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Chapter 8

Tableau Sufficiency

Our proof of Theorem 2 in Chapter 6 presupposed we had constructed all tableaux

with c ≤ 8 for the shapes of Theorem 10. In Chapter 7 we constructed many non-zero

tableaux. In this chapter we will demonstrate that all the necessary tableaux have

been constructed. Specifically we need all shapes in Theorem 10, that is all partitions

[r + s + t, s + t, t] of n, with r, s 6= 1, such that if r or s is in {0, 2, 4} then s + t is

even. Recall that those required shapes with r or s less than 5 are called exceptional

cases.

8.1 Sufficiency when c = 3

The tableaux we will use for c = 3 are the Pi described in Section 7.3. These

tableaux are all maximal and non-zero by weight-set counting. We will show that

every necessary partition of n = 3d has a corresponding Pi.

First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4}, or r = 3 with no constraints on s and t. Since our shape is a partition

of 3d, we have the condition 3t + 2s + r = 3d. Hence for a given r, we need only to

verify that all the appropriate s in the range 0 ≤ s ≤ 3d−r
2

, with s 6= 1 are obtained.

This condition shows s ≡ r (mod 3).

Table 8.1 below lists the tableaux we are using for these cases. The column

‘Parameters’ indicates the restrictions on the tableaux arising from their construction

in Section 7.3. The column ‘s, t values’ indicates their values in terms of the tableau
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parameters, while the ‘s covered’ lists those cases covered by the given tableau. The

restrictions given on the s covered reflect the listed conditions on the parameters.

Tableau Parameters s, t values s covered

r = 0 P4(d− 2b,b,b)
0 ≤ b ≤ d

2

d− b even

s = 3b

t = d− 2b

0 ≤ s ≤ 3bd
2c

s + t even

r = 2 P4(d− 2b,b,b− 1)
1 ≤ b ≤ d

2

d− b odd

s = 3b− 1

t = d− 2b

2 ≤ s ≤ 3bd
2c − 1

s + t even

r = 3 P4(d− 2b− 1,b,b,b)
0 ≤ b ≤ d−1

2

d− b odd

s = 3b

t = d− 2b− 1

0 ≤ s ≤ 3bd−1
2 c

s + t even

P3(d− 2b− 1,b,b− 1)
1 ≤ b ≤ d−1

2

d− b even

s = 3b

t = d− 2b− 1

3 ≤ s ≤ 3bd−1
2 c

s + t odd

r = 4 P4(d− 2b,b,b− 2)
2 ≤ b ≤ d

2

d− b even

s = 3b− 2

t = d− 2b

4 ≤ s ≤ 3bd
2c − 2

s + t even

Table 8.1: Exceptional r cases for c = 3.

To see why Table 8.1 reaches the necessary upper bounds on s, we need to consider

the parity of d. For d and r even, the maximum s needed is 3d
2
− r

2
, which is obtained

in the table. When d is odd, we need s ≤ b3d−r
2
c = 3d−r−1

2
. However, s = 3d−r−1

2
6≡ r

(mod 3), thus the largest s we need is s = 3d−r−3
2

= 3bd
2
c − r

2
. When r = 3, we

need s ≤ 3d−3
2

, which equals 3bd−1
2
c when d is odd. But for d even, the largest s ≡ r

(mod 3) is s = 3d−9
2

= 3bd−1
2
c. Hence the s bounds in Table 8.1 are correct.

For the lower bounds, Table 8.1 shows that all the necessary s are covered, except

possibly some s < 5. Since s ≡ r (mod 3), all s are covered in the r = 2 case. In the

r = 3 case, s = 0 is only necessary when the s + t is even. Similarly, no additional

tableaux are needed in the r = 4 case because s = 1 is not a shape of Theorem 10.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. We still have the condition 3t+2s+r =

3d, so for a given s we need only verify that all the appropriate t in the range

0 ≤ t ≤ d− d2s
3
e, (with t even if s 6= 3) are obtained.

Table 8.2 belows lists the tableaux we are using for these cases. The columns

‘Parameters’ and ‘Conditions’ indicate the restrictions on the tableaux arising from

their construction in Section 7.3. The column ‘t values’ indicates t’s value in terms
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of the tableau parameters, while the ‘t covered’ lists those cases covered by the given

tableau. The restrictions given on the t covered reflect the conditions listed on the

parameters.

Tableau Parameters Conditions t value t covered

s = 0 P2(a, 0) 0 ≤ a ≤ d a even t = a
0 ≤ t ≤ d

t even

s = 2 P2(a, 2) 0 ≤ a ≤ d− 2 a even t = a
0 ≤ t ≤ d− 2

t even

s = 3 P3(a, 1, 0) 0 ≤ a ≤ d− 3 a even t = a
0 ≤ t ≤ d− 3

t even

P4(a, 1, 1) 0 ≤ a ≤ d− 2 a odd t = a
0 ≤ t ≤ d− 2

t odd

s = 4 P2(a, 4) 0 ≤ a ≤ d− 4 a even t = a
0 ≤ t ≤ d− 4

t even

Table 8.2: Exceptional s cases for c = 3.

Table 8.2 shows that all the necessary t are covered, except possibly when s = 3

or 4. When s = 3, the t = d− 2, t even case does not appear. In this case, r = 0 and

s + t is odd, so by Theorem 10 this case is not needed. For s = 4 and t = d− 3, we

have r = 1 which is not a required shape. Hence all the exceptional cases have been

covered.

Finally, consider the general cases remaining. These are tableaux having r, s ≥ 5

and no additional constraints. We still have the condition 3t + 2s + r = 3d, so for a

fixed t we need only verify that all the appropriate s in the range 5 ≤ s ≤ 3d−3t−5
2

,

are obtained. (This accounts for the bounds both on r and on s.)

Table 8.3 belows lists the tableaux we are using for this case. The columns ‘Pa-

rameters’ and ‘Conditions’ indicate the restrictions on the tableaux arising from their

construction in Section 7.3. The column ‘s values’ indicates its value in terms of

the tableau parameters, while the ‘s covered’ lists those cases covered by the given

tableau.

To see how Table 8.3 covers all the necessary shapes, first consider P3. As c varies
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Tableau Parameters Conditions s value s covered

P3(t,b,c)
2 ≤ b ≤ d−t−1

2

0 ≤ c < b
t + c even s = 2b + c + 1

5 ≤ s ≤ 3bd−t−1
2 c

s + t odd

P4(t,b,c)
1 ≤ b ≤ d−t

2

0 ≤ c ≤ b
t + c even s = 2b + c

2 ≤ s ≤ 3bd−t
2 c

s + t even

Table 8.3: General c = 3 cases.

between 0 and b− 1, we get 2b+ 1 ≤ s ≤ 3b. When b increases to b+ 1, we go from

s = 3b to s = 2b + 3 = 2(b + 1) + 1. There is no gap between these provided b ≥ 2.

Since b = 2 yields a minimum s = 5, we don’t need any smaller cases. Hence P3 will

cover the cases, provided s+ t is odd (equivalently t +c is even). Given a case where

s = 2b+c+ 1 but t +c is odd, use P4(t,b,c+ 1). Then t +c+ 1 is even, and c < b

implies c + 1 ≤ b, so the conditions of P4 are satisfied. (As similar analysis on P4

shows all the s in the range do occur.) To see that the upper bound of s ≤ b3d−3t−5
2

c
is met, first consider P4. Since 3bd−t

2
c ≥ b3d−3t

2
c − 1 = b3d−3t−2

2
c, the upper bound

is obtained. For P3, 3bd−t−1
2
c ≥ 3d−3t−3

2
when d − t is odd. If d − t is even, we have

b3d−3t−5
2

c = 3d−3t−6
2

, which is 3bd−t−1
2
c as desired. Thus all the required shapes are

listed.

8.2 Sufficiency when c = 4

When c = 4, the tableaux we will use are the Qi listed in Section 7.4. We will show

that every partition of n = 4d described in Theorem 10 has a corresponding Qi. Note

that shapes with r ≥ d + 5 can be obtained by Pi ∨ V (d) for the appropriate Pi

filled with c = 3 elements. As such, we will not include these shapes in the following

compilation. Throughout, we will use the convention d = 3z + x, where d ≡ x

(mod 3). Unless otherwise specified, take x ∈ {0, 1, 2}. We also use the notation d∗

from previous chapters (d∗ = 2bd
2
c).

First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4} or r = 3 with no constraints on s and t. Since our shape is a partition of
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4d we have the condition 3t + 2s + r = 4d. Hence for a given r, we need only verify

that all the appropriate t in the range 0 ≤ t ≤ b4d−r
3
c, (with s + t even for r 6= 3) are

obtained.

For the exceptional r cases with s + t even, we only need those t with t ≡ r

(mod 4). Given a shape (r, s, t) the next shape needed is (r, s − 6, t + 4). Consider

Table 8.4. For r = 0 we have all t ≤ 4d
3

when d ≡ 0 (mod 3). When d ≡ 1 (mod 3),

the shape t = d + d−1
3

is not possible and the table provides all t ≤ d + d−1
2
− 1.

Similarly, when d ≡ 2 (mod 3), the shape t = d + d−2
3

corresponds to s = 1, while

t = d + d−2
3
− 1 is not possible. This covers the r = 0 cases. Note when d = 5, the

only shapes needed are t = d − 1 and t = 0. Moreover, t = d − 1 and t = d − 2 are

not possible for d ≤ 4.

For r = 2, Table 8.4 provides tableaux for 0 < t ≤ d + z − 2 − x or t = d + z if

d ≡ 2 (mod 3). Since t ≡ 2 (mod 4), t < 2 is not needed. When d ≡ 2 (mod 3),

t = d+z−1 and t = d+z−3 are not congruent to 2 (mod 4). Similarly, t = d+z−x

and t = d + z− x− 1 are not congruent to 2 (mod 4) for x = 0 and 1.

When r = 3 we no longer have the conditions t ≡ r (mod 4); instead t must be

odd. Table 8.5 accounts for all tableaux with 0 < t ≤ d + d
3
− 3 for d ≡ 0 (mod 3).

For d ≡ 1 (mod 3) Table 8.5 accounts for all t ≤ d + d−1
3
− 4 and for t ≤ d + d−2

3
− 5

when d ≡ 2 (mod 3). Tableaux with larger t correspond to shapes having exceptional

s cases (s 6= 3). Since t is odd, these shapes are not needed according to Theorem 10.

When t ≤ d− 1 and d small, the shapes are either not required by Theorem 10 or are

not possible.

For r = 4, we need all t ≡ 0 (mod 4), where t ≤ d + z− 4 if x = 0, t ≤ d + z− 1

if x = 1, and t ≤ d + z − 2 if x = 2. Table 8.6 provides all these tableaux. Again,

the bounds on d are necessary to produce a valid shape. When d = 5 and t = 4,

the shape has s = 2 and can be found in Table 8.7. Hence these tables cover all the

exceptional r cases.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. When r ≥ d, r 6= d + 1, we may

reduced to Pi ∨ V (d) for some Pi filled with c = 3 elements. (If s = 3 we may only
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reduce when r ≥ d + 5.) Since we have already listed those table with exceptional

r cases, we will take r ≥ 5. Hence for a given s, we need only verify that all the

appropriate t in the range d3d−2s−1
3

e ≤ t ≤ b4d−2s−5
3

c (with t even for s 6= 3) are

obtained.

For the exceptional s cases, consider Table 8.7. When s = 0, all t are covered

except t = d + d−1
3

when x = 4. However, this case is unnecessary as r = 1. If t ≤ d,

the shape is reducible to a c = 3 case.

For s = 2, all t ≥ d − 1 except t = d + d−x
3
− 1 (with x ∈ {0, 2, 4}) are given in

Table 8.7. When that occurs, either the shape is invalid or r < 5. If t ≤ d − 2, the

shape is reducible to a c = 3 case. When d ≤ 7 and t ≥ d the shapes are covered by

the exceptional r cases or are reducible to c = 3 cases.

For s = 3 we want t ≤ d + d−x
3
− 2. However, when t = d + d−x

3
− 2 (x ∈ {0, 2, 4}),

then r < 5. Hence these cases have already been covered. When t < d− 2 the shape

is reducible to a c = 3 case. For d ≤ 6, the cases are covered by c = 3 or exceptional

r cases. The bounds on d for t ≥ d are needed to produce a valid shape.

For s = 4, Table 8.7 provides all tableaux with t ≤ d + d−x
3
− 3 with x ∈ {1, 3, 5}.

Since any t larger than this has r < 5, this covers all shapes not already listed. Note

that for d ≤ 12, all necessary shapes have t < d; those shapes with t = d− 1 are not

needed for d ≤ 6. Hence all the exceptional s cases are accounted for in Table 8.7.

The general cases of r, s ≥ 5 are classified in Table 8.8. When r ≥ d + 5 we

can reduce to a c = 3 tableau. Fix t = d + z − k. Since r and s are greater than

5, we need all t with 5 ≤ k ≤ z. For a t of this form, we need all shapes with

5 ≤ s ≤ k + b x+k−5
2
c. This range is covered in Table 8.8. To see why all such s are

obtained, note that for any fixed c, we always get 2c ≤ s ≤ 3c−1. Since c ≥ 2, there

are no gaps as we increment c. The parameters between the cases are comparable,

so writing s = 2c + d + 1 and using the case corresponding to the parity of s + k

will yield the appropriate tableau. Since x ≤ 2, we find s ≤ k + b x+k−5
2
c implies

s ≤ k + bk−1
2
c − 1 for x = 0 or 2, and s ≤ k + bk

2
c − 2 for x = 1. Comparing the

bounds shows all s are obtained. This takes care of all shapes with t ≥ d.

When 0 < t < d, we require all shapes with 5 ≤ s ≤ 2d− t− b t+5
2
c. The tableaux
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Tableau Parameters t value t covered

s = 0 Q2(a)

0 < a ≤ z

z + a even

x ∈ {0, 2, 4}
t = d + a

d < t ≤ d + z

x ∈ {0, 2, 4}
t even, d 6= 4

s = 2 Q1(a, 1, 1, 0)

0 ≤ a ≤ z− 2

x ∈ {0, 2, 4}
z + a even

t = d + a

d ≤ t ≤ d + z− 2

x ∈ {0, 2, 4}
t even, d ≥ 8

Q3(d− 1, 1) d odd t = d− 1
t = d− 1

t even

s = 3 Q1(a, 2, 1, 0)

0 ≤ a ≤ z− 3

x ∈ {0, 2, 4}
z + a even

t = d + a

d ≤ t ≤ d + z− 3

x ∈ {0, 2, 4}
t even, d ≥ 11

Q1(a, 1, 1, 1)

0 ≤ a ≤ z− 2

z + a odd

x ∈ {0, 2, 4}
t = d + a

d ≤ t ≤ d + z− 2

x ∈ {0, 2, 4}
t odd, d ≥ 8

Q5(
d−1
2

, d−1
2

, 0, 1, 1, 1)
d odd

d ≥ 7
t = d− 1

t = d− 1,

d ≥ 7, d odd

Q5(
d
2
− 1, d

2
, 1, 0, 1, 1)

d even

d ≥ 6
t = d− 1

t = d− 1,

d ≥ 6, d even

Q6(d− 2, 1, 0) t = d− 2 t = d− 2

s = 4 Q1(a, 1, 2, 1)

0 ≤ a ≤ z− 3

z + a odd

x ∈ {1, 3, 5}
t = d + a

d ≤ t ≤ d + z− 3

x ∈ {1, 3, 5}
t even, d ≥ 12

Q5(
d−1
2

, d−1
2

, 1, 0, 2, 1)
d odd

d ≥ 7
t = d− 1

t = d− 1

d odd

d ≥ 7

Q3(a, 2)
2 ≤ a ≤ d− 2

a even, d ≥ 4
t = a

2 ≤ t ≤ d− 2

t even, d ≥ 4

Table 8.7: Exceptional s cases for c = 4.
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listed in Table 8.8 satisfy this. Note that for t ≤ d−3 the bounds on s for Q5 and Q6

overlap, thus guaranteeing all s are covered. For the small d not listed, the shapes are

either not possible, not needed, or result in exceptional cases done previously. When

t = 0 we require all d+ d−5
2
≤ s ≤ 2d− 3. As Table 8.8 shows, this is satisfied. Hence

all necessary cases for c = 4 have been covered.

8.3 Sufficiency for c = 5

When c = 5, the tableaux we will use are the Ri listed in Section 7.5. We will show

that every partition of n = 5d described in Theorem 10 has a corresponding Ri.

Note that shapes with r ≥ d + 5 can be obtained by Qi ∨ V (d) for the appropriate

Qi filled with c = 4 elements. As such, we will not include these shapes in the

following compilation. Throughout, we will use the convention d = 3z + x, where

d ≡ x (mod 3). Unless otherwise specified, take x ∈ {0, 1, 2}.
First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4} or r = 3 with no constraints on s and t. Since our shape is a partition of

5d we have the condition 3t + 2s + r = 5d. Hence for a given r, we need only verify

that all the appropriate t in the range 0 ≤ t ≤ b5d−r
3
c, (with s + t even if r 6= 3) are

obtained.

For the exceptional r cases with s + t even, we only need those t with t ≡ d + r

(mod 4). Hence given a shape (r, s, t) the next shape needed is (r, s − 6, t + 4).

Consider Table 8.9. For r = 0, this table provides all the t, except t = 5d−x
3

, x = 1, 2

and t = d + 2z− 1. These are not a possible shapes. When d < 6 we only need those

shapes with t ≤ d.

For r = 2, Table 8.9 yields all t ≤ d + 2z − 2 with x ∈ {1, 2, 3}. Since t ≡ d + 2

(mod 4). When t = d+2z, for x = 0, 2 we do not get a shape required by Theorem 10;

for x = 1 the tableau is listed in the table. Also, t = d + 2z − 1 is not a shape and

t = d + 2z− 2 with d odd is not needed (the d even case is listed). If d ≤ 6, then all

necessary shapes have t ≤ d− 2. Hence we have accounted for all necessary tableaux

with r = 2.
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Tableau Conditions t value t covered

r = 0 R1(z, z)
x = 0

d even
t = 5d

3

t = 5d
3

d ≡ 0 (mod 3)

d even

R4(a,a, x)
1 ≤ a ≤ z

z + a even

d ≥ 6

t = d + 2z− 2a
d ≤ t ≤ d + 2z− 2

t ≡ d (mod 4)

d ≥ 6

R5(a,a)
0 ≤ a ≤ d∗

2 − 1

a even
t = d− 2a

2 ≤ t ≤ d

t ≡ d (mod 4)

R12(d−1
2 ) d ≡ 1 (mod 4) t = 1

t = 1

d ≡ 1 (mod 4)

U1(d) ∨ U3(d
2 , d

2) d ≡ 0 (mod 4) t = 0
t = 0

d ≡ 0 (mod 4)

r = 2 R1(z, z)
x = 1

d even
t = 5d−2

3

t = 5d−2
3

d ≡ 1 (mod 3)

d even

R2(z− 1, z− 1, 1)
x = 0

d even
t = d + 2d

3 − 2

t = d + 2d
3 − 2

t ≡ d + 2 (mod 4)

d even

d ≡ 0 (mod 3)

R4(a,a, x− 1)

x ∈ {1, 2, 3}
1 ≤ a ≤ z

d ≥ 7

z+a odd

t = d + 2z− 2a
d ≤ t ≤ d + 2z− 2

t ≡ d + 2 (mod 4)

d ≥ 7

R5(a,a− 1) 1 ≤ a ≤ d∗
2 − 1 t = d− 2a

3 ≤ t ≤ d− 2

t = 2, d even

P4(1, d−1
2 , d−1

2 ) d ≡ 3 (mod 4) t = 1 t = 1, d ≡ 3 (mod 4)

U1(d) ∨ U3(d
2 − 1, d

2) d ≡ 2 (mod 4) t = 0 t = 0, d ≡ 2 (mod 4)

Table 8.9: Exceptional r = 0 and r = 2 cases for c = 5.

For r = 3 consider Table 8.10. In this case, we need t 6≡ d (mod 2). All cases

with t ≤ d + 2z− 3 are covered in the table. In addition we need t = d + 2z− 1 for

d ≡ 0, 2 (mod 3) with d even, which are listed as well. When d < 9 we have t ≤ d+1

or t = d + 2z− 1, and so those cases are covered. Finally, when d = 4, t = d + 1 has

s = 1, so that shape is no needed. When t = 0 and d = 3 then s is even, so this case
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is reducible to c = 4 case with r = 0. Hence all necessary tableaux with r = 3 are

provided by Table 8.10.

For r = 4 we need those tableaux with t ≡ d (mod 4), t ≤ d+2z−4. In addition,

we need t = d+2z when d ≡ 2 (mod 3) and t = d+2z−2 when d ≡ 1 (mod 3). These

are all found in Table 8.10. For d = 5 the needed tableaux are listed individually.

For d = 4, t = d + 2z − 2 and t = 0 are the only shapes required, while d = 3 does

not need any shapes. Thus all the exceptional r cases are contained in Table 8.9 and

Table 8.10.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. When r ≥ d, r 6= d + 1, we may

reduced to Qi ∨ V (d) for some Qi filled with c = 4 elements. (If s = 3 we may only

reduce when r ≥ d + 5.) Since we have already listed the exceptional r cases, we will

also take r ≥ 5. Hence for a given s, we need only verify that all the appropriate t in

the range d4d−2s−1
3

e ≤ t ≤ b5d−2s−5
3

c (with t even if s 6= 3) are obtained.

When s = 0, we need all even t ≤ d + 2z. Table 8.11 provides all tableaux with

t ≥ d+2, t even. For t ≤ d+1 we can use the reduction to a c = 4 case. When s = 2,

we need all tableaux with d + 1 ≤ t ≤ d + 2z− 2 and t even, which Table 8.11 lists.

Those with t ≤ d are reducible to a c = 4 case, while the d ≤ 5 cases correspond to

exceptional r cases or are similarly reducible.

When s = 3 we need those shapes with t ≤ d + 2z − 3 and d + 5 ≥ r ≥ 5. For

other r or r = d + 3 we can reduce to a c = 4 case. Table 8.11 provides tableaux for

all t ≥ d. When t ≤ d− 1, we can reduce to a c = 4 case when d ≥ 8 or d = 6. The

remaining tableaux with r ≥ 5 and d ≤ 7 which are not reducible to a c = 4 case are

listed as well.

For s = 4 we need all even t ≤ d + 2z− 5, along with t = d + 2z− 4 when d 6≡ 0

(mod 3). Table 8.11 provides all those tableaux with t ≥ d + 1 and d ≥ 9. When

t ≤ d we may reduce directly to a c = 4 case when d ≥ 10. Those remaining tableaux

with d ≤ 9 have r ≥ d + 2, r = d or r < 5 and hence are either reducible or listed

previously. Thus Table 8.11 suffices for the exceptional s cases.

The general tableaux with r, s ≥ 5 are classified in Table 8.12 and Table 8.13.
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Since r, s ≥ 5, we only need those tableaux with 0 ≤ t ≤ d + 2z − 5. For a fixed

t, we need all tableaux with 4d−3t−4
2

≤ s ≤ 5d−3t−5
2

because for r ≥ d + 5 we can

reduce to a c = 4 tableau. First consider t = d + z + a of Table 8.12. We need all

s ≤ z − a + x − 2 + bz−a−1
2
c. Letting the parameters of R9 vary in order over their

bounds yields all s up to b + z− a + 2x− 3. Since b ranges to bz−a−x+1
2

c, we get all

s ≤ z− a + x− 3 + bz−a+x−1
2

c. This covers all the necessary s for x > 1. When x = 1

we also get s = z−a− 1 + bz−a
2
c as needed. This tableau requires d ≥ 16, for d < 15

we find there are no shapes with t ≥ d + z, 5 ≤ r ≤ d + 4 and s ≥ 5. When d = 15,

R6 provides t = d + z, the largest t required.

When d ≤ t < d + z, Table 8.12 provides tableau R10. Fix t = d + z − a, then

we need all s ≤ a + z + x + ba+z−5
2
c. To see why this tableau suffices, begin by

taking c = 0. First let b and f vary over their ranges. Taking them maximal, vary

d up to its maximum and then take e up to b z
2
c − 1. This satisfies all the required

inequalities. Then take R10(a, ba
2
c,c, d z

2
e + ba

2
c, b z

2
c − 1, da

2
e) with 0 ≤ c ≤ ba

2
c − 1,

c even. Similarly, use R10(a, ba
2
c,c, d z

2
e+ ba

2
c − 1, b z

2
c − 1, da

2
e) with 0 ≤ c ≤ ba

2
c, c

even. This gives all 5 ≤ s ≤ a+ z+ ba
2
c+ x+ b z

2
c− 2. Since ba+z−5

2
c ≤ ba

2
c+ b z

2
c− 2,

all the necessary s are obtained. This tableau required d ≥ 6. When d < 6, we find

there are no shapes with t ≥ d and r, s within the needed bounds. Table 8.12 also

contains t = d− 1, which requires all s ≤ d− 1, as listed.

When t ≤ d − 2, consider Table 8.13. For t ≤ d − 2, we need all s ≤ 2d − t +

bd−t−1
2
c−2. Tableau R11 provides this by taking the parameters through their ranges

in order, using b = 1 and b = 2 (with e ≥ f). (We need b = 2 in order to obtain

s = 5, otherwise b = 1 suffices.) The only snag is when t = 2. Then we cannot have

c = 1, hence s = 5 is not obtainable in this case. However, t = 2, s = 5 is needed only

when d = 5 and hence is listed separately. Also, d = 3 needs only t = 0, accounting

for d ≤ 4.

For t = 1, we need all 2d− 2 ≤ s ≤ 2d+ d
2
− 6. (The s = 2d− 3 case is a r = d+3

reduction to c = 4.) All these shapes are obtained in Table 8.13. For small d, those

tableaux not listed have s < 5.

For t = 0 we need all 2d − 2 ≤ s ≤ 2d + bd−1
2
c − 2. Table 8.13 provides all the
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necessary tableaux. When d is even, we get all 2d ≤ s ≤ 2d + d
2
, with s even and

2d − 1 ≤ s ≤ 2d + d
2
− 3 with s odd. While s = 2d − 2 is not listed, this shape has

r = d + 4 and s + t even, so we may reduce to a c = 4 case. When d is odd, we get

all 2d − 2 ≤ s ≤ 2d + d−1
2
− 2 with s even and 2d − 1 ≤ s ≤ 2d + d−1

2
− 2 with s

odd. Hence all the required s are listed. Therefore Tables 8.12 and 8.13 provide the

required tableaux for the non-exceptional cases with c = 5.

8.4 Sufficiency for c = 6

When c = 6, the tableaux we will use are the Si listed in Section 7.6. We will show

that every partition of n = 6d described in Theorem 10 has a corresponding Si. Note

that shapes with r ≥ d + 5 can be obtained by Ri ∨ V (d) for the appropriate Ri

filled with c = 5 elements. As such, we will not include these shapes in the following

compilation. Throughout, we will use the convention d = 3z + x, where d ≡ x

(mod 3). Unless otherwise specified, take x ∈ {0, 1, 2}.
First consider the exceptional r cases. These are tableaux having s + t even with

r ∈ {0, 2, 4} or r = 3 with no constraints on s and t. Since our shape is a partition of

6d, we have the condition 3t + 2s + r = 6d. Hence for a given r, we need only verify

that all the appropriate t in the range 0 ≤ t ≤ b6d−r
3
c, (with s + t even for r 6= 3) are

obtained.

For the exceptional r cases with s + t even, we only need those t with t + r ≡ 2d

(mod 4). Hence given a shape (r, s, t) the next shape needed is (r, s − 6, t + 4).

Moreover, for r even, both s and t must be even. Consider Table 8.14. For r = 0,

this table provides all the all the required partitions. When t = 4 we must have d

even, while we need d odd for t = 2. For d = 3 and 4, only t = 2d, 2d− 4, and t = 0

are required. Hence all the r = 0 cases are provided. When r = 2, Table 8.14 gives

all the necessary tableaux since only those with t ≤ 2d − 2 and t ≡ 2d + 2 (mod 4)

are required.

For r = 3 consider Table 8.15. In this case we need all odd t ≤ 2d − 3 because

t = 2d− 1 has s = 0 and thus is not required by Theorem 10. All such tableaux are
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listed except d = 3 with t ≥ 3. When t = 3 we reduce to a c = 5 case with s = 3

and r = 0. When t = 5 and d = 3 we have s = 0 and hence the shape is not needed.

For r = 4 Table 8.15 provides all necessary tableaux. In this cases we have s and t

even with t ≤ 2d− 4, t ≡ 2d (mod 4). When d = 3 and t = 6 we have s = 1, so that

shape is not required. Hence all the exceptional r cases are listed.

Now consider the exceptional s cases. These are tableaux having t even with

s ∈ {0, 2, 4}, or s = 3 with no constraints on t. When r ≥ d, r 6= d + 1, we may

reduced to Ri ∨ V (d) for some Ri filled with c = 5 elements. (If s = 3 we may only

reduce when r ≥ d + 5.) Since we have already listed the exceptional r cases, we will

also take r ≥ 5. Hence for a given s, we need only verify that all the appropriate t in

the range d5d−2s−1
3

e ≤ t ≤ b6d−2s−5
3

c (with t even for s 6= 3) are obtained.

Consider Table 8.16. When s = 0 this provides all tableaux since those tableaux

with t < d∗ have r ≥ d + 2. For s = 2 the table provides all tableaux with t ≥ d + 2.

When t < d + 2 we have r ≥ d + 2 provided d ≥ 5. When d = 3 or d = 4 either r < 5

or we can reduce to a c = 5 case as well.

Similarly when s = 3, those tableaux with t < d + 2 are reducible to a c = 5 case

provided d ≥ 7. When d = 6, t = 7 we may reduce to a c = 5 case with r = 3; for

smaller t we have r ≥ d + 5. When d = 5 and t = 5, we may reduce to a c = 5 case

with r = 4 as s + t even; for smaller t, r ≥ d + 5. When d = 4 and t = 5 we have

r < 5. When d = 3 and t = 2 we may reduce to a c = 5 case with r = 3; for smaller

t we have r ≥ d + 5.

When s = 4 we need all even t ≤ 2d−3. Table 8.16 lists all tableaux with t ≥ d+2

and d ≥ 5. When t ≤ d + 1, t even, we may reduce to a c = 5 case provided d ≥ 6.

When d = 5, t = 6 we have r = 4 and we may reduce using P1(4) to a c = 3 case.

For d = 3 or 4 there are no needed shapes with 5 ≤ r ≤ d + 1. Hence Table 8.16 lists

all the exceptional s cases.

The general cases of r, s ≥ 5 are classified in Table 8.17 and Table 8.19. Since

r, s ≥ 5, we only need those tableaux with 0 ≤ t ≤ 2d − 5. For a fixed t, we need

all tableaux with 5d−3t−4
2

≤ s ≤ 6d−3t−5
2

since if r ≥ d + 5 we can reduce to a c = 5

tableau. When t is odd, write t = 2e− 1 then we need all s ≤ 3d− 3e− 1. Consider
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S6 of Table 8.17. First we let b, a and then c vary over their parameters This yields

all s ≤ 3d − 3e with t ≥ 5. For t = 3, we use S7. First let d vary to its bound of

d− 4. Then take S7(d− 4,e) and S7(d− 5,e) with e varying over the even numbers.

This yields all the required s. For t = 1 we use S12. First vary b over its bounds to

d− 2. Then use S12(d− 3, d− 2,c) and S12(d− 3, d− 3,c) with c even to obtain the

needed s. Note the bounds on d in these tableaux are necessary for coherence. Those

tableaux with d ≤ 5 and shapes with r, s ≥ 5 which are not reducible to a c = 5 case

are listed in Table 8.18. Hence all odd t are covered.

When t is even consider Table 8.19. Write t = 2e, so we want all 2d+ d
2
−3e−2 ≤

s ≤ 3d − 3e − 3. Consider S5. First let b and c vary. Then take S5(a, d − e, d − e)

and S5(a, d − e, d − e − 1) as a varies over all even numbers up to d − e − 1 and

d− e− 2 respectively. This yields all 8 ≤ s ≤ 3d− 3e− 3 as needed when t ≥ 6. For

5 ≤ s ≤ 7 the tableaux are listed individually. For t = 2 or 4, we use S7 which covers

all necessary s (as shown above for t = 3). When t = 0 we need 2d+ d
2
−2 ≤ s ≤ 3d−3

which is provided in the table. Note the bounds on d in these tableaux are necessary

for coherence. Those tableau with d ≤ 5 and shapes with r, s ≥ 5 which are not

reducible to a c = 5 case are listed in Table 8.18. Hence all even t are covered by

Table 8.19. Therefor all the required tableaux with c = 6 have been listed.
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Tableau Conditions t value t covered

r = 3 R1(z− 1, z)
x = 0

d ≥ 6, d odd
t = d + 2z− 1

t = 2d + 2z− 1

d ≥ 6, d ≡ 3 (mod 4)

R9(z− 1, 1, 0, 0, 1) x = 2 t = d + 2z− 1
t = d + 2z− 1

d ≡ 2 (mod 3)

R6(a,a− 1, x)
1 ≤ a ≤ z− 2

d ≥ 9
t = d + 2z− 2a− 1

d + 1 ≤ t ≤ d + 2z− 3

d ≥ 9

R17(z− 2, x) d ≥ 6 t = d + 1 t = d + 1, d ≥ 6

R18 d = 3 or 5 t = d + 1 t = d + 1, d = 3, 5

R19 t = d− 1 t = d− 1

R7(a)
1 ≤ a ≤ d−1

2 − 1

d odd, d ≥ 5
t = d− 2a− 1

2 ≤ t ≤ d− 3

t 6≡ d (mod 2)

d odd, d ≥ 5

R8(a)
1 ≤ a ≤ d

2 − 2

d even, d ≥ 6
t = d− 2a− 1

3 ≤ t ≤ d− 3

t 6≡ d (mod 2)

d even, d ≥ 6

R12(d
2 − 2) d even, d 6= 4 t = 1 t = 1, d even, d 6= 4

P4(1, 1, 1) ∨ U1(4) d = 4 t = 1 t = 1, d = 4

U6 d > 5, d odd t = 0 t = 0, d > 5, d odd

U7 d = 5 t = 0 t = 0, d = 5

r = 4 R1(z, z)
x = 2

z even
t = d + 2d−4

3

t = d + 2d−4
3

t even

d ≡ 2 (mod 3)

R2(z− 1, z− 1, 1) x = 1 t = d + 2d−2
3 − 2

t = d + 2d−2
3 − 2

d ≡ 1 (mod 3),

R4(a,a− 2, x)
2 ≤ a ≤ z

d ≥ 6
t = d + 2z− 2a

d ≤ t ≤ d + 2z− 4

d ≥ 6

R5(a,a− 2) 2 ≤ a ≤ d∗
2 − 1 t = d− 2a 2 ≤ t ≤ d− 4, d ≥ 6

R13(3, 2, 1, 1, 1) d = 5 t = 5 t = 5, d = 5

R12(d−5
2 )

d ≥ 7

d odd
t = 1

t = 1

d ≥ 7

d odd

P4(1, 2, 1) ∨ U1(4) d = 5 t = 1 t = 1, d = 5

U1(d) ∨ U3(d
2 − 2, d

2) d ≡ 0 (mod 4) t = 0
t = 0

d ≡ 0 (mod 4)

Table 8.10: Exceptional r = 3 and r = 4 cases for c = 5.
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Tableau Conditions t value t covered

r = 0 S1(z) t = 2d t = 2d

S5(d− e, d− e, d− e)
3 ≤ e ≤ d− 2

d ≡ e (mod 2)
t = 2e

6 ≤ t ≤ 2d− 4

t ≡ 2d (mod 4)

d ≥ 5

Q4(2, 1, d− 5, 3) ∨ U1(d) d ≥ 6, d even t = 4
t = 4

d ≥ 6, d even

P1(4) ∨ U3(2, 2) d = 4 t = 4 t = 4, d = 4

S8 d ≥ 5, d odd t = 2
t = 2

d ≥ 5, d odd

U1(d) ∨ U1(d) ∨ U1(d) d even t = 0 t = 0, d even

r = 2 S5(d− e− 1, d− e, d− e)
e 6≡ d (mod 2)

3 ≤ e ≤ d− 1

d ≥ 4

t = 2e

6 ≤ t ≤ 2d− 2

t ≡ 2 + 2d (mod 4)

d ≥ 4

Q4(2, d−7
2 , d−1

2 , d−5
2 ) ∨ U1(d− 1) d ≥ 9, d odd t = 4

t = 4

d ≥ 9, d odd

P4(3, 3, 3) ∨ P4(1, 2, 1) d = 7 t = 4 t = 4, d = 7

P4(3, 1, 1) ∨ P4(1, 2, 1) d = 5 t = 4 t = 4, d = 5

Q2(1) ∨ U1(2) d = 3 t = 4 t = 4, d = 3

Q4(1, d−2
2 , d−2

2 , d−2
2 ) ∨ U1(d) d even t = 2 t = 2, d even

U2(d− 1, 1) ∨ U1(d− 1) d odd t = 0 t = 0, d odd

Table 8.14: Exceptional r = 0 and r = 2 cases for c = 6.
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Tableau Conditions t value t covered

r = 3 S6(d− e, d− e, d− e)
3 ≤ e ≤ d− 1

d ≥ 4
t = 2e− 1

5 ≤ t ≤ 2d− 3

d ≥ 4

S9(2, 1, d− 4, 1, d− 4, d− 2, 1) d ≥ 5 t = 3 t = 3, d ≥ 5

S10(3) d = 4 t = 3 t = 3, d = 4

S11 t = 1 t = 1

r = 4 S4(d− 6) d ≥ 6 t = 2d− 4
t = 2d− 4

d ≥ 6

S5(d− e− 2, d− e, d− e)
3 ≤ e ≤ d− 4

e ≡ d (mod 2)

d ≥ 7

t = 2e

6 ≤ t ≤ 2d− 8

t ≡ 2d (mod 4)

d ≥ 7

Q2(1) ∨ U1(4) d = 5 t = 6 t = 6, d = 5

Q4(2, d−4
2 , d−4

2 , d−4
2 ) ∨ U1(d) d ≥ 6, d even t = 4

t = 4

d ≥ 6, d even

P1(4) ∨ U4(2, 2) d = 4 t = 4 t = 4, d = 4

Q4(1, d−3
2 , d−1

2 , d−3
2 ) ∨ U1(d− 1) d ≥ 5, d odd t = 2

t = 2

d ≥ 5, d odd

Q3(2, 1, 1) ∨ U1(2) d = 3 t = 2 t = 2, d = 3

U1(d) ∨ U1(d) ∨ U1(d− 2) d even t = 0
t = 0

d even

Table 8.15: Exceptional r = 3 and r = 4 cases for c = 6.

Tableau Conditions t value t covered

s = 0 P1(d∗) ∨ P1(a)
0 ≤ a ≤ d

a even
t = d∗ + a

d∗ ≤ t ≤ 2d∗

t even

s = 2 S2(a)
0 ≤ a ≤ d− 4

a ≡ d (mod 2)

d ≥ 4

t = d + a + 2
d + 2 ≤ t ≤ 2d− 2

t even

d ≥ 4

s = 3 S3(a)
0 ≤ a ≤ d− 5

d ≥ 5
t = d + a + 2

d + 2 ≤ t ≤ 2d− 3

d ≥ 5

P1(4) ∨ P3(2, 1, 0) d = 5 t = 6 t = 6, d = 5

P1(4) ∨ U4(2, 1) d = 4 t = 4 t = 4, d = 4

s = 4 S4(a)
0 ≤ a ≤ d− 5

d ≥ 5
t = d + a + 2

d + 2 ≤ t ≤ 2d− 3

d ≥ 5

Table 8.16: Exceptional s cases for c = 6.
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Tableau Parameters s value s covered

t = 2e− 1

5 ≤ t ≤ 2d− 5

t odd

S6(a,b,c)

1 ≤ a,b,c ≤ d− e

a, b ≥ c

b ≥ a− 1

3 ≤ e ≤ d− 2

d ≥ 5

s = a + b + c
5 ≤ s ≤ 3d− 3e

d ≥ 5

t = 3 S7(1, 2, d− 5,d,e)

0 ≤ e ≤ d

e even

1 ≤ d ≤ d− 4

d ≥ 5

s = d− 2 + d + e
d− 1 ≤ s ≤ 3d− 7

d ≥ 5

t = 1 S12(d− 3,b,c)
0 ≤ c ≤ d

c even

0 ≤ b ≤ d− 2

s = d + b + c d ≤ s ≤ 3d− 3

Table 8.17: General c = 6 cases for odd t.

d Tableau Shape

d = 5 P3(2, 1, 0) ∨ P3(2, 1, 0) t = 4, s = 6

d = 4 S10(2) t = 3, s = 5

P4(2, 1, 0) ∨ U4(2, 1) t = 2, s = 5

U3(2, 2) ∨ U4(2, 1) t = 0, s = 9

Table 8.18: General c = 6 cases for d ≤ 5.
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8.5 Sufficiency for c > 6, d even

In Chapter 6 we algorithmically demonstrate how to reduce an arbitrary tableau

to one of those tableaux filled with fewer elements. In the case where d is even,

we reduced all tableaux to joins of tableaux with c ≤ 6 to or those tableaux with

t < d, s < d + 5, r < d + 5. Previously we showed all tableaux with c ≤ 6 where

constructed in Chapter 7. Now we will address the remaining cases with d even.

Since any tableau must satisfy cd = 3t + 2s + r, applying the bounds on r, s, and

t we find cd ≤ 3(d− 1) + 2(d + 4) + d + 4 = 6d + 9. Hence for d > 9 all such tableaux

will have c ≤ 6. For d = 8 and d = 6 it may be possible to have c = 7, while for

d = 4, both c = 7 and c = 8 are possible.

When d=8 and c=7, only the shape with (r, s, t) = (11, 12, 7) satisfy the con-

straints. However, we can reduce this shape by V (d) to a c = 6 case with r = 3.

When d = 6 and c = 7, only the shapes with (r, s, t) = (10, 10, 4), (9, 9, 5) and

(7, 10, 5) satisfy the constraints. For (10, 10, 4) we may reduce by V (d) to a c = 6

case with (r, s, t) = (4, 10, 4) since s + t is even. For (9, 9, 5) we may reduce by V (d)

to a c = 6 case with (r, s, t) = (4, 9, 5) since s+ t is even. For (7, 10, 5) we may reduce

by U1(4) to a c = 5 case with (r, s, t) = (3, 6, 5).

When d = 4 and c = 7, only the shapes with (r, s, t) = (7, 6, 3),

(5, 7, 3), (3, 8, 3), (6, 8, 2), and (8, 7, 2) satisfy the constraints. For (7, 6, 3) we may

reduce by V (d) to a c = 6 case of (3, 6, 3). For (3, 8, 3) use R19 ∨ U1(4). For (5, 7, 3)

we may reduce by U1(4) to the c = 5 cases (5, 3, 3). For (6, 8, 2) we may reduce by

V (d) to a c = 6 case of (2, 8, 2) since s + t is even. For (8, 7, 2) we may reduce by

U1(4) to the c = 5 case (8, 3, 2).

When d = 4 and c = 8, only the shape with (r, s, t) = (7, 8, 3) satisfies the

constraints. It can be obtained by S10(3)∨U1(2). Thus when d is even, all shapes are

reducible to tableaux filled with less than or equal to six elements and all the cases

with c ≤ 6 were obtained previously.
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8.6 Sufficiency for c > 6, d odd

When d is odd, the reduction techniques of Chapter 6 work to reduce a tableau to

c ≤ 8. As we’ve already constructed those tableaux with c ≤ 6, we will focus on those

with c = 7 or 8.

First, assume t ≥ d − 1. So long as r 6∈ {0, 2, 3, 4, 5, 7} we may use P1(d − 1) to

reduce to a c− 3 case. If t ≥ d− 1 and r ∈ {0, 2, 3, 4, 5, 7} we may use P4(d− 2, 1, 1)

to reduce to a c− 3 case unless s ∈ {0, 2, 3, 4, 5, 7}. For s = 3, 5, 7 we may still reduce

by P4(d − 2, 1, 1) when t is odd. For r = 0, 2, 4, s = 3, 5, 7 and t even, the shape is

not needed by Theorem 10. For r = 3, 5, 7 and s = 3, 5, 7 with t even, no shapes are

possible for c = 8. When c = 7 we have d ≥ 5 so we may use P3(d− 3, 1, 0) to reduce

to a c = 4 case with s + t even. For s = 0, 2, 4, we only need those shapes with t

even. For r = 3, 5, 7 we may reduce by P1(d − 1) to a c − 3 case. This leaves those

cases with s = 0, 2, 4, r = 0, 2, 4 and t even.

When c = 7 there are no shapes having s = 0, 2, 4, r = 0, 2, 4 and t even as d is

odd. For c = 8, these shapes are obtainable, depending on d (mod 3). We list the

appropriate tableaux in Table 8.20. This completes all cases with t ≥ d− 1

If t < d − 1 and s < d + 4, but r = d + 3 or r ≥ d + 5 we may use V (d) to

reduce to a c − 1 case. When c = 8, there are no valid shapes with r ≤ d + 4 and

t < d− 1, s < d + 4. For c = 7 this is also true provided d ≥ 5. When d = 3 we need

(r, s, t) = (6, 6, 1) which is reducible by V (d) to a c = 6 case with r = 3.

If t < d − 1 and s ≥ d + 4 we may use U1(d − 1) to reduce to a c − 2 case,

provided r 6∈ {0, 2, 3, 4, 6}. Consider those cases with r ∈ {0, 2, 3, 4, 6} If s ≥ 2d + 5

or s = 2d + 3 we may use U2(d, d) to reduce to a c − 4 case. For s ≤ 2d − 1 there

are no shapes with t ≤ d − 2 and r ≤ 6. If s = 2d, 2d + 2 or 2d + 4, then we may

still reduce via U2(d, d), provided t is even (which always occurs if r = 0, 2, 4). Thus

we need only consider those tableaux with s = 2d + 1, or s = 2d, 2d + 2, 2d + 4 with

r = 3 or 6.

For c = 7 and s ≥ 2d, s 6= 2d + 1 only r = 6, s = 2d, t = d − 2 is possible. This

can be obtained by P4(d− 2, 1, 1)∨U5(2, d− 2) provided d ≥ 5. When d = 3 we may
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(r, s) d Tableau

(0, 0) d ≡ 0 (mod 3) Q2(z) ∨Q2(z)

(0, 2) d ≡ 2 (mod 3) W1(2)

(0, 4) d ≡ 1 (mod 3) Q1(z− 1, 0, 1, 1) ∨Q1(z− 1, 0, 1, 1)

(2, 0) d ≡ 1 (mod 3) W1(0)

(2, 2) d ≡ 0 (mod 3), d > 3 Q2(z) ∨Q1(z− 2, 1, 1, 0)

d = 3 S1(1) ∨ U1(2)

(2, 4) d ≡ 2 (mod 3), d > 5 Q2(z) ∨Q1(z− 2, 0, 2, 2)

d = 5 S1(1) ∨ U1(4)

(4, 0) d ≡ 2 (mod 3) Q2(z) ∨Q2(z)

(4, 2) d ≡ 1 (mod 3) Q2(z; x = 4) ∨Q1(z− 1, 0, 1, 1; x = 1)

(4, 4) d ≡ 0 (mod 3), d > 9 Q2(z) ∨Q1(z− 4, 2, 2, 0)

d = 9 Q2(z) ∨Q5(4, 4, 1, 0, 2, 1)

d = 3 Q1(1) ∨ U1(2) ∨ U1(2)

Table 8.20: Exceptional r and s cases for c = 8.

reduced by V (d) to a c = 6 case with r = 3. For c = 8 and s ≥ 2d, s 6= 2d + 1 only

s = 2d + 4, r = 3, d = 5 can occur. In that case, use Q5(2, 1, 2, 0, 1, 1) ∨ U2(5, 5).

This leaves those tableaux with t < d− 1, s = 2d+1 and r ∈ {0, 2, 3, 4, 6}. When

r = 0, 2, 4, we must have t odd, so in the c = 8 case there are no possible shapes. For

c = 7, we get a valid shape only for r = 4, in which case we have t = d− 2. For this

use U1(d − 1) to reduce to a c = 5 case with r = 2, s = d + 1 which will still have

s + t even. For r = 3, there are no shapes satisfying t < d − 1 and s = 2d + 1 for

either c = 7 or 8; similarly for r = 6. Thus all required shapes may be reduced to

those filled with c ≤ 6 elements.
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8.7 Tableaux Disjointness

Our proof of Theorem 2 requires the tableaux we constructed to be disjoint. Since

Lemma 3.4.9 showed that maximal tableaux are always disjoint, we need only be

concerned with those tableaux which could not be put in maximal form, namely, U8

and S8.

Recall that U8 =
4 3 3 3 3 1 2 2 4 4 4

1 1 1 2 2
has d = 4 and ω2 = (3, 2, 0, 0). When

d = 4 the tableaux used in the reduction techniques are P1(4), U1(4), and V (d).

These are the only tableaux that would be joined with U8, so it suffices to show U8 is

disjoint from these tableaux. Note that the weights of these tableaux consist only of

4’s and 0’s.

If U8 were not disjoint from these tableaux, then there is some weight assignment

of U8, not equivalent to ω2 = (3, 2, 0, 0) which uses a weight from at least one of these

tableaux. However, since the only additional weights we may use are 4’s and 0’s,

there is no way to have a weight assignment of length 5 using 0’s, 2’s, 3’s, and 4’s

without being equivalent to (3, 2, 0, 0). Hence the weights are disjoint from U8.

Recall that S8 =

d− 4 d− 2 d− 4 2

6 6 6 3 2 1 2 3 6 6 2

3 4 3 4 4 5 5 5 1 5 1

1 1

with ω2,3 = ( 2 0 d−3 d d 0
2 0 0 0 0 0 ) and

d ≥ 5. When d is even, the tableaux used in the reduction techniques are P1(d),

U1(d), and V (d). When d is odd, the tableaux used in the reduction techniques are

S1(d), U2(d), whose weights are 0’s and d’s, P1(d − 1), U1(d − 1) whose weights are

0’s and d− 1’s, and P4(d− 2, 1, 1) with ω2,3 =
(

0 d 1
0 0 d−2

)
. Hence it suffices to show S8

disjoint from these tableaux.

Now any weight assigned to S8 must have λ3 = 2. Since d ≥ 5, there are no weights

other of the listed tableaux than the weight
(
2
2

)
of S8 for which this is possible. This

means if S8 were not disjoint from these tableaux there would be a weight assignment

of S8 of the form ( 2 ∗ ∗ ∗ ∗ ∗
2 0 0 0 0 0 ) which is not equivalent to ( 2 0 d−3 d d 0

2 0 0 0 0 0 ). The only weights

we may use for the ∗’s are the weights of the listed tableaux, namely, 0’s d’s, d− 1’s

and d− 3. Since the ∗’s sum to 3d− 3, they would have to be three d− 1’s and two
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0’s. That is, the weights of U1(d−1) or P1(d−1). Then the weights of S8 would need

to be assigned to other tableaux, so a weight of d would need to be assigned to either

U1(d − 1) or P1(d − 1), which is not possible as these tableaux are maximal. Hence

there is no other weight assignment for S8 and so the tableau is disjoint as required.

Thus all the tableaux constructed in the proof of Theorem 2 are disjoint as desired.
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