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Abstract

The main focus in this thesis is linear codes over rings. In the first part, we look at linear
codes over Galois rings, GR(p%,m), and using the homogeneous weight, we improve upon
Wilson’s results about the prime power that divides the coefficients of the homogeneous
weight enumerators of these codes. We also prove that our results are best possible. Our
results about homogeneous weight enumerators of linear codes over GR(p,m) generalize
the results that we have for the Lee weight enumerators of linear codes over Zj4.

We also consider other weight enumerators, in particular the complete weight enumera-
tors of linear codes and we obtain MacWilliams-like identities for these weight enumerators
considering different rings. These MacWilliams-like identities lead to MacWilliams iden-
tities for the Hamming weight enumerators of linear codes over rings. We also give a
counter-example to show that we cannot have MacWilliams-like identities for the Euclidean
weight enumerators of linear codes over Zj.

We also look at Gray maps from Z,. to ngil. We first give an application of the
distance-preserving map from Zg to Zj to obtain good ternary codes, and then we give an
inductive algebraic construction of a distance-preserving Gray map from
(Z,, homogeneous distance) to (ngil,hamming distance) as well as a combinatorial con-
struction. By using the Gray maps, we obtain some results about the weight enumerators
of linear codes over the ring Fom + uFom with u? = 0.

In the last part of this work, we consider the permutation invariance of binary codes
and the connection with linearity over certain rings. Among the rings considered, we have
Fy + uFy, u? = 0; Fy + uFy + - - + u2 ~1Fy, u2* = 0; Fy + uFs + vFy + uvFa, u? =02 = 0.
In this context we consider the Reed-Muller codes and answer questions about permutation

invariance of Reed-Muller codes under certain permutation groups and the linearity of
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Reed-Muller codes over these aforementioned rings.
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Chapter 1

Introduction

In the early history of Coding Theory, codes were usually taken over finite fields, in partic-
ular over the field of elements modulo 2, which led to the binary codes. In the last decade
or so, a growing interest has been shown in linear codes over rings and the so-called Gray
maps that mapped these codes into codes over finite fields. In a ground-breaking work,
Sloane, Calderbank et al. showed in 1994 that the Kerdock Codes, the Preparata Codes,
and Delsarte-Goethals Codes can be obtained by taking the Gray images of linear codes
over Z4. The work that I present in this thesis was partially inspired by their work that led
me to consider linear codes over the ring Z, with the Lee weight.

A linear code over a ring R of length n is an R-submodule of R™. The most common
rings that were used in this work and in other works about this subject are the ring of
integers modulo a prime power, i.e., Z,; where p is a prime number and more generally the
Galois ring extensions of these rings, which we will denote by GR(p’, m). This will denote
the Galois ring extension of Z,, of degree m. Here, £ and m are integers. GR(p*,m) will
briefly be defined as the quotient Z,¢[z]/(¢(x)) where ¢(z) is a basic irreducible polynomial
of degree m over the ring Z,.. We will give a more detailed description of the elements of
the Galois ring GR(p’,m) in Chapter 2 with the help of a set that we will define as the
Teichmuller set, but for now we will only give some of the basic properties of the Galois
Ring. GR(p%,m) is a finite chain ideal ring with a unique maximal ideal that is given by
(p) = pGR(p’,m) and the quotient field is

GR(p*, m)

CRG ) ~ Fym. (1.1)



All ideals of GR(p’, m) can be ordered as

{0} = péGR(pg, m) C pfﬁlGR(pE,m) Cc---C pGR(pE, m) C GR(pE, m).

A linear code is permutationally equivalent to another code if one can be obtained from
the other by a permutation of the coordinates. Because of the finite chain ideal structure of
the Galois rings, we can see that any linear code C over GR(pe ,m) is equivalent to a code

with a generating matrix

Ikl Aq . . . Ag
0 ply, pBi . - pBi—1
0 0
G =
0 0 .0 ptln, pttc
where A;, Bj,...,C are all matrices over GR(p%,m). This means that C' can be obtained

as a linear combination of the rows of G over the Galois ring GR(p’, m). Such a linear code
is said to be of type

() (pU ke ()

and in this case we will have

0] = pm(£k1+(€fl)k2+...+ké).

Another type of rings that will come up in the latter parts of this thesis is the ring
of the form Fo + ulFg + --- + qu_lFQ with u2° = 0. In other words this ring is the same
as F2[X]/(z2"). Note that this ring is also a finite chain ideal ring. We will also consider
another type of rings of the form Fy + uFy 4+ vFy + uvFy with v? = v? = 0, uv = vu. Note
that this ring is not a finite chain ideal ring, i.e., all its ideals cannot be written in the form

of an inclusion chain.
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A weight w is a function from the ring to the set of non-negative integers. This function is
then extended to the code by letting the weight of a codeword be the sum of the weights of all
the coordinates, i.e., if ¢ = (c1, 2, ..., ¢n) € C, then we let w(c) = w(ecr)+w(c2)+- - Fw(cn).
The most common weight used in coding theory is the Hamming weight, which assigns 0 to
the zero coordinate and 1 to the rest. We will denote it by wn and so we have wy(0) = 0
and wy(z) = 1, for all x # 0. A special weight that has been considered in the works of the
aforementioned authors and also in my earlier works is the Lee weight on Z4, which we will

denote by wr,, and is defined as

0 ifz=0
wy(x) =< 2 ifzx=2

1 otherwise.

A generalization of this weight to the Galois rings is the so-called homogeneous weight,

which we will denote by wpom and is defined as

0 ifz=0
Whom (%) = ¢ pm(E=1) if 0 # x € p" 'GR(p’, m)

(p™ — 1)pl=2m  otherwise.

Suppose that w is a weight function over a ring R, and C is a linear code over R of

length n. Then the w-weight enumerator of C' is the polynomial
Po(z) =Y 2", (1.2)
ceC

In some parts of the thesis we will be interested in the complete weight enumerator of C. To

define that, suppose that R = {ry,re,...,r;} is the whole ring. Then the complete weight

enumerator of C' is denoted by cwec (X1, Xo, ..., Xi) and is defined as
: (©)
cwee (X1, Xa, ., Xp) =y [ X (1.3)
ceCi=1

where n,, (¢) is the number of coordinates in ¢ that are equal to ;. Note that the complete



4
weight enumerator is a homogeneous polynomial of total degree n in k = |R| variables.

—1
A Gray map over Z . is a map from ZZZ to Fp?  that is distance preserving where we

P
0
take the homogeneous weight in Z7, and the Hamming weight in F,? ", This definition is
extended to the Galois rings as well.
For a binary code C of length n, a permutation 7 € S,, acts on a codeword ¢ =

(c1,¢2,...,¢p) as

T(E) = (CT(l)7 Cr(2)s--- 7C7-(n))'

We say that a code C' is invariant under a permutation 7 if 7(¢) € C for all ¢ € C. For a
permutation subgroup H < S, we say that C' is invariant under the permutation group H

if C is invariant under 7 for all 7 € H.

1.1 History

The main work that forms a basis of inspiration and a basic tool for the work done in
Chapter 2 about the weights of codes modulo prime powers was done by Wilson in 2003 in
[1]. His main theorem in this work was about the weights modulo p® of linear codes and

contains the following:

Theorem 1.1. (Wilson, [1]) Let G be a group of order p*, p prime, let C be a subgroup
of G" =G x --- x G, and let A be a coset of C in G™. Suppose |A| = |C| = pF. Let pu be a
mapping from G into integers and define for a = (ai,...,an) € G", p(@) = >_°  p(a;). If
k> s((m(p—1) +1)p~t — 1), then for any integer t, the number N of solutions @ € A to

the equation p(a) =t (mod p°) is divisible by p™.

He also proved the following theorem in the same work that forms a basis in proving

that my results in Chapter 2 are best possible:

Theorem 1.2. (Wilson, [1]) Let ¢ be an integer with ¢ =1 (mod p) where p is a prime.
Then

pe—1
(ca — 1)@=V = (L= N g0 (mod p™, a?” — 1)
7=0

for all positive integers m.
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Noting that the coefficients of f(x)* are linear combinations of the coefficients of f(z)*1,

where f(x) is a polynomial with integer coefficients, we get the following corollary to The-

orem 1.2, which will be useful in our calculations:

Corollary 1.3. Suppose p is a prime and c is an integer with ¢ =1 (mod p). If
(cx — 1) = Ag+ Ayx+ ... Ape_12P"™1 (mod 27" — 1),

then

min{yp(Aj)

' ke — pefl
oo}

(p—1)pet
where vp(Aj) is the p-adic valuation of A;, namely, the highest power of p that divides A;.

While Wilson worked over general group codes with a generic weight function, Vera
Pless obtained the following result about the Hamming weight distributions of binary codes

modulo 4 in [3]:

Theorem 1.4. (Pless, [3]) Let C be a binary [n,k]-code with odd weight vectors. Let
a,b,c,d denote the number of codewords in C that have weights congruent to 0,2,3,1 re-
spectively. Ifa =b=c=d =22, then CNC" is singly-even. k—52 < s < k—2. In all other
cases C N C* is doubly-even and we have the following possibilities where % <s<k-2:
1) a=b=22 c=22425 q=2F2525 [fs=k—2 CNCt consists of all the
doubly even vectors in C'.
2) a=2F"242% in case of the minus sign we take s < k —3. b= 282325 and the
following three cases:

(i) c=b,a=d

(ii) c=a,b=d

(iii) ¢ =d = 2F2

We obtain the following immediate corollary to Theorem 1.4, which is more in context

of what will be done in Chapter 2:

Corollary 1.5. Suppose C' is a k-dimensional binary linear code of length n and suppose

Nc(i,4) denotes the number of codewords in C that have their Hamming weights congruent



to i modulo 4. Then
Ne(i,4) =0 (mod 29), 1=0,1,2,3

where
k-2
4= |

Jurian Simonis, in his work ([4]) in 1994, obtained similar results to those of Pless about
binary codes with Hamming weights.

In their ground-breaking work that was published as [2] in 1994, Hammons, Sloane et
al. introduced the notions of complete weight enumerators, symmetric weight enumerators,
and Lee and Hamming weight enumerators for linear codes over Z4. Suppose that C' is a

linear code over the ring Z4 and let C- be the dual of C' with respect to the Euclidean

inner product modulo 4. Then

ewec(W, XY, Z) = Z Wwnola) xmi(a)yna(a) zns(a) (1.4)
acC

where n;(a) is the number of coordinates in a that are congruent to j modulo 4. They

defined the symmetrized weight enumerator of C, swec(W, X,Y), as
swec(W, X,Y) = cwec (W, X, Y, X). (1.5)
They defined the Lee weight enumerator of C as

Leeq(W, X) = > W2 wr@xvr) = swee(W?, WX, X?) (1.6)
acC

and similarly, the Hamming weight enumerator was defined as

Hame (W, X) = swec(W, X, X). (1.7)
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Then the following analogous MacWilliams identities were obtained:

eweer (W, X, Y, Z) =

1
mcweC(W+X+Y+Z,W+z’X—Y—z’Z,W—X+Y—Z,W—z’X—Y+z’Z), (1.8)

1

sweor (W, X, Y) = ‘C’swec(W—i—QX +Y, W -Y,W-2X+Y), (1.9)
1

Leeqc. (W, X) = mLeec(W—i—X,W—X), (1.10)
1

Hame (W, X) = 1o Hame (W -+ 3X, W = X). (1.11)

Delsarte considered the problem of MacWilliams identities for the Hamming weight
enumerators of abelian group codes in 1973 in his work [5]. Suppose C'is a group code over
G with |G| = ¢. Suppose

HC(W X) — Z Wn—h(E)Xh(E)
ceC

is the Hamming weight enumerator of C' and suppose C* is the dual of C' with respect to
the inner product defined on G by using characters on G. Then we have the MacWilliams
identity for the Hamming weight enumerators of C' and C* as follows:

1

He(W + (¢ — )X, W — X). (1.12)

Considering the Gray map from Z4 to F% that preserves the Lee distance on Zs-codes,
Hammons et al. in their work [2] in 1994 proved the following theorem that inspired some

of the work done in Chapter 5 of this thesis:

Theorem 1.6. The rth order binary Reed-Muller code RM (r,m) of length n = 2™, m > 1,

is the Gray image of a linear code over Z4 forr =0,1,2,m — 1 and m.

They also conjectured that the Reed-Muller codes RM (r, m) with 3 < r < m —2 cannot
be obtained as the Gray images of linear codes over Z4 and they proved the conjecture in
the particular case for »r = m — 2 when m > 5. They linked Z4-linearity with invariance

under certain permutations, which formed the inspiration for the work in Chapter 5.
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1.2 Methods and Summary of the Main Results

In Chapter 2, our main focus will be on homogeneous weights modulo p® of linear codes
over the Galois ring GR(p%,m). 1 basically will prove that the number of codewords in
a linear code over GR(pé,m) that have homogeneous weights in a particular congruence
class modulo p® is divisible by a high power of p. This result will in a sense be similar to
Wilson’s result in [1] and in fact my main tool will be Theorem 1.1. But the difference
in my result will be that the power of p that divides N¢(i,p¢)’s will be higher than those
obtained by Theorem 1.1. In fact, using Theorem 1.2 as a tool, I will prove that the results
that I obtained are best possible. I will first talk about my earlier results, which are mainly
about the Lee weights of the linear codes over Z,. The first result that I obtained was the

following:

Theorem 1.7. Let C be a k-dimensional linear code over Z4, or equivalently let C' be a
linear code over Zy of type (4)¥. Denote by Nc(i,4) the number of codewords in C that

have Lee Weights congruent to © modulo 4. Then
Nec(i,4) =0  (mod 2F71)

fori=0,1, 2, 3.

Then, with a method similar to the proof of Theorem 1.1, I was able to obtain the

following result:

Theorem 1.8. Suppose C is a k-dimensional linear Z4-code. If we denote by Nco(j,2¢) the

number of codewords in C, that have Lee weights congruent to j modulo 2¢, then we have

k72€—2

Nc(5,29)=0 (mod 2l 7= )),  j=o0,1,...,22— 1.

I then extended the result to linear codes over Z, of the general type (4)%1(2)*2 by
using a method that involved looking at the cosets of the even subcode of the code C. The

following result was obtained:

Theorem 1.9. Suppose C is a linear code over Zs of type (4)*1(2)*2. If we denote by
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Nc(j,2¢) the number of codewords in C, that have Lee weights congruent to j modulo 2°,
then we have

Nc(5,29)=0 (mod29),  j=0,1,...,2°—1

where g = 2k1+ ko — 1 ife=1 and

ki + kg — 2672
q = maxy 0, B v E—

fore>2.

Here, |.] is the floor function, i.e., |x| is the greatest integer less than or equal to
x. T also proved, by looking at the trivial block code over Z4, namely (Z4)*!(2Z4)%? as an
example and, using Theorem 1.2, that the results in the previous theorems are best possible.
The coset method used in the proof of Theorem 1.9 proved to be useful in extending the
result to more general rings with a proper extension of the Lee weight defined. Some of the
rings that were used were Zgm, Zym, and finally the Galois ring GR(p®, m). Consequently
the following result was obtained that generalizes all the theorems 1.7-1.9:
Theorem 1.10. Suppose C is a linear code over GR(p*,m) of type
Zm)kl (

(pm R (pU=Dmykz - (pmyke,

then we have

Ngom(j,pe)zo (mod p?), j=0,1,....,p°—1

where

B o | Bt ket kg - pem DM
g = maxq U, (p _ 1)pef(€fl)mfl

and e > (0 —1)m + 1.

Here Ngom (j, p°) denotes the number of codewords in C' that have homogeneous weights
(as defined at the beginning of this chapter) congruent to 7 modulo p¢. Of course, due to
the nature of the homogeneous weight, we don’t need to bother about N¢(j,p¢) when

e < (¢ — 2)m, but there remains the case when (¢ —2)m + 1 < e < (£ — 1)m, which is not
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covered by Theorem 1.10, and for that, we have the following theorem, which is proved by

looking at the particular coset structure:

Theorem 1.11. With C' being the same as in Theorem 1.10, we have

Ng‘)m(j,pe) =0 (mod p®)

where

ki+ ko4 -+ ke — pe(éz)mlJ

r=m(ky+ka+ -+ k1 + k‘ZH‘L (p— 1)pe—(=2)m-1

forall({—=2)m+1<e<({—1)m.

In this case also, we prove that the result in Theorem 1.10 is best possible by looking

at the trivial block code over GR(p’,m) of type
() (U ()
and again using Theorem 1.2.

We also extend the result of Theorem 1.10 to a slightly more general weight than the
homogeneous weight in a way that generalizes the Hamming weight as well. We will in-
troduce the weight and the subsequent result at the end of Chapter 2, together with an
analogous result for the Hamming weight. We will also comment on different possible ways
of generalizing the Lee weight to higher rings.

We will obtain similar results for different kinds of rings that we will introduce in Chapter
4, and so those results will be stated and proved in that chapter.

In Chapter 3, we will talk about the MacWilliams identities for linear codes over rings.
First, inspired by the MacWilliams identities for the complete, symmetrized, Hamming and
Lee weight enumerators of linear Z4-codes that Sloane, Calderbank, et al. came up with
in [2] in the form of equations 1.8-1.11, I wanted to settle down the question of whether
a MacWilliams-like identity exists between the Fuclidean weight enumerators of the dual

codes over Zy. 1T want to recall that the Euclidean weight wg on Z4 is given by wg(0) = 0,
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wg(2) = 22 = 4, wg(1) = wg(3) = 1. After numerous attempts at trying to come up with
a similar equation to those in (1.8)—(1.11), I finally came up with a counter example that

prompted the following little result:

Theorem 1.12. There exist linear codes over Z, whose Euclidean weight enumerators are
the same, but the Fuclidean weight enumerators of the duals are not the same. Hence there
cannot be a MacWilliams-like identity for the Fuclidean weight enumerators of dual codes

over Za.

The counter example itself and the weight enumerators are very big, and we make
special use of (1.9) to calculate the weight enumerators of the duals. This will all be given
in Chapter 3.

After this failed attempt at finding a MacWilliams-like identity for the Euclidean weight
enumerators of linear Z4-codes and seeing how useful MacWilliams identities for the com-
plete weight enumerators can be, I decided to look for MacWilliams identities for the com-
plete weight enumerators of linear codes over rings. In [5], Delsarte looked at abelian
group codes and found MacWilliams identities for the Hamming weight enumerators of
these codes. Using some of his material together with the techniques from [6], I proved the

following theorem for group codes:

Theorem 1.13. Suppose that G = {g1,...,9q} is an abelian group of order q and suppose
it is of the form

G =Ty X Lopy X - - Lo

T

where
m; = p(iilpgiQ . ‘pzik?
for primes p1 > p2 > -+ > pi and for non-negative integers ej; > egj > - = ey,

€11 ,.€21 6k1)th

J=1,2,... k. Suppose £ is a primitive my = (p{"'p5* ...} root of unity over complex
numbers. Suppose that C' is a group code of length n over G, and suppose C* is the dual of
C' with respect to an appropriately defined inner product. Then we have

1 q

q q
cewecs (Wi, Wa, ..., W,) = @CWGC(Z EIIVY; ngz*giWi7 o Zé‘gq*giWi)
i=1 i=1 i=1
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where

gi* hi = gi(1)hi(1) + %gi@)hi@) et %Qi(r)hi(r)-

This turns out to be a generic formula for the MacWilliams identities for the complete
weight enumerators of the group codes. From here, it is very easy to prove Delsarte’s
theorem about the Hamming weight enumerators of group codes. Now, when it comes to
linear codes over rings, there is something to be careful about. While every linear code
over a ring can be viewed as an abelian group code, not every group code can be viewed as a
linear code over a ring. So, while the dual with respect to the above inner product of every
group code is an abelian group code, we can’t use the same inner product for linear codes
over rings, because the dual of a linear code over a ring with respect to this inner product
might not be linear over that ring.

For the rest of Chapter 3, I introduced new inner products for different rings, and using
Theorem 1.13 as a base, I obtained some numerical MacWilliams identities for linear codes
over rings, and in particular for some of them I introduced the notion of symmetrized
weight enumerators as well and found MacWilliams identities for the symmetrized weight

enumerators of these codes. I will state some of the results as corollaries to Theorem 1.13:

Corollary 1.14. Suppose C is a linear Zy,-code of length n and suppose C* is its dual
with respect to the Euclidean inner product modulo m. Then, C* is also a linear code over

th

m- Sduppose, moreover, that & is a primitive m"" root of unity over the complex numbers.

Then if
m—1
ewee(Wo, Wi, ..., Wh—1) = Z H Wini(C)

is the complete weight enumerator of C, we have

m—1 m—1 m—1
ewear (Wo, Wi, ..., W_1) = oevee (oW, > 6w, i),
=0 1=0 1=0

A substantial result that I obtained was for linear codes over the Galois ring GR(p%, m).
I had to introduce an inner product so that the dual of linear codes over the Galois rings

would be linear as well. To this extent, I introduced the following inner product:
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Suppose

T = (x1,22,...,2n), U= (Y1,%2,---,Yn) € GR(p®,m)"

are two vectors, then we define a symmetric function < .,. > from GR(p*, m)" x GR(p’, m)"
to Z,e by letting

< T,y >= Tr(x1y1 + v2y2 + - + Tn¥Yn) (1.13)

where z;y; is the ordinary product in GR(p’, m).
Here, Tr is the trace function over the Galois rings, which is a Z-linear function and
more information will be given on this and Galois rings in Chapter 2. Then, I was able to

conclude the following by Theorem 1.13 as well as a lemma that I will introduce in Chapter

3:

Theorem 1.15. Suppose that GR(p’,m) = {ug,u1, ... s Upem_1 } 18 the Galois ring extension
of Zye, and suppose C' is a linear code over GR(p*,m) of length n and suppose that C* is
the dual of C with respect to the inner product defined above. Then C* is also a linear code

over GR(p,m) of length n and moreover we have

eweer(Wo, Wi, oo, Wom_q) =

p
1 plm_l pém_l pZm_l -
|C|cwec( Y el N7 @ty N @My
1=0 =0 =0

A similar result was obtained for the symmetrized weight enumerators of linear codes
over Galois rings inspired by the homogeneous weight. The corresponding result for the
Hamming weight enumerators was unchanged.

Similar results, together with new inner products, were introduced for the rings Fpm,
and Fom 4 uFom where u? = 0. They will all be mentioned appropriately in Chapter 3.

In Chapter 4, I focus mainly on Gray maps. Starting with the Gray map from Z} to Z3"
that was introduced in [2], I first extended the Gray map to a distance preserving Gray map
from Zg to Z3 where we take the homogeneous distance in Zg and the Hamming distance
in Z3. Using the Weil bound that I took from [7] that gives a bound on the exponential

sums, and the Zg-ary linear trace codes, similar to the one Carlet used in [8], I was able
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to come up with some ternary codes with high minimum distances, comparable to the ones
that Harada and Gulliver obtained in [9]. In particular I obtained as an example a ternary
code with parameters [243, 310, > 126].
I then ventured to generalize the Gray map to Z,x, and I got the following inductive
construction of the Gray map. I proved that it is distance-preserving. I obtained this Gray

map independently of the Gray maps obtained by Ling in [10]. In what follows, G} denotes

k—1

the Gray map from Z,: to Zj

Definition 1.16. We first let

Gi(0) :<Gk—1(0)7 Gi-1(0), ... 7Gk—1(0)>7 (1.14)

and define

Gr(j-p*) =<Gk—1(j D), G 'pk_z)) (1.15)

Now, for 0 <m,j <p—1and for 1 <i < p*2 — 1, we define

Gr((mp+ j)p" 2 +1i) =
(Gk—l (v(mip* 2 +14)), Geor (Y((m 4+ 1)jp" 2 +4)),...,Grr (V(m+p—1)jp" 2 + i))) :

(1.16)

where 7(.) is the map that takes a number to its residue modulo p*~!. Finally for j-pF~—! +

np*~2 for some 0 < j <p—1and 1 <n <p—1, then we define

Gr(j - p" L+ nph=2) =
(Gk_1(7((j +1-0)p" %)), Gt (VG +n- D)), Groa (9((G A+ nlp — 1))19'“‘2))) :
(1.17)
This is the inductive step with G : Z, — Z, being the identity map.
I then proved that the map thus defined is indeed distance-preserving:

Theorem 1.17. The map Gy, defined above in Definition 1.16, is distance-preserving from
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k—1
(Z3, homogeneous distance) to (Z5 ", Hamming distance).

Seeing as how there are different ways of defining the Gray map algebraically, which
give rise to equivalent maps, I then considered the Gray map from a purely combinatorial
perspective. As a result I was able to obtain the Gray map by using Affine geometries. The
information on Affine geometries together with the relevant lemmas with their proofs are
all going to appear in Chapter 4. I refer the reader to Chapter 4 for further information. I
will just give the combinatorial construction that I came up with here:

Suppose that I'g,I'1,...,[k-1_; are the parallel classes of the hyperplanes of AG(p)
(the Affine Geometry of order k over IF)) that don’t contain any of the lines Lo, L1, ..., Lyr-1_;
in the parallel class L. So, each hyperplane in these parallel classes is formed by taking one

element from each column of

N

mll
Il

, _ _ , (1.18)

which is just a labelling of the lines. Suppose, without loss of generality that we have
labelled (1.18) in such a way that there exists a hyperplane corresponding to the labelling
of (0,0,...,0) and that it is in I'g. From now on, when we say the vector that corresponds
to a hyperplane, we will mean the {0,1,...,p — 1}-vector of length p*~! that comes from
the labelling of the elements of the hyperplane. So, now, we are finally ready to describe
the Gray map Gy : Zyx — (Zp)pk_1
We map 0,pF~1, ..., (p— 1)]9]‘3_1 to the vectors of the hyperplanes in I'g bijectively, with the
convention that we map 0 to (0,0,...,0). For 1 <j <p* ' —1, wemap j,p" 1 +4,...,(p—
1)p*~! + j to the vectors of the hyperplanes of I'; bijectively. Note that this is indeed a

map from Z,x to (Zp)pkfl. We prove the main result in the following theorem:

Theorem 1.18. The map G defined as above is indeed a distance-preserving map from

Lok with the homogeneous weight to (Zp)pk_1 with the Hamming weight.

As an application of the Gray maps, I looked at the rings Fo +ulFo and Fom + ulFom that
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were introduced in [13] and [11], respectively. In particular there are several Gray maps
defined from Fom + ulFom where the target field could be Fom or Fy or the ring Fo 4 ulFs.
I proved in particular that the Gray map defined from (Fom + uFam)™ to (Fa + ulF2)™" is
an o 4+ ulFo-linear map and in particular it maps a linear code over Fom + ulFom of type
(22m)k1(2m)k2 {6 a linear code over g + ulFy of type (4)™k1(2)™F2  and moreover this map
is weight preserving where we take the extended Lee weight in Fom + ulFom, which is defined

in section 4.4 and the Lee weight in Fg 4 ulFs.
I was then interested in the weight distributions of linear codes over these rings in the
same context as the work that I did in Chapter 2. With the Lee weight defined in Fo 4 ulFo
to be wr,(0) = 0, wr,(1) = wr,(1+u) = 1,wr,(u) = 2, I was able to prove the following result

with the same methods as in Chapter 2:

Theorem 1.19. Suppose C is a linear code of type (4)%(2)*2 over Fa + uFs. If N5(3,2°)

denotes the number of codewords in C' that have Lee weights congruent to j modulo 2¢, then
NE(j,29)=0 (mod29), j=0,1,...,2° 1

where

k1+k2—26_2
q= S 9e—2

for all e > 2. Moreover,
N&(5,2) =0 (mod 221 FR2=1y 5 =0, 1.

I was also able to prove that this result is best possible. With an analogous definition of
the Lee weight for the ring Fam + uFom taken from [11] and with the tools that I obtained
from the Gray maps, I was able to extend Theorem 1.19 to the ring Fom + uFom, which
gives us a result different than those obtained in Chapter 2. I was also able to prove that
these results are best possible.

The last part of my research that is summarized in Chapter 5 focuses on binary codes

that are invariant under certain permutations and how this relates to being the Gray images
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of some linear codes over some certain rings. The work in this chapter was partly inspired by
a conjecture in [2] in which the authors conjectured that the Reed-Muller codes RM (r, m)
are not Zy-linear for 3 < r < m — 2. With [11], [12], [13], I was first introduced to linear
codes over rings of the form Fy + ulFo and Fom + ulFom. Since binary codes are the Gray
images of linear codes over these rings if and only if they are invariant under the swap map,
which essentially is the permutation group Zo, I considered different permutation groups
that in turn led me to different rings. Some of the results I got in this context are given
below. The proofs of these theorems together with the descriptions of the particular Gray

maps involved are going to be given in Chapter 5:

Theorem 1.20. Suppose C' is a binary linear code of length 4n. Then C' is the Gray image

of a linear code over Fo + ulFy + vFy + uvlFs of length n if and only if C' is Ky4-invariant.
Here, K4 denotes the Klein-4 group.

Theorem 1.21. Suppose C' is a binary linear code of length 4n. Then C is the Gray image

of a linear code over Fy + uFy + u?Fy + u®Fy of length n if and only if C is Zy-invariant.

An interesting application of these theorems was to show the linearity of the Reed-
Muller codes RM (r,m) over these rings. I was able to prove this both by directly finding
the pre-images of the Reed-Muller codes in these rings and also by proving their invariance

under the permutation groups mentioned:

Theorem 1.22. The Reed-Muller code RM (r,m) is Ky-invariant for all 0 < r < m or
equivalently the Reed-Muller code is the image under the Gray map of a linear code over

Fy 4+ uFy + vFy 4+ wvFy of length 22,

Theorem 1.23. The Reed-Muller code RM (r,m) is Zs-invariant or equivalently is the

Gray image of a linear code over Fo + uFy + u?Fy + u3Fs.

The pre-images of the Reed-Muller codes in the rings Fo+uFo, Fo+uFo+u?Fo+u3Fy and
Fy + ulFy +vF9 +uvFy are found in section 5.4. For example, if we define by FRM (r,m—1),
for r =0,1,2,...,m, the linear code over Fy + uF9 that is generated by RM (r — 1,m — 1)

and uRM (r,m — 1), with the conventions that RM(—1,m — 1) = RM(m,m — 1) = 0,
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and if ¢ : (Fy + ulF2)" — F3" is the Gray map, then ¢(FRM (r,m — 1)) = RM(r,m) for
r=0,1,2,....,m.
In section 5.5 I considered the extension Z,x of the permutation groups Zs and Z4 and
tried to determine if the Reed-Muller codes are invariant under this permutation group. It
turned out that in general we won’t have this invariance. The main theorem I proved was

the following:

Theorem 1.24. Suppose 3 < k < m is an integer, then RM (r,m) is invariant under the

permutation group Zor if and only if r =0,r =m orr =m — 1.

I also wanted to consider the ring Fo + ulFy + --- + u2k_1IF2 with a weight function
defined so that we could define a Gray map that would relate to Zyr-invariance. 1 let
Sy = Fo +ulFy +--- + u2k*1F2, and so I defined a Gray map S} — ]F%k” inductively as

follows:

Definition 1.25. Let
a=a+uay +---+ u2k7162k,1 e Sy
be given with @; € Fy for each 7 =0,1,... ,2F — 1. Write @ in the following way:

_ _ k
a:ao+ua1+'--+u2 Aok _1

k—1

ok—1_1 ok—1

= (@ +u*" Tye-1) +u(@ +u? Ggreryr) ot T g 0 T y).

Then we define ¢ (a) as follows:

O (@) =(pr—1(A1(@)) + Pr—1(A2(a)), pp—1(A2(a))) (1.19)

where

2k—1_

A@) =ap+ua, +---+u Yge-1_4 (1.20)

and

Ag(@) = Topr + Uligho1 4y + - +uZ Vg, (1.21)
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Then I was able to prove the following theorem:

Theorem 1.26. Suppose that C is a linear binary code of length 2°n. Then C is invariant
under the permutation group Zer if and only if C' is the image under ¢y, of some linear code

over Sy of length n.
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Chapter 2

Homogeneous Weights Modulo p°©
of Linear Codes over Galois Rings

In this chapter, we will try to obtain results for the weight enumerators of linear codes over
rings, in particular over Galois rings. The main motivation and the tools for the work in
this chapter come from the work done by Wilson in [1]. Our goal is to improve on his results
in the case of Galois ring codes with the homogeneous weights. We recall that his main
results are as follows, which were introduced in Chapter 1 as Theorem 1.1 and Theorem

1.2.

Theorem 2.1. (Wilson, [1]) Let G be a group of order p*, p prime, let C be a subgroup
of G" =G x ---x G, and let A be a coset of C in G™. Suppose |A| = |C| = pF. Let pu be a
mapping from G into integers and define for a = (ai,...,a,) € G", p(@) = > p(a;). If
k> s((m(p—1) +1)p~t — 1), then for any integer t, the number N of solutions @ € A to

the equation p(a) =t (mod p®) is divisible by p™.

Theorem 2.2. (Wilson, [1]) Let ¢ be an integer with ¢ = 1 (mod p) where p is a prime.
Then

pe-1
(cx = )0 E=DEPT = ()t S T (mod 7 a? 1)
7=0

for all positive integers m.

Out of these, Theorem 2.1 is going to be the main tool that we use in proving our main
result; this is also the result upon which we improve. Theorem 2.2 is going to serve as a

main tool in proving that the main result is best possible.
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In the first section, I will mention the early results that are mainly about the linear
codes over Zy4, in section 2, I will give a more detailed introduction about Galois rings,
and in section 3, I will talk about linear codes over Galois rings and the homogeneous
weights. In section 4, I will state and prove the main results about the homogeneous weight
enumerators of linear codes over Galois rings, and in section 5, I will prove that the result
in the main theorem is best possible. In the last section, I will talk about more generalized

weights, the Hamming weights, and other extensions of the Lee weight.

2.1 Early Results

My interest in weight enumerators of linear codes over Galois rings started with the Lee
weight enumerators of linear codes over Z,4 after reading about the work of Sloane, Calder-
bank, et al. in [2]. In view of Wilson’s theorem that I stated above, I wanted to know
the power of 2 that would divide the number of codewords in a linear code over Z4 that
have Lee weights in a particular congruence class modulo 4. Recall from Chapter 1 that the
number of codewords in C' that is in the congruence class ¢ modulo 4 is denoted by N¢(i,4).

Suppose that C is a linear code over Zj4 of type (4)*. Then applying Wilson’s Theorem
2.1, we see that

Ne(i,4)=0 (mod 2270y, i=0,1,2,3. (2.1)

My initial goal was to see whether or not I could improve on this. To this extent, I did
some experiments with randomly generated linear codes over Z,. For example, in one such
experiment, I looked at 500 randomly generated linear Z4-codes of type (4)%, and I looked
at the common divisor of N¢(7,4)’s for i = 0, 1,2, 3. According to (2.1), this common divisor
should be 22 = 4. But, at the end of the experiment, I saw that

in 217 of the codes, the common divisor of N¢(i,4)'s was 32,

in 133 of the codes, the common divisor of N (i,4)'s was 64,

in 15 of the codes, the common divisor of N¢(7,4)'s was 128,

in 134 of the codes, the common divisor of N¢(i,4)'s was 1024,

and in 1 of these codes, the common divisor of N¢(i,4)'s was 2048,
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which made it seem that the best possible result could be much higher than was given by
(2.1). I then conjectured and proved the following theorem, which was the first result I

obtained:

Theorem 2.3. Suppose that C' is a linear code over Z4 of type (4)’“ Then
Ne(i,4) =0 (mod 2F71), i=0,1,2,3,

and this is the best possible result.

The proof involved some elementary counting methods that are not relevant to the rest
of the work here and so it will be omitted here.
I then extended this result to N¢(4,2¢) by imitating the proof of Wilson’s Theorem 2.1,

and also by proving the following lemma:

Lemma 2.4. Let A C Zi be a coset of a subgroup of Zj, with
|A| =227, r <.

Then for any such r, the sum

o 5 -)

(b1,b2,...,b;)EA

is divisible by 277", Here, i1, s, . . . .15 are fived integers with 0 < iy, < 2 with
tig+-+1 =7,

and ¢ denotes the Lee weight in Zy4.
The extended result that I proved was the following:

Theorem 2.5. Suppose that C is a linear code over Z4 of type (4)*, then

Ne(3,29)=0 (mod29), i=0,1,...,2°—1



23

k—2¢72
q= T9e—2 |

where

and this is the best possible result.

After these preliminary results, I finally came up with a method to extend all these
results to linear codes over Zy of type (4)*1(2)*2, and this method proved to be useful in
extending the result to other rings as well. Recall that a linear code over Zg4 is said to be

of type (4)¥1(2)*2 if it is permutationally equivalent to a code with generating matrix

I, A B
G = (2.2)
0 2I, 2C

where A and C are Zs-matrices, and B is a Z4-matrix. The most general result for linear

codes over Z4 was then the following:

Theorem 2.6. Suppose C is a linear code over Zy of type (4)k1(2)*2. If No(i,2°) denotes

the number of codewords in C that have Lee weights congruent to i modulo 2¢, then
Nc(i,2°) =0 (mod 29), 1=0,1,...,2° =1
where

k1 + ko — 2e—2
q = max< 0, =

q=2k +ko—1

for alle > 2 and

fore=1.

This result turns out to be the best possible result and is certainly an improvement
on the result in Theorem 2.1. The method applied in proving this theorem was useful in
extending the result to linear codes over Zgm, Z,m and finally to GR(p’, m). The proof will

be given for the most general case, which is the Galois ring case.
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2.2 Galois Rings

For the rest of this section, p denotes a prime, and £ and m positive integers. We will denote
by Z,e the ring of integers modulo p'. GR(p%,m) will denote the Galois ring extension of
Zyye. The following introduction about Galois rings is taken from [14], [15], [16], which in
turn was taken from [24]:

Let ¢(x) € Ze[r] be a basic irreducible polynomial of degree m that divides Pl 1,
Such a polynomial always exists by Hensel’s lemma. Then, the Galois ring GR(p,m)
is defined as the quotient Z¢[x]/(¢(x)). If my is a positive integer such that mq|m, then
GR(p%,my) is a subring of GR(p%, m). A very important property of Galois rings is that it is
a finite chain ring and it also has a unique maximal ideal that is given by (p) = pGR(p',m).
The quotient field is
~ Fom. (2.3)

All the ideals of GR(p’, m) can be ordered as
{0} = p’GR(®", m) C p" 'GR(p",m) C --- € pGR(p", m) C GR(p*,m). (2.4)

The Abelian group GR*(p%,m) is a direct product of two groups H; and Hy where Hj is
cyclic of order p™ — 1 and Hj is of order p~1™_ Suppose Hy = {1,£,£€2,...,6P"~2}. Then

we introduce a special set called the Teichmuller set as

Tm=H U {0} = {07 1757527 R 7§pm—2}7

which forms a set of coset representatives of GR(p’,m) modulo pGR(p%,m). So, every

element u € GR(p%,m) can be uniquely expressed as

w=1ug+pus + -+ plupy (2.5)

where ug, u1,...,u_1 € Tp,.

We define the Frobenius automorphism 1 : GR(p’,m) — GR(p’,m) such that for
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=1y + pui + - + p~luy_, € GR(p*,m) we have
W(u) = uf+puf + -+ p Ty

Note that 1) is an automorphism of order m. This enables us to introduce the trace operator
on GR(p%,m):

Tr(u) = u + (u) + > (u) + - -+ ™ L (w). (2.6)

Then the trace function Tr, defines a Z,-linear function from GR(p*,m) to Lt .

2.3 Linear Codes over Galois Rings and the Homogeneous

Weight

A linear code C over the Galois ring GR(p’,m) of length n is a GR(p%, m)-submodule of
GR(p’, m)". The following theorem from [17] helps us understand the question of type and

dimension for linear codes over Galois rings:

Theorem 2.7. (Huffman, [17]) A GR(p’,m)-linear code C is permutation-equivalent

to a code with generating matrix of the form

Ikl A1 . . . Ag
0 ply, pB1 . . pBi_1
0 0
G =
0 0 .0 pttn, pttc

where the matrices A;’s, B;’s and so on are matrices over GR(pZ, m) and the columns are

grouped into blocks of size ki, ko, ..., kp. The size of C' is p™*, where

¢

a=Y k(l+1-i).

i=1
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In this case, we say that C' is of type
<p£m)k1 (p(ﬁfl)m)kg o <pm)kg.
We next define the homogeneous weight for linear codes over Galois rings. Before the
particular definition for the Galois rings, we will introduce the general definition of a ho-

mogeneous weight for a ring from [25]:

Definition 2.8. A real valued function w on the finite ring R is called a (left) homogeneous
weight if w(0) = 0 and the following is true:
(H1) For all z,y € R, Rx = Ry implies w(z) = w(y).

(H2) There exists a real number v such that

Z w(y) = v|Rz|, for allz € R\ {0}.
yERx

It turns out that, because of the ideal structure of the Galois rings, the homogeneous
weight for the Galois rings is then the following which is obtained from [18]; some of the

weight structure comes from the conditions (H1) and (H2) from above:

0 ifz=0
Whom () 1= pm—1) if 0 £z € p" 1GR(p*, m)

(p™ — 1)p™=2)  otherwise.

We naturally extend this definition to linear codes by letting, for ¢ = (c1,¢2,...,¢,) €
GR(p*,m),
n
whom(é) = Z whom(ci)'
i=1

At this point we want to make the following remark to connect this weight with the Lee

weight:

Remark 2.9. For p =2, m =1 and £ = 2, we get the Galois ring to be Z4 and in that case,
the definition of wyom coincides with the definition of the Lee weight on Z4-codes. So, in

this sense, we can view the homogeneous weight to be an extension of the Lee weight on
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Zy. At the end of the chapter, we will talk about other possible ways of extending the Lee

weight.

Remark 2.9 brings up the question as to why this particular weight is used for the Galois
rings. The answer comes from [18] in the form of the following theorem which relates the

homogeneous weights to the exponential sums:

Theorem 2.10. (Voloch, [18]) For any = € GR(p’,m) we have

_ 1 .
whom (&) = (p7" = Dp"H = 55 4O
aclU
where U is the group of units in GR(p®,m), Tr is the trace function defined over the Galois

rings from 2.2, and ~y is a primitive p‘th root of unity.

Several authors have used this connection of the homogeneous weights with the expo-
nential sums to get results about linear codes over Galois rings. For some of these we refer
to [8],[15], [18], [19].

We denote by N, gom (J,p°), the number of codewords in C' that have homogeneous weights
congruent to j modulo p®. Finally by v,(k), we will denote the highest power of a prime
p that divides a non-negative integer k, i.e., the p-adic valuation of k, with the convention

that v,(0) = oo.

2.4 The Main Results

In this section, we will state and prove the main results about the homogeneous weights
modulo p° of linear codes over Galois rings.
We introduce our main result for linear codes over GR(pz,m) of this chapter in the

following theorem:

Theorem 2.11. Suppose that C is a linear code over GR(p’, m) of type
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Suppose, also, that Ngom (7,p°) denotes the number of codewords in C' that have homogeneous

weights congruent to j modulo p®, then

Ngom(j,pe)EO (mod p?), j=0,1,...,p°—1

where

maxd 0 ki +ko+---+ ko — pe_(g_l)m_l
= max
! AR

and e > (0 —1)m + 1.

Proof. Before proving the theorem, we note that, the homogeneous weight of every codeword

in C is divisible by p=2™_ and so, we can introduce a new weight function w’ by letting

1
w'(z) = thom(@, z € GR(p*,m). (2.7)

Then we can write this new weight as:

0 ifz=0
w'(x) == ¢ pm if 0 # x € p" '\GR(p', m)

(p™ —1) otherwise.

Now, suppose that N/ (j, p®) denotes the number of codewords in C' that have the w'-weights

congruent to j modulo p®, then, we see that
Ngom(%pe) _ Né(j/p(ﬂ—2)m’pe—(f—2)m)_ (2.8)

So, it is enough to prove the result for N((j,p) first and then we will use (2.8) to extend
it to N&°™(4,p°).
Suppose that the code C has a generating matrix of the form that appears in Theorem

2.7 above, and let

{e1,...,Cry b1, o bgy, oG, T, )

be the rows of the matrix, i.e., the generators of C. So, ¢’s are GR(p’, m)-independent,
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and {pc;, b;|i, j} are independent in pGR(p’,m) and so on and finally

{péil@,p£72gj, N A I ) IR /{:}

are independent in p* " 'GR(p%, m). Let C be the linear code over GR(p’, m) that is generated
by

1

(—1 (—1-  0-2F (97 _ _
{p Cly.--»D  CkyyP b1,...,Dp bk2,...,a1,...,akm}.

Then, we note that C' is a linear code over p'IGR(p!,m) and is (ki + ko + --- + ko)-
dimensional by the type of C'. We also note that, if wy denotes the Hamming weight, then

we have

w'(¢) = p"wn (©), ve e C. (2.9)

But this means that, if Ng(j,pe) denotes the number of codewords in C' that have their

Hamming weights congruent to j modulo p¢, then we have
N§(G,p%) = NSG /o™, p™), (2.10)

for all j =0,p™,...,p°—p™. But note that applying Theorem 2.1 to C with the Hamming

weight gives us

k1+k}2+"‘—|—k‘g—p6_m_lJ

vo(NEG/P™ ™)) Z{ PR

for all j and e > m + 1, putting this into (2.10) gives us

_ e—m—1
ki+ko+-+ki—p J (2.11)

Vp(Né,(j,pe)) Z\‘ (p_ l)pe—m—l

for all j and e > m + 1. Since the result in Theorem 2.1 is actually true for the cosets of

linear codes as well, we see that we actually have

vp(NL, (3, 0)) > (2.12)

a

Vﬁ ko -+ ke —pemlJ
(p— Dpem1
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n

as well, where @ € <pz_1GR(pe, m)) .
Now, by the choice of C, we see that C' can be written as the union of a finite number
of cosets of C. We already have the result for peflGR(pe,m)—cosets of C. So, now let

@ € GR(p’,m)" be any codeword and suppose that we are looking at the coset
A=a+C.

We will apply induction on r, the number of coordinates in @ that are in GR(p,m) \
p"IGR(p",m).

If r = 0, then the result is proved by (2.12).

Now, suppose the result in (2.12) is proven for all cosets that have up to r —1 coordinates
in GR(p*,m) \ p" 'GR(p*,m) and suppose that @ has r such coordinates. Without loss of
generality we might assume that @ starts with such a coordinate, and since w'(x+y) = p"™—1
for all x € GR(p%,m) \ p* 'GR(p’,m) and y € p" " 'GR(p*,m) we can assume that @ starts

with 1. So we can write
A=a+C=10+b+C=10+B

where B =05+ C is a coset of C with b starting with 0 and b having r — 1 coordinates from
GR(p*,m) \peilGR(pg, m). Since

w'(1+p" ) =pm—1
for all z € GR(p’, m) we see that
N, (4,p%) = Ny(3 —p™ + 1,p%), (2.13)
for all j =0,1,...,p% — 1, where B is B with its first coordinate deleted. But notice that

B=b+C
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with C’ denoting, in the same way, C with its first coordinate deleted. Now, we can apply
the induction hypothesis to B because we might still assume that B is of length n by just
adding a zero coordinate to it. Note that, because of the type of the generating matrix that
C has, C s either still (k1+ka+- - -+ky)-dimensional or p™ copies of a (k1 +ko+---+k¢—1)-

dimensional code. So, applying the induction hypothesis and using (2.13), we get

/{71+/€2+"'+k‘g—p6_m_1J

Vp (Ng(j,pe)) > \‘ (p _ 1)pefmfl

or

k1+k2+'”+k4—1—p6_m_1J

e e

But since the latter is greater than or equal to the former whenever e > m + 1, and p is a

prime, we see that, we get

_ e—m—1
ki+ke4---+ki—p J (2.14)

Vp (Ng(j,pe)) Z L (p o 1)pefmfl

for all j and e > m + 1 where A is any coset of C. But since the original code C' is just a
union of a finite number of cosets of C, the result of the theorem now follows easily from

(2.14) and (2.8). O

We used the fact that e > (/—1)m+1 in the latter parts of the proof of the main theorem.

((=2)m hecause of the structure of the homogeneous

Since every weight is divisible by p
weight, we still have to figure out what happens when we have ({ —2)m+1<e < ({—1)m.
For the remaining part of this section, we will let C be a linear code of the same type as
in Theorem 2.11, and C be the same code as was defined in the proof above. We first note

that

Whom (@ +€) = Whom(@)  (mod p°) (2.15)

for all ¢ € C, @ €(GR(p’,m))" when (¢ —2)m + 1 < e < (£ — 1)m. This implies that we

have the following quick corollary for this case:
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Corollary 2.12. With C being the same as in Theorem 2.11, we have
Ngom(j7p€) =0 (HlOd pm(k1+k2+--.+ke))

forall j, and ({ —2)m+1<e < ({—1)m.

It turns out however that we have a better result than Corollary 2.12 and we can give

the result in the following theorem:

Theorem 2.13. Suppose that C is a linear code over GR(p’,m) of type

(pﬁm)kl (p(éfl)m)kg . (pm)kg‘

Then, for ({ —2)m+1<e < (¢ —1)m, we have
NE™(5,p°) =0 (mod p?),  j=0,1,...,p°—1

where

ki+ko+ - +koq— pe—(Z—Z)m—l
(p— 1)(pe~=2m-1) '

Proof. We will again replace whom by w’ and NE™ (4, p¢) by N4 (4, p¢) and when we do that,

q:m(kl—l-kg—i-"'-#kg)-i-\‘

we will have replaced e by e — (¢ — 2)m and so we will assume that 1 < e < m. Suppose
C has the same generators as in the proof of Theorem 2.11, and let C be the same code as

was defined in the proof of the theorem. We know that

C=|J@+0) (2.16)

acsS

where S is the set that is defined as

ke—1

k‘1 ]f2
S :{ Zai@ +Z,8j5j + 4 Z’Ytat | Oéz',ﬁjw--,%}
i=1 j=1 t=1

where

2
a; €{uo +pur + -+ p 2w | uo,ur, .. uz € Ty b,
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B; €{vo+por+ -+ pPve_g | vo, v1,. .. vemg € T},

and so on and

Yt E{’wo ‘ wo € Tm}

where T, is the Teichmuller set defined in Section 2.2.

We see that, by (2.15), we have
NG (j,pf) = pn bt RING (5, pf), 1<e<m. (2.17)

Now, suppose that we introduce a map p on GR(pe,m) that reduces every element in
GR(p*,m) modulo p*~'. Suppose R = pu(GR(p’,m)). Then p(S) becomes a linear code

over R and, furthermore we have

N§(j,p°) = Ny (G/ (0™ = 1), p°) (2.18)

where NE( 9) (i, p°) denotes the number of codewords that are in () with Hamming weights

congruent to ¢ modulo p® and 1 < e < m. The equation (2.18) is true, because

w'(@) = (p" — Dwn(p(@)) (mod p°)

foralla € S and 1 < e < m. Now applying the methods used in the proof of Theorem 2.11,

one can however easily show that

(2.19)

. ki+ko+ - +kpg—pt
VP(NLI:I(S)(Zap )) 2\‘ )

(p—1)pet

foralli =0,1,...,p°—1. Now, the theorem follows from combining (2.8), (2.17),(2.18) and
(2.19). 0
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2.5 The Result in the Main Theorem is Best Possible

One of the differences in the work that we have done in this chapter and the work done by
Wilson in [1] is that we are trying to improve the results to the best possible extent, and in
order to accomplish that, we need to show that the results that we obtained in section 2.4
are best possible. We will first give some preliminaries that will serve as tools for the rest
of the section.

We will first make an observation about the general weight distributions of trivial block
codes over groups. Suppose that G is a finite abelian group. Assume that a weight function
w is defined on the elements of G, and that the weight of a word in G¥ is the sum of the
weight of the coordinates. Let Py(z) denote the weight distribution polynomial of G¥, that
is,

Py(z) = Z Sw(g1)Fw(g2)+--+w(gr)
(91,--.9k)EGF

But then, this is the same as

Pk(z) = Z zw(gl)+w(92)+”'+w(gk)
(g1,--95) EGF

I S ORISRt
glig27"'7gk€G

=( Z 2090y ( Z 20y ( Z 20(90))

g1€G 92€G gk€G

:(Zzw(g))k'

geG

Similarly if G and G5 are two abelian groups with the same weight function w defined on

them, we can write the weight distribution polynomial of the trivial block code C' = G G/&2
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as

Po(z) = Z Lw(g)++w(gr, ) tw(h)+-Fw(hi,)

k k
(915, 9kq P, hk2)6G11G22

N D) PR ) N P CY) BSR  STS)

91€G1 gk1€G1 hi1€G2 thGGQ
DI DR (2.20)
geGy heGa

An obvious inductive argument then gives us the following useful lemma:

Lemma 2.14. Suppose, G1,Ga,...,G, are finite abelian groups with a weight function w

defined on them and suppose

C=GnGh ... gk

is the trivial block code. If Po(z) denotes the weight enumerator of C, we have

Po(z) =[ Y 2v@]FL[ ST e®yhe 5T )

geGy heGa se€Gr

The next observation will be a sort of modification on Theorem 2.2 in the form of the

following corollary:

Corollary 2.15. Suppose
pE=Dmk b1 pe
(I+ -1z ) =Ao+ Az + Ape (mod zP — 1),

then

k— pe—(Z—l)m—l
(p _ 1)pe—(€—1)m—1J

min{up(Ai)‘i =0,1,...,p° — 1} _{
fore> ({—1)m+ 1.

Proof. Note that, in the equation above, A; = 0 when i # 0 (mod p(é_l)m). So, we can

make the substitution of y = 27""™ . Then the above equation would turn into

e—(L—1)m_1 e—(L—1)m

k
(1+(p_ ]‘)y) = BO+B1y+"'+Bpef(271)m_1yp

(mod y* —1) (2.21)
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with

min{yp(Ai)‘i =0,1,...,p° — 1} = min{yp(Bj)\j =0,1,...,p (= Dm 1}.
Now, the result follows by applying Theorem 2.2 directly to (2.21).
O

After these initial observations, we are ready to prove that the result in the main theorem

proved in the previous section is best possible.

Theorem 2.16. Let

k k _ k
C :(GR(pZ,m)) 1><(pGR(pZ,m)) X x(pe 1GR(pé,m)) ¢ (2.22)
be the trivial block code over GR(p’,m) of type
(pfm)kl (p(éfl)m)kg o (pm)kg.
Then
min I/(Nhom(’ e))‘,_01 e 1\ _ /€1+k2+...+kz_pef(€71)mfl (223)
p\LNe P J=4YL4...5Dp - (p_ 1)pef(£fl)mfl )

forall e > (£ — 1)m + 1 except in the case when e =€,m =1,p=2ky # 0 and ki + ko +

ot kg > 1

Proof. Let, Po(z) be the homogeneous weight distribution of C'. Then by Lemma 2.14, we

see that

k1
Po(z) = [1 + (pém . pm)z(pm_l)p@,z)m + M- l)zp(znm]

ko kﬁ
|:1 + (p(g_l)m _ pm)z(pm_l)p(Z—Q)m + (pm . 1)ZP(Z—1)m:| ‘‘‘‘ |:1 + (pm . 1)Zp(l—1)m
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Now, notice that we can write, by binomial expansions,

Po(z) =1+ (p" = 1)22" "

k1+ko+-+ke
] -

m m (e-pym | 1R R
+p" P |1+ (p" —1)2P

... (2.25)

(—1)m k1+ko+-+kp—2
P>y [1 + (p™ = 1)z ]

where F; are polynomials with integer coefficients. But now by Corollary 2.15, we know
that the coefficients of

(1+@" -

modulo 2P — 1 are strictly divisible by p? where

kL — pe—(ﬂ—l)m—l
‘= hp — H)m_lJ. (2.26)

But now, looking at (2.25), since we have

. Vcl that-thke—j— pe(“)mlJ Vcl kg4 kg —pem DM
Jm+ >

(p — 1)p6—(f—1)m—1 (p - 1)p6—(5—1)m—1 J (227)

for all j > 1 and for all p and e > (£ — 1)m + 1 except when p =2,m =1,e = ¢, we get

kit ko + o+ ke _pe—w—l)m—lJ}

min{yp(Ngom(j,pe)) j=0,1,....p°— 1} = maX{O, { (p— )pe—DmT

(2.28)

in this case. ]

What Theorem 2.16 accomplishes is that it proves that the result in Theorem 2.11 is
best possible in all the cases except possibly in the case when e = ¢, p =2,m = 1.
To see that the result in Theorem 2.13 is best possible, i.e., the case when ({—2)m+1 <

e < (¢ —1)m, we look at (2.24), and we see that

PC(Z) = pm(k1+k2+---+ke) (1 + (p(ffl)m . 1)Z(pm,1)p(e—2)m)kl "

cx (14 (p™ = 1)2(1””1*1)27(272)”1)kl’1 (mod 2P° —1).
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But now, applying Corollary 2.15 in the same way we applied it above we can easily see

that if

Po(z) fpm ket = Py g Pz 4o 4 Bpe_y2” 71 (mod 27 — 1), (2.29)
then

e R e

which means that the result in Theorem 2.13 is best possible. So the only case we haven’t

looked at so far is the case when e =4, m=1,p=2,ky#0,and k1 +---+ kp_1 > 1.

The case when e=/p=2,m=1,k;#0, and k1 +---+ ky_1 > 1:
In this case, we are in the ring Z,.. Let’s first show that the trivial block code doesn’t work

in this case:

Lemma 2.17. Ife=4{k; #0, and k1 +--- + ky_1 > 1, then
C = (L) x (2Z9e)F2 x - x (2571 Zge )™

doesn’t give us the best result for Theorem 2.11.

Proof. 1f kg # 0, then we can write
C=C0UC2?

where

C1 = (Zye)¥ X (2Zg0)F2 x -+ x (2571 Zge )P

But then we have

NE™(6,2°) = NgT™ (1, 2°) + NE™ (i — 271, 2°) = Ngo™ (3,271, (2.30)
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However, by Theorem 2.13, we have

NE™(3,25) = NE™ (3,271 = 0 (mod 22k Thatothe-n)the=2)

(2.31)
But, since when k; + ko + -+ + ky—1 > 1, we have
2k1 + ket 4 ko) Fhke—2>k1 + ko + -+ ke — 1,
we see that in this case we don’t get the best possible result. O

So, how do we solve this problem? We will just make a slight modification. In this case,
we will take

C = (Z2£)k1 « (2222)192 U, (2@72Z2£)k‘¢,1 % Cy

where Cy is a 27 Zqye-linear code generated by the generators

(Okyy -+ 08, ,,271,0,0,...,0,271), (Oky, .., Op,,, 0,2571,0, ..., 0,270,

ey

Oy, - -+, 08,,,0,0,...,0,271 2671),

Basically, we add another coordinate that is 2¢~! to the end of the usual generator that is

2£_leke. It is easy to observe that

Whom (@) =0 (mod 2°),  Vee . (2.32)

This means that if Po(z) denotes the Homogeneous weight distribution of C' modulo 22 1,
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then we have

2271

Po(z) = 28142 420 —2)22 )" x

ko k‘éfl

x(1+ 27 p e 2)z2€72) X oex (14 274 222272)

k1 kg,1
2ke (1 . 22:2[—2 + 222—1) + 2e22€—2:| NI |:(1 . 2222—2 + Z2€—1) + 4222—2

= 9k (1 9277 + 225_1)k1+m+k€‘1 4+ 4. 2k‘B1(z) (1 — 9,277 + ZQZ_I)k1+"'+k€_1_1 +

4220 By(2) (1 — 2277 4 2 Ytttk =2 (2.33)

where B;(z) are polynomials with integer coefficients. But, we know, from Corollary 2.15
that the coefficients of

2@—2

(1—2227" 422 o= 22

2k—1

modulo 22° — 1 are strictly divisible by . But, since

2+ (kithket+ - thkea—j—1)>kit+ket+-+ke1—1
for all positive j, we see that (2.33) gives us
min{ug(Ngom(z',%)) i=0,1,...,2" - 1} =k 4+ ko4 -+ k-1, (2.34)

which means that the result of Theorem 2.11 is best possible for the case when p =2, m =1
and e = ¢ as well.

We can summarize all we have done so far in this section in the following theorem:

Theorem 2.18. The results in Theorem 2.11 and Theorem 2.13 that we obtained in Section

2.4 are best possible in all the cases.

2.6 Concluding Remarks and Questions

The first observation that we make is that the result we obtained in the form of Theorem
2.11 and Theorem 2.13 is indeed a generalization of the result that we obtained earlier for the

Lee weights of linear codes over Z4 in the form of Theorem 2.6 by letting { = 2,m = 1,p = 2.
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The results we obtained in Section 2.4 don’t however generalize the case of the Hamming
weight. In fact by applying the same methods that we applied in the proof of Theorem 2.11,
we can extend these results to a slightly more generalized weight than the homogeneous

weight. To this end, we will introduce the following weight for GR(p®, m) :

0 ifzxz=0
w(z) =19 dy if0#xcp~'GR(®',m),

do otherwise.

We will introduce the restriction that v,(d2) < v,(dy). It is obvious that this weight easily
generalizes the homogeneous weight. But, even more interesting is that this weight gener-
alizes the Hamming weight for Galois ring codes as well, whereas the original homogeneous
weight didn’t. We can then extend the results we obtained in Section 2.4 for the homoge-

neous weight enumerators of linear codes over Galois rings to the newly defined w-weight:

Theorem 2.19. Suppose C is a linear code over GR(p*,m) of type

(ks (pUmtmykz - (pmyke,

and suppose that N§(j,p°) denotes the number of codewords in C that have w-weights

congruent to j modulo p¢. Then we have

NE&(G,p°) =0 (mod p?), j=0,1,...,p° =1

where

_ 0 k1 —I—kz—l-"'-f—kg—pe_l’p(dl)_l
q =— max 5 (p o 1)pe—up(d1)—1

for all e > vy(di) + 1, and

ki +ko+ -+ key — pe_yp(dQ)_lJ }

q=m(ky+ -+ ko) + maX{O, { (p = D@1

for all vp(d2) +1 < e < v,(dy). Moreover, the result above is best possible.
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As we said above, this new weight does generalize the Hamming weights for binary codes
to the codes over Galois rings, so we will give the particular result about the Hamming

weight case:

Corollary 2.20. Suppose C is a linear code over GR(p*,m) of type

(pém)kl (p(f—l)m)kg o (pm)kg’

and suppose that Ng(j,pe) denotes the number of codewords in C' that have Hamming

weights congruent to j modulo p®. Then we have

NEG,p?) =0 (modp?),  j=0,1,...,p°—1

where

q—max{O Lk1+k2+---+k@—p61J}
’ (p_l)pe—l

for alle > 1.

Note that this is a generalization of Corollary 1.5 that was a particular result of Pless

about the Hamming weights modulo 4 of binary linear codes.

Comparing with the result in [1]:
As we stated at the beginning of the chapter, we want to improve on the result that Wilson
obtained in [1], in particular Theorem 2.1. A good way of understanding the extent of
the improvement that we have gotten would be to compare the power of p that divides
N(}}"m (7,p°)’s by using Theorem 2.1, which was Wilson’s result, and by using Theorem 2.11,
which is our result:

Suppose that C'is a linear code over GR(p’, m) of type

()R )R,

Then applying Wilson’s Theorem 2.11 directly to the code C with the homogeneous weights,
we see that

Ngom(j,pe) =0 (mod p?)
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where
i+ S ke + 4 Zkeoy + Fhe —pot
qlz{l ¢ "2 “_} (i p J (2.35)
(p—1)p°
whereas if we apply our result of Theorem 2.11 we see that
NE™(j,p°) =0 (mod p®)
where
ki + ko4 o 4k — pem (DML
g = | LT st (2.36)
(p = 1)(pe- (= Dm=1)

Comparing g1 and g, and noting that ¢o is roughly plt=m

times g1, we see that our result
is a significant improvement to Wilson’s in the particular case of homogeneous weights of
linear codes over Galois rings when the type of the code is known. The reason for this
improvement is because Wilson uses only the size of the code, whereas in our case we are
using the type of the code, which obviously gives more information about the code than

just the size. At this point, we want to make the following remark about how to find the

type of a linear code:

Remark 2.21. We know that a linear code over a finite field is a vector space for which we
could talk about the notion of the dimension. In our works so far, we have focused instead
on linear codes over rings. A linear code over a ring R is an R-submodule of R". But
this submodule doesn’t have to be a free module, so we cannot talk about a dimension,
but instead we talk about the type of the linear code. As an example of how to find the
type of a code, we will look at a linear code over Z,m. So, suppose that C is a linear code
over Zym. Then C will be of type (p™)kt(p™~1)F2 ... (p)¥n for some non-negative integers
ki,ka, ..., kn. Given the code C, we want to find ki, ko, ..., ky. Our algorithm is going to
be a step-by-step process in which we will obtain the numbers k1, ko, . .., k,, in order.

(1) Let C; = p™ 1C. Then Cj is a linear code over {0,p™ L ... (p — 1)p™ !} of type
(p)¥1. So, the size of C; will directly give us the exponent k.

(2) Let Cy = p™~2C. Then Cy is a linear code over {0,p™ 2,... p™ — p™ 2} of type
(p?)*1(p)k2. So, we have

C] = pithe,
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Since we already know k1, we can find ko by just looking at the size of Cs.
It is obvious that continuing with this algorithm we will find the exact type of C after

a finite number of steps.

An interesting thing to observe is that when we compare Corollary 2.20, which is our
result for the Hamming weights, and Wilson’s result of Theorem 2.1, which is about any
weight function, we see that we get very similar results. In fact, comparing ¢; of (2.34)
with ¢ of Corollary 2.20, we see that ¢; and ¢ are very close, in particular, if the code is of
type (pfm)k, then both results are the same. This brings the question to mind whether the
Hamming weight is the worst weight function in the sense of the work done in this chapter.

k_ we see that Hamming weight is clearly the worst

Certainly, when the code is of type (p“™)
weight because the result in Corollary 2.20 is best possible whereas the result in Theorem

2.1 is not.

Other Generalizations of the Lee Weight

As we saw above, the homogeneous weight defined for the Galois rings is in fact a general-
ization of the Lee weight defined on Z4-codes. This however is not the only way to extend
the Lee weight to higher rings. In fact, a more natural way to extend the Lee weight to the
ring Zom for example would be to consider the Lee weight for Z4 to be the circular distance

to 0, in that case a Lee extension to Zom would be as follows:

x if ¢ <2m—1
Wree(T) 1=

2™ — x  otherwise.
In fact, Carlet, in his work [8], did consider this weight as an extension of the Lee weight,
but then dismissed it in favor of the homogeneous weight because it didn’t turn out to give
interesting results. I guess that a strong reason why many authors favored the homogenous
weight as the extension was because of its strong relation to the exponential sums (viz.
Theorem 2.9) and because of the extensive literature on exponential sums. So, a good
question would be whether we could get interesting results in the sense of weights modulo
prime powers for these other extensions. A good way to look at this question would be to

see how close to Hamming weight they come; so the closer they are to the Hamming weight,
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the worse the results obtained would be.

Another way to extend the Lee weight would be to look at the ideals and assign a weight
to different ideals. So we could define a weight function w on GR(p’,m) and then we could
say, let w(0) = 0 and w(z) = d; if x € P 'GR(p’, m) \ pP'GR(p*,m) for i = 1,2,...,£. In
this case we would have exactly ¢ non-zero weights, in fact this would even generalize the
homogeneous weight case. The methods that we applied in proving Theorem 2.11 however
don’t immediately apply to this kind of weight structure. So, we can’t say how good a

result we could obtain in this case.
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Chapter 3

MacWilliams Identities for Linear
Codes over Rings

The MacWilliams identity was first obtained as an identity that related the Hamming weight
enumerator of a linear code over a finite field with that of its dual’s. The following theorem

from [6] and [20] illustrates this point:

Theorem 3.1. (MacWilliams, [6], [20]) Let C be an [n,k]-code over F, with weight

enumerator A(z) and let B(z) be the weight enumerator of C-. Then

B(z)=qF1+ (¢ - 1)z)nA<1+1(q__Z1)z>. (3.1)

As the interest in codes over rings increased together with the notion of new weights, a
natural question to ask was whether or not there existed analogues of Theorem 3.1 for the
weight enumerators of these codes. The first step towards this goal was established in [2] by
Sloane, Calderbank, et al. in which they introduced the notion of MacWilliams identities
for the different weight enumerators of linear codes over Z4. Of interest among these were
the notion of a complete weight enumerator and symmetrized weight enumerator for linear
codes over Z4. With the help of MacWilliams identities for these weight enumerators, they
were able to establish MacWilliams identities for the Hamming and Lee weight enumerators
of linear codes over Zy.

Delsarte also considered the problem of MacWilliams identities in his work [5]; in his
case he considered the general abelian group codes and he obtained MacWilliams identities

for the Hamming weight enumerators of these codes.
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In section 1, we will reiterate the results of Sloane, Calderbank, et al. about the
MacWilliams identities for different weight enumerators of linear codes over Z4, and then
we will resolve the question of existence of such an identity for the Euclidean weight enu-
merators of linear codes over Z4 by exhibiting a counter example.

In section 2, we will consider the general abelian group codes and we will prove a theorem
about the MacWilliams identities for the complete weight enumerators of these codes.

In section 3, we will consider several rings and we will introduce new inner products that
will give us linear codes as duals and that will also give us computational tools to obtain
MacWilliams identities for the complete weight enumerators of linear codes over these rings.

In section 4, we will conclude with some remarks and some applications of these identi-

ties.

3.1 MacWi.illiams Identities for Euclidean Weight Enumera-

tors of Z,-codes

We first recall the results of Sloane, Calderbank, et al. from [2], about the MacWilliams
identities for linear codes over Z4. Suppose C'is a linear code over Z4 and suppose that C*

is the dual of C with respect to the Fuclidean inner product modulo 4. Then

cwec(W, X,Y, Z) =) wrol@ xm@)yna(a) zna(a) (3.2)
aeC

where n;(a) is the number of coordinates in a that are congruent to j modulo 4. They

defined the symmetrized weight enumerator of C, swec(W, X,Y) as
swec(W, X, Y) = cwec(W, X, Y, X). (3.3)
They defined the Lee Weight enumerator of C as

Leeq(W, X) =Y W2r—wn@ xle) = gweo (W2, WX, X?) (3.4)
aeC
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and similarly, the Hamming weight enumerator was defined as
Hame (W, X) = sweo(W, X, X). (3.5)
Then the following analogous MacWilliams identities were obtained:

eweer (W, X, Y, Z) =

1
@cweC(W+X+Y+Z,W+iX—Y—z’Z,W—X—I—Y—Z,W—iX—Y—H'Z), (3.6)

1
swecl (W, X, Y) = @sweC(W+2X+Y,W—Y,W—2X+Y), (3.7)
1
Leeqc. (W, X) = @LeeC(W +X, W —-X), (3.8)
1
Hamq (W, X) = WHamc(W +3X, W - X). (3.9)

Now, our aim is to see whether there is a similar MacWilliams identity like the ones above
for the Euclidean weight enumerators of linear codes over Z4. Recall that the FEuclidean

weight wg on Zy4 is defined as
wi(0) = 0, wp(1) = we(3) = 1, w(2) = 2* = 4.
We can then define the Euclidean weight enumerator of a linear code C' over Z,4 as

Euco(W, X) =Y win—wsl@ xve©), (3.10)
ceC

Considering that

wg(¢) = ny(¢) + n3(¢) + 4na(2)

and that

n = no(E) + nl(é) + nz(é) + ng(é),
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putting these in (3.10) and using (3.2) and (3.3) we see that
Euco (W, X) = ewec(WH, W3X, X1 W3X) = swea(WH, W3X, X1). (3.11)

Since MacWilliams identities exist for both the Hamming and the Lee weight enumer-
ators of linear codes over Z4 in the form of (3.8) and (3.9), we naturally ask the same
question for the Euclidean weight enumerators of linear codes over Z,4. It turns out that no
such identity exists for the Euclidean weight enumerators as we have a counter example.

We will state the result in the form of the following theorem:

Theorem 3.2. There exist linear codes Cy and Cy over Z4 such that
Euce, (2) = Euce, (2)

but

Euceu (2) # Bucgy (2).

Proof. The proof will be in the form of exhibiting an example of two such codes and calcu-

lating their Fuclidean weight enumerators. We first note however that

Euce(z) = Zz“’E(E) = swec(1, 2, 2%). (3.12)
ceC

Let

Cy =< (102110010232323310103132303130), (012122330101323213010130121210) >
(3.13)

and

Cy =< (102112230032101332323330123112), (010122130103123231030110123232) >
(3.14)

be two linear codes over Z4 of length 30, of size 42 = 16. We first calculate their Euclidean
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weight enumerators, and we see that

Euce, (2) = 14 2257 4 224 422 42245 12,48 1 2,49 4 552 4 ;04 4 08 (3.15)
and
Euce, (z) = 14 2237 4 224 4 224 42295 12298 1 2,19 4 552 4 ;04 4 68 (3.16)
so that
Euce, (2) = Eucg, (2). (3.17)

Now, we need to calculate Euc, L (2) and Euc,, a (). But, notice that Cj- and Cy are two
linear codes over Zy4 of size 428 = 72057594037927936 > 7 x 10'6. Since these dual codes are
so big in size, calculating their Euclidean weight enumerators present practical problems.
We will calculate the Euclidean weight enumerators of the duals with a very simple method
thanks to the identities we have for the symmetrized weight enumerators and the connection
of the Euclidean weight enumerators with the symmetrized weight enumerators. So, by
using (3.12) and (3.7), we see that

1
Eucou (2) = swepr (1,2, 2%) = @swec(l + 224241 - 24122+ 2%). (3.18)

So in order to calculate Eucq 1 (2)’s, all we need to do is to calculate the swec, (W, X,Y)’s,
which is simple since |C;| = 16, and then we will replace W by 1+2z+ 2%, X by 1 —2* and
Y by 1 — 2z + 2% in swec, (W, X,Y) and divide the whole thing by 16.
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Doing the replacement that we discussed above we see that

Euce (2) = 1+ 42 + 862 + 20362 + 276272 + 2847822° + 23777082° + 1634758827 +
943422622% 4 46488016427 + 198021804020 + 7368253436211 4 2420853007412+
7101242976822 + 1880465456362 + 4546859315642'° 4+ 1015805935511 216+
21201464612482'7 + 41703427048542'% + 7780239010072z + 138388536315412%0+
235794371006382%! + 386314346849682%2 + 610378824940722%3 + 932595103415162%4+
13814169252277622° 4 19875442357526422¢ + 2781711484772882%7 + 3793409799210122% +
5048589071256322%% +6564290660996722°0 4 83451346155149623" + 1038460479154001 232 4
1266305669090204234+1514089055750494234 +17759904821377882354+-2045239387733099236 +
23141710012681502%7+25738470809812202~84-281487160324369223+30285776131831302*0+
32073454208560442414+-3344750078506968 242 4-34357026022803722434+-3476715824359798 244 +
34672590694199762%° +3409846523456236204-3307239598474308217 +-3162604975644207 2%+
20833498820698002174-27788176346393262°°4-25545514621079202°1 +-23160653036090692°2 +
20736823167874302°2418353916619203682°4416030957159519522°5+13812785571227922°0 +
11773007120380322°" +9922503605118722°% 4-8243789917162082%" + 6766044144603122°0+
5503502720538242%1 + 4418014817454242%% 4 349419477646384253 4 274044218802987 254 +
2128401185479002% + 1624673519709142% + 122685261377580257 + 92199704580569255+
68096376678122259 + 4943722156773227° + 358809371639962"1 + 257333974408422"%+
1796174384633227 + 125240297110802™ + 8747955634596z + 5895928830182276+
39189597426802"" + 2661753922684z + 1748524880884~ + 110148783418920+
72058735044825 + 4666803252182%2 + 2789460844402 + 172657254231 254+
1112689080902 + 6382473802420 + 3645137784857 + 2343735290825 + 1321934408825+
67693167682 + 42869592722 + 24711786762%% 4 111411206427 + 66561704824+
41058554427 + 16523750727 4 8580893227 + 590992422 + 222726762 + 89685292100+
72006262191 + 270918021%% + 7173642103 + 721254219 + 297140219 + 38536216+
550842107 + 284902198 4 14322199 4 28682110 4 2076211+

109212 + 1042113 + 1062114 4 72116 2,117,
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Similarly we get,

Eucey = 1+ 4z +902% + 20362° + 275472" + 2847742° + 23782922+
1634771627 + 943409822° + 46487953227 + 1980211720210 + 736825305221+
2420857309822 4+ 7101244331223 + 1880464885722 + 45468589777221°+
101580570997521¢ 4 21201464011122'7 + 41703434960262'% + 7780239374616+
1383885364578122° + 2357943696907022" + 3863143115765622% 4+ 610378807929522%% +
93259514033292224 4 13814169467853622° + 1987544312371522%0 + 278171152782952227+
37934096423880422% + 5048588977899362%° 4 6564290596033042°0 + 83451345604647223" 4
1038460512419921 232 4+12663056919022522%3 +15140890486514102344+17759904821941082° +
20452393480266192304-23141709664104622°74+257384710537126023%4+2814871615150124239+
3028577634068122204-32073454524068522414+-3344750055627240 242 4+-3435702583431476 243 +
34767158352209022 +34672590603200002°4-3409846521506228216 +-33072396079135402% "+
31626049468303832°+298334986461643224°4-27788176586023862704+-25545514716147362°1 +
23160653304152772°24-2073682346995270~°241835391640368656 2°+16030956970903842°5 +
1381278537374440256 +1177300684658992257 +9922503654375682°° +82437900352548825%+
6766044299309682% + 5503502908863682%1 + 441801487337328252 4 34941947778155225% +
2740442087969712% 4+ 2128401074701082% + 1624673458776782%6 4 122685255940140257 +
921997077216412% + 6809638162168225° 4 4943722496458827" + 358809413837722"1 +
2573339812257027 + 179617429359242" 4 125240283508082"* + 8747953909540z +
589592790127027% + 391895923396827" + 2661754174884~ + 1748525297652+
11014881073412%0 4 7205877204082% + 4666804278222%% + 2789460516722+
1726572354472%4 +1112688450022% + 6382468424820 +-36451358136257 4 2343734906825 +
132193342162% + 67693100482 + 428696208821 4 24711797962%% + 11141120482%+
6656221842%* + 4105896402”° + 1652387872 + 8581150827 4+ 5910013427+
222716522 + 89674892170 + 7199882291 4 27087082102 + 7169802193+
721254204 4 297244210% 4 385842196 4 552122107 + 285702108+

14402199 + 28602119 + 2076211 + 1092112 + 962113 + 1022114 + 72116 4 22117,
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That EUCCIJ_ =+ Euccj is obvious by looking at the coefficient of z? for example. But for

completeness, we will actually calculate the difference:

Eucey — Bucey = 42° — 802" — 82° 4 58420 +128:7 — 12802° — 6322" -

6320219 — 38421 + 4302422 + 13544213 — 5706421 — 3379221% — 225536216 — 60136217+
7911722 4 364544217 + 14240220 — 13156822 — 3527312222 — 1701120223 + 369177622+
215576022 4 766188822¢ 4 4305664227 — 156822082%° — 933569622 — 64963682°°—
5505024231 4 33265920232 + 22812048232 — 709908423* + 5632023° — 397064802%6 —
348576882%7 + 24390040238 + 1190643223 + 2088499224 + 31550808241 — 22879728242 —
188488962 + 108611042** — 909997625 — 19500082 + 94392322%7 — 28813824245 —
1745336821 + 239630602°° + 95068162°1 + 26806208252 + 302078402 — 2155171227 —
188615682°° — 19748352250 — 273790402°7 + 49256962°° + 1180928025 + 15470656250+
1883254425% + 5591904252 + 13516825 — 100060162%* — 1107779225° — 6093236256 —
5437440257 +31410722% +49435602%° + 3396856270 + 421977621 + 681728272 — 910408273 —
13602722 — 1725056270 — 92891227% — 508712277 + 2522002 + 41676827 + 273152250+
36996023 4102604252 — 32768283 — 1878423 — 630882%° — 5377625¢ — 19712257 — 3840258 —
98722% — 672029 4 28162 + 112029 — 1629 + 51362°* + 40962 4 128029 + 2575297+
892278 — 102429 — 10402190 — 7442191 — 4722192 _ 3842103 4 104210% 4+ 4821061

128,107 1 g,108 4 8,109 _ g 110 g 113 4 114

O]

Note that Theorem 3.2 implies that we can’t have a MacWilliams-like identity for the
Euclidean weight enumerators of linear codes over Z4 unlike the Hamming and the Lee

weight enumerators for which we have the identities (3.8) and (3.9).
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3.2 MacW.illiams Identities for Group Codes

In this section, we will consider abelian group codes and we will derive the Macwilliams
identities for the complete weight enumerators and also Hamming weight enumerators of

these codes. We first define an abelian group code:

Definition 3.3. Suppose G is an abelian group of order ¢ > 2 and for an integer n > 1,
we will consider the group G", the direct product of n copies of G. Then an additive code

C of length n over G is just defined to be a subgroup of G™.

A weight function w can be defined on such codes as usual, by assigning to each element
of G a nonnegative integer, and letting the weight of a word be defined as the sum of
the weights of the coordinates. A standard weight function is the Hamming weight, which
assigns 1 to every nonzero element and zero to 0. A weight enumerator polynomial for C

with respect to the weight w is the polynomial

W(z) =Y 2" (3.19)

ceC

Among the weight enumerators, an important one is the complete weight enumerator from

which all the other weight enumerators can be derived:

Definition 3.4. The complete weight enumerator of C' is the polynomial in ¢ variables

ewee (Wi, Wa, ..., Wy) = 3 T wi® (3.20)
ceC gi€G
where G = {g1,92,...,9q} and ngy(¢) denotes the number of occurrences of g; in €.

Suppose now that the group G is of the form

G =Zmy X Ly X -+ X L, (3.21)

with

my | me—1| ... | m.
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In particular, we might assume that

€41 ,€i2

m; = pitps? .. pk (3.22)

with p1 > pa > --- > pj, primes, and ej; > e; > --- > e, > 0forall j =1,2,..., k. We

first define an inner product on G™:

Definition 3.5. Define a symmetric function < .,. >: G" x G" — Z,;,, such that

< (91,925 -+ +59n), (M1, hay oo hy) > = Zgi * hy (3.23)
=1
where
gi % hi = g;(Dhs(1) + %gi@)hi@) o T ()R (). (3.24)

Here g;(j) € Zy,; is the jth coordinate of g; when it is written as an r-tuple in G.

Note that the inner product thus defined is symmetric and bilinear. It is a natural

definition for an inner product, because if ¢ is a primitive m5' root of unity over complex

th

numbers then, £™/™i is a primitive m,;" root of unity and hence a character of Z,,,.

Definition 3.6. Suppose C is an abelian group code over G defined above by (3.21) of
length n. We define the dual C* of C with respect to the inner product defined above in
(3.23) and (3.24) as

C*={zeG"|<ze>=0, Yece C}. (3.25)

We prove the following lemma for the inner product above that will be useful:
Lemma 3.7. Suppose (hy, ho, ..., hy) € G" is fized. If

< (gl,gg,...,gn),(hl,hg,...,hn) >=0

for all (g1,92,---,9n) € G™, then (hi,ha, ..., hy) =0, the zero vector in G™.

Proof. By taking all but one of g;’s to be the zero element in GG, we can reduce this to the
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case n = 1. So, suppose h € G is fixed and that < g,h >= 0 for all g € G. This means that

for all g € G where g = (g(1),...,g(r)) with g(j) € Zy,;. Then take g = (1,0,...,0). We
see that we get h(1) = 0 in Zy,,. Taking g = (0,1,0,...,0) we see that {1h(2) =0 in Zpn,,
which means that n(2) = 0 in Z,,. Similarly it can be shown that h(j) = 0 in Z,,, for

7=1,2,...,7rand so we get h=01in G. [

Remark 3.8. Lemma 3.7 implies that {0}* = G™ and (G™)* = {0}.

To prove a MacWilliams-like identity for the complete weight enumerators of abelian

group codes, we first prove the following lemma:

Lemma 3.9. Suppose H is a nontrivial subgroup of Zy,, of order s > 1 and suppose & is a

primitive mﬁh root of unity. Then we have

Se-
heH
Proof. Suppose 0 # h € H is an element in H of order s. Then

H={0,h,2h,...,(s—1)h}

with sh = m1k for some positive mq.But then we have

51 fh
h _ h

heH
since &5 = gmik = 1. O

We are now ready to prove the following theorem that gives a MacWilliams-like identity

for the complete weight enumerators of abelian group codes:

Theorem 3.10. Suppose that G = {g1,...,9q} is an abelian group of order q and of the

h

form given in (3.21). Suppose that & is a primitive mt® root of unity over complex numbers,
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and let C be a group code of length n over G, and let C* be the dual of C' with respect to
the inner product defined in (3.23) and (3.24). Then we have

cweos (Wi, Wa, ..., W,) e Zgﬂl*gzw 2592*91 Zgﬂq*gz . (3.26)

Proof. The proof uses the same ideas and the same techniques used to prove the original

MacWilliams theorem from [6] and [20]. We will first introduce a function over G™ as

=y H o) (3.27)
veqGn
Summing F'(u)’s over all the codewords of the code C, we obtain
q _
Z F Z Z §<u o> Hanl Z H W/ingi(”) Z £<ﬂ,5>‘ (328)

ueC ueCoveGn veG™ i=1 uel

Now, suppose for fixed v € G", we consider the function
f5:C — Zp,

that takes u € C to < uw,v > modulo m;. Note that fz is a group homomorphism. Now, by

definition of the dual, we have
ker(fz) =C <<u,7>=0 (modm;) Vue C<veC”.

This means the inner sum of (3.28) becomes |C| for all v € C*.
Now, suppose that ¥ is not in C*. This means that ker(fz) # C and so it is a non-trivial
subgroup of C, which means that Im(fy) is a non-trivial subgroup of Z,,, and hence by

Lemma 3.9, the inner sum becomes 0 for any such v € G". This means that

Y F(u) |C|ZHW”~% = |Clewecs (Wi, W, ..., W), (3.29)

ueC veC* =1
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which is equivalent to saying that

CWGC*(WI7W27' ) q ’C| ZF (330)
ueC

Now we need to find what F(u) is. Let §(z,y) denote the Kronecker Delta function, which

takes the value 1 if x = y and 0 for all other values. So

Z £<u ,U> H anl (U

veGn

_ Z (ﬁ fu]*v] H (vpgz)))

(v1,02,...,un)EG™ *j=1 i=1

STI( e
j=1
q ngl( w) 4q . Ngg (@) q . ngq(ﬂ)
(Z EI*IiTY, > '(ZEgQ*gZVVi> ....(Zggq*m;/;/i) )

i=1 i=1
Summing this last product over all the codewords of C, we get the desired result. O

As we said earlier, knowing the complete weight enumerator makes it easier to calculate
all the other weight enumerators. Now, as an application we will obtain the MacWilliams
identity for the Hamming weight enumerators of abelian group codes by using Theorem

3.10, which will be the exact same result that Delsarte obtained in [5].

MacWilliams identity for Hamming weight enumerators
For this section, we will assume G :{ G1,92, - - - gq} to be the abelian group over which the
code is defined and ¢g; = 0 the zero element in the group. We first define the Hamming

weight enumerator for the group code in a similar way that it was defined for Z4-codes:

Ho(W, X) = W@ xwn(@ = 3 " jpmo(©) xma (©F 4, () (3.31)
ceC ceC

where wy is the Hamming weight. In fact, we note that it can be written in terms of the

complete weight enumerator as

Ho(W, X) = cwee(W, X, X, ..., X). (3.32)
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Then using Theorem 3.10, we can relate the Hamming weight enumerator of C' and C*:

HC*(W,X) = CWGC*(VV,X,X,...,X)
1 q g
@cwec(W +(¢-1DHX,W —|—XZ§92*91‘,.."W_'_nggq*gi)_
=2 i—2
(3.33)

At this point we want to introduce the following lemma:

Lemma 3.11. For all j > 1, we have

q

Z £9%9i = 1.

1=2

Proof. For any such fixed j, consider the map f; : G — Zy,, such that f;(¢g;) = gi*g;. Then
f;j is a group homomorphism. By Lemma 3.7, we know that g;*g; =0 forall j =1,2,...,¢
if and only if g; = g1 = 0. So, if j > 1, then we have ker(f;) # G and hence Im(f;) is a

non-trivial subgroup of Z,,,. But then, by Lemma 3.9 we get
q
e o
i=1

for all such j7 > 1. Since gj * g1 = g; * 0 = 0 for all j, we get

q
Zggi*gj:_la ]:27377(]

=2

O]

But using Lemma 3.11 in (3.33), we see that we have easily proved the following corollary
of Theorem 3.10 that gives the MacWilliams identity for the Hamming weight enumerators

of abelian group codes:

Corollary 3.12. Suppose that C' is a group code over G of length n with |G| = q. Let

HC(W, X) — Z W?’L—wH(E)XU)H(E)
ceC
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be the Hamming weight enumerator of C and let C* be the dual of C' with respect to the
inner product defined in (3.23) and (3.24). Then we have the Macwilliams identity for the
Hamming Weight enumerators of C' and C* as follows:

1

Hee (W, X) = i

Hoe(W+ (¢ - 1)X,W - X).

3.3 MacWilliams Identities for Linear Codes over Rings

In this section, we will see some applications of Theorem 3.10, which was proved in the
previous section. In particular, we will focus on linear codes over rings, and we will consider
several rings in this process. We first note that every linear ring-code can be viewed as an
abelian-group code, while not every abelian group code is a ring code.

For example, the code C ={0, (0,1,2,1,3,1),(0,2,0,2,2,2),(0,3,2,3,1,3)} is an abelian
group code over G R(4, m) because C' < GR(4,m)®, but C is not a linear code over GR(4,m),
as for example £ - (0,1,2,1,3,1) is not in C.

So, while the method and the results of Theorem 3.10 will be applied readily, we will
have to make modifications in the form of introducing new inner products so that the dual
with respect to the new inner product of any linear ring-code will also be linear over the
same ring. The inner product defined in (3.23) and (3.24) certainly doesn’t ensure this, as
it only gives the dual as an abelian group code, not as a ring-code. So, for the rest of the
section, we will consider different rings and we will introduce new inner products so that
the duals will be linear over the same ring as well, and we will obtain analogous results for

the complete weight enumerators of these codes:

Linear Z,,-codes

Note that this is exactly the case that was discussed in Section 2.2, with r = 1. So there
is no difference here because linear codes over Z,, are Zp-submodules of Z} , which are
exactly subgroups of Z" . So, Theorem 3.10 and Corollary 3.12 remain the same for linear

codes over Z,.

Linear Codes over GR(p’,m)

For the general introduction about Galois rings we refer to Section 2.2. We will use the
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notations used in that section. We recall that a linear code of length n over GR(pf ,m) is a
submodule of GR(p®, m)".

We start by defining an inner product on GR(p*, m)™:

Definition 3.13. Suppose that

T = (l’l,xQ,--- 7xn)a Y= (yl;y27"' 7yn) S GR(pe,m)n

are two vectors; then we define a symmetric function < .,. > from GR(p, m)" x GR(p*, m)"
to Z,e by letting

<7Z,y >= Tr(z1y1 + z2y2 + - + Tnyn) (3.34)

where x;y; is the ordinary product in GR(p%,m), and Tr is the trace function defined for

Galois rings in Section 2.2.

In order to understand some of the properties of this inner product, we will first prove
some lemmas about the Trace operator, Tr.
We will define f, : Fym — F,m to be the usual Frobenius map defined on finite fields,

which acts as f,(a) = a® for all a € Fpm. Then, it is a well-known fact that the group

G=AL oSy 771

forms the [Fy-automorphism group of F,» as an extension of F,. We define an [F,-linear

function tr on F,m called Trace, so that

m—1

tr(a) = a+ fola) + f2(a) + -+ [ Ya) =a+a’ +a” +-- +aP
This is indeed FF-linear because sP' = s (mod p) for all s € F, and all ¢ > 0. Then we can
prove that tr is onto by the following lemma:

Lemma 3.14. Assume that Fpm is a finite field and that tr : Fpym — ), is the Trace map.

Then tr is non-zero.

Proof. To prove the theorem we note that G = {1, fp,fg, .. .,fﬁ_l} is a distinct set of
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automorphisms of Fym» and so by Lemma 7.5. (Hungerford, [21]), we see that G is linearly
independent. This means however that the map 1+ f, + fg +- 4 f;”_l cannot be the zero

map on F,m, and this means that the Trace map is non-zero. O
Note that the following is an immediate corollary of this lemma:

Corollary 3.15. Assume that Fpm is a finite field and that tr : Fym — F), is the Trace map.

Then tr is onto.

We remember from (2.3) that

GR(p*, m)
pGR(pt,m) 7 (3.35)
and let
T ={0,1,6,€%,...,6"" 7%} (3.36)

be the Teichmuller set defined for the Galois ring GR(p%,m). Let ¥ be the Frobenius map
defined on GR(p’,m) as in Section 2.2 and let Tr be the trace map on the Galois rings, so

that

Tr(u) = u+ ¥(u) + - + ™ (u), (3.37)

which is a Z,-linear function on the Galois ring. Let p : GR(p*,m) — GR(p*,m)/pGR(p*,m)
be the canonical homomorphism. We first note that u acts as reduction modulo p on Z.

We also note that, if 6 = (), then
#(Tm) = {071’0’02’.“’01)7"—2} szm- (338)

Then we prove the following lemma with a method very similar to the one used in [2]:

Lemma 3.16. Suppose, ¥, T'r, p be defined as above, and suppose that f, and tr are the

Frobenius automorphism and the trace map defined on Fpm over Fp,. Then we have
(i)
po=frou
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(ii)

po'Tr =tropu.
Proof. (i) Suppose that ¢ = ug + puy + - -- + p*~luy_ with u; € T,,. First assume that
up = 0. Then p(c) = 0 and so fou(c) = 0. But, note that ¢(c) = puf +p?ub+- - -+p~1uf_,
and so po(c) = 0. So they are equal in this case.

Now suppose that ug = & for some j > 0. Then pu(c) = 67 and hence f, o u(c) = 677,
On the other hand, we see that ¢(c) = &% + pul + -+ + p~1ul | and so poh(c) = %7,
which proves the first part.

(ii) This follows from part (i) easily by noting that Tr = 1 + ¢ + ¢? + --- + ™ and

tr=1+f,+ -+ f" " O

After all these preparations, we are ready to prove the following analogue of Lemma

3.14 for the trace map on Galois rings:
Lemma 3.17. The Trace map Tr : GR(pe,m) — Ly is onto.

Proof. We will restrict ourselves to the Teichmuller set

T = {0,1,6,62,...,¢"" 72}

Now, we know that y(T),,) is the same as Fpm and tr is the usual trace operator on finite

fields, and so by Lemma 3.14, we know that it is non-zero. This means that
pwoTr#0

on Ty, by Lemma 3.16. Now, since Tr takes values in Z,¢ and p acts as reduction modulo
p on Zpe, SO

pwoTr#£0

on T,, means that 3¢/ € T,, such that

Tr(¢) #0 (mod p). (3.39)
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But this means that if Tr(¢/) = s € Zy, then GCD(s,p) = 1 or that s is invertible in Z,.

So, suppose that 7 € Zye is such that rs =1 in Z,¢. But, then since Tr is Z,,-linear, we get
Tr(r-&) =r Te(¢) =rs =1,

which proves that Tr is onto. O

After this introduction about the trace map on Galois rings, we are ready to explore

some properties of the inner product defined in (3.34):

Lemma 3.18. Suppose for fized u € GR(p‘,m)" we have < T > = 0 for all T €

GR(p*,m)". Then @ = 0.

Proof. By taking T € GR(p’,m)" of the form (z,0,...,0), we might assume without loss of

generality that n = 1. So, what we have is that for a fixed u € GR(p’, m),
Tr(ux) =0, Vo € GR(pt,m).

We will prove that v = 0 in this case. Note that {ux : 2 € GR(p’,m)} is an ideal of
GR(p*,m), and so is of the form uGR(p’,m). Since we know all the non-zero ideals of
GR(p’,m), if u # 0, then the ideal must be of the form p’GR(p’, m) for some 0 < i < £ — 1.
So, assuming that u # 0 will then lead us to having the Trace function Tr vanishing on the
whole ideal p’GR(p’,m). But this is impossible, since by Lemma 3.17 we saw that Tr is
onto. So, Tr(c) = 1 for some ¢ € GR(p’, m), which means that Tr(p’c) = p’ # 0 in Zye. The

contradiction gives us the desired result. O
We now introduce the dual of C' with respect to this inner product.

Definition 3.19. Suppose C is a linear code over GR(p’,m) of length n. Then we define

the dual C* of C' with respect to the inner product defined in (3.34) as

C* = {y € GR(p,m)"| <77 >=0 Vze c} . (3.40)
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Remark 3.20. We note that Lemma 3.18 implies {0}* = GR(p’,m)" and (GR(p’, m)")* =

{0}
The main difference between this definition and the general definition made previously
for general Group codes is that the dual that we obtain in this way is indeed a linear

GR(p%,m)-code as we will prove in the following lemma:

Lemma 3.21. The dual C* to the linear GR(p’, m)-code C that we obtained in (3.40) is

indeed a linear code over GR(p®, m).

Proof. Since additivity is obvious by the basic properties of Tr and < .,. >, all we need to
prove is that for any 7 € C*, we have u -3 € C* for all u € GR(p’,m). Now, fix T € C.

Then we have

<Tu-g> = Tr(xr-(up)+ o2 (uy2) + - + oo - (uyn))
= Tr(ua:lyl+um2y2+-~+uxnyn)

= <uz,y>. (3.41)

But we know that < Z,7 >= 0 for all T € C' and since C is linear over GR(p’, m), we know
that uZ € C for all u € GR(p*,m). Thus, we see that < uZ,y >= 0 for all u € GR(p%,m).

But, by (3.41), then we see that
<zT,uy >=<uzx,y >=0.
Since this is true for all T € C' we see that uy € C* for any § € C* and u € GR(p%,m).

Thus, we see that C* is indeed a linear code over GR(p’, m) of length n. O

We are finally ready to state the corollary of Theorem 3.10 for linear codes over Galois

rings:

Corollary 3.22. Suppose that GR(p*, m) :{uo,ul, e ,upem_l} is the Galois Ring exten-
sion of Ze, and suppose that C is a linear code over GR(pe,m) of length n and let C* be

the dual of C with respect to the inner product defined in (3.34). Then C* is also a linear
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code over GR(pg, m) of length n and moreover we have

CWer= (Wo, Wl, Ceey thn_l) =

1 pém_l plm_l pﬁm_l -
@CWeC( E aTr(uoui)VI/i’ E aTI‘(ului)Wi . Z a r(upem71Ul)Wi)
=0 =0 =0

where o is a primitive p‘th root of unity.

The result for the Hamming weight enumerators is exactly the same as Corollary 3.12.

Linear Codes over [;n

These are codes over the finite field Fpm, and since we have proved all the properties of
the trace function tr : F,m — [, above, we can define an inner product exactly the same
as (3.34) with the only modification being the replacement of Tr with tr. Everything else
works just like in the case of Galois rings and we get the following corollary to Theorem

3.10:

Corollary 3.23. Suppose C' is a k-dimensional linear code over Fpm = {0, 1, €, £2,... P2
Suppose
_ pr2 n.; ()
cwec (W, Wo, Wi, ..., Wym_g) =Y W@ T w;¢
ceC 1=0

1s the complete weight enumerator of C. Suppose that C* is the dual of C with respect to
the inner product defined in (3.34), and let y be a primitive pth root of unity. Then, C* is

an (n — k)-dimensional linear code over Fym and we have

CWeC* (W, W(), Wl, ey me_Q) =
1 p"—2 p7—2 p7—2
i i T2 i
—ewee(W+ > A"OOW, w4 Y AW, W Y A ),
p i=0 i=0 i=0
Linear Codes over Fom + ulFom
Linear codes over these rings were considered by different authors including Gaborit, Dougherty,

Betsumiya, Ling, et al. in works like [11], [12], [13]. We will give a very brief description

of this ring and the codes over these rings and then give the analogous results for the
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MacWilliams identities here, but these rings will be more extensively studied in Chapter 4
and Chapter 5.

The ring Fom + ulFom is defined as
{a +ub|a,b € Fom, u? = ()}.
It is easy to see that in fact
Fom + uFgm ~ Fom[x]/(z?). (3.42)

A linear code C over Fom + ulFom of length n is defined as usual to be a submodule of
(Fam + uFam)™. We define an inner product on this ring so that the dual of the linear codes
will be linear as well. In what follows, we denote by tr the usual trace function from Fom

to Fo. We define the inner product on this ring as

< (1,22, Tn)y (Y1, Y2y - -5 Yn) >S=tr(m1 % y1 + X2k Yo+ - + Ty * Yp) (3.43)

where (z1,22,...,2y), (Y1,Y2,...,Yn) are vectors in (Fom + uFom)™ and the operation x* is

from (Fom + ulFgm) x (Fom + uFam) to Fom defined as
(a4 bu) * (c+ du) = ac+ ad + be (3.44)

for a + bu, c + du € Fom + ulFom and the addition on the right hand side is addition in Fom.
Using the properties of the trace function that we proved above, similar results to Lemma
3.18 can be obtained for this inner product as well.

We now define the dual of a linear code C over Fom 4 ulFom of length n with respect to

the inner product defined in (3.43) and (3.44) as before:
C* ={y € (Fom + uFpm)"| <z, >=0 Vz € C}.

The main thing is to show that the dual of a linear code is linear over this ring as well. But
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this is done in the usual way like we did above in the case of Galois rings. The main point

then is to show that

<(a+bu)z,y >=<T7,(a+bu)y >

for all 7,y € (Fom 4+ uFom)™, and a,b € Fam. Now, since tr is additive, we can assume n = 1,
that is we can consider the problem coordinate-wise. So, suppose ¢ = c+ du, y = e + fu

with ¢, d, e, f € Fam. Then we have

< (a+bu)(c+ du), (e + fu) > =< ac+ (ad + bc)u, e + fu >
= tr(ace + acf + ade + bce)
= tr(aec + aed + (af + be)c)
=< c+du,ae+ (af + be)u >

=< (¢ +du), (a+ bu)(e + fu) >

which proves the assertion. This means that, we obtain the following corollary to Theorem

3.10 for linear codes over the ring Fom + ulFom:

Corollary 3.24. Suppose that
Fom + uFom = {a;li = 0,1,...,2*™ — 1}

with ag = 0 and let C be a linear code over Fom + ulFom of length n and suppose C* is the
dual of C' with respect to the inner product defined in (3.43) and (3.44). Then C* is also a

linear code over Fom + ulFom of length n and moreover we have

Cweo (Wo, Wl, ey W22m_1) =

22m_1 22m_1 22m—1

|é,‘CWGC'( Z ( tr (Oxa;) W Z tr(apkaZ u o Z (_1)tr(a22m_1*ai)Wi).

=0 i=0

Linear codes over Fy + ulFy
This is just a special case of what we did above with m = 1 with the trace function tr

being the identity function. The reason we want to single out this case is because it is very
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similar to the ring Z4, with u playing the role of 2. In fact a corresponding Lee weight wr,

is defined for this ring,
wr,(0) =0, wp(1) =wr(14+u) =1, wy(u) =2. (3.45)

Let the complete weight enumerator for a linear code C' over the ring Fo + ulFo be defined

in the usual way:

cwec(W, X,Y,Z) = W@ xm@ymul@) zmwu (@), (3.46)
ceC
Then, calculating the corresponding a; * a;’s in Corollary 3.24, we see that if C* is the dual

of C' with respect to the inner product defined in (3.43) and (3.44), then we get

cwees (W, X, Y, Z) = ‘é’cwec(W+X—|—Y—|—Z, W-X-Y+ZW-X+Y—-ZW+X-Y-7).

(3.47)

which is very similar to (3.6), the corresponding result for the Zs-codes that was done in
[2].

Identifying 1 and 1 + u in the complete weight enumerator, we again obtain a similar

definition for the symmetrized weight enumerators for codes over Fy + ulFo as well. This

means, the symmetrized weight enumerator can be written in terms of the complete weight

enumerator as

swee(W, X,Y) = ewee (W, X, Y, X).

But, then putting this in (3.47) we see that we get the following:

1
swec*(VV,X,Y)zﬁswec(W+2X+KW—KW—2X—|—Y). (3.48)

Note that this is exactly the same result (3.7) that was obtained for Z4-codes in [2].

Finally, we can obtain a MacWilliams identity for the Lee weight enumerators of such
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codes by noting

Leec(W, X) = Y w2 e xwe
ceC
— Z W2ro(@+n1(@)+n1+u(@) xn1(@)+ni+u(@)+2nu(c)

ceC
= cwec(W2, WX, X2, WX)

= swec (W2 WX, X?). (3.49)

So, by exactly the same methods as were used in [2], we can obtain the following identity
for the Lee weight enumerators of linear codes over Fy + ulFo:

1

Leec+ (W, X)) = ]

Leec (W + X, W — X), (3.50)

which is exactly the same identity as (3.8) that was obtained in [2] for linear codes over Zj.

3.4 Concluding Remarks and Some Applications

C* and C*
In the previous section, we found MacWilliams identities for the complete weight enumera-
tors of linear codes over several rings by introducing new inner products so that the duals
C* of these codes with respect to these inner products are also linear over the same rings.
Another purpose of introducing those inner products was to get better numerical results in
the formulas. For example, in the case of the Galois rings GR(pZ ,m), we defined the inner
product so that it takes values in Z,. This made it easier to calculate for example """,
since the values taken by u; * uj were in Z.

We know that in the case of all those rings, a natural inner product to define would

be the Euclidean inner product, for example in the case of GR(p’,m) we could define

<., >9: GR(p',m)™ x GR(p*,m)” — GR(p’,m) so that

< (1'1,.’1'2, .. '7:671)7 (y17y27 o 7yn) >9 = T1Y1 +‘T2y2 + - +$ny7l (351)
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for all (z1,29,...,%n), (Y1, Y2, -, Yn) € GR(p’, m)™ where x;y; is the ordinary ring product
in GR(p%,m).
Let us recall that in the previous section we defined a different inner product for calcu-

lation purposes as:

< (21,22, Tn)y (Y1,Y2, - -5 Yn) >1 = Tr(x191 + 22y2 + - + TpYn) (3.52)

for all (z1,22,...,2n), (Y1, Y2, - -, Yn) € GR(p*, m)™.

Now, we recall the definitions of C* and C* in
C* ={(y1.¥2,-..,yn) € GR(p",m)"| < 7,5 >1=0, Yz € C} (3.53)

and

o :{(yl,yg, .oy Yn) € GR(pZ,m)W <ZT,J>0=0, VT € C}. (3.54)

Note that, C+ seems to give us more information because the Euclidean product is a more

natural inner product, but in fact it turns out that these two duals are not different:

Lemma 3.25. Suppose that C is a linear code over GR(p®,m) of length n and let C* and
C™ be the duals of C with respect to < .,. >1 and < .,. >o, respectively. Then we have

C* =C+.

Proof. We first prove the obvious inclusion. Let 7 € C*. This means that
T1y1 + zoy2 + -+ Tpyn =0, Y(x1,29,...,2,) € C,
but Tr(0) = 0, which means that in this case we have
Tr(ziyr + x2y2 + - + Xpyn) =0, V(z1,29,...,2,) € C,
which means that 7 € C*, hence we get

ctccer. (3.55)
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Now, suppose that Z = (21, 22, ..., 2,) € C*. This means that
Tr(x121 + xozo + -+ -+ xpzn) =0, V(z1,29,...,2,) € C.

Now, fix one such T = (z1,x9,...,2,) € C. But since C is a linear code over GR(p®, m),
this means that

r(z1,22,...,xn) = (rey, rea, ..., rxy,) € C

for all » € GR(p%,m). So, this means that we have
Tr(r(z121 + 2222 + -+ ap2)) =0, Vr € GR(p',m).
But then by Lemma 3.18, we must have
r121 + X220+ -+ Tpzp =0

in GR(p’,m) and since this is true for all (z1,z2,...,x,) € C, we see, by definition of C*,
that Z € C*, which means

c*cCct. (3.56)
Then combining (3.55) and (3.56), we see that we must have C* = Ct. O

Similar conclusions can be drawn for the case of Fpm-codes as well as Fom + ulFom. So,
we see that the duals that we have obtained are not entirely unknown objects, but in fact
they are the same as the usual duals with respect to the Euclidean product. This will give

us some information about the size and the type of the codes.

The Type of C*
Now that we proved that C* = C, in order to find the type of C*, we only need to find
the type of C. We will only demonstrate this in the case of Zym-codes and we will give

the analogous results for the case of Galois rings, finite fields, and Fom + uFam.
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Theorem 3.26. Suppose C' is a linear code over Zym of length n and of type

(pm)kl (pmfl)kg o (p>km_
Then the dual C of C is a linear code over Zym of length n and of type

0 L (i L () L N (YD

Proof. Note that, by Theorem 2.7, C' is permutationally equivalent to a code with a gener-

ating matrix

I, A .. . A

0 ply, pBy . - PBm—1
G =

0 0 .0 pmln, pmlo

So, the definition of the dual will give us

I, Ay . . . A - -
451
0 ply, pB1 . - pBm-1
i)
(z1,22,...,25) € Ct & =0 (mod p™).
In
0 0 0 pm L, pmtC | -

This will lead to equations of the sort

z1+ (@1,a21,. ., 8m,1) - (Tky41,--.,2p) =0

o+ (@12,022,...,80m2)  (Tky+1,--.,2n) =0
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Ty + (al,k1762,k17 cee 7am,k1) . (xk1+l7 cee 7xn) =0
where @; ;’s where j = 1,..., k1 are the rows of A;. Similarly we have equations
pxk‘1+l +p(51,17 L 75771—1,1) ° (xk‘1+k‘2+17 vy xn)
PTkyt2 + P12, bm—12) - (Thythyt1s- - - Tn)
pxlﬂ—}—kg +p(51,k27 L 7Bm—1,k2) : ($k1+k2+1) s 71'n)
where Em’s with 7 =1,2,..., ko are the rows of B;.

Continuing this way we get all these kinds of equations with the common multiple being

increasing exponents of p, and thus we end up with

m—1 m—1—
p Lkyt+ko++km_1+1 =P C1 ($k1+k2+--~+km+17 . ,l‘n)
m—1 _ .m—1=
D Thitkettkpo1+2 =P 2 ($k1+k2+~-~+km+1y e 733n)
m—1 _ ,m—1=
p Lhy+ko+tkm—1+km — D Chkp, (ajk1+k2+“'+km+17 s 7‘7;71)

where ¢;’s are rows of C.

All the above equations show that i, 4ky+t...tkp+1,---,%n are all free Zym-variables.
However, for each g, 1.tk 1115+« > Thy otk _1 4k, We have p™~1 choices, for each
Thy ot b gt1y - -+ s Thytoothn_a+km_2, We have p™~2 choices, and so on and finally for each

Thy+1,-- - Thi+ky» We have p choices, while x1,z2,..., 2, are uniquely determined. This
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proves the theorem. O
We will give the analogous corollaries for the case of the other rings:

Corollary 3.27. Suppose C is a linear code of length over GR(p’,m) of length n and of

type
()R (p IR ()

Then C* = C* is also a linear code over GR(p®, m) of length n and of type

(pfm)’nfklszf---fk[ (p(éfl)m)kg(p(€72)m)kg,1 o (pm)kg.

Corollary 3.28. Suppose that C is an [n, k] linear code over Fpm. Then C* is an [n,n — k|

linear code over Fpm.

Corollary 3.29. Suppose C is a linear code over Fom +uFom of type (22™)*1(2™)k2. Then

C* is a linear code over Fom + uFam of type (22m)n—ki—kz(gm)k2,

Remark 3.30. Looking at Theorem 3.26 and the subsequent corollaries, we see that, for a
linear code C' over the ring R of length n, where R is one of the rings considered above, we

have
R

c*l = . 3.57
=g (3.57)

Remark 3.31. The result in the above remark is obvious for the case of group codes, as was
proved by Delsarte in [5], where he proved that if C' is an abelian group code of length n
and C* is its dual, then

C*~G"/C (3.58)

where ~ is the group isomorphism.

Note that the inclusion C' C (C*)* is obvious, and so the remarks we made above about

the sizes give us the following corollary:

Corollary 3.32. For a linear code C over the ring R of length n, where R is one of the
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rings considered in this chapter, we have

(C*)* =C. (3.59)

Benefits of the identities for complete weight enumerators

In this chapter, we found MacWilliams-like identities for the complete weight enumerators
of linear codes over rings. One of the benefits of this comes from that fact that we can find
any weight enumerator from the complete weight enumerator. This is especially very useful
if we are looking at a linear code with a high dimension.

As an example, we will go back to the code that gave us the counter example in Section
3.1. Note that in that example, we had a linear code C over Z, of type (4)? and length
30, and we needed to calculate the Euclidean weight enumerator of the dual C, which is a
linear code of type (4)%® and has 4% = 72057594037927936 > 7 x 10'® codewords. If we try
to calculate the Euclidean weight enumerator of this code by brute force with a computer,
assuming that the computer can calculate the weight enumerators of one million codewords
in one second, then we would need more than 2000 years to finish the calculation. With a
computer that would calculate the weight enumerator of one billion codewords in a second,
we would still need more than 2 years. Looking however at the dual of this code, which
happens to be a small code, only of size 16, for which we can easily calculate the complete
weight enumerator, and then using the identities (3.6), (3.7) and (3.12), we were easily able
to calculate the Euclidean weight enumerator of the code in a matter of seconds.

Knowing the MacWilliams identities for complete weight enumerators can help us find
the weight enumerators of high-dimensional codes that have small duals as we saw in the
above example. So, even though the counter example in Section 3.1 proved that we cannot
have a MacWilliams-like identity for the Euclidean weight enumerators of linear codes over
Z4 contrary to the case of Lee and Hamming weight enumerators, it still showed us a
nice application and use of knowing the MacWilliams identities for the complete weight
enumerators of linear codes over rings.

Lee weight and not the Euclidean weight is the homogeneous weight that was defined

in 2.3. Since we have MacWilliams identities for the Lee weight enumerators, one can
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ask the question whether a MacWilliams-like identity exists for the homogeneous weight

enumerators of linear codes over GR(p*, m).
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Chapter 4

Gray Maps

Gray maps from Z} to Z3" were effectively used by Sloane, Calderbank, et al. in their
work [2], as a tool to obtain the binary nonlinear Kerdock, Preparata, and Goethals codes
as the Gray images of linear codes over Z4. Their definition of the Gray map is quite a
simple one. To define it, they defined maps «, 3,y from Z4 to Zs such that for any ¢ € Zy4,
¢ = a(c) + 20(c) is the unique 2-adic expansion of ¢. The identity a(c) + B(c) + v(c) =0
completed the definition of those maps. Then, extending these maps in an obvious way to

71, they defined the Gray map ¢ : Z} — Z3" as

¢(c) = (6(c),~(c)),  ceZy. (4.1)

The most important property of this map is that it is a distance preserving map, that is, it

is an isometry from
(Z1, Lee distance) to (Z3", Hamming distance).

Carlet, in [8], extended this map to Z,x with the homogeneous weight and used this to
obtain the generalized Kerdock codes that were non-linear binary codes with large minimum
distances. Several other authors, like Ling and Grefrath generalized the notion of Gray maps
to more general rings with certain homogeneous weights defined on them in [10] and [22].

In section 1, we will use a Gray map from Zg to Zg and similar techniques to the ones
used in [2] and [8] to obtain some non-linear ternary codes with comparably high minimum

distances. In section 2, we will give an inductive and coordinate-wise construction of a
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k—1
Gray map from Z,x to Zh , which will be distance preserving. In section 3, we will give a
purely combinatorial construction of the Gray map that we defined earlier, using the affine
geometries. In section 4, we will talk about the Gray map for the ring Fom + uFom and we

will obtain some results about the Lee weights of linear codes over these rings.

4.1 A Ternary Gray Map

We will define a Gray map from Zg to Z3 that will be distance preserving with the homoge-
nous distance on Zg and with the Hamming distance on Zs. Before getting into that we
will make some observations about linear codes over Z2.

Recall from Section 2.3 that the homogeneous weight on Z,. is defined as

0 ifu=20
Whom (u) = p—1 ifue L2 \pr2

D if u € pZy2 \ {0}.

Note that Z,2 \ pZ,2 = (Z,2)*, the set of units in Z2.
A very important property of the homogeneous weight is that it can be expressed in

terms of exponential sums. So, suppose f(z) is a Z,2-valued function over a set Q2. Then

whom(f) = Z whom(f(x))

e

where we assume f denotes a codeword of length || as the value of f is evaluated at
each element of 2. We will prove the following useful lemma that relates the homogeneous

weights to the exponential sums:

Lemma 4.1. Suppose f is a Zy2-valued function over a set 2, and suppose we view [ as a

codeword of length || with the coordinates being the value that f takes at each element of
2

us

Q, and suppose w = e»* . Then we have

than($) = (=Dl 50 (L), (12)

AE(Z,2)* ~ el
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Proof. To understand the exponential sum, we will first calculate, for a fixed x € €,

To= Y WO,

)\E(ZPQ )*

We will split this into a few obvious cases:
(i) Suppose f(z) = 0. Then wM® =1 for all A € Zy2 \ pZyy2. So, we see that in this case

we have

Yo = |(Zyp)*| = p* —p. (4.3)

(ii) Suppose f(x) € pZy2 \ {0}. Then w/®) is a primitive p** root of unity, and without

loss of generality we might assume that w/(®) = ¢27/P — §. Then, we get

Yo=Y OP=O0+0+ 0P ) +PO+07+- +0P )+ 4
)\E(Zpg)*

0PI 462 4+ oP7). (4.4)

Now, we know that #7* = 1 for alli =0, 1,...,p— 1. On the other hand since 6 is a primitive
p'* root of unity, 1+6+---+6P~1 =0, which means that § +6%+---4+6P~1 = —1. Putting

all these into (4.4), we get, in the case f(z) € pZ,2 \ {0},
YT, =—p. (4.5)

(iii) Finally, we assume that f(z) € (Z,2)* = Z,2 \ pZ,2. Note that, in this case, wl/ @) is

P
still a primitive (p?)*"

flx)=1.

Then, the sum we want to calculate becomes

root of unity, and hence, without loss of generality we might assume

Yo =wtw?4 Wl Pt WP DL
:1_|_w_|_..._|_wp2—1_(1+wp+w2p+...+wp(p—1))

=0
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since
1—wP’
1—|—w+'~—|—wp271: v =0
1—w

and (wP)? =1 and wP is not 1, and so from
0= (PP —1= (P - 1)(1+wP +w? 4. PP,

we get

14wl +w? ... 4Pl — .

So, combining (i), (ii), and (iii) we get

p?—p if f(z) =0
S WM =L i ) € pze \ {0} (4.6)
NE(Z,2) 0 if () € sz \pZPQ_

Now, (4.6) and a change of the order of summations gives us

> (T M) =0 -l o € 2Uf) =0} - pl{e € AU(a) € 40\ (OB} (47

AE(Z,2)* N el

Putting this into the right-hand side of (4.2) we get

RH.S = (p—1)|Q|_; Z <waf(x)>

)\E(sz)* €N
= (p-1)IQ— (p— D|{z € Qf(z) = 0}+|{z € Qf () € pZy2 \ {0}}]

= -1 [r{x € QIf(x) € (Z2) |+ |{x € AUf () € pZye \ {0}}]
+{x € QUf(x) € pye \ {0})]
= (- D|{z € QUf(@) € @)} +pl{z € QUf(x) € pZy2 \ 0}}]

= whom(f)-

We define a non-degenerate polynomial from [7]:
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Definition 4.2. A polynomial g(z) € GR(p?, m)[z] is said to be non-degenerate if it cannot

be written in the form

9(x) = ¢(f(x)) = f(z) +u (mod p?)
for any f(z) € GR(p?,m)[z] and v € GR(p?,m), and ¢ is the Frobenius map defined on
the Galois ring GR(p?, m) as was defined in Section 2.2.
The following theorem is taken from [7] and is a main tool used in [2] and [8] as well.

Theorem 4.3. Let f(z) € GR(p*,m)[z] be non-degenerate and of weighted degree N, and
27i

suppose w = e »* . Suppose also that \ € Ly is relatively prime to pt. Then we have

< (Ng — 1)p™2.

3 @)

IETm

We need to say something about the weighted degree here. If f(x) € GR(p’, m)[z], then

it has a unique p-adic expression in the form
f(x) = Fo(z) + pFi(z) + -+ p" ' Fi_i(x), Fj(x) € Tnla]

where T, is the Teichmuller set defined in Section 2.2. Suppose n; = deg(F}). Then the

weighted degree of f is defined as

/-1 (—2
Ny = max{nop , P o, ... ,ng,l}.

After these introductions, we are finally ready to define a ternary Gray map and con-

struct ternary codes. We will define G : Zg — Zg coordinate-wise, as follows:

G(0) = (0,0,0), G(1)=(1,1,0), G(2)=(0,1,1),
GB3) = (2,1,2), G(4)=1(0,2,2), G(5) =(1,0,2),

G6) = (1,2,1), G(7)=(2,0,1), G(8)=(2,2,0). (4.8)
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We then extend this map in the obvious way to Zg.

Remark 4.4. By straightforward calculations, we can obtain a very important property of

this map G, that is, GG is distance preserving:
dhom (u,v) = d(G(u), G(v)) = wu(G(u) — G(v)), u,v € ZLg (4.9)

where dy and wy denote the Hamming distance and the Hamming weight, respectively.

A construction of ternary codes using the Gray map
We will use the same technique that Carlet used in [8] to get some non-linear ternary codes

as images. We will use linear trace codes. We define a linear code C over Zg as follows:
C ={(b,Tr(a) + b, Tr(a&) +1b, ..., Tr(ag®"~2) + b)|a € GR(9,m),b € Zg} (4.10)

where Ty, = {0,1,&,...,63" 72}, Note that since Tr is a Zg-linear function, we see that C is
a linear code over Zg of length 3™ and of size 3°™+2. We will prove the following theorem

that gives us the construction we wanted:

Theorem 4.5. Suppose that C is the linear Zg-code of length 3™ and of size 3212

glven
by (4.10). Let C = G(C), the Gray image of C. Then C is a ternary [3™+!,32m+2 >

2-3™ —4-3™?] code.

Proof. Let F(x) = Tr(ax) +b. Since Tr : GR(9,m) — Zg is onto by Lemma 3.17, we
know that Ju € GR(9,m) so that Tr(u) = 1. For such u € GR(9,m), we can then write

F(z) = Tr(az + bu). But then, by Lemma 4.1, we see that

1 22mi r(ax+ou
Whom (F) =2-3™ — 2 > (Z G >>. (4.11)

)\E(Zg)* x€Tm

By Theorem 4.3 however, we see that, for each A\ € (Zg)*,

§ : Q%Tr(agwrbu)

IL‘GTm

<2.3m/2 (4.12)
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since the weighted degree of az + bu is 3. Combining (4.11) and (4.12) we see that
wy(F) >2-3™ —4.3m/2 (4.13)

for each codeword F' € C. The theorem now follows from the fact that the Gray map

G:Zy — Z% is distance preserving. O

Remark 4.6. This construction would yield good results for codes with large size. As an
illustration of how good our construction is, we refer to [9] in which the authors obtained
a linear ternary code with parameters [190, 10, 110], which has size 3!°. To match the
size, we take m = 4 in our construction, which then yields a non-linear ternary code with
parameters [243,3'0, > 126]. This shows that our construction might lead to ternary codes

with comparably large minimum distances, especially when the size of the code is high.

4.2 An Inductive Construction of a Gray Map from Z, to

k—1
p
ZP

In this section, we will give an inductive construction of a Gray map from Z,x to ng_l.
Since it is going to be inductive, let’s denote this by G : Zyx — ngil. Obviously, we
will take G = 1z, the identity map on Z,. We will define the Gray map coordinate-wise,
which is going to be different than the way it is defined in [10] and [22]. Our definition is
however equivalent to those definitions because ours is just going to be a permutation of their
definitions. Since we want to have a distance-preserving map from Z,» with homogeneous

Jo—
weight to Zg ' with the Hamming distance, let us recall how the homogeneous weight wyop,

was defined on Zpk.

0 ifu=0
whom(u) = (p — 1)pk72 ifue Zpk \pk‘*lzpk

pkt if uw € p"1Z, \ {0}.
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Definition 4.7. We define the map for coordinates of Z, for different types of elements:

Gi(j-p*") —<Gk1(j'pk2)7--~aGk1(]’-1?'“2)), j=0,1,....,p—1. (4.14)

Gr((mp+)p* > +1i) =
(Gk—l (y(mgp* 2 +14)), Gra (Y(m+1)jp" 2 +14)), ..., Groa (V((m+p — 1)jp" > + i)))

(4.15)

for 0 <m,j <p—1andfor 1 <i<pF2—1, where ¥(.) is the map that takes a number

to its residue modulo p*~!. Finally, for 0 < j <p—1and 1 <n < p— 1, we define

Gk(] _pk’—l + npk;—Z) —
(Gk_l(v«j +n-0)p" ), Gt (VG + - 1P, G (W + nlp — 1))p’“—2>)).

(4.16)

The main result of this section is proving the distance-preserving property of this map.
Theorem 4.8. The map G}, defined above is a distance-preserving map from

(Z k—1

» , Hamming dz’stance) .

k, homogeneous distance) to (Zg

Proof. The proof will be just exhausting all the cases and verifying the distance-preserving
property for all these. There are several things to check here:

(1) wa(Gr(w) = p*~" for u € P12, \ {0}, wu(Gr(v)) = (p—1)p*~2 for v € Zy \p" ' Zx
where wy denotes the Hamming weight.

(ii) Suppose that u,v € pk_lZp;c with u # v. Then dy(Gg(u), Gr(v)) = pF~L.

(iii) Suppose that u,v € Zk \pkilzpk. Then dy(Gy(u), Gr(v)) = (p— 1)p* 2 ifu—v €
Ly \p* L. and du (G (u), G (v)) = pF~Lif u—v € pF~1Zx \{0}. Moreover, if u € p*~17Z

and v € Zy» \ PP Z, then dy(Gr(u), Gr(v)) = (p — 1)pF2.
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Note that if we prove (i), (ii), and (iii), then we will have proved
du(Gr(u), Gg(v)) = wa(Gr(u) — Gi(v)) = dpom(u, v), U,V € Lk, (4.17)

which will prove that the Gray map Gy is indeed distance preserving.

Proof of (i) First of all, if u € pk_lzpk \ {0}, then this means that u = j - p*~! for some

1 < j <p-—1, and hence by the definition of the Gray map, we get
Gi(w) =(Gr1(G-p"2), o Gra (- °72).
So, we get

wi(Gr(w) = p - wn(Gr-1(j - p*2))

since by induction hypothesis, Gi_1 is a distance-preserving map.
Now, suppose u € Z,x \pk_lZpk and suppose we have u = (mp + j) - p*~2 + i where

0<m,j<p-—1and for some 1 <i< pk*2 — 1. But then we note that
((m+r)jp* 2 +4) #0, (modp*?)  r=0,1,...,p-1

since (m +7)jp*=2 =0 (mod p*~2) but i # 0 (mod p*~2). But this means, since by induc-

tion hypothesis G;_1 is a distance-preserving map, that we have

wy <Gk1(fy((m +r)jph Tt + i))) = (p—1)p"3, r=0,1,...,p—1. (4.18)
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By the definition of G however, we see that by using (4.18), we get

p—1
wit(Gx(u)) =) wn (Gk_l (v((m+7r)jp" % + z’)))
r=0

=p(p—1)p"*

=(p—1)p*?

as expected.
Now, suppose that u € Zx \pkilzpk and we have u = j - p*~! + np*~2 for some

0<j<p—1land1<n <p-—1. Then note that

{j+n-0,j+n-1,...,j+n(p—1)} :{0,1,...,p} (mod p)

since GCD(n,p) = 1. But this means that

{7 +n-0p"2) 4G +n-1)p" ), % +nlp—1))p"2)}

={0,p"2,2p" 2 ... (p— 1)pF 2}  (mod p*7H).

So, using the induction hypothesis that Gy_; is a distance-preserving map, we get

p—1
wi (Gr(u)) = ) wn (Gk—l (v +n- T)p’“_2))>
r=0

= (p—1)p*?

as expected.

Proof of (ii) Suppose that u,v € pk*IZpk and that u # v. This means that v = j;pF—!

and v = jop*~! where j; # jo with both j; and jo being in {O, 1,....,p— 1}. Then by the

definition of the Gray map, however, we have

Gr(u) =(Gr1(ip" ™), Geo1(71P" ), ., Geo1 (10" 72)) (4.19)
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and

Gk(v) :(kal(jgpk72), kal(jgpk72), - ,kal(jgpkf%). (4.20)

But then by induction hypothesis we get

du (Gr(u), Gr(v)) = p-du(Gr-1(j1p"?), Gr—1(j2p"?))

= ph L (4.21)

Proof of (iii) First, we assume that u € p*~'Z, \ {0} and v € Z. \ p*~*Zx. Then we

know u = j; - pF~! for some 1 < j; < p — 1. Hence

Gr(w) =(Gr1(1p"™?), -, Gra (1P 7?)). (4.22)

Now, for v we can have two forms.
Suppose that v = jop*~! + np*~2 where 0 < jo <p—1and 1 < n < p— 1. Now using

the definition of G and using the hypothesis that G_; is distance preserving, we see that

p—1

dy(Gr(u), Gk(v)) = Z du <Gk_1 (j1 . pk_Q) ,Gr_1 (7((]’2 + nr)pk_2))> ) (4.23)
r=0
However, as r ranges over 0,1,...,p — 1 so does n - r modulo p, which means that

dy (le (1" 2), G (W((G2 + m’)PkQ))> =pF?

for all 7 except the one r for which we have j; = jo + nr (mod p). Putting this into (4.23),
we get

dit (Gr(u), Gi(v)) = (p— 1)p" 2 (4.24)

as expected.

Now, suppose that v = (mp +j3)pk_2 +iwith0<m,js<p—1land1l<i< pk—2 1.
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But this means that

A2 =y ((m+1)jsp" % + 1) € Zppr \ PP 22

for all r =0,1,...,p — 1, which by induction hypothesis means that

dy (Gk—l (j1-P*72), Goor (v((m + r)jsp* 2 + 1))) =(p-1)p*?

forall  =0,1,...,p — 1 and hence we get

p—1

du(Gr(u), Gr(v)) = Z dy <Gk—1 (j1-PF72), Gror (v((m + 7)jsp* 2 + Z)))
r=0

= (p—1)p*? (4.25)

as expected.
We now assume that both u,v € Zx \ pk_IZpk. Then there are three possibilities as to
the form of u and v:

2

(a) Suppose that u = ji1p* ™t + nip*™? and v = jopF ! 4 ngp"2 for 0 < j1,jo < p—1

and some 1 < ny,ng < p—1. Now if u —v € pk_IZpk, then this can happen only if
ni = ng. Since we assume u # v, we see that j; # jo in this case. This means that
(j1 +mnir) — (o + ner) = j1 — j2 # 0 (mod p) for each r = 0,1,...,p— 1. This means that,

by induction hypothesis, we have

dy (Gk—l (v((Gr + nar)p*2)), Grer (V((j2 + nzr)pk_2))> = ph~?

for each r =0,1,...,p — 1. But then we see that

n(Go), Gue) = 3y (Gm (VG + 1)), G (G2 + W)pk-?)))
r=0
k—1

=Pp

as expected.
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If, on the other hand, u — v € Z \pkilZpk, then this means that n; # no. Hence we
get

{(j1+n17‘) —(j2+n27“)‘r:0,1,...,p—1} :{0,1,...,p—1} (mod p),

which means, by induction hypothesis, that

dy (sz—l (v((G1 + nar)p*2)), Grer (((j2 + nzr)pk_Q))> = ph~?

for all r except the r for which we have j; + nir = jo + nor (mod p) for which the above

distance is 0. Then we get

p—1

du(G(u), Gr(v)) = Z dy (Gk—l (v((G1 + nir)p"?)), Gy (v((G2 + ngr)ka))>

r=0

=(p—1)pF?

as expected.
(b) Suppose now that u = (mp+7j1)p* 2 +i and v = jop* ! +npF=2 for some 0 < m, j1, jo <
p—1,1<n<p-—1and1<i<p*2—1. One readily observes that in this case we must

have u — v € Zyk \pk_lZpk. It is also obvious, from the presence of ¢ that
(m+r)ji* 2 +i— (2 +n-r)p* 2 £0  (mod p*?)
for all r =0,1,...,p — 1. This means that, by induction hypothesis, we have
(s (3 (0m + 12 40). Goca (3 (G + ) ) = (= 1t

forall r=0,1,...,p — 1. So, then we have

p—1
i (Gi(w), Gr(v)) = D dn (Gk-l (Y((m -+ 1)jap* 2 +4)), G (12 + mpk-?)))
r=0

=(p—1)pF?

as expected.
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(c) Suppose that u = (mip + j1)p* 2 4+ i1 and v = (map + j2)p* 2 + iy, for some 0 <

mi,ma, j1,j52 < p—1and 1 <ip,ip <pF 2 —1.

First, we assume that u —v € pk_lzpk \ {0}. This can happen if and only if i1 = i and
j1 = jo, but since we don’t want u to be the same as v, we must have m; # my. But this

means that
((ma + 7)1 2 + 1) = ((ma +1)52p" 2 +i2) € pk_QZpkfl \ {0}

forall™=0,1,...,p—1. Hence, by induction hypothesis, since GGj_1 is distance preserving,

we see that

du <Gk—1 (v((ma +r)j1p" 2 + 1)), Ge—1 (v((ma2 + 7)jap" 2 + i2))> =ph?

forall r =0,1,...,p — 1. But then we will have

p—1
di(Gr(u), Gr(v)) =Y dn <Gk—1 (v((my + 7)j1p* 2 4+ 41)), Greor (Y((ma + 1) jap™ 2 + iz)))
r=0

_ bl

as expected.
Now, assume that u — v € Zx \pk_lZpk. This can happen only if i1 # i9 or j; # jo or

both. Now, suppose i1 # i2. Then
((m1 +r)jip" 2 + il)—((mg +7)jop" 2 + ig) € Ly \pk_2Zpk71
for each r =0,1,...,p — 1. Hence, by induction hypothesis, we see that

dy (le (v((m1 +7r)j1p" 2 + 1)), Ge—1 (v ((ma2 + 7)jap™ 2 + i2))> =(p-1)p*
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for all r =0,1,...,p — 1. So, we see that

du (Gr(u Z du <Gk 1(v((ma +7)j1p" % + 1)), Gre1 (Y((ma + 7)o" 2 + iz)))

=(p-1)p?

as expected. If, on the other hand, we have i; = is, but j; # jo, then we get

{((ml + )" % i) = ((ma + 1) jap* 2 +ig) lr =0,1,....p— 1} =

{O,pk_Q,... ph 2} (mod pF~1)
since GCD(j; — j2,p) = 1. But this means, since G_1 is distance preserving, that,
dy (le (v((ma +7)j1p" 2 + 1)), Ge—1 (v((ma2 + 7)jap" 2 + ig))) = ph2
for all r except the 0 < r < p — 1 for which we have
((my +m)j1p* "2 +i1) —((ma +7)jap" 2 +42) =0 (mod p*~1).

But then we get

du(Gr(u), Gi(v)) = Z du <Gk—1 (v((m1 + 1) j1p" 2 + 1)), Gr—1 (((ma + 1) jop* 2 + iz))>
r=0
=(p—1)p*?
as expected. O

4.3 A Combinatorial Construction of the Gray Map

In the previous section, we introduced an algebraic construction of a Gray map from Z
k—1
to ZL  that is distance preserving. In this section, we want to give a purely combinatorial

construction using Affine geometries. So, we will divide this section into two parts, the first
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part consisting of an introduction about Affine geometries and the second part consisting

of the construction of the Gray map.

Affine geometries
Most of the material presented here was taken from [6]. An Affine space AGy(p) of order
k over T, is defined to be the set V' = F’; of all points and all Affine subspaces of V. An
Affine subspace of V' is the empty set or a linear vector subspace of V' or a coset of a linear
subspace of V' in the additive group.

An Affine Hyperplane in AGk(p) is defined to be an Affine subspace of V' of dimension

k — 1. We observe the following remark:

Remark 4.9. Two hyperplanes in AG(p) are either disjoint or they intersect in an Affine

subspace of dimension k — 2.

Definition 4.10. Suppose A, B are hyperplanes in AGr(p). We say that A and B are

parallel if A= B or A and B are disjoint. We denote this by writing A ~ B.

Lemma 4.11. The relation ~ on the set of all hyperplanes of AGk(p) is an equivalence

relation.

Proof. Since reflection and symmetry are obvious, we will try to prove transitiveness. So,
suppose A ~ Band B~ C. If A= B or B = (|, then we obviously get A ~ C. So, suppose
that A # B, and also B # C. Suppose for contradiction that ANC # (). Then ANC is
a (k — 2)-dimensional Affine subspace of V. Now we know, from basic properties of Affine
geometry, that the hyperplanes that contain A N C' partition the rest of the points in V.
Hence there are a total of

pF— ph2

- 35 =p+1
T — g2

hyperplanes that contain A N C; call them A,C,Hy,...,Hy,—1. Now, A,C,Hy,...,Hp1
partition the rest of the points in V means, since AN B = C N B = (), that all the points
in B lie in the hyperplanes Hy, Ho, ..., H,_1. But, notice that H; # B for j =1,...,p—1
because H;’s intersect with A and C'. But H; N B then can have at most pF~2 points, which
means that Hiy, Ha, ..., H, 1 can contain at most (p — 1)p*~2 of the points in B, which is

a contradiction since |B| = pF~1. O
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Let us define, by a parallel class of a hyperplane A, the equivalence class A of A with

respect to ~. The following lemma will be quite useful.

Lemma 4.12. There are exactly p hyperplanes in each parallel class and there are p*~! +

P2 4 -+ p 41 parallel classes in AGy(p).

Proof. Suppose A is a hyperplane. Then all cosets of A in the additive group are also
hyperplanes. We know from group theory that two cosets of the same subgroup are either
identical or disjoint. Since each element in V' is in some coset of A, we see that there are
at least p distinct cosets of A, but since distinct cosets are disjoint, it follows that there are
exactly p disjoint cosets of A. Since two disjoint cosets are parallel, we see that the disjoint
cosets of A make up the whole set A and hence the first part of the lemma is proved.

For the second part of the lemma, we observe that the number of parallel classes of
hyperplanes is exactly the same as the number of (k — 1)-dimensional vector subspaces of

V', which is the same as

K (pk_l)(pk_l—l)...(pQ—l) _pk—l
k—1 PT—D)@pF2-1)...(p—1) p—1"

O

Now, let’s look at the parallel classes of lines. We know that in each parallel class of

lines, there are exactly p*~! lines. Let’s fix one such parallel class in AGy(p). Suppose it is
L={Lo,L1,...,Ly—1_,}

where each L; is a line in the Affine space AG(p). Let’s write the lines in this parallel class

as columns and let us label each element in each line with numbers in {0,1,...,p — 1}.
3\
0 0 0
_ 1 1 1
L = ) ) ) (4'26)
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where we have p*~! columns lined up above.
We observe that, if a hyperplane contains two points from a line, it contains the whole

line. So, each hyperplane that doesn’t contain any of the lines Lo, L1, ..., L x—1_; contains

P
exactly one point from each column in (4.26). Using this observation we will prove the

following quick lemma:

Lemma 4.13. Suppose that a hyperplane A doesn’t contain any of the lines Lo, L1, . . .,
L. IfB€ A is any hyperplane, then B doesn’t contain any of the lines Ly, . . . s Lpk—1_4

either.

Proof. If B € A, this means that B and A are disjoint. By the above observation, we know
that A must contain exactly one point from each line L;, j = 0,1,... ,p*~1 — 1. But if B
contains one of the lines L;, then we would have AN B # (), contradicting the fact that A

and B are disjoint. O

Remark 4.14. The result of Lemma 4.13 implies that the hyperplanes that don’t contain

any of the lines Lo, L1, ..., Lyx-1_4 are partitioned into parallel classes of hyperplanes.

The following lemma will give us the number of hyperplanes that don’t contain any of

the lines:

Lemma 4.15. There are ezactly p*~1 parallel classes of hyperplanes that don’t contain any
of the lines Lo, L1, ..., Lyk-1_y, or equivalently there are exactly p* hyperplanes that don’t

contain any of the lines Lo, L1, ..., Lyr-1_.

Proof. Since, by lemma 4.13, we know that the hyperplanes that don’t contain any of the

lines Lo, L1,...,Lx-1_; are partitioned into parallel classes, we see that the hyperplanes

p

that contain at least one of the lines Lo, L1,...,L x—1_; are also partitioned into parallel

p
classes. So, the number of parallel classes of hyperplanes that contain at least one of the
lines in Lo, L1, ..., Lyr-1_1 is the same as the number of (k — 1)-dimensional subspaces of

a k-dimensional vector space that contains a particular line, which is
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This means, however, that the number of the parallel classes of hyperplanes that don’t

contain any of the lines Lo, Ly,..., L x-1_; is

p

AP T ) - 0 p 1) =

The Construction of G,

Assume that I'g, 'y, ..., x—1_; are the parallel classes of the hyperplanes that don’t contain

p

any of the lines Lo, L1,..., L x—1_;. So, each hyperplane in these parallel classes is formed

P
by taking one element from each column of (4.26). Suppose, without loss of generality that
we have labelled (4.26) in such a way that there exists a hyperplane that corresponds to a
labelling of (0,0,...,0) and that it is in I'g. From now on, by the vector that corresponds

k—1

to a hyperplane, we will mean the {0, 1,...,p — 1}-vector of length p"~*, which comes from

the labelling of the elements of the hyperplane in accordance with the labelling of (4.26).

k—1

So now we are finally ready to describe the Gray map Gy, : Z,r» — (Zp)?

Definition 4.16. For v = jp*~', j = 0,1,...,p — 1, G}, maps u to the vector of the
hyperplanes of T'y bijectively in such a way that 0 is mapped to the hyperplane (0,0,...,0).
For 1 < j < p*™1 — 1, we map 7,p" ' +4,...,(p — 1)p*~' + j to the vectors of the

hyperplanes of I'; bijectively.
Note that this is a well-defined map from Z to ngil.

Theorem 4.17. The map Gy, defined above is indeed a distance-preserving map from Z,

with the homogeneous distance to (Zp)pki1 with the Hamming distance.

Proof. Suppose u € p*~Z,x \{0}. Then this means that Gj(u) is the vector of a hyperplane
in I'g that is disjoint from the hyperplane of (0,0, ...,0). But this means that G(u) doesn’t

have any zeros, which means that

wi (Gr(u)) = p*~ .
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If v e Zpy \pkilZpk, then Gy (v) is the vector of a hyperplane in some I'; with j # 0. But
since any hyperplane in I'; will intersect with any hyperplane in I'g in exactly p"=2 points
and since (0,0,...,0) belongs to a hyperplane in Iy, we see that G(v) has to have exactly

p*~2 0’s. Hence we see that

wi(Gr(v)) =p" 1 = p" 2 = (p—1)pF 2

Now, suppose u,v € Z, so that u —v € p"’_IZp;C \ {0}. This means that u = v
(mod p*~1). Then by the construction of G}, we see however that Gy (u) and G (v) come
from two distinct hyperplanes in the same parallel class I'; for some j. But this means that
Gr(u) and G (v) are different in each coordinate since their hyperplanes are disjoint, which

means that

dp (G (u), Gi(v)) = p" .

Suppose now that u —v € Z, \pkilZpk and hence v and v are in different residue

1

classes modulo p*~!. This means that G(u) and G (v) correspond to hyperplanes from

I';, and T'j,, respectively, where j; # jo. But since two hyperplanes from different parallel
classes must necessarily intersect, and since they intersect in a (k — 2)-dimensional Affine

2

subspace, we see that Gy (u) and Gy, (v) will have exactly p*=2 coordinates where the entries

are equal. Hence we see that

du(Gr(u), Gr(v)) = p" 1 = pF =2 = (p — 1)pF2.

O]

Note that, by the exact same methods that we applied above, we can come up with a

combinatorial construction of a distance-preserving map from the Galois ring GR(p?, m) to

(£L—1)m
P

e . The tools will be very similar; we will use the Affine geometry AG,(p™).
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4.4 Gray Maps over Fon + ulFon and the Lee Weight

In this section, we will study the linear codes over the ring R, = Fom 4 uFgm with u? = 0.
Linear codes over these rings were studied in [11] by Betsumiya and Ling. We first introduce

a special notion of a basis:

Definition 4.18. Suppose B = {aq, ag,...,q,} is a basis for Fom over Fy. We say that B

is a Trace Orthogonal Basis (TOB), or self-dual basis if we have

1 ifi=j
tr(oy - aj) =
0 of i #j

where tr is the usual Trace function from Fom to Fs.

Remark 4.19. By [23], there exist TOBs for Fom for all m > 1.

At this point, we will define some different types of Gray maps. First define
oy B — FO

m,1
with respect to a TOB B, as
Upp (101 + 2200 + -+ 4 Tppouy) = (21,22, .., ) (4.27)
where z1, 29, ...,z are vectors in [F5. We also define
om : R, — IF%Z,Z

by letting

om(T +uy) = (y,2+y) (4.28)

where x,y are vectors in [F7,,.

Definition 4.20. A linear code over the ring R, = Fom 4+ ulFom of length n is an R,,-

submodule of R}},.
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We will next define the Lee weight for such codes.

Definition 4.21. Suppose B = {aj,a2,...,a,} is a TOB of Fam over Fy. Then for
T =x101+ -+ Tmay, € Fom, the Lee weight of x with respect to the basis B is defined to
be the number of x;’s that are non-zero. The weight wE of z = a+ ub € R, is defined to

be the sum of the Lee weight of b € Fom and that of a + b € Fom.

We define an analogous Gray map

. pn mn
wm,l . Rm - Rl

such that

Umi(zrar + -+ o) = (1,22, ..., )

where x1,x9,..., 2, are vectors in R}. The way the weight is defined, it is easy to see
that v, 1 is Lee weight-preserving. Note that the Lee weight on Fy + ulFy is defined to be
wr,(0) =0, wr,(1) = wr,(1+u) = 1, wr,(u) = 2. We summarize some of the properties of the
map Y, 1 in the following lemma:

Lemma 4.22. (i) ¢p,1 is an Fa + ulFa-linear map.

(11) Ym,1 s a weight-preserving map where the map in Ry, is the Lee weight defined with
respect to the TOB B, and the weight for Ry is the usual Lee weight.

(111) Y1 is an injective map.

Proof. Let

€1 =210+ F T, €2 = Y100 + -+ Ymam € R,

It is enough to show that ¥, 1(c1+c2) = Vm,1(c1)+Pm,1(c2) and that ¢y, 1 (ucr) = uhm 1(c1).

Now,

Ymi(er+ c2) = Ui ((x1 4+ y1)ar + - 4 (T + Ym) )
= (@1 4y, T+ Ym)
:(«Tla-~-a$m>+(yla~--7ym)

=tYPmi(c1) + Yma(c).
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We also have

Um,a(ucr) = Y ((uz1)on + (uz)oo + - + (uam)an)

= (ux1,ux2, ..., Uly,)
=u(r1,T2,...,Tm)
= W/Jm,l(cl)~

This proves the first part of the lemma, and the second part of the lemma just follows from
the definition of the Lee weight on R,,.
For part (iii), we note that if ¥, 1(c1) = ¥m,1(c2), then this means that z; = y; for all 1,

which means that ¢; = c¢. ]

The following theorem is a similar result obtained for linear codes over Z4 in Chapter

2, and the proof is exactly in the same lines and so will be omitted here:

Theorem 4.23. Suppose that C is a linear code of type (4)¥1(2)*2 over Fo+ulFs. IfNE(5,29)

denotes the number of codewords in C' that have Lee weights congruent to j modulo 2¢, then
N&(7,2°) =0 (mod 29),  j=0,1,...,2°—1

where

ki + ko — 2672
q= 28—2

for all e > 2. Moreover,
N&(7,2) =0 (mod 2%1FR=1y 5 —0 1.

Now, suppose that C' is a linear code over Fom + uFom of length n. Then by [13], C is
permutationally equivalent to a code with a generator matrix
Iy, A  By+ubBs

G pu—
0 ulg, uD
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where A, By, Bo, D are all Fom-matrices. This means that our linear code C' is a linear code
of type (22™)k1(2™)F2 for some ki and ks nonnegative integers. We want to resolve the
question of the Lee weights of C' modulo 2¢ as we did for Fy + ulFa-codes above. Our basic
tool will be to reduce the situation to the case of Fy + uFs-codes by using the Gray map
Ym,1. We know that the weights are going to be preserved and, also by Lemma 4.22, we
know that the image will be a linear code over Fy + ulF5. But in order to get the results,
we need to understand what kind of a linear code we get as the image of C under the map

m,1. For this, we have the following lemma:

Lemma 4.24. Suppose that C is a linear code over Fom + uFam of type (22™)F1(2™)*2 and
of length n. Then, 1y, 1(C) is a linear code over Fa + uFa of type (4)™F1(2)™k2 of length

mn.

Proof. Suppose that 1, 1(C) has type (4)"(2)° for some non-negative integers r,s. The
first observation we make is that, since by Lemma 4.22, 1),,, 1 is an injective map, the size

of ¥r,,1(C) has to be the same as the size of C. This gives us the following equation:

2mky + mke = 2r + s. (4.29)

Now, suppose C' has the generating matrix given above, and let the rows of the generating

matrix be c1,cg,..., ¢k, b1,02,...,bg,. Let C be the subcode of C generated by

{ucy,uca, ..., uck,,bi,ba, ... by, }.

Then C is a linear subcode of C. In fact it is the largest uFam-subcode of C. Because if some
non-uFom combination of ¢y, ca, ..., ¢y, were in (uFom )™, then multiplying the combination
by w would yield a nontrivial combination of ¢y, ca, ..., ¢y being 0, contradicting the fact
that they are linearly independent. This means that all the codewords in C' that are in

(uFgm)™ are in C, which is a linear code of type (2)F1+k2

. Now, since 1y, 1 is a Fa + ulFa-
linear map, all the codewords in ¥, 1(C) that are in (uF)™" come from C. Now, the type
of ¥, 1(C) implies that there are exactly 2% such codewords in ¢y, 1(C). But since ¢y, 1

is an injective map, the size of such codewords in 1y, 1(C) has to be exactly the same as
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the size of C, so this gives us another equation:

mky + mky =1+ s. (4.30)

So now, combining equations (4.29) and (4.30), we get

r=mkiy, s=mks

as desired. ]
We are now ready to introduce the following corollary to Theorem 4.23:

Corollary 4.25. Suppose that C is a linear code of type (22™)F1(2™)2 over Fom + uFgm.
If Ng(j, 2¢) denotes the number of codewords in C that have Lee weights with respect to a

given TOB B ={ai,...,an} congruent to j modulo 2¢, then

N&(7,2°) =0 (mod 29),  j=0,1,...,2°—1

where

- mky + mky — 2672
9= 9e—2

for all e > 2. Moreover,
NE(7,2) =0 (mod 2¥mkrtmhz=1y 5 — 0 1,
Proof. This result follows directly from Theorem 4.23 by using Lemma 4.22 and Lemma

4.24. U

We will also be interested in proving that the result in Corollary 4.25 is best possible.
To do this, we need to understand the weight of a codeword with respect to a given TOB
B ={aj,a2,...,amn}.

Suppose a;, + aj, + -+ -+, € Fam is fixed with 1 <4y <ig < --- < i, < m. We will be



103

interested in the Lee weight with respect to B of
@iy gy + ooy, Fu(yion + yea + L Ymon)

where y1,y2, ..., ym runs through Fy. Note that the Lee weight of such a coordinate is the

Lee weight of

(ylal + Y202 + -+ Y, (21 D y1)ar + (22 D y2)ag + - 4 (T @ ym)Oém)

where @ denotes the summation modulo 2 and where z; = 1 for all ¢ € {i1,9,...,4,} and

0 otherwise. Then, it follows that the Lee weight with respect to B of such a coordinate is
ity t+oFym+ (1 —yy) +-+ (1 —.%H‘{j e{L,2,...,m}\ {ir,...,ir}|y; = 1}‘
So the Lee weights with respect to B of the set of coordinates of the form
i, o, + oo, Fulyrar + Yoo + o Ymay)
where y1,v2, ..., Yy, runs through Fs is the set
{2(21 +zo4 -+ zZmer) + 7‘|21, ey 2y € Fg},
for all v;,,...,y;, € Fa. This means that if
k
C :(Fgm + uIF‘gm> ,

then the Lee weight distribution polynomial of C is

oSS

r=0 j=
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Writing up the sums in their orders we get

m m-—r m m—r m m m—r
- 9r 2j+r _ 9T LT 27
> (0 ) -R () s

r=0 j= r=0 7=0
m
=Y (M)eras
r=0

This means that, for

k
C :<]F2m + UF2m> s

the weight distribution polynomial Po(z) of C' is simply given by
Po(z) = (14 z)?mk, (4.32)

Now, what happens if we take an element of the form u(ai, + oy, + -+ + «,) for

0 <r < m. Then its Lee weight with respect to B is the weight of
(oiy + iy + -+ F iy iy + Qi+ F i),

which is 2r. So the Lee weight distribution polynomial of C! :(uFQm)k is

Po(z) = < i (T) z2r> . (14 22)mk, (4.33)

r=0

We are now ready to prove the following theorem:
Theorem 4.26. The result in Corollary 4.25 is best possible.

Proof. Let us take the trivial block code

C =(Fym + uFym )™ (uFgm)". (4.34)
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Then, by (4.32) and (4.33), the Lee weight distribution polynomial of C' is given by
Po(z) = (14 2)2™R1(1 4 22)mk2, (4.35)
This can be written as

(1 422+ 22)mk1(1 + z2>mk’2 — (1 +z2)mk1+mk2+

2z - A(l + ZQ)mkl-‘rmkz—l +422 . B(l + Z2)mk1+mk2—2 + ...

where A and B are polynomials with integer coefficients. Now, by Corollary 2.14, we know

that the coefficients of (1 + 22)*¥ modulo 22° — 1 are strictly divisible by 29 where
k— 202
4= {WJ :

In \‘mkl +mky —j — QG_QJ - {mk‘l + mky — QG_QJ

But since

26—2 2@—2

for all e > 2 and j > 1,we see that

mky +mky — 26_2J

min{ug (N&(7,29)]5 =0,1,...,2¢ — 1} :{ = (4.36)

for all e > 2, which proves that the result in Corollary 4.25 is best possible when e > 2.

For e = 1, we have

Po(z) = (14 2)*™ (1 4 %)™k
= 2mk2(1 + Z)ka'l

= 22mk1+mk‘2—1 + 22mk’1+mk2—1z (mod 22 _ 1)

This means that the result in Corollary 4.25 is best possible for e = 1.

Just as in Chapter 2, the case when e = 2 will be considered separately. We will take
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in this case

Cy Z(Fgm + ’UJFQm)kl X Ck2

where CY, is the kp-dimensional ulFam-code that is generated by
{(«,0,0,...,0,u),(0,u,0,0,...,0,u),...,(0,0,...,0,u,u)}.

It can easily be seen that any codeword in C, has a Lee weight that is divisible by 4, which

means that, modulo z* — 1, we will have
Po,(z) = 2™2(1 4 2)™*  (mod 2* — 1),

but then by Corollary 2.14, the coefficients of (14 2)>™*1 modulo z* — 1 are strictly divisible
by 2m¥1=1 which means that the coefficients of Pg(2), modulo z* — 1, are strictly divisible
by 2mkitmk2—1 which proves that the result in Corollary 4.25 is best possible for e = 2 as

well. O

Remark 4.27. Comparing the results obtained in Chapter 2 for linear Z4-codes with the
results obtained in this section for linear codes over Fy + ulFy, we see that the results are
exactly the same. In fact, these two rings are very similar, with the u in Fo + ulFo working
like the 2 in Z4. But there is one major difference between the two rings. The Gray map
defined from Fy + uFy to F3 is a linear isometry while the Gray map defined from Z4 to F3

is not a linear map. More on this will be said in the next chapter.

Remark 4.28. While Fo + ulFs is very similar to Z4, the extension of the Lee weight to the
ring Fom +ulFom is not a homogeneous weight unlike the extension of the Lee weight from Z4
to the Galois rings that we used in Chapter 2. In this aspect, the results that we obtained
in this section, in particular the ones summarized in Corollary 4.25, are different than the

results obtained in Chapter 2.
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Chapter 5

Gray Images of Linear Codes and
Permutation Invariance of Binary

Codes

In this chapter we will see some applications of the Gray map in linking the invariance of
some binary codes under some permutations with linearity over certain rings. The moti-
vation for this chapter came from [2], in which the authors found necessary and sufficient
conditions for a binary code to be the Gray image of a linear code over Z4. Using this, they
reached some results about Zg4-linearity of Reed-Muller codes that can be summarized in

the following theorem:

Theorem 5.1. ([2]) The rth order binary Reed-Muller code RM (r,m) of length n =

2™ m > 1, is Zg-linear forr =0,1,2,m — 1, m.

When r doesn’t have the form in Theorem 5.1, they conjectured that RM (r,m) is not
Zy-linear, and they proved this when r = m — 2.

In both [11] and [13], the authors linked linearity over the rings Fy +ulFy and Fom +uFom
with the so-called swap map, which essentially is the permutation group Zo, and so this led
us to consider the question of whether the Reed-Muller codes are linear over these rings.

In section 1 we will give a brief introduction about permutations of binary codes in
section 2, we will consider the connection between permutation invariance and linearity
over certain rings, and in section 3 we will consider the Reed-Muller codes and we will
answer the question about these codes being linear over the rings previously studied. In

section 4 we will find the exact pre-images of the Reed-Muller codes that are linear over the
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rings considered in section 2. In the last part of the chapter, we will settle the question of
invariance of Reed-Muller codes under the permutation group Zyx and we will also consider

linear codes over the ring Fo + ulFg 4+ -+ - + u2k_1IF2.

5.1 Permutations of Binary Codes

Suppose that C' is a binary code of length n. Then we know that the permutation group
Sy, acts on this code by acting on the coordinates. Suppose 7 € S, is a permutation, and

¢=(c1,c2,...,cn) € Cis a codeword in C. Then

7(¢) = (67(1)7 Cr(2)s--- ,CT(n)). (5.1)

Definition 5.2. Suppose C is a binary code of length n. Then, for 7 € S,,, we say that C
is invariant under 7 if

T(C) = C.

We will say C' is invariant under a subgroup H of .S, if C' is invariant under 7, for all 7 € H,
ie.,

7(C) =C, VT e H.

Remark 5.3. We note that 7 is an injective map from C' to 7(C'), which means that |C| =
|7(C)| for all 7 € S,. So, we can modify the definition of 7-invariance of a code C by

requiring that 7(¢) € C for all ¢ € C.

We start with a lemma that will be useful for the rest of the chapter:

Lemma 5.4. Suppose that C is a k-dimensional linear binary code and suppose the gener-
ators are ¢1,¢Co,...,CL and let T € S, be a permutation. Then we have:

(1) 7@z+7y) =7@)+7(7) for all T,y € C.

(il) 7(x*7y) =7(T)*x7(y) for all T,y € C where x is the component-wise product.

(iii) 7(C) is a k-dimensional binary linear code with generators 7(¢1),7(¢2), ..., 7(Ck)-

(iv) 7(CH) =71(C)* if 2 =1.

Proof. Let T = (z1,22,...,2y) and ¥ = (y1,Y2,...,Yn) be two codewords in C. We then
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see that

T(@Z4+7Y) =71(x1+ Y1, 22+ Y2, -+, T + Yn)
= (Tr(1) T Y1) Tr(2) T Yr(2)> -+ Tr(n) T Yr(n))
= (1‘7_(1), xT(Q)? e ,.177—(”)) + (yr(l); yT(2)7 DRI yr(n))

=7(Z) +7(y).

The case when the operation is * is exactly the same, which means that (i) and (ii) are
proved.
To prove (iii), note that by (i) and by the remark above, it suffices to show that

7(¢1),7(¢2),...,7(¢;) are linearly independent. Suppose that

a17(¢1) + ot (C2) + -+ agT(cr) =0

with a; € {0,1} and not all o; being 0. Since o; = 0 or 1, by (i) we see that the above

equation is equivalent to

T(e1€1 + e + -+ + k) = 0,

which is equivalent to saying that

a1¢1 + aoly + -+ g =0

since 7 is injective, which implies that «; = 0 for all ¢ = 1,2,...,k as ¢1,¢o,...,c; form a
set of generators for C' and hence are linearly independent.

To prove (iv), we first note that, since 7 is injective, we have

r(Ch)] = Ct =27+, (5.2)
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However, since by (iii), 7(C') is a k-dimensional binary linear code, we have

[r(C)*F = 2" (5.3)

Combining (5.2) and (5.3), we see that

[m(C)H] = [ (CH). (5:4)

So, in order to complete the proof, we only need to prove a one-sided inclusion. To this

extent, suppose that 7 = (y1,¥2,...,¥yn) € 7(C)*. Then we have

Y1Zr(1) + Y2Zr2) + 0+ YnZrn) =0

for all (x1,29,...,7,) € C. Now, since 72 = 1, we know that 7(j) = i & 7(i) = j. Hence

the above equation can be written in the form

T1Yr(1) + T2Yr2) + - F TnYrn) =0

for all (z1,22,...,7,) € C, which means that 7(3) € C* or that § € 7(Ct) since 72 = 1,
which proves that
T(C)*F C r(CH).

5.2 Permutation Invariance and Linearity over Rings

We will first start with the ring Fy + ulFy that was studied in [13] and the permutation that

we will discuss is the swap map.

The swap map and the ring Fo + ulFy

We recall that the ring Fy + uFy is constructed by letting u? = 0. We recall also that a
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Gray map ¢ : (Fg + ulF9)™ — F3" is defined as

T +uy) =(T+7,7y), T,yeFy. (5.5)

Definition 5.5. Suppose that C is a binary code of length 2n for some n € N. The swap

map o on C' is defined to be the permutation

o= (1,n+1)(2,n+2) - (n,2n). (5.6)

So, if ¢ = (7,y) with Z,y € F}, then

a(c) = (¥, 7). (5.7)

Remark 5.6. Note that 02 = 1 and hence if we let the permutation group H be H = {1,0},
then we see that H ~ Zs. In fact, for notational purposes that will be apparent in the latter
part of the chapter, we will view the swap map as the permutation group Zs.

The connection between o-invariance and linearity over Fy + uF2 was given in [13],
but we still want to state the theorem and prove it here, as it will be a reference for the

extensions that we will study.

Theorem 5.7. A binary linear code C of even length is the Gray image of a linear code

over Fo + ulFy if and only if C' is invariant under the swap map.

Proof. Suppose that C' = ¢(D) where D is a linear F + uFa-code of length n, here 2n is the
length of C. Suppose ¢ = (Z,7) = ¢(d) where d € D and T and 7 are in F%. Note that, by

the construction of the Gray map, we must have

d=(Z+7)+uy. (5.8)

Now, since D is a linear code over Fo + uFy, we see that (1 +u)d = (T +7) +uZ € D as

well. Since C' = ¢(D), we see that ¢((1 + u)d) € C as well. But

o((L+uw)d) = ¢(T+7y+uz) = (3,7) = 0(). (5.9)
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This proves the necessary condition.

To prove sufficiency, suppose that C' is invariant under the swap map. Then if we look
at the inverse image of C' under ¢, we get an Fy-additive code over Fg + ulFy. To show that
the pre-image is a Fa[u)-module, we notice that the pre-image of the swap of a codeword is
(1 + u) times the original codeword by the discussion in the first part of the proof. This
means that the pre-image is invariant under multiplication by (1 4 w«) and hence by u, so it

is Fo + ulFo-linear. ]
Since 02 = 1, we can use Lemma 5.4-(iv) to prove the following theorem:

Theorem 5.8. Suppose that C is a binary linear code of length 2n for some n and let C+
be its dual. If C is Fo +ulFo-linear or equivalently if C' is invariant under o, the swap map,

then so is C+

Because of Theorem 5.7, we will have the following corollary to Theorem 5.8, which in

fact is a stronger way of stating the same theorem:

Corollary 5.9. Suppose C' is a binary linear code of length 2n and suppose that

C=¢([D)

for some Fa 4 ulFa-linear code D of length n. Then

Ct = ¢(Dh).

Proof. Suppose that a binary linear code C' of length 2n is the image under the Gray map
of a linear code D over Fy + ulFy of length n. Now, suppose that T+ € D+, which means
that

(T +uy) - (dy +uds) =0

for all di + uds € D, which is equivalent to saying that

f-glzo, T-E2+y~81:0 (5.10)
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for all di + uds € D. However, then we see that

by (5.10). This means that
¢(D) C C*. (5.11)

Now, since ¢ is injective, we see that |C| = |¢(D)| = |D|. And since |C] - |C*| =
|D| - |D*| = 4", we see that |C+| = |Dt|. Again, using the injective property of ¢ we
conclude that

[6(DH)] = |CH. (5.12)

The result of the corollary now follows from (5.11) and (5.12). O

The ring Fy 4+ uFy + ©?Fy + u3Fy and the permutation group Z,
The first natural extension to the swap map, that is, the permutation group Zs, will be the

permutation group Z4, which we can denote as

Zy={1,p,p* p*}

where p acts on a binary word of length 4n as the permutation

p=1,n+1,2n+1,3n+1)(2,n+2,2n+2,3n+2) - - - (n, 2n, 3n,4n). (5.13)

So, if

T = (T1,T2,T3,T4)

is a binary codeword of length 4n for a positive integer n, then we can simply write
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p(T) = (T4, T1, T2, T3). (5.14)

Definition 5.10. Suppose that C' is a binary code of length 4n for some integer n. Then
we say C' is p-invariant or, equivalently, that it is invariant under the permutation group
Z4 if we have

p(C) =C.
Remark 5.11. If p(C) = C, then p?(C) = p*(C) = C so indeed Zj-invariance and p-
invariance are equivalent.

The ring Fo 4+ uFg +u?Fy +u3F5 is constructed in the usual way subject to the condition
u* = 0 and the ring has characteristic 2. A linear code over Fo+uF+u?Fo+u3Fs of length n
is defined as usual to be an Fy + ulFy + u2Fy + u3Fe-submodule of (Fo 4+ ulFy + u?Fqy + u3IF2)".
As in the case of Fo + ulFa-linear codes we can define a Gray map that is a linear map,

denoted by . So it is defined as

Y : (Fy + uFy 4 u’Fy + u3Fo)" — F3"

in such a way that

Y@+ ub+u*c+utd) = (@+b+ec+db+dc+d,d) (5.15)

with @,b,¢,d € F3. Note that, v is an Fo-linear map, and so it maps linear codes over
Fy 4 uFy + uFo + u3Fy of length n to binary linear codes of length 4n. We are now ready

to state the theorem that is analogous to Theorem 5.7.

Theorem 5.12. Suppose C' is a binary linear code of length 4n. Then C is the Gray (V)

image of a linear code over Fo+uFa+u?Fo+uFy of length n if and only if C is Zs-invariant.

Proof. The proof is exactly the same as the proof of Theorem 5.7, so most of it will be

omitted. We will only note that any given binary codeword

7 = (a,b,¢c,d)
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can be considered as the image of a codeword
7= (@+b+c+d) +ulbd+d) +u*C+d) +u'd

We then have

The ring F9 4 uFy + vFy + uvFo and the permutation group K,
Suppose C is a binary code of length 4n for some integer n. Then we introduce the following

permutations that are regarded as the elements of the Klein-4 group, Ky = {1, a, 3,7}:
a=[1,n+1)2n+1,3n+1)]-[(2,n+2)(2n+ 2,30+ 2)] - - - [(n, 2n)(3n, 4n)]

B=[(1,2n+1)(n+1,3n+ 1)]-[(2,2n + 2)(n + 2,3n + 2)] - - - [(n, 3n)(2n, 4n))
v=[(1,3n+1)(n+1,2n+1)]-[(2,3n+2)(n + 2,2n + 2)] - - - [(n,4n)(2n, 3n)].

Note that, if we denote a codeword T as (71, To, T3, T4) where each T; is a binary vector of
length n, then we have

(T, Ta, T3, Ta) = (T2, T1, T4, T3)
B(Z1, T2, T3,Ta) = (T3, Ta, T1,T2) (5.16)
v(T1, T2, T3, T4) = (T4, T3, T2, T1).

Note that § is the same as the usual swap map defined in the previous sections.
As usual we define Ky-invariance of a binary code C of length 4n as being invariant
under the permutations «a,3,v. We will connect the invariance under this permutation

with linearity over a certain ring.
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Let Fo 4+ ulFo + vIFo + uvlFe be the ring of characteristic 2 that is constructed subject to
u? = v? =0 and wv = vu. As usual, we consider linear codes over Fy + uFy + vFo + uvFy

of length n to be Fy 4+ uFy + vFy + uvFo-submodules of (Fg + uFy + vFy + uvFq)™. Let D

be such a linear code. Then we can write any codeword d € D in the form

d= 1 + uT9 + VI3 + UVT4

where 7; € F3.

We define a Gray map ¢ : (Fa + uFy + vFy + uvFa)"™ — F3" as

go(fl + ur9 + VT3 + uvﬁ;) = (fl + To 4+ T3 + T4, T3 + Ty, T2 + 54,54). (5.17)

Note that ¢ is a linear map and it maps a linear code over Fy + ulFy 4+ vFy 4+ uvFa of
length n to a linear binary code of length 4n. Moreover, it is obvious that ¢ is injective.
The analogous theorem that connects the K -invariance to linearity over these rings can be

stated as follows:

Theorem 5.13. Suppose that C is a binary linear code of length 4n. Then C' is the Gray(yp)

image of a linear code over Fo+ulFo+vFo+uvFy of length n if and only if C' is K4-invariant.

Proof. Suppose that C is the image of a linear code D over Fg + ulFo + vIFo + uvFy of length
n. So, suppose ¢ = (T1,T2,T3,T4) € C is a codeword. Then it is easy to see that it is the

image under the Gray map of the codeword

d= (Tl + Ty + T3 +f4) + u(fg, +f4) + U(fg +f4) + uv(@).
But then we have
o((1+u)d) = (T3,T4,T1,T2) = B().
e((1+v)d) = (T2, 71,74, T3) = a(C).

o((1+u+v+uw)d) = (T4, T3, T2, T1) = 7(0)
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which proves one side of the implication.

For the other implication, we suppose that we have a binary linear code of length 4n that
is K4-invariant. Suppose D is the code over Fo+ulFo+vFo4+uvFy of length n that is obtained
as the pre-image of C, which is obviously additive. Now, from the above calculations, C
being invariant under § means that D is invariant under left multiplication by 1 + u and
hence u. The invariance of C' under « implies that D is invariant under left multiplication by
14 v and hence v. Finally, the invariance of C' under v implies that D is invariant under the
left multiplication by (1+wu+ v+ uv), but since it is already invariant under multiplication
by v and v and since it is additive, it implies that it is invariant under multiplication by uv.

This proves that D is a Fy 4+ uFg + vF9 + uvFo-submodule of (Fy 4+ uF9 + vFo + uvFq)"™. O

5.3 Reed-Muller Codes and Permutation Invariance

In this section, we will apply the results of the previous sections to see that Reed-Muller
codes, in most cases, are actually linear over the rings Fo 4+ ulFy, Fo + ulFo + u?Fy +u3Fy and
Fy + ulFy 4+ vlFy + uvlFy unlike the case of Z4-linearity. To do this, we will first introduce the
Reed-Muller codes and see some of their properties. Most of the information can be found
in books like [6] and [20].

We first let v = (v1,v2,...,v,) denote a vector that ranges over F5', and we let f be the
vector of length 2™ obtained from a Boolean function f(vi,ve,...,vy), i.e., a polynomial in
v1, V2, . .., Um Where the degree of each v; is at most 1. A Boolean function of this form will be
an Fy-linear combination of terms of the form v;, v;, ... v;, with 1 <141 <ig < -+ <ip <M.
The highest such » > 0 in f is said to be the degree of f. So, if we consider f to be a

polynomial in the variables vy, v, ..., vy, then the degree is the total degree of f. We then

define the Reed-Muller codes as follows:

Definition 5.14. The r* order binary Reed-Muller (or RM) code RM (r,m) of length
n = 2™ for 0 < r < m, is the set of all vectors f, where f(vi,ve,...,v,) is a Boolean

function that is a polynomial of degree at most 7.

Remark 5.15. RM (r,m) is a linear binary code of length 2™ and is of dimension 1+ (7]') +

).

r
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Remark 5.16. We can actually specify all the generators of RM (r,m). A set of generators
for RM (r,m) would be

{1,1)1,1}2,.. -3 Um, V102, - -+, Um—1Um,, - - -, U102 * = Upy -« o, Um—pr+1 Um}

We can consider these as binary vectors of length 2™, for example, 1 will correspond to
the all 1 vector of length 2. wv; will be the {0,1}-vector of length 2" that has 1 that
corresponds to the vectors in Z3' that have their first coordinate as 1 and 0 for all the
others. Note also that v;v;, as a binary vector, is just v; xv;, the component-wise product of
the vectors of v; and v;. This means that once we specify v1,va, ..., vy, we can find all the
generators of RM (r,m) for 0 < r < m. It is obvious that we can define the Reed-Muller
code RM (r,m) uniquely up to a permutation equivalence by fixing a sort of ordering on

the elements of Z1', which we will describe inductively as:

m=zrtouzZyr,  m>1. (5.18)

For the rest of this work, when we talk about the Reed-Muller code RM (r,m), we will con-
sider the binary linear code obtained uniquely from the basic boolean generators 1, vy, ..., vy,

with the ordering that was fixed for Z3" in (5.18).

In [20], the automorphism group of RM(r,m) is given as the general Affine group,

denoted by GA(m), which can be defined as the group of all Affine transformations:

U1 U1
V2 V2

T =A +b
Um Um

where A is an m x m binary matrix and b is a binary m-tuple. MacWilliams and Sloane

showed in [20] that

Aut(RM (r,m)) = GA(m), 1<r<m-—2.
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Of course we know that RM (0, m), RM(m —1,m), and RM (m,m) are invariant under the
whole Som.

We are now ready to prove the first theorem about permutation invariance of RM (r,m):

Theorem 5.17. The Reed-Muller code RM (r, m) is invariant under the permutation groups

Lo, Ly, and Ky for all 0 <1 < m.

Proof. Recall that the permutation group Zs means the swap map, Zz = {1,0}, and Zy =
{1, p, p?, p®} while K4 = {1, 0, 3,7} with their actions defined in (5.7), (5.14), and (5.16),
respectively. Let vy, vg,..., v, be the basic boolean generators of RM (r,m). It is enough
then by Lemma 5.4 to show that the permutations acting on the Boolean functions of degree
< r will be in RM (r,m) too.

In order to see this, we will write these generators in terms of the generators of RM (r, m—

2) by using the ordering (5.18). Note that we can write

o= Z5200 U Z5 210 U Z5 201 U Z5 1, (5.19)
which means if wy, wa, ..., wy,_9 are the basic boolean generators of RM (r,m —2) of length
2m=2 then we have

v = (w4, wi, wi, w;), Vi=1,2,...,m— 2. (5.20)

And for v,,_1 and v,, we get

Um—1 — (0277172, 1277172, 02m72, 12m72), Um = (02777,72, 02m72, 12777,72, 1277172). (521)

Let’s start with o, which is the swap map. By the above equations we see that

o(v;) = v, 1=1,2,...,m—2

and 0(vy—1) = Um—1 while o(vy) = 1 + vy,. So, if we apply o to a Boolean function
of v1,v9,..., vy of degree r, then by Lemma 5.4, we will still get a Boolean function of

v1,. ..,V of degree r. This means that RM (r,m) is invariant under sigma or equivalently
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under the permutation group Zs. We could also see this by noticing that o defines an Affine
transformation of vy, vy, ..., vy, and hence is in the automorphism group of RM (r,m).
To extend this to Z4, we only need to check the action of p. By (5.20) and (5.21), we

see that

pvi))=v; i=1,....m—=2, p(vm-1)=14+vm-1, p(om)=14+vVm_1+0v,. (5.22)

Now, let’s look at the binary vector v;, *v;, * - - - % v;,, which is the vector that corresponds

to the Boolean function v;, ---v;,. By Lemma 5.4 and by (5.22), we have

(Ui, * Uiy k- kU ) = V5, kU k- kv, € RM(r,m), i, 0s € {1,2,...,m —2}.

Since Fy is a field, multiplication is distributive over addition, which means that T (y+7%) =
T xy + T * z for binary vectors x,¥,z. Note also that T xx = T for all binary vectors . But

this means that

O (Vpn—1 % Vg % =k V) = Vjy K gy % -+ % Uy, F Upp] % Ugy % Uy % =+ % U,

and

O (U % Vjy % Vjy v+ ok V) = Vg KV k= v+ KV, F Uy ] KUy KUy k= v+ KV, + Uy K Vi ¥ Vg K-+ - % V;,

for all 17 <ig <---<ig€{1,2,...,m —2}.
The only remaining case is to look at a vector of the form vy,_1 % vy, % v, * - - - % v;,, but

then by the above discussion we see that

O (Uppe1 % Uy % Vjy %+ 05 ) = Uy k- % Vg F Upp 1 % Uy % ok Uy, Upp k Vgy % -+ % 0

T+ U1 % Uy ¥ U4y % -+ - % U5,

which is still in RM (r,m). Since p takes all generators of RM (r, m) to vectors in RM (r,m),

by Lemma 5.4 we can conclude that RM (r,m) is invariant under the permutation p or
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equivalently under the permutation group Z,4.
To see the permutation invariance under Ky, we look at the images of the basic gener-

ators under the permutations of Kjy:

a)=v;, i=1,....m—2, alvy—1)=140vm-1, alvy) =1y

6(’[)2'):’01‘, ’L.Zl,...,m—Q, ﬁ(vm—l):vm—la /B(Um):1+?)m
yi)=wv, i=1,....m—2, Y(vm-1) =1+ vm-1, Y(vm) =14 vp.

By the same reasoning as above in the case of Z4, we can easily see that all the generators of
RM (r,m) with 0 < r < m are mapped to vectors in RM (r, m), which proves that RM (r, m)
is invariant under the action of the permutation group K4 by Lemma 5.4.

Note that for r = 0, we have RM (0, m) = {0, 1} which is invariant under all permuta-

tions in Som. So, the proof of the theorem is concluded. O

An immediate corollary of Theorem 5.17 comes from the results of the previous section,

which were summarized in the form of Theorems 5.7, 5.12 and 5.13:

Corollary 5.18. The Reed-Muller code RM (r,m) is the Gray image of linear codes over
the rings Fo + uFa, Fo + uFy + u?Fy + u3Fy and Fy + uFy 4+ vFy 4+ wvFy for 0 < r < m, for

the appropriate Gray map defined for each ring as was done in Section 5.2.

As we see, this turns out to be another big difference between Z, and Fy + ulFo, as
another corollary could be stated as follows that is in contrast to Theorem 8 in [2] for the

case of Z4.

Corollary 5.19. The binary code RM(m—2,m), i.e., the extended Hamming code of length

n = 2", is Fy + ulFy-linear.

5.4 The Pre-images of Reed-Muller Codes under Gray Maps

Theorem 5.17 and Corollary 5.18 in the previous section tell us that the Reed-Muller codes

RM (r,m) can be obtained as the Gray image of linear codes over the rings Fy + ulFy,
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Fy + uFy + uFy + u3Fy and Fo + ulFy 4+ vFy 4+ wvFy for all 0 < r < m. We are curious to
find these linear codes that give us the Reed-Muller codes in this section. Before starting
to find the exact pre-images, we need to introduce a theorem about Reed-Muller codes that

proves to be very useful in finding these pre-images:
Theorem 5.20. ( Theorem 2, [20] ) For 0 < r < m, we have the following identity for
Reed-Muller codes:

RM(r+1,m+1)={(¢,c+d)|ce€ RM(r+1,m),d € RM(r,m) }.

We start by finding the pre-image of RM (r,m) as a linear code over Fy + uFs.

Definition 5.21. Define by FRM(r,m — 1), for r = 0,1,2,...,m, the linear code over

Fy + ulF3 that is generated by RM (r — 1,m — 1) and uRM (r,m — 1).

Remark 5.22. We are making the conventions that RM(—1,m — 1) = RM(m,m — 1) = 0.

At this point we want to introduce the following useful lemma:

Lemma 5.23. For 1 <r <m —1, we have
FRM(r,m—1) :{a6+ﬂu3‘66 RM(r—1,m—1),d € RM(r,m —1);a, 3 GZQ}.

Proof. We know that

FRM (r,m—1) = {(a+~yu)e+ud|c € RM(r—1,m—1),d € RM(r,m—1);a,7,\ € Zy}

={ac+ (y+ Nu(c+d)[ce RM(r—1,m—1),d € RM(r,m — 1);o,7,\ € Zs}.

Now, as A, run through the elements of Zg, so does = A + ~. Also, since RM (r —
1,m —1) C RM(r,m — 1), we see that ¢ + d runs through the codewords of RM (r,m — 1)
as ¢ and d run through codewords of RM(r — 1,m — 1) and RM (r,m — 1), respectively.

Putting these into the above, we see that

FRM(r,m —1) = {ac + ﬂu&\z €RM(r—1,m—1),d € RM(r,m —1);a,3 € Zs}



123

as expected. O
Remark 5.24. FRM (r,m — 1) is generated by
1,'01,1)2,.. 5 Um—1y---,0102 . . Up—15.+ s Um—pr41:--Um—1,UV1V2 ... Upy..., UUp—p ...Um—1.

So, as a code over Fy + ulFy, it is of type

(4) 1 m=D++ (75 () ("),

We can observe the following lemma about the sizes of the codes FRM (r,m — 1) and

RM (r,m):

Lemma 5.25.

|FRM (r,m — 1)| = |RM (r,m)|.

Proof. From Remark 5.24, we see that
|FRM (r,m —1)| = 29

where
g=2[1+(m—1)++ <T__11>] + (mr_1>

Now we will use the classical identity
()= ("))
= + )
T T r—1
m—1 m—1 m
=21 -1+ .
e (2 (00) ()

Applying the same identity for r — 1, we get

g=2[1+4(m—1)+-+ (T:;)] + (T:;) + <TT1> + (T)

So we get
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Continuing in this manner, we see that inductively, we will get

m m
st (D) 4o (7).
2 T

which is the dimension of RM (r,m), proving the assertion. O

We observe, from Lemma 5.23 that since a¢ € RM(r — 1,m — 1) for all a € Zo,
¢e€ RM(r—1,m —1) and also 8d € RM(r,m — 1), for all 8 € Zy, d € RM(r,m — 1), we

have
FRM(r,m —1) ={¢+ud|c€ RM(r—1,m—1),d € RM(r,m — 1)} (5.23)

foralll<r<m-—1.

Theorem 5.26. The image of FRM (r,m — 1) under the Gray map ¢ : (Fg + uFg)™ — F3"
is the Reed-Muller code RM (r,m).

Proof. We know by Lemma 5.23 and (5.23) that
FRM(r,m—1) :{E—i—ua‘ée RM(r—1,m —1),d € RM(r,m — 1)}

Since RM(r —1,m — 1) C RM(r,m — 1), we see that ¢ + d runs through the elements of
RM (r,m — 1) as ¢ runs through RM(r — 1,m — 1) and d runs through RM (r,m — 1). So,

if we call @ = ¢ + d, then we get

¢(FRM(r,m —1)) ={(¢+d,d) |¢€ RM(r —1,m —1),d € RM(r,m — 1)}
={(@a+7c)|ce RM(r—1,m—1),ac RM(r,m—1)}

= RM (r,m)

by Theorem 5.20. O

Remark 5.27. When r =0, FRM (0, m — 1) is generated by ulym-1 whose image under the

Gray map is {Ogm, 1om } = RM(0,m).



125

When 7 = m, FRM(m,m — 1) = (Fy + uF2)2" . The Gray map of this obviously is
{e+d,d)|e,deF3" "} =F3" = RM(m,m).

This means that the result in Theorem 5.26 is true for all 0 < r < m.

In exactly the same way as we did above, we can find the pre-images of the Reed-Muller
code as linear codes over the rings Fo + uFs + ©?Fy + ©3Fy and Fy + uFy 4+ vFy + uvFy. We
will summarize them in the following theorems, but omit the proofs as they are very similar

to the proof of Theorem 5.26.

Theorem 5.28. Suppose that SRM (r,m) is the linear code over Fo + ulFy + u?Fy + u3Fy

of length 2™~2 generated by
RM(r —2,m —2),uRM(r — 1,m — 2),u>RM(r — 1,m — 2),u> RM (r,m — 2).

If ¢ : (Fo + uFy + uFy + udFo)" — F3" is the Gray map as defined in Section 5.2, then we
have

Y (SRM(r,m)) = RM(r,m).

Theorem 5.29. Suppose that DRM (r,m) is the linear code over Fo + uFs + vFy + uvFy

of length 2™~2 generated by the codes
RM(r—2,m —2),uRM(r —1,m — 2),vRM(r — 1,m — 2),uwoRM (r,m — 2).
If ¢ : (Fo + uFy + vFa + uvFe)™ — Fa™ is the Gray map defined in Section 5.2, then
¢(DRM (r,m)) = RM(r,m).

5.5 Reed-Muller Codes and the Permutation Group Zo:

In sections 5.3 and 5.4, we proved that the Reed-Muller codes RM (7, m) are invariant under

the permutation groups of Zs, Z4, and K4 by proving it directly as well as by proving that
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they are the images under the Gray maps of certain linear codes over the rings Fo + ulFo,
Fy 4+ uFy 4+ u?Fy + ©?Fy and Fy + uFy + vFy + uvFy, respectively. In fact, we were able to
find the exact pre-images of Reed-Muller codes in these rings. Since the Reed-Muller codes
are of length 2™, it is natural to ask the question about the invariance of Reed-Muller codes
under the permutation group Zox, of course with & < m. The work in the two previous
sections tells us that RM (r,m) is invariant under the permutation group Zqx for k = 1 and
k=2forall 0 <r<m.

Let us remember that the permutation group Z,x is generated by 7, where

T(T) = (Tok, T1, T2y -+ -, Toh_1)- (5.24)

Here, T = (71, ...,Tox) with T; being binary vectors of length n.
We first start with a special case that rules out the possibility for the Reed-Muller codes

to be invariant under Z,: for all k.
Lemma 5.30. RM(1,m) is not Zom-invariant when m > 3.

Proof. We will use the construction that we have of Z3* as

zy~touzyt,

which means that if 1, wy, wa, ..., wn—1 denote the basic generators of RM (1, m — 1), then
we have

v = (wi,w;),  i=1,2,...,m—1
and

Um — (02111—17 12m—1).

Now, if we apply the permutation 7 = (1,2,...,2™) to v,,, we get

T(Um) = (1,02m—1,1, 0, 12m—171).

Now, suppose 7(v,,) € RM(1,m). Then this would be true if we were to restrict ourselves
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to the left-half of the codes. But each codeword in the left-hand half of RM (1, m) with
m > 3 has even weight while the left hand half of 7(v,,) has weight 1, which gives us the

contradiction we need. O

In order to get a result about Zg-invariance of RM (r,m), we will need to impose some
restrictions on k,r, and m. To do this we will first start with the basic generators of
RM (r,m) and we will use similar techniques to the ones we used in the previous section.
Suppose v1, Ve, . . ., U, are the basic Boolean generators of RM (r, m). We will have to prove
that 7 applied to each generator of RM (r, m) will still be in RM (r,m). Now, suppose k < m.

We will construct Z3" inductively as
z57%000...0U---UZP 11T, .. 1,

which means we will have the following forms for v; in terms of the basic Boolean functions

m—k .
W1, W2y« ooy Win—k OfZ2 :

vi:(wi,wi,...,wi), 121,2,.__’m_k

Um-ri3 = (0,0,0,0,1,1,1,1,...,0,0,0,0,1,1,1,1)

where each 0 and 1 is a vector of length 2™~ that consists of 0’s and 1’s, respectively. So,

then we have

T(’Ui) = V;
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foralli=1,2,...,m—k.

Now we need to see what happens when ¢ > m — k. It is easy to see that

T(vm—rs1) = (1,0,...,1,0) = 1 + vp_ga1, (5.25)

and

T(Um,k+2) = (1, 0, 0, 1, 1, Ce ,6, 6, T) = Um—k+2 +T(Um,k+1) = 1+Um,k+1 +Um,k+2. (526)

Now let’s look at vy,_r13. It is easy to see that

= T(Um—k+1 * Um—k+2)
= T(Vm—k+1) * T(Vm—k+2)
= (1 + Um—k—i—l) * (1 + Up—k+1 + Um—k’-i—?)

=14+ Vm—k+1 + Vm—k+2 + Vm—k+1Vm—k+2-

This means that

T(m —k+ 3) =14 Vm—tt1 + Vm—k+2 + Vm—k+1Vm—k+2 + Um—k+3- (527)

To see the general picture we look at 7(v,,—g+;) inductively, and we see that for ¢ > 3, we

have

Vm—k+i + T(vm—k+i) = ((1,0,0,...0),(1,0,0,...,0),...,(1,0,0,...,0)) (5.28)

where each (1,0,0,...,0) is of length 2! and hence can easily be seen to be

T(Vm—kt1 * Um—kg2 % = % Uy ppio1)-
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So we see that

T(Um—k+4i) = Um—kti T T(Um—kt1 * Um—kg2 % - % U kgio1), i>3. (5.29)

However, by induction on 4, we can conclude the following lemma:
Lemma 5.31. 7(vy,—+i) @5 a Boolean function of Vy—g+1, ..., Um—k+i of degree i — 1.

This of course puts a restriction on k in terms of r because the codewords in RM (r, m)
are Boolean functions of 1,v1,..., v, of degree at most r, and Lemma 5.31 tells us that
T(vm) is a Boolean function of v,,_g41,..., v, of degree k — 1. As an example if we look
at RM(2,4), with 1,v1,v9,v3,v4 its basic Boolean generators, and if 7 is the generator
permutation of the permutation group Zs, we see that 7(v1vy4) is not in RM(2,4). In fact,
we have the following theorem that will basically tell us that invariance under Zs and Z4

is, in a sense, the best we can expect.

Theorem 5.32. Suppose 3 < k < m is an integer. Then RM (r,m) is invariant under the

permutation group Zer if and only if r =0,r =m, orr =m — 1.

Proof. Recall that RM (0,m) = {Oam, Iom } and RM (m,m) = F2" which are both invariant
under any permutation. Note also that from [20], we know that RM(m — 1,m) consists
of all binary vectors of length 2™ that have even weight, and since weights are preserved
under any permutation, RM (m — 1,m) will also be invariant under any permutation.

Now suppose that » = 1 and let 7 be the generator of the permutation group Zox and let
v1, V9, ..., Uy be the basic generators of the Reed-Muller code. Then, since by Lemma 5.31,
7(vm) is a Boolean function of vy, k11, Um—k+2,--.,0m of degree k — 1 and since k > 3,
we see that 7(vy,) is a Boolean function of degree k — 1 > 2, which means that by the
construction of the Reed-Muller codes, 7(v,,) is not in RM (1, m).

Now let 2 <r <m — 1 and let kK < m. Then, let’s look at v,v;,vi, -~ v;,_,_ V1 Vs €
RM (r,m), where 1 < s < m—k and iy,1i2,...4—s—1 are distinct numbers that are in {m—k+
1,...,m—1}. Then, by (5.29) and by Lemma 5.31, we see that 7(vy,vi, viy - - - Vi, V1 Vs)

is a Boolean function of vy, ..., vs, Vym—k+1, - .., Um of order £ —1+s. Now, we want to take
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the maximum possible s such that s <r —1 and s < m — k. We have to look at two cases
then.

Suppose that m — k > r — 1. Then, take s = r — 1, which means that

T(Vpv1 *+ - Up—1)

is a Boolean function of vy,...,v.—1, Vm—k+1,.-.,Um of degree k — 1 + r — 1, which means
that 7(vpv1 -+ vp—1) € RM(r,m) if and only if Kk — 1+ r — 1 < r, which means k < 2.
Now, suppose that m — k < r — 2. Then, we will take s = m — k, which means that, in

this case, we will have

T (Ui Vig * Vi V1" "~ Us) = T(UmVi Vig *** Vi V1 V)

as a Boolean function of vy, va, ..., Upm—k, Um—k+1,- - -, Um Of degree k—14+m—k =m—1>r,

which means RM (r,m) is not invariant under Z,x in this case. O

Remark 5.33. As we see in Theorem 5.32, we know that RM (r,m) is not usually invariant
under the permutation group Zor except in special cases like k = 1,k =2 orr = 0,r =
m,m — 1. This means that the discussion about the permutation invariance of Reed-Muller

codes under the permutations in Section 5.3 is in a sense complete.

5.6 Linear Codes over Fy+uFy+- - -+u2 ~'Fy and Z,r-invariance

We will finish this chapter by working out analogous results to Theorem 5.7 and Theorem
5.12. In fact we will be generalizing those results. To this extent, we will first define linear
codes over the ring S, = Fo4ulFo+- - -+u2k*1F2, which is constructed just like the previous

cases of k =1 and k = 2, where we have u2" = 0 here. Notice that we have
Sy, ~ Fo[X]/(X2). (5.30)

Note that Sy is a finite chain ideal ring with all its ideals defined as {I; = w Skl =

0,1,2,..., 2k} where U2k52k = 0, the zero ideal. A linear code C over the ring Sy of length
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n is defined in the usual way, that is, C'is an Si-submodule of S}
Since the ring Sy is a finite chain ideal ring, we can talk about the type of the code C.

So, every linear code C' is permutational equivalent to a code with type
(22k)r1 (22k—1)r2 o (2)r2k

with r;’s being non-negative integers. This means that the generating matrix of C' will have

the following form:

I7“1 Al Am
0 wul, uBp . . uBpm—1
G =
0 . . 0 um ! I, um™ D

where m = 2* and A;, Bj and so on and D are matrices over S;. Note that in this case we

have

C| = 2T12k+r2(2k_1)+"'+r2k‘ (5.31)

Next, we will define a Gray map ¢ : Sp — F%k”

Definition 5.34. Let

a=ao+ua + - +u2 lap , €SP
be given with @; € Fy for each 1 =0,1,... ,2F — 1. Write @ in the following way:

— _ ok _1_
—a0+ua1+"‘+u U/Qk_l

_ k—1

k k k—
— (@ + v Tyr) +u@ + v Ggeor ) AU T (@t + U Tgr_ ).
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Then we define ¢ (a) as follows:

o (@) =(Pr-1(A0(a)) + dr-1(A1(a)), pr—1(A1(a))) (5.32)
where
Ao(@) = ao + uay + -+ v ager (5.33)
and
Al(ﬁ) = Ggk—1 + UGgk—149 + -+ + u2k71_ Aok _1. (5.34)

Remark 5.35. Note that this definition is indeed an extension of the Gray maps for S =
Foy + uFy and Sy = Fy + uFy + u?Fs + u3Fy because ¢1 = ¢ that was defined in (5.5) for Sy
and ¢9 = 1, which was defined for Sy in (5.15).

Before stating and proving the main result of this section, which is an analogous result
to those obtained in Section 5.2, we need to understand the map ¢y, better.

We introduce the notation Bf by letting

dr(@o + uay + - +u2 g _,) =

(B§ @0, - - Gyx_1), B (@0, - - -Gk 1), - -, Bo_ (@0, Ggx_q1))  (5.35)

where each BF(@y,...,@_;) is a {0, 1}-linear combination of the vectors @, @y, . . ., Gk_;

and it is given inductively as
BF(do, ..., dyr_1) = BF (@0, ..., Gp-1_1) + BF Y(@gk-1, ..., Ggk_1) (5.36)
for all i < 2F=1 and
B (@0, ..., aGg_1) = Bl )y (@ye-1,. .., g _;) (5.37)

for all 7 > 2k 1,
Using (5.35)—(5.37) and induction together with Pascal’s identity one can prove that

exactly (’f) of the B;“ ’s have 2~ terms in their linear combinations. Our first observation
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will be the following quick lemma:

Lemma 5.36.
Bg(ao, e ,621@_1) =ap+ a1+ -+ Gork_q
and
Bl (@0, @, .. Ggx_y) = Tyr_,
for all k.

Proof. This follows easily from the fact that these statements are true for k =1 and k = 2

and by induction, using the identities (5.35)—(5.37), which basically is the construction of
Pr- O

A main tool in understanding ¢ will be the following lemma;:

Lemma 5.37. Fora € S}! and T the generator of the permutation group Zqx, which basically

1s the cyclic shift of the n-vectors, we have the following:

or((1+ u)a) = 7(ox(a)).

Proof. We will use induction. This statement is certainly true for £k = 1 and k = 2. Suppose

it is true for k — 1. We first note that

(1+u)a =do+u(@+@) + - +u> 2(gr_g + Tor_y) + u? " (Ape_y +Tpe_;)

= (ao +u(ap+ay)+---+ UZk_lfl(EQk—l,Q + a2k—11))
k=1 (_ - = I R a
+u Agk—1_1 + Gor—1 + U(Ggk—1 + Gor-1,1) + +u (Ggr_o + Tgk_q) |-
But this means that
Ao (14 wa) = (1+u)Ao(a) (5.38)

and

A1 (1 +w)a) =agr-1_1 + (1 +uw) A1 (a). (5.39)
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Now suppose that

¢k71("40(a)) = (507517 s 752’“—171)

and

¢k—1(Al (a)) = (yO’gla s 7?2’6*1—1)

so that we would have

k(@) = (To +Yos - -+ Top—1_1 + Yok—1_1,Ygs Y1» - - - » Yoh—1_1)- (5.40)
By using (5.38) and (5.39), we see that
or((1 4 u)a) = <¢k—1((1 + u)Ao(@) + Gr—1(Age-1_1) + dr—1((1 + u) A1 (@),

Or—1(agr—1_1) + dp—1((1 +u)A; (a))> . (5.41)

We now use induction hypothesis to note that

d)k—l((l + U)Ao(a)) = (ka*1—17f0¢ s 7f2k*1—2) (542)

and

Or-1((1 +u)A1(@) = (Yor—1-1,Ygs- - - Yor-1_2) (5.43)
and we also note that

st_l(anfl_l) - (621971_1, 0, ceey 0) - (TQk—l_l,ﬁ, 6, e ,O) (544)

because by Lemma 5.36, Tor—1_; = Gor—1_1. Now, combining (5.40)—(5.44) we get

oe((L+u)a) = (Tye1y +Ypr11 + Tor1_1,T0 + oy -, Tar-1_9 + Yor-1_g,
Top—1_1 + Yok—1_1,Y0> Y15+ - - » Yok—1_2)
== (ng—l_l,fo + yo, P 732’“*1—1 + g2k71—17§07 P ,y2k71_2)

= 7(on(a))).
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Remark 5.38. An easy induction shows that ¢ is an Fo-linear and injective map from S}
to F%k"
We are finally ready to state and prove the analogous result to the ones that we obtained

in Section 5.2:

Theorem 5.39. Suppose that C is a linear binary code of length 2*n. Then C' is invariant
under the permutation group Zex if and only if C is the image under ¢y, of some linear code

over Sy, of length n.

Proof. Suppose that C is a binary linear code of length 2*n and suppose it is the Gray image
under ¢y of a linear code over Sy of length n, say C = ¢x(D). Let ¢ = (Tp,...,Tox_1) be
any codeword in C, and suppose that ¢ = ¢y (a) for some @ € D. Then since D is linear
over Sk, we see that (1 +u)a € D, and so by the hypothesis, we see that (j)k((l + u)&) eC,

but then by Lemma 5.37, we see that
7(€) = (Tok_1,T0, - - -, Toh_g) = P ((L +w)a) € C

for all ¢ € C. This means that C is invariant under 7, which means that it is invariant
under 7° for all i = 0,1, ...,2F — 1, which means that C is invariant under the action of the
permutation group Zok.

Conversely, suppose that C' is a binary linear code of length 2€n that is invariant under
the action of the permutation group Zqx. Since ¢y, is one-to-one and Fa-linear, we can define
qﬁ,;l :C — Sp. Let D = qﬁ,;l(C). Since ¢, is additive, we see that D is an additive subgroup
of S¢'. All we need to prove now is that D is an Sp-module. For this, all we need to show is
that D is invariant under the multiplication from the left by powers of u. We observe, by

repeated use of Lemma 5.37 and induction, that

or((1+u)'a) = 7' (¢x(@)) (5.45)

for alla € S} and for alli = 0,1,. .., 2% _1. So, suppose that ¢ € C and let d = d),;l(é) e D.
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This means that ¢x(d) = ¢, and, by (5.45) as well as by the hypothesis, we know that

qﬁk((l + u)’d) =7'(e) e C,
which means that by the definition of D that

(1+u)'deD, i=0,1,...,2F - 1.

This means that D is invariant under multiplication from the left by (1 4+ u)® for i =
0,1,...,2¥ — 1. But then, the fact that D is additive and an easy induction leads us to
conclude that D is invariant under multiplication from the left by u?, i=0,1,...,2F — 1

and so D is an Si-module, which means that D is linear over Sj. ]

Remark 5.40. Note that if we make the transformation v = 1 4+ u in Sx we will get an
equivalent ring

Tj, = Fy + vFs + ... 02 1Fy ~ Fy[X] /(X2 — 1).

In this case, the Gray map that we defined above simplifies quite considerably because one

can easily show in that case that

k_1_

dr(@o +vay + -+ +v? Ygr_1) = (Ao, T, ..., Aok _1)- (5.46)

Of course in that case, Theorem 5.39 becomes quite trivial to prove. Unfortunately I realized

this simplification much later than I considered all the cases above.
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