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Abstract

This thesis presents tunneling measurements on bilayer two-dimensional (2D) elec-

trons systems in GaAs/AlGaAs double quantum wells. 2D-2D tunneling is applied

here as a probe of the inter-layer correlated quantum Hall state at total Landau level

filling factor νT = 1. This bilayer state is theoretically expected to be an excitonic

superfluid with an associated dissipationless current and Josephson effect.

In addition to the conventional signatures of the quantum Hall effect – a pro-

nounced minimum in Rxx and associated quantization of Rxy – the strong inter-layer

correlations lead to a step-like discontinuity in the tunneling I − V . Although rem-

iniscent of the DC Josephson effect, the tunneling discontinuity has a finite extent

even at the lowest temperatures (the peak in conductance, dI/dV , is strongly tem-

perature dependent even below 15 mK). The correlations develop when the inter-

and intra-layer Coulomb interactions become comparable. The relative importance

of which is determined by the ratio of layer separation to average electron spacing.

Although this state is theoretically expected to be an excitonic superfluid, the degree

to which intra-layer tunneling is Josephson-like is controversial. At a critical layer

separation the zero-bias tunneling feature is lost, which we interpret as signaling the

quantum phase transition to the uncorrelated state. We study the dependence of the

phase transition on electron density and relative density imbalance. In the presence

of a parallel magnetic field tunneling probes the response of the spectral function

at finite wave vector. These tunneling spectra directly detect the expected linearly

dispersing Goldstone mode; our measurement of this mode is in good agreement with

theoretical expectations. There remains deep theoretical and experimental interest in

this state, which represents a unprecedented convergence in the physics of quantum

Hall effects and superconductivity.
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1

Introduction

Two-dimensional electron systems (2DES) have proven to be an ideal venue for study-

ing many electron physics. A large perpendicular magnetic field quenches the kinetic

and Zeeman energies; in many cases, the dynamics of the resulting system are com-

pletely determined by the Coulomb interaction between electrons. In particular, the

fractional quantum Hall effect results essentially from the importance of Coulomb

interactions at high magnetic fields. The addition of a second 2D electron layer par-

allel to, but a distance d from the first, creates the possibility for completely new,

and fundamentally different, quantum Hall states. The bilayer quantum Hall state at

total Landau level filling factor νT = 1 is the central focus of this thesis.

The importance of Coulomb interactions is magnified in large magnetic fields.

Instead of traveling rapidly though the sample at the Fermi velocity, electrons are

confined to small cyclotron orbitals. The resulting suppression of the electrons’ ki-

netic energy makes the interactions between neighbors vastly more important. In

single-layer systems, the various fractional quantum Hall effects (FQHE) result from

quantum states whose physics is entirely due to the subtle dance of ∼ 1010 strongly

interacting electrons.

In the past 25 years the field of 2D electrons has truly come of age, yielding

two Nobel prizes: the first one for the discovery of the integer quantum Hall effect

(IQHE), and the second for the FQHE. Although all the essential ingredients of the

IQHE had been observed before 1980, it was Klaus von Klitzing who made the central

observation that when the density of electrons (n) and the magnetic flux (eB/h) are

commensurate (n = νeB/h), the Hall resistance is exactly quantized at an integer

fraction of fundamental constants: Rxy = h/νe2 [1]. The number ν is called the

filling fraction. The remarkable feature of the IQHE is that Rxy remains quantized
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at h/ν0e
2 over a range of ν centered on integer values of ν0. The IQHE results from

the interplay of Landau quantization of individual electron orbitals and disorder.

Imagine Tsui and Stormer’s surprise when, in 1983, they observed a new quantum

Hall state at Landau level filling fraction ν = 1/3 [2], 3 times higher in magnetic field

than the ν = 1 IQHE1. The next year, however, Laughlin correctly explained the

ν = 1/3 FQHE in terms of an approximate wavefunction [3] (replete with charge

±e/3 excitations). In 1996 Tsui, Stormer, and Laughlin were awarded the Nobel

prize in physics for the discovery and explanation of the FQHE.

These physical effects occur at interfaces between semiconducting (or insulating)

materials, at which electrons are confined to 2D sheets. The IQHE was discovered in

a silicon transistor, and the FQHE in a higher-quality GaAs device. Since 1983, the

quality of GaAs samples has increased dramatically, and patterns have emerged in

the distribution in ν of the fractional states. The regular pattern of observed FQHE

states led to a new understanding in terms of composite fermions [4]. In this picture

ν = 1/2 is a special filling factor, about which FQHE states are symmetrically placed;

ν = 1/2 itself is thought to be a Fermi liquid of composite fermions.

These remarkable systems have continued to surprise us with startling new quan-

tum states, such as the recently discovered bubble and stripe phases at high filling

factors [5]. Despite the rich physics in a single 2DES, the addition of new degrees of

freedom, such as spin or a second 2D layer, can create completely new quantum Hall

effects. A large class of multi-component Laughlin-like wavefunctions was proposed

by Halperin [6] in 1983 to explain the ν = 2/5 fractional quantum Hall state in a

single-layer. Several have been experimentally realized in bilayer systems [7, 8].

The addition of a second layer is superficially similar to a new spin degree of free-

dom. An electron in one layer can be assigned a pseudospin index |↑〉, and electrons

in the other are assigned |↓〉. In this language, the electron wavefunction has a spacial

part, a real spin part, and a pseudospin part. The crucial difference between spin and

pseudospin is that the Coulomb potential between any two electrons is independent

1Somewhat prophetically, Tsui joked that this was a quantum Hall state composed of charge e/3
quarks.
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of real spin, but dependent upon layer index and therefore pseudospin. νT = ν1 + ν2

refers to the filling fraction of the system as a whole and is the sum of the individual

filling fractions.

Although the νT = 1 bilayer state corresponds to ν = 1/2 per-layer, a state at

νT = 1 is not necessarily surprising. For example, if the bilayer has sufficiently strong

inter-layer tunneling then all of the electrons can occupy the symmetric state at

νT = 1, essentially forming a single component IQHE at ν = 1. In weakly tunneling

samples this argument fails, and any QHE at νT = 1 must result from nontrivial

Coulomb correlations between the layers. The first explicit prediction for a new

quantum Hall state was made in 1987 by Chakraborty and Pietilainen [9]. They

numerically modeled two parallel ν = 1/2 layers in the absence of tunneling. Their

simulations with four electrons per-layer and found evidence for a quantum Hall state.

Stimulated by these numerical results, in 1989 Fertig pointed out several key

properties of this bilayer state [10]: first, the ground state of the system can be written

as a pseudospin ferromagnet; second, an equivalent description of the ground states

is of a excitonic condensate (an exciton is a neutrally charged electron-hole pair); and

third, associated with these broken symmetry ground states is a linearly dispersing

Goldstone mode. Each of these predictions has been born out by experiment2. Shortly

thereafter MacDonald and Rezayi predicted that electron-hole bilayers should form

an excitonic superfluid when each layer is half filled [11].

The initial experimental work on bilayer electron systems was done by Boebinger et

al. in 1990 [12]. In these experiments the authors observed that in bilayer systems, the

odd integer quantum Hall states systematically disappeared as a function of tunneling

strength. This was modeled by MacDonald et al., [13] who described this collapse as a

consequence of the interplay between Coulomb interactions and inter-layer tunneling.

This model predicted that several states, including that at νT = 1, could exist at even

when there was no tunneling between layers, and that this state continuously evolves

into the strongly-tunneling IQHE of symmetric electrons.

2Fertig noted that the excitonic condensate was a “good” description of the system. He did
not make any predictions regarding superfluid effects such as dissipationless current flow or the
Josephson effect.
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In a pair of simultaneous publications by Suen et al. [7] and Eisenstein et al.

[8], a new quantum Hall state was discovered in bilayer systems, at νT = 1/2. The

νT = 1/4 + 1/4 = 1/2 state was immediately recognized as significant – no corre-

sponding state has been observed in single component systems. It was later recog-

nized that this detected state was probably the Halperin Ψ331 state, which incorpo-

rates Laughlin-like correlations between electrons in the same layer, with weaker, but

nontrivial correlations between electrons in different layers. Eisenstein et al. also

noted the appearance of a quantum Hall state at νT = 1, was incongruous the earlier

observations of Boebinger et al. [12]. They argued that the observed state was a

new integer state which formed due to Coulomb induced correlations, and not the

tunneling gap.

In terms of wavefunctions, the νT = 1 QHE state is thought to be well described

by the Ψ111 wavefunction. Like the Ψ331 wavefunction, the Ψ111 state includes cor-

relations between layers in addition to those within the individual layers (but unlike

the Ψ331 state the inter- and intra-layer correlations are of equal importance). In

1992, Wen and Zee observed that the Ψnnn states have a spontaneously broken de-

gree of freedom associated with charge transfer between layers. In an initial paper,

they suggest this versatile state should be an excitonic superfluid [14, 15], and that

inter-layer tunneling should have a Josephson singularity. The following year Ezawa

and Iwazaki made a similar set of predictions [16].

Unlike conventional “band” excitons where the electron is a finite lifetime exci-

tation from a semiconductors valence band [17], the electrons and holes here have

infinite lifetime, making the formation of a excitonic condensate more straightfor-

ward. The central focus of this thesis is the experimental detection of these unusual

properties via tunneling spectroscopy.

Transport measurements by Murphy et al., in the presence of a parallel magnetic

field, B||, again found new physics. These measurements showed clear evidence for an

unexpected phase transition as a function B|| [18]. They found that at small parallel

fields the “robustness” of the QHE, as parameterized by the quasiparticle energy

gap, ∆, is suppressed rapidly, until at a critical field the suppression becomes much
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more gradual. To understand the effect of tunneling, Murphy et al. studied several

samples with different tunneling strengths and layer separations. From these samples

they constructed a phase diagram spanning the layer separation - tunneling strength

plane and found that, even as the tunneling approached zero, the quantum Hall state

persists if the layers are sufficiently close together, i.e., inter- and intra-layer Coulomb

interactions are comparable.

The effect of parallel fields was rapidly explained by Yang et al. [19], who described

the system as a pseudospin ferromagnet. In this language, the transition between

two independent ν = 1/2 states and the correlated νT = 1 phase corresponds to

the development of a finite pseudospin polarization. At small B‖, the pseudospin

magnetization tends to precess in space with a wavelength proportional to 1/B‖, this

becomes energetically unfavorable as B‖ increases, and at a critical B‖ there is a

transition to a new state where all of the pseudospins once again lie in the same

direction.

Although these transport measurements provided evidence that the νT = 1 state

was in line with theory, no measurement existed to test the more bizarre predictions

of Wen and Zee, such as counter-flow superfluidity or inter-layer Josephson tunneling.

The following work is the initial 2D-2D tunneling measurements of the νT = 1 bilayer

state, which clearly indicate a Josephson-like anomaly in the inter-layer tunneling

current [20].

This work focuses on six specific measurements:

1. The first measurements, made by Peter Burke and myself, are of the RF con-

ductivity of a 2DES at zero magnetic field [21]. From the RF conductivity data,

we extract the plasma modes of the 2DES, which are strongly modified by the

presence of a nearby metallic gate.

2. Next we show 2D-2D tunneling data at zero magnetic field. In conjunction with

a new sum-rule expression, this data provides a direct measurement of ∆SAS –

the splitting between the symmetric and antisymmetric quantum well states.
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3. We report our initial measurements on inter-layer tunneling in the νT = 1 bilayer

quantum Hall state [20]. These data show clear evidence for a Josephson-like

feature in the tunneling I − V .

4. Next, we investigate the temperature dependence of the νT = 1 tunneling fea-

ture. The zero-bias conductance is found to be exponential ∼ exp(−T/T0) in

temperature (not activated: ∼ exp(−T0/T )).

5. We measure the dispersion relation of the linearly dispersing Goldstone mode

[22] via tunneling spectroscopy. This mode results from the broken symmetry

ground state first proposed by Fertig [10].

6. This thesis concludes with an investigation of the effects on tunneling of a

relative density imbalance. In this case νT = ν1 + ν2 = 1, but ν1 6= ν2. We find

that a small density imbalance increases the critical layer separation at which

the QHE disappears.

These results are divided into several chapters, beginning with introductory ma-

terial, then continuing to the detection and understanding of the fascinating νT = 1

quantum Hall state. The initial chapters serve as introductions to the GaAs/AlGaAs

system, relevant experimental methods, and the basic physics of electrons in two-

dimensions.

Chapter 1 begins with a discussion of of the GaAs/AlGaAs material system, intro-

ducing the technique of molecular beam epitaxy (MBE) through which our samples

are grown. These samples are processed via various fabrication techniques yielding

structures suitable for resistance, or 2D-2D tunneling measurements. This chapter

also introduces the basic band structure of these engineered devices and concludes

with the essential concepts of noninteracting 2D fermions both at zero and large per-

pendicular magnetic fields. Chapter 1 then continues with a description of the basic

experimental methods used in our measurements. These measurements are all per-

formed at low-temperature – tens or hundreds of milli-Kelvin – so an overview of the

cryogenic apparatus used to obtain milli-kelvin temperatures is included.
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Chapter 2 details the 2DES in the context of the simple Drüde model, and goes

on to describe a set of experiments performed by Burke et al. [21] measuring the AC

(GHz) transport properties of a single 2DES. In accordance with the simple model, we

observe plasma oscillations in an appropriately sized resonant cavity of 2D electrons.

The results are found to be in good quantitative agreement with the simple Drüde

model. This chapter concludes with an introduction to noninteracting electrons in a

perpendicular magnetic field.

Chapter 3 considers the case of electron tunneling between two nearby 2DES’s,

and includes a detailed discussion of 2D-2D electron tunneling at zero magnetic field.

A new method to directly measure the energy splitting between the ground and first

excited state, i.e., the tunneling strength, of the double-layer system is also included

in this chapter. The effect of temperature and density, on the tunneling spectra is

investigated. Finally, the effects of a perpendicular magnetic field on 2D-2D tunneling

are investigated.

Chapter 4 introduces the physics of strongly interacting quantum Hall systems,

starting with single-layers and then moving on to bilayers; with special consideration

for the case of νT = 1. Prior investigations, both experimental and theoretical, are

discussed in depth. Tunneling data at this filling fraction is presented which shows

a dramatic enhancement of the zero-bias tunnel conductance, and a corresponding

step-like feature in the tunneling current. This anomaly is discussed in terms of the

physics of superconductors and Josephson tunnel junctions [20].

Chapter 5 considers the dependence of the νT = 1 tunneling features on tem-

perature. Deep in the correlated regime, the tunneling conductance is to be sharply

peaked at zero-bias, and increases roughly exponentially with decreasing temperature.

As the phase boundary is approached, however, the peak first increases then decreases

with decreasing temperature. Associated with this suppression at low-temperature,

we observe extremely long time constants (∼ 10, 000 seconds). The suppression and

time constants can be explained by contribution to the electronic Zeeman energy by

the nuclear field.

In Chapter 6 we use a parallel magnetic field to access the νT = 1 spectral function
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at finite wave-vector, k = eB||d/~. A key element of the theoretical understanding of

this bizarre quantum fluid is the existence of linearly dispersing Goldstone collective

modes. Using the method of tunneling spectroscopy, we have demonstrated the exis-

tence of these modes. We find the measured velocity to be in reasonable agreement

with theoretical estimates [22]. Contrary to theoretical expectations, however, the

zero-bias tunneling feature persists to large parallel fields.

Chapter 7 presents both inter-layer tunneling and Coulomb drag data exploring

the dependence of the phase transition on a relative density imbalance between the

layers. We find that in the strongly coherent regime the system is further stabilized

by imbalance, and that the phase boundary is augmented by the application of a

density imbalance. Even at layer separations when the state has vanished, it can be

restored by a suitable imbalance.
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Chapter 1

GaAs-AlGaAs Crystals and Experimental

Apparatus

Although the focus of this thesis is the exciting collective physics of electrons in two-

dimensional (2D) layers, the “laboratory” in which these experiments are performed

is an extremely pure semiconductor crystal. Because of their high-quality and well

known material parameters, alloys of gallium arsenide (GaAs) and aluminum arsenide

(AlAs) are the materials of choice. The detailed parameters of these crystals strictly

define our experiments. Within these stringent requirements it is possible to engineer

physical structures which confine electrons to nearly perfect two-dimensional sheets.

The experiments described herein were performed at cryogenic temperatures in

order to observe the often delicate many-body electron states. The materials can be

cooled to 4 K by simply immersing them in liquid helium, to 0.3 K in a pumped 3He

cryostat, and to 15 mK in a dilution refrigerator. Even at the lowest temperatures

new physics continues to emerge, requiring even more exotic refrigeration.

The materials described herein are grown by molecular beam epitaxy (MBE), a

technique by which crystals are assembled with atomic accuracy. Precisely defined

structures can be created in the growth direction, while the other two directions

remain isotropic. Electrons are then confined at the interfaces between different

alloys; depending on the structure, this can yield the single and multiple 2D electron

layers which are the central focus of this thesis.

GaAs is a very well-studied and understood material. Decades of materials science

has brought this system to a level of maturity which facilitates its use as a host mate-
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rial. Instead of investigating GaAs per se, we use the pre-existing body of knowledge

about the GaAs system to design our physics experiments.

We can design single or multiple layers of 2D electrons each with custom tailored

electronic properties. The structure determines the coupling between these layers,

both in terms of tunneling and Coulomb interactions. These custom GaAs/AlGaAs

alloys can be exceptionally pure, resulting in electron scattering lengths in excess of

0.5 mm. Our research depends on our fruitful collaboration with Loren Pfeiffer and

Ken West who consistently grow the very best GaAs crystals in existence.

As crystal quality has increased, finer and finer details of the interacting electron

system have been revealed. This has yielded a host of fundamentally new physical

effects in both single and bilayer systems. In single layer systems some of the effects

are: the integer quantum Hall effect (IQHE) [23], observed in relatively low quality

crystals; the fractional quantum Hall effect (FQHE) [24] found in cleaner materials;

and the more recently detected stripe- and bubble-like phases [5] which exist in only

the highest quality samples. In bilayer quantum Hall systems a long anticipated

type of superfluidity has been detected [20, 25]; the central topic of this thesis is

experimental evidence for this atypical state via electron tunneling spectroscopy. The

GaAs system is indeed a well-stocked laboratory to study fundamental physics.

This chapter begins with an introduction to the crystal structure of GaAs/AlGaAs

materials and the resulting electronic band structure. This introduction emphasizes

the properties of mobile electrons within the crystal. This discussion of band structure

illustrates how carefully assembled GaAs/AlGaAs layers can create engineered quan-

tum structures, and concludes with a brief menu of the structures used throughout

this research.

The introduction to GaAs materials is followed by a discussion of the MBE growth

process by which all of our crystals are manufactured. As much an art as a science,

the growth of the high-quality crystals has driven research in 2D electrons for decades.

The cryogenic methods involved in cooling from room-temperature (300 K) to

15 mK fill the remainder of this chapter.
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Figure 1.1: Band diagram in Kronig-Penney in first Brillouin zone. Pale dotted line
is energy for free electrons.

1.1 Crystal structure

Before discussing the full 3D crystal structure of GaAs, it is helpful to review the

consequences of a lattice on electrons in just one dimension. In the physical GaAs

crystal, the lattice consists of a periodic potential generated by the regular array of

gallium and arsenic atoms. This section focuses on the response of noninteracting

electrons to such a potential.

A free electron has a dispersion given by E(k) = ~k2/2m. Thus, the energy is

quadratic in the wave-vector k. The first effect of the lattice is to limit the crystal

momentum to a single zone of the reciprocal lattice. That is, in a crystal any wave-

vectors connected by k + 2πn/a are equivalent. This reduced zone scheme gives rise

to energy bands.

The second result of a finite potential is the opening of gaps in the electron spectra

at the zone-boundary. The most simple description of a periodic potential in 1D is

the Kronig-Penney (KP) model. In this model the potential is an array of delta

functions, the weight of which is a free parameter. Figure 1.1 shows the energy vs.

crystal momentum of free electrons (dashed line) and those in the KP model (light-
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solid line). The result of the potential is to open gaps at the points of intersection in

the free electron spectra.

At low-temperature the fermionic electrons will completely fill the lowest unoccu-

pied states, the largest energy of which is called the Fermi energy (Ef ). In Figure 1.1

the two dashed horizontal lines indicate two possible Fermi energies (both describing

insulators). In one case, the lowest band is completely filled, and any additional elec-

trons will start filling the second band at its minimum at the zone boundary (note

that each k state can be filled with two electrons with opposite spins). In the next

case, the first two bands are completely filled and the next available state is at k = 0

in the third band. Both of these cases are typical for semiconductors; at temperatures

above the gap energy, some carriers will be thermally excited from the filled valence

band into the empty conduction band. Generally a semiconductor is lightly doped

with some material which either donates a small number of electrons to the conduc-

tion band, or accepts electrons from the valence band (in which case the carriers are

vacancies or “holes” in the valence band).

The final concept described in this picture is that of effective mass. For example,

the dispersion of the third band around k = 0 can be expanded as E3(δk) ≈ E3(0) +

~2δk2/2m∗. m∗ is called the effective mass, and like a real mass, describes how a

particle responds to a driving force, here in the presence of the lattice. From the

figure it is clear that the curvature of the third band is larger than the free electron

band, therefore the effective mass is smaller. The concave down top of the 2nd valence

band is has less curvature than the nearby conduction band, yielding holes with a

larger effective mass.

GaAs and AlAs are both III-V semiconductors with zinc-blend structures as in

Figure 1.2 (for a more complete discussion of crystal structure, see for example,

Ashcroft and Mermin [26]). The lattice constant of the conventional cubic unit cell is

a ≈ 5.6 Å for GaAs. The GaAs structure is assembled from two face centered cubic

(fcc) lattices one of gallium atoms and the other of arsenic. The lattices are offset by

a quarter of a lattice constant in each direction: (a/4, a/4, a/4). All of the materials

discussed in this thesis are grown on the [100] crystal surface; in the diagram this
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Figure 1.2: Top: GaAs crystal structure (zinc blend), the tetrahedral bonds are shown
in black. In this image the two interspersed FCC lattices are clearly visible. Bottom:
reciprocal lattice for the FCC structure, note the X point on the edge of the zone;
the Γ (not shown) is in the center of the zone.
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Figure 1.3: Dependence of GaAs/AlGaAs band structure on aluminum fraction
(adapted from [27]). Top: band offset in the conduction band. Bottom: offset in
valence band. The zeros are offset by the GaAs band gap of 1.4 eV. Note that the
valence band maximum is always at the Γ point, while the conduction band minimum
shifts from Γ to X at an aluminum fraction of about x ≈ 0.4.

corresponds to the top of the crystal.

As with the 1D example, the electronic properties of GaAs are best described

in the momentum representation and with respect to the corresponding reciprocal

lattice. Although conceptually simple, the FCC reciprocal lattice in 3D is much more

complex than the simple 1D example.

The first Brillouin zone of the GaAs reciprocal lattice is shown in Figure 1.2;

several points of high symmetry in this zone have special names, of which two are

relevant here: the Γ point at the center of the zone, and the X point on the edge.

In the AlxGa1−xAs alloy there are local minima in the conduction band at both of

these points. When x < 0.4 the Γ point is lower in energy than the X point, while

for x > 0.4 the minimum shifts to the X point.

The band gap and the conduction band energy both change with aluminum con-

centration x. As a result, a layered structure assembled from sheets of different con-
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centration will create an effective potential landscape for electrons in the conduction

band or holes in the valence band. The details of the potential can be engineered by

carefully selecting the aluminum fraction (see the data in Figure 1.3). For example,

a layer of pure GaAs bounded by Al0.3Ga0.7As barriers will form a potential well.

1.2 Band structure engineering

The previous section concluded with the central idea of band engineering: com-

binations of materials with differing band gaps can create controlled potential land-

scapes for conduction band electrons. In addition to the difference in band gaps

between GaAs and AlAs, the effective mass of electrons at the Γ point also differ:

0.068 × me for GaAs and roughly 0.15 × me in AlAs [28]. Many of the structures

described here include layers with an aluminum concentration larger than 0.4, there-

fore in the region where the X point is the potential minimum. In our samples these

layers can serve as tunneling barriers, and we believe the electrons tunnel via the Γ

point. Although this has not been directly verified, the observed tunneling conduc-

tance scales with aluminum fraction as is expected with the Γ point tunneling barrier.

We would expect orders of magnitude more strongly tunneling samples if the smaller

X point barrier were relevant.

MBE-grown surfaces are precisely defined at the atomic scale in the growth direc-

tion, and are isotropic in the remaining two directions. These structures can therefore

be described by a potential V (z); the resulting wavefunctions are plane waves in the

x−y plane. The z wavefunction can be solved self-consistently by including both the

band potential and the interactions between electrons [29].

Undoped GaAs is an insulator because the Fermi energy lies in the band gap.

However, a small concentration of silicon dopant will populate the conduction band.

Modern high-quality samples rely on remote doping – the silicon atoms are placed in

a sheet remote from the electron gas, and the electrons migrate to the potential trap.

This technique was invented by Stormer [30] and it vastly increases sample quality

by reducing scattering from the random donor potential1.

1Carriers can also be electrostatically drawn into the 2D system using remote metallic gates.
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Figure 1.4: Single interface Al0.3Ga0.7As junction. The thin line is the self-consistent
trapping potential. The heavy line is the electron density. The dashed lines are the
first two eigenenergies (note that the second energy is only just bound).

1.2.1 Heterojunction A heterojunction is a single interface between AlxGa1−xAs

and GaAs, generally with an aluminum fraction x ≈ 0.3. Above the interface a

single-layer of dopants provide the carriers which eventually collect at the interface.

A typical band profile for a heterojunction is displayed in Figure 1.4. This struc-

ture consists of an interface between GaAs on the right and Al0.3Ga0.7As on the

left. A layer of silicon dopants on the far left contribute a total electron density

of 3.0×1011 cm−2. The smooth confining potential on the right is not generated

by a different material, instead it is the self-consistent potential from the electrons

themselves. As the density becomes very small, the trapping potential can become

increasingly soft and the wavefunction highly extended.

The linear slope of the potential to the left of the interface is generated from the

potential between the remote dopants and the bound electrons. In these samples,

Undoped samples provide the possibility for increased sample quality due to the a complete lack
of donor scattering. These samples are challenging to fabricate, but provide a controllable electron
density coupled with extremely high-quality [31, 32].
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Figure 1.5: Single quantum well assembled from Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As.
The thin line is the self-consistent trapping potential. The heavy line is the electron
density. The dashed lines are the first three eigenenergies.

the electron density is controlled by the setback distance of the dopant layer, not

the number of donors. Physically, this means that there is a sufficiently large donor

concentration to pin the Fermi energy in the donor layer just below the conduction

band edge.

The ground state charge density, |ψ(z)|2, is shown as a heavy line, and the two sub-

band energies are illustrated by dotted lines. It is a generic feature of heterojunctions

that the excited states are weakly bound, and that there is often only a single bound

state.

In addition to scattering from the remote donors or impurities, a second intrin-

sic source of scattering is from imperfections in the GaAs/AlGaAs interface, called

interface roughness. Because heterojunctions have only one interface, until recently

the best samples in the world were all heterojunctions.

1.2.2 Quantum well Like a heterojunction, the conceptually simper single quan-

tum well (SQW) forms a single sheet of electrons. In the structure in Figure 1.5 the
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electrons are confined in a GaAs well between AlxGa1−xAs barriers. In this typical

quantum well the well width is 300 Å and the carrier density is n = 3.0×1011 cm−2.

Here the first three bound states are shown by the dotted lines. Notice the roughly

quadratic spacing, reminiscent of an infinite square-well potential. Like the hetero-

junction, an isolated quantum well usually forms a single 2DES, unlike the 2DES

formed by a single interface a SQW is symmetric. When the single well is sufficiently

wide, it can act like two heterojunctions and effectively form two distinct layers of

electrons [33].

In spite of having two interfaces, quantum well samples now hold the record for

highest mobility. The number of electron contributed by the donor layer is roughly

proportional to the setback between the donor layer and the 2DES. The 2D density

is left unchanged by placing the donor layers symmetrically about the well but twice

as far away. This increased setback then dramatically reduces the importance of

scattering from the donor potential and enhances the mobility.

1.2.3 Double quantum well A double quantum well (DQW) consists of two wells

separated by a barrier. This thesis focuses on such samples and discusses in detail

the measurement of quantum mechanical tunneling current between the two layers.

The structure in Figure 1.6 consists of two 180 Å wide GaAs quantum wells with a

99 Å wide Al0.9Ga0.1As tunneling barrier. The lowest two energy states are separated

by a symmetric/antisymmetric energy gap ∆SAS which parameterizes the tunneling

strength. The computed gap for this structure is ∆SAS ≈ 0.4 neV; this calculation

includes the effects of the band structure and the differing effective masses in GaAs

and AlGaAs. The effective mass both enters into the Hamiltonian via the kinetic

term, (~2/2m∗)d2/dz2, and leads to a discontinuity in the first derivative of ψ(z)

when m∗ changes [29].

In general, bilayer samples can be tailored for many specific applications. Very

strongly coupled layers (with thin or very short barriers) were used in the initial

studies on multicomponent quantum Hall effects [12, 8, 7]. In these studies, the

quantity of interest was the magneto-resistances, ρxx and ρxy.
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Figure 1.6: Double quantum well: Al0.3Ga0.7As/GaAs/Al0.9Ga0.1As/GaAs/Al0.3Ga0.7As.
The thin line is the self-consistent trapping potential. The heavy line is the electron
density. The dashed lines are the first three eigenenergies. Note that the splitting of
0.4 neV between the lowest two eigenstates is invisible on this scale

In samples with an intermediate tunneling strength, the inter-layer tunneling cur-

rent can be measured. A selective depletion scheme is used to make separate electrical

contact to the two layers [34]. Tunneling measurements are possible when the tunnel-

ing conductance is much less than the sheet resistances, so the layers can be considered

as equipotentials.

Very weakly tunneling samples are useful for the measurement of Coulomb drag

[35]. Here, a current is passed through one layer, and the resulting voltage drop due

to inter-layer scattering is measured in the other. A tunneling current leads to a

spurious signal.

1.3 Growth

Molecular beam epitaxy is an atomically accurate method of crystal growth in

which the constituent elements are very slowly evaporated onto a substrate. By

exactly controlling the growth stoichiometry, custom structures are formed from layers
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Figure 1.7: Schematic diagram of a MBE chamber.

of GaAs, and AlxGa1−xAs.

In the early 1970’s, MBE was developed as a new growth technique for high-

purity layered semiconductor alloys [36, 37]. MBE can produce high-quality layers

with very abrupt interfaces, precise control of thickness, doping, and composition.

Because of this high degree of control, MBE is an ideal tool in the growth of high-

quality engineered electronic structures.

In MBE, the constituent elements of a semiconductor are deposited onto a heated

crystalline substrate to form thin epitaxial layers. The source materials are typically

from thermally evaporated elemental sources, resulting in “molecular beams” incident

on the substrate. The material sources are independently heated until the desired

material flux is achieved, which generally yields a growth rate of only a few Å/s.

To obtain high-purity layers, the material sources are extremely pure and the entire

process is done under ultra-high vacuum (∼ 10−11Torr). The combination of slow

growth rates coupled with rapid shuttering of the beams permits atomically abrupt

transitions from one material to another.

The growth chamber of a generic MBE system and several of its subsystems
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are illustrated in Figure 1.7. The sample holder rotates continuously during growth

to increase the homogeneity of growth. A liquid nitrogen cooled shroud is located

between the chamber walls and the sample holder and acts as pump for many of the

residual gasses in the chamber.

Once the blank wafer is placed in the rotating holder, the shutters are opened

and closed in a precisely coordinated fashion, which controls the material deposited

layer by atomic layer. Depending on the material, the wafer temperature may also

be changed during deposition.

Figure 1.8 shows the actual growth layers required to create the bilayer quantum

well wafer commonly used in subsequent experiments. The initial layers are called

the cleaning superlattice and serve to prepare the surface of the wafer. Following the

superlattice is an AlGaAs buffer, and then a silicon dopant layer. The actual DQW

is set back from the dopant on the top and bottom to determine the density. A third

donor layer follows a brief setback, this layer is designed to populate the surface states

of the crystal. Finally the sample is capped with a thin GaAs protective layer.

1.3.1 Processing A 2” wafer of GaAs is not overly useful without some means to

contact and control the as-grown 2D layers. Three very useful structures are contacts,

gates, and mesas, the detailed fabrication and processing techniques of which are

described in Appendix B. Chapter 3 discusses a technique to make separate electrical

contact to each of the layers in a multi-layer sample.

An Ohmic contact is made from a material which can diffuse through the top

layers and make electrical contact to the 2DEG. Ohmic refers to the fact that such

contacts should follow Ohm’s law, and not, for example, act as a diode.

It is frequently convenient to use a single sample to study a wide range of carrier

densities – a gate is a metalization on the sample surface which, when biased with

respect to the 2D electrons, changes the electron density below it.

Finally, we wish to confine the electrons to a suitable geometry. By first masking

the desired shape, a chemical etch can dissolve the remainder of the sample surface,

leaving a 2DES only under the protected portion of the sample. The final structure



22

400Å - B

3300Å - C

2050Å - D

459Å - E

2300Å - F

5000Å - G

6100Å - H

700Å - I 

J

100Å - A

A, B, C - Cap structure 

D - Top setback

E - Double quantum well

F - Back setback

G, H, I -  Cleaning layers

J - Substrate

G
ro

w
th

 d
ir

ec
ti

on Si dopant

GaAs

Superlattice

Al0.3Ga0.7As

Figure 1.8: Annotated structure of the parent wafer of Sample E.



23

is called a mesa.

1.4 Cryogenics and measurement

Once grown, processed, and connected to a compact chip carrier, the sample is

ready for use. Resolving the often delicate, many-electron states requires the ultimate

in cryogenic temperatures and high magnetic fields. To that end we employ a series

of different, and increasingly complex, refrigeration techniques. In our lab we can

cool GaAs crystals below 15 mK. Each cryostat is equipped with a superconducting

magnet which provides a magnetic field as large as 16 Tesla.

There are several relevant energy scales which determine the maximum tempera-

ture below which various physical effects begin to develop in the 2DES. The first, and

generally the largest, is the gap from the ground state to the first excited electronic

sub-band, ∆E = E1 − E0. At high-temperatures there will be an undesired thermal

population of these carriers. For the case of the heterojunction in Figure 1.4 or the

SQW in Figure 1.5 this energy is ∼ 100 K. In the double quantum well in Figure 1.6,

E1 − E0 = ∆SAS is vastly less than the Fermi energy. Therefore the relevant gap is

between these energies and the 2nd excited state: E2 − E1 ≈ 400 K.

Generally speaking, interesting quantum physics does not begin to emerge until

the temperature is well below the Fermi energy, Ef ; above this temperature the

electron gas loses its quantum character and acts like a classical Maxwell-Boltzmann

gas. For typical sample densities of 0.5×1011 cm−2, the Fermi temperature is Tf =

20 K. Although we generally operate at far lower temperatures, every sample is first

tested at 4.2 K simply by dunking it in a liquid helium dewar. By 4 K the electron gas

has assumed its Fermi character and we can test the overall operation of our devices.

For example: verifying proper contact to the electron gas, testing the functionality of

the gates, and frequently measuring the electron density.

In a free electron gas, the importance of interactions between electrons is param-

eterized in terms of the ratio of the potential to kinetic energy – called rs. In a 2D

degenerate Fermi gas, this ratio is rs = m∗e2/ (4πε~2
√
πn); for a 2DES in GaAs with

a density of 0.5×1011 cm−2, this ratio is about 2.5. Fermi liquid theory is thought to



24

4He bath / 
main dewar

3He
pot

Sample
holder

1K pot
pumping line

1K pot

Superconducting
magnet

Sorbtion
pump
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be valid for rs . 30 for 2D electrons (see [38], and references therein), so our system

can still be described in a single-particle theory. By decreasing the electron density, rs

can be increased, leading to non-Fermi liquid behavior. Alternately, the application

of a large perpendicular magnetic field effectively quenches the kinetic energy, leading

to new quantum states dominated by the electron-electron interactions.

At still lower temperatures effects such as the integer and fractional quantum

Hall effects begin to emerge. Much of this physics can be studied effectively in a

3He cryostat. Just like evaporating H2O cools your skin, pumping on a liquid helium

bath lowers the temperature. A pumped 4He system can cool to roughly 1 K, while

replacing the 4He with the lighter isotope, 3He, reduces this temperature to ∼ 0.3 K.

With ever-decreasing temperature and increasing sample quality, more and more

exotic and delicate states of the electron system emerge. For example, this thesis

details measurements performed in bilayer 2DES in which the system enters a new,

superfluid ground state, but only below ∼ 500 mK. A dilution refrigerator is required

to reach these ultimate low-temperatures. Such a cryostat consists of a circulating

mixture of 4He and 3He, which can cool to below 15 mK (for a more detailed discussion

of the operation of the 3He and dilution cryostats refer to Appendix C).

1.5 Conclusion

In this section, the basic material properties of the GaAs system have been dis-

cussed, and those properties which make it suitable as a laboratory for fundamental

physics have been emphasized. The use of MBE to grow high-quality GaAs crystals

was discussed, and several typical MBE-grown structures were given as examples.

Even at the 15 mK base temperature of a dilution refrigerator, the electron system

is continuing to evolve [20] with new physics constantly emerging [39]. Without

doubt further discoveries in the highest quality samples wait to be found at yet lower

temperatures.
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Chapter 2

Noninteracting Electrons in 2D

This chapter presents high-frequency conductivity measurements by Peter Burke and

myself [21] on a 2DES at zero magnetic field. Electrons in two-dimensions (2D) can be

treated in increasing levels of complexity, each introducing new physical phenomena.

This chapter begins with the most simplistic description of a two-dimensional electron

gas (2DES): the Drüde model. The Drüde model describes a gas of noninteracting,

classical electrons, with a phenomenological relaxation time.

To illustrate the surprising success of this model, we measured the frequency-

dependent conductivity of a 2DES [21], which is easily computed within the Drüde

model. The results of this study compare favorably with experimental measurements

both at DC and from 50 MHz to 10 GHz. In this framework, an isolated 2DES

behaves as a distributed combination of resistors and inductors. The addition of a

nearby conducting gate capacitively coupled to the 2DES completely changes the

dynamics of the model and allows for propagating density waves, or “plasmons.” The

dispersion and damping of these plasmons is measured, and both are well described

by the Drüde result.

The addition of quantum mechanics creates a new layer of complexity, and is the

second topic of this chapter. The inclusion of the Pauli exclusion principle alone

leads to the formation of a Fermi gas, which dramatically changes the single-electron

properties of the system. A perpendicular magnetic field leads to quantized cyclotron

orbitals, which at low magnetic fields results in Shubnikov de Haas (SdH) oscillations.

When the field is further increased the SdH oscillations continuously evolve into the

integer quantum Hall effect (IQHE).
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The unifying theme of this chapter is noninteracting electrons. A truly remarkable

range of physical effects result from the noninteracting 2D electron gas. Nonetheless,

this is just a hint of the rich physics in the interacting 2DEG.

2.1 Drüde model

The Drüde model is arguably the simplest description of electrons in a material.

The mobile charges are assumed to be noninteracting classical electrons, which scatter

from defects (impurities, lattice imperfections, or phonons) on a timescale τm. In spite

of the stunning naiveté of the Drüde model, it captures many of the essential prop-

erties of a 2DES at zero magnetic field (naturally there are exceptions, particularly

when the interactions between the electrons cannot be ignored).

In the presence of an external electric field E(t) and a constant magnetic field B,

the classical trajectory, x(t), of a single charge carrier is described by

m∗d
2x

dt2
+
m∗

τm

dx

dt
= eE(t) + eB× dx

dt
. (2.1)

A phenomenological damping term, m∗/τm, has been included; 1/τm represents the

rate at which scattering events change the momentum. τm is often referred to as the

momentum lifetime, since it describes how fast momentum states relax.

In two-dimensions it is often convenient to represent the vector x(t) = x(t)x̂+y(t)ŷ

as a single complex number z(t) = x(t) + iy(t). However, to avoid confusion with

the phasor notation used in the time dependence, exp(−iωt), x(t) will be treated as

a regular vector expression.

Equation 2.1 is easily solved in the frequency representation, using the defini-

tions J(t) = σE(t) and J = en(dx/dt). The resulting Drüde prediction for the AC

resistivity tensor ρ = σ−1 is

ρ(ω) =

 ρxx ρxy

−ρxy ρyy

 =

m∗(1 + iωτm)/ne2τm B/ne

−B/ne m∗(1 + iωτm)/ne2τm

 , (2.2)

where e is the carrier charge, m∗ = 0.068 ×me is the effective of electrons in GaAs,
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Figure 2.1: Typical Hall bar geometry for transport measurements.

and n is the 2D carrier density. These transport parameters are often measured

in the four wire configuration illustrated by Figure 2.1. This section contains sev-

eral representative numerical results for a “typical” 2DES. The prototypical 2DES is

buried 5800 Å beneath the samples surface, has a dielectric constant ε = 13, a density

n = 1.5×1011 cm−2, and a mobility µ = 3.5×106 cm2/Vs.

Equation 2.2 has several ingredients. The off-diagonal elements are the Hall resis-

tivity, which depend only on e, n and B. It is often convenient to use ρxy to measure

the electron density, by finding the slope of ρxy vs. B. The first half of this chap-

ter focuses on zero magnetic field, consequently ρ(ω) will denote the scalar quantity

ρxx(ω).

In 2D, ρ(ω) has dimensions of Ohms per-square1, or Ω/�; for example, a rectan-

gle of length D and width W will have a resistance R ≈ ρ × (D/W ). The following

relations will neglect this term, in effect assuming a square sample. For GHz frequen-

cies it is conventional to use the symbol Z, the complex impedance, in place of R.

Z = Zre + iZim has a real part which is the usual DC Drüde resistance and a series

1Consider two squares, one with side L and a second with side 2L, and with a current I driven
through each. The smaller square has half the length, but twice the current density of the larger
square. This results in the measured voltage drop being equal.
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imaginary component,

Zre(ω) =
m∗

ne2τ
, and Zim(ω) =

ωm∗

ne2
.

Mathematically, this is nothing more than the impedance of an inductor, whose “ki-

netic inductance” is L = m∗/ne2. Inductance usually results from energy stored in a

magnetic field. However, here it resides in the kinetic energy of the electrons.

Mobility is a measure of a 2DES’s quality, defined by µ = τme/m
∗ = (neρDC)−1. In

the frequency-dependent Drüde model the scattering time τm (and therefore mobility)

can independently be found using two distinct measurements. The real component

of Z is frequency-independent and should therefore give the same information as the

zero frequency resistivity. Additionally, the ratio

Zim(ω)

Zre(ω)

1

ω
= τm

gives a direct measurement of the scattering time. This second measurement of

mobility is related only to τm, a single measured quantity, and the ratio is geometry-

independent.
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In contrast, mobility is conventionally extracted from the DC resistivity, ρ, mea-

sured using 4 terminal lock-in techniques. The measured resistance R is a geometry

dependent, extrinsic, property of the sample. Two distinct measurements of Rxx are

required to compute ρ. Current is driven between a pair of contacts, and the volt-

age drop is measured across the pair of contacts parallel to the current flow. Given

four contacts, there are two distinct ways of making this measurement, which give

(possibly) different values for resistances R1,2−4,3 and R2,3−1,4. From these values of

resistance, the resistivity can be computed using van der Pauw’s equation [40].

In these measurements, the electron density is subsequently required to convert ρ

to mobility. The Hall resistance can be used to determine the density. It is often the

case that there are undesired parallel channels in the 2DES, and the Hall measurement

will include their contribution to the density.

It is more accurate to measure the 1/B periodic SdH oscillations of the DC resis-

tivity (or almost any other parameter of the 2DES) vs. magnetic field, see Section

2.5.1 for details. Unlike the Hall effect, the SdH oscillations are insensitive to the car-

riers in a low-conductivity parallel channel. This difference can lead to discrepancies

in the computed mobility.

2.2 RF plasmons

The description of a Drüde 2DES is considerably changed by the presence of a

nearby metallic gate (Figure 2.3). This variation of the Drüde model can be solved

in terms of a distributed LRC transmission line, which supports an attenuated prop-

agating mode.

The inset to Figure 2.3 illustrates this one-dimensional (1D) model. It has param-

eters r, l, and c: the resistance, inductance, and capacitance per-length. This simple

model is solved by first expressing discrete versions of the circuit equations:

qi = c∆xVi,
dqi
dt

= Ii−1 − Ii, and Vi+1 − Vi = −
[
r∆xIi + l∆x

dIi
dt

]
.

Assembling these discrete equations into a pair of continuous equations for I and V
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(with an assumed time dependence of exp(iωt) for all the variables) gives the results

dV 2

d2x
= −k2V, and I =

−1

(r + iωl)

dV

dx
.

k is a complex wave-number defined by k2 = (ω2lc+ iωrc). The solutions V (x, t) can

be found by inspection to be V (x) = A exp(ikx) +B exp(−ikx).

The wave velocity is related to the real portion of the wave-vector by v = ω/kre.

For an ideal LC transmission line is v = (lc)−1/2. Resistive damping reduces the

velocity by a factor of [
1

2
+

1

2

(
1 +

r2

ω2l2

)1/2
]−1/2

.

For typical GaAs parameters at 3 GHz the fractional change in velocity is only 0.75%,

which can be safely neglected. Inserting the Drüde model results for inductance and

capacitance gives the expected velocity,

v =

√
ne2d

m∗ε
. (2.3)
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The same 2DES would have a wave velocity v = 2.4× 106 m/s, or about 0.8% of the

speed of light in a vacuum.

To find the impedance of the device of length D, in Figure 2.3, we apply boundary

conditions such that one end of the 2DES is at voltage V0, and at the other end the

current is zero. These boundary conditions result in the impedance

Z = −R + iωl

k

1

tan(kD)
.

The measured impedance, Z, in Figure 2.3 clearly shows oscillations which corre-

spond to standing modes within the metal gate/2DES “box”. The width of the bumps

results from the lifetime τm of the electrons. Again, fitting the Drüde expression to ex-

perimental data provides another mechanism to extract τm from frequency-dependent

impedance measurements.

The modes predicted by the Drüde model are the long wavelength limit of classical

2D plasma modes [41, 42, 43]. For an isolated conducting sheet, the dispersion is

given by ω2 = kne2/2εm∗; this result is substantially modified by the addition of a

conducting gate a distance d above the 2DES:

ω2 =
ne2

εm∗
k

1 + coth(kd)
.

As kd→∞ this expression reduces to the Drüde/transmission line result.

2.3 Experiment

Here I present frequency-dependent conductivity measurements of a single 2DES

from 50 MHz to 10 GHz performed by Peter Burke and myself [21]. These data were

taken in a top-loading Oxford 3He cryostat with base temperature of 0.3 K. The

sample insert was wired with 16 manganin leads (twisted pair) for DC measurements

and a single UT34 beryllium-copper coaxial cable (with a silver flash on the inner

conductor) for RF measurements to 20 GHz. At this time the cryostat was also

equipped with a 15 Tesla Oxford superconducting magnet.
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followed by a coaxial cable leading from the 0.3 K stage to the HP network analyzer
at room-temperature.
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The samples were mounted on a header with 16 DC leads and a SMA connector

perpendicular to the plane of the samples. The SMA connector linked the sample

mount to the coaxial cable; its central pin was soldered to a 50 Ω strip line bridging

the gap between the connector and the GaAs sample. The sample was then indium-

soldered to the strip-line and terminated by another solder connection to RF ground.

An important concern in this type of experiment is verifying the coaxial cable and

applied microwave radiation do not appreciably heat the sample. To provide the best

thermal contact possible, the sample is immersed in liquid 3He and the temperature

is measured with a Speer 470 Ω resistor. It is easy to heat the sample and the 3He

bath by applying excessive microwave power. For powers less than 1 nW, both the

Speer temperature and the sample resistance measurements were found to become

power independent.

Since the cryostat was equipped with one coaxial cable the impedance of the 2DES

was measured in reflection; a more challenging experiment than transmission. Re-

flection measurements were performed using an HP network analyzer, which records

both the magnitude and the phase of the signal.

Extracting the impedance of the sample from the measured reflection requires

several steps. The coefficient Γ(ω) is defined as the ratio of reflected voltage to input

voltage, and is related to the impedance by (assuming standard 50 Ω coaxial cables)

Γ(ω) =
Z − 50Ω

Z + 50Ω
.

The impedance computed from the raw data is that of the sample and the coaxial cable

in series. This raw data must be corrected in magnitude to include the attenuation

of the cable (5dB), and in phase to take into account the finite length of the cable

(1.5 meters).

2.4 Results

The results presented here are for the two extreme cases. The first is when most

of the sample is ungated, and the second is when the gates cover the majority of
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the sample (Figure 2.4). In the former, case the system can be considered as two

capacitors in series with the AC Drüde impedance. In the second case, the device is

essentially two 2DES plasmon resonators in series.

The top of Figure 2.5 contains representative data taken from Sample A in which

the majority of the sample is ungated and acts as the series combination of an inductor

and a resistor. The continuous curves represent the Drüde model predictions, with the

mobility as a single fitting parameter. The 2DES is buried 5800 Å below the sample

surface, and has lateral dimensions 510×2560 µm. The gates are 330 µm and 680 µm

long. The measured electron density is 1.5×1011 cm−2, and the mobility from the fit

is 3.8×106 cm2/Vs, while the mobility from the ratio Zim/Zre is 3.3×106 cm2/Vs.

The inset shows the comparison of these two different measurements of mobility vs.

temperature, and confirms good agreement between the two.

Sample B, taken from the same wafer as Sample A, was fabricated to measure the

plasma modes in the fully gated geometry. In this case, the mesa is 100×780 µm, and

the gates are 360 µm in length. The resulting ungated region is 60 µm in length. The

overall slope to the imaginary part of the data results from this ungated region. Again,

the data was fit using the mobility as the only free parameter, which was found to

be 3.9×106 cm2/Vs, in agreement with the results of the previous section. The inset

to the figure shows measured mobility using this fitting technique vs. temperature,

which is in good agreement with the data from the ungated sample.

To complete this experiment, the dependence of the plasmon dispersion on electron

density is measured. The dotted line in Figure 2.6 is the dispersion predicted by

Equation 2.3. The solid markers are the velocity extracted from a fit to the plasmon

model, while the empty markers are from the location of the first peak in Zre(ω)

vs. frequency. It is unclear why the measured results always over-estimate the model

predictions, however, the data are still in surprisingly good agreement with the simple

model.
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2.5 Quantum mechanical electrons

The final section of this chapter is a brief summary of some important properties

and relationships in a noninteracting quantum 2DES. The zero temperature properties

of quantum electrons in 2D are first discussed in the absence of a magnetic field, then

extended to the case of a field perpendicular to the plane of the 2DES.

Suppose we have a square 2DES with side L; the single particle solutions have

energy E = ~2k2/2m∗ and are plane waves confined to set of discrete wave-numbers

by the finite sample size: kx = 2πn/L and ky = 2πm/L. Together with the electron

spin, each pair (kx, ky) describes a single quantum state. Electrons are fermions, so

each such state can contain at most one electron.

The ground state of Ne electrons is the configuration which minimizes the energy;

in 2D this corresponds to filling a circle of momentum states with radius k2
f ≥ k2

x +k2
y

with electrons. The Fermi momentum kf , and equivalently the Fermi energy Ef =

~2k2
f/2m

∗, therefore determines the number of electrons.

The density of electron states in the kx–ky plane is (L/2π)2; the number of elec-
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trons (in both spin states) with momentum less than kf is easily found to be

Ne

L2
=

k2
f

2π

=
m∗

π~2
Ef .

Evidently the states are uniformly distributed in energy, i.e., the 2D density of states

g(E) is constant and equal to g(E) = m∗/π~2. For free 2D electrons this quantity

is quite uninteresting; a fixed δE will always result in the same δn. As we will see

shortly, a perpendicular magnetic field dramatically changes g(E).

The application of a magnetic field to classical electrons yields objects in cir-

cular orbits, all at the cyclotron frequency ωc = eB/m∗, and the cyclotron radius

rc =
√

2m∗E/eB. Scattering can determine when the magnetic field is relevant. If

scattering events occur rapidly, i.e., if ωc < 1/τm, then the electron trajectory is a set

of almost straight segments and can be considered to be at zero field. As ωc becomes

larger, however, the electron can complete full orbits and the magnetic field becomes

very important.

Quantum mechanically the detailed wavefunction describing an electron in a mag-

netic field is dependent on the choice of gauge, however, no measurable quantities can

be affected. Here we use the Landau gauge, which is mathematically convenient; in

this gauge the vector potential is chosen to be A = (0, Bx, 0).

The energy spectra is found to be EN = (N−1/2)~ωc, suggesting that the Hamil-

tonian is closely related to the simple harmonic oscillator (SHO). In the x direction

the solutions are the SHO wavefunctions which consist of a Gaussian term modulated

by Hj(x), the jth Hermite polynomial. The y part of the wavefunction is a traveling

wave; together these form the full wavefunction,

ΨN,k = HN−1

(
x− xk

lB

)
exp

(
−(x− xk)

2

2lB
2

)
exp (iky).

This equation has introduced the magnetic length lB =
√

~/eB, which describes the

width of the SHO wavefunctions; note that lB is not the classical cyclotron radius!
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Each energy eigenstate is labeled by two quantum numbers, N and k, however, ΨN,k

is degenerate in the index k, which is related to xk by xk = −lB2k.

An expression for the degeneracy can be computed by assuming the system has

lateral dimensions L × L with periodic boundary conditions in the y direction. The

finite system discretizes k = 2πm/L, and as a result ∆xk = 2πlB
2/L, since the system

has finite length in the x direction, the total number of states is Ne = L/δX =

L2/2πlB
2. This leads to the conclusion that each energy eigenstate is macroscopically

degenerate with a spacial particle density (in an infinite system each eigenstate is

infinitely degenerate) n = eB/h.

Although the Landau gauge is perfectly suited for understanding the behavior

of noninteracting electrons, the symmetric gauge in which A = B × (−y/2, x/2, 0),

is more convenient for a later description of interacting systems. For reference, the

un-normalized wavefuctions of a single noninteracting electron in the lowest Landau

level are given by

ψl = exp(−ilθ)r|l| exp

(
− r2

4lB
2

)
= z|l| exp

(
−|z|

2

4

)
,

where z = (x − iy)/lB is the single complex number conventionally used to describe

position in the x − y plane. l determines the angular momentum, in which the

noninteracting states are degenerate for positive l.

The configuration of N noninteracting electrons in the lowest Landau level, filling

the lowest N angular momentum states, can be expressed as the antisymmetrized

product

ψ = A

{
N∏
j

ψj(xj)

}
N∏
j

exp

(
−|zj|2

4

)
.

This antisymmetrized wavefunction can be explicitly expressed as the Slater deter-
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minate,

ψ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

z1 z2 · · · zN

...
. . .

zN−1
1 zN−1

2 zN−1
N

∣∣∣∣∣∣∣∣∣∣∣∣
N∏
j

exp

(
−|zj|2

4

)
.

This is a Vandermonde determinant and can be exactly evaluated leading to the

simple form,

Ψ =
N∏

j<k

(zj − zk)
N∏
j

exp

(
−|zj|2

4

)
. (2.4)

It is interesting, that even in the absence of Coulomb repulsion, the electrons avoid

each other, with a density-correlation which scales like r2. This “repulsion” be in-

terpreted as manifestation of the Pauli principle which requires the wavefunction be

zero whenever any pair of electrons coordinates are equal.

Electrons also have two spin states, which have been neglected so far. In a

magnetic field the two spin states are split by δE = gµBB. In GaAs the spin

splitting much smaller than the cyclotron splitting: gµBB/~ωc = 0.014 (where

µB = 9.27 × 10−24 A · m2 is the Bohr magneton, and g = −0.44 is the Landè g-

factor in GaAs). The Landau level index N identifies the orbital states, while the

index |↑〉, or |↓〉 denotes the spin state. The Landau level filling factor ν = hn/eB is

the ratio of the total electron density to the density of magnetic flux quanta (eB/h).

Evidently ν = 1 when the lowest spin-resolved Landau level is completely filled, ν = 2

when both spin branches are filled, etc.

2.5.1 Resistance measurements in a weak magnetic field In the Drüde

model we found that the longitudinal resistance ρxx was independent of magnetic

field, and the Hall resistance ρxy increased in proportion to the field. We are now

prepared to see how the quantization of electrons into Landau levels affects the resis-

tance.

Although more sophisticated models for disordered 2DES in magnetic fields exist

[38], for the sake of simplicity we will treat a very simple case. To model the effects

of disorder, we shall assume that the Landau levels are broadened by a Lorentzian
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factor, with a half-width Γ. Therefore the broadened density of states is the sum

g(E) = 2
eB

h

∞∑
N=0

1

πΓ

[
1 +

(
E − EN

Γ

)2
]−1

.

In which the leading factor of two accounts for spin degeneracy, and the Zeeman

splitting is neglected (an assumption which is suitable when Γ is larger than the

Zeeman gap).

In a weak magnetic field (Γ > ~ωc) this summation can be evaluated exactly,

resulting in

g(E) =
m

π~2

[
1− 2 exp

(
−2mπΓ

eB~

)
cos

(
2mπE

eB~

)]
.

The conductivity of a 2DES is simply proportional to the square of the density of

states at the Fermi energy. Therefore the shift in g(E)2 will result in a proportional

change in the conductivity σxx, and therefore, ρxx. This predicts a series of oscilla-

tions, periodic in 1/B, called the Shubnikov de Haas (SdH) effect. The oscillations

increase in amplitude with increasing B. At low magnetic field occur they only at

even filling factors since Γ � gµbB. The results of this low-field analysis are displayed

in panel B) of Figure 2.7 (for more details on this type of analysis see Mani et al.

[44]). From the fit to measured SdH oscillations we estimate the lifetime τSdH = ~/2Γ

which results in a time of τSdH = 7 ps. This time is comparable to the tunneling

lifetime, τtun = 12 ps, but somewhat less the mobility scattering time τm = 32 ps (see

Chapter 3 for more details on this discrepancy).

2.5.2 Resistance measurements in a large magnetic field As the magnetic

field increases, spin resolved SdH oscillations become visible. The resistance minima

of the oscillations continue to deepen until they reach zero, and remain at zero for an

extended range of fields centered on integer filling ν. These extended zeros and the

accompanying plateaus at ρxy = h/νe2 are the signature of the IQHE.

Using the description of electrons in disorder broadened Landau levels is possible

to qualitatively understand the IQHE. Here we again ignore the effect of spin, which

in this picture does little more than double the number of available states. Even at
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high magnetic field, the understanding of the IQHE depends centrally on disorder.

Figure 2.7 panel C) displays the disorder broadened Landau level density of states;

the central delta functions contains states which are assumed to be “extended” and

can carry current. The body of states surrounding each delta function are further

assumed to be “localized” states due to disorder, and are unable to carry current.

If the Fermi energy resides in the extended states then the system is conducting;

however, as soon as the Fermi energy enters the localized states there are no mobile

low-energy excitations and the system becomes insulating – these are the regions

where the Hall resistance is quantized and σxx (and therefore ρxx) is zero. Evidently,

by increasing the number of localized states, the quantum Hall features can span a

wider range of filling factors, i.e., a more disordered sample can have stronger and

wider integer quantum Hall features.

Like the zeros in ρxx, the Hall plateaux are extended over a wide range of filling

factors centered on an integer ν. It has been argued that whenever there exists a

gap to charged excitations, a quantized Hall effect must occur (see [45] and references

therein). Once the conductivity drops to zero, no current can flow through the samples

bulk. To understand the quantized Hall resistance we turn instead to the edge states.

The top panel of Figure 2.8 shows the Landau level spectrum as a function of

position including the effect of an edge. As can be seen from the figure, the energy

increases as the edge is approached, and every Landau level that is initially below Ef

crosses at some point. Since the conductivity is determined by states near Ef , these

“edge states” must determine the observed longitudinal and Hall resistivity’s.

Classically, electrons traveling at an abrupt interfaces follow a “bouncing” trajec-

tory along the interface. If n is the vector normal to the interface, then the electrons

travel with an average velocity in the n×B direction. These electrons travel in only

one direction at the interface. The corresponding quantum states are chiral edge

states – with uni-directional current flow.

From the Laudauer-Büttiker theory of quantum transport [46], we expect each of

these channels to contribute a conductivity e2/h in the absence of scattering. It is

remarkable that in the QHE regime this condition holds even on macroscopic length
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Figure 2.8: The top panel shows the dependence on position of the energy spectra of
electrons in units of the cyclotron energy Ec = ~ωc. The dotted line represents the
Fermi energy; in this case there are two Landau levels below Ef in the bulk. The
bottom panel schematically depicts the edge states resulting from the two occupied
Landau levels.
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scales. Since the edge states are chiral, a backscattering event must transfer momen-

tum from the edge state on one side of the sample to the counter-propagating state

on the other side. For large samples this never occurs. Therefore we can analyze a

macroscopic sample in terms of a mesoscopic theory.

In the Laudauer-Büttiker formalism, the net current leaving a contact is given by

I = ∆V Ne2/h. N is the number of channels, and ∆V is the difference in potential

between the arriving and outgoing electrons.

In the specific case illustrated in Figure 2.8 there are two edge states available.

When a current is driven from contact 1 to contact 4, we argue:

1. Since a current I is leaving contact 1: V1 − V6 = Ih/2e2;

2. Since no current is sunk in contacts 2 and 3: V2 − V1 = 0, and V3 − V2 = 0;

3. Contact 4 is the current sink, so V4 − V3 = −Ih/2e2; and

4. No current is sunk by contacts 5 and 6 so: V4 − V5 = 0 and V5 − V6 = 0.

These items form a system of linear equations which have the solutions

V1 − V4 = I
h

2e2
, Rxy = V3 − V5 = I

h

2e2
, and Rxx = V2 − V3 = 0.

The experimental signatures of the quantum Hall effect are correctly understood

in this framework. Because the Fermi energy is pinned by disorder between Landau

levels, these features are extended over a range of filling fractions. For a more complete

discussion, see the text by Datta [47].

2.6 Conclusion

This chapter showed RF resistance measurements that are in amazingly good

agreement with the predictions of the Drüde model. Peering deeper, there were

details of the experiment that need further explanation. For example, the addition

of a perpendicular magnetic field in the Drüde model resulted only in a constant Rxx

and Rxy ∼ B.
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To understand the deviations between the Drüde model and the observations, the

quantum mechanics of noninteracting electrons were introduced. These additional

physics led first to SdH oscillations in the resistance, then at higher fields, the com-

bination of disorder and quantized electron orbitals gave rise to the integer quantum

Hall effect.
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Chapter 3

2D-2D Tunneling at Zero Magnetic Field

This chapter introduces electron tunneling between two parallel 2DES at zero mag-

netic field. Although there are a wide range of physics unique to strongly coupled

bilayer systems, the data in this chapter reflect a regime where 2D-2D tunneling is

used to probe the physics of the individual layers.

The ability to make separate electrical contact to each of the 2D layers [34] opens

the door to fundamentally new experiments beyond parallel ρxx and ρxy measure-

ments. For example, the inter-layer tunneling current can be measured by making

one contact to the top layer and a second to the bottom; a voltage V applied between

the layers will result in a tunneling current I(V ). In the case of 3D-3D tunneling the

current is linear in the voltage, i.e., Ohmic. In the case of 2D-2D tunneling, however,

the ratio I/V vs. V is generally observed to be Lorentzian; its half-width at half-

max (HWHM), Γ, is directly related to the quasiparticle lifetime in the individual 2D

layers.

This chapter will first discuss the structure and fabrication of samples used in

such tunneling experiments, then continue describing the measurement circuit, and

finally end with an introduction to the physics of electron tunneling between two

weakly coupled 2DES’s. I/V can be computed in perturbation theory using Fermi’s

golden rule, resulting in predictions for the width and the magnitude of the tunneling

resonance. The low-temperature line width reflects scattering from static disorder,

and is compared to the scattering rate from DC mobility measurements.

When tunneling can be treated as a perturbation, it is possible to relate a measured

quantity,
∫
I/V dV , to the symmetric-antisymmetric splitting, ∆SAS, of the double
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Figure 3.1: Solid: computed conduction band including self-consistent potentials.
Dashed: ground state wavefunction for Sample E.

quantum well. ∆SAS can also be numerically computed for a specific structure. The

results of these two independent determinations of ∆SAS are within a factor of two.

An analysis of the temperature dependence of the line width, Γ, provides a direct

measurement of the electron-electron scattering rate. The initial measurements of

Murphy et al. [48] were found to be in disagreement with theoretical expectations

[49, 50]. More recent calculations by Jungwirth et al. [51] and Zheng et al. [52] have

reconciled the two. Our observations in lower density samples are consistent with the

earlier data from Murphy et al.

The chapter concludes with a brief discussion of the effects of a perpendicular

magnetic field on tunneling. At low fields, the tunneling conductance oscillates in

1/B, reminiscent of the SdH oscillations in ρxx. At high fields, the tunneling is

suppressed due to a Coulomb pseudo-gap.



49

3.1 Structure and measurement

The physical systems under study are double quantum well heterostructures. We

make independent electrical contact to each of the wells and measure electron tunnel-

ing from one layer to the other. The states labeled by |ψT 〉 and |ψB〉 denote an electron

in either the top or bottom layer. Neither of these quantum mechanical layer states

are eigenstates state of the double-layer system – for the symmetric structure shown

in Figure 3.1 – the symmetric combination, (|ψT 〉 + |ψB〉)/
√

2, is the ground state,

while the antisymmetric combination, (|ψT 〉−|ψB〉)/
√

2, is the first excited state. The

difference in energy between these states is denoted by ∆SAS. A carrier that starts in

one layer will oscillate between them with angular frequency ω = ∆SAS/~. When the

scattering rate in each layer τ−1 is much faster than the tunneling rate, the electrons

come to equilibrium in an individual layer between tunneling events. In this limit,

the description of independent layers is justified. In other words, τ � ~/∆SAS. For

a high-mobility 2DES, typical scattering times range from 10 to 100 ps; numerical

calculations indicate ∆SAS ≈ 0.5 neV in our devices. As a result, an electron scatters

about 1000 times between each tunneling event.

The majority of the data discussed in this chapter comes from Sample E, a weakly

tunneling GaAs/AlGaAs bilayer consisting of two layers of electrons each with density

0.55×1011 cm−2 and mobility 1.2×106 cm2/Vs. This sample consists of two 180 Å

GaAs wells (regions II) separated by a 99 Å Al0.9Ga0.1As barrier (region I). The silicon

dopants are set back by 2300 Å of Al0.3Ga0.7As below and by 2050 Å above. The

computed conduction band and resulting ground state wavefunction are illustrated

in Figure 3.1.

Figure 3.2 shows a sample in a typical tunneling geometry; two contacts are con-

nected to the top layer and two to the bottom. The central tunneling mesa is a

250 × 250 µm square, covered above and below with evaporated aluminum gates to

control the electron density in each. A 40 µm wide arm equipped with top and back

depletion gates extends from each side of the central square and is terminated by a

AuNiGe Ohmic contact.
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Figure 3.2: Top: top-down view of a sample in the tunneling geometry; bottom: cross
section of tunneling geometry

By appropriately biasing the gates above and below the bilayer, electrical contact

can be made to each layer individually [34]. For example, a voltage of −0.5 V on a

top gate will deplete all the carriers in the nearby top layer, resulting in conduction

only through the bottom layer. Depleting the bottom layer with a back gate voltage

of −50 V prevents conduction through the back layer (see Figure 3.2). The samples

are usually processed as described in Appendix B.6.5, resulting in a sample with back

gates set back 50 µm from the 2DES (as a consequence back gate voltages are often

−50 to −200 V). A slightly more sophisticated technique (Appendix B.6.6) results

in samples only 1 or 2 µm thick.

The measurement circuit (Figure 3.3) consists of two essential parts: bias and

detection. The cryogenic elements begin with a set of manganin twisted pairs running

from room-temperature. The leads are thermally lagged at several points in the

cryostat. Appendix C details the heat sinking and RF filtering installed in the newer,

KelvinOx 25 dilution cryostat. The older KelvinOx 400 system is heat-sunk in much

the same way, but lacks powder RF filters.
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The biasing circuit is designed to create a voltage composed of a DC part (generally

spanning −1000 to 1000 µV at 2.5 Hz) plus a small sinusoidal AC part (from 0.1 to

10 µV). The initial AC voltage, sourced from the reference channel of a lock-in

amplifier (SRS 830 or PAR 124A), has a range of 0.1 to 10 V, and is initially divided

by either 100 (as illustrated) or 1000, and added to the DC part of the bias circuit

with a 1:1 transformer. The DC voltage source (Kepco 488-122 programmer) has an

output range of −10 to 10 V and is either connected directly to one terminal of the

transformer (as illustrated), or divided by 10 first. The composite AC+DC signal is

fed into a final 1000:1 divider, and connected to one terminal of the tunneling device.

The detection apparatus is also located at room-temperature and detects the

current through and voltage across the junction. The current through the tunnel

junction is measured with a DL Instruments 1211 low noise current preamp. The

amplified signal is fed directly into a voltmeter. In addition, the amplified current

signal is measured by a SRS 830 lock-in amplifier, which outputs to DVMs both the

real and quadrature part of the AC current signal. The voltage across the tunnel

junction is directly measured with a PAR 113 preamplifier, from which both the DC

and AC parts are recorded.

Due to the finite resistance of the leads to the sample (this includes both the wires,

and the resistance of the 2D arms leading to the central tunneling square), the voltage

across the sample can differ from the applied voltage. In many cases, the tunneling

resistance is much larger than any lead resistances, and a two terminal measurement

can be made.

Detecting the AC current provides an analog measurement of dI/dV , the deriva-

tive of the I − V , and generally is less noisy than the numerical derivative. The

first two terms of the Taylor expansion of I(V ) about VDC, with a small AC voltage

VAC sinωt are

I(t) ≈ I(VDC) +
dI

dV
VAC sinωt.

The DC part of I(t) is the usual DC voltage, while the ratio IAC/VAC approximates

the derivative dI/dV , provided that VAC is smaller than any scale on which there are
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features in I(V ). Finally, any quadrature signal in IAC stems from the inter-layer

capacitance.

Perhaps the most challenging aspect of this experiment has been reducing pickup

of stray 60 Hz noise. This has been achieved by grounding the cryostat at just one

well defined point, and by operating the amplifiers in battery mode. Implementing the

first generally yields a rms 60 Hz signal of about 2 µV, which can drop below 0.1 µV

when the amplifiers are operated in battery mode. This can be slightly improved by

requiring that only twisted pairs span the tunnel junction.

60 Hz pollution is not only a problem in terms of signal-to-noise. In the case

of tunnel junctions, voltage noise across the junction changes the measured low-

frequency I − V and dI/dV data. This can be understood intuitively by imagining

some sharp feature in I − V , with the bias voltage oscillating rapidly over a wide

range. In this case, a DC measurement of current will be some average over that

wide voltage range. Consequently, any AC voltage noise across the tunnel junction

must be smaller than the width of the sharpest features in I − V .

3.2 2D-2D tunneling

Tunneling between two weakly coupled 2DES can be described using a generalized

Fermi’s golden rule expression (for a general background see [53]). Such an expression

is a perturbative result, which is only valid in systems such as ours, in which tunneling

events are rare and occur incoherently. Computing the current from one layer to

the other essentially counts the number of full states in one layer and pairs them

with empty ones in the other (including a leading factor of 2 to account for spin

degeneracy). The resulting current density is

I12(eV ) =
2e

~

matrix elements for tunneling︷ ︸︸ ︷∫
d2k1

(2π)2

∫
d2k1

(2π)2
|t(k1,k2)|2

∫ ∞

0

dE1

2π

∫ ∞

0

dE2

2π
A(E1,k1)A(E2,k2)

× δ(E1 + eV − E2)︸ ︷︷ ︸
energy conservation

nf (E1) [1− nf (E2)]︸ ︷︷ ︸
filled × empty

.
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I12 is the current from layer 1 to layer 2, and I21 is the opposite. nf is the Fermi

function, and the spectral function A(E,k) describes the momentum distribution

of a state with energy E. Recall the energy eigenstates of the disordered-interacting

2DES are not plane waves. For an ideal, noninteracting system the eigenstates are also

momentum states, and A(E,k) = δ(E−~2k2/2m)/2π. The tunneling matrix element,

t(k1,k2), between the two momentum states gives the amplitude for tunneling from

a momentum state k1 in the first layer to state k2 in the second. The total current

is the difference I12 − I21 and can be simplified to read

I(eV ) =
2e

~

∫
d2k1

(2π)2

∫
d2k2

(2π)2
|t(k1,k2)|2

∫ ∞

0

dE

2π
A(E,k1)A(E + eV,k2)

× [nf (E)− nf (E + eV )] .

This result can be further reduced by evaluating one energy integral, and by assuming

that tunneling conserves and is independent of momentum, i.e., |t(k1,k2)|2 = t2δ(k1−

k2) (in a simple single particle model t = ∆SAS/2). This also assumes that when the

bias voltage, V , is applied between the wells the resulting distortion of the barrier is

negligible. The resulting current density is (see for example [51])

I(eV ) =
2et2

~

∫
d2k

(2π)2

∫ ∞

0

dE

2π
A(E,k)A(E + eV,k) (3.1)

× [nf (E)− nf (E + eV )] .

Although very general, Equation 3.1, relies on the assumption ∆SAS � Γ; in other

words, between tunneling events, an electron is in one layer or the other for many

quasiparticle lifetimes. Further assumptions are:

1. kBT � Ef ;

2. The spectral function is narrow compared to Ef [54]; and

3. The spectral function can be written in the form A(E,k) = A(E − ~2k2/2m)

(as is the case for Lorentzian broadening at the Fermi surface).
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These requirements permit considerable simplification of the tunneling integral, lead-

ing to the conductance, g = I/V per-unit area [55]

g(eV ) =
e2t2

2π~
m

π~2

∫ ∞

−∞
dxA(−x)A(eV − x). (3.2)

The tunnel conductance is simply the convolution of the spectral functions. This

result is independent of temperature, except to the extent that the spectral functions

themselves may be temperature-dependent. That is to say, the smearing of the Fermi

circle has no impact on the tunnel conductance!

By using the fact that the spectral functions are normalized to 2π, this result

can be integrated to find a simple expression relating the total conductance and the

tunneling matrix element,

∫ ∞

−∞
g(eV )d(eV ) =

2πe2t2

~
m

π~2
. (3.3)

In the case of Lorentzian broadening, the integral is calculable and the resulting re-

lation between lifetime and t2 was noted by Zheng et al. [55]. However, our final

expression is independent of the specifics of the spectral functions, such as the scat-

tering time. This integral provides a new way to relate a measurable quantity, the

integrated ratio I/V , to the intrinsic tunneling strength. In weakly tunneling samples

this was previously accessible only via numerical simulations, not direct measurement.

When a voltage is applied between the layers, charge shifts capacitively. As a

result the energy difference between the bottom of the wells (the quantity relevant

for momentum conservation) is enhanced by a factor of 1 + 2π~2c/m∗e2, where c is

the capacitance per-unit area. For the samples described here, this is an 18% effect.

3.3 Electron-impurity lifetime

Figure 3.4 illustrates typical tunneling data taken at the nominal per-layer den-

sity of 0.55×1011 cm−2. The solid curve is the measured differential conductance

dI/dV , and the dashed curve is the numerically integrated conductance I/V . In

comparison, the dotted trace is a best fit Lorentzian (constrained to be zero at ±∞),
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broadening and experimental observations. The observed half-width is 61 µeV, which

fulfills the various approximations required in the proceeding sections.

In the Born approximation the spectral functions themselves are Lorentzian, given

explicitly by Zheng et al. [55] as

A(E) =
τ

~

[
1 +

(
Eτ

2~

)2
]−1

.

The half-width in I/V is directly related to the spectral functions via Equation 3.2:

ΓHWHM = ~/τ .

Figure 3.5 compares the quasiparticle lifetime as measured by mobility measure-

ments (solid curve: τm) to tunneling (markers: τt). The dramatic difference between

the two stems from the fact that only large-angle scattering effects the mobility,

whereas the tunneling lifetime is limited by all scattering events.
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curve). Inset: markers are the ratio between mobility and tunneling lifetimes.

3.4 Measurement of ∆SAS

Although ∆SAS is a property that can be calculated for a given structure, there

are considerable uncertainties in the result. These stem both from assumptions in the

calculation (the form of the electron-electron interaction assumed), and from physical

uncertainties. Examples of these include the exact dimensions of the structure and

the aluminum concentration of the barrier.

In the strong tunneling limit, ∆SAS ≈ Ef , it is relatively easy to measure ∆SAS.

In the ground state, N electrons are split between the symmetric and antisymmetric

states so that the Fermi energies are equal. For identical quantum wells this yields the

simple relation, ∆SAS = π~2(ns−na)/m, between symmetric (ns) and antisymmetric

(na) densities.

In conventional longitudinal transport, Rxx, Shubnikov de Haas oscillations are

periodic in 1/B, with frequency f = nh/2e; thus computing the Fourier transform of

Rxx vs. 1/B results in a sharp peak at this frequency. Measuring Rxx in both layers

of a bilayer system in parallel yields densities ns and na [56].

Using Sample G with a 45 Å Al0.3Ga0.7As barrier and 250 Å wells illustrates this
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method of density measurement, and its shortcomings. This sample has total density

n = 4.5×1011 cm−2. Rxx was measured at T = 0.3 K and the external magnetic

field was swept from 0 to 1 Tesla at 7 different top gate voltages; the resulting Rxx

vs. 1/B data were Fourier transformed and the locations of the peaks recorded.

Representative data is shown in Figure 3.6. As is evident from Figure 3.6, these peaks

have a width of about 0.2 Tesla, leading to a minimum resolvable density difference

of about 0.07×1011 cm−2, or ∆SAS ≈ 200 µeV. The gate voltage dependence of these

peaks is shown in Figure 3.7. The value of ∆SAS is extracted from point of closest

approach between the two curves. In this case, that distance is smaller than the

density uncertainty, illustrating the limitation of this technique.

This method is inadequate for more weakly tunneling devices. Equation 3.3 pro-

vides an alternate technique for the measurement of ∆SAS which is useful in the weak

tunneling regime. This result ignores the fact that some (1−Z) ≈ 0.4 of the spectral

density is not located at the Fermi surface, and instead forms a broad background

[54]. By measuring only the area under the sharp zero energy feature (for example,

by fitting to a Lorentzian and using the area of that function) and thereby explicitly

including only the spectral density of the Landau quasiparticles, we can extract ∆SAS

by including a factor of Z2 to account for the excluded spectral weight.

Maintaining n1 = n2, but at several values of NT = n1 + n2, we measure I/V vs.

V fit to a Lorentzian. We then integrate I/V vs. V. The data shown does not include

a correction for Z 6= 1.

Using a self-consistent numerical solver [57, 29], we are able to compute the tunnel

gap for these systems under the assumption of Γ−Γ tunneling; in the AlGaAs system

the conduction minimum is at the Γ point when the aluminum concentration is below

40%. Above 40% the minimum moves to the X point at the edge of the Brillouin

zone. For the expected structure, the numerics predict ∆SAS = 0.4 neV, in surprising

agreement with experiment. The solver accounts for both Hartree and exchange

effects, and includes the differing effective mass of electrons in GaAs (0.068 × me)

and AlAs (0.14×me, from Madelung et al. [28]).

Figure 3.8 compares the numerical results (scaled by a factor of 2.2) to ∆SAS ex-
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Figure 3.8: Dashed line: tunneling gap from numerical simulations, markers:
∆SAS as measured from tunneling data. Inset: temperature dependence for n =
0.53×1011 cm−2 (solid circles), n = 0.35×1011 cm−2 (empty circles), and n =
0.22×1011 cm−2 (crosses).

tracted from the data using Equation 3.3. The dashed line follows the scaled numerical

results, the overall slope of which compares favorably with the measurements. The

overall trend of increasing ∆SAS is consistent with the decreasing Coulomb attraction

between the carriers and the donors as the density decreases.

The inset to Figure 3.8 shows the measured value of ∆SAS at three different elec-

tron densities as a function of temperature. Although the line width increases with

temperature (inset to Figure 3.9), the integrated I/V , and hence the computed value

of ∆SAS, only changes slightly with temperature. This minimal temperature depen-

dence further supports the idea that the integral of I/V depends almost exclusively

on the tunneling strength.

This final fact is remarkable. Equation 3.2 showed that I/V vs. V depends only on

the temperature dependence of the spectral function (in the next section we see that

this dependence results from the electron-electron scattering time). The integrated

I/V is now independent of the temperature dependence of the spectral functions as

well!
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3.5 Electron-electron lifetime

The zero temperature line width provides information regarding scattering from

static disorder; however, as the temperature increases, the line width also increases

rapidly. Since the background disorder is temperature-independent, any change in

Γ must result from either electron-electron scattering or electron-phonon scattering.

The mobility lifetime τm is unaffected by the electron-electron scattering rate, and

depends only on electron-impurity and electron-phonon scattering. At all densities it

is virtually temperature-independent below 1 K. As a result, electron-phonon scat-

tering can have little effect on the measured tunneling line width in this temperature

range.

Experimentally, the data were found to be of the form Γ = Γ0 + αT 2, where α

parameterizes the electron-electron interaction strength. Figure 3.9 shows the good

agreement between current experiments at low electron density and earlier measure-

ments at high electron density [48]. The inset shows the measured temperature depen-
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dence at three densities: experimental data are designated by points, and theoretical

prediction by continuous curves [51]. The high-density trace shows excellent agree-

ment with theory, while as the density decreases, experiment increasingly departs

from theory.

One possible explanation for this disagreement is the increasing strength of electron-

electron interactions at lower densities. The theory of Jungwirth and MacDonald [51]

is a perturbative result which is strictly valid at high densities. We are therefore both

reassured that it compares well with experiment at high-density, and not surprised

with the low-density deviation.

3.6 2D-2D tunneling in a magnetic field

To this point we have considered tunneling in the absence of a magnetic field. In

this section we investigate the consequences in tunneling of a magnetic field perpen-

dicular to the 2D layers. This discussion can be divided into two different regimes.

When the magnetic field is small, the magneto-conductance shows oscillations peri-

odic in 1/B analogous to the SdH oscillations in ρxx. At high magnetic fields, however,

the zero-bias conductance is suppressed.

As with SdH oscillations in ρxx, the low-field oscillations in tunneling stem from

changes in the density of states squared g(Ef )
2 as a function of magnetic field. For

more complete models of the effects of disorder on the density of states, see Ando et

al. [38] and references therein. Using Equation 2.5.1 we can compute the expected

tunneling conductance vs. B⊥. The data in Figure 3.10 compare measured tunneling

conductance from Sample H to a fit with a scattering time τSdH = 9 ps. For these

data the density is n1 = n2 = 0.39×1011 cm−2.

Figure 3.11-B shows the high-field conductance. Unlike ρxx, the tunneling con-

ductance becomes suppressed at high-field. This innocuous suppression of zero-bias

conductance at high-field is in reality a subtle and relevant effect. To better under-

stand this effect, consider Figure 3.11 which contains typical tunneling data at high-

field. These data display current (Panel A) and conductance (Panel B) vs. voltage.

In these data, from Sample H, the tunneling conductance and current are strongly
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suppressed at zero-bias. In fact, when ν < 1 the tunneling spectra are qualitatively

indistinguishable [58, 59]. In a single particle tunneling model, this suppression seems

to indicate a gap in the density of states at the Fermi energy. Effect exists over a wide

range of filling fractions, including both fractional quantum Hall states (gapped) and

the intervening states (ungapped). In particular, it is well known that at ν = 1/2

there is no gap in the density of states, so we must look elsewhere to understand this

strange effect.

In a magnetic field, electrons are confined to small orbitals on the length scale of

lB =
√

~/eB, which at high magnetic field becomes smaller than the mean separation

between electrons. At large enough magnetic fields, the 2DEG is thought to form a

Wigner crystal [60]. Even before the Wigner crystal forms, the instantaneous con-

figuration of electrons resembles the crystalline state. When an electron is suddenly

injected between the layers, it enters an interstitial location in the lattice.

Because every electron in the initial N electron system must move slightly to

accommodate the new electron, the system relaxes only very slowly to the new state

[61]. Even though there is a low-energy configuration with N +1 electrons, that state

is unavailable in tunneling, and the external voltage source pays the full energetic

penalty for the unfavorable interstitial location.

3.7 Conclusion

This chapter has discussed tunneling between two weakly interacting 2DES, both

in regard to tunneling strength and to inter-layer Coulomb interactions. Tunneling

line width is shown to be an effective probe of the quasiparticle lifetime, both in

regard to scattering from static impurities, and to electron-electron scattering. The

integrated tunneling data is used to experimentally access the tunneling matrix ele-

ment t = ∆SAS/2.

One of the largest uncertainties in the measurement of ∆SAS is the interaction

parameter Z, which was estimated to be 0.6 in the range of densities studied. Since

Z is a result of highly interacting nature of the 2DES, it seems likely that our direct

measurement of the electron-electron lifetime could provide a definite value of Z at
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any given carrier density. This value might then be fed back into the computation of

∆SAS.
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Chapter 4

νT = 1 Quantum Hall State

In this chapter we present tunneling measurements between two 2DES’s each at

ν = 1/2. When the layers are far apart, the tunneling spectra is gapped around

zero-bias resulting from the energetic penalty associated with tunneling between two

individually correlated, but jointly uncorrelated electron liquids. As the layer separa-

tion drops, we observe a resonant enhancement of the zero-bias tunneling conductance

[20]. We interpret the formation of a peak in tunneling as the transition to an inter-

layer correlated state better described by total filling fraction νT = 1.

The 1980 discovery of the integer quantum Hall effect (IQHE) and the resulting

exact quantization of the Hall resistance in 2D silicon MOSFETs by Klaus von Kl-

itzing [1] was subsequently explained in terms of the interplay of the quantization of

electron into Landau orbitals and disorder. These IQHE states are experimentally

identified via the quantized plateaus in the Hall resistance at ρxy = h/ne2 and as-

sociated zero resistance features in ρxx. The discussion of the IQHE in Chapter 1 is

now extended to more exotic strongly interacting states in two-dimensional electron

systems (2DES).

The IQHE was discovered in a silicon MOSFET with a mobility of 10×103 cm2/Vs.

However, as the quality of GaAs devices surpassed silicon, new features reminiscent

of the integer quantum Hall effect began to appear. The first such state was observed

in a µ ≈ 100×103 cm2/Vs heterojunction by Tsui et al. in 1982 [2] at one-third

filling, ν = 1/3. As with the IQHE, the quantized Hall resistance corresponded to

a minimum in ρxx, and the Hall resistance was quantized at 3h/e2 for a range of
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filling factors centered on ν = 1/3. This fractional quantum Hall effect (FQHE) was

explained via an approximate wavefunction the following year by Laughlin [3].

Like the integer quantum Hall states, their fractional cousins are encountered

only at particular filling fractions. The addition of a second 2DES parallel to the first

opens the door to inherently new bilayer quantum Hall states, generated either by

tunneling or by the interplay of inter- and intra-layer Coulomb interactions. In these

new bilayer quantum Hall states, it is better to describe the system in terms of the

total filling fraction, νT = ν1 +ν2. One such state can exist at νT = 1 (when the layer

densities are equal this corresponds to ν = 1/2 per-layer).

This chapter begins by introducing both the experimental and theoretical signa-

tures of the FQHE, and continues by discussing the differences involved in bilayer

systems. The aim is to understand the completely new quantum Hall states that

result when a second, identical, layer is introduced near the first. These new states

were initially probed using conventional low-frequency magneto-transport of ρxx and

ρxy. The central focus of this chapter, however, is 2D-2D tunneling measurements

in such bilayer systems at νT = 1. Here we explore the parameter space of 2D-2D

tunneling defined by magnetic field, density, and temperature.

Finally, the chapter concludes with a brief introduction to the theoretical under-

standing of the νT = 1 quantum Hall state, first as a Laughlin like wavefunction, then

as a pseudospin ferromagnet, or an excitonic superfluid.

4.1 The fractional quantum Hall effect

The experimental signature of the fractional quantum Hall effect is very similar

to that of the IQHE; each state is identified by the quantized Hall resistance of

ρxy = h/νe2, accompanied by a minimum, or zero, in the longitudinal resistance ρxx.

The difference is in the ν’s – which are integers for the IQHE and fractions for the

FQHE. The first measured fractional state was at ν = 1/3, but since that initial

observation the number of fractional states has proliferated.

Figure 4.1 demonstrates the pattern of fractional states which are typical in mod-

ern high-mobility samples. The IQHE disorder plays a central role in the formation
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Figure 4.1: Typical FQHE data (unpublished) taken from a high-mobility GaAs
quantum well n = 1.58×1011 cm−2.

and strength of the states. The FQHE exists only in sufficiently high-quality samples

in which the correlated motion of the interacting electron system becomes visible.

The remnant disorder in FQHE system then plays the same role as it did in the

IQHE leading to features which are extended in filling fraction.

The first observed fractional state, ν = 1/3, was explained by Laughlin’s ap-

proximate many-body ground state1 which describes the correlated motion of the

interacting electron system [3].

It is not possible to extend the exact 1 and 2 electron solutions to 3 or 100

electrons, but based on their typical form in the symmetric gauge, Laughlin guessed

a trial wavefunction for the ν = 1/m fractional quantum Hall states,

Ψ1/m =
N∏

j<k

(zj − zk)
m exp

(
−1

4

N∑
l

z2
l

)
⊗ |↑↑↑ · · · 〉 .

1This wavefunction has been shown to be exact for hard-core electrons [62], and exact diagonal-
izing studies in few-electron systems find the Laughlin wavefunction to be an exceptionally good
approximation.
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The complex coordinates zj = x − iy are in units of the magnetic length lB =√
~/eB. This wavefunction assumes that the electron spins are all Zeeman-polarized

by the large perpendicular magnetic field. This is a ubiquitous approximation and

the spin part of the wavefunction will not appear in future equations. Likewise,

in accordance with convention, the Gaussian factor in each zl will be omitted in

subsequent equations.

Due to the completely symmetric spin wavefunction, the full weight of the Pauli

principle falls on the spacial wavefunction. The exchange of any two electrons induces

change of sign (−1)m. Any odd exponent, m, therefore gives fermionic statistics; m

also selects the filling factor ν = 1/m. This wavefunction predicts several important

properties of FQHE states: for example, the lowest energy excitations are gapped

and have fractional charge.

At its heart, Ψ1/m is no more than a trial wavefunction, so it is natural (and

important) to wonder why and when it is a good approximation of the true ground

state. We see that the wavefunction disappears as rm as any two electrons xi and xj

are brought close together. This strong avoidance does a remarkable job of minimizing

the Coulomb energy.

To understand at what magnetic field Ψ1/m is a sensible guess, consider a “snap-

shot” of the electron configuration at an instant in time. By freezing all of the

electrons at zk, we can ask about the change in phase when the location of one elec-

tron, say z1, is traced around any other. The final wavefunction is unchanged, except

by a multiplicative factor of 1 = exp(2πim), as if there were m lines of magnetic flux

quanta, h/e, inside the loop traversed by the electron. As a result, the ratio of total

magnetic flux to electron density is m:1, or the filling fraction is ν = 1/m.

It is interesting, that when m = 1 the corresponding Laughlin wavefunction Ψ1, is

exactly the ground state wavefunction for noninteracting electrons at filling factor ν =

1 (Equation 2.4. In the absence of inter-Landau level mixing (and with complete spin

polarization), this must also be the exact ground state for any interaction potential,

simply because there is only one way to completely fill a Landau level.
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4.1.1 Composite fermions The multitude of FQHE states at filling factors other

than ν = 1/m is elegantly explained in the language of composite fermions [4](for a

complete introduction see chapter 7 of [63]). In this picture, the strongly interacting

electron system at ν = 1/m is re-expressed in terms of weakly interacting composite

objects, each composed of an electron and two attached flux quanta. This joint object

is called a composite fermion (CF). Jain observed that the Laughlin 1/3 state could

be re-written as

Ψ1/3 =
N∏

j<k

(zj − zk)
2 ×Ψ1.

That is the 1/3 wavefunction is an operator acting on the ν = 1 wavefunction2. It

was Jain’s insperation that the wavefunction for different fractional QHE states could

be obtained by operating by action of the same operator on wavefunctions at other

integer filling ν∗. The new wavefunction is in general at a different filling factor ν,

where we have already established that ν∗ = 1 → ν = 1/3.

Understaining the composite Fermion picture is tantamount to understand the

effect of Jain’s operator on an initial state, the important properties of which fol-

low: Symmetry The symmetry under particle exchange of the initial wavefunction

is unchanged. So a properly antisymmetric initial wavefunction leads to a new anti-

symmetric wavefunction.

Excitations Although the charged excitation spectrum is changed, no gaps closed

nor new gaps opened.

This means that a state that starts as a quantum Hall state presurves the its

charge gap, and remains a quantum Hall state. Likewise a ungapped state is mapped

to a new gappless state which is not a QHE.

By applying the same procedure which gave the filling fraction for the Laughlin

wavefunctions, we see that the ν∗ wavefunction is mapped to

ν =
ν∗

2ν∗ + 1
.

2Clearly, even number, 2m, transforms ν = 1 to the Laughlin 2m + 1 wavefunction. In this
discussion we focus only on the most simple case of m = 1.
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This change in filling factor can be interpreted as the attachment of 2m magnetic flux

quanta to each electron in the system. These composite objects experience a reduced

effective magnetic field of B∗ = B − 2φ0m which is the total magnetic field with the

field “bound” in CF’s removed. At exactly ν = 1/2, B∗ = 0 and the CF’s experience

no effective magnetic field; when B∗ 6= 0 the composite fermions participate in the

IQHE at filling factor ν∗. When related to the total filling factor this predicts the

location of the fractional quantum Hall states.

Central to this description is the special filling factor ν = 1/2, at which ν∗ →∞.

Since ν is proportional to 1/B, it is evident that at ν = 1/2, the effective magnetic

field is zero. This predicts that at ν = 1/2 in a large perpendicular magnetic field

a Fermi surface forms. This surprising fact has been verified experimentally (see the

chapter by Willett in [64]). One difference is that due to the assumed complete spin

polarization of the electron system, the Fermi wave-vector is expected to be
√

2 larger

than at B = 0.

From our perspective, there are two aspects of the ν = 1/2 composite Fermi liquid

which are relevant. First, it is not a quantum Hall state. This means there is no gap

to charged excitations, therefore the resistivity is relatively temperature-independent,

and nonzero at low-temperature.

Second, on sufficiently short length- or timescales it is more suitable to think of

the system as a set of electrons scattered in an energy minimizing configuration that

half-fills the lowest Landau level. In a system with two ν = 1/2 layers in parallel,

the measured tunneling conductance still shows the Coulomb gap which characterizes

2D-2D tunneling in a large magnetic field.

In slightly different words, the argument from Chapter 3, is still valid. Since

tunneling is essentially a single electron process, when the tunneling electron enters

the new layer it has no correlations with its neighbors. It takes a certain amount of

time to build up those correlations among its new neighbors that make the system

appear as a liquid of composite Fermions. Thus, even though ν = 1/2 has a Fermi

surface, tunneling does not show the peaked structure typical of 2D-2D tunneling at

zero magnetic field.
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4.2 Bilayer quantum Hall effects

The addition of a second 2D layer parallel to the first can fundamentally change

the nature of the ground state. When the layers are far apart the system is well

described as two independent layers; however, as they are brought close together,

electrons in opposite layers can interact either by the Coulomb interaction or through

tunneling. Even in the limit of zero tunneling, the Coulomb interactions can create

nontrivial collective states which have no counterpart in the individual 2D systems

[63, 7, 8].

In bilayer systems it is conventional to refer to the total density and total filling

factor: NT = n1 + n2 and νT = ν1 + ν2. The simplest case, when n1 = n2, i.e., equal

layer densities, is treated in the present chapter. The effect of a density imbalance is

the subject of Chapter 7.

In the limit of very strong tunneling, the gap between the symmetric and anti-

symmetric quantum well states, ∆SAS, can be much larger than the Fermi energy. In

this case, the electrons will aways reside in the lowest energy, symmetric state; these

symmetric electrons can participate in the ordinary IQHE and FQHE. In this case,

the set of νT ’s which have quantum Hall effects is unchanged from the single-layer

case.

As the tunneling strength drops to zero, the two layers might become completely

independent; for example, having IQHE only at total filling factor νT = 2ν. This

description is only accurate if the layers are weakly coupled, i.e., far apart. However,

if they are sufficiently close together, the inter-layer Coulomb interactions can create

strong correlations between the layers and form new quantum Hall states.

One such quantum Hall state has been observed at total filling factor νT = 1/2

[7, 8] (recall that a single-layer never has a quantized Hall effect at ν = 1/2 or

ν = 1/4). Therefore, the addition of a second layer completely alters the physics at

certain filling fractions.
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Figure 4.2: A) Typical ρxx data from Sample H spanning the νT = 1 phase boundary
at T = 50 mK. Solid line: d/lB = 1.56, deep within the coherent state with a well
developed zero at νT = 1 (also note the weak feature at νT = 1/2). Dashed line:
d/lB = 2.07 the minimum at νT = 1 has completely vanished. B) νT = 1 phase
diagram. Each circle represents a sample as measured by magneto-transport Murphy
et al [18]. Solid markers indicate the existence of a quantum Hall minimum, and
open markers the lack thereof. The solid line is a proposed parabolic phase boundary
based on the transport data. The bold lines on the vertical axis represent tunneling
data: the solid portion indicates the existence of a peak in tunneling and the dashed
portion indicates its absence.
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4.3 Quantum Hall effect at νT = 1

Perversely, one of the most interesting bilayer quantum Hall states occurs at total

filling factor νT = 1. At this filling factor, the lowest spin-resolved Landau level in

each layer is half filled with n1,2 = eB/2h electrons. When tunneling is strong the

appearance of a quantum Hall state is natural. However, in the absence of tunneling

the naive expectation is for two independent ν = 1/2 CF liquids. As the layer

separation, d, is reduced, the system undergoes a phase transition to an inter-layer

coherent state [12, 13, 33].

Both Coulomb interactions and inter-layer tunneling contribute to the strength of

this QHE3. d/lB describes the ratio of the inter- to intra- layer Coulomb interactions

i.e., E11/E12 ∼ (1/
√
n)/(1/d). At constant filling factor lB ∼

√
n, it follows that

E11/E12 ∼ d/lB. Likewise, the tunneling strength is conventionally expressed as the

dimensionless ratio of the symmetric-antisymmetric splitting to the mean Coulomb

energy, ∆SAS/Ec = ∆SAS/(e
2/4πεlB).

Murphy et al. [18] located the phase boundary as a function of d/lB and ∆SAS/Ec

in a large collection of samples, by inspecting each sample for a QHE at νT = 1

[18]. The results of this study are shown in Figure 4.2-B, where the measured phase

boundary seems to intersect the vertical axis at d/lB ≈ 2. This is a nontrivial fact:

even in the complete absence of inter-layer tunneling the electrons still form a inter-

layer correlated state.

This QHE state was first observed in conventional transport by detecting a min-

imum in Rxx and a plateau in Rxy [8, 7]. Representative resistance vs. magnetic

field data are shown in Figure 4.2. These data are taken from sample H, at two

values of d/lB spanning the phase boundary. To allow a direct comparison between

two different densities, the data are plotted vs. 1/νT = eB/NTh. The dashed trace

corresponds to d/lB = 2.07, and there is only the slight depression in Rxx at νT = 1

reminiscent of a single 2DES at ν = 1/2. However, the solid trace at d/lB = 1.56

features a strong QHE minimum at νT = 1.

3Here Ec and is expressed in MKS units. In the literature, Gaussian units are prevalent.
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4.4 Tunneling measurements at νT = 1

This section contains the central result of this thesis: a new study of the νT = 1

bilayer quantum Hall state and its transition at large layer separation to a compress-

ible phase, using the method of tunneling spectroscopy. Earlier experiments focused

on the plane spanned by d/lB and ∆SAS/Ec. The samples used in the present inves-

tigation are vastly more weakly tunneling than those studied previously. Amusingly,

we use tunneling as a probe of the zero tunneling limit. By using weakly tunneling

materials, we focus on the state created by nontrivial coulombic correlations. We

note that at d/lB = 1.60 the estimated4 ∆SAS = 0.4 neV is only a tiny fraction of

the Coulomb energy, ∆SAS/Ec = 70 × 10−9. As a practical consideration, the weak

tunneling avoids problems arising from the small sheet conductivities of the 2D layers

which develop at high magnetic field (we have measured σ−1
xx ≈ 130 kΩ at νT = 1).

In this section we introduce the dependence of the 2D-2D tunneling at and around

νT = 1 as a function of inter-layer bias, magnetic field, temperature, and d/lB.

Samples C, D, and E are all taken from the same wafer, a AlxGa1−xAs double

quantum well (DQW) heterostructure grown by MBE. In these samples, 180 Å GaAs

quantum wells are separated by a 99 Å Al0.9Ga0.1As barrier layer; Sample E is dis-

cussed in more detail in Chapter 3.1. Unless otherwise stated, any data in this chapter

was taken from Sample E.

The electrons are confined to a 250× 250 µm square mesa, patterned using stan-

dard photolithography. Gate electrodes deposited above and below this mesa allow

control over the individual layer densities. The low-temperature mobility of the as-

grown sample is 1.2×106 cm2/Vs which falls to 0.4×106 cm2/Vs when the layer den-

sities are reduced to 0.2×1011 cm−2 (for a complete discussion see Chapter 3). Ohmic

contacts (either indium or AuNiGe) are placed at the ends of four arms extending

outward from the central mesa. Each of these contacts can be connected to both

2D layers in parallel or to either layer individually. Consequently, both conventional

4This estimate is based on a self-consistent calculation of the energy levels in the double quantum
well, with Γ-point tunneling, a GaAs effective mass of m∗ = 0.067 ×me, and a Al0.9Ga0.1As mass
m∗ = 0.14×me [28].
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resistivity and inter-layer tunneling measurements can be made on the same sample.

At zero magnetic field the tunneling between the two layers is well described by a

Fermi’s golden rule expression (Chapter 3). The separate conservation of energy and

2D momentum leads to a Lorentzian resonance in I/V , the half-width, Γ, of which

describes the electronic life time, τ = ~/Γ. At a typical reduced electron density

n1 = n2 = 0.3×1011 cm−2, this width is 90 µeV and the peak conductance is only

28×10−9 Ω−1.

Figure 4.3 displays the central result of this thesis: at νT = 1 and 25 mK the

tunneling spectra changes qualitatively as d/lB crosses the phase boundary. This

figure contains four panels each at a different value of d/lB. Although d is constant, the

ratio d/lB can be changed via the layer densities: at fixed filling factor n determines

B and thereby lB. In each case, the individual layer densities were matched by tuning

the symmetry of the tunnel resonance at zero magnetic field. The traces were taken

at different magnetic fields but at total Landau level filling factor νT = 1.

Panels A and B show tunneling in the uncorrelated regime which is dominated by

broad features at high-energy and an associated suppression of the zero-bias conduc-

tance. This suppression results from the energetic penalty accompanying the rapid

injection and extraction of electrons into separately uncorrelated, but individually

strongly correlated, electron system produced by Landau quantization [58, 65, 66].

In addition, when an electron tunnels between the layers, it leaves behind a vacancy

or hole with charge +e. The tunneling suppression is thereby reduced slightly by the

electrostatic attraction between the electron and its hole [59]. As the 2D layers are

brought closer together the high-energy features move inward, corresponding to an

increasing average electron separation. See Chapter 3 for a more in depth discussion

of this effect.

When the layers are close enough to support the bilayer νT = 1 QHE state, the

strong suppression in tunneling is replaced by a resonant enhancement of the zero-bias

tunneling. Just below the phase boundary a tiny, yet extremely sharp feature appears

at zero-bias (trace C). Finally, deep within the νT = 1 phase at d/lB = 1.59, the peak

has become enormous and dwarfs all other features in the tunnel spectrum(trace D).
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Figure 4.3: Tunneling conductance (dI/dV ) vs. inter-layer voltage (V ) at νT = 1 in a
double-layer 2D electron system. Each trace corresponds to a different value of d/lB,
and thus a different magnetic field and density. Panel A, at the largest d/lB, shows a
deep suppression of the tunneling near zero-bias. By panel D, with the smallest d/lB
of the four shown, this suppression has been replaced by a tall peak. Note the scale
change in panel D.
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The height of this peak continues to grow as d/lB decreases to 1.50 where it exceeds

even the zero magnetic field tunneling conductance by a factor of 5005.

The nominal density of these samples is typically about NT = 1.1×1011 cm−2,

which results in d/lB = 2.4 at νT = 1. Reducing the density via gating to NT =

0.42×1011 cm−2, gives d/lB = 1.45. The left axis of Figure 4.4 shows the zero-bias

tunneling conductance G0 at νT = 1 and T = 25 mK, vs. d/lB. There is a sharp

transition near d/lBcrit = 1.83 separating two very different tunneling regimes, com-

pared to d/lBcrit ≈ 2 as observed in earlier transport measurements6. Above d/lBcrit,

the zero-bias conductance is suppressed and the tunneling spectra are qualitatively

the same as panel A in Figure 4.3. On the other hand, as d/lB falls below this critical

value a resonant enhancement of the tunneling appears at zero-bias. The magnitude

5At the lowest densities the tunneling conductance at νT = 1 is larger than the sheet conduc-
tance of ∼ 1/100 kΩ. These conductances are measured in a 4-wire configuration. However, the
combination of a very narrow and very tall line make an accurate determination of the height and
width increasingly difficult as G0 exceeds the sheet conductivity

6Due to the uncertainty in growth parameters, such as barrier and well widths, there is an
uncertainty in the exact value of d.
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of this peak grows continuously as d/lB falls.

The right axis of Figure 4.4 shows the d/lB dependence of the line width (de-

fined as the half-width at half-max of the peak in I/V ). At the lowest temperatures

and smallest values of d/lB this width is about 2 µV wide – 25× narrower than

the zero magnetic field feature. This dramatic variance from the single-particle life-

time strongly suggests that νT = 1 a different mechanism is responsible for the two

lifetimes. One explanation could be a transition from single electron to collective

physics.

Figure 4.5 shows the magnetic field dependence of the zero-bias tunneling con-

ductance G0, corresponding to d/lB = 2.30 (40 mK) and 1.59 (25 mK) at νT = 1.

As in Figure 4.2, the data here is displayed vs. 1/νT to facilitate direct comparison

of different densities. At small magnetic fields both curves show quantum tunneling

oscillations analogous to SdH oscillations in ρxx. These low-field oscillations are used

to determine the 2D density NT .

The offset trace in Figure 4.5, at d/lB = 2.30, becomes increasingly suppressed at

high magnetic field. Again, this is the inhibition of 2D-2D tunneling characteristic

of two weakly coupled 2D electron systems at high magnetic field. The solid trace at

d/lB = 1.59 differs qualitatively in the vicinity of νT = 1. The suppressed tunneling

at zero-bias has been replaced with an enormous enhancement centered on νT = 1.

Note the small bumps in the d/lB = 2.30 data at high-field. These arise when the

system enters or leaves a strong single-layer quantum Hall state. In such states the 2D

sheet conductivity, Gs → 0; when the capacitive component of the dI/dV measure-

ment is comparable to Gs there is a parasitic mixing of the capacitive conductance

into the real signal. These bumps vanish as the excitation frequency decreases.

To confirm the existence of the conventional QHE, four-terminal ρxx measurements

have been performed in Sample E. As anticipated, a QHE develops in tandem with the

peak in tunneling, suggesting that these reflect the same phase transition. The dotted

trace in Figure 4.5 shows the observed minimum in ρxx at NT = 0.42×1011 cm−2 and

T = 40 mK.

Previous transport measurements found d/lBcrit ≈ 2, while in the current sample
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critical value of approximately 1.83 is observed both via tunneling and transport.

In contrast, theoretical estimates assuming infinitely thin wells generally predict yet

smaller values [67], typically ∼ 1.3 (see Schliemann et al. [68] for a discussion). The

samples described by Murphy et al. [18] had substantially thinner tunneling barriers,

therefore the ratio of the well width to the barriers width is larger than in the present

samples, making the newer samples more ideal 2D systems.

The temperature dependence of the zero-bias tunneling conductance is displayed

in Figure 4.6. Two sets of data are shown, one for NT = 1.09×1011 cm−2 and one

for NT = 0.42×1011 cm−2. Here we again see a qualitative difference between the

tunneling at high- and low-density. At high-density the conductance falls with de-

creasing temperature. As reported previously, this dependence is consistent with

simple thermal activation [58, 65]. The low-density data behave in the opposite fash-

ion, rising as the temperature falls. Once the tunneling peak becomes visible at an
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onset temperature of T = 400 mK, the zero-bias conductance increases in an exponen-

tial fashion, G0 ∝ exp(−T/T0). This growth persists to the to the lowest accessible

temperatures,∼ 15 mK, and is the topic of Chapter 5.

4.5 Theoretical expectations of νT = 1 physics

When the bilayer system exhibits no QHE at νT = 1, the state is well described by

two independent ν = 1/2 CF liquids. However, as the inter-layer correlations become

strong enough to generate a QHE, the resulting state can be described in terms of a

bilayer analogue to the Laughlin state, the Ψ111 wavefunction.

This wavefunction is related to two broken-symmetry ground states: a pseudospin

ferromagnet, and an excitonic superfluid. Although mathematically equivalent, each

of these descriptions highlights different physical aspects of the same state.

4.5.1 Ψ111 wavefunction Building on the single-layer case, Halperin proposed a

class of wavefunctions in multi-component systems [6, 63, 9] (the second component

was designed to be a real spin variable, but it just as well describes electrons in bilayer

systems)

Ψlmn =

N1∏
j<k

(zj − zk)
l

N2∏
j<k

(wj − wk)
m

N1,N2∏
j,k

(zj − wk)
n. (4.1)

The variables zj and wk denote the location of an electron in either the top or bottom

layer. The l = m = n = 1 state describes a bilayer state at total filling factor νT = 1.

Like the ν = 1/3 case, the electrons have nodes when they overlap in the same layers,

however, in this trial function electrons in opposite layers also avoid each another.

In this wavefunction the number of electrons in each layer is well defined, by explicit

construction. Equivalently, both NT = N1+N2 and ∆N = N1−N2 are good quantum

numbers.

Wen and Zee observed that some of the Halperin Ψlmn wavefunctions, including

Ψ111, have a broken symmetry associated with charge fluctuations between layers. As

with the Laughlin wavefunction, we can compute the magnetic flux penetrating the
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layers by counting the polynomial powers, and arrive at the pair of equations,

Φ = lN1 + nN2, and Φ = mN2 + nN1. (4.2)

These two equations can be easily solved for ν1 and ν2, the filling factors of each layer,

ν1 =
m− n

lm− n2
, and ν2 =

l − n

lm− n2
. (4.3)

When l = m = n this solution to Equation 4.2 is ill-defined. Instead the difference

ν1 − ν2 is unconstrained, while νT = ν1 + ν2 = 1/n. This again suggests that charge

transfer between the layers has no energetic cost.

We have seen that when electrons tunneling into highly correlated electron liquids

with which they share no initial correlations pay a stiff energetic penalty. This is not

the case in the Ψ111 state, here electrons in each layer are strongly correlated with

those in the opposite, and the third term in Equation 4.1 shows that every object is

opposite to a correlation hole in the opposite layer! Instead of a penalty to tunneling,

the electrons are encouraged to tunnel.

Although these wavefunctions yield an intuitive explanation of the zero-bias tun-

neling feature, this intuition falls short in explaining the extremely narrow line-shape.

To gain a better feeling of the resonant nature of this peak, we turn to a superficially

different description of the νT = 1 system: that of a pseudospin ferromagnet.

4.5.2 Quantum Hall ferromagnet Alternately, this quantum Hall state can be

described as a pseudospin ferromagnet. A pseudospin index, |↑〉 or |↓〉, can be assigned

to particles in the top and bottom layers respectively. In the νT = 1 coherent state,

this local pseudospin variable can become coherent over a long length scale leading

to a polarization in the x− y pseudospin plane, i.e., |ψ〉 = |↑〉+ exp(iφ) |↓〉.

Since the pseudospin variables correspond to the layer index, the z component

of the magnetization, mz, equals 1 for an electron in the top layer and −1 for an

electron in the bottom. Likewise, mx and my measure the x and y components of the

magnetization. The proposed phase-coherent polarization has a net magnetization
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lies in the pseudospin x− y plane, i.e., mz = 〈σz〉 = 0. |ψ〉 is not an eigenstate of mz,

infact, the value of mz is maximally uncertain – every electron is completely perfectly

mixed between the two layers.

The entire trial wavefunction can be written as

|Ψ〉 =

NT∏
j=1

[
a†kj ,↑ + eiφa†kj ,↓

]
|0〉 , (4.4)

where a†k,↑ and a†k,↓ are creation operators for the |↑〉 and |↓〉 states. k is an index

which describes the suitable single particle wavefunctions. k might indicate the “mo-

mentum” index in the Laudau gauge, or angular momentum in the symmetric gauge

(Chapter 2).

The low-energy physics of this model are described by the Hamiltonian [19, 69, 70],

H =

∫
d2x

[
ρs
|∇φ|2

2
− t

2πlB
2 cos(φ) +

β

2
|mz|2

]
. (4.5)

The gradient term stems from an exchange energy. For the paramaters from Sample

E at d/lB = 1.6, Hartree-Fock calculations [70] suggest the following numerical values:

ρs ≈ 0.005 × Ec which is numerically equal to ρs ≈ 400 mK. The second term of

the Hamiltonian is the tunneling energy, where t = ∆SAS/2, and the third term is a

(renormalized) capacitive charging energy, which is βlB
2 ≈ 0.15× Ec = 1.6 mK.

The ground state of this Hamiltonian may be viewed as a new kind of easy-

plane ferromagnet; in the limit t → 0 the energy is independent of the direction

φ. Associated with this broken symmetry, a linearly dispersing Goldstone collective

mode (a pseudospin wave) is expected [14, 15, 19, 69]. Due to the 2D nature of the

system, the finite temperature transition to the ferromagnetic state is expected to be

of the Kosterlitz-Thouless (KT) type [14, 15, 19, 69, 71].

The dispersion of the linear Goldstone mode can be computed by investigating

the collective mode spectra of Equation 4.5 [19, 69], and when t → 0 the dispersion

is given by

ω = ±4πqlB
~

√
2ρs(βlB

2).
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Figure 4.7: I − V data from Sample E at T = 25 mK and d/lB = 1.45.

The tunneling term in the Hamiltonian tends to polarize the electrons in the

pseudospin x direction, |↑〉+ |↓〉. This state is an eigenstate of the tunneling operator,

which exchanges electrons between layers. Since there is no energetic cost associated

with tunneling electrons we expect an infinite slope in I − V at zero-bias. It is no

coincidence that this zero-bias feature in Figure 4.7 greatly resembles the discontinuity

in the conventional DC Josephson effect.

In real samples, a gap at zero wave-vector is expected, the size of which is deter-

mined by both the single particle tunneling energy ∆SAS and an inter-layer capacitive

charging energy [19, 69]

∆E = 2
√
t
(
t+ 4πβlB

2
)
.

Using our computed value of ∆SAS = 0.4 neV = 70 × 10−9Ec, and estimates of the

charging energy, βlB
2 ≈ 0.015Ec, the long wavelength pseudospin wave energy is only

about 1 µeV. The appearance of the tunneling resonance suggests the existence of

a zero wave-vector collective mode which enhances the ability of electrons to tunnel.
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Figure 4.8: Representative pseudospin dispersion in the νT = 1 coherent phase after
MacDonald [72]. Note the gap near zero-bias, the low-energy linear dispersion, and
the roton minima at qlB ∼ 1.3.

In particular, only the mode at q = 0 is spatially uniform, and therefore can transfer

net charge between the layers. Second, the existence of β in the gap tells us that the

q = 0 mode necessarily incorporate oscillations in the pseudospin z direction, i.e., the

movement of charge between the layers.

This ferromagnetic wavefunction function looks completely dissimilar to the Ψ111

wavefunction. As we observed above, this not a state of well defined mz ∼ N1 −

N2, while the Ψ111 states is an eigenfunction of N1 and N2 (and thus N1 and N2).

Equation 4.5 is a broken symmetry state with respect to the phase φ. In spite of these

differences, it is deeply related to the Ψ111 state [72]. This can be seen as follows.

First, rewriting the wavefunction slightly gives (k has been replaced by l, indicating

that we plan to use the symmetric gauge)

|Ψ〉 =

NT∏
j=1

ψlj(xj)⊗
NT∏
j=1

[
|↑j〉+ eiφ |↓j〉

]
.

This is the explicit wavefunction created by the operators in Equation 4.5. Neither the
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spacial nor the pseudospin part of this wavefunction is antisymmetric under particle

exchange. To generate the correct symmetry, we first take the Slater determinate of

these wavefunctions (since the pseudospin variable are completely symmetric under

particle exchange, they are unchanged), leading to

|Ψ〉 =

∣∣∣∣∣
NT∏
j=1

ψlj(xj)

∣∣∣∣∣⊗
NT∏
j=1

[
|↑j〉+ eiφ(x) |↓j〉

]
.

Little seems changed here; however, the determinate of the symmetric gauge wave-

functions (indexed from l = 0 · · ·NT − 1) is a Vandermonde determinate which can

be easily be written as an explicit polynomial

|Ψ〉 =

NT∏
j<l

(xj − xl)⊗
NT∏
j=1

[
|↑j〉+ eiφ(x) |↓j〉

]
.

Now we have a polynomial which resembles the spacial part of the Ψ111 wavefunction.

We can multiply by 1 in the form of exp(−iNφ), in which N is an integer, and

distribute it into the pseudospin product

|Ψ〉 =

NT∏
j<l

(xj − xl)⊗
NT∏
j=1

[
e−iNφ(x)/NT ) |↑j〉+ eiφ(x)(1−N/NT ) |↓j〉

]
.

We now show that the integral over φ of this wavefunction is the Ψ111, creating a

wavefunction which is completely indeterminate in φ. Expanding the pseudospin

product and integrating yields

NT∏
j<l

(xj − xl)⊗
∫ 2π

0

dφ

NT∑
j=0

ei(N−j)φS [|↑1, · · · ↑NT−j, ↓NT−j+1, · · · ↓NT
〉] ;

we have introduced the symmetrization operator S. The integral over φ selects the

one term from this summation in which j = N and we arrive at

NT∏
j<l

(xj − xl)⊗ S [|↑1, · · · ↑NT−N , ↓NT−N+1, · · · ↓NT
〉] .
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We see that the pseudospin part counts out an explicit number, N , spins and places

them in the top layer and puts the remaining NT −N in the bottom layer. This wave-

function is a state of definite NT and ∆N . Now we can encapsulate the pseudospin

index by defining xi ⊗ |↑i〉 = zi, and xi ⊗ |↓i〉 = wi−N . Using this replacement on the

very first term in the antisymmetrized pseudospin wavefunction gives

Ψ111 =

NT∏
j<l

(xj − xl)⊗ |↑1, · · · ↑NT−N , ↓NT−N+1, · · · ↓NT
〉

=
N∏

j<l

(zj − zl)

NT−N∏
j<l

(wj − wl)

N,NT−N∏
j,l

(zj − wl).

Therefore, we have shown that the Ψ111 wavefunction and the pseudospin ferro-

magnet are related. One is a state of definite particle number, and the other definite

phase. This is analogous to a conventional Josephson junction between two super-

conductors, which is in a state of definite phase difference Φ, but an indefinite state

of cooper pair difference.

4.5.3 Excitonic superfluid Finally, we describe the system as a Bose-condensate

of excitons. In this chapter I have focused on conductance data: dI/dV . The sharp

feature in conductance, naturally, corresponds to a step in I−V . This step is strongly

reminiscent of a Josephson discontinuity. Indeed a third description of this system is

in terms of an excitonic condensate: a BCS superfluid of bound electron-hole pairs.

Soon after the BCS theory’s successful explanation of conventional superconduc-

tivity, it was proposed that in a semiconductor an electron in the conduction band

and a hole in the valence band could also form a composite object – an exciton –

which could then Bose condense [17]. Although conceptually simple, there is yet

to be convincing evidence of a band-exciton condensate for the simple reason that

electron-hole pairs tend to rapidly recombine by emitting a photon.

In a 2DES at ν = 1/2, only half of the available states in the lowest Landau

level are filled; equivalently, the empty states can be thought of as filled by “holes”

in a completely full Landau level. Therefore, two layers of electrons, each at ν =
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1/2, can be equivalently thought of as one layer of electrons, and a second layer of

holes. Electrons in one layer are attracted to holes in the other, and if the layers are

sufficiently close together these objects can bind to form excitons. Formally, we can

make a particle-hole transformation in the pseudospin Hamiltonian and arrive at the

expression

|Ψ〉 =
∏

k

[
1 + eiφa†kj ,↓b

†
kj ,↑

]
|0∗〉 . (4.6)

|0∗〉 represents a new “vacuum” composed of the true vacuum for ↓ electrons, but a

full Landau level of ↑ electrons, from which b†
kj ,↑ creates holes in the ↑ layer. This

is reminiscent of the BCS wavefunction for excitons. In this case, the annihilation of

a hole physically corresponds to an electron tunneling from the electron layer to the

hole layer.

It is predicted that when the excitons Bose-condense, the resulting superfluid will

correspond to the dissipation-less flow of charge neutral excitons [14]. This flow yields

no net electrical current since a unidirectional current J of excitons corresponds to

an electrical current +J in the top layer and −J in the bottom.

This remarkable effect has been experimentally realized by Kellogg et al. [25]. A

current of ∼ 0.1 nA was driven though the top layer and re-routed back in the same

direction (symmetric channel) or reverse direction (antisymmetric channel) through

the bottom layer. Kellogg observed the regular signature of a QHE when the currents

were parallel, ρxx → 0 and ρxy → h/e2. When the currents were antiparallel, however,

ρxx → 0 and ρxy → 0. This observation indicates that the current carrying objections

in the antisymmetric channel are charge neutral and induce no Hall voltage.

In addition the conductivities (σxx) in these geometrics are vastly different. At the

lowest temperatures σxx,asm/σxx,sym > 106, strongly individuating that the superfluid

mode has been detected!

4.6 Conclusion

In summary, we have discussed the FQHE in a single 2DES, with an emphasis on

the lack of a quantized Hall state at ν = 1/2. The additional complexity introduced
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by a second 2D layer, however, permits the formation of new quantum Hall states

both at νT = 1/2 and at νT = 1. Even in the limit of vanishing tunneling, an

inter-layer correlated quantum Hall state at total filling factor νT = 1 can form.

We have examined tunneling in double-layer 2D electron systems as the inter-layer

correlations are continuously tuned from weak to strong. A dramatic enhancement

of the zero-bias tunneling conductance is observed as the system crosses the phase

boundary into the νT = 1 quantized Hall state. It seems likely that this peak is

intimately connected with the q = 0 component of the Goldstone mode of the broken

symmetry ground state.

Several facets of the νT = 1 tunneling resonance have been introduced here and are

the topic of subsequent chapters. The detailed temperature dependence is studied in

Chapter 5 and the dependence of the phase boundary on d/lB and density imbalance

is the focus of Chapter 7.
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Chapter 5

Temperature Dependence of the νT = 1 QHE

In this chapter we measure the temperature dependence of tunneling in the νT = 1

quantum Hall state and compare these results to those of a conventional Josephson

junction. Contrary to popular belief, a conventional Josephson junction always has a

finite, albeit usually minuscule, resistance. This resistance is strongly temperature-

dependent and vanishes as T → 0. For sufficiently small and carefully-engineered

junctions this dependence can be measured [73] and is well understood within the

context of conventional theory [74, 75]. The results are qualitatively similar to the

bilayer νT = 1 tunnel junction, in that the conductance peaks both become taller and

sharper with decreasing temperature, however, the quantitative behavior of the two

systems is sharply disparate.

The zero-bias conductance of a “large” superconducting tunnel junction in the

over-damped regime follows an Arrhenius behavior, G0(T ) ∼ exp(2Ej/kbT ). The

Josephson energy, Ej, is characteristic energy of the tunnel junction. Evidently, as

T → 0 the conductance diverges; in practice Ej � kbT , so that except very close to

the transition temperature the conductance is essentially infinite.

In contrast, we find that in the νT = 1 quantum Hall junction the conductance

is exponential in temperature, G0(T ) ∼ exp(−T/T0), over as many as three decades

in conductance. This simple exponential form extrapolates to a finite value at zero

temperature. If this extrapolation is to be trusted, we may conclude that there is no

true super-current branch in this system.

Although a single Josephson junction has an activated conductance, granular su-

perconducting arrays can have an exponential dependence. This suggests that per-
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Figure 5.1: Representative I − V and dI/dV data for the νT = 1 tunnel junction at
T = 25 mK and d/lB = 1.50. Note that the line width is clearly nonzero.

haps the strongly disordered quantum Hall system is somehow similar to the granular

system.

5.1 Temperature dependence of a Josephson junction

In agreement with theoretical expectations, the observed inter-layer tunneling

spectra at νT = 1 is qualitatively similar to that of a true Josephson junction [14].

Therefore, we start our discussion with the well known behavior of a “classical”

Josephson junction.

In the resistively-shunted junction (RSJ) model, the superconducting circuit is

described as an ideal Josephson junction in parallel with a capacitor (an external

capacitor in parallel, or just the innate capacitance of the tunnel junction) and a

shunting resistor. The resulting dynamics are described by a “tilted washboard”

potential with a viscous damping term due to the resistor; at nonzero temperature,

this model always leads to a finite (although generally minuscule) resistance.

Figure 5.2-A illustrates the RSJ circuit. Strictly speaking, only the left circuit

represents RSJ model. However, the equations of motion for the left and right circuits

are equivalent, requiring only a reinterpretation of the voltage and current variables.
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The remainder of this section will treat this second case.

A Josephson junction can be considered a nonlinear circuit element obeying Joseph-

son’s equations

I = Ic sinφ, and
dφ

dt
=

2e

~
V,

where φ is the phase difference between the two superconductors. With the conven-

tional descriptions of resistors and capacitors, this leads to an equation of motion for

the phase variable φ,
~C
2e
φ̈+

~
2eR

φ̇+ Ic sinφ =
V

R
.

This motion corresponds to the damped oscillations of a particle in the tilted wash-

board potential illustrated by Figure 5.2, and is described by the potential,

U(φ) = −EJ

(
cosφ+

V

RIc
φ

)
. (5.1)

The Josephson energy, EJ , has been defined as EJ = Ic~/2e. We can qualitatively

understand the behavior of the junction in two limits. A) When the applied bias

is small, the washboard potential is slightly tilted, and the equilibrium value of φ

is shifted slightly from zero, leading to a DC current I = Ic sinφ. Since φ is time-

independent, dφ/dt = 2eV/~ = 0, and there is no voltage drop across the junction.

B) In the opposite limit, when the applied bias V is large, the phase “rolls” down the

steeply tilted washboard, leading to an AC current. As V is further increased, the

time-averaged DC current decreases to zero.

When C is small, i.e., the over-damped limit, the model can be solved and the

resulting I − Vj and dI/dVj characteristics are given by [76]

I =
1

R

[√
V 2

j + I2
cR

2 − Vj

]
, and

dI

dVj

=
1

R

 Vj√
V 2

j + I2
c

− 1

 .
Vj is the voltage drop across the junction, not the applied bias. In this model, there is

a super-current branch at zero-bias, while slightly away from zero, the current scales
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like I(Vj) ∼ − |Vj|−2.

The thermodynamics of a classical object in the potential described by Equation

5.1 can be solved exactly solved [74, 75]. The resulting I −Vj is the ratio of modified

Bessel functions

I = Im

(
I1−iβEJv(βEJ)

I−iβEJv(βEJ)

)
, and Vj = R(Icv − I).

This final pair of equations must be solved numerically to acquire a particular I−Vj.

Figure 5.2-B shows a family of typical I − Vj curves representing the real junction

measured by Steinbach et al. [73]. In this sample, the normal resistance is R = 24 Ω,

the critical current Ic = 44 nA, and the Josephson energy EJ = 91 µeV. These curves

correspond to T = 0, 25, 200, and 800 mK.

Although the zero-bias conductance of the I − Vj can be analytically computed,

the low-temperature behavior can be obtained by simple physical considerations. The

existence of a potential barrier with height 2EJ leads to the expectation that the phase

diffuses between wells in an activated fashion. This leads to a finite voltage, and hence

a finite conductance in an Arrhenius form given by

G0 = g0e
2TJ/T .

At low-temperatures, the critical current Ic saturates; therefore, the line width, Γ, in

dI/dV must simply be proportional to 1/G0.

Using this simple model of a Josephson junction, we now investigate the temper-

ature dependence of the νT = 1 tunneling feature.

5.2 Measurement

These experiments were performed in a pair of bilayer GaAs/AlGaAs heterostruc-

tures grown by MBE. In these samples, two 180 Å GaAs quantum wells are separated

by a 99 Å Al0.9Ga0.1As barrier. Both samples consist of a 250× 250 µm tunneling re-

gion with arms extending outward from each side. Gates placed above and below the

tunneling region allow for precise control of the electron density, while depletion gates
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on the arms permit selective contact to each of the two layers. The majority of the

results come from Sample E, which has a nominal tunneling strength of 30×10−9 Ω−1.

When d/lB is very close to the νT = 1 phase boundary, however, the tunneling signal

becomes small, and we switch to Sample H1. This much more strongly tunneling

sample has a zero field conductance of 4×10−6 Ω−1.

The data described here was taken in RF filtered and shielded enclosures (see

Appendix C for typical details), which, in combination with careful grounding, helped

eliminate parasitic distortions of the intrinsic line-shape. Since we do not know, a

priori, the line shape, our belief that the noise is no longer relevant is based on the fact

that line width and peak height both continue to evolve at the lowest temperatures.

While in the presence of noise-induced broadening, the height and width both tend

to saturate at finite temperature.

In this series of experiments, we investigate the dependence of the νT = 1 tunneling

feature on temperature and d/lB. We describe the tunneling peak in terms of its

maximum conductance G0, and its line width ΓHWHM in I/V . In Chapter 3, the half-

width of the zero magnetic field feature in I/V was related to the electron lifetime,

ΓHWHM = ~/τ . In that case, the measured I/V data reflects the convolution of each

layers’ separate spectral function; as a result the observed peak in I/V is broader

than either individual spectral function. In the νT = 1 case we purport to directly

observe a single collective mode: there is no convolution, and it is more suitable to

define ΓHWHM = ~/2τ .

5.2.1 Observations Figure 5.3 illustrates the temperature dependence of the νT =

1 tunneling peak at d/lB = 1.50. Panels A) and B) display the tunneling conductance

and current vs. inter-layer bias at four different temperatures: 25, 50, 100, and

200 mK. As a function of temperature, the line qualitatively becomes both shorter

and fatter. With the same qualitative eye, the I − V data is strongly reminiscent of

that in a Josephson junction.

1The designed structure of these two samples is the same; however, due to the difference in
tunneling strength, we infer that the barrier on Sample H is slightly thinner.
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In Figure 5.3-C, the dependence of the peak conductance vs. temperature is

displayed. We make the purely empirical observation that for three decades, the

conductance is simply exponential in the temperature: G0(T ) = g0 × exp(−T/T0).

This is very different from the activated behavior seen in the phase diffusion picture.

Panel D) shows the apparently quadratic dependence of the line width on temper-

ature. Again, this behavior is theoretically unanticipated, but is reminiscent of the

temperature dependence at zero magnetic field.

Figure 5.4 summarizes the temperature-dependent observations as a function of

d/lB. Note that close to the phase boundary, the peak in conductance becomes very

small and the measurement becomes noise limited. By switching to Sample H (open

markers) we can explore closer to the phase boundary2.

As illustrated in the top panel of Figure 5.4, the suppression of the νT = 1 bound-

ary shows two independent effects. As the phase boundary is approached, the overall

conductance scale is reduced and suppressed more rapidly in temperature.

The data in Figure 5.4 shows that the temperature dependence of any given d/lB

can be described only by the two parameters g(d/lB) and T0(d/lB). This description

is valid over a wide range of temperatures; however, very close to the phase boundary

we observe that the conductance begins to fall with decreasing temperature. We also

note extremely long time constants in this range of d/lB. Upon cooling, the system

can take as long as 10, 000 seconds to reach equilibrium. This unusual behavior is

not fully understood, and is a topic of ongoing work.

5.2.2 Granular superconductors Although a single Josephson junction shows

a qualitatively different temperature dependence than observed here, the resistance

of a disordered array of small junctions can have a purely exponential temperature

dependence.

In a series of experiments by Frydman et al. [77], the four-terminal resistance of a

thin, granular superconducting film was found to be exponential in temperature. The

2Using the growth structure, the critical d/lB for this sample is measured to be 1.96, compared
to 1.83 for Sample E. This suggests that, in combination with the unexpected 100-fold enhancement
of the tunneling strength, the actual thickness of the barrier (and possibly the wells) is somewhat
less than expected.
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200 Å superconducting grains are deposited in a ultra-high vacuum (UHV) cryogenic

environment, yielding an extremely clean system. The system should be thought of

as an disordered array of superconductors coupled via Josephson tunneling.

As the film is cooled, the grains first begin to superconduct at their transition

temperature (as observed via local STM measurements of the superconducting energy

gap); however, the four-terminal resistance is unchanged. For sufficiently thick films,

further cooling leads to the temperature dependence: R(T ) = r0 exp(T/T0).

Although the authors do not propose a specific mechanism for this unusual tem-

perature dependence, their computer simulations of finite temperature, diffusive, 1D

Josephson junctions arrays, give approximately exponential temperature dependence.

Like this granular system, the bilayer 2DESs are highly disordered. Therefore, it

is likely that instead of a single clean superfluid, it may be better considered as a

collection of 2D superfluid droplets which are themselves Josephson coupled.

In this scenario, the decreasing temperature gradually increases the length, `, over

which grains are phase-coherent. It is noteworthy that while tunneling between many

phase-incoherent regions grows in proportion to the number of objects, phase-coherent

tunneling tunneling scales as N2. Thus, as the phase-coherent regions increase in size,

the tunneling grows like `2.

5.3 Conclusion

The observed I − V tunneling data at νT = 1 is qualitatively similar to finite

temperature Josephson tunneling in the diffusive limit. Furthermore, the qualitative

dependence on temperature of these I−V curves is similar. Quantitatively, however,

they are quite different from one other. The temperature dependence of the tunneling

conductance better resembles the four-terminal conductance of a granular array. This

similarity may be interpreted as signaling the importance of disorder.

Close to the phase boundary, the exponential temperature dependence is sup-

pressed at the lowest temperatures. Associated with this suppression, the system

exhibits extremely long time constants. Preliminary measurements indicate that
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they stem from the interaction between the 2DES and the nuclear spin system of

the gallium and arsenic nuclei.
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Chapter 6

Observation of the νT = 1 Goldstone Mode

So far, the tunneling experiments at νT = 1 have focused on properties of the spec-

trographically sharp tunneling feature at zero-bias. Since tunneling between two-

dimensional (2D) layers conserves both energy and momentum, these measurements

probe only those properties of the collective phase that involve no momentum trans-

fer. The application of a magnetic field parallel to the 2D planes, however, can impart

momentum to the tunneling electrons, which allows experimental access to the finite

q collective modes. In this chapter, we present a direct spectrographic measurement

of a linearly dispersing collective mode. We argue that this mode is the anticipated

Goldstone mode concomitant with the broken symmetry ground state [10, 14, 15].

In the case of tunneling between two parallel 2D layers, the parallel field B‖

provides a wave-vector q = eB‖d/~, where d is the separation between the 2D sheets.

By rotating the sample with respect to the total magnetic field (B), the component

of the magnetic field perpendicular to the sample (B⊥) and parallel to the sample

(B‖) can be independently adjusted in situ. This technique has been applied both

to 3D-3D tunneling between superconductors [78] and to tunneling in 2D electron

systems [79, 80].

The chapter begins by considering the case when the total magnetic field is parallel

to the 2D layers, i.e., B⊥ = 0. Since dynamics of the individual 2D systems are largely

unchanged in the presence of a parallel field, tunneling measurements performed in

this configuration can be used to map the 2D Fermi distribution in the kx− ky plane

[80].
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The effect of a parallel field in the νT = 1 state is more subtle. When tun-

neling is strong, a parallel field leads to a phase transition at a critical field B‖
∗,

which can be detected in conventional resistivity measurements [18] (Section 6.3).

This transition was the first experimental evidence supporting the existence of the

superfluid/ferromagnetic order-parameter φ [19].

In the ferromagnetic phase, spatial variations of the pseudospin phase, φ, govern

the low-energy excitations in the system. In addition to the gapped charged excita-

tions that lead to the formation of a quantum Hall effect (QHE), it also possesses

Goldstone modes attendant to the broken symmetry ground state [10, 14, 15]. These

pseudospin waves are associated with spatial gradients in the phase. When t → 0,

they are gapless in the long wavelength limit. By applying a parallel field, we observe

the expected tunneling signature of the Goldstone mode at finite applied bias. This

chapter focuses on the direct measurement of these excitations.

In addition to the expected finite bias features, we unexpectedly find that the

zero-bias peak remains, dominating the tunneling spectra even at large parallel field.

The final section of this chapter investigates the dependence on parallel field of this

remnant peak. It likely results from the strongly disordered nature of the 2D system,

which may well break up into a disordered array of Josephson couped superfluid

grains.

6.1 Effect of a parallel field

The consequences of a parallel field can be understood intuitively by considering

the effect of the Lorentz force on an electron traversing the distance, d, between the

2D electron layers. When a parallel field B = B‖x is applied, an electron with an

initial 2D velocity v2D experiences a force

F = −ev ×B = −eB‖ (vzy − vzx) .
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The time dependence of the z variables, vz(t) and z(t), is

vz(t) = vy(0) sin(ωct), and z(t) =
1

ωc

[vy(0)− vy(t)] .

When the electron traveled the full distance between the layers, i.e., z(t) = d, the

change in qy is given by

d =
1

ωc

[vy(0)− vy(t)] , and ∆qy = −
eB‖d

~
.

After each tunneling event the electron’s momentum is shifted by ∆q. To better

understand this process, it is helpful to consider tunneling when B⊥ = 0; the 2D

dynamics of the individual layers are unchanged by the addition of a parallel field1.

Therefore, the 2D-2D tunneling can be well understood in terms of the Fermi’s golden

rule expression from Chapter 3.

Figure 6.1 shows the parallel field dependence of the zero-bias tunneling between

two layers with matched density (n1 = n2 = 0.58×1011 cm−2). When B‖ = 0, the

signal is maximized and tunneling occurs at the points where the Fermi circles overlap.

In contrast, when B‖ 6= 0, the Fermi circles are shifted with respect to each other

and tunneling is only allowed at the two points where they overlap. Finally, when

q = 2kf , the edges of the circles briefly osculate, and there is a small enhancement of

tunneling before it vanishes.

This data was taken in Sample F, which has 180 Å wells and a 89 Å barrier.

At this density, the computed Fermi wave-vector is 2kf = 1.3 × 108 m−1. With

the center-to-center well spacing of 269 Å, the location of the secondary peak at

B = 2.89 T predicts 2kf = 1.2 × 108 m−1. The consistency of this simple picture

with the experimental data provides confidence in the understanding of tunneling of

a parallel magnetic field.



106

10

8

6

4

2

0

G
0 

[1
0-6
Ω

-1
]

43210

Magnetic Field [Tesla]

q = 2kf

q = 0

q < 2kf

Figure 6.1: 2D-2D tunneling in the presence of a parallel magnetic field, showing
clearly the shifting of the Fermi circles with respect to each other.

6.2 A Josephson junction in a parallel field

Although the measurements are in bilayer 2D systems, it is instructive to further

pursue the analogy with conventional Josephson junctions. Fogler et al. [81] recently

pointed out a classic experiment by Eck et al. [82] who measured the DC I − V of a

Josephson junction in the presence of a parallel magnetic field, B‖. The observed DC

tunneling current was peaked at finite bias, V ∗, and V ∗ was found to vary linearly

with B‖.

To understand the features at finite bias, we must include the interaction between

the AC tunneling current and the electromagnetic modes inherent in a Josephson

junction: the Swihart modes. When the momentum provided by the parallel field, and

the energy supplied by the external voltage source, are coincident with the dispersion

of Swihart modes, the DC tunneling current is peaked. Recalling that in the presence

1In reality, parallel fields do affect finite-width 2D systems by mixing between the quantum-wells’
subbands.



107

B|| x

x

y

z

dx

d

λ

λ
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of a parallel magnetic field in the x direction, the Josephson equations read

j = jc sin(φ(y)− ky), and
dφ

dt
=
e∗

~
V (y, t).

k is exactly the wave-vector a cooper-pair acquires when crossing the tunnel barrier,

k = e∗B‖d
′/~ where d′ = 2λ+ d. In a superconductor, e∗ = 2e, and λ is the London

penetration depth, i.e., how far the magnetic field penetrates from the insulator into

the superconductor.

By considering the surface integral of ∇× E = −∂B/∂t bounded by the contour

shown in Figure 6.2, and the analogous contour in the x − z plane we arrive at the

pair of equations

∂Ez

∂y
= −d

′

d

∂Bx

∂t
, and

∂Ez

∂x
=
d′

d

∂By

∂t
.

The ∇ × E integral is computed by evaluating the contour integral
∫
E · dl around

the indicated loop. Since the z-component of the electric field is screened within the

superconductor, the integral is proportional to d, not d′ = d+ 2λ.
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A final differential equation can be derived from the z component of a second

Maxwell equation2: ∇×B = µ0ε0∂E/∂t+ µ0j. Which gives the relation,

∂By

∂x
− ∂Bx

∂y
=

1

c2
∂Ez

∂t
+ µ0jz.

In these equations, Ez can be identified as the AC potential v(t)/d. With this sub-

stitution, the three differential equations combine into a single, damped-driven wave

equation (
∂2

∂x2
+

∂2

∂y2
− 1

c̄2
∂2

∂t2
− 1

c̄2τ

∂

∂t

)
v =

d

ε0c̄2
∂jz
∂t
. (6.1)

In this wave equation, the speed of light has been renormalized to c̄2/c2 = d/d′,

and dissipation has been phenomenologically included via a scattering time, τ . In the

limit, when the induced AC voltage is much smaller than the applied DC voltage, i.e.,

v/VDC � 1, the phase difference is approximately φ0 ≈ e∗V t/~ = ωJt. The current

in the z direction, jz, must be the Josephson tunneling current. We can compute the

current density using the approximate phase jz = jc sin(kx− ωJt).

Equation 6.1 permits solutions of the form v = v0 sin(kx−ωJt+Θ). Substituting

and solving gives for the coefficients v0 and Θ

v0 =
djc
ε0ωJ

[(
1− q2c̄2

ω2
J

)2

+

(
1

ωJτ

)2
]−1/2

, and tan Θ =
1

ωJτ

(
1− q2c̄2

ω2
J

)−1

.

This small AC voltage leads to a correction of the phase φ = φ0 + v/VDC sin(ωJt −

qx + Θ), which results in a slightly modified tunneling current, j = jc sin(φ0 +

v/VDC sin(ωJt − qx + Θ)). This perturbed Josephson tunneling current has a finite

time-averaged DC component,

jDC =
jcv0

2VDC

sin Θ

=
j2
cd

ε0ωJVDC

1

ωJτ

[(
1− q2c̄2

ω2
J

)2

+

(
1

ωJτ

)2
]−1

.

2For simplicity, this calculation is performed with ε = µ = 1.
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Thus, the AC Josephson oscillations, in conjunction with a parallel magnetic field,

simulate the low-energy electromagnetic modes. The resulting voltage oscillations

lead to measurable peaks in the DC I − V located at ωJ = ±qc̄. It is important to

note that this linearly dispersing mode is the only low-energy excitation of the system.

It can equivalently be described as electromagnetic modes in the tunnel junction or

modes in the phase difference φ.

The expectation for the νT = 1 system is very similar, predicting that when B‖ 6=

0, the zero-bias step in I − V will split into peaks at finite bias [83, 84]. To test this

interpretation, we have examined the tunneling spectra at νT = 1 after adding a small

magnetic field component B‖, parallel to the 2D planes, to the existing perpendicular

field B⊥. The voltage location of these resonances should be eV ∗ = ±~ω(q), where

~ω(q) is the Goldstone mode energy at the parallel field-induced wave-vector q. Since

the mode disperses linearly for small q, detection of the splitting will provide a measure

of its velocity c̄.

6.3 Behavior at νT = 1

The effect of B‖ in ρxx was investigated by Murphy et al. [18]. In these exper-

iments, the transport energy gap, ∆, was measured as a function of parallel field –

observations that stimulated the development of the pseudospin model [19, 69, 70].

Murphy noticed that the energy gap first decreased rapidly with parallel field, then

saturated at a critical field, B∗.

This transition is easily understood in the pseudospin language; in the presence

of a parallel field, the relevant components of the pseudospin Hamiltonian read

H =

∫
d2x

[
ρs
|∇φ|2

2
− t

2πlB
2 cos(φ− qx)

]
.

When B‖ is small, the tunneling energy is minimized by a pseudospin, which tumbles

in space, φ = qx, leading to an energy density ρsq
2/2. In contrast, at large B‖, a

position-independent phase minimizes the energy. In this limit, the average energy

density is 0. By setting these simple estimates of the energy equal, we find a critical
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field

B‖
∗ = B⊥

lB
d

t

πρs

.

This equation overestimates, by a factor of only 2
√

2/π ≈ 0.9, the results of more so-

phisticated calculations [70]. In the transport experiments of Murphy et al., their most

weakly tunneling sample was at d/lB = 1.8, with a density of NT = 1.26×1011 cm−2

and a tunnel gap ∆SAS = 2t = 0.8 K. Based on these parameters, ∆SAS/Ec = 7× 103

and ρs ≈ 300 mK [69], therefore, B‖
∗ = 1.1 T. This prediction is in agreement with

the observed transition when the sample was tilted by θ∗ = 8◦ with respect to the

total field, giving B‖
∗ = 0.73 T.

In the current samples, however, ∆SAS ≈ 6 µK, so the critical angle is only θ∗ ≈

10 × 10−6 degrees. Since we can only control the angle to about δθ ∼ 0.1◦, for

all practical purposes, the samples are always in the phase minimizing the gradient

energy.

6.4 Experiment

The data in this chapter are taken in Samples D and E. These four-terminal

tunneling samples are described in more detail in Chapters 3 and 4. Sample D is

used in the experiments at “large” B‖, i.e., measurements of the νT = 1 Goldstone

mode. The data from Sample E focuses on the consequences in tunneling of a small

parallel field.

In these experiments, a magnetic field, B, is provided by a single superconducting

solenoid. The parallel component is generated by rotating the sample by an angle

θ with respect to the magnetic field. To maintain a constant filling factor, the total

field is adjusted so B = B⊥/ cos θ, yielding a parallel component B‖ = B⊥ tan θ.

To achieve this, we constricted an 18-pin rotating sample assembly from high-

purity silver. The rotation is controlled by a Kevlar string attached on one end to

the paddle of the rotator, and the other to a micrometer at room-temperature. By

pulling on the string, the paddle rotates; a restoring force is provided by a hand-wound

Phosphor-Bronze spring attached to the rotator.
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These experiments depend on a quantitative measure of the exact parallel field.

Usually, B‖ is determined by measuring the SdH oscillations of the 2DES under

study. This measures B⊥ = B cos θ, which is insensitive near θ = 0. Instead, the

parallel field is accurately determined using a second 2D electron gas sample mounted

perpendicular to the tunneling sample. The Hall resistance of this second sample is

then proportional to B‖ = B sin θ.

As the following data indicate, the tunneling is very sensitive to tilt, changing

considerably when rotated only a single degree. Since the rotator can tilt in only

one axis, we first level the sample in the other direction, as measured with a laser

reflected from the sample.

6.5 Large wave-vector: νT = 1 Goldstone mode

Figure 6.3 shows the measured tunneling current I vs. V (top panel) and conduc-

tance dI/dV vs. V (bottom panel) at νT = 1 and T = 25 mK with different parallel

fields applied. The data shown in Figure 6.3 corresponds to n1 = n2 = NT/2 =

0.26×1011 cm−2 or d/lB = 1.61; similar data have been obtained at various values of

d/lB below 1.84. In addition to the now familiar step in I − V and peak in dI/dV ,

these data show that the zero-bias feature is suppressed by the application of a par-

allel magnetic field. Only a few tenths of a Tesla are required to strongly suppress

the zero-bias conductance peak.

Upon careful inspection, however, the suppression is accompanied by features

moving to higher energy with increasing B‖. We associate the location of these

features with the anticipated linearly dispersing Goldstone mode. The dotted line

in the top panel shows the location in I vs. V where these subtle peaks are located

in each trace. It is clear from the bottom panel that the parallel magnetic field has

a dramatic effect on the tunnel spectrum. The fine structure, which is magnified

in Figure 6.4, first appears as two small peaks in dI/dV positioned symmetrically

about V = 0 and superimposed on the still substantial flanks of the main zero-bias

resonance. As the parallel field increases, these split-off peaks move toward higher

energies and become more prominent. At the same time, the zero-bias resonance
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Figure 6.3: Tunneling data at νT = 1 and T = 25 mK. Total density NT =
0.52×1011 cm−2, B‖ = 0 to 0.47 T. Upper panel: I − V vs. inter-layer voltage
V . The dotted line indicates the location of the resonance as identified in dI/dV .
Lower panel: dI/dV vs. V with B‖ = 0 to 0.47 T.
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0.47 T. Dots indicate the positions of the split-off resonances in dI/dV , as identified
via maxima in d2I/dV 2 (Figure 6.5).

weakens steadily. Qualitatively, these split-off resonances have the “derivative” shape

theoretically expected [83, 84] for features associated with peaks in I−V . Due to the

broad, presumably incoherent, background we are unable to identify clear peaks in

I − V . With this in mind, we identify the energy of the resonances with the voltage

V ∗ at which the derivative of the conductance, d2I/dV 2, exhibits an extrema (Figure

6.5: top panel). The solid dots in Figure 6.4 show the results of this identification in

dI/dV . At high B‖, these resonances are lost in the tunneling background.

The top panel of Figure 6.5 shows d2I/dV 2 as computed numerically from the

measured conductance data. The extrema in this data are identified as the location

of the resonances and identified with large dots. The bottom panel of Figure 6.5

displays the average energy eV ∗ of resonances vs. the wave-vector q = eB‖d/~. Data

for three different densities, NT = 0.52, 0.60, and 0.64×1011 cm−2, corresponding to
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d/lB = 1.61, 1.71, and 1.76, are shown. These data lie on straight lines with a slope

identifying the mode velocity c = 14 km/s. The dashed line in Figure 6.5 shows

an estimate of the dispersion relation of this mode at long wavelengths based on

the dispersion relations in Chapter 4. These results, in good agreement with theory,

demonstrate the existence of a linearly dispersing collective mode in the bilayer 2D

electron system at νT = 1.

6.6 Small wave-vector: disorder

The data in Figure 6.3 also possess aspects that are not explained by recent

theoretical models [83, 84]. The biggest puzzle is presented by the residual zero-bias

conductance peak, which persists to significant B‖. In this section, we investigate the

behavior of the central peak as it is suppressed, and suggest that disorder may play

a role [85].

At zero field, tunneling can be understood in single particle terms and the line

width reflects the lifetime of the quasiparticles in the 2D systems [48]. In contrast, the

narrow line width and dramatic enhancement in conductance at νT = 1 suggests that a

collective mode dominates the spectral weight at lowenergy. Additionally, incoherent

tunneling cannot explain the strong dependence on parallel field. Tunneling between

two uncorrelated layers in a parallel field can be understood much the same way as

at zero field. In this case, the single particle wavefunctions described in Chapter 2

lead to an effective change of the tunneling gap,

∆SAS(B‖) = ∆SAS exp

[
−
(
d

lB

B‖

2B⊥

)2
]
,

resulting in a suppression of the tunneling current proportional to ∆SAS
2. In our

samples at d/lB = 1.63, the tunneling signal should decrease by 50% at B‖ = 1.61 T

or θ = 35◦. The actual conductance, shown in Figure 6.6, is suppressed by half at

only 0.13 T, again suggesting that the tunneling feature is a collective phenomena.

In Chapter 5 we suggested that the unusual exponential temperature dependence

may be understood in terms of small grains of coherent νT = 1 phase Josephson
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coupled with each other. In this picture, each grain is phase-coherent below the K-T

transition temperature, but thermal fluctuations suppress inter-grain coherence. As

the temperature drops, the inter-grain coherence increases, which may be parame-

terized in terms of a coherence length ξ. To better understand this suppression, we

again turn to the more well-understood SIS tunnel junction.

Josephson tunneling through a narrow junction of width L, in the presence of a

parallel field is described by a Fraunhofer diffraction pattern

I = jc

∫ L/2

−L/2

sin(φ+ qx)dx

=
2jc sin(qL/2)

q
sinφ,

which can be identified as the Josephson equation with a critical current modulated

by the parallel field. If instead we assume an infinite system, in which two points are

phase-coherent with probability P (x) = exp(− |x| /ξ)/2ξ, the analogous computation

gives

j∗ = jc

∫ ∞

−∞
sin(φ+ qx)P (x)dx

=
jc

1 + q2ξ2
sinφ.

Here, j∗ is interpreted as the current density in a small coherent region of size ξ. The

applied q reduces the apparent critical current density by a Lorentzian factor. The

half-width of the Lorentzian is directly related to the coherence length by ξ−1. We

investigated the dependence on a small parallel field of the central peak in tunneling

conductance.

The top panel of Figure 6.6 shows the dependence on a parallel field of the zero-

bias conductance peak at d/lB = 1.63, 1.69, and 1.75. To better compare the effect

at different values of d/lB, the strong dependence of G0 on d/lB is removed by nor-

malizing the conductance to the value at θ = 0. It is striking that the line-shape

at T = 25 mK is independent of d/lB (except for the overall vertical scale factor).
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width in B‖ vs. temperature at d/lB = 1.63. The dotted line is a quadratic guide to
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The Lorentzian is an extremely good fit to the data, yielding a half-width Γ3, which

is Γ = 0.13 T, from which we extract a coherence length of only ξ = 0.2 µm. This

length scale may be reasonable, since it is comparable to the 0.2 µm setback to the

silicon donors.

The lower panel shows the temperature dependence of Γ at d/lB = 1.63. The

most striking feature of this data is the clear finite intercept as T → 0. It would

be surprising if, suddenly, the gradual temperature dependence changed to permit

Γ → 0 below 25 mK. Therefore, the temperature dependence suggests that even

at the lowest temperature, the system has a finite and small inter-grain coherence

length.

6.7 Conclusion

In summary, magneto-tunneling spectroscopy experiments on double-layer 2D

electron systems in the νT = 1 QHE state reveal a collective mode in the system

that disperses linearly with wave-vector at low-energy. The measured velocity of this

mode is in reasonable agreement with theoretical estimates for the Goldstone mode

of the broken symmetry ground state.

Although rapidly suppressed, the zero energy feature unexpectedly remains at

large q. The analysis of this feature suggests that it may be explained in terms of

tunneling within small coherent regions. Nonetheless, a theoretical understanding of

this remnant peak remains a vexing problem.

3As stated above, the sample was leveled within 0.5 degrees in the axis perpendicular to the
rotation angle. Assuming the existence of a wave-vector, k, from this inadvertent tilt, the width in q
is broadened to Γ2 = Γ2

0 +k2. Based on the estimated uncertainty in the tilt angle and the observed
line width, this is a 1% effect at d/lB = 1.63.
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Chapter 7

Effects of Density Imbalance on the νT = 1 QHE

Recent studies of bilayer two-dimensional electron systems (2DES) at filling factor

νT = 1 are strongly indicative of a quantum phase transition between inter-layer co-

herent and incoherent states. As the distance between the layers increases, the degree

of coherence between the layers decreases, until, at a critical layer separation, the state

disappears. The detailed behavior of this transition is central to the understanding

of the bilayer-coherent state.

In this chapter, we present inter-layer tunneling data exploring the dependence

of the phase transition on a relative density imbalance between the layers and find

that in the strongly coherent regime the system is further stabilized by imbalance.

Likewise, we find that the phase boundary is moved to larger layer separation by the

application of a density imbalance. This result is corroborated by Coulomb drag data

taken by Mindy Kellogg.

7.1 νT = 1 phase boundary

The location of the phase boundary was first probed by Murphy et al. [18] by

searching for a minimum in ρxx at νT = 1. Their data explored the plane spanned by

d/lB and ∆SAS/Ec (recall that Ec = (e2/4πεlB) is the Coulomb energy). The phase

boundary was found to increase roughly quadratically in ∆SAS, but had a nonzero d/lB

intercept of roughly 2. In our weakly tunneling samples, we explored the orthogonal

plane spanned by d/lB and density imbalance, ∆N/NT .

In Chapter 4, the Halperin Ψ111 wavefunction was introducted, which is thought

to capture the essential physics of the νT = 1 bilayer quantum Hall state. An unusual
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property of this wavefunction is that it is valid at any individual layer filling fraction

ν1 and ν2, provided νT = ν1 +ν2 = 1. This observation makes no statement regarding

how good a trial function it may be, just that it is a valid question to ask.

In particular, when ν1 = 1/2 and ν2 = 2/3, the total system is at total filling

νT = 1. It is likely that these strong, single-layer, fractional states will dominate

the competing ψ111 phase. Since the other FQHE states are poorly resolved in our

samples (see Chapter 4), we anticipate a strong νT = 1 coherent state in the range

|∆N/NT | < 0.3.

In the language of a pseudospin ferromagnet, |↑〉 and |↓〉 denote an electron in

either the top or bottom layer. In the balanced, n1 = n2 ferromagnetic state, the

carriers form a coherent inter-layer state described by a macroscopic phase variable

φ in the state (|↑〉+ exp(iφ) |↓〉) /
√

2.

The magnetization of the ferromagnet in the z direction is proportional to the

average charge difference between layers. Thus, when 〈mz〉 = 1 all of the carriers

reside in the top layer. In particular, the z magnetization is just, 〈mz〉 = (n1 −

n2)/(n1 + n2), i.e., the relative density imbalance. By suitably biasing gates above

and below each of the 2D layers, we can adjust this ratio while maintaining a constant

total filling factor.

7.2 Prior studies

Transport measurements have shown density imbalance enhances the charge gap

[86, 87, 88], however, these studies are unable to resolve the detailed behavior of the

phase boundary.

The initial measurement on density imbalance by Sawada et al. [86] used the

width of the quantum Hall minimum as a metric for the strength of the QHE. They

found that the νT = 2/3, and νT = 2 effects were rapidly suppressed1. This is

consistent with the idea that these states are single layer QHE’s which disappear

when the single-layer filling factor changes. When ∆N/NT 6= 0, the νT = 1 state

1After an initial strong and rapid suppression vs. ∆N/NT , Sawada et al. ?? found that the
νT = 2 state gradually became more robust.



121

was either unchanged (at high initial density), or enhanced (at lower total density).

They note that this is consistent with the νT = 1 state being described by the Ψ111

wavefunction. In their second publication, Sawada et al. [87] observe the same effect

from temperature-dependent resistivity measurements. By fitting to an activated

form, Rxx ∼ exp(−∆/2T ). The resulting energy gap, ∆, increases with increasing

imbalance at νT = 1.

Tutuc et al. measure the effect of a density imbalance on a set of parallel 2D hole

layers [88]. Like the measurements of Sawada et al. [87], Tutuc et al. measured the

energy gap ∆. They also find that the νT = 1 energy gap increases with imbalance.

Although this result is counterintuitive, the Hartree-Fock theory of Joglekar et.al.

[67] predicts that the critical layer separation when the νT = 1 coherent state disap-

pears, d/lBcrit grows approximately quadratically in ∆N/NT .

Tunneling has a definite signature when the νT = 1 state disappears. We interpret

the existence of a resonant peak in tunneling as signifying the existence of the inter-

layer correlated νT = 1 state. Thus, unlike transport measurements, tunneling can

be used to probe the dependence of the phase boundary on density imbalance.

7.3 Measurement

Sample described herein is a high-mobility (µ = 1.2×106 cm2/Vs), molecular

beam epitaxy (MBE) grown heterostructure consisting of two 180 Å GaAs wells

separated by a 99 Å Al0.9Ga0.1As barrier. The nominal per-layer electron density,

0.55×1011 cm−2, is provided via remotely placed Si dopants set back 2300 Å beneath

the bilayer and by 2050 Å above it.

Sample E, with a tunneling geometry, consists of a 250× 250 µm mesa with four

outward extending arms terminated by AuNiGe Ohmic contacts. The layer densities

are separately controlled by metallic gates placed above and below the bilayer. Each

outward extending arm is also equipped with depletion gates determining which of

the two layers, if either, are contacted [34].

Density imbalance, ∆N/NT = (n1 − n2)/(n1 + n2), is the central parameter in

this study. The dependence of the layer densities on gate voltages are extracted
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Figure 7.1: Top: dI/dV vs. V at d/lB = 1.85 and ∆N/NT = 0 illustrating the
suppressed zero-bias conductance in the uncorrelated regime. The rectangle around
zero-bias bounds the lower conductance traces. Bottom: the bold parabolic curve is
the measured phase boundary as a function of ∆N/NT and d/lB. The dotted curve is
a theoretical prediction [67] offset from d/lBcrit = 1.3 to match the observed transition
value. The lower four data traces illustrate the tunneling behavior near the phase
boundary. From top to bottom: d/lB = 1.834 and ∆N/NT = 0; d/lB = 1.834 and
∆N/NT = ±0.15; and d/lB = 1.804 and ∆N/NT = 0.



123

from low-field Shubnikov de Haas oscillations in either tunneling amplitude or the

longitudinal resistivity. At νT = 1 the imbalance parameter therefore reflects the

application of this calibration and does not result from the direct measurement of the

charge difference between the two layers.

Tunneling current (I−V ) and conductance (dI/dV ) are simultaneously measured

in a four-terminal geometry. Each layer is connected to two leads; both the voltage

drop and current through the sample are independently measured. A small AC exci-

tation is added to the DC bias voltage, and the resulting δI and δV are combined to

dI/dV .

Figure 7.1 illustrates our central result. Very close to the νT = 1 phase boundary,

the application of a density imbalance increases d/lBcrit. The bold line represents the

phase boundary as measured by tunneling spectroscopy; roughly 200 tunneling traces

were inspected for a visible zero-bias tunneling peak, the results of which are well fit

by a parabola2. In this analysis, conductance peaks larger than 0.2×10−9 Ω−1 were

resolvable. Although our determination of the phase boundary is therefore limited by

finite resolution, the same qualitative results have been replicated in a sample with

100× stronger nominal tunneling conductance.

In the incoherent regime, the zero-bias tunneling is suppressed, resulting from the

energetic penalty associated with the rapid injection of an electron into a strongly

correlated single-layer [66, 58, 65]. In the correlated state, the suppression gives

way to a sharp peak centered at zero-bias. Using this peak as the signature of the

coherent state, a critical value of d/lBcrit ≈ 1.83 was measured, below which the

dramatic enhancement of the zero-bias tunneling conductance is observed [20].

Figure 7.1 also contains typical tunneling spectra taken at T = 25 mK near the

νT = 1 phase boundary; the full trace (d/lB = 1.850) illustrates the suppressed zero-

bias tunneling conductance and broad high-energy features typical of tunneling in the

incoherent state. When the densities are imbalanced, the qualitative shape of these

2A horizontal shift of roughly ∆N/NT = 0.02 has systematically been applied to the presented
imbalance data to preserve the symmetry about zero. Measurements of the tunnel spectra outside
of the νT = 1 regime indicate thatlayers which have balanced densities at zero magnetic field can
become slightly imbalanced at high-field by about 4% (as computed from the asymmetric high-field
I − V data [66]).
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features are unchanged, however, the spectral weight shifts, leading to data which is

strongly asymmetric about zero-bias.

The lower four tunneling traces in Figure 7.1 span the phase boundary: at d/lB =

1.834 with imbalances of 0 and ±0.15; and at d/lB = 1.804 with ∆N/NT = 0.

The imbalanced data show a clear peak in tunneling, while at the same d/lB, when

n1 = n2 the peak is replaced by level valley around zero-bias. In addition, the

background is asymmetric in the unbalanced case, reflecting the response of the high-

energy tunneling features to a density imbalance. Even deep in the νT = 1 phase, the

high-energy features remain, having evolved continuously from the gapped structure

in the uncorrelated regime. These remnant features show the same type of skewing

with imbalance as they do above the phase boundary.

7.3.1 Deep within the νT = 1 phase Figure 7.2 illustrates typical tunneling data

well below the phase boundary (d/lB = 1.59). In contrast to data taken near the phase

boundary, here the tunneling resonance becomes shorter and fatter with increasing
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imbalance. Conversely, transport data has shown a simple monotonic enhancement

of activation energy ∆, vs. ∆n/NT [88, 87]3.

Deep in the νT = 1 phase, the temperature dependence of the tunneling con-

ductance is well described by G0 = g0 exp(−T/T0) (see Chapter 5). This indicates

the tunneling amplitude can be parameterized in terms of the two variables: g0 and

T0 (inset to Figure 7.2). The magnitude of the tunneling conductance, described in

terms of g0, decreases with imbalance; conversely, the energy scale T0 increases. This

contrast only becomes evident as d/lB decreases; at d/lB = 1.76 it is only visible at

the lowest temperatures.

7.4 Discussion

This puzzling enhancement of the temperature coefficients suggests that, although

connected, the overall integrity of the νT = 1 state is not simply related to the

magnitude of the low-temperature conductance. One possible mechanism for this

was discussed in the introduction – a pseudospin polarization in the mz direction is

expected to decrease the projection onto the x− y plane.

The operator which measures the tunneling current, temy/~ [55], is proportional

to the pseudospin magnetization in the y direction. Based on this, it is plausible

that a decrease in the x − y magnetization would be reflected by a decrease in the

tunneling conductance.

Since these measurements were performed in the weakly tunneling limit changes

in the tunneling strength alone will have little effect on the behavior or integrity of

the quantum Hall state.

The upward curvature of the observed phase diagram is in qualitative agreement

with the predictions of Joglekar et.al. [67]. The results of this theory are show in

Figure 7.1 as a dashed line. This result has been translated upward from the predicted

transition d/lB = 1.3 to match the experimentally observed 1.83. The central result

of an upward curving phase boundary is in agreement with our experiment.

3Other unpublished data shows the an activation energy which is roughly independent of ∆N/NT

[89].
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7.5 Conclusion

In summary, tunneling spectroscopy experiments on double-layer 2D electron sys-

tems in the νT = 1 QHE have been used to determine the location of the phase

boundary between the coherent and incoherent regimes. The enhancement of d/lBcrit

with imbalance is in reasonable agreement with theory.
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Conclusion

The Josephson-like tunneling data presented in this thesis is the first direct evidence

[20, 22] for the long-sought excitonic superfluid. Remarkably, we find the excitonic

superfluid in a pair of half-filled Landau levels. We have presented several lines of

evidence that suggest this tunneling feature must be a collective phenomena.

In parallel with these experiments, Mindy Kellogg [90, 91] has studied the lateral-

transport properties of the νT = 1 system. In particular, she finds that the symmetric

and antisymmetric current channels decouple [90, 91]. In a more recent work, Kellogg

et al directly measure the predicted counterflow superfluidity. There are two central

results of this study: 1) The antisymmetric conductivity is enhanced by six orders of

magnitude compared to the symmetric conductivity. 2) Currents in the antisymmetric

channel induce no Hall voltage, indicating that the charge carriers are the predicted

charge neutral excitons.

This thesis has investigated various properties central to the νT = 1 tunnel junc-

tion. The results have shown that the inter-layer tunneling current is reminiscent of

Josephson tunneling between superconductors. In conclusion, I would like to discuss

several directions for future study.

Lower temperature In Chapter 5, we observed that at every d/lB, when there is a

peak in tunneling at νT = 1 that peak continues to evolve at the lowest tempera-

tures available in the lab: 15 mK. Central to our understanding of the tunneling

feature is its ultimate height and width. A true Josephson junction has infinite

conductance and zero line width at zero temperature. A new cryostat has been

ordered that should reach 1 mK.

Shapiro steps In the presence of RF radiation, a conventional Josephson junction

shows Shapiro steps. We have already attempted to directly illuminate the
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sample with RF radiation. Unfortunately, only a small amount of power was

required to dramatically heat the electron system and destroy the νT = 1 state.

We are currently working on channeling microwave radiation into the tunnel

junction.

Fraunhofer diffraction Chapter 5 alluded to the fact that a narrow superconduct-

ing junction in a parallel magnetic field exhibits a Fraunhofer diffraction. This

pattern beats when the magnetic flux though the junction is an integer multi-

ple of the magnetic flux quanta. This effect is a direct result of the coherence

properties of the superconducting order parameter. We propose an analogous

measurement in the νT = 1 system.

Other filling fractions When we introduced the Ψ111 as a specific example of Halperin

a Ψlmn wavefunction, we noted that a class of these function when l = m = n

were all inter-layer coherent. Ψ111 is at total filling 1, while the next valid

(by the Pauli principle) Halperin state is the Ψ333. This occurs at total filling

νT = 1/3, which is experimentally challenging. Unfortunately, at the higher

magnetic fields required for this state, current samples become insulating.

A second filling fraction of interest is νT = 3. Here, both spin branches of the

lowest Landau level are completely filled, and we expect to see an analogue of

the Ψ111 state in the N = 1 Landau level. Preliminary tunneling measurements

have not observed a state here, but this has not received detailed attention.

Lateral tunneling In the inter-layer tunneling measurements, the data was quali-

tatively similar to Josephson tunneling. Geometrically, however, the tunneling

geometry is nothing like the usual Josephson arrangement. We propose, there-

fore, to measure the lateral (in-plane) tunneling between two νT = 1 systems.

To exactly match the Josephson geometry, the tunneling process must involve

exciton tunneling, which requires counter-flowing currents.

Nuclear effects We have recently discovered that spin polarization of the gallium

and arsenic atoms can dramatically enhance the νT = 1 QHE. The electrons
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and nuclei interact via a weak hyperfine contact interaction, which leads to an

effective nuclear magnetic field BN that acts only on the electron spin (not the

kinetic degrees of freedom). We are currently exploring this intriguing effect,

which may explain some of the lingering mysteries in our tunneling data.

Finale

In conclusion, the νT = 1 system has proven to be a rich and fascinating system

with surprises behind every door. There are many more doors still unopened!
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Appendix A

Samples

All of the samples used in this thesis are briefly described in this appendix. In

many cases several samples were made from the same wafer; to clarify the distinction

between these samples, the wafer is described first. This description is followed by a

list of each sample made from that wafer. Each of these samples was grown by L. N.

Pfeiffer and K. W. West at Bell labs.

Wafer 1

This wafer has a high-mobility single interface, with density of 1.2×1011 cm−2 and

a mobility of about 5×106 cm2/Vs (the mobility measured using AC techniques in

Chapter 2 was found to be 4×106 cm2/Vs). The sample consists of a single GaAs

250 Å quantum well with Al0.32Ga0.68As barriers.

Sample A (Transmission line)

Sample used for plasmon transmission line experiment in Chapter 2. The 2DES is

confined to a 510 × 2560 µm mesa with a gate covering the first 330 µm and last

680 µm of the sample to capacitively couple RF radiation into the 2DES.

Sample B (Resonator)

Sample used for plasmon resonator in Chapter 2. In this sample, the mesa is 100 ×

780 µm, and each capacitive coupling gate covers 360 µm of the mesa. This structure

leaves a small 60 µm ungated gap in the center of the mesa.
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Wafer 2

This is a double quantum well wafer, and has a 180 Å:99 Å:180 Å (GaAs : Al0.9Ga0.1As

: GaAs) structure, a nominal density of NT = 1.1×1011 cm−2, and a mobility of

roughly 1.2×106 cm2/Vs. This wafer has the strange property that samples further

from the center have progressively increasing tunneling strength. During growth, the

periphery of the wafer is farther from the center of the molecular beams and receives

a decreased atomic flux [92]. Due to the decreased flux, the tunnel barrier is expected

to be thinner and the tunneling enhanced.

Sample C (Tunneling)

This sample has a 250× 250 µm tunneling area and a nominal tunneling strength of

∼ 30×10−9 Ω−1. The initial publication of the νT = 1 effect in tunneling was based

on data from this sample [20].

Sample D (Tunneling)

This sample has a 250× 250 µm tunneling area and a nominal tunneling strength of

∼ 30×10−9 Ω−1.

The Goldstone dispersion relation of the νT = 1 state was measured in this sample

[22].

Sample E (Tunneling)

This sample has a 250× 250 µm tunneling area and a nominal tunneling strength of

29×10−9 Ω−1.

Wafer 3

This is a moderately strong tunneling DQW. The structure is: 180 Å:89 Å:180 Å

(GaAs : Al0.9Ga0.1As : GaAs). Note that except for the 89 Å tunnel barrier, this is

an exact replica of Wafer A.
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Sample F (Tunneling)

This sample was used to test the wafer, with a 250 × 250 µm tunneling area and a

nominal tunneling strength of ∼ 5×10−6 Ω−1.

Wafer 4

This is a weakly tunneling DQW, and includes an etch stop to make EBASE type

samples. The structure is: 180 Å:99 Å:180 Å (GaAs : Al0.9Ga0.1As : GaAs).

Sample G (EBASE Tunneling)

This sample was used to test the EBASE processing method, and the sub-band den-

sities were extracted using SdH oscillations.

Wafer 5

This double quantum well is a copy of Wafer A, with the same 180 Å:99 Å:180 Å

(GaAs : Al0.9Ga0.1As : GaAs) structure. Larger setbacks give a decreased nominal

density NT = 0.9×1011 cm−2. Additionally, the tunneling strength of this material

at zero magnetic field is roughly 150× larger than expected from Wafer A.

Sample H (Tunneling)

This sample has a 250× 250 µm tunneling area and a nominal tunneling strength of

4×10−6 Ω−1.
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Appendix B

Sample Processing

In this document some basic techniques of GaAs sample processing and preparation

are described. “Processing” can vary in complexity from simply cleaving a square

sample and annealing indium contacts, to a sophisticated, multistep recipe on both

sides of the sample. This guide is divide into two parts; the first describes individual

processing steps, and the second is a collection of recipes that apply these steps.

There is vast and daunting literature for processing GaAs materials; however,

99% of what one wants to know is easy to find. The following references are a good

starting place [93, 94, 95]. There is extensive literature available on the internet as

well, but this information should be considered with a skeptical eye.

B.1 Basics

The basic tools we use in sample processing include:

1. Tweezers: for the most part, we use metal tweezers from Small Parts [96],

however, it is easy to accidentally scratch the surface of a sample with these

tweezers, we recommend using a pair of Teflon tweezers from uni-fit [97].

2. Glassware: we use petri dishes to hold our processing solutions. Any small-

volume glass (or Teflon) containers will work fine. They should have lids to

prevent solvents from evaporating. In addition, it is a good idea to have some

beakers and bottles for mixing and storing solutions.

3. Chemicals: most of the recipes in this document describe methods of wet, or

chemical processing. Some are fairly robust to small deviations from the recipe,
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while others are not. For this reason, it is important to use only chemicals that

are known to be uncontaminated. If this means buying a new bottle of acid or

H2O2, it is worth the expense.

B.1.1 Cleaving Materials grown by molecular beam epitaxy (MBE) usually ar-

rives in the form of a circular wafer of GaAs; in this case, the wafer has a 3” diameter.

To conserve valuable material, we cleave small, 3 to 5 mm squares from the host wafer

and process these small samples.

Place the GaAs smooth side up on a piece of paper, and scribe a small line where

you want the cleave to start. Flip the sample over, and gently press down with the

round disk on the back end of the scribe, rolling back and fourth directly over where

you made the scratch on the front of the sample. Gradually increase the pressure

until the sample cleaves. When done properly, a straight line will form from one end

of the material to the other. To extract a square sample from a wafer, first cleave

a long bar of material and then cut off individual squares from that. We recently

switched to 4× 4 mm samples from 5× 5 mm samples (saving nearly a factor of 2 in

surface area per-sample); however, some older masks still require the larger size.

B.1.2 Sample cleaning Successful processing of a sample requires that the surface

be extremely clean. Surface contaminates might be dust that has landed on the

sample, GaAs chips from cleaving the sample, or some sort of chemical residue.

Place the sample face up in a petri dish filled with acetone. First squirt the sample

gently, and then rub lightly with a q-tip. Transfer the sample to a dish filled with

methanol, and again squirt lightly. Remove the sample and blow it dry.

B.1.3 Indium wire-up Find the soldering iron labeled “wire-up,” and if you have

your own wire-up tip, place it in the end of the iron. With a razor blade, clean the

tip of any dirt or old indium that may be there; then turn the iron on.

If you do not already have a glass slide with indium on it reserved for wire-up,

you should make one now. On a glass slide, clearly write “wire-up” and your name.

Indium is one of the few metals that wets glass, so get about 1/4” 5N indium wire
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and spread it all over the surface of the slide using the soldering iron. It is important

for making small contacts that this layer be very thin.

Wet your cleaned soldering tip with a small amount of indium from the glass slide

(this determines the size of the indium contact; less indium is better). Now touch the

iron to your sample. When you remove the iron, a small dot of indium should be left

behind. Cut a 1” length of 0.001” gold wire and grab it with tweezers. Hold the tip

of the wire on top of the contact and melt the indium with the iron around the wire

(this is harder than it seems because the tip of the iron is many times larger than the

indium dot and the gold wire). Once the gold wires are attached to the sample, it can

be mounted to its final location, again using indium. Indium wets almost everything,

so this is generally very easy.

If you hold the gold wire in hot indium for too long, the indium and gold form a

very brittle alloy, which generally does not survive any tugging or bending. Be sure

and quick when applying heat!

B.2 Lithography

We have two basic tools to create a pattern on the surface of a sample: pho-

tolithography, and e-beam lithography. Photolithography involves shining UV light

on a photosensitive polymer (photoresist) and then immersing the sample in a chemi-

cal developer, which either dissolves the resist that was exposed to light (this is called

a positive resist), or dissolves the unexposed region (negative resist). We primar-

ily rely on positive resists. Photolithography is easy and fast, but the resolution is

limited to the wavelength of light, here roughly 0.5 microns.

The second technique is e-beam lithography, the idea is the same, except the resist

is exposed with electrons instead of light. E-beam lithography can write structures

as small as 50 nm, but it works like an etch-a-sketch, where one point is exposed at

a time. As a result, e-beam lithography can be quite slow for large structures.

B.2.1 Photolithography: AZ5214E We use the Clariant AZ5214E photoresist

and AZ400K developer system for our photolithography. Here is the recipe to apply

and develop the photoresist.
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1. Put the cleaned sample on the Solitec spinner and turn on the vacuum. There

are two vacuum chucks for the spinner; one is large and is used to attach quartz

disks to the spinner, and the other is small and is used for the usual 5× 5 mm

square samples.

2. Press start, and squirt acetone, then methanol on the sample. While it is still

spinning, blow it dry.

3. For fine structures (smaller than 10 µm), put a drop of HDMS and spin for 30

seconds at 5000 RPM.

4. Put a drop of resist on the sample and spin for 30 seconds at 5000 RPM.

5. Soft bake for 45 seconds at 100 C on a hotplate.

6. On the mask aligner, expose your sample for 15 seconds with an intensity of

5 mW/cm2.

7. For fine structures (smaller than 10 µm), immerse the sample in chlorobenzene

for 10 minutes.

8. Develop using a fresh AZ5214 developer:H2O (1:4) mixture for 45 seconds, rinse

with H2O, and blow dry. To keep the developer mixture fresh, it must be stored

in an airtight bottle.

9. Visually inspect the pattern under the microscope. If it is not completely de-

veloped, return it to the developer until it is.

10. For etches, place the sample on a 130 C hotplate for 60 seconds (longer post-

bakes will, in general, result in better etches).

If you are doing some sort of etch, you can now etch the sample, clean the etch

solution off the sample, and remove the resist using n-Butyl acetate followed by

methanol, and then blow dry.

If you are doing an evaporation, you now evaporate, and then place the sample in

n-butyl acetate at 75 C for about 30 minutes. Then place the sample in a petri dish
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with acetone and squirt the sample until all of the undesired metal has lifted off. In

extreme cases, you may need to gently rub the sample with a q-tip, but you run the

risk of removing more metal than you want.

B.2.2 Photolithography: polyimid It is sometimes desirable to coat part of

a sample with a thin plastic layer, perhaps as an electrical insulator, or simply to

protect the surface of the sample. One convenient option is to use a photosensitive

polyimid PI-2732 and developer DE-9040 from HD Microsystems [98]. This material

is a negative resist, meaning that the polyimid that was exposed to UV light remains

after developing. The following instructions will produce a 5 µm film.

1. Put the cleaned sample on the vacuum chuck and turn on the vacuum

2. Press start, and squirt acetone, then methanol on the sample. While it is still

spinning, blow it dry.

3. Put a drop of Polyimid on the sample and spin for 30 seconds at 5000 RPM.

4. Soft bake for 3 minutes at 60 C followed by 3 minutes at 95 C on a hotplate,

or 75 minutes at 55 C in an oven.

5. On the mask aligner, expose your sample for 15 seconds with an intensity of

5mW/cm2 (desired dose is 50 to 200 mJ/cm2).

6. Develop for 150 seconds, rinse for 30 seconds with n-butyl acetate, and blow

dry.

7. Cure: Ramp from room-temperature to 200 C at 4 C/min and hold for 30

minutes (in air), then ramp to 350 C at 2.5 C/min and hold for 60 minutes (in

nitrogen). It seems that two bakes, one at 200 C and the other at 350 C for the

specified times in the annealing station (using nitrogen both times) works well

for these steps.
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B.2.3 E-beam lithography E-beam lithography uses a small electron beam to

write a pattern on the sample’s surface. Using our JOEL 840 e-beam microscope

and the NPGS software, it is possible to write patterns as small as 50 nm. Unlike

photolithography, where the entire pattern is exposed with a single burst of light, the

e-beam writes point-by-point. As a result, larger patterns can take hundreds of hours!

This section contains two recipes for e-beam lithography, but does not describe how

to use the NPGS software, nor how to maintain or use the e-beam microscope.

The exposure depends greatly on the size of the pattern and the details of the

substrate, so the exposures suggested below should be considered only as a starting

point.

B.2.3.1 Single-layer PMMA The most common resist used for e-beam lithography

is PMMA in chlorobenzene. There are many, quite complex, recipes for e-beam

lithography that involve several layers of different PMMA solutions. Sometimes,

however, it is useful to have a simple recipe. In this case the limitation is that the

metalization will not lift off if the thickness exceeds about 800 Å. In terms of final

resolution, this recipe is every bit a good as the more fancy ones.

1. Put the cleaned sample on the vacuum chuck and turn on the vacuum.

2. Press start, and squirt acetone, then methanol on the sample. While it is still

spinning, blow it dry.

3. Put a drop of PMMA (950 4% solids in chlorobenzene) on the sample and spin

for 45 seconds at 2500 RPM.

4. Bake for 60 minutes on a 180 C hotplate.

5. Write the e-beam pattern with an exposure of 270 µC/cm2 at 35 keV.

6. Develop for 70 seconds in a 3:1 mixture of isopropanol:MIBK. Follow with 30

seconds in isopropanol and 30 seconds in deionized water. During the develop-

ment, hold the sample with tweezers and swish it around in the solutions. Blow

dry.
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7. Visually inspect the pattern under the microscope if it is not completely devel-

oped, it is necessary to start over. Since the pattern is so small, it can be very

hard to find.

8. After the evaporation, lift off the metal in acetone at 50C.

B.2.4 Bilayer PMMA This recipe has two layers of PMMA. The top layer is

designed to be hard, so when the resist is developed, it is only dissolved where it

was exposed, while the underlayer is rapidly removed. This leads to a large overhang

and allows for much thicker metalizations. A 1500 Å evaporation works flawlessly

with this resist schedule. The following list describes only what is different from the

single-layer resist.

1. Put a drop of PMMA (950 4% solids in chlorobenzene) on the sample and spin

for 45 seconds at 2500 RPM.

2. Bake for 60 minutes on a 180 C hotplate.

3. Put a drop of PMMA (495 6% solids in chlorobenzene) on the sample and spin

for 45 seconds at 7500 RPM.

4. Bake for 60 minutes on a 180 C hotplate.

5. Write the e-beam pattern with an exposure of 350 µC/cm2 at 35 keV.

6. Complete as with the single-layer recipe.

There are more complex tri-layer recipes that people have developed for even

more stubborn materials. Also, fancy resist schedules are required for angle shadow

mask evaporation. The idea here is that a very small pattern is written, and when

exposed, the bottom layer is completely dissolved, leaving a suspended pattern on

the top. Evaporation is performed once, the metal is oxidized, the sample rotated,

and evaporation repeated. This is used, for example, to create SIS tunnel junctions

in the construction of single electron transistors.
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B.3 Wet etches

We use several different wet etches in sample preparation. We might use a slow

etch to define a mesa in a controlled manner (Sections B.3.1 and B.3.2), while a fast

etch is used to quickly remove hundreds of microns of GaAs (sometimes these go by

the name “piranha etch,” Sections B.3.3 and B.3.4). There are selective etches that

etch GaAs, but not AlAs (Section B.3.5).

B.3.1 Mesa etch: phosphoric acid This is the workhorse etch we use for virtu-

ally every sample we process. We use a mixture of H2O:H3PO4:H2O2 (50:5:1), which

gives a controlled etch rate of 1200 Å/min. Although the exact depth required de-

pends on the detailed structure of your sample, an 8-minute etch is almost always

sufficient.

Usually you will have first made a photoresist mask before etching, leaving behind

a mesa of defined shape (Section B.2.1).

B.3.2 Mesa etch: sulfuric acid We use a slow sulfuric acid etch exclusively for

the preparation of self-aligned contacts, for the simple reason that published recipes

for this type of sample used this etch [32]. Phosphoric acid etch would probably work

just fine here.

The mixture, H2O:H2SO4:H2O2 (80:4:5), gives an etch rate of 4000 Å/min. The

etch is completely compatible with the AZ5214E photoresist system.

B.3.3 Fast etch: sulfuric acid For rapidly thinning samples, we use a second

sulfuric acid etch: H2SO4:H2O2:H2O (5:50:5). This etches at a rate of 4 to 5 µm/min.

A typical sample can be thinned from 500 µm to 50 µm in about two hours.

To thin a sample, place a quartz disk on a 130 C hot plate and put some clear wax

on the center of the quartz disk. When the wax fully melts, carefully place the sample

(side to be etched up!) in the wax and firmly press down with a wooden applicator

(take care that no wax gets on the top of the sample). Using a second, sharpened

applicator, verify that the sides of the sample are fully coated with wax, so the etch

only contacts the top of the sample. Then remove the quartz disk from heat, pressing

down on the center of the sample firmly with a wooden applicator until the wax fully



141

hardens. Etch in 30 minute increments, checking the thickness each time, since the

etch rate can vary by 50% depending on the exact mixture of the etch.

Sometimes the etched surface takes on a rough rough appearance, and under the

microscope looks like sandpaper. This can be avoided by adding small quantities of

H2O2 [93].

B.3.4 Fast etch: bromine methanol Bromine-methanol is the fastest etch we

use, and can thin a sample from 500 µm to 50 µm in about 15 minutes. Unfortunately,

this is also a somewhat dangerous procedure and the safety concerns outlined below

are essential.

1. Clean a quartz disk with acetone and methanol, both in a petri dish and on the

spinner. Take note of the clean face.

2. Cleave and clean three 5×5 mm blank pieces of GaAs each from the same scrap

wafer so they have the same thickness.

3. Place quartz disk, clean side up, on the hotplate at 130 C and put three small

pieces of clear wax near the edge of the disk, forming an equilateral triangle.

Put a fourth piece in the center.

4. Set the three blanks shiny side down in the three wax beads on the periphery

of the quartz disk, and the sample also face down, on the center. Press each

down firmly with a q-tip. Remove from the hotplate.

5. Clean any wax that may have extruded from under the samples with acetone.

6. Never allow acetone in the acid hood

7. Clean the 8×8×1/8” glass slab and tape the “magic paper” to the plate. Place

the slab, paper side up, in the glass dish.

8. Add 15% bromine to methanol (15 ml methanol). Have handy a beaker of H2O

and plenty of methanol.
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9. Wear a face mask, goggles, a lab jacket, long pants, and shoes (no

sandals and shorts).

10. Put a drop of water on the Teflon quartz disk holder and insert the disk.

11. Wet the paper with methanol and pour some bromine-methanol mixture onto

the paper.

12. Lightly brush the samples on the paper, tracing figure-eights. To remove from

the paper, slide the disk to the edge, but do not lift it off (this will tear the

magic paper). When it is working properly, the etch will have a soapy feel

underneath as you slide the quartz disk around.

13. When the thickness reaches 250 µm, move the disk to the other side of the

holder. Measure the thickness every 15 figure-eights (clean off the bromine-

methanol before measuring the thickness).

14. When done, pour the bromine mixture into the white powder, remove the paper

from the glass, and rinse the glass, paper, and holder with methanol and H2O.

Clean the work area with the scrubber.

Before attempting the procedure, be sure you are trained by somebody who knows

what they are doing. Just following the instructions is not sufficient in this case.

B.3.5 Stop etch: citric acid A citric acid etch, H3C6H5O7:H2O (5:1), can etch

GaAs about 1000× faster than AlAs [99, 100], which is useful to etch until you reach

a predefined stop layer. We use this when making EBASE samples (Section B.6.6).

It etches GaAs at about 800 Å/min.

B.4 Evaporation

Thermal evaporation is a simple method to deposit a thin metal pattern on the

surface of a sample. The idea is simple: the sample (usually with a photoresist

pattern) is placed some distance away from a very hot metal source, which evaporates,

depositing a thin layer on the sample (usually 0.1 µm to 0.2 µm).
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Material and Purity Symbol Part # Density Z-Factor

aluminum 5N Al #10573 2.73 g/cm3 1.080
chromium Cr 7.20 0.305
germanium 5N Ge 5.35 0.516
gold 4N Au #13394 19.3 0.381
gold-germanium (88:12) Au:Ge #41557 14.68 0.450
indium In 7.30 0.841
nickel 4N5 Ni #42333 8.91 0.331
nickel-chromium (80:20) Ni:Cr #36298
silver 5N Ag #14153 10.5 0.529
titanium 3N Ti #13997 4.50 0.628
zinc Zn 7.04 0.514

Table B.1: Details of commonly used materials for thermal evaporation [101]. Part
numbers refer to the AlfaAesar catalog number.

The source metal usually rests in a tungsten holder firmly clamped between two

electrodes. The evaporator can accommodate three different sources at once, and can

supply 400 amps. Adjacent to the evaporator is the display for a crystal thickness

monitor to measure the metal film is it is grown (see Table B.1 for settings and

material information).

B.4.1 Aluminum evaporation and general outline for all evaporations

Aluminum is by far the most common material we evaporate. It is easy and eco-

nomical (a basket costs far more than two aluminum slugs). It is vitally important to

keep the inside of the evaporator clean, so always wear gloves while handling anything

that goes inside.

1. Turn on the mechanical pump and set it to backing. Turn on the cooling water,

leak protection circuit, and the diffusion pump. The diffusion pump takes about

20 minutes to warm up.

2. Be sure that the main gate valve is firmly closed, then vent the vacuum chamber

with nitrogen gas and raise the bell jar.

3. Remove the metal shield and place it on a clean surface. If desired, make a

fresh window of glass slides. Verify that the mechanical shutter functions.
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4. Tightly clamp a wound tungsten basket (R. D. Mathis [102] Part number B12B-

3X.025W) in Position 2 of the evaporator, and place two nuggets of Al in the

basket.

5. Attach the sample to a glass slide with a small dab of rubber cement, and place

in the sample position of the evaporator. Be sure the glass slide fully covers

the hole to avoid any metal reaching the top of the bell jar. Replace the metal

shield and slowly lower the bell jar.

6. Rough out the chamber to 100 mTorr, switch over to the diffusion pump, and

fill the LN2 trap.

7. After 30 minutes, turn on the power supply, reset the thickness monitor (verify

that it is set for aluminum), and set the power to 35%. When the thickness

monitor starts to show evaporation, open the shutter and reset the thickness

monitor.

8. When the desired thickness has been reached, close the shutter, turn the power

to zero, and turn off the supply.

9. Wait 10 minutes, close the high-vac valve, vent and open the chamber as above,

remove the sample, close the chamber and rough it out.

10. When done evaporating, turn the diffusion pump and cooling water off, but

leave the mechanical pump backing on it until all the LN2 has evaporated.

Aluminum corrodes the tungsten basket, so it is a good idea to evaporate as quickly

as possible. A setting of 35% will give a rate of 25 Å/s. For photolithography, or a

bilayer PMMA e-beam resist, 1500 Å of aluminum is a good thickness, while for a

single-layer PMMA resist, no more than 1000 Å should be grown.

B.4.2 Gold evaporation Evaporating gold is very easy – too easy. Place the gold

slugs on a barrier boat (a boat with a region of exposed tungsten surrounded by an

oxide barrier, R. D. Mathis [102] part number S35-A0-W). The barrier prevents the
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gold from creeping over the edges of the boat and either dripping off or evaporating

down where it is waisted.

Due to the expense of gold, we have a set of stilts that decrease by 50% the

distance from the source to the sample, thus dropping by 75% the quantity of gold

required. The sample is considerably closer to the source than the crystal thickness

monitor, so the measured thickness 10% less than the actual thickness. For example,

if you desire a 1500 Å gold layer, stop when the monitor reads only 1350 Å. During

the evaporation, 200 amps will give a rate of about 10 Å/s.

B.4.2.1 AuGe Gold germanium is an eutectic evaporated in the construction of

AuNiGe Ohmic contacts. For evaporation it behaves just like gold.

B.4.3 Nickel evaporation Like aluminum, nickel corrodes the tungsten boat dur-

ing evaporation; however, in this case, the boats may be safely used twice before they

are in danger of breaking during an evaporation. We use R. D. Mathis [102] part

number S3-.015W for the boats. Nickel evaporates fairly slowly: usually a current of

200 amps will yield an evaporation rate of 4 Å/s.

B.5 Ohmic contacts

The last step required to make a working sample is to make electrical contact to

a 2DES. We do this by making “Ohmic contacts” (the term Ohmic indicates that the

contacts obey Ohms law, and do not behave like a Schottky diode). We have two

general recipes to make Ohmic contact to a 2DES, and one to make weak contact to

a N+ cap layer (Section B.5.3).

An Ohmic contact may be either n- or p-type, depending on the carriers con-

tributed by the contacting material. Since we are attempting to make Ohmic contact

to n-type GaAs, we use an n-type contact. p-type contacts, at best, would create a

p-n junction between the contact material, or more likely would not work at all. The

recipes described below are all for contacting n-type GaAs structures.

B.5.1 Indium contacts Making indium contacts is very much like the wire-up

discussed in Section B.1.3. You should have a separate glass slide labeled with your
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name and “n-type,” which should be used only to make contacts. Using the soldering

pencil labeled n-type, put small indium dots where you want to make contact to the

2DES. Evidence suggests that the best Ohmic contact is made on the edge of mesas,

so be sure the indium bead covers the mesa edge.

Place the sample in the annealing station, and blow forming gas for 2 minutes

at 1 SLPM. Maintaining the flow of gas, anneal the sample for 5 minutes at 425C.

When the sample has cooled to below 100 C, it is safe to turn off the forming gas

and remove the sample. At this point, you should be able to attach gold wires the

contacts.

B.5.2 AuNiGe contacts Annealed gold-nickel-germanium (AuNiGe) forms a high-

quality evaporated contact to n-type GaAs [94]. The contact resistances are generally

found to be much less than indium contacts; however, since they are evaporated, they

require more overhead and cannot be created quickly with a solder pencil.

A second advantage of AuNiGe contacts is that they can be made and annealed

immediately after the mesa is defined, before any gates are evaporated. Sometimes

there may be surface contaminates on the sample when the gates are evaporated.

These contaminates then evaporate when the sample is annealed and leave behind

bubbles under the gates. Of course, AuNiGe contacts are not perfect, and suffer from

two main flaws. The most significant defect of these contacts is called “spiking,”

which refers to needles of contact material that can penetrate tens of microns into

the GaAs. As long as there are no additional structures directly below the Ohmic

contact, this problem can be avoided. Second, AuNiGe contacts have a very uneven

surface morphology, which can be a real problem when the exact vertical profile of

the contact is important (usually it is not). The uneven surface morphology is only

a problem for contacts made using the AuGe eutectic evaporation described below;

recipes that rely on distinct layers of Au, Ni, and Ge are smooth.

Following the usual evaporation procedures, define a gate-like region that exposes

the desire portion of the mesa (being sure to expose the mesa edge, as this is where

Ohmic contact seems to be made). We have several different recipes for AuNiGe
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contacts. The easiest is made by evaporating Ni and an AuGe eutectic from Alfa

Aesar [103].

1. Evaporate 50 Å of nickel at 2 Å/s (200 amps)

2. Evaporate 1350 Å of AuGe at 20 Å/s (200 amps). AuGe is expensive and

evaporated on raised stilts; see more in Section B.4.2 on gold evaporation.

3. Evaporate 150 Å of nickel at 2 Å/s (200 amps)

4. Remove sample from the evaporator and anneal for 5 minutes at 440 C (see the

notes in Section B.5.1 for more details on annealing).

Before annealing the contacts are smooth, but the annealed contacts have a rough

appearance. This is normal; if they end up looking smooth and shiny, then something

has gone wrong. There is a second recipe that we often use which changes the evap-

oration from 50 Å:1350 Å:150 Å (Ni:AuGe:Ni) to 300 Å:1500 Å (Ni:AuGe). There is

little difference between these two contact schemes. The former is slightly preferable,

as it uses 10% less AuGe.

B.5.3 CrAl contact to N+ This makes a weak (100 kΩ) contact to a heavily

doped, or N+, region on the top of some samples. A N+ region conducts and can be

used as a gate. The primary advantage of CrAl contacts is that they are not annealed,

and can be used to contact only the surface layer of a sample without diffusing down

to lower layers. Evaporate 500 Å of chromium followed by 1000 Å of aluminum and

lift off as usual.

B.6 Recipes

The previous sections describe each of the tools and procedures we use to construct

various samples. This section contains instructions to make specific samples from start

to finish.
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Figure B.1: Photo of a sample with annealed indium Ohmics.

B.6.1 Cleaved sample with annealed indium contacts This is the simplest

piece of sample processing possible – a small square of GaAs is cut from the wafer,

and some number (usually 8) indium contact are made to the 2DES. This is the type

of sample you would use to make conventional transport measurements.

1. Cleave sample from wafer (Subsection B.1.1).

2. Clean sample (Section B.1.2).

3. Make indium contacts (Subsection B.5.1).

4. Wire-up sample.

There are several simple “tricks” we sometimes use with these samples. If we have

a single 2DES and we need to change the density we stick the sample to copper tape

using vacuum grease and use the tape as a back gate. Since the tape is about 0.5 mm

away from the 2DES, several hundreds of volts are required to appreciably change the
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Figure B.2: Photo of a sample with a mesa and annealed indium Ohmics.

density. To gate from the top (useful for bilayer systems, or single-layers when back

gating just doesn’t work), make radial scribes from the edge of the sample in about

1 mm between each indium contact. We have a piece of semi-insulating GaAs with

gold evaporated on it. Cleave a piece of this material that fits on top of the sample

but inside all of the Ohmic contacts, and attach it (gold side up) with with a thin

layer of grease. Now the gold forms a gate, again 0.5 mm away from the 2DES.

B.6.2 Mesa with indium contacts Adding a mesa to the indium contacts in

the previous section, this type of sample is typical for high-mobility 2DES, where

illumination is required and gates are ruled out. The structure in Figure B.2 is a

Hall bar, a common pattern for transport measurements in high-mobility single or

double-layer systems.

1. Cleave sample from wafer (Subsection B.1.1).

2. Clean sample (Section B.1.2).
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Figure B.3: Photo of a sample with a mesa, annealed indium Ohmics, and an alu-
minum gate.

3. Define mesa (Section B.2.1).

4. Etch with phosphoric acid etch (Section B.3.1).

5. Rinse with deionized water and blow dry, then remove the photoresist with

n-butyl acetate.

6. Clean sample (Section B.1.2).

7. Make indium contacts (Subsection B.5.1).

8. Wire-up sample.

B.6.3 Mesa and gates with indium contacts Again, this recipe increases in

complexity by including an aluminum gate. This gate can control the density of

electrons below it, but prevents the sample from being illuminated. As a result,

samples with gates cannot have as high a mobility as ungated, illuminated samples.
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The sample in Figure B.3 is a RF resonator structure used in observing the plasma-

density modes of a single 2DES.

1. Cleave sample from wafer (Subsection B.1.1).

2. Clean sample (Section B.1.2).

3. Define mesa (Section B.2.1).

4. Etch with phosphoric acid etch (Section B.3.1).

5. Rinse with deionized water and blow dry, then remove the photoresist with

n-butyl acetate.

6. Clean sample (Section B.1.2).

7. Define top-side gate pattern, evaporate aluminum gates, and lift off the metal-

ization (Section B.4.1).

8. Rinse with acetone, methanol, then deionized water.

9. Clean sample (Section B.1.2).

10. Make indium contacts (Subsection B.5.1).

11. Wire-up sample.

B.6.4 Undoped heterostructures Undoped heterostructures are exactly the same

as our usual samples, except there is no silicon dopant, and therefore no carriers in

the structure. Instead, the Ohmic contacts are used to provide the carriers. A gate

is placed above the structure; when a positive voltage is applied to the gate it can,

for contacts sufficiently close to the gate, suck carriers in from the doped contact

region and form a 2DES in the undoped structure. These samples allow the creation

of extremely high-quality samples with variable density [32].

What makes the implementation of this idea difficult is the requirement that the

Ohmic contacts be sufficiently close to the 2DES and the gate that the potential of
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Figure B.4: Photo of a sample with self aligned contacts and CrAl contact to a N+
gate.

the gate can draw carriers from the contact. This is achieved in practice using the

technique of “self aligned contacts.” The idea is to use a sample with an N+ layer

grown as a gate, then etch the desired mesa shape past both the N+ and the 2DES,

creating a gate exactly coincident with a 2DES. Next, a lithography step creates

openings where the Ohmic contacts are desired, but instead of evaporating contacts

right away, the N+ layer is first etched away, and contacts are immediately evaporated

in the resulting pit.

An additional complication of these samples is making contact to the N+ layer.

An unannealed CrAl contact is used to make contact; however, the metalization

cannot be exposed to the side of the mesa, otherwise it will short to the 2DES at

about 0.3 V, when the Schottky barrier has been overcome. Instead, the CrAl traces

go over small polyimid bridges at the edge of the mesa.

1. Clean sample (Section B.1.2).
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2. Define mesa (Section B.2.1).

3. Etch with a slow sulfuric acid etch (Section B.3.2) for 135 seconds.

4. Rinse with deionized water and blow dry, then remove the photoresist with

n-butyl acetate.

5. Clean sample (Section B.1.2).

6. Define polyimid bridges (Section B.2.2).

7. Apply Ohmic contact pattern.

8. Etch with a slow sulfuric acid etch 2000 Å below the contact interface (4000 Å/min).

9. Clean in deionized water and blow dry. It might be possible to clean with some

chlorobenzene as well, which could also help harden the resist.

10. Evaporate AuNiGe contacts (Section B.5.2).

11. Evaporate CrAl both as the N+ contact and as the pads and leads for wire-up

(Section B.5.3)..

12. Lift off.

The samples produced using this recipe have a very low yield, somewhere between

10% and 30%, where the usual failure modes are shorting between the Ohmic contact

and the gate (if they are too close), or contacts don’t work at any gate voltage (if they

are to far apart). The quality of the contacts also depend strongly on the crystalline

axis, so we often find that the contacts on two parallel sides of a square work well,

while the other two sides fail completely.

B.6.5 Thinned samples A thinned sample refers to a sample where most of the

host GaAs wafer on which the MBE structure was grown has been etched away. We

generally do this to allow for selective depletion of bilayer systems, creating tunneling,

or coulomb drag geometries, for example.
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Figure B.5: Photo of Sample E, a 50 µm-thick sample in a tunneling geometry. Both
the top and back gates are visible as the sample was imaged in the infrared, where
GaAs is transparent.

Figure B.5 is a photo of Sample E, a sample designed primarily for tunneling

measurements. This particular sample is 45 µm thick, and the central square, where

the tunneling takes place, is 250 µm on a side. The image was taken in the infrared,

below the band gap of the GaAs, where it is transparent. The following recipe is

generically used to make such thinned samples.

Perhaps the hardest part of making thinned samples is the wire-up stage; it is

very easy to destroy the sample by pressing with the solder pencil. For this reason,

we often use conducting epoxy to contact aluminum structures, using indium only

for Ohmic contacts. This usually works well, but we have recently encountered a

problem where the epoxy fails to make electrical contact to the metal.

1. Clean sample (Section B.1.2).

2. Define mesa (Section B.2.1).
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3. Etch with phosphoric acid etch (Section B.3.1).

4. Rinse with deionized water and blow dry, then remove the photoresist with

n-butyl acetate.

5. For samples requiring AuNiGe contacts, first define Ohmic pattern and evapo-

rate AuNiGe contacts (Section B.5.2).

6. Anneal AuNiGe contacts for 5 minutes at 440 C.

7. Rinse with acetone, methanol, then deionized water.

8. Define top-side gate pattern, evaporate aluminum gates, and lift off the metal-

ization (Section B.4.1).

9. Rinse with acetone, methanol, then deionized water.

10. Thin sample to 40 µm using sulfuric acid etch (Section B.3.3). Leave the sample

on the disk.

11. Define back gates, using infrared camera to align to top side structures. Then

evaporate Al gates.

12. Rinse with acetone, methanol, then deionized water.

13. Attach gold wires to back-side pads using conducting epoxy and cure for 20

minutes at 100 C.

14. Remove sample from quartz disk (Section B.3.3).

15. Wire-up front side pads using conducting epoxy and anneal for 20 more minutes.

If indium contacts are required instead of AuNiGe, do not attach wires to the back

side before removing the sample from the quartz disk. Instead remove the sample,

then make Ohmic contact to the front side, and lastly do any required wire-up with

conducting epoxy.
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There are several difficult parts with the recipe. One of the most challenging parts

of making a thinned sample is handling it once it is 50 µm thick. Before it has any

wires on it, we carefully transfer it from one surface to another by tilting the surface

and shaking it slightly until it slides off. Once a single gold wire has been attached,

it may be readily used as a handle.

B.6.6 EBASE samples Epoxy bond and stop etch (EBASE) [100] samples are

very much like the free standing 50 µm thick samples, except they are supported by

a second piece of GaAs and thinned to 1 or 2 µm. These samples require a special

AlAs layer grown during MBE on which a selective etch will stop. To contact the

metalization on the original top layer, it is necessary to etch small holes, called vias,

though the remainder of the sample. When planning masks for EBASE samples, it

is important to allow space for the vias alongside the pads for the back gates. Once

the sample is thinned, care should be taken to minimize the contact with acetone.

1. Clean sample (Section B.1.2).

2. Define mesa (Section B.2.1).

3. Etch with phosphoric acid etch (Section B.3.1).

4. Rinse with deionized water and blow dry, then remove the photoresist with

n-butyl acetate.

5. Define Ohmic pattern and evaporate AuNiGe contacts (Section B.5.2).

6. Anneal AuNiGe contacts for 5 minutes at 440C.

7. Rinse with acetone, methanol, then deionized water.

8. Define top-side gate pattern, evaporate aluminum gates, and lift off the metal-

ization (Section B.4.1).

9. Rinse with acetone, methanol, then deionized water.

10. Cleave a square larger than the original sample of semi-insulating GaAs.
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11. Clean the semi-insulating piece, and when done, place it on a piece of Teflon.

12. Measure and record the thickness of the sample and the semi-insulating piece.

13. Cover the top surface of the sample and the semi-insulating piece with a thin

layer of Stycast 1266 epoxy. Place the two surfaces together and press down

firmly on the sample with a wooden applicator.

14. Put a small, 5 × 5 mm piece of Teflon on top of the sample (from bottom to

top there should be Teflon, semi-insulating GaAs, epoxy, sample, and Teflon).

15. Place the above in a small vise and gently clamp, taking care that the sample

remains in the center of the blank GaAs.

16. Cure for 60 minutes at 125 C in a furnace. When done, remove the sample from

the vise and the Teflon.

17. Thin sample to 40 µm using sulfuric acid etch (Section B.3.3). Leave the sample

on the disk.

18. Finish with the citric acid stop etch (Section B.3.5) and remove the sample from

the disk.

19. Define back gates, using infrared camera to align to top side structures. Evap-

orate Al gates.

20. Rinse with acetone, methanol, then deionized water.

21. Define and etch via holes.

22. Wire-up sample with conducting epoxy or indium.

Depending on the thickness of the as-grown structure, these samples can be com-

pletely transparent when the citric acid etch reaches the stop layer, but this does not

mean that the sample was completely etched away. Often one corner or side of the

sample will reach the stop layer first. If the whole sample is not exposed in 5 minutes,
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remove it from the etch, cover the completed region with clear wax, and repeat in 5

minute intervals until the surface is fully exposed; then quickly remove the wax with

acetone.
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Appendix C

Installation and Operation of the KelvinOx 25

Cryostat

This document describes the instillation and operation of the Oxford KelvinOx 25

cryostat located in 051B Sloan. This cryostat has been enhanced over the provided

Oxford specifications; it has a base temperature of 28 mK and a cooling power of

50 µW at 100 mK. The sample sits in the center of a 9 Tesla superconducting magnet

(11 Tesla when pumping on the λ plate), and is thermally anchored to the mixing

chamber with a cold finger designed for maximal thermal conductivity with minimal

eddy current heating.

The first section describes the operation of a typical dilution refrigerator, and

the second part details the construction of the tail piece, the electrical wiring of the

cryostat, and the thermometry. The third section describes the dewar, magnet, and

associated thermometry. The discussion concludes with the operating procedures for

this system, and details its typical behavior.

C.1 Principle of operation

Most low-temperature refrigeration relies on some form of evaporative cooling,

and the dilution cryostat is no exception. For conventional cryogenic liquids 4He,

evaporative cooling becomes exponentially less efficient with decreasing temperature.

In practice, a pumped 4He system is limited to about 1 K, and a 3He cryostat to

roughly 0.3 K.

To understand the operation of, and need for, a dilution refrigerator, it is in-

structive to understand the failure of pumped helium cryostats (for a more compete
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argument see, for example, Reif [104]). Such a cryostat consists of a bath of liquid

with a low-temperature liquid-vapor interface. A column of vapor extends from the

liquid to room temperature where it is pumped. In steady state – constant pressure

and temperature – the evaporative cooling power is Q̇ = Ṅ l, where Ṅ is the rate

at which atoms cross the phase boundary, and l is the latent heat per-atom. Al-

though l is in general a function of temperature, this argument will assume that it is

temperature-independent.

An ideal mechanical pump moves a constant volume of gas per-unit time, which we

will call R, the pumping rate (typically given in liters/second). For a pump operating

at room temperature, Trt, the ideal gas law predicts a cooling power, Q̇ = PRl/kbTrt.

The Clausius-Clapeyron relation provides a second expression involving P and T ,

dP

dT
=

l

T∆v
,

where ∆v = vg − vl is difference in the per-atom volume (N/V ) between the gaseous

and liquid phases. Here we simply assume that that liquid is much more dense than

the gas (vg � vl), thus ∆v ≈ vg = kBT/P . When combined with the Clausius-

Clapeyron relation, the resulting differential equation is easily solved, and the vapor

pressure is found to be P = P0 exp(−l/kBT ). P0 is a material dependent constant,

which is much larger in 3He than 4He. Therefore, the cooling power is

Q̇ =
P0lR

kbTrt

e−l/kbT .

The strongest effect here is the exponential – changing the pumping speed will not

substantially increase the cooling power. Therefore, the low-temperature failure of

conventional evaporative cooling stems from the exponentially suppressed vapor pres-

sure. An alternate cooling technique is required to achieve temperatures below about

0.3 K, of which dilution refrigeration is one example.

Below about 0.8 K, the liquid composed of a mixture of 3He/4He phase separates,

with the less dense 3He floating on top of the 4He. Even at the lowest temperature, the



161

Figure C.1: Cooling power of KelvinOx 25 cryostat vs. temperature with 1.5 mW
still power. Dotted line is quadratic fit, yielding a flow rate of 46 µmole/s, and a heat
leak of 4.5 µW.

4He phase is composed of roughly 6.6% 3He. Modeling this as 3He “liquid” floating

atop a “gas” of 3He (the concentrated and dilute phases, respectively) yields a system

which potentially overcomes the limitations of evaporative cooling. Here, the “vapor

pressure” is finite at low-temperature. The detailed mechanism of cooling is beyond

the scope of this document, but the final low-temperature cooling power in units of

Watts is [105]

Q̇ = 84ṅT 2 + Q̇0,

where ṅ is the rate in the moles per-second at which 3He atoms cross the boundary,

and Q̇0 is the unavoidable heat leak to the cold stage.

The actual operation of a dilution refrigerator is somewhat more complex than this

in-principle discussion would suggest. The dilution cycles consists of a continuously

circulating 3He/4He mixture. For the following discussion, refer to Figure C.2, which

contains a photo of the KelvinOx 25 cryostat side-by-side with a schematic illustration

of the essential parts.
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Figure C.2: Left: Annotated photograph of KelvinOx 25 cryostat as currently in-
stalled. Right: Schematic for a generic dilution refrigerator.
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Figure C.3: Cooling power of KelvinOx 25 cryostat at 50, 75, and 100 mK.

C.1.1 Mixing chamber (MC) This is the active portion of the dilution refrig-

erator and contains the 3He/4He interface. The mixing chamber is connected with

two circulation lines: one in the dilute phase, which pumps away 3He atoms, and a

second in the concentrated phase for the returning 3He.

C.1.2 Heat exchangers As the dilute phase leaves the mixing chamber it encoun-

ters a series of heat exchangers that use the rising mixture to cool the returning 3He.

The quality of the heat exchangers is central to a functioning system. This system has

a continuous heat exchanger, followed by a single discrete exchanger. The continuous

heat exchanger consists of a small stainless capillary tube wound in a coil set within

a larger stainless tube. The descending concentrated mixture flows down the coiled

capillary, and the acceding liquid flows around the coil.

Just before the mixing chamber, the mixture encounters a single discrete heat

exchanger. The two fluids are separated by a thin plastic membrane with pressed

silver sinter on both sides. Such a heat exchanger provide extremely good thermal

contact.

C.1.3 Still After the heat exchangers, the dilute phase enters the still (at about

0.7 K), which contains a liquid-gas interface and is pumped on by a room-temperature
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mechanical pump. At this temperature, the vapor pressure of 3He is about 100× larger

than that of 4He, so 3He atoms are predominately pumped.

The still temperature strongly influences the performance of the cryostat. As the

temperature decreases, the ratio of 3He to 4He atoms increases, which enhances the

performance. Even as this ratio increase, the pumping rate of 3He slows, decreasing

performance. Due to these competing effects, there is a temperature that maximizes

the cooling power. A small heater is mounted on the still to maintain this tem-

perature. The dependence of the overall cooling power on the still temperature is

illustrated in Figure C.3.

C.1.4 Room temperature The mixture is pumped through the still pumping line

by a sealed pump and then flows through a liquid nitrogen cold trap. Some systems

also include a 4 K trap. These traps serve to catch any impurities that may have

entered the mixture before it enters cryostat.

C.1.5 Return line The returning mixture reenters the cryostat through the return

line and cooled to 4 K as it descends through the bath space. The mixture is further

cooled by the 1 K pot, where it passes through a constriction and is liquefied. The

liquid mixture is further cooled at the still, then passes through the heat exchangers,

where it is cooled by the ascending mixture. The cycle is completed as the mixture

reenters the mixing chamber in the 3He rich phase.

The cooling power as a function of temperature has been measured for this Kelvi-

nOx 25 cryostat, and is contained in Figure C.1. The fit to the data is a quadratic

with a constant offset corresponding to an external heat leak. The fit indicate 3He

atoms crossing the interface at 46 µmole/s, with a heat leak of 4.5 µW. This rate

can also be computed from the expected pumping speed and measured inlet pressure

(0.15 mB) of the Alcatel 2033H mechanical pump (13 l/s). This computation yields

a flow rate of 75 µmole/s, which is in accord with the estimates based on the cooling

power alone. Any pressure gradient between the thermocouple gauge used to mea-

sure the pressure and the pump will increase the predicted pumping rate. In addition,
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the overestimate may be due either to the finite compression ratio of the pump, or

perhaps some 4He in the circulating mixture.

C.2 Thermal link

The mixing chamber of the dilution refrigerator is located about 10” above the

center of the superconducting magnet. The tail piece serves both as a mechanical and

thermal connection between the mixing chamber and the sample located at field cen-

ter. To allow for a diverse set of experiments, the tail piece accepts modular sample

mounts. As of this writing only one sample mount has been constructed, which in-

cludes a set of final heat sinks, and terminates in a standard 18-pin header. Alternate

sample mounts might include a rotating stage, or a stage with RF connectors.

To maintain a solid thermal link between the mixing chamber and the sample

stage, it is important that the tail piece be constructed of an excellent thermal con-

ductor. The RRR, or residual resistance ratio, is the ratio of the resistance of a

material at room temperature to that at 4 K. At 300 K, the resistance is dominated

by electron-phonon scattering, and for a reasonably high-quality metal, is independent

of electron-impurity scattering (i.e., for the same geometry and the same material; it

is a sample independent quantity). At 4 K, however, the resistance is dominated by

the electron-impurity scattering; hence, the ratio is a geometry independent measure

of the resistance due to electron-impurity scattering. A natural choice would be high-

purity copper; unfortunately copper is excluded as a construction material due to a

large nuclear heat capacity at low-temperatures and high magnetic fields. Instead,

the thermal link is provided by 7 high-purity (5N) silver rods with RRR = 3500 (the

fabrication of which is described in Appendix D).

The silver rods are welded on one end to a silver plate bolted to the mixing

chamber, and on the other end to a silver bolt circle. Both are gold plated 99.95%

purity silver.

Since annealed silver is extremely malleable, the tail piece required a supporting

superstructure. The silver rods are located inside the main structural element, a 1/2”



166

Figure C.4: CAD diagram for KelvinOx 25 tail piece.
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Figure C.5: Photo of KelvinOx 25 tail piece, with sample mount attached on the
bottom.
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diameter thin-wall stainless tube. 304 stainless steel was selected as a cryogenicaly

compatible structural material.

The entire assembly fits inside a final radiation shield attached at the mixing

chamber. Figure C.4 illustrates the assembled tail piece and radiation shield, and

Figure C.5 is a photograph of the installed tailpiece.

Currently the system includes one general use sample mount, which accepts stan-

dard 18-pin headers. There are several geometric constraints for any sample mount:

it must attach to the cryostat on a 6 place 1.125” bolt circle using 4-40 machine

screws. To position the sample exactly at field center it must be located 2.5” from

the bolt circle. The whole assembly should be no more than 1.300” in diameter. The

sample mount plugs into an 18-pin connector on the tailpiece; the mating connector

on the sample mount should elevated 0.730” from the bolt circle. These constraints

are more clearly illustrated in Figure C.6.

All contact joints are made with brass screws passing through a silver plate using

stainless steel washers. The differential thermal contraction from room temperature

for these materials are (×10−4): 41 (silver), 38 (brass), and 30 (stainless steel). Both

stainless steel and brass contract less than silver, so such a joint using either as the

screw would always loosen. Since stainless steel contracts less than brass, stainless

steel washers effectively tighten the brass screw onto the silver joint. For the silver-

brass-stainless system, the stainless steel washers should total 1/3 the thickness of

the silver plate.

The sample mount was constructed from three pieces of 99.95% silver. The first

two form of a bolt ring with a slot (to decrease eddy current heating), and the third

is a rectangle extending perpendicular from the bolt circle (see Figure C.6). The

pieces are welded together to make a robust mechanical joint with good thermal

conductivity. The heat sinking is described in more detail in Section C.3; two 18-pin

connectors are attached to the mount, male on the cryostat side and female for the

sample header.

To verify the tail piece was performing properly, the thermal conductivity from

the sample stage to the mixing chamber was directly measured at 100 mK. A small
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Figure C.6: CAD diagram for KelvinOx 25 sample mount.

Figure C.7: Photo of the KelvinOx 25 sample mount attached to the tailpiece.
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voltage was placed across a 10 kΩ resistor thermally connected to the sample stage,

and the resulting temperature gradient was measured along the length of the tail

piece.

The thermal conductance across the joint connecting the mixing chamber to the

tail piece was initially found to be 0.1 mW/K, a factor of 200 larger than the antici-

pated conductance of the entire tail piece. Before attaching the tail piece, the copper

mixing chamber was dark brown; highly oxidized copper could easily have a large

thermal resistance.

To remove the oxide, the base of the mixing chamber was etched for 30 seconds

in a 1:1 mixture of HNO3 (nitric acid) and H2O, polished with an abrasive metal

polish1, and cleaned with acetone and methanol. The new contact joint between the

clean copper surface and the gold plated silver base had negligible thermal resistance.

The total observed thermal conductance of the tail piece, from the mixing chamber

to the sample stage, is 16 mW/K, with the entire measured temperature drop along

the silver thermal links.

C.3 Wiring

Particular care was taken in the wiring, heat sinking, and filtering of the DC leads

descending from room temperature to the mixing chamber. There are two Bendix

connectors on the cryostat; one 18-pin connector used for heaters and diagnostic ther-

mometers (MUX 1,2, and 3), and one 26-pin connector dedicated to the experimental

stage.

The 18-pin connector and wiring is original to the system and the heat-sinking

is essentially unchanged. All 18 leads are heat-sunk at 4 and 1 K by wrapping the

wires around copper bobbins using GE varnish as an adhesive. Since these leads are

intended for primarily utility functions, this minimal level of heat sinking is sufficient.

The 26-pin Bendix services the experimental stage, and every effort has been taken

to heat sink and isolate the leads properly. To help eliminate pickup, the wires are

individually shielded twisted pair, made from a stainless steel outer braid, a Teflon

1Boyer Brass and Copper Polish, McMaster-Carr [106] part 7096T12.
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dielectric, and a pair of Formvar insulated 0.005” manganin wires. The twisted pair

was ordered from California Fine Wire Company [107], and was then sent to Cooner

[108] to complete the stainless shielding and Teflon dielectric.

These 13 twisted pairs lead directly from room temperature to a pair of clamps

on the 4 and 1 K stages. At the still, the first lengths of wire terminates at a set of

13 stainless steel powder filters (see Appendix E), which serve both as RF filters and

as heat sinks. The filters are made of 1/8” copper refrigerator tube with a pair of

manganin wires coiled inside, filled with stainless power in a epoxy dielectric.

The leads continue past the filters from the still to the mixing chamber and en-

counter a set of copper powder filters. From these filters, the 13 shielded, twisted

pairs, enter the radiation shield attached to the mixing chamber and are heat sunk

to copper strips etched on a copper-mylar-copper (180 µm mylar) sandwich.

The final heat sinks are on the removable sample mount and consist of a 5 kΩ

metal-film resistor followed by a 500 pF polyester-foil capacitor2 to ground. This

series of heat sinks have proved sufficient to cool the electrons to 28 mK as recorded

by a primary coulomb blockade thermometer (CBT) [110]. In the larger dilution

refrigerator, a similar heat-sinking arrangement has yielded a CBT temperature of

18 mK.

The filters on each stage consist of 13 independent tubes; this was based on the

assumption that the yield of filters would be low. The yield was 100%, and the

difficulty was in the connectors to the filters. If at some time it is required to replace

the filters on this system, the connectors should be redesigned. Instead of having

twist-on connectors (which tend to abrade the solder joints inside the connectors and

create shorts to ground); connectors that clamp on would be much better.

C.4 Thermometry

Resistance thermometers are used to monitor temperatures at various stages of

the system. The thermometers are measured in a four-wire configuration using a

AVS-47 resistance bridge. A 30 µV excitation has proven sufficiently small to avoid

2192P series Polyester Capacitor, 0.068 µF Mouser [109] part 75-192P683X9080
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self-heating even at the lowest temperatures. This unit has 8 channels labeled “0”

through “7.” The temperature is regulated via an TS-530A temperature controller,

which provides a feedback voltage to a ∼ 500 Ω wire-wound heater on the mixing

chamber.

Two calibrated 1 kΩ Dale RuO2 thermometers are mounted on the dilution unit.

The main thermometer, “Mux 0,” is mounted parallel to the magnetic field on the

sample stage; its leads are filtered and heat-sunk in the same manner as those leading

to the sample stage, and are connected through the same 26-pin Bendix connector. A

nominally identical RuO2 thermometer, “Mux 3”, is mounted on the top of the mixing

chamber; its leads are wound around a OFHC copper post, to which the thermometer

and leads are affixed with Stycast 1266. Both thermometers are calibrated against

a Nanoway CBT; the resulting calibration data are shown in Figure C.8. Additional

thermometers are located on the still and the 1 K pot. Although their cryogenic

readings have been consistent, these thermometers have drifted considerably at room

temperature.

The still and mixing chamber are each equipped with Constantin wire wound

heaters, with resistances of 510 Ω and 523 Ω respectively.

C.5 Dewar and magnet

The cryostat is mounted in a model dewar set in a pit in the floor. The top of the

dewar is slightly above floor level. Mounted in the dewar is the helium level detector,

and two Oxford “10-pin seal” connectors: “A” is wiring for the magnet, and “B” is for

the dewar thermometers and heater. There are also two NW25 flanges on the dewar:

one for boil-off and the other for the λ plate pump. A needle valve is opposite the λ

plate port to control its flow rate. Two high current leads for the magnet complete

the dewar wiring.

During operation, the helium level drops by 2%/hour (Figure C.9), and as a result,

it needs to be filled every two days. A 60-liter dewar can completely fill the system

with 20 liters remaining.
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Parameter Channel 28 mK 4 K 77 K 300 K

Main thermometer 0 22 kΩ 1.268 kΩ 0.999 kΩ 0.999 kΩ
1 K pot thermometer 1 1.4 kΩ 0.980 kΩ 0.578 kΩ 521 kΩ
Still thermometer 2 0.910 kΩ 0.505 kΩ 0.291 kΩ 0.256 kΩ
MC thermometer 3 25 kΩ 1.285 kΩ 0.998 kΩ 0.998 kΩ
Magnet thermometer 4 1.026 kΩ 1.026 kΩ 0.232 kΩ 0.212 kΩ
λ thermometer 4 1.360 kΩ 1.360 kΩ 0.192 kΩ 0.169 kΩ
λ top thermometer 4 1.013 kΩ 1.013 kΩ 0.187 kΩ 0.164 kΩ
Still power - 1.4 mW - - -
Still pressure - 0.15 mB - - -
Return line pressure - 100 mB - - -

Table C.1: KelvinOx 25 thermometry at several useful temperatures. To avoid wast-
ing channels, the four dewar thermometers share channel “4,” and have a 3-position
rotary switch on the thermometer panel. The 1 K pot and still thermometers have
shown some drift in their 300 K and 77 K readings, but are so far reliable at 4 K.
The table concludes with the value of several diagnostics at base temperature.

Figure C.8: Calibration of RuO thermometers mounted on the mixing chamber of
KelvinOx 25 cryostat. The symbols represent temperature measuring the full dI/dV
trace of the CBT thermometer (solid: channel “3,” empty: channel “0”); the solid
line is temperature extracted from the zero-bias CBT conductance; and the dashed
line is a fit to the “MUX 0” data.



174

300

250

200

150

100

50

0

T
ot

al
 H

el
iu

m
 L

os
s 

(%
 o

n 
le

ve
l m

et
er

)

12:00 AM
5/24/03

12:00 PM
5/26/03

Measured Boiloff: 2.06% per hour

Figure C.9: Measured boiloff for KelvinOx 25 system during operation. The loss is in
terms of the measured helium level and records the boil off across several transfers,
thus exceeding 100%.

A 9 Tesla superconducting magnet is mounted in the dewar; a field/current ratio

of 0.0942 T/A generates the maximum field at 95.55 amps. The magnet is equipped

with a persistent current switch heater, which allows the magnet to be selectively

placed in persistent mode. This magnet includes cancellation coils that nulls the field

at the mixing chamber. At full field, the mixing chamber field is within ±0.004T.

The magnet is controlled with an Oxford PS120-10 power supply. This supply is

programmable using a standard serial port, not GPIB. The power supply has been

a major problem for this system. Any time there is current in the leads, i.e., not

persistent mode, the main thermometers record a dramatic increase temperature.

When the current is removed, the temperature instantly drops, suggesting that only

the thermometers are being heated. Proper grounding has decreased this effect, but

it remains true that reliable temperature readings can only be made in persistent

mode, or zero field.

“10-pin seal” B leads to the dewar thermometers (measured in a two wire configu-

ration with a common ground) and heater. The Allen Bradley resistive thermometers
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are mounted on the magnet top, the λ plate, and 10 cm above the λ plate. Table

C.1 summarizes the values of these thermometers at several useful temperatures. The

dewar heater consists of two 20 Ω (and 15 Watt) resistors wired in parallel at the bot-

tom of the dewar; such heaters are often useful during the initial transfer to prevent

the hydrogen exchange gas from freezing out.

C.6 Operation

As installed the KelvinOx 25 has a base temperature of 28 mK and a cooling

power of 50 µW at 100 mK; this factor of 2 enhancement over the advertised 25 µW

was achieved by installing a wider (NW50 vs. NW25) and shorter pumping line on

the still, and by replacing the Oxford provided Alcatel 2012AH pump with an Alcatel

2033H (increasing the free air displacement from 310 L/min to 765 L/min).

Table C.1 contains recommended operating settings, thermometer readings, and

pressures at base temperature. The still power setting of 1.4 mW is not optimal for all

temperatures; however, it provides acceptable performance across the full operating

range of the refrigerator. The cooling power data in Figure C.3 can be used to further

optimize the performance.
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Appendix D

Annealed Silver

Making good thermal contact between different cold parts of cryogenic equipment

is essential to the success of any low-temperature experiment. Annealed high-purity

silver thermally connects the mixing chamber of a dilution refrigerator to the exper-

imental stage located some 12 to 24” away at the field center of a superconducting

magnet.

Copper is an excellent thermal conductor and for experiments at zero magnetic

field, it is the best choice for thermal links, however, copper suffers from a large

nuclear magnetic moment (and is thus a nuclear coolant: when a magnetic field is

swept upwards, entropy is transferred from the spins and the system heats, and in

reverse when the field is swept down). Silver has slightly higher thermal conductivity

than copper, but more importantly is its lack of a large nuclear magnetic moment.

Of course, silver is much more expensive, so it should be only be used when copper

is specifically excluded.

D.1 Wiedemann-Franz law

A surprising result of the simple Drüde model of electron scattering is that the

electrical and thermal conductivities are related by the temperature times a constant,

called the Lornez number, which is independent of material and geometry (it is ironic

that this correct result is a lucky accident for Drüde theory, and can be correctly

arrived at by treating electrons as fermions). It is therefore sufficient to measure the

electrical resistance to ascertain the thermal conductivity of a particular sample.
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In the Drüde model (free classical electrons with a damping force Fdamp = −mv/τ),

the electrical conductivity is simply given by σ = ne2τ/m. Likewise, the thermal con-

ductivity in a Fermi gas (in 3D) is computed and their ratio is

κ

σ
=

3

2

(
kB

e

)2

T.

This combination of constans is the Lorenz number, and has a numerical value L =

1.11× 10−8 WΩ/K2.

Since the thermal conductivity is related to the electrical conductivity by L, the

quality of materials can be assessed by measuring the electrical conductivity R as a

function of temperature. A useful parameter is the residual resistance ratio (RRR)

defined as the ratio R300 K/R4 K, the resistance at room-temperature divided by that

at 4 K. For reasonably pure metals at 300 K, the primary scattering mechanism is

phonons (therefore independent of sample quality), while the 4 K conductivity is dom-

inated by impurity scattering. As a result, their ratio gives a geometry independent

assessment of the electrical (and therefore thermal) quality. The following equations

relating RRR and thermal conductance for copper and silver [105] are potentially

very useful (in units of W/Km),

κCu = (RRR/0.76)× T, and κAg = (RRR/0.55)× T.

The primary assumption in the argument for the Wiedemann-Franz law is that

the scattering times for thermal and electrical conductance are the same (the above

equations relate RRR to the Wiedemann-Franz thermal conductivities). Observa-

tion shows that the Wiedemann-Franz law is well followed by copper, but silver of

comparable RRR has only a fraction of the expected thermal conductivity [105].

D.2 Materials

When selecting the size of the material for heat links, a small diameter is important

– a changing magnetic field induces eddy currents, and for a solid disk, the amount

of heat generated is proportional both to the conductivity and to r4, in contrast, the
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thermal conductivity scales as r2. As a result, a large number of skinny rods minimize

eddy current heating while maintaining a large thermal conductivity. Additionally,

this suggests constructing large objects (structural supports, for example) out of low-

conductivity materials like stainless steel, and then using a large number of thin silver

rods for the heat link.

The purity of metals is generally specified as 4N, or 5N – read 4-nines or 5-nines.

This means that the sample is 99.99% or 99.999% pure. We start with 5N silver rod

with a diameter of 1/8”. We have used ESPI [111] or Alfa Aesar [103] as suppliers

for this material, but they are prohibitively expensive. For 3N5 silver, Surepure

Chemetals [112], is only 25% the cost of these two; we have never tried their 5N

silver.

Before processing, the RRR of a typical 5N purity silver rod is about 100. This

value can be increased to about 3500 by high-temperature annealing. The literature

on annealed silver is sparse [113], and describes a technique of oxygen annealing.

The authors found that their sample quality was fundamentally limited by magnetic

impurities. When the silver is close to its melting temperature, it tends to form crystal

grains, and any impurities migrate to the grain boundaries, eventually limiting the

maximal grain size. A small partial pressure of oxygen was found to neutralize the

magnetic impurities once they migrated to the grain boundaries. Although the recipe

described here [89] does not use oxygen, the quality of samples is similar; our 5N

silver (from ESPI) is possibly relatively free of magnetic impurities.

D.3 Preparing the material

Before annealing, we clean the silver’s surface to remove any impurities that might

diffuse into the silver during the anneal. First, remove any visible tarnish or dirt

with a Scotch-Bright scrubbing pad, then clean with acetone, and methanol, rubbing

each time with a paper towel. Immediately before annealing the silver, it should be

etched with the following solution for about 5 seconds: 1:1:4 of NH4OH (ammonium

hydroxide):H2O2 (hydrogen peroxide, 30%):CH3OH (methanol). The rod will bub-

ble slightly when immersed in the solution. After the etch, rinse with H2O, then
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methanol.

D.4 Annealing

Place the cleaned silver on a quartz plate, and slide it into the center of the furnace.

Be sure that the silver is fully supported by quartz. After annealing, silver becomes

very soft and has a tendency to droop if left unsupported. Close the chamber and

flow helium gas at 0.5 SLPM for 30 minutes before starting. At the same time, begin

circulating cooling water through the cap.

Setup all three temperature controllers:

• Set the ramp up rate to 3 C/min (press PAR button six times until R1 appears).

• Set the annealing temperature to 860 C (press PAR button seven times until

L1 appears).

• Set the annealing time to at least 600 minutes (press PAR button eight times

until D1 appears).

• Set the ramp down rate to 3 C/min (press PAR button nine times until R2

appears).

• Start the run (Press PAR twice, and select “run”).

Once the chamber is completely cooled, stop the helium flow and remove the silver

pieces. They will be very soft; any bending will create dislocations and decrease the

RRR. If you inspect them, you should be able to see crystal grains from 1 to 3 mm

in size (Figure D.1).

Do not place solder in the furnace. It may be tempting to further anneal a piece of

silver for which you have already measured the RRR. If this is required, first file the

solder off and repeat the cleaning schedule. Both flux and PbSn solder contaminate

the furnace. It is possible to clean out the resulting material plated on the inside of

the furnace: tie a piece of Scotch Bright to the end of a long wooden stick and scrub

the inside of the furnace tube with acetone, then methanol, then deionized water until

it is clean. This process takes about 90 minutes of constant scrubbing.
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Figure D.1: Typical 5N silver before and after annealing. Note the millimeter-sized
grains on the annealed sample (top).

If you plan to anneal with a stainless steel support, be sure to anneal the stainless

by itself first as a cleaning step. Likewise brass may be annealed at 860C for use as

structural pieces. After annealing, both of these materials leave stains on the quartz

plate they were on, indicating that considerable impurities were removed from the

metals.

D.5 Measurement of RRR

Before making the final pieces of silver, it is a good idea to anneal a sample from

the same batch of 5N silver to verify both that the material is good and that the

annealing system is functioning properly. Here the measurement of the RRR for a

1/8” diameter silver rod from ESPI with a length of 8” is described.

It is surprisingly difficult to measure RRRs larger than 1000. If the room-temperature

resistance is a typical value of 500 µΩ, then at 4 K you would expect a resistance of

500 nΩ. Consequently, it is a good idea to make the test piece as long as possible; in
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Figure D.2: Measured current and voltage for a highly annealed silver rod at 4 K.
The solid line is the current (left axis) and the solid circles are the measured voltages
(right axis).

this case 8”. To allow the final piece to fit in the test apparatus, the rod was wound

into a 1” diameter coil. The coiled sample was then annealed as described above for

8 hours, and the residual resistance measured.

The resistance of the silver rod was measured in a four-terminal geometry, with

the current leads soldered to the ends of the rod, and the voltage probes about 1/4”

in from the ends. A simple way to measure the resistance is by applying a slow square

wave current pulse (1/4 amp, 15 s period) and measuring the resulting voltage with a

PAR113 preamp. The data in Figure D.2 shows the typical result of the measurement

averaged 1024 times. From this data, the resistance, and then RRR, can be computed.

Clearly, a larger current excitation will lead to a larger voltage signal. Unfortu-

nately, larger currents eventually heat the sample. Empirically, this heating starts at

1 amp; measurements performed at 1/4 amp are safely in the linear region.

The initial measurements were performed in a 4He dipstick with four copper wires

connected to BNCs at room-temperature and soldered to the sample in the helium

bath; this scheme never resulted in RRRs larger than 500, which was apparently a
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Figure D.3: Measured resistance for annealed silver at room-temperature and 4 K.
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result of poor heat sinking of the silver rod. To fix this problem, the sample was

attached to copper wires which were wound about copper posts and then attached to

the copper leads. The above data was measured using this arrangement.

D.6 Results

Silver prepared as described above was used to construct a tailpiece for a dilution

refrigerator. The thermal conductivity of this structure was measured and found to

be a factor of 10 less than anticipated from the Wiedemann-Franz law. For a RRR

of 3500 the thermal conductivity at 100 mK should be 636 W/Km. The thermal

link consists of seven silver rods with 1/8” diameter and are 8” long, so the expected

thermal conductance is K = 170×10−3 W/K. The measured thermal conductance is

16×10−3 W/K the factor of 10 discrepancy here would be somewhat disturbing except

for two mitigating facts: other silver rods, also prepared using this recipe gave similar

thermal conductivities, and the data shown in [105] indicates that high RRR silver

can have thermal conductivities depressed by factors of 30 from the Wiedemann-Franz

prediction.
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Appendix E

Powder Filters

It has become increasingly commonplace to outfit dilution refrigerators with extensive

microwave filtering designed to isolate sensitive devices, both from a noisy external

environment and from thermal radiation originating in the warmer 4 and 1 K states

of the cryostat. In the past 15 years, several types of cryogenic filters have been

developed, including: metal powder filters [114, 115, 116], meander line (LRC) filters

[117], and wave-guide/coaxial filters filters of several types [118, 119]. Although there

are differences in the radio frequency (RF) attenuation of each type of filter, the

literature suggests that their performance can be made comparable.

RF filtering was included in the recent rewiring of a small (50 µW at 100 mK)

dilution refrigerator. The system in question is intended to be a general-use cryostat

with 26 DC leads descending from room-temperature (18 sample, four thermometry,

four auxiliary) equipped with RF filters: one thermally lagged at the 1 K pot, and

a second at the mixing chamber. The large number of leads, coupled with the ex-

tremely limited space, mandates that each RF filter be quite compact. This system

will be used in part to measure the transport properties of high-mobility GaAs de-

vices, which often have resistances less than 1 Ω. In these devices, DC resistance

is generally measured in a four-wire geometry using low-frequency (5 Hz to 20 Hz)

lock-in techniques. Even in a four-wire configuration, large lead resistances, coupled

with cable capacitances can pollute measurements of very small resistances. The me-

ander line filters [117], for example, have DC resistances of about 1 kΩ. We decided

on metal powder filters based on their compact physical dimensions, relative ease of
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construction, and minimal DC resistance. This document describes a series of test

filters used in preparation for wiring the cryostat.

E.1 Construction

Powder filters consist of an insulated wire embedded in a metal powder/epoxy

matrix. When microwave radiation is transmitted though the powder, it induces

currents within a skin depth of the metal grains’ surface. The vast surface area of

the grains allow for a rapid dissipation of RF power.

Many factors contribute to the performance of powder filters; foremost among

these is the choice of metal powder, which is the central focus of this study. Two

other essential ingredients to the filters are the epoxy filler and the insulated wire.

The central wire for these filters was Formvar insulated 0.005” manganin, a commonly

used high resistivity alloy1. Stycast 1266 was selected as the epoxy filler, based on its

desirable cryogenic properties [105], and its low viscosity, which is desirable during

the construction stage.

The filters investigated here are constructed from a 1.5× 0.75× 0.75” aluminum

body with a 1/4” hole running its length. Roughly two meters of 0.005” manganin

wire are wound into a 3/16” diameter coil and inserted into the body.

One end of the 1/4” hole is then sealed with a small epoxy cap and cured. The

remainder of the cavity is filled with metal power (the 1 µm and 4 µm copper powders

have a tendency to clump, making it increasingly challenging to fill the filters), and

sealed with epoxy. Before curing, the filter is placed under vacuum. The epoxy will

bubble for a time as the air is evacuated from the underlying metal powder. When

the filter is removed from vacuum, the ambient atmospheric pressure forces the epoxy

into the voids surrounding the metal grains. It is necessary to periodically add epoxy

on the top of the filter as the level drops. Once the filters are fully loaded with epoxy,

they are cured for 60 minutes at 120 C. The manganin leads are soldered to SMA

connectors, which are in turn attached to the end of the enclosure, forming a RF tight

device.

1ρ ≈ 2× 10−6 Ω ·m available from California Fine Wire Company.
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By first filling the filter with metal powder, then backfilling with epoxy, we are able

to achieve considerably higher densities of metal than by premixing. A mixture with

too much metal becomes extremely viscous, and cannot be reliably packed around

the wire coil. The filters constructed using the vacuum impregnating technique are

ultimately limited in size by the viscosity and working time of the selected epoxy. We

find that with Stycast 1266, the maximum length of the filters is about 15 cm.

We constructed five filters (Table E.1), one with stainless steel powder and four

with copper powder of varying grain size (all metals are from Alfa Aesar). A sample

of each metal powder was imaged in a scanning electron microscope (SEM) and the

approximate grain diameter is also listed in Table E.1. The measured grain sizes often

differed by as much as 50% from the advertised size.

E.2 Model

There are two mechanisms for the dissipation of RF power in a metal powder.

First, an oscillatory magnetic field induces eddy currents in the grains. In addition,

an electric field will cause charges to move parallel to the field in the metal grains.

Both resistively dissipate power, but when the wavelength is larger than the grain

size, magnetically induced eddy currents are the only significant source of dissipation.

If we consider metal grains with average radius a, resistivity ρ, in a linear material

with permitivity ε0ε and permeability µ0, the magnetization of a single metal grain is

a function of the ratio α = d/δs = d/(2ρ/µ0ω)1/2. When d� δs, i.e., low frequencies,

the magnetization is purely imaginary and scales like ω. At high frequencies the

magnetization is predominately real, and the imaginary part goes as ω−1/2 (for a more

complete discussion, see [120]). Starting with a density of N grains per-unit volume

gives a bulk magnetization, an effective magnetic permeability can be computed

µ∗/µ0 =

[
1− 3n

2

(
1 +

3i

2α2
− 3(1− i)

2α
coth(i+ 1)α

)]−1

.

The term n = 4Nπa3/3 is the fraction of the volume filled with metal powder. Any

quantitative prediction of the model should be regarded with considerable skepticism,
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Figure E.1: Transmission data for Filter 1: in units of dB per-meter of manganin
wire. Inset: fskin vs. f40dB.

since the model assumes spherical particles at low-density, which is highly idealized.

In reality, the metal particles are a random assortment of elliptical grains with aspect

ratios as large as 4:1, and the metal powder is tightly packed inside the filters with

filling fractions that exceed 50%. It is hoped that the qualitative features of the model

will survive these infractions.

The RF powder filters consist of a coaxial transmission line with this lossy dielec-

tric. In the limit where most of the losses occur in the dielectric, the transmission

coefficient is just γ = ω(lc)1/2 = ω(εε0µ)1/2, the imaginary part of which is the at-

tenuation. This result seems to capture the qualitative feature of these filters: the

attenuation is proportional to the length of wire, not the length of the enclosure, and

the attenuation increases with particle density. A usefully parameter in understand-

ing the performance of the filters is fskin, which is the frequency when δs = d below

the frequency eddy currents flow throughout each metal grain, but above it, they only

flow within δs of the surface.

Figure E.1 compares typical measured transmission to the predication of this

simple model. The only adjustable parameter in this fit is f , the filling fraction; in

this case, the fit returns an unphysical value of f = 40.

This physical picture for the mechanism of dissipation suggests one should choose
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Filter Metal fskin f40dB: 300 K 77 K 4 K

1 25 µm S.S. 0.29 0.65 1.1 1.1
2 30 µm copper 0.005 0.19 0.19 0.19
3 25 µm copper 0.007 0.23 - -
4 4 µm copper 0.27 0.79 0.60 0.57
5 1 µm copper 4.30 1.12 1.25 1.25

Table E.1: Summary of filter information (all frequencies are in GHz). The grain
diameters are as observed using a SEM. f40dB is the frequency when the measured
attenuation per-meter of wire is 40dB, and fskin is the frequency where the skin depth
is the same as the observed grain size.

the grain size and resistance of the metal powder so the skin depth is roughly equal

to the grain size at the frequency where the filters should become active. Results for

copper and stainless steel can be found in Table E.1.

E.3 Measurement and results

The RF transmission of Filters 1 through 5 were measured first from 50 MHz to

20 GHz using a HP 8720C network analyzer, and then from 1 to 200 MHz using an

HP 3577A network analyzer.

The data for each filter appears to follow the same general behavior as in Figure

E.1, suggesting each filter can be described by a single figure of merit. f40dB is

defined as the frequency where the attenuation per-meter is −40dB, and seems to

well parameterize the overall performance of a particular filter. The inset to Figure E.1

shows the dependence of fskin on f40dB. Although the trend is the same as expected

from our model, the strength of the effect is very different – the model suggests a

linear relation between the two, whereas the measured f40dB increases much more

slowly.

The temperature dependence is somewhat more difficult to understand. Although

the general shape of the data remained unchanged, the dependence on temperature is

not what one might expect in the simple model. The attenuation of Filter 1 (25 µm

stainless) and Filter 5 (1 µm copper) increases with decreasing temperature; Filter

4 (4 µm copper) shows decreasing attenuation with decreasing temperature, while
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(solid: Filter 2), 4 µm (dotted: Filter 4), and 1 µm (dashed: Filter 5). The arrow
corresponds to ρ = 17 nΩ ·m, the nominal room-temperature resistivity of copper.

Filter 2 has no change in attenuation (Filter 3 was damaged). That the temperature

dependence of the filters can be a function of grain size is understandable in our

model. Figure E.2 shows the dependence of f40db on resistivity for the three relevant

grain sizes (the parameters for the three curves are based on a fit to Filter 4 at

300 K). If the primary effect of a changing temperature is to diminish the resistivity

of the metal, we see that, depending on the grain size and initial resistivity, f40dB can

increase, decrease, or remain constant as a function of temperature. The maximum

attenuation occurs when the real part in the denominator of the permeability passes

through zero, resulting in enhanced dissipation (this is directly analogous to the

“anomalous dispersion” in a dielectric, when the frequency of an electromagnetic

wave matches a resonate frequency of bound electrons the material). Unfortunately,

although Filters 2 and 5 show roughly the dependence predicted, Filter 4 (4 µm

copper) does not. It is possible this filter had a lower metal density than expected

(as the grain size decreased, the powder no longer flowed easily, and filling the filters

became very difficult), which would correctly account for this discrepancy. It should

be noted that this analysis excludes the dependence on temperature of the dielectric

constant of Stycast 1266, which decreases to 63% of its room-temperature value by
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4 K [121].

Although the attenuation of our filters seemed not to particularly depend on

the type of metal used, instead depending only on fskin, the choice metal can still

be important for other reasons. For example, below 100 mK, stainless steel has a

Schottky anomaly [122, 123], leading to a heat capacity that increases with decreasing

temperature. The time constant for the thermal relaxation goes as the ratio of heat

capacity to thermal conductivity. For a typical filter with lengths scales of about

1 cm, the Stycast 1266/stainless steel combination has a relaxation time of 150 sec at

100 mK, which increases to 900 sec by 50 mK, while for copper the values are 120 sec

at 100 mK and 200 sec at 50 mK. Copper is not without its own limitations; at a

high magnetic field it has a large heat nuclear capacity. At 1 Tesla and 50 mK, the

nuclear heat capacity is comparable to the total heat capacity at zero field, and varies

like (B/T )2.

The dielectric constant of the epoxy filler is also important to the attenuation of

the RF radiation – like most polymers, epoxies have a dielectric constant of about 3.

Our analysis suggests that the attenuation increases like ε1/2, so it would be desirable

to find a larger dielectric replacement for the Stycast 1266. Additionally, the filters

discussed in the study used only manganin wire. It would be interesting to see the

effect of wire type on the filter performance; however, if the simple model has any

validity, the selection of wire should have little effect on the attenuation.

Based on this work, we suggest 25 µm copper as the powder of choice, based

on its performance as a filter, suitability as a heat-sink, ease of construction, and

economy. This work considered filters in the absence of an external magnetic field -

the presence of a magnetic would introduce a considerable Hall contribution to the

conductivity σ, which would have an unknown, and probably deleterious effect on the

filters. Consequently, it seems prudent to place the filters in a field free region of the

cryostat.
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Appendix F

Thomas-Fermi Model

In free space, a charge q produces a potential proportional to 1/r; this potential is

vastly changed if the charge is located within a free electron gas. A classical electron

gas perfectly screens the point charge, however, a quantum electron gas screens only

imperfectly. The Thomas-Fermi model is a framework within which one can compute

approximate screening potentials.

Chapter 3 discusses tunneling between two electron gasses in detail, which provides

a direct measurement of the scattering time of electrons, both from other electrons

and from static scattering centers. Central to the computation of any scattering rate

is the screened potential that defines the interaction of electrons both between other

electrons and background disorder.

This appendix presents the Thomas-Fermi model for electron gasses in several

spacial dimensional: three-dimensions (3D), two-dimensions (2D), a 2D sheet in a 3D

space, and two parallel 2D sheets. These go roughly in order of increasing complexity.

Finally, the scattering rate of particles interacting with the computed potentials are

computed.

F.1 General framework

The Thomas-Fermi model is a long wavelength approximation, which assumes

that every point is in local thermodynamic equilibrium and that the local chemical

potential µ is well defined. If we also suppose that the system is in global equilibrium,

then the chemical potential can be taken to be everywhere constant.
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If there is an external potential, the local density of electrons will change in re-

sponse to that potential to keep µ constant. For a given µ, the density n(µ, φ) of

charge q carriers can be computed in any number of spacial dimensions at zero tem-

perature for any total potential φt,

n(µ, φ) = 2

∫
dkd

(2π)d

1

1 + eβ(E(k)+qφt−µ)

=
2πd/2

(2π)dΓ(d/2 + 1)
k(µ− qφt)

d

=
2(2πm∗)d/2

(2π)dΓ(d/2 + 1)~d
(µ− qφt)

d/2.

The third result makes the usual assumption of parabolic dispersion, E = ~2k2/2m∗.

The total potential can be expressed as the sum of two parts, φt = φe + φi. φe is

the externally applied potential, while φi is the induced potential resulting from the

redistribution of charge carriers. The induced part is simply

∇2φi = −ρ
ε

= −qn(µ− qφt)− n(µ)

ε
≈ q2φT

ε

∂n

∂µ
.

The last relation is the Thomas-Fermi differential equation, and results from lineariz-

ing the difference in densities. At this point, it becomes convenient to switch to

Fourier transformed variables; in term of which the potential is

−k2φi =
e2φt

ε

∂n

∂µ
.

Since the physical quantities of interest are the total and external potential, φi can

be replaced with φt − φe, or

φt − φe = −
(
e2

ε

∂n

∂µ

)
φt

k2
= −k2

tf

φt

k2
.

To obtaion this result we made the usual definition of the Thomas-Fermi wave-
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number, ktf . This leads to the desired result

φt =
1

1 +
(

ktf

k

)2φe.

Qualitatively, this screening function leaves the potential unchanged at short

length scales (large k), and attenuates it at long lengths. There are some usual

definitions at this point; εtf (k) is the Thomas-Fermi dielectric constant, and χtf (k)

is the polarizability defined by

φt =
φe

εtf (k)
→ εtf (k) = 1 +

(
ktf

k

)2

ρi = χtf (k)φt(k) → χtf (k) = −εk2
tf .

Up to this point, the argument is general for any number of dimensions (but not

for a sheet embedded in a higher dimension). Now we shall consider the special cases

of 2D and 3D electron gasses. In these cases, ktf is

2D : n =
m∗µ

π~2
k2

tf =
e2m∗

επ~2

3D : n =
(2m∗µ)3/2

3π2~3
k2

tf =
e2m∗

επ2~2kf

k2
f

In 2D, the density is linear in µ, so the results are valid even in the limit of

large potentials (to the degree that the Thomas-Fermi approximation is valid). One

cautionary note, however, is that the Thomas-Fermi model allows the density to

continuously pass through zero, where in a real system the density stops changing at

full depletion.

For a typical 3D metal (silver: m∗ = me, n = 5.9 × 1022 cm−3, and ε = ε0), the

screening length 1/ktf is 0.5 Å. In 2D, with m∗ = 0.068me, and ε = 13ε0, the length

is further enhanced to 50 µm.

The case considered above assumes that both the kinetics and electrodynamics

are in N-dimensions. In reality the 2DES consists of carriers with 2D kinetics, but
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which still interact via usual 3D electrodynamics.

F.2 A 2D sheet in a 3D space

This section treats a 2D sheet of charge embedded in a 3-dimensional space. Some

caution is required to properly distinguish 2D and 3D charge densities. The symbol

σ indicates 2D charge density, while ρ is still the overall 3D density. For a sheet lying

in the x− y plane located at z0, these two densities are

ρ(x, y, z) = σ(x, y)δ(z − z0), and −∇2φi(x, y, z) =
ρ(x, y, z)

ε
.

In the Fourier representation, this becomes

φi(kx, ky, kz) =
ρ(kx, ky, kz)

εk2
=
σ(kxy)

εk2
e−ikzz0 .

The density in the 2D sheet only responds to the potential at z = z0, so integrating

out the z part of φ and evaluating at z0 gives

φi(kxy, z) =
σ(kxy)

ε

∫
dkz

2π

eikz(z−z0)

k2
xy + k2

z

=
σ(kxy)

2ε |kxy|
e−|kxy ||z−z0|

= − e2m∗

2πε~2

φt(kxy, z0)

|kxy|
e−|kxy ||z−z0|

φi(kxy, z0) = − ktf

|kxy|
φt(kxy, z0)

In which the Thomas-Fermi wave-vector is defined as ktf = e2m∗/2πε~2. This result

is somewhat different than the pure 3D or 2D results. As with the previous cases the

Thomas-Fermi dielectric constant is easily found,

φt(kxy, z0) =
φe(kxy, z0)

εtf (kxy)
→ εtf (kxy) = 1 +

ktf

|kxy|
.

As expected, the small wave-vectors (long wavelength) components are screened,

while the large wave-vector (short wavelength) parts are not. However, the screening

is much softer than the case of pure dimensions, where εtf is quadratic in k. This
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means that 2D screening is much less effective than in 3D. Numerically, the screening

length is about 50 Å for 2D electrons in GaAs.

F.3 Parallel 2D sheets in a 3D space

The argument for a single sheet at z0 can be extended in a straightforward manner

to two parallel sheets located at z = ±h/2. Starting with an expression for the charge

density of two sheets,

ρ(x, y, z) = σT (x, y)δ(z − h/2) + σB(x, y)δ(z + h/2).

Using the same argument as for a single-layer, this can be transformed to the Fourier

representation, the same ktf defined, and induced potential related to total potential

φi(kxy, z) =
1

2ε

(
σt(kxy)

|kxy|
e−|kxy ||z−h/2| +

σb(kxy)

|kxy|
e−|kxy ||z+h/2|

)
= − ktf

|kxy|
(
φt(kxy, d/2)e−|kxy ||z−h/2| + φb(kxy,−d/2)e−|kxy ||z+h/2|) .

The induced charge can be conveniently related to the total potential in matrix

form, with Φ = (φ(kxy, h/2), φ(kxy,−h/2)),

Φi = − ktf

|kxy|

 1 e−|kxy |h

e−|kxy |h 1

× Φt.

In this case, replacing the induced charge with Φt−Φe, gives a Thomas-Fermi dielectric

matrix defined as

Φt = ε−1 × Φe → ε = 1 +
ktf

|kxy|

 1 e−|kxy |h

e−|kxy |h 1

 .

As h→∞, the matrix becomes diagonal, the values of which recapitulate the single-

layer results. Given this screening function, it is interesting to consider the effect of

the second layer on an isolated point charge located in one layer or the other. The
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potential due to a free charge located at x = y = 0, and z = z0 is

−∇2φe =
e

ε
δ(x)δ(y)δ(z − z0)

φe(k) =
e

ε

1

k2
e−ikzz0 .

As the potentials of interest are located at a specific z coordinate, it is necessary to

integrate out kz,

φe(kxy, z) =
e

ε

∫
dkz

2π

1

k2
xy + k2

z

eikz(z−z0) =
e

2ε

1

|kxy|
e−|kxy ||z−z0|.

So a charge in the top layer (z0 = h/2) gives the potential

Φe =
e

2ε

1

|kxy|

 1

e−|kxy |h

 .

Using the expression Φt = ε−1 × Φe, the total potential on both the top and bottom

layers can easily be computed,

Φt =
e

2εktf

ktf

|kxy |

(1 +
ktf

|kxy |)
2 − e−2|kxy |h

 1 +
ktf

|kxy | − e−2|kxy |h

ktf

|kxy |e
−|kxy |h


. Again, as h→∞, the result for an isolated layer is reproduced.

Figure F.1 compares the potential for several different cases. The top panel con-

tains the potential for the top layer (where the charge resides), and the bottom panel

for the bottom layer. Several different values for h are plotted. The screening due to

a remote second layer has little effect on the potentials in the initial layer, both for

charges in the first and second layers.

F.4 Potential scattering

In this section, the scattering rate of particles interacting with the potentials φt(k)

is computed. Using these screened potentials, it is possible to compute the lifetime

of electron-like quasiparticles. Following the argument in [51] (a similar argument
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Figure F.1: Screened potential (units of e/2εktf ) from a single test charge in the top
layer of a bilayer system. Bold: no screening; dashed: screening from a single-layer;
dotted: screening from bilayer system (50 Å separation); and dot-dashed: screening
from bilayer system (300 Å separation). Top panel: test charge is in the same layer
where potential is measured; bottom panel: charge is in the other layer.
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appears in [52]), the scattering function W = 2π |φt|2 can be computed in terms of

the interaction parameter rs = ktf

/(
2
√

2kf

)
, g0 = 2εktf/e

2 and ktf . For a single-

layer, this function is (note that in the approximation this scattering function is spin

independent)

W (kxy) =
2π

g2
0

(
ktf/ |kxy|

1 + ktf/ |kxy|

)2

.

The scattering rate can be computed from W using a standard Fermi’s golden

rule integral, which is sharply peaked at k = 0 and k = 2kf , allowing the scattering

function to be approximated as the average at these two points,

W ≈ 2π

g2
0

1

2

(
1 +

(
2kf

ktf

+ 1

)−2
)
≡ 2π

g2
0

wfb.

Jungwirth et al [51] continue, with a calculation (beyond the scope of this docu-

ment) of the temperature dependence of the electron-electron scattering rate

~/τe(T )

Ef

≈ wfbπ

4

(
kBT

Ef

)2 [
ln

(
−kBT

Ef

)
+

ln8

2
− 0.083

]
Γee(T ) = 2

~
τe(T )

.

The latter expression contains a factor of two to account for scattering from both

electrons and holes. Figure 3.9 shows these results as a function of temperature at

three different rs (and therefore densities).
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