 3 we need an additional tableau so use the tableau of the Form II with q = 0.

When k′ = 1, the tableaux of the Form I don’t exist. Hence we have only k + 4bm
2
c

tableaux when q 6= 0 and we need m + k + bm
6
c + 2. For m 6= 3 this is sufficient.

However, one additional tableau is needed for m = 3, when i = 3, 4, or 5. In this

case we may use q = 0 in Form II for the remaining tableau.

To show linear independence of these tableaux it suffices, by Lemma 3.4.12, to

show that the max weights are distinct. For max weights we have:

I. (4k′ + 2p + i′, 2(k − p), 0)` ∨ (d, 0, 0)(m−`) ∨ (4k + 2q + i, 2(k − q), 0)

II. (d, 0, 0)m ∨ (4k + 2q + i, 2(k − q), 0)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ (4k + 2q + i, 2(k − q), 0)

Consider those tableaux of Form I. If ω(I(`, p, q)) = ω(I(`′, p′, q′)), then counting

the number of d’s shows ` = `′, while counting the number of 4k′ + p + i′’s indicates

` = 1. If p = p′ then q = q′, which is not possible for distinct tableaux. Hence by

Lemma 3.4.13, the weights are distinct because f < d. Those of Form II are distinct
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due to the distinct weights of Bq. Similarly those of the Form III − j are distinct by

the number of d’s and distinctness of ω(Bq). If ω(III − i(`, q)) = ω(III − j(`′, q′)),

then by counting the number of d’s we have ` = `′. Then by counting the number of

0’s, d− 1’s, and d− 2’s, we find the weights must be distinct for d > 6. (If d = 6 the

Forms III − 2 and III − 4 have the same weights.) To see the different forms have

distinct weights, first count the number of d’s. Obviously ω(II) 6= ω(I) or ω(III).

If ω(I(`)) = ω(III(`′)) then ` = 2`′. However, counting the number of 0’s shows the

weights are distinct.

When d = 6 then s ≤ 6m + 5, so m + 1 tableaux suffice. Since there are two

D’s and one B, Forms I and II provide the requisite number of linearly independent

tableaux.

Now consider the case where d < 6. Here s = mi′ + i so m + 1 tableaux suffices.

In this case the Aj, j = 2, 3 do not exist. However for d = 5 we have A4 and

for d = 4 we have A5. Moreover, we have exactly one D and one B. Hence the

appropriate Forms II, III − 1, and III − 4 or III − 5 provied 2bm
2
c + 1 tableaux.

This suffices for even m. When m odd we need one additional tableau. For m ≥ 5

use A1 ∨Ai ∨ (m− 4)D0 ∨B0 where i = 4 or 5 as appropriate. If m = 3, then s ≤ 19

so the three tableaux listed will suffice except when d = 5 and f = 3. In this case

also use the non-zero maximal tableau:

T =

4 4 4 4
5 9 6 9 7 8
1 1 2 2 3 4

ω(T) = (5, 5, 4, 4, 0, 0, , 0, 0, 0)

When d = 3, we have s = 3m + 2 since 1 < f < d. Hence b3m+2
6
c + 1 tableaux

are needed. We have mD0 ∨B0 and `A1 ∨ (m− 2`)D0 ∨B0, which provide bm
2
c+ 1

tableaux. Since m ≥ 2 we have bm
2
c ≥ b3m+2

6
c, so these tableaux suffice.

For linear independence, we need only check distinctness of max weights by

Lemma 3.4.12. First consider d = 4 or 5. Since ω(A5) = ω(A3) our discus-
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sion on linear independence for d ≥ 6 still holds. The only additional tableau is

A1 ∨Ai ∨ (m− 4)D0 ∨B0 which clearly has a distinct weight. Similarly, by counting

the number of 5’s and 4’s, the weight of T is also distinct. Hence these tableaux are

linearly independent. When d = 3 the tableaux listed are a subset of the tableaux

for d ≥ 6 and hence are linearly independent by the prior discussion. This covers all

cases with p + x ≥ 3 provided f > 1. The f = 0 and f = 1 cases will be handled

after the p + x < 3 case.

Now assume that p + x < 3. Recall that if s = md + f , with 0 ≤ f < d and

r = md + pd + g, then 3md + pd + 2f + g = cd and 2f + g = xd for some x. This

means c = 3m + p + x, so if p + x < 3 then λ-tableau with s ≤ r may be written as

D ∨ F ∨ (c− 3m− 3)V (d). Here D is a tableau of shape [2(m− 1)d, (m− 1)d] filled

with 3(m− 1) elements and F is a [(3 + x− 1)d− f, f + d] tableau filled with 3 + x

elements. When f > 0, we have x > 0, which means F is a c = 4 or c = 5 tableau.

We will first consider the case where m ≥ 3, d ≥ 6 and f > 1.

If d = 6k′ + i′ and f = 6k + i, with 0 ≤ i′, i ≤ 5, then s = md + f , so we still

need b s
6
c+ 1 ≤ mk′ + k + m + 1 tableaux. The number of tableaux D is the same as

before. Let Fq be the c = 4 or 5 basis tableaux of shape [cd − f − d, f + f ]. There

are at least k′ + k such tableaux. Moreover since d ≥ 6 and f > 1 there is always at

least 2 such tableaux.

Consider the tableaux of the following forms:

I. `Dp ∨ (m− `− 1)Dk′ ∨ Fq

` = 1, 2, . . . , m− 1

p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k′ + k

II. (m− 1)Dk′ ∨ Fq q = 1, 2, . . . , k′ + k
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III. `Aj ∨ (m− 2`− 1)Dk′ ∨ Fq

` = 1, 2, . . . , bm−1
2
c

q = 1, 2, . . . , k′ + k

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

As before, the tableaux with p = 0 exist only for d 6≡ 1 (mod 6). When d 6≡ 1

(mod 6), the construction above provides (m− 1)k′(k′+ k)+ k + k′+4bm−1
2
c(k′+ k).

Now k′ + k denotes the number of F’s, which we can assume is at least 2. Then since

4bm−1
2
c ≥ m + 1 for m 6= 4, this construction provides sufficient tableaux. If m = 4

then 4bm−1
2
c(k′ + k) ≥ 8, so this construction is sufficient.

When d ≡ 1 (mod 6), we need only mk′ + k + bm
6
c + 2 tableaux. For k′ ≥ 2, we

have (m− 1)(k′ − 1)(k′ + k) + k + k′ + 4bm−1
2
c(k′ + k) tableaux by the construction

above, which is sufficient. If k′ = 1, the tableaux of Form I do not exist, so we have

only k′ + k + 4bm−1
2
c(k′ + k) tableaux. However, since we know that there are always

at least two Fq’s, we have k′ + k ≥ 2. Thus the tableaux listed are sufficient.

When d < 6, the tableaux Aj with j = 2 and 3 do not exist. However we do have

A4 for d = 5 and A5 for d = 4. Also, since d < 6, we may no longer assume that there

are at least two Fq’s (unless d = 5 and f = 3 or 4). However there is always at least

one. In addition, there is only one D. Under these constraints we have tableaux of

the Forms II, III−1, and III−4 or III−5 when d = 5 or 4 respectively. For m ≥ 5

also use A1∨Aj ∨ (m− 5)D0∨F0. This provides 2bm−1
2
c+2 tableaux for m ≥ 5. For

d = 4 we need at most b4m+3
2
c + 1, hence this this suffices. For d = 5 and f = 2 we

need at most b5m+2
6
c + 1 which we have. Our construction suffices except for m = 3

and 4. When m = 3, then s ≤ 17 and three tableaux, II, III − 1, and III − 4 or

III − 5 suffice. For m = 4 we need one additional non-zero maximal tableau, so use

T =

d− 1 1 d− 1 1 d− 1 1 d− 1 1 2
6 7 8 7 9 12 10 12 11
1 1 2 2 3 3 4 4 5

ω(T) = (d, d, d, d, 2, 0, 0, 0)
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When d = 5, f ≥ 3 there are two Fq’s hence the Forms II, III − 1 and III − 4

give 4bm−1
2
c+1 tableaux. Since at most b5m+4

6
c+1 tableaux are needed, this suffices.

When d = 3 we need b3m+2
6
c+ 1 tableaux. From Forms II and III − 1, we have

bm−1
2
c + 1 tableaux. This is sufficient except for m odd. When m even we need one

additional tableau, so use T listed above.

Now to consider linear independence. By Lemma 3.4.12 it suffices to show that

the max weights are distinct. First consider when the F are c = 4 basis tableaux.

The max weights are:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

II. (d, 0, 0)m−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f + q − 1, 0, 0)

Consider those tableaux of Form I. If ω(I(`, p, q)) = ω(I(`′, p′, q′), then counting

the number of 0’s shows ` = `′. By counting the number of different weights we find

` = 1. Now if p = p′ then we must have q = q′, which is not possible for distinct

tableaux. Hence by Lemma 3.4.13, these weights are distinct. The weights of Form II

are distinct by the construction of the F’s in Section 9.1.1.

The weights of Form III − j are distinct by counting the number of 0’s and by

the distinctness of the F’s. If ω(III − j) = ω(III ′ − i) counting the number of 0’s

and different numbers shows ` = `′ = 1. So if the weights are not distinct, then

ω(Aj ∨ Fq) = ω(Ai ∨ Fq′), which implies Ai and Aj must have one non-zero element

in common. Then by Lemma 3.4.13, these weights are distinct if f > 2. When f = 2

the tableaux have the same length and the lemma does not apply. If f = 2 then

ω(III − 3(` = 1, q = 4)) = ω(III − 4(` = 1, q = 3)), though all other weights are
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distinct.

We have ω(I) 6= ω(II), by counting the number of 0’s. Forms II and III are also

distinct by counting the number of 0’s. If ω(I) = ω(III ′), counting the number of

0’s shows that ` = `′. Then counting the number of d’s shows that ` = 1, q′ = 1, and

q 6= 1. If the weights are equal, then (4k′ + 2p + i′, 2(k′ − p), d− q + 1, f + q − 1) =

(ω(Aj), f). Since q ≤ bd−f
2
c, these weights are distinct unless f = 2. When f = 2

then ω(I(` = 1, p = k′−1, q = j) = ω(III− j(`′ = 1, q′ = 1)), j 6= 1. Hence for f > 2

all the tableaux listed are linearly independent.

When f = 2 some of the tableaux in our list have the same max weights, and hence

may be linearly dependent. If we eliminate these tableaux with duplicate max weights

from our list we have (m−1)k′(k′+k)+k′+k+4bm−1
2
c(k′+k)−4 linearly independent

tableaux when d 6≡ 1 (mod 6). We need at most bm(6k′+i′)+2
6

c+1 ≤ mk′+m tableaux,

which we have since we may still take k′ + k ≥ 2. If d ≡ 1 (mod 6) then we have

(m− 1)(k′ − 1)(k′ + k) + k′ + k + 4bm−1
2
c(k′ + k)− 4 linearly independent tableaux

for k′ > 1. This is sufficient since only mk′ + bm+2
6
c+ 1 tableaux are needed. When

k′ = 1 those tableaux of Form I don’t exist, so we have k′ + k + 4bm−1
2
c(k′ + k)− 1

linearly independent tableaux, which is sufficient. Thus the d ≥ 6, f > 1, m ≥ 3 case

is finished for c = 4.

When d < 6 the same tableaux are used with the substitution of A5. However, A5

has the same weight as A3 so the above argument applies. (Note that by the conditions

of Fq, q ≤ bd−f
2
c ≤ 1, so the max weight duplication does not occur.) In addition we

also use the tableaux A1∨Aj ∨ (m−5)D0∨F0, for j = 4 or 5. However, counting the

number of 0’s and d’s shows that this tableau is distinct from our previous collection;

otherwise ω(A1 ∨Aj ∨ F0) = ω(Ai ∨Ai ∨ Fq) which is impossible.

In addition, when m = 4, d = 5 or d = 3, m even, we also have the tableau T.

Counting the number of 0’s and d’s shows this tableau has a distinct max weight as

well. Hence when F is a c = 4 tableau, we have linear independence for f > 1 and

m ≥ 3.
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Now consider the case where F is a c = 5 basis tableau. The c = 5 basis tableaux

were constructed in Section 9.1.2. These tableaux have two different types of max

weights corresponding to the T1 and T2 tableaux constructions used. Those of form T1

have weights (d, f − q−1, q +1, 0, 0) where q = 1, 2, . . . , bf
2
c−2 (when f ≥ 6). Those

of the form T2 have weights (d−q+1, f−1+q, 0, 0, 0) with q = 1, 2, d−bd+f−2
2
c. We

will refer to the basis tableaux using the T1 tableaux as q-forms and those using T2

as q-forms. Then the max weights for the general tableaux have the following forms:

I(q). (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

I(q). (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

II(q). (d, 0, 0)m−1 ∨ (d, f − q − 1, q + 1, 0, 0)

II(q). (d, 0, 0)m−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 1(q). (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 1(q). (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 2(q). (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 2(q). (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 3(q). (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 3(q). (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

III − 4(q). (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d, f − q − 1, q + 1, 0, 0)

III − 4(q). (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q + 1, f − 1 + q, 0, 0, 0)

These tableaux are linearly independent by Lemma 3.4.12 provided their max weights

are distinct. To show these weights are distinct we will often count the number of 0’s

and d’s in each weight. For convenience we will list these values below:

Consider those tableaux of Form I(q). If ω(I(`, p, q)) = I(`′, p′, q′), then Ta-

ble 9.1.4 shows that ` = `′. Then counting the number of different numbers

shows ` = 1. If p = p′ then we must have q = q′ and vice versa, but this
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Form # 0’s # d’s
I(q). 2m− ` m− `

I(q). 2m− `+
m− `− 1 q 6= 1
m− ` q = 1

II(q). 2m m

II(q). 2m + 1
m− 1 q 6= 1
m q = 1

III − j(q). 2m− ` m− 2`

III − j(q). 2m− ` + 1
m− 2`− 1 q 6= 1
m− 2` q = 1

Table 9.1: Weights of 0 or d.

can’t happen since the tableaux are different. Then since f < d, the argument of

Lemma 3.4.13 shows the weights are distinct. The same reason holds for Form I(q).

Table 9.1.4 also shows ω(I(q)) 6= ω(I(q)). The tableaux of Form II are distinct

since the max weights of the F are distinct for c = 5 by Section 9.1.2. More-

over, ω(II(q)) 6= ω(II(q)) by Table 9.1.4. The distinctness of max weights for

Form III− j(q) or III− j(q) follows from Table 9.1.4 and distinctness of c = 5 basis

tableaux max weights. Also from Table 9.1.4 we have ω(III − j(q)) 6= ω(III − j(q)).

Now suppose ω(III − j(q, `)) = ω(III − i(q′, `′)). Table 9.1.4 shows that ` = `′

and counting the number of different numbers shows ` = 1. Since i 6= j, the

weights of Ai and Aj must have exactly one non-zero weight in common. Thus

the argument of Lemma 3.4.13 applies and hence the weights are distinct. Similarly

ω(III − j(q, `)) 6= ω(III − i(q′, `′)) for f > 2 by Lemma 3.4.13. (When f = 2, ` = 1

the conditions of Lemma 3.4.13 are not met.) The values of Table 9.1.4 are sufficient

to show ω(III− j(q, `)) 6= ω(III− i(q′, `′)). This shows the max weights within each

tableau form are distinct for f > 2. Showing that ω(I) 6= ω(II) 6= ω(III) follows

directly from Table 9.1.4.

When f = 2 our discussion on linear independence holds except for a few tableaux

of the Form III(q). Specifically, ω(III − 2(` = 1, q = 3)) = ω(III − 3(` = 1, q = 2)),

ω(III − 2(` = 1, q = 4)) = ω(III − 4(` = 1, q = 2)), and ω(III − 3(` = 1, q = 4)) =

ω(III−4(` = 1, q = 3)). Thus we have three fewer linearly independent tableaux than



162

we originally calculated. If we eliminate these tableaux with duplicate max weights

from our list we have (m−1)k′(k′+k)+k′+k+4bm−1
2
c(k′+k)−3 linearly independent

tableaux when d 6≡ 1 (mod 6). We need at most bm(6k′+i′)+2
6

c+1 ≤ mk′+m tableaux,

which we have since we may still take k′ + k ≥ 2. If d ≡ 1 (mod 6) then we have

(m− 1)(k′ − 1)(k′ + k) + k′ + k + 4bm−1
2
c(k′ + k)− 3 linearly independent tableaux

for k′ > 1. This is sufficient since only mk′ + bm+2
6
c+ 1 tableaux are needed. When

k′ = 1 those tableaux of the Form I don’t exist, but we still have 2 + 8bm−1
2
c − 3

linearly independent tableaux, which is sufficient. Hence we have enough tableaux

when f = 2. Thus the d ≥ 6, f > 1, m ≥ 3 case is finished for c = 5.

When d < 6 only the q-form tableaux exist for c = 5. These tableaux have the

same max weights as the c = 4 tableaux F (with the exception of an extra zero.)

Thus by the same argument as in that case, these tableaux are linearly independent.

Hence when F is a c = 5 tableau, we have linear independence for f > 1 and m ≥ 3.

These constructions assumed m ≥ 3. If m = 1, The c = 4 or c = 5 basis tableaux

(joined with sufficient V (d)’s) suffice. However, when m = 2, we need tableaux with

c = 7 or 8 elements. This case must be dealt with separately. (We will still assume

f > 1.) Tableaux of Form I listed previously (Dp ∨ Fq) still work for this case.

These tableaux are linearly independent by our previous discussion. As before, let

d = 6k′+i′, f = 6k+i, with 0 ≤ i′, i ≤ 5. Since s = 2d+f , we need at most 2k′+k+3

tableaux. The tableaux Fq have λ2 = d+f so there are at least k′+k such tableaux. So

for d 6≡ 1 (mod 6), we have (k′+1)(k′+k) tableaux. This provides sufficient tableaux

unless k′ = 1, k = 1, or k = 0, k′ < 2. When k′ = k = 1, then d + f ≥ 14 so at least

three Fq’s exists. Hence the Form I construction is sufficient. In the remaining cases,

computing exactly how many Fq exist and precisely how many tableaux are needed

shows the Form I tableaux are sufficient except for: d = 11, f = 2, d = 3, f = 2,

d = 4, f = 3, and d = 5, f = 2, 3, 4. (For instance, when d = 6 and f = 5 there

are two F’s and two D’s, so Form I provides 4 tableaux. Since s = 17, only three

tableaux are needed.)
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When d = 11 and f = 2, there are two D’s and F’s for a total of 4 Form I tableaux.

Since s = 24, five tableaux are required. In addition to the Form I tableaux, use

T =

10 10 4
4 5 6
1 2 3

ω(T) = (10, 10, 4, 0, 0, 0)

which is non-zero, maximal, and linearly independent.

For d = 3, f = 2, we have c = 8. Since s = 8 two tableaux are needed. In addition

to D0 ∨ F0, use the non-zero maximal tableau:

T =

2 2 2 2
5 6 7 8
1 2 3 4

ω(T) = (2, 2, 2, 2, 0, 0, 0, 0)

When d = 4 and f = 3, then we must have c = 9 as s ≤ r. Since s = 11, we need

two tableaux. Use D0 ∨ F0 and

T =

2 2 2 2
5 9 6 9 7 8 8
1 1 2 2 3 3 4

ω(T ) = (3, 3, 3, 2, 0, 0, 0, 0)

Counting the number of 4’s shows these tableaux are linearly independent.

When d = 5 we have c = 8 and need three tableaux (except for f = 3 when two

tableaux suffice). In addition to D0 ∨ F0 use:

T =

4 4 4 f − 2
5 6 7 8
1 2 3 4

f 6= 3

ω(T) = (4, 4, 4, f − 2, 0, 0, 0, 0)

T′ =
4 f 2 2
5 6 6 7 6 8
1 1 2 2 3 4
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ω(T′) = (5, f + 1, 2, 2)

These tableaux are non-zero. Linear independence follows by counting the number

of 5’s and 2’s. Thus we have sufficient tableaux for d 6≡ 1 (mod 6).

When d ≡ 1 (mod 6) we need 2k′ + k + 2 tableaux. The Form I construction

Dp∨Fq discussed earlier provides at least k′(k′+k+1) linearly independent tableaux

for f 6≡ 0 (mod 6). (When f 6≡ 0 (mod 6) there are k′ + k + 1 tableaux Fq.) This is

sufficient for k′ ≥ 2. When f ≡ 0 (mod 6) Form I provides k′(k′ + k) tableaux, but

only 2k′ + k + 2 tableaux are needed. This is sufficient for k′ ≥ 2 since f 6= 0.

Since d ≥ 3, only d = 7 remains. We need at most 4 tableaux, as s ≤ 20. Consider

the tableaux Bp ∨ Cq where the Bp are c = 3 basis tableaux with λ2 = d− 1 and the

Cq are c = 4 or c = 5 basis tableaux with λ2 = d+f +1. There are two tableaux each

for Bp and Cq so this construction is sufficient. The max weights for Bp are (6, 0, 0)

and (4, 2, 0). The max weights for Cq are (7, f + 1, 0, 0) and (6, f + 2, 0, 0). Hence

the weights of our construction are distinct unless f = 5. However when f = 5 only

three tableaux are needed and the Form I construction D∨Fq provides three in this

case.

When f = 1 we can proceed as in the p + x < 3 case. We have s = md + 1

and r = md + pd + g. Then 3md + pd + 2f + g = cd, so 2 + g = xd for some x.

Hence x = 1. This means that for both the p + x ≥ 3 and p + x < 3 cases we can

use the c = 4 basis tableaux, proceeding as in the p + x < 3 case when f > 1. As

before, write d = 6k′ + i′ with 0 ≤ i′ ≤ 5. We have at least k′ linearly independent

λ = [3d− 1, d + 1] tableaux Fq, which we use for the following forms:

I. `Dp ∨ (m− `− 1)Dk′ ∨ Fq

` = 1, 2, . . . , m− 1

p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k′

II. (m− 1)Dk′ ∨ Fq q = 1, 2, . . . , k′
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III. `Aj ∨ (m− 2`− 1)Dk′ ∨ Fq

` = 1, 2, . . . , bm−1
2
c

q = 1, 2, . . . , k′

j = 1, 2, 3, 4

d ≥ 6 if j 6= 1

These tableaux have the following max weights:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`−1 ∨ (d− q, q + 1, 0, 0)

II. (d, 0, 0)m−1 ∨ (d− q, q + 1, 0, 0)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`−1 ∨ (d− q, q + 1, 0, 0)

Counting the number of zeros and d’s in these weights gives:

Form #0’s #d’s

I. 2m− ` m− `− 1

II. 2m m− 1

III − j. 2m− ` m− 2`− 1

Then by arguments similar to previous cases and Lemma 3.4.13, these tableaux

have distinct max weights except for III − 1(` = 1, q = 2) and III − 2(` = 1, q =

1) whose weights are the same. Thus by Lemma 3.4.12, these tableaux (omitting

III − 1(` = 1, q = 2)) are linearly independent.

When d ≥ 6 and m ≥ 3, we need mk′ + b5m+1
6
c + 1 tableaux. When k′ ≥ 2,

the forms listed above provided (m − 1)k′k′ + k′ + 4bm−1
2
ck′ − 1, which is sufficient.

When k′ = 1 and d 6≡ 1 (mod 6), we still have these tableaux. If d = 7, then there is
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exactly one D so Form I does not exist. However, there are two distinct Fq’s. Thus

Forms II and III provide 8bm−1
2
c tableaux. Since only m + bm+1

6
c+ 1 tableaux are

needed, this suffices.

If m = 2 then only Form I and II tableaux exist. Since s = 2d + 1, then 2k′ + 2

tableaux suffice. Forms I and II provided at least (k′ − 1)k′ + k′, tableaux. When

k′ ≥ 2 this is enough. For d > 7, four tableaux are needed. Since there are at least

two D’s and two F’s, this construction suffices. When d = 6, there are two D’s, but

only one F. However, s = 13 so only two tableaux are needed, which we have. If

d = 7, three tableaux are needed. Since there is only one D and two F’s, an additional

tableau is required. Use:

H =

6 6 2
4 5 6 7
1 2 3 3

ω(H) = (6, 6, 3, 0, 0, 0, 0)

This tableau is clearly non-zero and maximal and its max weight does not contain

d, so it is linearly independent from our previously constructed tableaux.

When d = 5, there are two distinct Fq’s, which have weights of the form listed

above. However, there is only one D. Thus Forms II, III − 1, and III − 4 provide

at least 1+4bm−1
2
c tableaux. Since only b5m+1

6
c+1 tableaux are needed, this suffices

for m ≥ 3. When m = 2 then s = 11, so the two tableaux of Form II are sufficient.

When d = 3 there is only one F and one D. Moreover, only A1 exists. However, all

the tableaux are linearly independent. Thus we have bm−1
2
c+1 tableaux and we need

b3m+1
6
c+1 tableaux. This is sufficient for m odd. When m even then s = 3m+1 ≡ 1

(mod 6) so only b3m+1
6
c tableaux are required, which we have when m ≥ 3. If m = 2

then s = 7, which means the single tableau of Form II is sufficient.

When d = 4 we need to proceed differently since the c = 4 basis tableaux F is not

in maximal form. First consider m ≥ 4. We will replace F in the previous discussion
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with the following c = 7 tableaux, Hq.

H0 =

4 2 2
4 5 6 7
1 2 2 3

ω(H0) = (4, 3, 2, 0, 0, 0, 0)

H1 =

2 2 2
4 7 5 4 6 5
1 1 2 2 3 3

ω(H0) = (3, 3, 3, 0, 0, 0, 0)

The the tableaux we will use are:

II. (m− 2)D0 ∨Hq q = 0, 1

III. `Aj ∨ (m− 2`− 2)D0 ∨Hq

` = 1, 2, . . . , bm−2
2
c

q = 0, 1

j = 1, 5

Counting the number of 0’s and 4’s in the max weights of these tableaux show

they are linearly independent by Lemma 3.4.12. This can be seen from Table 9.1.4

below:

Form # 0’s # 4’s q
II. 2m m− 1 0

2m m− 2 1
III − j. 2m− ` m− 2`− 1 0

2m− ` m− 2`− 2 1

Table 9.2: Weights of 0 and 4.

Hence for m ≥ 4 this construction provides 4bm−2
2
c + 2 linearly independent

tableaux. Since only b4m+1
6
c+ 1 tableaux are required, this suffices.

When m = 3, then s = 13, so only two tableaux are needed. The two tableaux of

Form II suffices. Hence we have constructed sufficient linearly independent tableaux

when f = 1 and m ≥ 3.
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For m = 2, two tableaux are needed, in which case use H0 and H1. Hence all

f = 1 cases are accounted for, since m = 1 may be handled by c ≤ 6 basis tableaux

and V (d)’s.

When f = 0 the construction is similar to earlier cases, particularly the f = 1

case. However, instead of the F tableaux, we use only the c = 3 basis tableaux D of

shape [2d, d]. Again, we may take m ≥ 2, since m = 1 may be handled by c ≤ 6 basis

tableaux and V (d)’s. Writing d = 6k′ + i′, 0 ≤ i′ ≤ 5, our general tableaux are:

I. `Dp ∨ (m− `)Dk′ p = 0 . . . k′ − 1, ` = 1 . . . m

II. mDk′

III. `Aj ∨ (m− 2`)Dk′ ` = 1 . . . bm
2
c, j = 1 . . . 4, d ≥ 6

These tableaux have max weights:

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0, )m−`

II. (d, 0, 0)m

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)m−2`

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)m−2`

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)m−2`

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)m−2`

Counting the number of zeros and d’s in these weights gives:

Form #0’s #d’s

I. 2m− ` m− `

II. 2m m

III − j. 2m− ` m− 2`
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Then by arguments similar to previous cases and Lemma 3.4.13, these tableaux

have distinct max weights and are linearly independent by Lemma 3.4.12.

Consider d ≥ 6. If d 6≡ 1 (mod 6), we need mk′ + m tableaux. The above

construction provides mk′ + 1 + 4bm
2
c tableaux, which is sufficient. When d ≡ 1

(mod 6) we need mk′ + bm
6
c+ 1 tableaux. In this case, D0 does not exists, so p > 0.

For k′ 6= 1, we have m(k′ − 1) + 1 + 4bm
2
c which is sufficient. For k′ = 1, we have

4bm
2
c+ 1 tableaux since Form I is no longer valid. However, this suffices.

When d < 6 not all of the Aj exist and there is exactly one D. For d = 4 and

d = 5 we have Forms II, III − 1, and III − 5 or III − 4 respectively. This provides

2bm
2
c + 1 tableaux. Since at most b5m

6
c + 1 tableaux are needed, this is sufficient.

When d = 3 we have Forms II and III − 1, which yield bm
2
c + 1 tableaux. Since

b3m
6
c + 1 tableaux are required, we have enough. This construction work for m ≥ 2,

hence all f = 0 cases are accounted for.

9.2 Case: r < s

This proof of this case follows similarly to the s ≤ r case. Let λ = [r + s, s] be a

partition of n with r < s, where n = 3b = cd. We wish to construct mλ linearly

independent tableaux, where mλ is the multiplicity of χλ in 1Sn
SboS3

as described in

Theorem 11. First we will construct these tableaux for c = 4, 5, and 6; then we will

use these constructions in proving Theorem 3 for a general c. We will refer to the

tableaux constructed in this way as basis tableaux. These constructions will make

use of the c = 3 basis tableaux constructed in Section 4.3 as well.

9.2.1 Basis Tableaux for c = 4, r < s

Given λ = [r + s, s], a partition of n, we have 2s + r = 4d = 3b. From this equation

and r < s, we have d + bd
3
c < s ≤ 2d. For each λ we will construct mλ linearly

independent λ-tableaux filled with the numbers 1 to 4. These will be our c = 4 basis

tableaux.
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When d + bd
3
c ≤ s ≤ 2d, write s = d + f , with bd

3
c ≤ f ≤ d. Consider the tableau

T from Section 9.1.1. This tableau is non-zero and maximal.

T (a,b,c,d) =

a b c d

4 3 4 3
1 1 2 2

a + b ≤ d

a, b, c, d > 0

a > d

b > c

or a = d, b = c

w(T ) = (a + b,c + d, 0, 0)

Let Cp = T (dd
2
e − p, bd

2
c − p, bf

2
c+ p, df

2
e+ p) for 0 ≤ p ≤ bd−f

4
c. The constraints

on T are satisfied for all p provided f ≥ 2 when p = 0. Hence Cp is non-zero for these

parameters. Let C′p = T (dd
2
e−p+1, bd

2
c−p, bf

2
c+p, df

2
e+p−1), with 0 ≤ p ≤ bd−f

4
c−1.

Here the constraints on T are satisfied providedand d− f ≥ 4 and f ≥ 4 when p = 0.

Hence C′p is non-zero for these parameters. We have ω(Cp) = (d− 2p, f + 2p, 0, 0)

and ω(C′p) = (d − 2p + 1, f + 2p − 1, 0, 0). Thus the weights are distinct and

Lemma 3.4.12 the tableaux are linearly independent.

By Theorem 11, mλ = b r
6
c+1. Hence it suffices to construct b r

6
c+1 ≤ b2d−2f

6
c+1 ≤

d−f
3

+1 linearly independent tableaux since r = 4d−2s and s = d+f . If 4 ≤ f ≤ d−4

then Cp and C′p together provide 2bd−f
4
c + 1 linearly independent tableaux. Since

2bd−f
4
c ≥ bd−f

3
c, this is sufficient. When f > d − 4 we have r ∈ {0, 2, 4, 6} with s

even for r = 0, 4 and odd for r = 2, 6. Therefor, at most one tableau is needed when

f > d− 4, which is C0. Now consider f < 4. Since f ≥ bd
3
c, when d ≥ 3, only f = 2

and f = 3 remain. For d = 3, then f = 1 and we have r = s which was done in

Section 9.1.1. If f = 2, then d ≤ 6. However, by Theorem 11, mλ = 0 for d = 3.

When d = 4 or 5, mλ = 1 and hence C0 suffices. For d = 6, the tableaux C0 and C1

suffice. If f = 3, then d ≤ 9. For d = 9 we have mλ = 3, for d = 7, we have mλ = 2,

while mλ ≤ 1 for the remaining d ≤ 8. Now C0 suffices for those cases with d 6= 7 or

9. When d = 7 we need an additional tableau, however, C1 exists. For d = 9, then
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r = s and so this case was done in Section 9.1.1. Hence we have sufficient c = 4 basis

tableaux for all partitions with r < s.

9.2.2 Basis Tableaux for c = 5, r < s

Given λ = [r+s, s] a partition of n, we have 2s+r = 5d = 3b. From this equation and

r < s, we have 0 ≤ r ≤ b5d
3
c. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 5. These will be our c = 5 basis tableaux.

First consider 0 ≤ r ≤ d. If d is even, then s−d ≡ s (mod 2). Moreover, s−d ≥ r.

Hence if λ′ = [r + s − d, s − d], then there are mλ′ linearly independent c = 3 basis

tableaux and mλ′ = mλ since λ1 = λ2 = λ′1 − λ′2. Therefore we can use U1(d) ∨ T ,

were T are the c = 3 basis tableaux of shape λ′, as the c = 5 basis tableaux.

If d is odd, then s ≡ d− 1 (mod 2) and s − d + 1 ≥ r. Let T be the c = 3 basis

tableaux of shape λ′ = [r + s− d− 1, s− d + 1]. Consider the tableaux U1(d− 1)∨T .

There are mλ′ such tableaux. Now mλ = mλ′ when r 6≡ 0, 3 (mod 6) since then

λ1 − λ2 − 2 = λ′1 − λ′2. Thus for r 6≡ 0, 3 (mod 6) we have constructed sufficient

tableaux. However, 2s + r = 5d and d odd implies r is odd, hence only r ≡ 3

(mod 6) remains. In that case, mλ′ = mλ − 1, so only one additional tableau is

needed. For d, r > 9 use U1(d− 3) ∨B0 where B0 is the c = 3 basis tableau of shape

λ
′′

= [r + s− d− 6, s− d + 3]. To show that U1(d− 3) ∨ B0 is linearly independent

from the U1(d− 1) ∨ T it suffices, by Lemma 3.4.12, to show that their max weights

are distinct. Since d− 1 is a weight of U1(d− 1)∨T for all T , we need only show that

d− 1 is not a weight of U1(d− 3) ∨B0. If we write λ
′′

= [r′ + s′, s′] and s′ = 6k + j,

0 ≤ j ≤ 5, then ω(U1(d− 3) ∨B0) = (d− 3, 4k + j, 2k, 0, 0). If d− 1 is in this weight

then that means d − 1 = 4k + j. Since 2s′ + r′ = 3d, we then must have j = 0 and

r′ = 3. As r′ = r − 6, this implies r = 9. Thus for r > 9, d > 3 these tableaux are

linearly independent.

If d = 3, then only r = 3 is needed because r ≤ d. Only one tableau is required,

which is U2(2, 1). When r = 9 we need two tableaux basis tableaux. The U1(d−3)∨B0
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we constructed above has weight (d− 1, d− 3, d−1
2

) In addition, use

T =

1 a d− a− 1 b + 1 d− b− 2 a b

4 3 5 3 4 5 4
1 1 1 2 2 3 3

a = bd−7
4
c,b = dd−7

4
e, d ≥ 11, d odd

which has weight (d, d−1, d−7
2

, 0, 0). For d < 11, only d = 9 is needed since 9 = r ≤ d

and d is odd. In that case, s = 2d so use U1(d− 3) ∨B0 and

T =

d− 1 d− 1
5 3 5 4
1 1 2 2

Thus we have sufficient tableaux for r ≤ d.

Now consider d < r ≤ b5d
3
c. To construct the c = 5 basis tableaux for these r we

will use two different types of tableaux. These are the same tableaux that were used

in Section 9.1.2 and hence are non-zero and maximal.

T1(a,b) =

a bd
2c dd

2e b

4 4 5 4 3 4 5
2 2 2 1 1 3 3

1 ≤ a ≤ d− 2

1 ≤ b ≤ bd
2
c − 3

a > b

s ≥ d + 6

d ≥ 8

w(T1) = (d,a + 2,b + 1, 0, 0)

T2(a,b) =

a b

5 3 5 4
1 1 2 2

1 ≤ a,b ≤ d− 1

s ≥ 4

w(T2) = (a + 1,b + 1, 0, 0)

Since d < r ≤ b5d
3
c, then 2d > s ≥ d5d

3
e. Consider Ep = T1(s − d − 3 − p, p)

for 1 ≤ p ≤ b s−d
2
c − 2. For s < 2d − 1, the parameters on T1 are satisfied provided

d ≥ 8. (When s = 2d − 1, we take p ≤ b s−d
2
c − 3.) This provides b s−d

2
c − 2
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linearly independent tableaux. We will also use E′q = T2(d − q, s − 2 − d + q) for

1 ≤ q ≤ d − b s−2
2
c. The parameters on T2 are satisfied provided s ≥ d + 2 (which

holds for d > 3). Together, Ep and E′q provide b s−d
2
c−2+d−b s−2

2
c linearly independent

tableaux when d ≥ 8. We need b r
6
c+ 1 = b5d−2s

6
c+ 1 tableaux. When s ≥ d + 6, we

have b5d−2s
6
c+1 ≤ b s−d

2
c−2+d−b s−2

2
c so these tableaux are enough. Since s ≥ d5d

3
e

and d ≥ 8, we have s ≥ d + 6. Thus for d ≥ 8, s < 2d− 1 these tableaux suffice

When s = 2d−1, d ≥ 8 we have b s−d
2
c−3+d−b s−2

2
c = bd−1

2
c−2. This is greater

than or equal to b r
6
c + 1 = bd+2

6
c + 1 provided d > 8. When d = 8, s = 2d − 1 we

have r = 10and only one tableau is needed, which E′q provides. When d = 8 we also

have r = 12. In that case two tableaux are needed, which E′q provides.

Now consider d < 8 with s ≤ 2d − 1. For d ≤ 5, or d = 6 and r = 8 only one

tableau is needed. Here E′q provides this tableau except if d = 3. When d = 3, then

r = s which was done in Section 9.1.2. When d = 7 or d = 6 and r = 10 two tableaux

are needed. In these cases, E′q suffices. Hence for d < 8 all tableaux are provided.

9.2.3 Basis Tableaux for c = 6, r < s

Given λ = [r + s, s] a partition of n, we have 2s + r = 6d = 3b. From this equation

and r < s, we have 0 ≤ r < 2d. For each λ we will construct mλ linearly independent

λ-tableaux filled with the numbers 1 to 6. These will be our c = 6 basis tableaux.

First consider 0 ≤ r ≤ d. If d is even, then s − d ≡ s (mod 2). Moreover,

s − d ≥ r. Hence if λ′ = [r + s − d, s − d], then there are at least mλ′ linearly

independent c = 4 basis tableaux and mλ′ = mλ since λ1 = λ2 = λ′1 − λ′2. Therefore

we can use U1(d) ∨ Cp, were Cp are the c = 4 basis tableaux of shape λ′, as the c = 6

basis tableaux.

If d is odd, then s ≡ d− 1 (mod 2) and s− d + 1 ≥ r. Let Cp be the c = 4 basis

tableaux of shape λ′ = [r + s−d− 1, s−d+1]. Consider the tableaux U1(d− 1)∨Cp.

There are mλ′ such tableaux. Now mλ = mλ′ when r 6≡ 0, 3 (mod 6) since then

λ1 − λ2 − 2 = λ′1 − λ′2. Thus for r 6≡ 0, 3 (mod 6) we have constructed sufficient

tableaux. However, 2s + r = 6d implies r is even, hence only r ≡ 0 (mod 6) remains.
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In that case, mλ′ = mλ−1, so only one additional tableau is needed. Since 0 ≤ r ≤ d,

we have b5d
2
c ≤ s ≤ 3d. For r 6= 0 we can write s = 2d + f with bd

2
c ≤ f ≤ d − 3.

Then

T =

d− 2 d− 1 f − 1
4 6 3 5 3 6 4
1 1 1 2 2 3 3

ω(T ) = (d, d, f, 0, 0, 0)

provides the additional tableau needed. Since T does not have a weight of d − 1 it

must be linearly independent from U1(d − 1) ∨ Cp by Lemma 3.4.12. When r = 0,

then s = 3d. However, since d is odd, then so is s and hence no tableaux are required.

Now consider d < r < 2d for arbitrary d. We have 2d < s ≤ b5d
2
c. Write s = 2d+f

for 1 ≤ f ≤ bd
2
c. Consider

Hp =

d− p− 1 p + 1 d− 2p p p f

4 6 5 4 5 6
1 1 2 2 3 3

0 < p ≤ bd−f
2
c

ω(Hp) = (d, d− p, p + f)

Now Hp is non-zero and maximal. Moreover, for 0 < p ≤ bd−f
2
c, Hp are linearly

independent by Lemma 3.4.12. Hence we have bd−f
2
c tableaux. We need b r

6
c + 1 =

b2d−2f
6
c + 1. Hence it suffices to show that bd−f

2
c > bd−f

3
c. This holds except for

d = 6, f = 3; d = 5, f = 2; and d = 4, f = 1. For d = 4 and 6, only one tableau is

needed, so H1 suffices. When d = 5, f = 2, two tableaux are required. Use H1 and

U1(d − 1) ∨ U1(d− 1) ∨ U1(d − 1). Thus all the necessary c = 6 basis tableaux have

been constructed.

9.2.4 Basis Tableaux for c > 6, r < s

Let λ = [r + s, s] be a partition of n, with r < s, where 2s + r = cd = n. We want to

construct mλ ≤ b r
6
c+ 1 linearly independent basis tableaux for an arbitrary c.

First write s = s′ + 2dq such that s′ − 2d < r ≤ s′. If c− 4q ≥ 3 then a λ-tableau

[r+s, s] may be written as T = qU2(d−1, 1)∨T ′, where T ′ is a λ′ = [r+s′, s′] tableau

filled with c− 4q elements. Since r ≥ s′ in λ′, we have mλ = mλ′ . Hence it suffices to
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construct mλ tableaux T ′. If r = s′, the tableaux T ′ were constructed in Section 9.1.4.

Hence we only need to consider partitions λ = [r + s, s] with s− 2d < r < s and the

case where c− 4q < 3.

If c − 4q < 3 we may write T = (q − 1)U2(d − 1, 1) ∨ T ∗ where T ∗ is a λ′ =

[r + s′ + d, s′ + d] tableau filled with at most 6 elements. Since at least mλ = mλ′

tableaux T ∗ were constructed for c ≤ 6 in previous sections, no additional construction

is needed for this case.

To construct λ = [r + s, s] tableaux with s− 2d < r < s, write r = md + f , with

0 ≤ f < d and s = md + pd + g with 0 ≤ g < d. Then 3md + 2pd + f + 2g = cd, so

f +2g = xd for some x. This means c = 3m+2p+x. If 2p+x ≥ 3, a λ-tableau may be

written D∨F, where D is a tableau of shape [2md,md] filled with 3m elements and F

is a [pd+g+f, pd+g] tableau filled with 2p+x elements. Given the constraints on r,

we have 2p+x ≤ 6. Hence we can use the basis tableaux constructed in Sections 4.3,

9.2.1, 9.2.2, 9.2.3 as the F tableaux. We will first consider this case where 2p + x ≥ 3

and handle the 2p + x < 3 case later.

We have r = md + f , so writing d = 6k′ + i′, f = 6k + i, with 0 ≤ i′, i ≤ 5

gives r = 6(mk′ + k) + mi′ + i. Since bmi′+i
6
c ≤ m, it suffices to construct b s

6
c+ 1 ≤

mk′ + k + m + 1 linearly independent tableaux. If m ≤ 1 we have c ≤ 9. For c ≤ 6

we have constructed the necessary basis tableaux in previous section. c = 7, 8 and 9

will be handled later. Hence assume m ≥ 2

Let Dp be the c = 3 basis tableaux of shape [2d, d] described in Section 4.3. There

are m[2d,d] = k′ + 1 such tableaux when i′ 6= 1 and k′ for i′ = 1. Let Fq be the

c = 2p + x basis tableaux of shape [pd + g + f, pd + g] constructed in Sections 4.3,

9.2.1, 9.2.2, 9.2.3. At least one such tableaux will always exist, provided f 6= 0, 1, 2, 4.

There are at least m[pd+g+f,pd+g] ≤ k′ such tableaux, given the constraints on f . Take

f 6= 0, 1, 2, 4 and d ≥ 6. The d < 6 and f cases will be handled separately. Consider

the following tableaux forms (where the Ai were defined in Section 9.1.4).

By Lemma 3.4.12, these tableaux are linearly independent provided their max

weights are distinct. The max weights of these tableaux are:
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I. `Dp ∨ (m− `)Dk′ ∨ Fq

` = 1, 2, . . . , m
p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k

II. mDk′ ∨ Fq q = 1, 2, . . . , k

III. `Aj ∨ (m− 2`)Dk′ ∨ Fq

` = 1, 2, . . . , bm
2
c

q = 1, 2, . . . , k
j = 1, 2, 3, 4
d ≥ 6 if j 6= 1

Table 9.3: Tableaux Forms.

I. (4k′ + 2p + i′, 2(k′ − p), 0)` ∨ (d, 0, 0)(m−`) ∨ ω(Fq)

II. (d, 0, 0)m ∨ ω(Fq)

III − 1. (d− 1, d− 1, 2, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

III − 2. (d− 1, d− 2, 3, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

III − 3. (d− 2, d− 2, 4, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

III − 4. (d− 2, d− 3, 5, 0, 0, 0)` ∨ (d, 0, 0)(m−2`) ∨ ω(Fq)

The weights of Fq depend on which basis tableaux we are using for F. We cate-

gorize these weights by the number of elements in F.
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c ω(Fq) Range Conditions

3 (4h + 2q + j, 2(h− q), 0) q = 1, . . . k′ s = 6h + j

4 (d− q, d−f
2 + q, 0, 0) q = 0, . . . , 2bd+f

8 c
5 (d, 4h + 2q + j, 2(h− q), 0, 0) q = 1, . . . , k′ s− d = 6h + j, r ≤ d, d even

(d− 1, 4h + 2q + j, 2(h− q), 0, 0) q = 1, . . . , k′ s− d + 1 = 6h + j, d odd

(d− 3, 4h + j, 2h, 0, 0) r ≤ d.r > 9ifr ≡ 3 (mod 6)

(d− 1, d− 3, d−1
2 , 0, 0) r = 9, d ≥ 11, d odd

(d, d− 1, d−7
2 , 0, 0)

(d, d, 0, 0, 0) r = 9, d = 9

(d− 1, d− 3, d−1
2 , 0, 0)

(d, d− f
2 − q − 1, q + 1, 0, 0) q = 1, . . . , b2d−f

4 c − 2 r > d

(d− q′ + 1, d− f
2 − 1 + q′, 0, 0, 0) q′ = 1, . . . , bf

4 c+ 1

6 (d, d− q, d−f
2 + q, 0, 0, 0) q = 0, . . . , 2bd+f

8 c r ≤ d, d even

(d− 1, d− q, d−f
2 + q + 1, 0, 0, 0) q = 0, . . . , 2bd+f

8 c r ≤ d, d odd

(d, d, d−f
2 , 0, 0, 0) r ≡ 0 (mod 6)

(d− 1, d− q, d−f
2 + q + 1, 0, 0, 0) q = 0, . . . , 2bd+f

8 c r ≤ d, d odd

(d, d− q, q + d−f
2 , 0, 0, 0) q = 1, . . . , bd+f

4 c r > d

The weights of Forms I, II, III − j are distinct for each Fq listed provided d > 7,

except for the following cases. When F is a c = 5 tableau, we have ω(I(` = 1, p =

k′ − 1,F1)) = ω(III − 4(` = 1,F2)) when d = 11, f = 9. When F is c = 4 or c = 6,

we have some duplicate tableau weights if f = d − 4 or f = d − 2. These weights are

ω(I(` = 1, p = k′ − 1, q = j − 1)) = ω(III − j(` = 1, q = 0)) for j = 2, 3, and 4. Also, when

f = d−4, we have ω(III−2(` = 1, q = 2)) = ω(III−3(` = 1, q = 1)), ω(III−2(` = 1, q =

3)) = ω(III − 4(` = 1, q = 1)), and ω(III − 3(` = 1, q = 3)) = ω(III − 4(` = 1, q = 2)).

When f = d − 2 we have ω(III − 1(` = 1, q = 2)) = ω(III − 2(` = 1, q = 1)) as well. In

these cases we have (at most 6) fewer linearly independent tableaux available than listed.

These will be called the constrained cases.

The linear independence of the remaining tableaux can be seen by counting the number

of d’s, 0’s in each tableau, determining the number of distinct elements in each tableau, and
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applying Lemma 3.4.13 where appropriate. When d = 6, the Forms III − 2 and III − 4

have the same weight. When d = 7 the Forms III − 3 and III − 4 have the same weight.

Hence for d = 6 and 7, Form III − 4 will not be used.

We wish to have b r
6c + 1 linearly independent tableaux. Recall that r = md + f ,

d = 6k′ + i′ and f = 6k + i, so it suffices to construct mk′ + k + m + 1 linearly independent

tableaux. We have f 6= 0, 1, 2, 4, d ≥ 6 and m ≥ 2. Note that there is always at least one

F since f 6= 0, 1, 2, 4, so we will take k ≥ 1.

When d > 6, d 6≡ 1 (mod 6), all the tableaux listed in Table 9.2.4 exist and are linearly

independent. This provides mk′k + k + 4bm
2 ck, which is at least mk′ + k + m + 1. Hence

sufficient linearly independent tableaux exist. In the constrained cases, using the full set of

F listed (as opposed to only the first k′) will provide sufficient tableaux.

When d = 6, the tableaux of Forms III − 2 and III − 4 are not linearly independent.

Hence we have mk+k+3bm
2 ck linearly independent tableaux. Then r = 6m+f , so m+k+1

tableaux are sufficient. Since we have k = 1, we have listed sufficient tableaux.

When d ≡ 1 (mod 6) the tableau D0 does not exist. Hence Table 9.2.4 provides m(k′−
1)k+k+4bm

2 ck linearly independent tableaux, provided k′ > 1. In this case r = 6k′m+m+f ,

so mk′+ k + bm
6 c+2 tableaux suffices. Thus we have enough tableaux unless m = 3, k = 1.

In that case, specifically checking the number of tableaux needed and the number of Fq

that exist, shows this construction is sufficient. When k′ = 1, there are no tableaux of Form

I and we do not use Form III − 4. Hence we have 1 + 3bm
2 c tableaux, which is sufficient

except in the following cases, where an additional tableau is needed If m = 7, f = 5, c = 26

use 6U1(6) ∨ U1(4), if m = 3, f = 3, c = 12 use 5U1(6), if m = 3, f = 5, c = 14 use 6U1(6),

if m = 3, f = 6, c = 13 use 4U1(6) ∨ U4(3, 2), and if m = 3, f = 6, c = 15 use 6U1(6). In the

constrained cases, using the full set of F listed (as opposed to only the first k′) will provide

sufficient tableaux.

Hence for d ≥ 6, f 6= 0, 1, 2, 4, 2p + x ≥ 3, we have constructed the requisite number

of linearly independent tableaux. We will consider the f = 0, 1, 2, 4 case after doing the

2p + x < 3 case.

When 2p + x < 3, the procedure described above require Fq to have fewer than three

elements. In that case we use m − 1 in place of m in our construction and take Fq to be

basis tableaux filled with 2p+x+3 elements with shape [pd+2d+ g + f, pd+d+ g]. There
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are at least k′ + k such tableaux, though k may equal 0. Take d ≥ 6, 2p + x < 3, m ≥ 3

Hence from the tableaux of Table 9.2.4 we get Table 9.2.4.

I. `Dp ∨ (m− `− 1)Dk′ ∨ Fq

` = 1, 2, . . . , m− 1
p = 0, 1, . . . , k′ − 1

q = 1, 2, . . . , k′ + k

II. (m− 1)Dk′ ∨ Fq q = 1, 2, . . . , k′ + k

III. `Aj ∨ (m− 2`− 1)Dk′ ∨ Fq

` = 1, 2, . . . , bm−1
2
c

q = 1, 2, . . . , k′ + k
j = 1, 2, 3, 4
d ≥ 6 if j 6= 1

Table 9.4: Tableaux Forms

As before, these tableaux are linearly independent, except in the constrained cases where

the same weight equalities occur. We do not use Form III − 4 when d = 6 or 7. For the

tableaux of Table 9.2.4, we require m ≥ 3 for tableaux of Form III to exist. Since we still

have r = md + f , we want mk′ + k + m + 1 linearly independent tableaux, when d 6≡ 1

(mod 6). When d > 6, d 6≡ 1 (mod 6), this construction provides (m − 1)k′(k + k′) + k +

k′ + 4bm−1
2 c(k + k′) linearly independent tableaux. This is larger than mk′ + k + m + 1,

except when m = 4, k′ = 1, k = 0. However, computing precisely how many Fq exist in

this case and the minimum number of tableaux required, shows these tableaux suffice. In

the constrained cases, using the full set of F listed (as opposed to only the first k′ + k) will

provide sufficient tableau.

When d = 6, Forms III−2 and III−4 are the same so we have only (m−1)+1+3bm−1
2 c

linearly independent tableaux. Since r = 6m + f , f < d, we need m + 1 tableaux, which

we have. In the f = d − 4 and f = d − 2 cases using the full set of F listed will provide

sufficient tableau.

If d ≡ 1 (mod 6), the tableau D0 does not exist. Hence Table 9.2.4 provides (m−1)(k′−
1)(k +k′)+k +k′+4bm−1

2 c(k +k′) linearly independent tableaux when k′ > 1. In this case

r = 6m + m + f , so mk′ + k + bm
6 c+ 2 tableaux suffice, which we have. In the constrained

cases, using the full set of F listed will provide sufficient tableau. When k′ = 1, there are
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no tableaux of Form I or III − 4. Hence we have k + 1 + 3bm−1
2 c(k + 1). This is at least as

large as mk′+ k + bm
6 c+ 2 unless m ≤ 8. However, computing precisely how many Fq exist

in this case and the minimum number of tableaux required, shows these tableaux suffice in

most cases. When m = 6, f = 3, c = 19 we need an additional tableau; use 6U1(6) ∨ U1(2).

When m = 4, f = 3 we also need an additional tableau; use U4(3, 2) ∨ 7U1(6) ∨ U1(4). In

the constrained cases, using the full set of F listed will provide sufficient tableau.

Thus for d ≥ 6, 2p + x < 3, m > 2, all necessary tableaux have been constructed.

When 2p + x < 3 and m = 2, we find that c = 7 or c = 8. In these cases, consider the

tableaux of Forms I and II in Table 9.2.4. We have r = 2d + f , so 2k′ + k + 3 tableaux

are sufficient. For d 6≡ 1 (mod 6), we have at least (k′ + 1)(k′ + k) linearly independent

tableaux of Forms I and II. When this isn’t enough, checking precisely how many tableaux

are needed and how many tableaux of Form I exist, shows that this construction is sufficient

except for the following cases.

When c = 8, d = 8, f = 2 three tableaux are needed; use 2U1(8) ∨ U4(6, 1), U1(8) ∨
U3(2, 3) ∨ U4(6, 1), and U1(8) ∨ U3(2, 4) ∨ U4(4, 1). When c = 8, d = 11, f = 2 five tableaux

are needed. They are 4U1(8), U2(10, 1)∨U1(10), U2(10, 1)∨∨U1(8)∨U1(2), U2(10, 1)∨U1(6)∨
U1(4), and U2(10, 1)∨U2(2, 3). When c = 7, if d = 8 and f = 2, three tableaux are needed,

but Form I provides only two. In addition to those tableaux, use P3(0, 3, 2)∨U1(8)∨U1(2).

If c = 7, d = 9 and f = 1, three tableaux are needed, but Form I provides only two.

In addition to those tableaux, use U1(8) ∨ U1(8) ∨ U1(6). If d = 10 and f = 0, three

tableaux are needed, but Form I provides only two. In addition to those tableaux, use

P3(0, 4, 2) ∨ U1(10) ∨ U1(4).

When d ≡ 1 (mod 6), it is sufficient to construct 2k′ + k + 2 tableaux. We have at

least (k′)(k′ + k) linearly independent tableaux of Forms I and II. When this is less than

2k′ + k + 2, checking precisely how many tableaux are needed and how many tableaux of

Forms I and II exist, shows that this construction is sufficient except for the following

cases. When c = 8, d = 7, f = 4 we need three tableaux; use U2(6, 1) ∨ U4(4, 1), 2U1(6) ∨
U4(6, 1), and U1(6) ∨ U3(2, 3) ∨ U4(4, 1). When d = 7, f = 2 three tableaux are needed; use

U2(6, 1) ∨ U1(6), U2(6, 1) ∨ U1(4) ∨ U1(2), and 3U1(6) ∨ U1(2). When d = 7, and f = 0,

two tableaux are needed, but Form II provides only one. In addition to that tableau, use

P3(0, 3, 2) ∨ 2U1(6).
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For c = 7 if d = 13 and f = 1, five tableaux are needed, but Forms I and II provide

only four. In addition to those tableaux, use U1(12) ∨ U1(12) ∨ U1(8). If d = 7 and f = 1,

three tableaux are needed, but Form I provides only two. In addition to those tableaux,

use P3(0, 3, 2) ∨ U1(6) ∨ U1(2). This completes the cases of c = 7 and c = 8 for d ≥ 6.

Now consider c = 7 and c = 8 when d < 6. When c = 7, d = 5 we need two

tableaux of shapes [23, 12] and [22, 13], and one tableau of shape [21, 14]. Use 3U1(4)

and U2(4, 1) ∨ U1(2), for shape [23, 12]; U2(4, 1) ∨ U4(2, 1) and U4(3, 2) ∨ 2U1(4) for shape

[22, 13]; and U2(4, 1) ∨ U1(4) for shape [21, 14]. When c = 7an d = 4 we need two tableaux

of shape [18, 10], 2U1(4) ∨ U1(2) and U2(2, 1) ∨ U1(4), and one tableau of shape [17, 11],

U4(2, 1) ∨ 2U1(4). When c = 7 and d = 3, we need only one tableau of shape [13, 8],

U2(2, 1) ∨ U1(2).

When c = 8 and d = 5, three tableaux are needed for shape [26, 14], one tableau

for shape [25, 15], and two tableaux for [24, 16]. Use 3U1(4) ∨ U1(2), U2(4, 1) ∨ U1(4), and

U2(2, 1)∨2U1(4) for shape [26, 14]. For shape [25, 15] use U2(4, 1)∨U4(3, 2), while for shape

[24, 16] use 4U1(4) and U2(4, 1)∨U1(4)∨U1(2). When c = 8 and d = 4 we need one tableau

for shapes [21, 11] and [19, 13] and two tableaux for shape [20, 12]. In the first case, use

U4(2, 1) ∨ U2(3, 1) and U1(4) ∨ U4(2, 1) ∨ P4(0, 2, 2), respectively. For [20, 12] use 3U1(4)

and 2U2(2, 1). When c = 8 and d = 3 we need only one tableau of shape [15, 9], which is

U2(2, 1) ∨ U4(2, 1). This completes the m = 2, 2p + x < 3 case.

Now consider d ≥ 6, 2p+x ≥ 3, f = 0, 1, 2, 4. In this case we cannot guarantee that the

tableaux Fq of shape [2dp+g +f, 2dp+g] exists. However, since d ≥ 6, tableaux F of shape

[pd + d + g + f, pd + d + g] will exist. Moreover, since s < r + 2d, this shape is fillable with

c ≤ 6 elements. Hence we can simply use the tableaux constructed in the 2p + x < 3 case

with this F. Since we did not apply any restrictions of f in that case, those computations

hold.

Now take d < 6. We have r = dm + f , f < d, s − 2d < r < s. Since d is small, only a

few s are possible for each r. We will consider each case according to the value of d.

If d = 3, we have r = 3m + f , s = 3m + 3 + f , and f < 3. First consider f = 0 or 2. If

m = 2 we have the shapes [15, 9] and [19, 11]. In both cases, only one tableau is needed. Use
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U2(2, 1)∨U4(2, 1) and U2(2, 1)∨U4(2, 1)∨U1(2). Now take m ≥ 3. Let F be the tableau of

shape [9+2f, 6+f ]. Since f = 0 or 2, one such F always exists. Then consider the tableaux

of Form II and III − 1 in Table 9.2.4. They have weight (2, 2, 2, 0, 0, 0)` ∨ (3, 0, 0)m−2`−1 ∨
ω(F) for ` = 0, 1, . . . , bm−1

2 c and hence are linearly independent by Lemma 3.4.12. This

construction provides bm−1
2 c+ 1 tableaux. Since we need at most b3m+2

6 c+ 1 tableaux for

m odd and b3m+2
6 c for m even, this suffices. When f = 1, let F = U2(2, 1)∨U1(2)∨U1(2). If

m = 2 or 3, one tableau will suffice. In those cases use F and F∨U4(2, 1). When m ≥ 4 we

will use the tableaux `A1 ∨ (m− 2`− 2)U4(2, 1)∨ F for ` = 0, 1, . . . , bm−2
2 c. There are bm

2 c
such tableaux and they are linearly independent. Since only bm

2 c are needed, this suffices.

When d = 4 we have r = 4m + f , s = 4m + h + f , and f < 3. Since s − 8 < r < s,

the only possibilities are f = 0, h = 2, 4, 6 and f = 2, h = 1, 3, 5, 7. Let F be a tableau

of shape [8 + 2f + h, 4 + f + h]. Since F needs at most 8 elements it has already been

constructed. If m = 2, we need one tableau when f = 2, so F suffices. When f = 0, two

tableaux are needed. Use U1(4)∨U1(4)∨U1(2) and U2(2, 1)∨U1(4); U1(4)∨U1(4)∨U1(4)

and U2(2, 1) ∨U1(4)∨U1(2); or U1(4) ∨U1(4) ∨U1(4)∨U1(2) and U2(2, 1) ∨U1(4)∨U1(4);

depending on h. For m ≥ 3, use the tableaux of Forms II and III − 1 of Table 9.2.4 along

with those of form III − 1, with A5 (given in Section 9.1.4) in place of A1. This provides

1 + 2bm−1
2 c linearly independent tableaux, which is sufficient.

When d = 5 we have r = 5m + f , s = 5m + h + f , with f < 5, 0 < h < 10, and h ≡ f

(mod 5). Let F be a tableau of shape [10 + h + 2f, 5 + h + f ]. When m ≥ 3, consider the

tableaux of Forms II, III − 1, III − 4 of Table 9.2.4. This provides 1 + 2bm−1
2 c linearly

independent tableaux. Computing precisely how many tableaux are needed for each f and

h we find that this is sufficient except in the following cases. When f = 1, m = 4 we need

one additional tableau. For h = 1 use 4U1(4)∨U1(2) and for h = 6 use 3U4(3, 2)∨3∨U1(4).

When f = 2 and h = 2 we need an additional tableau for m = 8, 6, and 4. Use 11U1(4),

8U1(4) ∨ U1(2), and 6U1(4) respectively. When f = 2 and h = 7, this construction suffices.

When f = 3 and h = 3, one additional tableau is needed for m = 6 and m = 4; use 9U1(4)

and 6U1(4) ∨ U1(2), respectively. When f = 3 and h = 8 we can take F to be a tableau of

shape [14, 11] and use the tableaux of Forms II, III − 1, and III − 4 of Table 9.2.4. This

provides 1+2bm
2 c tableaux, which suffices except for m = 3. In that case three tableaux are

needed; use U2(4, 1)∨3U1(2), U2(4, 1)∨2U4(2, 1), and U2(4, 1)∨U1(4)∨U1(2). When f = 4

and h = 9 this construction suffices except when m = 4. In that case we need an additional
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tableau, so use 3U2(4, 1) ∨ U4(3, 2). However, when h = 9 the tableau F has 9 elements.

Since we’ve only constructed the basis tableaux for c ≤ 8, use F = U2(4, 1)∨ 2U1(4). When

f = 4 and h = 4 we can take F to be a tableau of shape [12, 8] and use the tableaux of

Forms II, III − 1, and III − 4 of Table 9.2.4. This provides 1 + 2bm
2 c tableaux, which

suffices.

Now consider m = 2 for d = 5. The tableaux will have c ≤ 9 elements unless f =

2, h = 7, f = 3, h = 8, or f = 4. The c ≤ 9 will be constructed later. If f = 2, h = 7

we need two tableaux, U2(4, 1) ∨ U4(3, 2) ∨ U1(4) and U2(4, 1) ∨ U4(2, 1) ∨ P4(0, 2, 2). If

f = 3, h = 8, two tableaux are required. Let F be a basis tableaux of shape [14, 11]; use

A1 ∨ F and A4 ∨ F. If f = 4, h = 9, two tableaux are needed, 2U2(4, 1) ∨ U4(2, 1) and

U2(4, 1)∨U4(2, 1)∨P4(0, 2, 2)∨U1(4). If f = 4, h = 4 we need three tableaux. Let F be the

basis tableau of shape [12, 8]. Then A4 ∨ F, A1 ∨ F and 2U4(3, 2) ∨ F provide the requisite

tableaux. Thus all necessary tableaux for d = 5 have been constructed.

Now consider when m < 2 for arbitrary d. If r < d then since s − 2d < r < s we have

c ≤ 6, which has been done. If r = d + f then we must have c = 7, 8 or 9. First consider

when c = 7 with r = d + f . We get s = 3d − f
2 . For d even use U1(d) ∨ F where F are

the c = 5 tableaux with r = d + f . When d is odd use U1(d − 1) ∨ F where F are the

c = 5 tableaux with r = d + f − 2. This is sufficient unless d ≡ 1 (mod 6), f ≡ 2 (mod 6),

d ≡ 3 (mod 6), f ≡ 0 (mod 6), or d ≡ 5 (mod 6), f ≡ 4 (mod 6), in which case we need

one additional tableau. For that, use U2(d− 1, 1)∨B where B is a c = 3 basis tableau with

s ≤ r. This construction holds for d > 3. When d = 3, only the shape [12, 9] is needed.

One tableau, U2(2, 1) ∨ U4(2, 1), suffices. Thus the c = 7 case is complete.

Now take c = 8. Since s−2d < r, we have f > bd
3c and s = 3d+ d−f

2 . For d even we can

use U1(d)∨F where F are the c = 6 basis tableaux of shape [3d− d+f
2 , 2d+ d−f

2 ]. When d is

odd, use U1(d− 1)∨ F where F is the c = 6 tableaux of shape [3d− d+f
2 − 1, 2d + d−f

2 + 1].

This construction suffices unless d + f ≡ 0 (mod 6). (Since d
3 < f , d ≡ f (mod 2) and

d ≥ 6, such an F always exists.) If d + f ≡ 0 (mod 6) use the tableau of Forms I and

II of Table 9.2.4, with F the c = 5 tableaux of shape [2d + d−f
2 + f, 2d + d−f

2 ]. This

suffices unless d = 13, f = 11, d ≡ 1 (mod 6), f = 5, or d ≡ 5 (mod 6), f = 7. In

the first case, five tableaux are needed; use 2U2(9, 1), U2(9, 1) ∨ U1(12) ∨ U1(8), 3U1(12) ∨
U1(4), 2U1(12)∨U1(10)∨U1(6), U2(12, 1)∨U1(12)∨U1(2). In the f = 5 case use the tableaux
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Bp ∨ F where Bp are the c = 3 basis tableaux of shape [2d + 1, d − 1] and F is the c = 5

tableau with r = 3. This suffices for d−f
2 even. When d−f

2 odd, an additional tableau,

U2(d− 1, 1)∨U1(d− 1)∨U1(d−f
2 + 1), is needed. In the f = 7 case use the tableaux Bp ∨F

where Bp are the c = 3 basis tableaux of shape [2d− 1, d + 1] and F are the c = 5 tableaux

with r = 9.

Now consider when c = 9 with r = d + f . We get s = 4d− f
2 . Since s− 2d < r < s we

have 2d
3 < f < d

2 and hence this case does not occur. This completes the r < s case. Hence

we have proven Theorem 3.
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