Generalized Foulkes' Conjecture and Tableaux Construction

Thesis by
Rebecca Vessenes

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

Appendix A

Association between Tableaux Spaces and Irreducibles

Let $n=a b$ and $H=\mathcal{S}_{b}\left\{\mathcal{S}_{a}\right.$. Recall that $\mathcal{W}^{\lambda, a}=\{T \mid T$ a λ-tableau filled with 1 to a, each b times $\}$. We will explicitly show why the multiplicity of χ_{λ} in $1_{H}^{\mathcal{S}_{n}}$ equals the dimension of $\mathbb{C}\left\{\mathbf{q}_{T} \mid T \in \mathcal{W}^{\lambda, a}\right\}$.

View H as a subgroup of \mathcal{S}_{n}, where H acts on

$$
1,2, \ldots b|b+1, \ldots, 2 b| \ldots \mid(a-1) b+1, \ldots, a b
$$

by \mathcal{S}_{b} on each block and by \mathcal{S}_{a} permuting the blocks. The elements of H are the form $\left(\pi_{1}, \ldots \pi_{a}, \sigma\right)$ with $\pi_{i} \in \mathcal{S}_{b}, \sigma \in \mathcal{S}_{a}$. Now $\mathcal{S}_{a} \times \mathcal{S}_{n}$ acts on $\mathcal{W}^{\lambda, a}$ with \mathcal{S}_{a} acting on the numbers 1 to a and \mathcal{S}_{n} acting on the positions (corresponding to labelling across the rows).

Let $K=\left\{\left(\sigma^{-1},\left(\pi_{1}, \ldots \pi_{a}, \sigma\right)\right) \mid \pi_{i} \in \mathcal{S}_{b}, \sigma \in \mathcal{S}_{a}\right\}$. So $K \leq \mathcal{S}_{a} \times H \leq \mathcal{S}_{a} \times \mathcal{S}_{n}$. Let T be the λ-tableau filled across the rows with $b 1$'s, then $b 2$'s, etc. Then $\mathcal{S}_{a} \times \mathcal{S}_{n}$ acting on T gives $\mathcal{W}^{\lambda, a}$ and K fixes T. Specifically, $\operatorname{Stab}_{\mathcal{S}_{a} \times \mathcal{S}_{n}}(T)=K$. Hence as $\mathcal{S}_{a} \times \mathcal{S}_{n}$ modules, $\mathcal{W}^{\lambda, a} \simeq 1_{\text {Stab }(T)}^{\mathcal{S}_{a} \times \mathcal{S}_{n}}=1_{K}^{\mathcal{S}_{a} \times \mathcal{S}_{n}}$.

Proposition A.0.2. $\mathcal{W}^{\lambda, a} \simeq \sum_{\mu \vdash a} \varphi_{\mathcal{S}_{a}}(\mu) \otimes\left(\varphi_{H}(\mu)\right)^{\mathcal{S}_{n}}$ where $\varphi_{\mathcal{S}_{a}}(\mu)$ is the irreducible of \mathcal{S}_{a} indexed by μ and $\varphi_{H}(\mu)$ is the irreducible of $H /\left(\mathcal{S}_{b} \times \ldots \times \mathcal{S}_{b}\right) \simeq \mathcal{S}_{a}$ indexed by μ.

Proof. Since $1 \times\left(\mathcal{S}_{b} \times \ldots \times \mathcal{S}_{b}\right) \leq K$, it is in the kernel of 1_{K}. As $\mathcal{S}_{b} \times \ldots \times \mathcal{S}_{b} \unlhd H$, it
is in the kernel of $1_{K}^{\mathcal{S}_{a} \times H}$. So we can view $1_{K}^{\mathcal{S}_{a} \times H}$ as an $\mathcal{S}_{a} \times H /\left(\mathcal{S}_{b} \times \ldots \times \mathcal{S}_{b}\right) \simeq \mathcal{S}_{a} \times \mathcal{S}_{a}$ module. Let $D=\left\{\left(\sigma^{-1}, \sigma\right) \mid \sigma \in \mathcal{S}_{a}\right\}$ be the image of K in $\mathcal{S}_{a} \times H /\left(\mathcal{S}_{b} \times \ldots \times \mathcal{S}_{b}\right)$. Hence $1_{K}^{\mathcal{S}_{a} \times H} \simeq 1_{D}^{\mathcal{S}_{a} \times \mathcal{S}_{a}}$ as $\mathcal{S}_{a} \times H /\left(\mathcal{S}_{b} \times \ldots \times \mathcal{S}_{b}\right)$ modules. Thus we can write $1_{D}^{\mathcal{S}_{a} \times \mathcal{S}_{a}}=$ $\sum a_{\mu, \nu} \phi_{\mu} \otimes \phi_{\nu}$ for $\mu, \nu \vdash a$ and some $a_{\mu, \nu}$, where ϕ is the corresponding irreducible of \mathcal{S}_{a}.

By Frobenius reciprocity $a_{\mu, \nu}=\left(\phi_{\mu} \otimes \phi_{\nu}, 1_{D}^{\mathcal{S}_{a} \times \mathcal{S}_{a}}\right)=\left(\left.\phi_{\mu} \otimes \phi_{\nu}\right|_{D}, 1_{D}\right)_{D}$. Now $\phi_{\mu} \otimes$ $\left.\phi_{\nu}\right|_{D}=\phi_{\mu} \overline{\phi_{\nu}}$. So $\left(\left.\phi_{\mu} \otimes \phi_{\nu}\right|_{D}, 1_{D}\right)_{D}=\frac{1}{|D|} \sum_{\sigma \in \mathcal{S}_{a}} \phi_{\mu}(\sigma) \overline{\phi_{\nu}(\sigma)}=\frac{\left|\mathcal{S}_{a}\right|}{|D|} \cdot\left(\phi_{\mu}, \phi_{\nu}\right)_{\mathcal{S}_{a}}$. Using row orthogonality and $\left|\mathcal{S}_{a}\right|=|D|$, we have $a_{\mu, \nu}=\left\{\begin{array}{l}1 \text { if } \mu=\nu \\ 0 \text { otherwise }\end{array}\right.$.

So $1_{D}^{\mathcal{S}_{a} \times \mathcal{S}_{a}}=\sum_{\mu \vdash a} \phi_{\mu} \otimes \phi_{\mu}$. If we lift back to the original module $1_{K}^{\mathcal{S}_{a} \times H}$ we have $1_{K}^{\mathcal{S}_{a} \times H}=\sum_{\mu} \phi_{\mathcal{S}_{a}}(\mu) \otimes \phi_{H}(\mu)$ where $\phi_{\mathcal{S}_{a}}(\mu)$ is the irreducible of \mathcal{S}_{a} indexed by μ and $\phi_{H}(\mu)$ is the irreducible of $H /\left(\mathcal{S}_{b} \times \cdots \times \mathcal{S}_{b}\right) \simeq \mathcal{S}_{a}$ indexed by μ. Since $1_{K}^{\mathcal{S}_{a} \times \mathcal{S}_{n}}=\left(1_{K}^{\mathcal{S}_{a} \times H}\right)^{\mathcal{S}_{a} \times \mathcal{S}_{n}}$ we get

$$
1_{K}^{\mathcal{S}_{a} \times \mathcal{S}_{n}}=\left(\sum_{\mu} \phi_{\mathcal{S}_{a}}(\mu) \otimes \phi_{H}(\mu)\right)^{\mathcal{S}_{a} \times \mathcal{S}_{n}}=\sum_{\mu} \phi_{\mathcal{S}_{a}}(\mu) \otimes\left(\phi_{H}(\mu)\right)^{\mathcal{S}_{n}} .
$$

By this proposition we have $\mathcal{W}^{\lambda, a} \simeq \sum_{\mu \vdash a} \varphi_{\mathcal{S}_{a}}(\mu) \otimes\left(\varphi_{H}(\mu)\right)^{\mathcal{S}_{n}}$ as $\mathcal{S}_{a} \times \mathcal{S}_{n}$ modules. Consider the submodule on which \mathcal{S}_{a} is trivial, that is, $\mu=(a)$. This corresponds to $1_{\mathcal{S}_{a}} \otimes\left(1_{H}\right)^{\mathcal{S}_{n}}$. If $1_{H}^{\mathcal{S}_{n}}=\sum_{\nu \vdash n} m_{\nu} \chi_{\nu}$, this module corresponds to $\sum_{\nu \vdash n} 1_{\mathcal{S}_{a}} \otimes m_{\nu} \chi_{\nu}$. Now $e_{\lambda}=\sum_{\sigma \in R_{T}} \sum_{\tau \in C_{T}} \epsilon(\tau) \sigma \tau$ is an idempotent of \mathcal{S}_{n} on λ-tableau T. So the action of e_{λ} on $\sum 1 \otimes m_{\nu} \chi_{\nu}$ is the same as the action of $q_{\lambda}=\sum_{\pi \in \mathcal{S}_{a}} \pi e_{\lambda}$ on $\mathcal{W}^{\lambda, a}$. Then $q_{\lambda} \cdot \mathcal{W}^{\lambda, a} \simeq m_{\lambda}\left(e_{\lambda} \cdot \mathcal{S}^{\lambda}\right)$ as \mathcal{S}_{n} modules, as $e_{\lambda} \cdot \mathcal{S}^{\nu}=0$ for $\lambda \neq \nu$. Now \mathcal{S}^{λ} is is a cyclic \mathcal{S}_{n}-module generated by $e_{\lambda}(T)$. (Correspondingly, the semi-standard tableaux which span \mathcal{S}^{λ} are equivalent under the action of \mathcal{S}_{n}.) Therefore $\operatorname{dim}\left(e_{\lambda} \mathcal{S}^{\lambda}\right)=1$ and $\operatorname{dim}\left(q_{\lambda} \mathcal{W}^{\lambda}\right)=m_{\lambda}$. Hence $\left\{\mathbf{q}_{T} \mid T \in \mathcal{W}^{\lambda, a}\right\}$, spans a module of dimension m_{λ}, the multiplicity of χ_{λ} in $1_{\mathcal{S}_{b} \mathcal{S}_{a}}^{\mathcal{S}_{n}}$. This proof is due to Wales, [22].

Bibliography

[1] George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998, Reprint of the 1976 original. MR 99c:11126
[2] S. C. Black and R. J. List, A note on plethysm, European J. Combin. 10 (1989), no. 1, 111-112. MR 89m:20011
[3] Emmanuel Briand, Polynômes multisymétriques, Ph. D. dissertation, University Rennes I, Rennes, France, October 2002.
[4] Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no. 4, 347-371. MR 95c:20056
[5] C. Coker, A problem related to Foulkes's conjecture, Graphs Combin. 9 (1993), no. 2, 117-134. MR 94g:20019
[6] Suzie C. Dent and Johannes Siemons, On a conjecture of Foulkes, J. Algebra 226 (2000), no. 1, 236-249. MR 2001f:20026
[7] William F. Doran, IV, On Foulkes' conjecture, J. Pure Appl. Algebra 130 (1998), no. 1, 85-98. MR 99h:20014
[8] H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc. 25 (1950), 205-209. MR 12,236e
[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3, 2002, (http://www.gap-system.org).
[10] David A. Gay, Characters of the Weyl group of $\operatorname{SU}(n)$ on zero weight spaces and centralizers of permutation representations, Rocky Mountain J. Math. 6 (1976), no. 3, 449-455. MR 54 \#2886
[11] Larry C. Grove, Groups and characters, Pure and Applied Mathematics, John Wiley \& Sons Inc., New York, 1997, A Wiley-Interscience Publication. MR 98e:20012
[12] Roger Howe, $\left(\mathrm{GL}_{n}, \mathrm{GL}_{m}\right)$-duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 85-109 (1988). MR 90b:22020
[13] N. F. J. Inglis, R. W. Richardson, and J. Saxl, An explicit model for the complex representations of S_{n}, Arch. Math. (Basel) 54 (1990), no. 3, 258-259. MR 91d:20017
[14] G. James and A. Kerber, Representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, MA, 1981.
[15] G. D. James, The representation theory of the symmetric group, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978.
[16] Serge Lang, Algebra, 3 ed., Addison Wesley, Reading Massachusetts, 1999.
[17] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. MR 96h:05207
[18] Bruce E. Sagan, The symmetric group, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1991, Representations, combinatorial algorithms, and symmetric functions. MR 93f:05102
[19] Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax, and B. Mazur, eds.), American Mathematical Society, Providence, RI, 2000, pp. 295-319.
[20] R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388. MR 3,262d
[21] Rebecca Vessenes, Foulkes' conjecture and tableaux construction, J. Albegra (2004), forthcoming.
[22] David Wales, personal communication.
[23] Jie Wu, Foulkes conjecture in representation theory and its relations in rational homotopy theory, http://www.math.nus.edu.sg/~matwujie/Foulkes.pdf.

