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Appendix A

Association between Tableaux
Spaces and Irreducibles

Let n = ab and H = Sb o Sa. Recall that Wλ,a = {T |T a λ-tableau filled with 1 to a,

each b times}. We will explicitly show why the multiplicity of χλ in 1Sn
H equals the

dimension of C{qT |T ∈ Wλ,a}.
View H as a subgroup of Sn, where H acts on

1, 2, . . . b|b + 1, . . . , 2b| . . . |(a− 1)b + 1, . . . , ab

by Sb on each block and by Sa permuting the blocks. The elements of H are the form

(π1, . . . πa, σ) with πi ∈ Sb, σ ∈ Sa. Now Sa × Sn acts on Wλ,a with Sa acting on the

numbers 1 to a and Sn acting on the positions (corresponding to labelling across the

rows).

Let K = {(σ−1, (π1, . . . πa, σ))|πi ∈ Sb, σ ∈ Sa}. So K ≤ Sa×H ≤ Sa×Sn. Let T

be the λ-tableau filled across the rows with b 1’s, then b 2’s, etc. Then Sa×Sn acting

on T gives Wλ,a and K fixes T . Specifically, StabSa×Sn(T ) = K. Hence as Sa × Sn

modules, Wλ,a ' 1Sa×Sn

Stab(T ) = 1Sa×Sn
K .

Proposition A.0.2. Wλ,a ' ∑
µ`a ϕSa(µ)⊗(ϕH(µ))Sn where ϕSa(µ) is the irreducible

of Sa indexed by µ and ϕH(µ) is the irreducible of H/(Sb × . . . × Sb) ' Sa indexed

by µ.

Proof. Since 1× (Sb× . . .×Sb) ≤ K, it is in the kernel of 1K . As Sb× . . .×Sb £H, it
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is in the kernel of 1Sa×H
K . So we can view 1Sa×H

K as an Sa×H/(Sb× . . .×Sb) ' Sa×Sa

module. Let D = {(σ−1, σ)|σ ∈ Sa} be the image of K in Sa × H/(Sb × . . . × Sb).

Hence 1Sa×H
K ' 1Sa×Sa

D as Sa×H/(Sb× . . .×Sb) modules. Thus we can write 1Sa×Sa
D =

∑
aµ,νφµ ⊗ φν for µ, ν ` a and some aµ,ν , where φ is the corresponding irreducible of

Sa.

By Frobenius reciprocity aµ,ν = (φµ ⊗ φν , 1
Sa×Sa
D ) = (φµ ⊗ φν |D, 1D)D. Now φµ ⊗

φν |D = φµφν . So (φµ ⊗ φν |D, 1D)D = 1
|D|

∑
σ∈Sa

φµ(σ)φν(σ) = |Sa|
|D| · (φµ, φν)Sa . Using

row orthogonality and |Sa| = |D|, we have aµ,ν =





1 if µ = ν

0 otherwise

.

So 1Sa×Sa
D =

∑
µ`a φµ ⊗ φµ. If we lift back to the original module 1Sa×H

K we

have 1Sa×H
K =

∑
µ φSa(µ) ⊗ φH(µ) where φSa(µ) is the irreducible of Sa indexed by

µ and φH(µ) is the irreducible of H/(Sb × · · · × Sb) ' Sa indexed by µ. Since

1Sa×Sn
K = (1Sa×H

K )Sa×Sn we get

1Sa×Sn
K = (

∑
µ

φSa(µ)⊗ φH(µ))Sa×Sn =
∑

µ

φSa(µ)⊗ (φH(µ))Sn .

By this proposition we have Wλ,a ' ∑
µ`a ϕSa(µ)⊗ (ϕH(µ))Sn as Sa×Sn modules.

Consider the submodule on which Sa is trivial, that is, µ = (a). This corresponds

to 1Sa ⊗ (1H)Sn . If 1Sn
H =

∑
ν`n mνχν , this module corresponds to

∑
ν`n 1Sa ⊗mνχν .

Now eλ =
∑

σ∈RT

∑
τ∈CT

ε(τ)στ is an idempotent of Sn on λ-tableau T . So the action

of eλ on
∑

1 ⊗ mνχν is the same as the action of qλ =
∑

π∈Sa
πeλ on Wλ,a. Then

qλ · Wλ,a ' mλ(eλ · Sλ) as Sn modules, as eλ · Sν = 0 for λ 6= ν. Now Sλ is is a

cyclic Sn-module generated by eλ(T ). (Correspondingly, the semi-standard tableaux

which span Sλ are equivalent under the action of Sn.) Therefore dim(eλS
λ) = 1 and

dim(qλW
λ) = mλ. Hence {qT |T ∈ Wλ,a}, spans a module of dimension mλ, the

multiplicity of χλ in 1Sn
SboSa

. This proof is due to Wales, [22].
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