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Abstract

The main focus in this thesis is linear codes over rings. In the first part, we look at linear

codes over Galois rings, GR(p`,m), and using the homogeneous weight, we improve upon

Wilson’s results about the prime power that divides the coefficients of the homogeneous

weight enumerators of these codes. We also prove that our results are best possible. Our

results about homogeneous weight enumerators of linear codes over GR(p`,m) generalize

the results that we have for the Lee weight enumerators of linear codes over Z4.

We also consider other weight enumerators, in particular the complete weight enumera-

tors of linear codes and we obtain MacWilliams-like identities for these weight enumerators

considering different rings. These MacWilliams-like identities lead to MacWilliams iden-

tities for the Hamming weight enumerators of linear codes over rings. We also give a

counter-example to show that we cannot have MacWilliams-like identities for the Euclidean

weight enumerators of linear codes over Z4.

We also look at Gray maps from Zpk to Zpk−1

p . We first give an application of the

distance-preserving map from Z9 to Z3
3 to obtain good ternary codes, and then we give an

inductive algebraic construction of a distance-preserving Gray map from

(Zpk , homogeneous distance) to (Zpk−1

p , hamming distance) as well as a combinatorial con-

struction. By using the Gray maps, we obtain some results about the weight enumerators

of linear codes over the ring F2m + uF2m with u2 = 0.

In the last part of this work, we consider the permutation invariance of binary codes

and the connection with linearity over certain rings. Among the rings considered, we have

F2 + uF2, u2 = 0; F2 + uF2 + · · ·+ u2k−1F2, u2k
= 0; F2 + uF2 + vF2 + uvF2, u2 = v2 = 0.

In this context we consider the Reed-Muller codes and answer questions about permutation

invariance of Reed-Muller codes under certain permutation groups and the linearity of



vi

Reed-Muller codes over these aforementioned rings.
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Chapter 1

Introduction

In the early history of Coding Theory, codes were usually taken over finite fields, in partic-

ular over the field of elements modulo 2, which led to the binary codes. In the last decade

or so, a growing interest has been shown in linear codes over rings and the so-called Gray

maps that mapped these codes into codes over finite fields. In a ground-breaking work,

Sloane, Calderbank et al. showed in 1994 that the Kerdock Codes, the Preparata Codes,

and Delsarte-Goethals Codes can be obtained by taking the Gray images of linear codes

over Z4. The work that I present in this thesis was partially inspired by their work that led

me to consider linear codes over the ring Z4 with the Lee weight.

A linear code over a ring R of length n is an R-submodule of Rn. The most common

rings that were used in this work and in other works about this subject are the ring of

integers modulo a prime power, i.e., Zp` where p is a prime number and more generally the

Galois ring extensions of these rings, which we will denote by GR(p`,m). This will denote

the Galois ring extension of Zp` of degree m. Here, ` and m are integers. GR(p`,m) will

briefly be defined as the quotient Zp` [x]/(φ(x)) where φ(x) is a basic irreducible polynomial

of degree m over the ring Zp` . We will give a more detailed description of the elements of

the Galois ring GR(p`,m) in Chapter 2 with the help of a set that we will define as the

Teichmuller set, but for now we will only give some of the basic properties of the Galois

Ring. GR(p`,m) is a finite chain ideal ring with a unique maximal ideal that is given by

(p) = pGR(p`,m) and the quotient field is

GR(p`,m)
pGR(p`,m)

' Fpm . (1.1)
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All ideals of GR(p`, m) can be ordered as

{0} = p`GR(p`,m) ⊂ p`−1GR(p`,m) ⊂ · · · ⊂ pGR(p`,m) ⊂ GR(p`,m).

A linear code is permutationally equivalent to another code if one can be obtained from

the other by a permutation of the coordinates. Because of the finite chain ideal structure of

the Galois rings, we can see that any linear code C over GR(p`,m) is equivalent to a code

with a generating matrix

G =




Ik1 A1 . . . A`

0 pIk2 pB1 . . pB`−1

0 0 . . . .

. . . . . .

. . . . . .

0 0 . 0 p`−1Ik`
p`−1C




where Ai, Bj , . . . , C are all matrices over GR(p`,m). This means that C can be obtained

as a linear combination of the rows of G over the Galois ring GR(p`,m). Such a linear code

is said to be of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k`

and in this case we will have

|C| = pm
(
`k1+(`−1)k2+···+k`

)
.

Another type of rings that will come up in the latter parts of this thesis is the ring

of the form F2 + uF2 + · · · + u2k−1F2 with u2k
= 0. In other words this ring is the same

as F2[X]/(x2k
). Note that this ring is also a finite chain ideal ring. We will also consider

another type of rings of the form F2 + uF2 + vF2 + uvF2 with u2 = v2 = 0, uv = vu. Note

that this ring is not a finite chain ideal ring, i.e., all its ideals cannot be written in the form

of an inclusion chain.
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A weight w is a function from the ring to the set of non-negative integers. This function is

then extended to the code by letting the weight of a codeword be the sum of the weights of all

the coordinates, i.e., if c = (c1, c2, . . . , cn) ∈ C, then we let w(c) = w(c1)+w(c2)+· · ·+w(cn).

The most common weight used in coding theory is the Hamming weight, which assigns 0 to

the zero coordinate and 1 to the rest. We will denote it by wH and so we have wH(0) = 0

and wH(x) = 1, for all x 6= 0. A special weight that has been considered in the works of the

aforementioned authors and also in my earlier works is the Lee weight on Z4, which we will

denote by wL, and is defined as

wL(x) :=





0 if x = 0

2 if x = 2

1 otherwise.

A generalization of this weight to the Galois rings is the so-called homogeneous weight,

which we will denote by whom and is defined as

whom(x) :=





0 if x = 0

pm(`−1) if 0 6= x ∈ p`−1GR(p`,m)

(pm − 1)p(`−2)m otherwise.

Suppose that w is a weight function over a ring R, and C is a linear code over R of

length n. Then the w-weight enumerator of C is the polynomial

PC(z) =
∑

c∈C

zw(c). (1.2)

In some parts of the thesis we will be interested in the complete weight enumerator of C. To

define that, suppose that R = {r1, r2, . . . , rk} is the whole ring. Then the complete weight

enumerator of C is denoted by cweC(X1, X2, . . . , Xk) and is defined as

cweC(X1, X2, . . . , Xk) =
∑

c∈C

k∏

i=1

X
nri (c)
i (1.3)

where nri(c) is the number of coordinates in c that are equal to ri. Note that the complete
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weight enumerator is a homogeneous polynomial of total degree n in k = |R| variables.

A Gray map over Zp` is a map from Zn
p` to Fnp`−1

p that is distance preserving where we

take the homogeneous weight in Zn
p` and the Hamming weight in Fnp`−1

p . This definition is

extended to the Galois rings as well.

For a binary code C of length n, a permutation τ ∈ Sn acts on a codeword c =

(c1, c2, . . . , cn) as

τ(c) = (cτ(1), cτ(2), . . . , cτ(n)).

We say that a code C is invariant under a permutation τ if τ(c) ∈ C for all c ∈ C. For a

permutation subgroup H < Sn, we say that C is invariant under the permutation group H

if C is invariant under τ for all τ ∈ H.

1.1 History

The main work that forms a basis of inspiration and a basic tool for the work done in

Chapter 2 about the weights of codes modulo prime powers was done by Wilson in 2003 in

[1]. His main theorem in this work was about the weights modulo pe of linear codes and

contains the following:

Theorem 1.1. (Wilson, [1]) Let G be a group of order ps, p prime, let C be a subgroup

of Gn = G× · · · ×G, and let A be a coset of C in Gn. Suppose |A| = |C| = pk. Let µ be a

mapping from G into integers and define for a = (a1, . . . , an) ∈ Gn, µ(a) =
∑n

i=1 µ(ai). If

k > s((m(p− 1) + 1)pe−1 − 1), then for any integer t, the number N of solutions a ∈ A to

the equation µ(a) ≡ t (mod pe) is divisible by pm.

He also proved the following theorem in the same work that forms a basis in proving

that my results in Chapter 2 are best possible:

Theorem 1.2. (Wilson, [1]) Let c be an integer with c ≡ 1 (mod p) where p is a prime.

Then

(cx− 1)(m(p−1)+1)pe−1−1 ≡ (−p)m−1
pe−1∑

j=0

xj (mod pm, xpe − 1)

for all positive integers m.
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Noting that the coefficients of f(x)k are linear combinations of the coefficients of f(x)k−1,

where f(x) is a polynomial with integer coefficients, we get the following corollary to The-

orem 1.2, which will be useful in our calculations:

Corollary 1.3. Suppose p is a prime and c is an integer with c ≡ 1 (mod p). If

(cx− 1)k ≡ A0 + A1x + . . . Ape−1x
pe−1 (mod xpe − 1),

then

min
{

νp(Aj)
∣∣∣∣j = 0, . . . , pe − 1

}
=

⌊
k − pe−1

(p− 1)pe−1

⌋

where νp(Aj) is the p-adic valuation of Aj, namely, the highest power of p that divides Aj.

While Wilson worked over general group codes with a generic weight function, Vera

Pless obtained the following result about the Hamming weight distributions of binary codes

modulo 4 in [3]:

Theorem 1.4. (Pless, [3]) Let C be a binary [n, k]-code with odd weight vectors. Let

a, b, c, d denote the number of codewords in C that have weights congruent to 0, 2, 3, 1 re-

spectively. If a = b = c = d = 2k−2, then C∩C⊥ is singly-even. k−2
2 ≤ s ≤ k−2. In all other

cases C ∩C⊥ is doubly-even and we have the following possibilities where k−2
2 ≤ s ≤ k− 2:

1) a = b = 2k−2, c = 2k−2 ± 2s, d = 2k−2 ∓ 2s. If s = k − 2, C ∩ C⊥ consists of all the

doubly even vectors in C.

2) a = 2k−2 ± 2s, in case of the minus sign we take s ≤ k − 3. b = 2k−2 ∓ 2s, and the

following three cases:

(i) c = b, a = d

(ii) c = a, b = d

(iii) c = d = 2k−2

We obtain the following immediate corollary to Theorem 1.4, which is more in context

of what will be done in Chapter 2:

Corollary 1.5. Suppose C is a k-dimensional binary linear code of length n and suppose

NC(i, 4) denotes the number of codewords in C that have their Hamming weights congruent
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to i modulo 4. Then

NC(i, 4) ≡ 0 (mod 2q), i = 0, 1, 2, 3

where

q =
⌊

k − 2
2

⌋
.

Jurian Simonis, in his work ([4]) in 1994, obtained similar results to those of Pless about

binary codes with Hamming weights.

In their ground-breaking work that was published as [2] in 1994, Hammons, Sloane et

al. introduced the notions of complete weight enumerators, symmetric weight enumerators,

and Lee and Hamming weight enumerators for linear codes over Z4. Suppose that C is a

linear code over the ring Z4 and let C⊥ be the dual of C with respect to the Euclidean

inner product modulo 4. Then

cweC(W,X, Y, Z) =
∑

a∈C

Wn0(a)Xn1(a)Y n2(a)Zn3(a) (1.4)

where nj(a) is the number of coordinates in a that are congruent to j modulo 4. They

defined the symmetrized weight enumerator of C, sweC(W,X, Y ), as

sweC(W,X, Y ) = cweC(W,X, Y, X). (1.5)

They defined the Lee weight enumerator of C as

LeeC(W,X) =
∑

a∈C

W 2n−wL(a)XwL(a) = sweC(W 2, WX, X2) (1.6)

and similarly, the Hamming weight enumerator was defined as

HamC(W,X) = sweC(W,X, X). (1.7)



7

Then the following analogous MacWilliams identities were obtained:

cweC⊥(W,X, Y, Z) =

1
|C|cweC(W + X + Y + Z, W + iX − Y − iZ,W −X + Y − Z, W − iX − Y + iZ), (1.8)

sweC⊥(W,X, Y ) =
1
|C|sweC(W + 2X + Y, W − Y, W − 2X + Y ), (1.9)

LeeC⊥(W,X) =
1
|C|LeeC(W + X, W −X), (1.10)

HamC⊥(W,X) =
1
|C|HamC(W + 3X,W −X). (1.11)

Delsarte considered the problem of MacWilliams identities for the Hamming weight

enumerators of abelian group codes in 1973 in his work [5]. Suppose C is a group code over

G with |G| = q. Suppose

HC(W,X) =
∑

c∈C

Wn−h(c)Xh(c)

is the Hamming weight enumerator of C and suppose C∗ is the dual of C with respect to

the inner product defined on G by using characters on G. Then we have the MacWilliams

identity for the Hamming weight enumerators of C and C∗ as follows:

HC∗(W,X) =
1
|C|HC

(
W + (q − 1)X, W −X

)
. (1.12)

Considering the Gray map from Z4 to F2
2 that preserves the Lee distance on Z4-codes,

Hammons et al. in their work [2] in 1994 proved the following theorem that inspired some

of the work done in Chapter 5 of this thesis:

Theorem 1.6. The rth order binary Reed-Muller code RM(r,m) of length n = 2m, m ≥ 1,

is the Gray image of a linear code over Z4 for r = 0, 1, 2,m− 1 and m.

They also conjectured that the Reed-Muller codes RM(r,m) with 3 ≤ r ≤ m−2 cannot

be obtained as the Gray images of linear codes over Z4 and they proved the conjecture in

the particular case for r = m − 2 when m ≥ 5. They linked Z4-linearity with invariance

under certain permutations, which formed the inspiration for the work in Chapter 5.
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1.2 Methods and Summary of the Main Results

In Chapter 2, our main focus will be on homogeneous weights modulo pe of linear codes

over the Galois ring GR(p`, m). I basically will prove that the number of codewords in

a linear code over GR(p`,m) that have homogeneous weights in a particular congruence

class modulo pe is divisible by a high power of p. This result will in a sense be similar to

Wilson’s result in [1] and in fact my main tool will be Theorem 1.1. But the difference

in my result will be that the power of p that divides NC(i, pe)’s will be higher than those

obtained by Theorem 1.1. In fact, using Theorem 1.2 as a tool, I will prove that the results

that I obtained are best possible. I will first talk about my earlier results, which are mainly

about the Lee weights of the linear codes over Z4. The first result that I obtained was the

following:

Theorem 1.7. Let C be a k-dimensional linear code over Z4, or equivalently let C be a

linear code over Z4 of type (4)k. Denote by NC(i, 4) the number of codewords in C that

have Lee Weights congruent to i modulo 4. Then

NC(i, 4) ≡ 0 (mod 2k−1)

for i = 0, 1, 2, 3.

Then, with a method similar to the proof of Theorem 1.1, I was able to obtain the

following result:

Theorem 1.8. Suppose C is a k-dimensional linear Z4-code. If we denote by NC(j, 2e) the

number of codewords in C, that have Lee weights congruent to j modulo 2e, then we have

NC(j, 2e) ≡ 0 (mod 2b
k−2e−2

2e−2 c), j = 0, 1, . . . , 2e − 1.

I then extended the result to linear codes over Z4 of the general type (4)k1(2)k2 by

using a method that involved looking at the cosets of the even subcode of the code C. The

following result was obtained:

Theorem 1.9. Suppose C is a linear code over Z4 of type (4)k1(2)k2. If we denote by
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NC(j, 2e) the number of codewords in C, that have Lee weights congruent to j modulo 2e,

then we have

NC(j, 2e) ≡ 0 (mod 2q), j = 0, 1, . . . , 2e − 1

where q = 2k1 + k2 − 1 if e = 1 and

q = max
{

0,

⌊
k1 + k2 − 2e−2

2e−2

⌋}

for e ≥ 2.

Here, b.c is the floor function, i.e., bxc is the greatest integer less than or equal to

x. I also proved, by looking at the trivial block code over Z4, namely (Z4)k1(2Z4)k2 as an

example and, using Theorem 1.2, that the results in the previous theorems are best possible.

The coset method used in the proof of Theorem 1.9 proved to be useful in extending the

result to more general rings with a proper extension of the Lee weight defined. Some of the

rings that were used were Z2m , Zpm , and finally the Galois ring GR(p`,m). Consequently

the following result was obtained that generalizes all the theorems 1.7–1.9:

Theorem 1.10. Suppose C is a linear code over GR(p`, m) of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` ,

then we have

Nhom
C (j, pe) ≡ 0 (mod pq), j = 0, 1, . . . , pe − 1

where

q = max
{

0,

⌊
k1 + k2 + · · ·+ k` − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋}

and e ≥ (`− 1)m + 1.

Here Nhom
C (j, pe) denotes the number of codewords in C that have homogeneous weights

(as defined at the beginning of this chapter) congruent to j modulo pe. Of course, due to

the nature of the homogeneous weight, we don’t need to bother about NC(j, pe) when

e ≤ (` − 2)m, but there remains the case when (`− 2)m + 1 ≤ e ≤ (` − 1)m, which is not
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covered by Theorem 1.10, and for that, we have the following theorem, which is proved by

looking at the particular coset structure:

Theorem 1.11. With C being the same as in Theorem 1.10, we have

Nhom
C (j, pe) ≡ 0 (mod px)

where

x = m(k1 + k2 + · · ·+ k`−1 + k`)+
⌊

k1 + k2 + · · ·+ k`−1 − pe−(`−2)m−1

(p− 1)pe−(`−2)m−1

⌋

for all (`− 2)m + 1 ≤ e ≤ (`− 1)m.

In this case also, we prove that the result in Theorem 1.10 is best possible by looking

at the trivial block code over GR(p`, m) of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k`

and again using Theorem 1.2.

We also extend the result of Theorem 1.10 to a slightly more general weight than the

homogeneous weight in a way that generalizes the Hamming weight as well. We will in-

troduce the weight and the subsequent result at the end of Chapter 2, together with an

analogous result for the Hamming weight. We will also comment on different possible ways

of generalizing the Lee weight to higher rings.

We will obtain similar results for different kinds of rings that we will introduce in Chapter

4, and so those results will be stated and proved in that chapter.

In Chapter 3, we will talk about the MacWilliams identities for linear codes over rings.

First, inspired by the MacWilliams identities for the complete, symmetrized, Hamming and

Lee weight enumerators of linear Z4-codes that Sloane, Calderbank, et al. came up with

in [2] in the form of equations 1.8–1.11, I wanted to settle down the question of whether

a MacWilliams-like identity exists between the Euclidean weight enumerators of the dual

codes over Z4. I want to recall that the Euclidean weight wE on Z4 is given by wE(0) = 0,
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wE(2) = 22 = 4, wE(1) = wE(3) = 1. After numerous attempts at trying to come up with

a similar equation to those in (1.8)–(1.11), I finally came up with a counter example that

prompted the following little result:

Theorem 1.12. There exist linear codes over Z4 whose Euclidean weight enumerators are

the same, but the Euclidean weight enumerators of the duals are not the same. Hence there

cannot be a MacWilliams-like identity for the Euclidean weight enumerators of dual codes

over Z4.

The counter example itself and the weight enumerators are very big, and we make

special use of (1.9) to calculate the weight enumerators of the duals. This will all be given

in Chapter 3.

After this failed attempt at finding a MacWilliams-like identity for the Euclidean weight

enumerators of linear Z4-codes and seeing how useful MacWilliams identities for the com-

plete weight enumerators can be, I decided to look for MacWilliams identities for the com-

plete weight enumerators of linear codes over rings. In [5], Delsarte looked at abelian

group codes and found MacWilliams identities for the Hamming weight enumerators of

these codes. Using some of his material together with the techniques from [6], I proved the

following theorem for group codes:

Theorem 1.13. Suppose that G = {g1, . . . , gq} is an abelian group of order q and suppose

it is of the form

G = Zm1 × Zm2 × . . .Zmr

where

mi = pei1
1 pei2

2 . . . peik
k

for primes p1 > p2 > · · · > pk and for non-negative integers e1j ≥ e2j ≥ · · · ≥ erj,

j = 1, 2, . . . , k. Suppose ξ is a primitive m1 = (pe11
1 pe21

2 . . . pek1
k )th root of unity over complex

numbers. Suppose that C is a group code of length n over G, and suppose C∗ is the dual of

C with respect to an appropriately defined inner product. Then we have

cweC∗(W1,W2, . . . , Wq) =
1
|C|cweC

( q∑

i=1

ξg1∗giWi,

q∑

i=1

ξg2∗giWi, . . . ,

q∑

i=1

ξgq∗giWi

)
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where

gi ∗ hi = gi(1)hi(1) +
m1

m2
gi(2)hi(2) + · · ·+ m1

mr
gi(r)hi(r).

This turns out to be a generic formula for the MacWilliams identities for the complete

weight enumerators of the group codes. From here, it is very easy to prove Delsarte’s

theorem about the Hamming weight enumerators of group codes. Now, when it comes to

linear codes over rings, there is something to be careful about. While every linear code

over a ring can be viewed as an abelian group code, not every group code can be viewed as a

linear code over a ring. So, while the dual with respect to the above inner product of every

group code is an abelian group code, we can’t use the same inner product for linear codes

over rings, because the dual of a linear code over a ring with respect to this inner product

might not be linear over that ring.

For the rest of Chapter 3, I introduced new inner products for different rings, and using

Theorem 1.13 as a base, I obtained some numerical MacWilliams identities for linear codes

over rings, and in particular for some of them I introduced the notion of symmetrized

weight enumerators as well and found MacWilliams identities for the symmetrized weight

enumerators of these codes. I will state some of the results as corollaries to Theorem 1.13:

Corollary 1.14. Suppose C is a linear Zm-code of length n and suppose C⊥ is its dual

with respect to the Euclidean inner product modulo m. Then, C⊥ is also a linear code over

Zm. Suppose, moreover, that ξ is a primitive mth root of unity over the complex numbers.

Then if

cweC(W0,W1, . . . , Wm−1) =
∑

c

m−1∏

i=0

W
ni(c)
i

is the complete weight enumerator of C, we have

cweC⊥(W0,W1, . . . , Wm−1) =
1
|C|cweC

( m−1∑

i=0

Wi,
m−1∑

i=0

ξiWi, . . . ,
m−1∑

i=0

ξ(m−1)iWi

)
.

A substantial result that I obtained was for linear codes over the Galois ring GR(p`,m).

I had to introduce an inner product so that the dual of linear codes over the Galois rings

would be linear as well. To this extent, I introduced the following inner product:
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Suppose

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ GR(pe,m)n

are two vectors, then we define a symmetric function < ., . > from GR(p`,m)n×GR(p`,m)n

to Zp` by letting

< x, y >= Tr(x1y1 + x2y2 + · · ·+ xnyn) (1.13)

where xiyi is the ordinary product in GR(p`,m).

Here, Tr is the trace function over the Galois rings, which is a Zp`-linear function and

more information will be given on this and Galois rings in Chapter 2. Then, I was able to

conclude the following by Theorem 1.13 as well as a lemma that I will introduce in Chapter

3:

Theorem 1.15. Suppose that GR(p`,m) = {u0, u1, . . . , up`m−1} is the Galois ring extension

of Zp`, and suppose C is a linear code over GR(p`, m) of length n and suppose that C∗ is

the dual of C with respect to the inner product defined above. Then C∗ is also a linear code

over GR(p`,m) of length n and moreover we have

cweC∗(W0,W1, . . . , Wp`m−1) =

1
|C|cweC

( p`m−1∑

i=0

αTr(u0ui)Wi,

p`m−1∑

i=0

αTr(u1ui)Wi, . . . ,

p`m−1∑

i=0

αTr(u
p`m−1

ui)Wi

)
.

A similar result was obtained for the symmetrized weight enumerators of linear codes

over Galois rings inspired by the homogeneous weight. The corresponding result for the

Hamming weight enumerators was unchanged.

Similar results, together with new inner products, were introduced for the rings Fpm ,

and F2m + uF2m where u2 = 0. They will all be mentioned appropriately in Chapter 3.

In Chapter 4, I focus mainly on Gray maps. Starting with the Gray map from Zn
4 to Z2n

2

that was introduced in [2], I first extended the Gray map to a distance preserving Gray map

from Z9 to Z3
3 where we take the homogeneous distance in Z9 and the Hamming distance

in Z3
3. Using the Weil bound that I took from [7] that gives a bound on the exponential

sums, and the Z9-ary linear trace codes, similar to the one Carlet used in [8], I was able



14

to come up with some ternary codes with high minimum distances, comparable to the ones

that Harada and Gulliver obtained in [9]. In particular I obtained as an example a ternary

code with parameters [243, 310,≥ 126].

I then ventured to generalize the Gray map to Zpk , and I got the following inductive

construction of the Gray map. I proved that it is distance-preserving. I obtained this Gray

map independently of the Gray maps obtained by Ling in [10]. In what follows, Gk denotes

the Gray map from Zpk to Zpk−1

p .

Definition 1.16. We first let

Gk(0) =
(

Gk−1(0), Gk−1(0), . . . , Gk−1(0)
)

, (1.14)

and define

Gk(j · pk−1) =
(

Gk−1(j · pk−2), . . . , Gk−1(j · pk−2)
)

. (1.15)

Now, for 0 ≤ m, j ≤ p− 1 and for 1 ≤ i ≤ pk−2 − 1, we define

Gk((mp + j)pk−2 + i) =
(

Gk−1

(
γ(mjpk−2 + i)

)
, Gk−1

(
γ((m + 1)jpk−2 + i)

)
, . . . , Gk−1

(
γ((m + p− 1)jpk−2 + i)

))
.

(1.16)

where γ(.) is the map that takes a number to its residue modulo pk−1. Finally for j ·pk−1 +

npk−2 for some 0 ≤ j ≤ p− 1 and 1 ≤ n ≤ p− 1, then we define

Gk(j · pk−1 + npk−2) =
(

Gk−1

(
γ((j + n · 0)pk−2)

)
, Gk−1

(
γ((j + n · 1)pk−2)

)
, . . . , Gk−1

(
γ((j + n(p− 1))pk−2)

))
.

(1.17)

This is the inductive step with G1 : Zp → Zp being the identity map.

I then proved that the map thus defined is indeed distance-preserving:

Theorem 1.17. The map Gk defined above in Definition 1.16, is distance-preserving from
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(Zn
pk , homogeneous distance) to (Zpk−1n

p , Hamming distance).

Seeing as how there are different ways of defining the Gray map algebraically, which

give rise to equivalent maps, I then considered the Gray map from a purely combinatorial

perspective. As a result I was able to obtain the Gray map by using Affine geometries. The

information on Affine geometries together with the relevant lemmas with their proofs are

all going to appear in Chapter 4. I refer the reader to Chapter 4 for further information. I

will just give the combinatorial construction that I came up with here:

Suppose that Γ0,Γ1, . . . , Γpk−1−1 are the parallel classes of the hyperplanes of AGk(p)

(the Affine Geometry of order k over Fp) that don’t contain any of the lines L0, L1, . . . , Lpk−1−1

in the parallel class L̄. So, each hyperplane in these parallel classes is formed by taking one

element from each column of

L̄ =








0

1
...

p− 1




,




0

1
...

p− 1




, . . . ,




0

1
...

p− 1








, (1.18)

which is just a labelling of the lines. Suppose, without loss of generality that we have

labelled (1.18) in such a way that there exists a hyperplane corresponding to the labelling

of (0, 0, . . . , 0) and that it is in Γ0. From now on, when we say the vector that corresponds

to a hyperplane, we will mean the {0, 1, . . . , p − 1}-vector of length pk−1 that comes from

the labelling of the elements of the hyperplane. So, now, we are finally ready to describe

the Gray map Gk : Zpk → (Zp)pk−1
.

We map 0, pk−1, . . . , (p−1)pk−1 to the vectors of the hyperplanes in Γ0 bijectively, with the

convention that we map 0 to (0, 0, . . . , 0). For 1 ≤ j ≤ pk−1−1, we map j, pk−1 + j, . . . , (p−
1)pk−1 + j to the vectors of the hyperplanes of Γj bijectively. Note that this is indeed a

map from Zpk to (Zp)pk−1
. We prove the main result in the following theorem:

Theorem 1.18. The map Gk defined as above is indeed a distance-preserving map from

Zpk with the homogeneous weight to (Zp)pk−1
with the Hamming weight.

As an application of the Gray maps, I looked at the rings F2 +uF2 and F2m +uF2m that
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were introduced in [13] and [11], respectively. In particular there are several Gray maps

defined from F2m + uF2m where the target field could be F2m or F2 or the ring F2 + uF2.

I proved in particular that the Gray map defined from (F2m + uF2m)n to (F2 + uF2)mn is

an F2 + uF2-linear map and in particular it maps a linear code over F2m + uF2m of type

(22m)k1(2m)k2 to a linear code over F2 + uF2 of type (4)mk1(2)mk2 , and moreover this map

is weight preserving where we take the extended Lee weight in F2m +uF2m , which is defined

in section 4.4 and the Lee weight in F2 + uF2.

I was then interested in the weight distributions of linear codes over these rings in the

same context as the work that I did in Chapter 2. With the Lee weight defined in F2 + uF2

to be wL(0) = 0, wL(1) = wL(1 + u) = 1, wL(u) = 2, I was able to prove the following result

with the same methods as in Chapter 2:

Theorem 1.19. Suppose C is a linear code of type (4)k1(2)k2 over F2 + uF2. If NL
C(j, 2e)

denotes the number of codewords in C that have Lee weights congruent to j modulo 2e, then

NL
C(j, 2e) ≡ 0 (mod 2q), j = 0, 1, . . . , 2e − 1

where

q =
⌊

k1 + k2 − 2e−2

2e−2

⌋

for all e ≥ 2. Moreover,

NL
C(j, 2) ≡ 0 (mod 22k1+k2−1), j = 0, 1.

I was also able to prove that this result is best possible. With an analogous definition of

the Lee weight for the ring F2m + uF2m taken from [11] and with the tools that I obtained

from the Gray maps, I was able to extend Theorem 1.19 to the ring F2m + uF2m , which

gives us a result different than those obtained in Chapter 2. I was also able to prove that

these results are best possible.

The last part of my research that is summarized in Chapter 5 focuses on binary codes

that are invariant under certain permutations and how this relates to being the Gray images
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of some linear codes over some certain rings. The work in this chapter was partly inspired by

a conjecture in [2] in which the authors conjectured that the Reed-Muller codes RM(r,m)

are not Z4-linear for 3 ≤ r ≤ m − 2. With [11], [12], [13], I was first introduced to linear

codes over rings of the form F2 + uF2 and F2m + uF2m . Since binary codes are the Gray

images of linear codes over these rings if and only if they are invariant under the swap map,

which essentially is the permutation group Z2, I considered different permutation groups

that in turn led me to different rings. Some of the results I got in this context are given

below. The proofs of these theorems together with the descriptions of the particular Gray

maps involved are going to be given in Chapter 5:

Theorem 1.20. Suppose C is a binary linear code of length 4n. Then C is the Gray image

of a linear code over F2 + uF2 + vF2 + uvF2 of length n if and only if C is K4-invariant.

Here, K4 denotes the Klein-4 group.

Theorem 1.21. Suppose C is a binary linear code of length 4n. Then C is the Gray image

of a linear code over F2 + uF2 + u2F2 + u3F2 of length n if and only if C is Z4-invariant.

An interesting application of these theorems was to show the linearity of the Reed-

Muller codes RM(r,m) over these rings. I was able to prove this both by directly finding

the pre-images of the Reed-Muller codes in these rings and also by proving their invariance

under the permutation groups mentioned:

Theorem 1.22. The Reed-Muller code RM(r,m) is K4-invariant for all 0 ≤ r ≤ m or

equivalently the Reed-Muller code is the image under the Gray map of a linear code over

F2 + uF2 + vF2 + uvF2 of length 2m−2.

Theorem 1.23. The Reed-Muller code RM(r,m) is Z4-invariant or equivalently is the

Gray image of a linear code over F2 + uF2 + u2F2 + u3F2.

The pre-images of the Reed-Muller codes in the rings F2+uF2, F2+uF2+u2F2+u3F2 and

F2 +uF2 +vF2 +uvF2 are found in section 5.4. For example, if we define by FRM(r,m−1),

for r = 0, 1, 2, . . . , m, the linear code over F2 + uF2 that is generated by RM(r − 1, m− 1)

and uRM(r,m − 1), with the conventions that RM(−1,m − 1) = RM(m, m − 1) = 0,
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and if φ : (F2 + uF2)n → F2n
2 is the Gray map, then φ(FRM(r,m − 1)) = RM(r,m) for

r = 0, 1, 2, . . . , m.

In section 5.5 I considered the extension Z2k of the permutation groups Z2 and Z4 and

tried to determine if the Reed-Muller codes are invariant under this permutation group. It

turned out that in general we won’t have this invariance. The main theorem I proved was

the following:

Theorem 1.24. Suppose 3 ≤ k ≤ m is an integer, then RM(r,m) is invariant under the

permutation group Z2k if and only if r = 0, r = m or r = m− 1.

I also wanted to consider the ring F2 + uF2 + · · · + u2k−1F2 with a weight function

defined so that we could define a Gray map that would relate to Z2k -invariance. I let

Sk = F2 + uF2 + · · · + u2k−1F2, and so I defined a Gray map Sn
k → F2kn

2 inductively as

follows:

Definition 1.25. Let

a = a0 + ua1 + · · ·+ u2k−1a2k−1 ∈ Sn
k

be given with ai ∈ Fn
2 for each i = 0, 1, . . . , 2k − 1. Write a in the following way:

a = a0 + ua1 + · · ·+ u2k−1a2k−1

= (a0 + u2k−1
a2k−1) + u(a1 + u2k−1

a2k−1+1) + · · ·+ u2k−1−1(a2k−1−1 + u2k−1
a2k−1).

Then we define φk(a) as follows:

φk(a) =
(
φk−1(A1(a)) + φk−1(A2(a)), φk−1(A2(a))

)
(1.19)

where

A1(a) = a0 + ua1 + · · ·+ u2k−1−1a2k−1−1 (1.20)

and

A2(a) = a2k−1 + ua2k−1+1 + · · ·+ u2k−1−1a2k−1. (1.21)
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Then I was able to prove the following theorem:

Theorem 1.26. Suppose that C is a linear binary code of length 2kn. Then C is invariant

under the permutation group Z2k if and only if C is the image under φk of some linear code

over Sk of length n.
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Chapter 2

Homogeneous Weights Modulo pe

of Linear Codes over Galois Rings

In this chapter, we will try to obtain results for the weight enumerators of linear codes over

rings, in particular over Galois rings. The main motivation and the tools for the work in

this chapter come from the work done by Wilson in [1]. Our goal is to improve on his results

in the case of Galois ring codes with the homogeneous weights. We recall that his main

results are as follows, which were introduced in Chapter 1 as Theorem 1.1 and Theorem

1.2.

Theorem 2.1. (Wilson, [1]) Let G be a group of order ps, p prime, let C be a subgroup

of Gn = G× · · · ×G, and let A be a coset of C in Gn. Suppose |A| = |C| = pk. Let µ be a

mapping from G into integers and define for a = (a1, . . . , an) ∈ Gn, µ(a) =
∑n

i=1 µ(ai). If

k > s((m(p− 1) + 1)pe−1 − 1), then for any integer t, the number N of solutions a ∈ A to

the equation µ(a) ≡ t (mod pe) is divisible by pm.

Theorem 2.2. (Wilson, [1]) Let c be an integer with c ≡ 1 (mod p) where p is a prime.

Then

(cx− 1)(m(p−1)+1)pe−1−1 ≡ (−p)m−1
pe−1∑

j=0

xj (mod pm, xpe − 1)

for all positive integers m.

Out of these, Theorem 2.1 is going to be the main tool that we use in proving our main

result; this is also the result upon which we improve. Theorem 2.2 is going to serve as a

main tool in proving that the main result is best possible.
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In the first section, I will mention the early results that are mainly about the linear

codes over Z4, in section 2, I will give a more detailed introduction about Galois rings,

and in section 3, I will talk about linear codes over Galois rings and the homogeneous

weights. In section 4, I will state and prove the main results about the homogeneous weight

enumerators of linear codes over Galois rings, and in section 5, I will prove that the result

in the main theorem is best possible. In the last section, I will talk about more generalized

weights, the Hamming weights, and other extensions of the Lee weight.

2.1 Early Results

My interest in weight enumerators of linear codes over Galois rings started with the Lee

weight enumerators of linear codes over Z4 after reading about the work of Sloane, Calder-

bank, et al. in [2]. In view of Wilson’s theorem that I stated above, I wanted to know

the power of 2 that would divide the number of codewords in a linear code over Z4 that

have Lee weights in a particular congruence class modulo 4. Recall from Chapter 1 that the

number of codewords in C that is in the congruence class i modulo 4 is denoted by NC(i, 4).

Suppose that C is a linear code over Z4 of type (4)k. Then applying Wilson’s Theorem

2.1, we see that

NC(i, 4) ≡ 0 (mod 2b
k−2
2
c), i = 0, 1, 2, 3. (2.1)

My initial goal was to see whether or not I could improve on this. To this extent, I did

some experiments with randomly generated linear codes over Z4. For example, in one such

experiment, I looked at 500 randomly generated linear Z4-codes of type (4)6, and I looked

at the common divisor of NC(i, 4)’s for i = 0, 1, 2, 3. According to (2.1), this common divisor

should be 22 = 4. But, at the end of the experiment, I saw that

in 217 of the codes, the common divisor of NC(i, 4)′s was 32,

in 133 of the codes, the common divisor of NC(i, 4)′s was 64,

in 15 of the codes, the common divisor of NC(i, 4)′s was 128,

in 134 of the codes, the common divisor of NC(i, 4)′s was 1024,

and in 1 of these codes, the common divisor of NC(i, 4)′s was 2048,
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which made it seem that the best possible result could be much higher than was given by

(2.1). I then conjectured and proved the following theorem, which was the first result I

obtained:

Theorem 2.3. Suppose that C is a linear code over Z4 of type (4)k. Then

NC(i, 4) ≡ 0 (mod 2k−1), i = 0, 1, 2, 3,

and this is the best possible result.

The proof involved some elementary counting methods that are not relevant to the rest

of the work here and so it will be omitted here.

I then extended this result to NC(i, 2e) by imitating the proof of Wilson’s Theorem 2.1,

and also by proving the following lemma:

Lemma 2.4. Let A ⊆ Zj
4 be a coset of a subgroup of Zj

4, with

|A| = 22j−r, r ≤ j.

Then for any such r, the sum

SA :=
∑

(b1,b2,...,bj)∈A

(
φ(b1)

i1

)(
φ(b2)

i2

)
. . .

(
φ(bj)

ij

)

is divisible by 2j−r. Here, i1, i2, . . . , ij are fixed integers with 0 ≤ i` ≤ 2 with

i1 + i2 + · · ·+ ij = j,

and φ denotes the Lee weight in Z4.

The extended result that I proved was the following:

Theorem 2.5. Suppose that C is a linear code over Z4 of type (4)k, then

NC(i, 2e) ≡ 0 (mod 2q), i = 0, 1, . . . , 2e − 1
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where

q =
⌊

k − 2e−2

2e−2

⌋
,

and this is the best possible result.

After these preliminary results, I finally came up with a method to extend all these

results to linear codes over Z4 of type (4)k1(2)k2 , and this method proved to be useful in

extending the result to other rings as well. Recall that a linear code over Z4 is said to be

of type (4)k1(2)k2 if it is permutationally equivalent to a code with generating matrix

G =




Ik1 A B

0 2Ik2 2C


 (2.2)

where A and C are Z2-matrices, and B is a Z4-matrix. The most general result for linear

codes over Z4 was then the following:

Theorem 2.6. Suppose C is a linear code over Z4 of type (4)k1(2)k2. If NC(i, 2e) denotes

the number of codewords in C that have Lee weights congruent to i modulo 2e, then

NC(i, 2e) ≡ 0 (mod 2q), i = 0, 1, . . . , 2e − 1

where

q = max
{

0,

⌊
k1 + k2 − 2e−2

2e−2

⌋}

for all e ≥ 2 and

q = 2k1 + k2 − 1

for e = 1.

This result turns out to be the best possible result and is certainly an improvement

on the result in Theorem 2.1. The method applied in proving this theorem was useful in

extending the result to linear codes over Z2m , Zpm and finally to GR(p`,m). The proof will

be given for the most general case, which is the Galois ring case.
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2.2 Galois Rings

For the rest of this section, p denotes a prime, and ` and m positive integers. We will denote

by Zp` the ring of integers modulo p`. GR(p`,m) will denote the Galois ring extension of

Zp` . The following introduction about Galois rings is taken from [14], [15], [16], which in

turn was taken from [24]:

Let φ(x) ∈ Zp` [x] be a basic irreducible polynomial of degree m that divides xpm−1 − 1.

Such a polynomial always exists by Hensel’s lemma. Then, the Galois ring GR(p`,m)

is defined as the quotient Zp` [x]/(φ(x)). If m1 is a positive integer such that m1|m, then

GR(p`, m1) is a subring of GR(p`, m). A very important property of Galois rings is that it is

a finite chain ring and it also has a unique maximal ideal that is given by (p) = pGR(p`,m).

The quotient field is
GR(p`,m)
pGR(p`,m)

' Fpm . (2.3)

All the ideals of GR(p`,m) can be ordered as

{0} = p`GR(p`,m) ⊂ p`−1GR(p`,m) ⊂ · · · ⊂ pGR(p`,m) ⊂ GR(p`,m). (2.4)

The Abelian group GR∗(p`,m) is a direct product of two groups H1 and H2 where H1 is

cyclic of order pm− 1 and H2 is of order p(`−1)m. Suppose H1 = {1, ξ, ξ2, . . . , ξpm−2}. Then

we introduce a special set called the Teichmuller set as

Tm = H1 ∪ {0} = {0, 1, ξ, ξ2, . . . , ξpm−2},

which forms a set of coset representatives of GR(p`, m) modulo pGR(p`,m). So, every

element u ∈ GR(p`,m) can be uniquely expressed as

u = u0 + pu1 + · · ·+ p`−1u`−1 (2.5)

where u0, u1, . . . , u`−1 ∈ Tm.

We define the Frobenius automorphism ψ : GR(p`,m) → GR(p`,m) such that for
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u = u0 + pu1 + · · ·+ p`−1u`−1 ∈ GR(p`,m) we have

ψ(u) = up
0 + pup

1 + · · ·+ p`−1up
`−1.

Note that ψ is an automorphism of order m. This enables us to introduce the trace operator

on GR(p`,m):

Tr(u) = u + ψ(u) + ψ2(u) + · · ·+ ψm−1(u). (2.6)

Then the trace function Tr, defines a Zp`-linear function from GR(p`,m) to Zp` .

2.3 Linear Codes over Galois Rings and the Homogeneous

Weight

A linear code C over the Galois ring GR(p`,m) of length n is a GR(p`,m)-submodule of

GR(p`, m)n. The following theorem from [17] helps us understand the question of type and

dimension for linear codes over Galois rings:

Theorem 2.7. (Huffman, [17]) A GR(p`, m)-linear code C is permutation-equivalent

to a code with generating matrix of the form

G =




Ik1 A1 . . . A`

0 pIk2 pB1 . . pB`−1

0 0 . . . .

. . . . . .

. . . . . .

0 0 . 0 p`−1Ik`
p`−1C




where the matrices Ai’s, Bj’s and so on are matrices over GR(p`,m) and the columns are

grouped into blocks of size k1, k2, . . . , k`. The size of C is pmα, where

α =
∑̀

i=1

ki(` + 1− i).
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In this case, we say that C is of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` .

We next define the homogeneous weight for linear codes over Galois rings. Before the

particular definition for the Galois rings, we will introduce the general definition of a ho-

mogeneous weight for a ring from [25]:

Definition 2.8. A real valued function w on the finite ring R is called a (left) homogeneous

weight if w(0) = 0 and the following is true:

(H1) For all x, y ∈ R, Rx = Ry implies w(x) = w(y).

(H2) There exists a real number γ such that

∑

y∈Rx

w(y) = γ|Rx|, for all x ∈ R \ {0}.

It turns out that, because of the ideal structure of the Galois rings, the homogeneous

weight for the Galois rings is then the following which is obtained from [18]; some of the

weight structure comes from the conditions (H1) and (H2) from above:

whom(x) :=





0 if x = 0

pm(`−1) if 0 6= x ∈ p`−1GR(p`,m)

(pm − 1)pm(`−2) otherwise.

We naturally extend this definition to linear codes by letting, for c = (c1, c2, . . . , cn) ∈
GR(p`, m)n,

whom(c) =
n∑

i=1

whom(ci).

At this point we want to make the following remark to connect this weight with the Lee

weight:

Remark 2.9. For p = 2, m = 1 and ` = 2, we get the Galois ring to be Z4 and in that case,

the definition of whom coincides with the definition of the Lee weight on Z4-codes. So, in

this sense, we can view the homogeneous weight to be an extension of the Lee weight on
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Z4. At the end of the chapter, we will talk about other possible ways of extending the Lee

weight.

Remark 2.9 brings up the question as to why this particular weight is used for the Galois

rings. The answer comes from [18] in the form of the following theorem which relates the

homogeneous weights to the exponential sums:

Theorem 2.10. (Voloch, [18]) For any x ∈ GR(p`,m) we have

whom(x) = (pm − 1)pm(`−2) − 1
pm

∑

a∈U

γTr(ax)

where U is the group of units in GR(p`,m), Tr is the trace function defined over the Galois

rings from 2.2, and γ is a primitive p`th root of unity.

Several authors have used this connection of the homogeneous weights with the expo-

nential sums to get results about linear codes over Galois rings. For some of these we refer

to [8],[15], [18], [19].

We denote by Nhom
C (j, pe), the number of codewords in C that have homogeneous weights

congruent to j modulo pe. Finally by νp(k), we will denote the highest power of a prime

p that divides a non-negative integer k, i.e., the p-adic valuation of k, with the convention

that νp(0) = ∞.

2.4 The Main Results

In this section, we will state and prove the main results about the homogeneous weights

modulo pe of linear codes over Galois rings.

We introduce our main result for linear codes over GR(p`,m) of this chapter in the

following theorem:

Theorem 2.11. Suppose that C is a linear code over GR(p`,m) of type

(p`m)k1(p(`−1)m)k2 · · · (pm)k` .
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Suppose, also, that Nhom
C (j, pe) denotes the number of codewords in C that have homogeneous

weights congruent to j modulo pe, then

Nhom
C (j, pe) ≡ 0 (mod pq), j = 0, 1, . . . , pe − 1

where

q = max
{

0,

⌊
k1 + k2 + · · ·+ k` − pe−(`−1)m−1

(p− 1)(pe−(`−1)m−1)

⌋}

and e ≥ (`− 1)m + 1.

Proof. Before proving the theorem, we note that, the homogeneous weight of every codeword

in C is divisible by p(`−2)m, and so, we can introduce a new weight function w′ by letting

w′(x) =
1

p(`−2)m
whom(x), x ∈ GR(p`,m). (2.7)

Then we can write this new weight as:

w′(x) :=





0 if x = 0

pm if 0 6= x ∈ p`−1GR(p`,m)

(pm − 1) otherwise.

Now, suppose that N ′
C(j, pe) denotes the number of codewords in C that have the w′-weights

congruent to j modulo pe, then, we see that

Nhom
C (j, pe) = N ′

C(j/p(`−2)m, pe−(`−2)m). (2.8)

So, it is enough to prove the result for N ′
C(j, pe) first and then we will use (2.8) to extend

it to Nhom
C (j, pe).

Suppose that the code C has a generating matrix of the form that appears in Theorem

2.7 above, and let

{c1, . . . , ck1 , b1, . . . , bk2 , . . . , a1, . . . , ak`
}

be the rows of the matrix, i.e., the generators of C. So, ci’s are GR(p`,m)-independent,
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and {pci, bj |i, j} are independent in pGR(p`,m) and so on and finally

{
p`−1ci, p

`−2bj , . . . , ak

∣∣ i, j, . . . , k
}

are independent in p`−1GR(p`,m). Let C̃ be the linear code over GR(p`, m) that is generated

by
{
p`−1c1, . . . , p

`−1ck1 , p
`−2b1, . . . , p

`−2bk2 , . . . , a1, . . . , akm

}
.

Then, we note that C̃ is a linear code over p`−1GR(p`,m) and is (k1 + k2 + · · · + k`)-

dimensional by the type of C. We also note that, if wH denotes the Hamming weight, then

we have

w′(c) = pmwH(c), ∀c ∈ C̃. (2.9)

But this means that, if NH
C (j, pe) denotes the number of codewords in C that have their

Hamming weights congruent to j modulo pe, then we have

N ′
C̃
(j, pe) = NH

C̃
(j/pm, pe−m), (2.10)

for all j = 0, pm, . . . , pe− pm. But note that applying Theorem 2.1 to C̃ with the Hamming

weight gives us

νp

(
NH

C̃
(j/pm, pe−m)

) ≥
⌊

k1 + k2 + · · ·+ k` − pe−m−1

(p− 1)pe−m−1

⌋

for all j and e ≥ m + 1, putting this into (2.10) gives us

νp

(
N ′

C̃
(j, pe)

) ≥
⌊

k1 + k2 + · · ·+ k` − pe−m−1

(p− 1)pe−m−1

⌋
(2.11)

for all j and e ≥ m + 1. Since the result in Theorem 2.1 is actually true for the cosets of

linear codes as well, we see that we actually have

νp

(
N ′

a+C̃
(j, pe)

) ≥
⌊

k1 + k2 + · · ·+ k` − pe−m−1

(p− 1)pe−m−1

⌋
(2.12)
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as well, where a ∈
(

p`−1GR(p`,m)
)n

.

Now, by the choice of C̃, we see that C can be written as the union of a finite number

of cosets of C̃. We already have the result for p`−1GR(p`,m)-cosets of C̃. So, now let

a ∈ GR(p`,m)n be any codeword and suppose that we are looking at the coset

A = a + C̃.

We will apply induction on r, the number of coordinates in a that are in GR(p`,m) \
p`−1GR(p`,m).

If r = 0, then the result is proved by (2.12).

Now, suppose the result in (2.12) is proven for all cosets that have up to r−1 coordinates

in GR(p`,m) \ p`−1GR(p`,m) and suppose that a has r such coordinates. Without loss of

generality we might assume that a starts with such a coordinate, and since w′(x+y) = pm−1

for all x ∈ GR(p`, m) \ p`−1GR(p`, m) and y ∈ p`−1GR(p`,m) we can assume that a starts

with 1. So we can write

A = a + C̃ = 10 + b + C̃ = 10 + B

where B = b + C̃ is a coset of C̃ with b starting with 0 and b having r− 1 coordinates from

GR(p`, m) \ p`−1GR(p`, m). Since

w′(1 + p`−1x) = pm − 1

for all x ∈ GR(p`,m) we see that

N ′
A(j, pe) = N ′

Ḃ
(j − pm + 1, pe), (2.13)

for all j = 0, 1, . . . , pe − 1, where Ḃ is B with its first coordinate deleted. But notice that

Ḃ = ḃ + ˙̃C
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with ˙̃C denoting, in the same way, C̃ with its first coordinate deleted. Now, we can apply

the induction hypothesis to Ḃ because we might still assume that Ḃ is of length n by just

adding a zero coordinate to it. Note that, because of the type of the generating matrix that

C̃ has, ˙̃C is either still (k1+k2+· · ·+k`)-dimensional or pm copies of a (k1+k2+· · ·+k`−1)-

dimensional code. So, applying the induction hypothesis and using (2.13), we get

νp

(
N ′

A(j, pe)
) ≥

⌊
k1 + k2 + · · ·+ k` − pe−m−1

(p− 1)pe−m−1

⌋

or

νp

(
N ′

A(j, pe)
) ≥ m+

⌊
k1 + k2 + · · ·+ k` − 1− pe−m−1

(p− 1)pe−m−1

⌋
.

But since the latter is greater than or equal to the former whenever e ≥ m + 1, and p is a

prime, we see that, we get

νp

(
N ′

A(j, pe)
) ≥

⌊
k1 + k2 + · · ·+ k` − pe−m−1

(p− 1)pe−m−1

⌋
(2.14)

for all j and e ≥ m + 1 where A is any coset of C̃. But since the original code C is just a

union of a finite number of cosets of C̃, the result of the theorem now follows easily from

(2.14) and (2.8).

We used the fact that e ≥ (`−1)m+1 in the latter parts of the proof of the main theorem.

Since every weight is divisible by p(`−2)m because of the structure of the homogeneous

weight, we still have to figure out what happens when we have (`−2)m+1 ≤ e ≤ (`−1)m.

For the remaining part of this section, we will let C be a linear code of the same type as

in Theorem 2.11, and C̃ be the same code as was defined in the proof above. We first note

that

whom(a + c) ≡ whom(a) (mod pe) (2.15)

for all c ∈ C̃, a ∈(
GR(p`,m)

)n when (` − 2)m + 1 ≤ e ≤ (` − 1)m. This implies that we

have the following quick corollary for this case:
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Corollary 2.12. With C being the same as in Theorem 2.11, we have

Nhom
C (j, pe) ≡ 0 (mod pm(k1+k2+···+k`))

for all j, and (`− 2)m + 1 ≤ e ≤ (`− 1)m.

It turns out however that we have a better result than Corollary 2.12 and we can give

the result in the following theorem:

Theorem 2.13. Suppose that C is a linear code over GR(p`,m) of type

(p`m)k1(p(`−1)m)k2 · · · (pm)k` .

Then, for (`− 2)m + 1 ≤ e ≤ (`− 1)m, we have

Nhom
C (j, pe) ≡ 0 (mod pq), j = 0, 1, . . . , pe − 1

where

q = m(k1 + k2 + · · ·+ k`)+
⌊

k1 + k2 + · · ·+ k`−1 − pe−(`−2)m−1

(p− 1)(pe−(`−2)m−1)

⌋
.

Proof. We will again replace whom by w′ and Nhom
C (j, pe) by N ′

C(j, pe) and when we do that,

we will have replaced e by e − (` − 2)m and so we will assume that 1 ≤ e ≤ m. Suppose

C has the same generators as in the proof of Theorem 2.11, and let C̃ be the same code as

was defined in the proof of the theorem. We know that

C =
⋃

a∈S

(a + C̃) (2.16)

where S is the set that is defined as

S =
{ k1∑

i=1

αici +
k2∑

j=1

βjbj + · · ·+
k`−1∑

t=1

γtdt

∣∣ αi, βj , . . . , γt

}

where

αi ∈
{
u0 + pu1 + · · ·+ p`−2u`−2

∣∣ u0, u1, . . . , u`−2 ∈ Tm

}
,
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βj ∈
{
v0 + pv1 + · · ·+ p`−3v`−3

∣∣ v0, v1, . . . , v`−3 ∈ Tm

}
,

and so on and

γt ∈
{
w0

∣∣ w0 ∈ Tm

}

where Tm is the Teichmuller set defined in Section 2.2.

We see that, by (2.15), we have

N ′
C(j, pe) = pm(k1+k2+···+k`)N ′

S(j, pe), 1 ≤ e ≤ m. (2.17)

Now, suppose that we introduce a map µ on GR(p`, m) that reduces every element in

GR(p`, m) modulo p`−1. Suppose R = µ
(
GR(p`, m)

)
. Then µ(S) becomes a linear code

over R and, furthermore we have

N ′
S(j, pe) = NH

µ(S)(j/(pm − 1), pe) (2.18)

where NH
µ(S)(i, p

e) denotes the number of codewords that are in µ(S) with Hamming weights

congruent to i modulo pe and 1 ≤ e ≤ m. The equation (2.18) is true, because

w′(a) ≡ (pm − 1)wH(µ(a)) (mod pe)

for all a ∈ S and 1 ≤ e ≤ m. Now applying the methods used in the proof of Theorem 2.11,

one can however easily show that

νp

(
NH

µ(S)(i, p
e)

) ≥
⌊

k1 + k2 + · · ·+ k`−1 − pe−1

(p− 1)pe−1

⌋
, (2.19)

for all i = 0, 1, . . . , pe−1. Now, the theorem follows from combining (2.8), (2.17),(2.18) and

(2.19).
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2.5 The Result in the Main Theorem is Best Possible

One of the differences in the work that we have done in this chapter and the work done by

Wilson in [1] is that we are trying to improve the results to the best possible extent, and in

order to accomplish that, we need to show that the results that we obtained in section 2.4

are best possible. We will first give some preliminaries that will serve as tools for the rest

of the section.

We will first make an observation about the general weight distributions of trivial block

codes over groups. Suppose that G is a finite abelian group. Assume that a weight function

w is defined on the elements of G, and that the weight of a word in Gk is the sum of the

weight of the coordinates. Let Pk(z) denote the weight distribution polynomial of Gk, that

is,

Pk(z) =
∑

(g1,...,gk)∈Gk

zw(g1)+w(g2)+···+w(gk).

But then, this is the same as

Pk(z) =
∑

(g1,...,gk)∈Gk

zw(g1)+w(g2)+···+w(gk)

=
∑

g1,g2,...,gk∈G

zw(g1)zw(g2) · · · zw(gk)

=
( ∑

g1∈G

zw(g1)
)·(

∑

g2∈G

zw(g2)
) · · · · ·(

∑

gk∈G

zw(gk)
)

=
( ∑

g∈G

zw(g)
)k

.

Similarly if G1 and G2 are two abelian groups with the same weight function w defined on

them, we can write the weight distribution polynomial of the trivial block code C = Gk1
1 Gk2

2
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as

PC(z) =
∑

(g1,...,gk1
,h1,...,hk2

)∈G
k1
1 G

k2
2

zw(g1)+···+w(gk1
)+w(h1)+···+w(hk2

)

=
( ∑

g1∈G1

zw(g1)
) · · · · ·(

∑

gk1
∈G1

zw(gk1
)
)·(

∑

h1∈G2

zw(h1)
) · · · · ·(

∑

hk2
∈G2

zw(hk2
)
)

=
[ ∑

g∈G1

zw(g)
]k1 ·[

∑

h∈G2

zw(h)
]k2 . (2.20)

An obvious inductive argument then gives us the following useful lemma:

Lemma 2.14. Suppose, G1, G2, . . . , Gr are finite abelian groups with a weight function w

defined on them and suppose

C = Gk1
1 Gk2

2 · · ·Gkr
r

is the trivial block code. If PC(z) denotes the weight enumerator of C, we have

PC(z) =
[ ∑

g∈G1

zw(g)
]k1 ·[

∑

h∈G2

zw(h)
]k2 · · · ·[

∑

s∈Gr

zw(s)
]kr .

The next observation will be a sort of modification on Theorem 2.2 in the form of the

following corollary:

Corollary 2.15. Suppose

(
1 + (p− 1)xp(`−1)m)k ≡ A0 + A1x + · · ·+ Ape−1x

pe−1 (mod xpe − 1),

then

min
{

νp(Ai)
∣∣i = 0, 1, . . . , pe − 1

}
=

⌊
k − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋

for e ≥ (`− 1)m + 1.

Proof. Note that, in the equation above, Ai = 0 when i 6= 0 (mod p(`−1)m). So, we can

make the substitution of y = xp(`−1)m
. Then the above equation would turn into

(
1 + (p− 1)y

)k ≡ B0 + B1y + · · ·+ Bpe−(`−1)m−1y
pe−(`−1)m−1 (mod ype−(`−1)m − 1) (2.21)
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with

min
{

νp(Ai)
∣∣i = 0, 1, . . . , pe − 1

}
= min

{
νp(Bj)

∣∣j = 0, 1, . . . , pe−(`−1)m − 1
}

.

Now, the result follows by applying Theorem 2.2 directly to (2.21).

After these initial observations, we are ready to prove that the result in the main theorem

proved in the previous section is best possible.

Theorem 2.16. Let

C =
(
GR(p`,m)

)k1×(
pGR(p`,m)

)k2 × · · ·×(
p`−1GR(p`,m)

)k` (2.22)

be the trivial block code over GR(p`,m) of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` .

Then

min
{

νp

(
Nhom

C (j, pe)
)∣∣j = 0, 1, . . . , pe − 1

}
=

⌊
k1 + k2 + · · ·+ k` − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋
(2.23)

for all e ≥ (` − 1)m + 1 except in the case when e = `,m = 1, p = 2, k` 6= 0 and k1 + k2 +

· · ·+ k`−1 > 1.

Proof. Let, PC(z) be the homogeneous weight distribution of C. Then by Lemma 2.14, we

see that

PC(z) =
[
1 + (p`m − pm)z(pm−1)p(`−2)m

+ (pm − 1)zp(`−1)m

]k1

·
[
1 + (p(`−1)m − pm)z(pm−1)p(`−2)m

+ (pm − 1)zp(`−1)m

]k2

· · · · ·
[
1 + (pm − 1)zp(`−1)m

]k`

.

(2.24)
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Now, notice that we can write, by binomial expansions,

PC(z) =
[
1 + (pm − 1)zp(`−1)m

]k1+k2+···+k`

+ pmF1

[
1 + (pm − 1)zp(`−1)m

]k1+k2+···+k`−1

+

p2mF2

[
1 + (pm − 1)zp(`−1)m

]k1+k2+···+k`−2

+ . . . (2.25)

where Fi are polynomials with integer coefficients. But now by Corollary 2.15, we know

that the coefficients of
(
1 + (pm − 1)zp(`−1)m)k

modulo zpe − 1 are strictly divisible by pq where

q =
⌊

k − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋
. (2.26)

But now, looking at (2.25), since we have

jm+
⌊

k1 + k2 + · · ·+ k` − j − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋
>

⌊
k1 + k2 + · · ·+ k` − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋
(2.27)

for all j ≥ 1 and for all p and e ≥ (`− 1)m + 1 except when p = 2, m = 1, e = `, we get

min
{

νp

(
Nhom

C (j, pe)
)∣∣j = 0, 1, . . . , pe − 1

}
= max

{
0,

⌊
k1 + k2 + · · ·+ k` − pe−(`−1)m−1

(p− 1)pe−(`−1)m−1

⌋}

(2.28)

in this case.

What Theorem 2.16 accomplishes is that it proves that the result in Theorem 2.11 is

best possible in all the cases except possibly in the case when e = `, p = 2,m = 1.

To see that the result in Theorem 2.13 is best possible, i.e., the case when (`−2)m+1 ≤
e ≤ (`− 1)m, we look at (2.24), and we see that

PC(z) ≡ pm(k1+k2+···+k`)
(
1 + (p(`−1)m − 1)z(pm−1)p(`−2)m)k1×

· · ·×(
1 + (pm − 1)z(pm−1)p(`−2)m)k`−1 (mod zpe − 1).
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But now, applying Corollary 2.15 in the same way we applied it above we can easily see

that if

PC(z)/pm(k1+k2+···+k`) ≡ P0 + P1z + · · ·+ Ppe−1z
pe−1 (mod zpe − 1), (2.29)

then

min
{

νp(Pi)
∣∣ i = 0, 1, . . . , pe − 1

}
=

⌊
k1 + k2 + · · ·+ k`−1 − pe−(`−2)m−1

(p− 1)pe−(`−2)m−1

⌋
,

which means that the result in Theorem 2.13 is best possible. So the only case we haven’t

looked at so far is the case when e = `,m = 1, p = 2, k` 6= 0, and k1 + · · ·+ k`−1 > 1.

The case when e = `, p = 2,m = 1, k` 6= 0, and k1 + · · ·+ k`−1 > 1:

In this case, we are in the ring Z2` . Let’s first show that the trivial block code doesn’t work

in this case:

Lemma 2.17. If e = `, k` 6= 0, and k1 + · · ·+ k`−1 > 1, then

C = (Z2`)k1 × (2Z2`)k2 × · · · × (2`−1Z2`)k`

doesn’t give us the best result for Theorem 2.11.

Proof. If k` 6= 0, then we can write

C = C10 ∪ C12`−1

where

C1 = (Z2`)k1 × (2Z2`)k2 × · · · × (2`−1Z2`)k`−1.

But then we have

Nhom
C (i, 2`) = Nhom

C1
(i, 2`) + Nhom

C1
(i− 2`−1, 2`) = Nhom

C1
(i, 2`−1). (2.30)
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However, by Theorem 2.13, we have

Nhom
C (i, 2`) = Nhom

C1
(i, 2`−1) ≡ 0 (mod 22(k1+k2+···+k`−1)+k`−2). (2.31)

But, since when k1 + k2 + · · ·+ k`−1 > 1, we have

2(k1 + k2 + · · ·+ k`−1) + k` − 2 > k1 + k2 + · · ·+ k` − 1,

we see that in this case we don’t get the best possible result.

So, how do we solve this problem? We will just make a slight modification. In this case,

we will take

C = (Z2`)k1 × (2Z2`)k2 × · · · × (2`−2Z2`)k`−1 × C`

where C` is a 2`−1Z2`-linear code generated by the generators

(0k1 , . . . , 0k`−1
, 2`−1, 0, 0, . . . , 0, 2`−1), (0k1 , . . . , 0k`−1

, 0, 2`−1, 0, . . . , 0, 2`−1), . . . ,

(0k1 , . . . , 0k`−1
, 0, 0, . . . , 0, 2`−1, 2`−1).

Basically, we add another coordinate that is 2`−1 to the end of the usual generator that is

2`−1ek`
. It is easy to observe that

whom(c) ≡ 0 (mod 2`), ∀c ∈ C`. (2.32)

This means that if PC(z) denotes the Homogeneous weight distribution of C modulo z2`−1,
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then we have

PC(z) = 2k`
(
1 + z2`−1

+ (2` − 2)z2`−2)k1 ×

×(
1 + z2`−1

+ (2`−1 − 2)z2`−2)k2 × · · ·×(
1 + z2`−1

+ 2z2`−2)k`−1

= 2k`

[(
1− 2z2`−2

+ z2`−1)
+ 2`z2`−2

]k1

× · · ·×
[(

1− 2z2`−2
+ z2`−1)

+ 4z2`−2

]k`−1

= 2k`
(
1− 2z2`−2

+ z2`−1)k1+···+k`−1 + 4 · 2k`B1(z)
(
1− 2z2`−2

+ z2`−1)k1+···+k`−1−1 +

42 · 2k`B2(z)
(
1− 2z2`−2

+ z2`−1)k1+k2+···+k`−1−2 + . . . (2.33)

where Bi(z) are polynomials with integer coefficients. But, we know, from Corollary 2.15

that the coefficients of
(
1− 2z2`−2

+ z2`−1)k = (1− z2`−2
)2k

modulo z2` − 1 are strictly divisible by 2k−1. But, since

2j + (k1 + k2 + · · ·+ k`−1 − j − 1) > k1 + k2 + · · ·+ k`−1 − 1

for all positive j, we see that (2.33) gives us

min
{

ν2

(
Nhom

C (i, 2`)
)∣∣i = 0, 1, . . . , 2` − 1

}
= k1 + k2 + · · ·+ k` − 1, (2.34)

which means that the result of Theorem 2.11 is best possible for the case when p = 2,m = 1

and e = ` as well.

We can summarize all we have done so far in this section in the following theorem:

Theorem 2.18. The results in Theorem 2.11 and Theorem 2.13 that we obtained in Section

2.4 are best possible in all the cases.

2.6 Concluding Remarks and Questions

The first observation that we make is that the result we obtained in the form of Theorem

2.11 and Theorem 2.13 is indeed a generalization of the result that we obtained earlier for the

Lee weights of linear codes over Z4 in the form of Theorem 2.6 by letting ` = 2,m = 1, p = 2.
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The results we obtained in Section 2.4 don’t however generalize the case of the Hamming

weight. In fact by applying the same methods that we applied in the proof of Theorem 2.11,

we can extend these results to a slightly more generalized weight than the homogeneous

weight. To this end, we will introduce the following weight for GR(p`,m) :

w(x) :=





0 if x = 0

d1 if 0 6= x ∈ p`−1GR(p`,m),

d2 otherwise.

We will introduce the restriction that νp(d2) ≤ νp(d1). It is obvious that this weight easily

generalizes the homogeneous weight. But, even more interesting is that this weight gener-

alizes the Hamming weight for Galois ring codes as well, whereas the original homogeneous

weight didn’t. We can then extend the results we obtained in Section 2.4 for the homoge-

neous weight enumerators of linear codes over Galois rings to the newly defined w-weight:

Theorem 2.19. Suppose C is a linear code over GR(p`, m) of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` ,

and suppose that Nw
C (j, pe) denotes the number of codewords in C that have w-weights

congruent to j modulo pe. Then we have

Nw
C (j, pe) ≡ 0 (mod pq), j = 0, 1, . . . , pe − 1

where

q = max
{

0,

⌊
k1 + k2 + · · ·+ k` − pe−νp(d1)−1

(p− 1)pe−νp(d1)−1

⌋}

for all e ≥ νp(d1) + 1, and

q = m(k1 + · · ·+ k`) + max
{

0,

⌊
k1 + k2 + · · ·+ k`−1 − pe−νp(d2)−1

(p− 1)pe−νp(d2)−1

⌋}

for all νp(d2) + 1 ≤ e ≤ νp(d1). Moreover, the result above is best possible.
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As we said above, this new weight does generalize the Hamming weights for binary codes

to the codes over Galois rings, so we will give the particular result about the Hamming

weight case:

Corollary 2.20. Suppose C is a linear code over GR(p`,m) of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` ,

and suppose that NH
C (j, pe) denotes the number of codewords in C that have Hamming

weights congruent to j modulo pe. Then we have

NH
C (j, pe) ≡ 0 (mod pq), j = 0, 1, . . . , pe − 1

where

q = max
{

0,

⌊
k1 + k2 + · · ·+ k` − pe−1

(p− 1)pe−1

⌋}

for all e ≥ 1.

Note that this is a generalization of Corollary 1.5 that was a particular result of Pless

about the Hamming weights modulo 4 of binary linear codes.

Comparing with the result in [1]:

As we stated at the beginning of the chapter, we want to improve on the result that Wilson

obtained in [1], in particular Theorem 2.1. A good way of understanding the extent of

the improvement that we have gotten would be to compare the power of p that divides

Nhom
C (j, pe)’s by using Theorem 2.1, which was Wilson’s result, and by using Theorem 2.11,

which is our result:

Suppose that C is a linear code over GR(p`, m) of type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` .

Then applying Wilson’s Theorem 2.11 directly to the code C with the homogeneous weights,

we see that

Nhom
C (j, pe) ≡ 0 (mod pq1)
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where

q1 =
⌊

k1 + `−1
` k2 + · · ·+ 2

` k`−1 + 1
` k` − pe−1

(p− 1)pe−1

⌋
(2.35)

whereas if we apply our result of Theorem 2.11 we see that

Nhom
C (j, pe) ≡ 0 (mod pq2)

where

q2 =
⌊

k1 + k2 + · · ·+ k` − pe−(`−1)m−1

(p− 1)(pe−(`−1)m−1)

⌋
. (2.36)

Comparing q1 and q2, and noting that q2 is roughly p(`−1)m times q1, we see that our result

is a significant improvement to Wilson’s in the particular case of homogeneous weights of

linear codes over Galois rings when the type of the code is known. The reason for this

improvement is because Wilson uses only the size of the code, whereas in our case we are

using the type of the code, which obviously gives more information about the code than

just the size. At this point, we want to make the following remark about how to find the

type of a linear code:

Remark 2.21. We know that a linear code over a finite field is a vector space for which we

could talk about the notion of the dimension. In our works so far, we have focused instead

on linear codes over rings. A linear code over a ring R is an R-submodule of Rn. But

this submodule doesn’t have to be a free module, so we cannot talk about a dimension,

but instead we talk about the type of the linear code. As an example of how to find the

type of a code, we will look at a linear code over Zpm . So, suppose that C is a linear code

over Zpm . Then C will be of type (pm)k1(pm−1)k2 . . . (p)km for some non-negative integers

k1, k2, . . . , km. Given the code C, we want to find k1, k2, . . . , km. Our algorithm is going to

be a step-by-step process in which we will obtain the numbers k1, k2, . . . , km in order.

(1) Let C1 = pm−1C. Then C1 is a linear code over {0, pm−1, . . . , (p − 1)pm−1} of type

(p)k1 . So, the size of C1 will directly give us the exponent k1.

(2) Let C2 = pm−2C. Then C2 is a linear code over {0, pm−2, . . . , pm − pm−2} of type

(p2)k1(p)k2 . So, we have

|C| = p2k1+k2 .
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Since we already know k1, we can find k2 by just looking at the size of C2.

It is obvious that continuing with this algorithm we will find the exact type of C after

a finite number of steps.

An interesting thing to observe is that when we compare Corollary 2.20, which is our

result for the Hamming weights, and Wilson’s result of Theorem 2.1, which is about any

weight function, we see that we get very similar results. In fact, comparing q1 of (2.34)

with q of Corollary 2.20, we see that q1 and q are very close, in particular, if the code is of

type (p`m)k, then both results are the same. This brings the question to mind whether the

Hamming weight is the worst weight function in the sense of the work done in this chapter.

Certainly, when the code is of type (p`m)k, we see that Hamming weight is clearly the worst

weight because the result in Corollary 2.20 is best possible whereas the result in Theorem

2.1 is not.

Other Generalizations of the Lee Weight

As we saw above, the homogeneous weight defined for the Galois rings is in fact a general-

ization of the Lee weight defined on Z4-codes. This however is not the only way to extend

the Lee weight to higher rings. In fact, a more natural way to extend the Lee weight to the

ring Z2m for example would be to consider the Lee weight for Z4 to be the circular distance

to 0, in that case a Lee extension to Z2m would be as follows:

wLee(x) :=





x if x ≤ 2m−1,

2m − x otherwise.

In fact, Carlet, in his work [8], did consider this weight as an extension of the Lee weight,

but then dismissed it in favor of the homogeneous weight because it didn’t turn out to give

interesting results. I guess that a strong reason why many authors favored the homogenous

weight as the extension was because of its strong relation to the exponential sums (viz.

Theorem 2.9) and because of the extensive literature on exponential sums. So, a good

question would be whether we could get interesting results in the sense of weights modulo

prime powers for these other extensions. A good way to look at this question would be to

see how close to Hamming weight they come; so the closer they are to the Hamming weight,
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the worse the results obtained would be.

Another way to extend the Lee weight would be to look at the ideals and assign a weight

to different ideals. So we could define a weight function w on GR(p`,m) and then we could

say, let w(0) = 0 and w(x) = di if x ∈ pi−1GR(p`,m) \ piGR(p`,m) for i = 1, 2, . . . , `. In

this case we would have exactly ` non-zero weights, in fact this would even generalize the

homogeneous weight case. The methods that we applied in proving Theorem 2.11 however

don’t immediately apply to this kind of weight structure. So, we can’t say how good a

result we could obtain in this case.
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Chapter 3

MacWilliams Identities for Linear
Codes over Rings

The MacWilliams identity was first obtained as an identity that related the Hamming weight

enumerator of a linear code over a finite field with that of its dual’s. The following theorem

from [6] and [20] illustrates this point:

Theorem 3.1. (MacWilliams, [6], [20]) Let C be an [n, k]-code over Fq with weight

enumerator A(z) and let B(z) be the weight enumerator of C⊥. Then

B(z) = q−k(1 + (q − 1)z)nA

(
1− z

1 + (q − 1)z

)
. (3.1)

As the interest in codes over rings increased together with the notion of new weights, a

natural question to ask was whether or not there existed analogues of Theorem 3.1 for the

weight enumerators of these codes. The first step towards this goal was established in [2] by

Sloane, Calderbank, et al. in which they introduced the notion of MacWilliams identities

for the different weight enumerators of linear codes over Z4. Of interest among these were

the notion of a complete weight enumerator and symmetrized weight enumerator for linear

codes over Z4. With the help of MacWilliams identities for these weight enumerators, they

were able to establish MacWilliams identities for the Hamming and Lee weight enumerators

of linear codes over Z4.

Delsarte also considered the problem of MacWilliams identities in his work [5]; in his

case he considered the general abelian group codes and he obtained MacWilliams identities

for the Hamming weight enumerators of these codes.
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In section 1, we will reiterate the results of Sloane, Calderbank, et al. about the

MacWilliams identities for different weight enumerators of linear codes over Z4, and then

we will resolve the question of existence of such an identity for the Euclidean weight enu-

merators of linear codes over Z4 by exhibiting a counter example.

In section 2, we will consider the general abelian group codes and we will prove a theorem

about the MacWilliams identities for the complete weight enumerators of these codes.

In section 3, we will consider several rings and we will introduce new inner products that

will give us linear codes as duals and that will also give us computational tools to obtain

MacWilliams identities for the complete weight enumerators of linear codes over these rings.

In section 4, we will conclude with some remarks and some applications of these identi-

ties.

3.1 MacWilliams Identities for Euclidean Weight Enumera-

tors of Z4-codes

We first recall the results of Sloane, Calderbank, et al. from [2], about the MacWilliams

identities for linear codes over Z4. Suppose C is a linear code over Z4 and suppose that C⊥

is the dual of C with respect to the Euclidean inner product modulo 4. Then

cweC(W,X, Y, Z) =
∑

a∈C

Wn0(a)Xn1(a)Y n2(a)Zn3(a) (3.2)

where nj(a) is the number of coordinates in a that are congruent to j modulo 4. They

defined the symmetrized weight enumerator of C, sweC(W,X, Y ) as

sweC(W,X, Y ) = cweC(W,X, Y, X). (3.3)

They defined the Lee Weight enumerator of C as

LeeC(W,X) =
∑

a∈C

W 2n−wL(a)XwL(a) = sweC(W 2,WX, X2) (3.4)
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and similarly, the Hamming weight enumerator was defined as

HamC(W,X) = sweC(W,X, X). (3.5)

Then the following analogous MacWilliams identities were obtained:

cweC⊥(W,X, Y, Z) =

1
|C|cweC(W + X + Y + Z, W + iX − Y − iZ,W −X + Y − Z, W − iX − Y + iZ), (3.6)

sweC⊥(W,X, Y ) =
1
|C|sweC(W + 2X + Y, W − Y, W − 2X + Y ), (3.7)

LeeC⊥(W,X) =
1
|C|LeeC(W + X, W −X), (3.8)

HamC⊥(W,X) =
1
|C|HamC(W + 3X,W −X). (3.9)

Now, our aim is to see whether there is a similar MacWilliams identity like the ones above

for the Euclidean weight enumerators of linear codes over Z4. Recall that the Euclidean

weight wE on Z4 is defined as

wE(0) = 0, wE(1) = wE(3) = 1, wE(2) = 22 = 4.

We can then define the Euclidean weight enumerator of a linear code C over Z4 as

EucC(W,X) =
∑

c∈C

W 4n−wE(c)XwE(c). (3.10)

Considering that

wE(c) = n1(c) + n3(c) + 4n2(c)

and that

n = n0(c) + n1(c) + n2(c) + n3(c),



49

putting these in (3.10) and using (3.2) and (3.3) we see that

EucC(W,X) = cweC(W 4,W 3X, X4,W 3X) = sweC(W 4,W 3X,X4). (3.11)

Since MacWilliams identities exist for both the Hamming and the Lee weight enumer-

ators of linear codes over Z4 in the form of (3.8) and (3.9), we naturally ask the same

question for the Euclidean weight enumerators of linear codes over Z4. It turns out that no

such identity exists for the Euclidean weight enumerators as we have a counter example.

We will state the result in the form of the following theorem:

Theorem 3.2. There exist linear codes C1 and C2 over Z4 such that

EucC1(z) = EucC2(z)

but

EucC⊥1
(z) 6= EucC⊥2

(z).

Proof. The proof will be in the form of exhibiting an example of two such codes and calcu-

lating their Euclidean weight enumerators. We first note however that

EucC(z) =
∑

c∈C

zwE(c) = sweC(1, z, z4). (3.12)

Let

C1 =< (102110010232323310103132303130), (012122330101323213010130121210) >

(3.13)

and

C2 =< (102112230032101332323330123112), (010122130103123231030110123232) >

(3.14)

be two linear codes over Z4 of length 30, of size 42 = 16. We first calculate their Euclidean
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weight enumerators, and we see that

EucC1(z) = 1 + 2z37 + 2z41 + 2z44 + 2z45 + 2z48 + 2z49 + z52 + z64 + z68 (3.15)

and

EucC2(z) = 1 + 2z37 + 2z41 + 2z44 + 2z45 + 2z48 + 2z49 + z52 + z64 + z68 (3.16)

so that

EucC1(z) = EucC2(z). (3.17)

Now, we need to calculate EucC⊥1
(z) and EucC⊥2

(z). But, notice that C⊥
1 and C⊥

2 are two

linear codes over Z4 of size 428 = 72057594037927936 > 7×1016. Since these dual codes are

so big in size, calculating their Euclidean weight enumerators present practical problems.

We will calculate the Euclidean weight enumerators of the duals with a very simple method

thanks to the identities we have for the symmetrized weight enumerators and the connection

of the Euclidean weight enumerators with the symmetrized weight enumerators. So, by

using (3.12) and (3.7), we see that

EucC⊥(z) = sweC⊥(1, z, z4) =
1
|C|sweC(1 + 2z + z4, 1− z4, 1− 2z + z4). (3.18)

So in order to calculate EucC⊥i
(z)’s, all we need to do is to calculate the sweCi(W,X, Y )’s,

which is simple since |Ci| = 16, and then we will replace W by 1+2z + z4, X by 1− z4 and

Y by 1− 2z + z4 in sweCi(W,X, Y ) and divide the whole thing by 16.
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Doing the replacement that we discussed above we see that

EucC⊥1
(z) = 1 + 4z + 86z2 + 2036z3 + 27627z4 + 284782z5 + 2377708z6 + 16347588z7+

94342262z8 + 464880164z9 + 1980218040z10 + 7368253436z11 + 24208530074z12+

71012429768z13 + 188046545636z14 + 454685931564z15 + 1015805935511z16+

2120146461248z17 + 4170342704854z18 + 7780239010072z19 + 13838853631541z20+

23579437100638z21 + 38631434684968z22 + 61037882494072z23 + 93259510341516z24+

138141692522776z25 + 198754423575264z26 + 278171148477288z27 + 379340979921012z28+

504858907125632z29 +656429066099672z30 +834513461551496z31 +1038460479154001z32+

1266305669090204z33+1514089055750494z34+1775990482137788z35+2045239387733099z36+

2314171001268150z37+2573847080981220z38+2814871603243692z39+3028577613183130z40+

3207345420856044z41+3344750078506968z42+3435702602280372z43+3476715824359798z44+

3467259069419976z45+3409846523456236z46+3307239598474308z47+3162604975644207z48+

2983349882069800z49+2778817634639326z50+2554551462107920z51+2316065303609069z52+

2073682316787430z53+1835391661920368z54+1603095715951952z55+1381278557122792z56+

1177300712038032z57 +992250360511872z58 +824378991716208z59 +676604414460312z60+

550350272053824z61 + 441801481745424z62 + 349419477646384z63 + 274044218802987z64+

212840118547900z65 + 162467351970914z66 + 122685261377580z67 + 92199704580569z68+

68096376678122z69 + 49437221567732z70 + 35880937163996z71 + 25733397440842z72+

17961743846332z73 + 12524029711080z74 + 8747955634596z75 + 5895928830182z76+

3918959742680z77 + 2661753922684z78 + 1748524880884z79 + 1101487834189z80+

720587350448z81 + 466680325218z82 + 278946084440z83 + 172657254231z84+

111268908090z85 +63824738024z86 +36451377848z87 +23437352908z88 +13219344088z89+

6769316768z90 + 4286959272z91 + 2471178676z92 + 1114112064z93 + 665617048z94+

410585544z95 + 165237507z96 + 85808932z97 + 59099242z98 + 22272676z99 + 8968529z100+

7200626z101 + 2709180z102 + 717364z103 + 721254z104 + 297140z105 + 38536z106+

55084z107 + 28490z108 + 1432z109 + 2868z110 + 2076z111+

109z112 + 104z113 + 106z114 + 7z116 + 2z117.
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Similarly we get,

EucC⊥2
= 1 + 4z + 90z2 + 2036z3 + 27547z4 + 284774z5 + 2378292z6+

16347716z7 + 94340982z8 + 464879532z9 + 1980211720z10 + 7368253052z11+

24208573098z12 + 71012443312z13 + 188046488572z14 + 454685897772z15+

1015805709975z16 + 2120146401112z17 + 4170343496026z18 + 7780239374616z19+

13838853645781z20 + 23579436969070z21 + 38631431157656z22 + 61037880792952z23+

93259514033292z24 + 138141694678536z25 + 198754431237152z26 + 278171152782952z27+

379340964238804z28 + 504858897789936z29 + 656429059603304z30 + 834513456046472z31+

1038460512419921z32+1266305691902252z33+1514089048651410z34+1775990482194108z35+

2045239348026619z36+2314170966410462z37+2573847105371260z38+2814871615150124z39+

3028577634068122z40+3207345452406852z41+3344750055627240z42+3435702583431476z43+

3476715835220902z44+3467259060320000z45+3409846521506228z46+3307239607913540z47+

3162604946830383z48+2983349864616432z49+2778817658602386z50+2554551471614736z51+

2316065330415277z52+2073682346995270z53+1835391640368656z54+1603095697090384z55+

1381278537374440z56+1177300684658992z57+992250365437568z58+824379003525488z59+

676604429930968z60 + 550350290886368z61 + 441801487337328z62 + 349419477781552z63+

274044208796971z64 + 212840107470108z65 + 162467345877678z66 + 122685255940140z67+

92199707721641z68 + 68096381621682z69 + 49437224964588z70 + 35880941383772z71+

25733398122570z72 + 17961742935924z73 + 12524028350808z74 + 8747953909540z75+

5895927901270z76 + 3918959233968z77 + 2661754174884z78 + 1748525297652z79+

1101488107341z80 + 720587720408z81 + 466680427822z82 + 278946051672z83+

172657235447z84+111268845002z85+63824684248z86+36451358136z87+23437349068z88+

13219334216z89 + 6769310048z90 + 4286962088z91 + 2471179796z92 + 1114112048z93+

665622184z94 + 410589640z95 + 165238787z96 + 85811508z97 + 59100134z98+

22271652z99 + 8967489z100 + 7199882z101 + 2708708z102 + 716980z103+

721254z104 + 297244z105 + 38584z106 + 55212z107 + 28570z108+

1440z109 + 2860z110 + 2076z111 + 109z112 + 96z113 + 102z114 + 7z116 + 2z117.
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That EucC⊥1
6= EucC⊥2

is obvious by looking at the coefficient of z2 for example. But for

completeness, we will actually calculate the difference:

EucC⊥2
− EucC⊥1

= 4z2 − 80z4 − 8z5 + 584z6 + 128z7 − 1280z8 − 632z9−

6320z10 − 384z11 + 43024z12 + 13544z13 − 57064z14 − 33792z15 − 225536z16 − 60136z17+

791172z18 + 364544z19 + 14240z20 − 131568z21 − 3527312z22 − 1701120z23 + 3691776z24+

2155760z25 + 7661888z26 + 4305664z27 − 15682208z28 − 9335696z29 − 6496368z30−

5505024z31 + 33265920z32 + 22812048z33 − 7099084z34 + 56320z35 − 39706480z36−

34857688z37 + 24390040z38 + 11906432z39 + 20884992z40 + 31550808z41 − 22879728z42−

18848896z43 + 10861104z44 − 9099976z45 − 1950008z46 + 9439232z47 − 28813824z48−

17453368z49 + 23963060z50 + 9506816z51 + 26806208z52 + 30207840z53 − 21551712z54−

18861568z55 − 19748352z56 − 27379040z57 + 4925696z58 + 11809280z59 + 15470656z60+

18832544z61 + 5591904z62 + 135168z63 − 10006016z64 − 11077792z65 − 6093236z66−

5437440z67 +3141072z68 +4943560z69 +3396856z70 +4219776z71 +681728z72−910408z73−

1360272z74 − 1725056z75 − 928912z76 − 508712z77 + 252200z78 + 416768z79 + 273152z80+

369960z81 +102604z82− 32768z83− 18784z84− 63088z85− 53776z86− 19712z87− 3840z88−

9872z89 − 6720z90 + 2816z91 + 1120z92 − 16z93 + 5136z94 + 4096z95 + 1280z96 + 2575z97+

892z98 − 1024z99 − 1040z100 − 744z101 − 472z102 − 384z103 + 104z105 + 48z106+

128z107 + 80z108 + 8z109 − 8z110 − 8z113 − 4z114.

Note that Theorem 3.2 implies that we can’t have a MacWilliams-like identity for the

Euclidean weight enumerators of linear codes over Z4 unlike the Hamming and the Lee

weight enumerators for which we have the identities (3.8) and (3.9).
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3.2 MacWilliams Identities for Group Codes

In this section, we will consider abelian group codes and we will derive the Macwilliams

identities for the complete weight enumerators and also Hamming weight enumerators of

these codes. We first define an abelian group code:

Definition 3.3. Suppose G is an abelian group of order q ≥ 2 and for an integer n ≥ 1,

we will consider the group Gn, the direct product of n copies of G. Then an additive code

C of length n over G is just defined to be a subgroup of Gn.

A weight function w can be defined on such codes as usual, by assigning to each element

of G a nonnegative integer, and letting the weight of a word be defined as the sum of

the weights of the coordinates. A standard weight function is the Hamming weight, which

assigns 1 to every nonzero element and zero to 0. A weight enumerator polynomial for C

with respect to the weight w is the polynomial

W (z) =
∑

c∈C

zw(c). (3.19)

Among the weight enumerators, an important one is the complete weight enumerator from

which all the other weight enumerators can be derived:

Definition 3.4. The complete weight enumerator of C is the polynomial in q variables

cweC(W1,W2, . . . , Wq) =
∑

c∈C

∏

gi∈G

W
ngi (c)
i (3.20)

where G = {g1, g2, . . . , gq} and ngi(c) denotes the number of occurrences of gi in c.

Suppose now that the group G is of the form

G = Zm1 × Zm2 × · · · × Zmr (3.21)

with

mr |mr−1 | . . . |m1.
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In particular, we might assume that

mi = pei1
1 pei2

2 . . . peik
k (3.22)

with p1 > p2 > · · · > pk primes, and e1j ≥ e2j ≥ · · · ≥ erj ≥ 0 for all j = 1, 2, . . . , k. We

first define an inner product on Gn:

Definition 3.5. Define a symmetric function < ., . >: Gn ×Gn → Zm1 such that

< (g1, g2, . . . , gn), (h1, h2, . . . , hn) > =
n∑

i=1

gi ∗ hi (3.23)

where

gi ∗ hi = gi(1)hi(1) +
m1

m2
gi(2)hi(2) + · · ·+ m1

mr
gi(r)hi(r). (3.24)

Here gi(j) ∈ Zmj is the jth coordinate of gi when it is written as an r-tuple in G.

Note that the inner product thus defined is symmetric and bilinear. It is a natural

definition for an inner product, because if ξ is a primitive mst
1 root of unity over complex

numbers then, ξm1/mi is a primitive mth
i root of unity and hence a character of Zmi .

Definition 3.6. Suppose C is an abelian group code over G defined above by (3.21) of

length n. We define the dual C∗ of C with respect to the inner product defined above in

(3.23) and (3.24) as

C∗ =
{
x ∈ Gn

∣∣ < x, c >= 0, ∀c ∈ C
}
. (3.25)

We prove the following lemma for the inner product above that will be useful:

Lemma 3.7. Suppose (h1, h2, . . . , hn) ∈ Gn is fixed. If

< (g1, g2, . . . , gn), (h1, h2, . . . , hn) >= 0

for all (g1, g2, . . . , gn) ∈ Gn, then (h1, h2, . . . , hn) = 0, the zero vector in Gn.

Proof. By taking all but one of gi’s to be the zero element in G, we can reduce this to the



56

case n = 1. So, suppose h ∈ G is fixed and that < g, h >= 0 for all g ∈ G. This means that

g ∗ h = g(1)h(1) +
m1

m2
g(2)h(2) + · · ·+ m1

mr
g(r)h(r) = 0

for all g ∈ G where g = (g(1), . . . , g(r)) with g(j) ∈ Zmj . Then take g = (1, 0, . . . , 0). We

see that we get h(1) = 0 in Zm1 . Taking g = (0, 1, 0, . . . , 0) we see that m1
m2

h(2) = 0 in Zm1 ,

which means that h(2) = 0 in Zm2 . Similarly it can be shown that h(j) = 0 in Zmj for

j = 1, 2, . . . , r and so we get h = 0 in G.

Remark 3.8. Lemma 3.7 implies that {0}∗ = Gn and (Gn)∗ = {0}.

To prove a MacWilliams-like identity for the complete weight enumerators of abelian

group codes, we first prove the following lemma:

Lemma 3.9. Suppose H is a nontrivial subgroup of Zm1 of order s > 1 and suppose ξ is a

primitive mth
1 root of unity. Then we have

∑

h∈H

ξh = 0.

Proof. Suppose 0 6= h ∈ H is an element in H of order s. Then

H = {0, h, 2h, . . . , (s− 1)h}

with sh = m1k for some positive m1.But then we have

∑

h∈H

ξh =
s−1∑

`=0

(ξh)` =
ξsh − 1
ξh − 1

= 0

since ξsh = ξm1k = 1.

We are now ready to prove the following theorem that gives a MacWilliams-like identity

for the complete weight enumerators of abelian group codes:

Theorem 3.10. Suppose that G = {g1, . . . , gq} is an abelian group of order q and of the

form given in (3.21). Suppose that ξ is a primitive mth
1 root of unity over complex numbers,
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and let C be a group code of length n over G, and let C∗ be the dual of C with respect to

the inner product defined in (3.23) and (3.24). Then we have

cweC∗(W1,W2, . . . , Wq) =
1
|C|cweC

( q∑

i=1

ξg1∗giWi,

q∑

i=1

ξg2∗giWi, . . . ,

q∑

i=1

ξgq∗giWi

)
. (3.26)

Proof. The proof uses the same ideas and the same techniques used to prove the original

MacWilliams theorem from [6] and [20]. We will first introduce a function over Gn as

F (u) :=
∑

v∈Gn

ξ<u,v>
q∏

i=1

W
ngi (v)
i . (3.27)

Summing F (u)’s over all the codewords of the code C, we obtain

∑

u∈C

F (u) =
∑

u∈C

∑

v∈Gn

ξ<u,v>
q∏

i=1

W
ngi (v)
i =

∑

v∈Gn

q∏

i=1

W
ngi (v)
i

∑

u∈C

ξ<u,v>. (3.28)

Now, suppose for fixed v ∈ Gn, we consider the function

fv : C → Zm1

that takes u ∈ C to < u, v > modulo m1. Note that fv is a group homomorphism. Now, by

definition of the dual, we have

ker(fv) = C ⇔< u, v >≡ 0 (mod m1) ∀u ∈ C ⇔ v ∈ C∗.

This means the inner sum of (3.28) becomes |C| for all v ∈ C∗.

Now, suppose that v is not in C∗. This means that ker(fv) 6= C and so it is a non-trivial

subgroup of C, which means that Im(fv) is a non-trivial subgroup of Zm1 and hence by

Lemma 3.9, the inner sum becomes 0 for any such v ∈ Gn. This means that

∑

u∈C

F (u) = |C|
∑

v∈C∗

q∏

i=1

W
ngi (v)
i = |C|cweC∗(W1,W2, . . . ,Wq), (3.29)
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which is equivalent to saying that

cweC∗(W1,W2, . . . , Wq) =
1
|C|

∑

u∈C

F (u). (3.30)

Now we need to find what F (u) is. Let δ(x, y) denote the Kronecker Delta function, which

takes the value 1 if x = y and 0 for all other values. So

F (u) =
∑

v∈Gn

ξ<u,v>
q∏

i=1

W
ngi (v)
i

=
∑

(v1,v2,...,vn)∈Gn

( n∏

j=1

(
ξuj∗vj

q∏

i=1

W
δ(vj ,gi)
i

))

=
n∏

j=1

( q∑

i=1

ξuj∗giWi

)

=
( q∑

i=1

ξg1∗giWi

)ng1 (u)

·
( q∑

i=1

ξg2∗giWi

)ng2 (u)

· · · ·
( q∑

i=1

ξgq∗giWi

)ngq (u)

.

Summing this last product over all the codewords of C, we get the desired result.

As we said earlier, knowing the complete weight enumerator makes it easier to calculate

all the other weight enumerators. Now, as an application we will obtain the MacWilliams

identity for the Hamming weight enumerators of abelian group codes by using Theorem

3.10, which will be the exact same result that Delsarte obtained in [5].

MacWilliams identity for Hamming weight enumerators

For this section, we will assume G =
{
g1, g2, . . . , gq

}
to be the abelian group over which the

code is defined and g1 = 0 the zero element in the group. We first define the Hamming

weight enumerator for the group code in a similar way that it was defined for Z4-codes:

HC(W,X) =
∑

c∈C

Wn−wH(c)XwH(c) =
∑

c∈C

Wn0(c)Xng2 (c)+···+ngq (c) (3.31)

where wH is the Hamming weight. In fact, we note that it can be written in terms of the

complete weight enumerator as

HC(W,X) = cweC(W,X, X, . . . , X). (3.32)
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Then using Theorem 3.10, we can relate the Hamming weight enumerator of C and C∗:

HC∗(W,X) = cweC∗(W,X, X, . . . , X)

=
1
|C|cweC

(
W + (q − 1)X,W + X

q∑

i=2

ξg2∗gi , . . . , W + X

q∑

i=2

ξgq∗gi
)
.

(3.33)

At this point we want to introduce the following lemma:

Lemma 3.11. For all j > 1, we have

q∑

i=2

ξgi∗gj = −1.

Proof. For any such fixed j, consider the map fj : G → Zm1 such that fj(gi) = gi ∗gj . Then

fj is a group homomorphism. By Lemma 3.7, we know that gi ∗ gj = 0 for all j = 1, 2, . . . , q

if and only if gi = g1 = 0. So, if j > 1, then we have ker(fj) 6= G and hence Im(fj) is a

non-trivial subgroup of Zm1 . But then, by Lemma 3.9 we get

q∑

i=1

ξgj∗gi = 0

for all such j > 1. Since gj ∗ g1 = gj ∗ 0 = 0 for all j, we get

q∑

i=2

ξgi∗gj = −1, j = 2, 3, . . . , q.

But using Lemma 3.11 in (3.33), we see that we have easily proved the following corollary

of Theorem 3.10 that gives the MacWilliams identity for the Hamming weight enumerators

of abelian group codes:

Corollary 3.12. Suppose that C is a group code over G of length n with |G| = q. Let

HC(W,X) =
∑

c∈C

Wn−wH(c)XwH(c)



60

be the Hamming weight enumerator of C and let C∗ be the dual of C with respect to the

inner product defined in (3.23) and (3.24). Then we have the Macwilliams identity for the

Hamming Weight enumerators of C and C∗ as follows:

HC∗(W,X) =
1
|C|HC

(
W + (q − 1)X, W −X

)
.

3.3 MacWilliams Identities for Linear Codes over Rings

In this section, we will see some applications of Theorem 3.10, which was proved in the

previous section. In particular, we will focus on linear codes over rings, and we will consider

several rings in this process. We first note that every linear ring-code can be viewed as an

abelian-group code, while not every abelian group code is a ring code.

For example, the code C =
{
0, (0, 1, 2, 1, 3, 1), (0, 2, 0, 2, 2, 2), (0, 3, 2, 3, 1, 3)

}
is an abelian

group code over GR(4,m) because C < GR(4,m)6, but C is not a linear code over GR(4,m),

as for example ξ · (0, 1, 2, 1, 3, 1) is not in C.

So, while the method and the results of Theorem 3.10 will be applied readily, we will

have to make modifications in the form of introducing new inner products so that the dual

with respect to the new inner product of any linear ring-code will also be linear over the

same ring. The inner product defined in (3.23) and (3.24) certainly doesn’t ensure this, as

it only gives the dual as an abelian group code, not as a ring-code. So, for the rest of the

section, we will consider different rings and we will introduce new inner products so that

the duals will be linear over the same ring as well, and we will obtain analogous results for

the complete weight enumerators of these codes:

Linear Zm-codes

Note that this is exactly the case that was discussed in Section 2.2, with r = 1. So there

is no difference here because linear codes over Zm are Zm-submodules of Zn
m, which are

exactly subgroups of Zn
m. So, Theorem 3.10 and Corollary 3.12 remain the same for linear

codes over Zm.

Linear Codes over GR(p`,m)

For the general introduction about Galois rings we refer to Section 2.2. We will use the
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notations used in that section. We recall that a linear code of length n over GR(p`,m) is a

submodule of GR(p`,m)n.

We start by defining an inner product on GR(p`,m)n:

Definition 3.13. Suppose that

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ GR(p`, m)n

are two vectors; then we define a symmetric function < ., . > from GR(p`,m)n×GR(p`,m)n

to Zp` by letting

< x, y >= Tr(x1y1 + x2y2 + · · ·+ xnyn) (3.34)

where xiyi is the ordinary product in GR(p`,m), and Tr is the trace function defined for

Galois rings in Section 2.2.

In order to understand some of the properties of this inner product, we will first prove

some lemmas about the Trace operator, Tr.

We will define fp : Fpm → Fpm to be the usual Frobenius map defined on finite fields,

which acts as fp(a) = ap for all a ∈ Fpm . Then, it is a well-known fact that the group

G = {1, fp, f
2
p , . . . , fm−1

p }

forms the Fp-automorphism group of Fpm as an extension of Fp. We define an Fp-linear

function tr on Fpm called Trace, so that

tr(a) = a + fp(a) + f2
p (a) + · · ·+ fm−1

p (a) = a + ap + ap2
+ · · ·+ apm−1

.

This is indeed Fp-linear because spi ≡ s (mod p) for all s ∈ Fp and all i ≥ 0. Then we can

prove that tr is onto by the following lemma:

Lemma 3.14. Assume that Fpm is a finite field and that tr : Fpm → Fp is the Trace map.

Then tr is non-zero.

Proof. To prove the theorem we note that G = {1, fp, f
2
p , . . . , fm−1

p } is a distinct set of
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automorphisms of Fpm and so by Lemma 7.5. (Hungerford, [21]), we see that G is linearly

independent. This means however that the map 1+fp +f2
p + · · ·+fm−1

p cannot be the zero

map on Fpm , and this means that the Trace map is non-zero.

Note that the following is an immediate corollary of this lemma:

Corollary 3.15. Assume that Fpm is a finite field and that tr : Fpm → Fp is the Trace map.

Then tr is onto.

We remember from (2.3) that

GR(p`,m)
pGR(p`, m)

' Fpm (3.35)

and let

Tm = {0, 1, ξ, ξ2, . . . , ξpm−2} (3.36)

be the Teichmuller set defined for the Galois ring GR(p`,m). Let ψ be the Frobenius map

defined on GR(p`,m) as in Section 2.2 and let Tr be the trace map on the Galois rings, so

that

Tr(u) = u + ψ(u) + · · ·+ ψm−1(u), (3.37)

which is a Zp`-linear function on the Galois ring. Let µ : GR(p`,m) → GR(p`,m)/pGR(p`,m)

be the canonical homomorphism. We first note that µ acts as reduction modulo p on Zp` .

We also note that, if θ = µ(ξ), then

µ(Tm) = {0, 1, θ, θ2, . . . , θpm−2} ' Fpm . (3.38)

Then we prove the following lemma with a method very similar to the one used in [2]:

Lemma 3.16. Suppose, ψ, Tr, µ be defined as above, and suppose that fp and tr are the

Frobenius automorphism and the trace map defined on Fpm over Fp. Then we have

(i)

µ ◦ ψ = fp ◦ µ



63

(ii)

µ ◦ Tr = tr ◦ µ.

Proof. (i) Suppose that c = u0 + pu1 + · · · + p`−1u`−1 with ui ∈ Tm. First assume that

u0 = 0. Then µ(c) = 0 and so fp◦µ(c) = 0. But, note that ψ(c) = pup
1+p2up

2+· · ·+p`−1up
`−1

and so µ ◦ ψ(c) = 0. So they are equal in this case.

Now suppose that u0 = ξj for some j ≥ 0. Then µ(c) = θj and hence fp ◦ µ(c) = θpj .

On the other hand, we see that ψ(c) = ξpj + pup
1 + · · · + p`−1up

`−1 and so µ ◦ ψ(c) = θpj ,

which proves the first part.

(ii) This follows from part (i) easily by noting that Tr = 1 + ψ + ψ2 + · · · + ψm−1 and

tr = 1 + fp + · · ·+ fm−1
p .

After all these preparations, we are ready to prove the following analogue of Lemma

3.14 for the trace map on Galois rings:

Lemma 3.17. The Trace map Tr : GR(p`,m) → Zp` is onto.

Proof. We will restrict ourselves to the Teichmuller set

Tm = {0, 1, ξ, ξ2, . . . , ξpm−2}.

Now, we know that µ(Tm) is the same as Fpm and tr is the usual trace operator on finite

fields, and so by Lemma 3.14, we know that it is non-zero. This means that

µ ◦ Tr 6= 0

on Tm by Lemma 3.16. Now, since Tr takes values in Zp` and µ acts as reduction modulo

p on Zp` , so

µ ◦ Tr 6= 0

on Tm means that ∃ξj ∈ Tm such that

Tr(ξj) 6= 0 (mod p). (3.39)
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But this means that if Tr(ξj) = s ∈ Zp` , then GCD(s, p) = 1 or that s is invertible in Zp` .

So, suppose that r ∈ Zpe is such that rs = 1 in Zp` . But, then since Tr is Zp`-linear, we get

Tr(r · ξj) = r · Tr(ξj) = rs = 1,

which proves that Tr is onto.

After this introduction about the trace map on Galois rings, we are ready to explore

some properties of the inner product defined in (3.34):

Lemma 3.18. Suppose for fixed u ∈ GR(p`,m)n we have < u, x > = 0 for all x ∈
GR(p`, m)n. Then u = 0.

Proof. By taking x ∈ GR(p`,m)n of the form (x, 0, . . . , 0), we might assume without loss of

generality that n = 1. So, what we have is that for a fixed u ∈ GR(p`,m),

Tr(ux) = 0, ∀x ∈ GR(p`,m).

We will prove that u = 0 in this case. Note that {ux : x ∈ GR(p`,m)} is an ideal of

GR(p`, m), and so is of the form uGR(p`,m). Since we know all the non-zero ideals of

GR(p`, m), if u 6= 0, then the ideal must be of the form piGR(p`, m) for some 0 ≤ i ≤ `− 1.

So, assuming that u 6= 0 will then lead us to having the Trace function Tr vanishing on the

whole ideal piGR(p`,m). But this is impossible, since by Lemma 3.17 we saw that Tr is

onto. So, Tr(c) = 1 for some c ∈ GR(p`, m), which means that Tr(pic) = pi 6= 0 in Zp` . The

contradiction gives us the desired result.

We now introduce the dual of C with respect to this inner product.

Definition 3.19. Suppose C is a linear code over GR(p`,m) of length n. Then we define

the dual C∗ of C with respect to the inner product defined in (3.34) as

C∗ =
{

y ∈ GR(p`,m)n
∣∣ < x, y >= 0 ∀x ∈ C

}
. (3.40)
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Remark 3.20. We note that Lemma 3.18 implies {0}∗ = GR(p`,m)n and (GR(p`,m)n)∗ =

{0}.

The main difference between this definition and the general definition made previously

for general Group codes is that the dual that we obtain in this way is indeed a linear

GR(p`, m)-code as we will prove in the following lemma:

Lemma 3.21. The dual C∗ to the linear GR(p`, m)-code C that we obtained in (3.40) is

indeed a linear code over GR(p`,m).

Proof. Since additivity is obvious by the basic properties of Tr and < ., . >, all we need to

prove is that for any y ∈ C∗, we have u · y ∈ C∗ for all u ∈ GR(p`,m). Now, fix x ∈ C.

Then we have

< x, u · y > = Tr
(
x1 · (uy1) + x2 · (uy2) + · · ·+ xn · (uyn)

)

= Tr
(
ux1y1 + ux2y2 + · · ·+ uxnyn

)

= < ux, y > . (3.41)

But we know that < x, y >= 0 for all x ∈ C and since C is linear over GR(p`,m), we know

that ux ∈ C for all u ∈ GR(p`,m). Thus, we see that < ux, y >= 0 for all u ∈ GR(p`,m).

But, by (3.41), then we see that

< x, uy >=< ux, y >= 0.

Since this is true for all x ∈ C we see that uy ∈ C∗ for any y ∈ C∗ and u ∈ GR(p`,m).

Thus, we see that C∗ is indeed a linear code over GR(p`,m) of length n.

We are finally ready to state the corollary of Theorem 3.10 for linear codes over Galois

rings:

Corollary 3.22. Suppose that GR(p`,m) =
{
u0, u1, . . . , up`m−1

}
is the Galois Ring exten-

sion of Zp`, and suppose that C is a linear code over GR(p`,m) of length n and let C∗ be

the dual of C with respect to the inner product defined in (3.34). Then C∗ is also a linear
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code over GR(p`,m) of length n and moreover we have

cweC∗(W0,W1, . . . , Wp`m−1) =

1
|C|cweC

( p`m−1∑

i=0

αTr(u0ui)Wi,

p`m−1∑

i=0

αTr(u1ui)Wi, . . . ,

p`m−1∑

i=0

α
Tr(u

p`m−1
ui)Wi

)

where α is a primitive p`th root of unity.

The result for the Hamming weight enumerators is exactly the same as Corollary 3.12.

Linear Codes over Fpm

These are codes over the finite field Fpm , and since we have proved all the properties of

the trace function tr : Fpm → Fp above, we can define an inner product exactly the same

as (3.34) with the only modification being the replacement of Tr with tr. Everything else

works just like in the case of Galois rings and we get the following corollary to Theorem

3.10:

Corollary 3.23. Suppose C is a k-dimensional linear code over Fpm = {0, 1, ξ, ξ2, . . . , ξpm−2}.
Suppose

cweC(W,W0,W1, . . . , Wpm−2) =
∑

c∈C

Wn0(c)
pm−2∏

i=0

W
nξi (c)

i

is the complete weight enumerator of C. Suppose that C∗ is the dual of C with respect to

the inner product defined in (3.34), and let γ be a primitive pth root of unity. Then, C∗ is

an (n− k)-dimensional linear code over Fpm and we have

cweC∗(W,W0,W1, . . . , Wpm−2) =

1
pmk

cweC

(
W +

pm−2∑

i=0

γtr(0·ξi)Wi,W +
pm−2∑

i=0

γtr(1·ξi)Wi, . . . , W +
pm−2∑

i=0

γtr(ξpm−2·ξi)Wi

)
.

Linear Codes over F2m + uF2m

Linear codes over these rings were considered by different authors including Gaborit, Dougherty,

Betsumiya, Ling, et al. in works like [11], [12], [13]. We will give a very brief description

of this ring and the codes over these rings and then give the analogous results for the
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MacWilliams identities here, but these rings will be more extensively studied in Chapter 4

and Chapter 5.

The ring F2m + uF2m is defined as

{
a + ub | a, b ∈ F2m , u2 = 0

}
.

It is easy to see that in fact

F2m + uF2m ' F2m [x]/(x2). (3.42)

A linear code C over F2m + uF2m of length n is defined as usual to be a submodule of

(F2m +uF2m)n. We define an inner product on this ring so that the dual of the linear codes

will be linear as well. In what follows, we denote by tr the usual trace function from F2m

to F2. We define the inner product on this ring as

< (x1, x2, . . . , xn), (y1, y2, . . . , yn) >= tr(x1 ∗ y1 + x2 ∗ y2 + · · ·+ xn ∗ yn) (3.43)

where (x1, x2, . . . , xn), (y1, y2, . . . , yn) are vectors in (F2m + uF2m)n and the operation ∗ is

from (F2m + uF2m)× (F2m + uF2m) to F2m defined as

(a + bu) ∗ (c + du) = ac + ad + bc (3.44)

for a + bu, c + du ∈ F2m + uF2m and the addition on the right hand side is addition in F2m .

Using the properties of the trace function that we proved above, similar results to Lemma

3.18 can be obtained for this inner product as well.

We now define the dual of a linear code C over F2m + uF2m of length n with respect to

the inner product defined in (3.43) and (3.44) as before:

C∗ =
{
y ∈ (F2m + uF2m)n

∣∣ < x, y >= 0 ∀x ∈ C
}
.

The main thing is to show that the dual of a linear code is linear over this ring as well. But
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this is done in the usual way like we did above in the case of Galois rings. The main point

then is to show that

< (a + bu)x, y >=< x, (a + bu)y >

for all x, y ∈ (F2m +uF2m)n, and a, b ∈ F2m . Now, since tr is additive, we can assume n = 1,

that is we can consider the problem coordinate-wise. So, suppose x = c + du, y = e + fu

with c, d, e, f ∈ F2m . Then we have

< (a + bu)(c + du), (e + fu) > =< ac + (ad + bc)u, e + fu >

= tr(ace + acf + ade + bce)

= tr(aec + aed + (af + be)c)

=< c + du, ae + (af + be)u >

=< (c + du), (a + bu)(e + fu) >,

which proves the assertion. This means that, we obtain the following corollary to Theorem

3.10 for linear codes over the ring F2m + uF2m :

Corollary 3.24. Suppose that

F2m + uF2m = {ai|i = 0, 1, . . . , 22m − 1}

with a0 = 0 and let C be a linear code over F2m + uF2m of length n and suppose C∗ is the

dual of C with respect to the inner product defined in (3.43) and (3.44). Then C∗ is also a

linear code over F2m + uF2m of length n and moreover we have

cweC∗
(
W0,W1, . . . , W22m−1

)
=

1
|C|cweC

( 22m−1∑

i=0

(−1)tr(0∗ai)Wi,
22m−1∑

i=0

(−1)tr(a1∗ai)Wi, . . . ,
22m−1∑

i=0

(−1)tr(a22m−1∗ai)Wi

)
.

Linear codes over F2 + uF2

This is just a special case of what we did above with m = 1 with the trace function tr

being the identity function. The reason we want to single out this case is because it is very
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similar to the ring Z4, with u playing the role of 2. In fact a corresponding Lee weight wL

is defined for this ring,

wL(0) = 0, wL(1) = wL(1 + u) = 1, wL(u) = 2. (3.45)

Let the complete weight enumerator for a linear code C over the ring F2 + uF2 be defined

in the usual way:

cweC(W,X, Y, Z) =
∑

c∈C

Wn0(c)Xn1(c)Y nu(c)Zn1+u(c). (3.46)

Then, calculating the corresponding ai ∗ aj ’s in Corollary 3.24, we see that if C∗ is the dual

of C with respect to the inner product defined in (3.43) and (3.44), then we get

cweC∗
(
W,X, Y, Z

)
=

1
|C|cweC

(
W+X+Y +Z, W−X−Y +Z, W−X+Y −Z,W+X−Y −Z

)
.

(3.47)

which is very similar to (3.6), the corresponding result for the Z4-codes that was done in

[2].

Identifying 1 and 1 + u in the complete weight enumerator, we again obtain a similar

definition for the symmetrized weight enumerators for codes over F2 + uF2 as well. This

means, the symmetrized weight enumerator can be written in terms of the complete weight

enumerator as

sweC(W,X, Y ) = cweC(W,X, Y, X).

But, then putting this in (3.47) we see that we get the following:

sweC∗(W,X, Y ) =
1
|C|sweC

(
W + 2X + Y,W − Y,W − 2X + Y

)
. (3.48)

Note that this is exactly the same result (3.7) that was obtained for Z4-codes in [2].

Finally, we can obtain a MacWilliams identity for the Lee weight enumerators of such
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codes by noting

LeeC(W,X) =
∑

c∈C

W 2n−wL(c)XwL(c)

=
∑

c∈C

W 2n0(c)+n1(c)+n1+u(c)Xn1(c)+n1+u(c)+2nu(c)

= cweC

(
W 2,WX, X2,WX

)

= sweC

(
W 2,WX, X2

)
. (3.49)

So, by exactly the same methods as were used in [2], we can obtain the following identity

for the Lee weight enumerators of linear codes over F2 + uF2:

LeeC∗(W,X) =
1
|C|LeeC

(
W + X, W −X

)
, (3.50)

which is exactly the same identity as (3.8) that was obtained in [2] for linear codes over Z4.

3.4 Concluding Remarks and Some Applications

C∗ and C⊥

In the previous section, we found MacWilliams identities for the complete weight enumera-

tors of linear codes over several rings by introducing new inner products so that the duals

C∗ of these codes with respect to these inner products are also linear over the same rings.

Another purpose of introducing those inner products was to get better numerical results in

the formulas. For example, in the case of the Galois rings GR(p`,m), we defined the inner

product so that it takes values in Zp` . This made it easier to calculate for example ξui∗uj ,

since the values taken by ui ∗ uj were in Zp` .

We know that in the case of all those rings, a natural inner product to define would

be the Euclidean inner product, for example in the case of GR(p`,m) we could define

< ., . >2: GR(p`, m)n ×GR(p`,m)n → GR(p`,m) so that

< (x1, x2, . . . , xn), (y1, y2, . . . , yn) >2 = x1y1 + x2y2 + · · ·+ xnyn (3.51)
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for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ GR(p`,m)n where xiyi is the ordinary ring product

in GR(p`,m).

Let us recall that in the previous section we defined a different inner product for calcu-

lation purposes as:

< (x1, x2, . . . , xn), (y1, y2, . . . , yn) >1 = Tr(x1y1 + x2y2 + · · ·+ xnyn) (3.52)

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ GR(p`,m)n.

Now, we recall the definitions of C∗ and C⊥ in

C∗ =
{
(y1, y2, . . . , yn) ∈ GR(p`,m)n

∣∣ < x, y >1= 0, ∀x ∈ C
}

(3.53)

and

C⊥ =
{
(y1, y2, . . . , yn) ∈ GR(p`,m)n

∣∣ < x, y >2= 0, ∀x ∈ C
}
. (3.54)

Note that, C⊥ seems to give us more information because the Euclidean product is a more

natural inner product, but in fact it turns out that these two duals are not different:

Lemma 3.25. Suppose that C is a linear code over GR(p`,m) of length n and let C∗ and

C⊥ be the duals of C with respect to < ., . >1 and < ., . >2, respectively.Then we have

C∗ = C⊥.

Proof. We first prove the obvious inclusion. Let y ∈ C⊥. This means that

x1y1 + x2y2 + · · ·+ xnyn = 0, ∀(x1, x2, . . . , xn) ∈ C,

but Tr(0) = 0, which means that in this case we have

Tr(x1y1 + x2y2 + · · ·+ xnyn) = 0, ∀(x1, x2, . . . , xn) ∈ C,

which means that y ∈ C∗, hence we get

C⊥ ⊆ C∗. (3.55)
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Now, suppose that z = (z1, z2, . . . , zn) ∈ C∗. This means that

Tr(x1z1 + x2z2 + · · ·+ xnzn) = 0, ∀(x1, x2, . . . , xn) ∈ C.

Now, fix one such x = (x1, x2, . . . , xn) ∈ C. But since C is a linear code over GR(pe,m),

this means that

r(x1, x2, . . . , xn) = (rx1, rx2, . . . , rxn) ∈ C

for all r ∈ GR(p`,m). So, this means that we have

Tr
(
r(x1z1 + x2z2 + · · ·+ xnzn)

)
= 0, ∀r ∈ GR(p`,m).

But then by Lemma 3.18, we must have

x1z1 + x2z2 + · · ·+ xnzn = 0

in GR(p`,m) and since this is true for all (x1, x2, . . . , xn) ∈ C, we see, by definition of C⊥,

that z ∈ C⊥, which means

C∗ ⊆ C⊥. (3.56)

Then combining (3.55) and (3.56), we see that we must have C∗ = C⊥.

Similar conclusions can be drawn for the case of Fpm-codes as well as F2m + uF2m . So,

we see that the duals that we have obtained are not entirely unknown objects, but in fact

they are the same as the usual duals with respect to the Euclidean product. This will give

us some information about the size and the type of the codes.

The Type of C∗

Now that we proved that C∗ = C⊥, in order to find the type of C∗, we only need to find

the type of C⊥. We will only demonstrate this in the case of Zpm-codes and we will give

the analogous results for the case of Galois rings, finite fields, and F2m + uF2m .
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Theorem 3.26. Suppose C is a linear code over Zpm of length n and of type

(pm)k1(pm−1)k2 . . . (p)km .

Then the dual C⊥ of C is a linear code over Zpm of length n and of type

(pm)n−k1−k2−···−km(pm−1)km(pm−2)km−1 . . . (p)k2 .

Proof. Note that, by Theorem 2.7, C is permutationally equivalent to a code with a gener-

ating matrix

G =




Ik1 A1 . . . Am

0 pIk2 pB1 . . pBm−1

. . . . . .

. . . . . .

. . . . . .

0 0 . 0 pm−1Ikm pm−1C




.

So, the definition of the dual will give us

(x1, x2, . . . , xn) ∈ C⊥ ⇔




Ik1 A1 . . . Am

0 pIk2 pB1 . . pBm−1

. . . . . .

. . . . . .

. . . . . .

0 0 . 0 pm−1Ikm pm−1C




·




x1

x2

.

.

xn




≡ 0 (mod pm).

This will lead to equations of the sort

x1 + (a1,1, a2,1, . . . , am,1) · (xk1+1, . . . , xn) = 0

x2 + (a1,2, a2,2, . . . , am,2) · (xk1+1, . . . , xn) = 0

...
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...

xk1 + (a1,k1 , a2,k1 , . . . , am,k1) · (xk1+1, . . . , xn) = 0

where ai,j ’s where j = 1, . . . , k1 are the rows of Ai. Similarly we have equations

pxk1+1 + p(b1,1, . . . , bm−1,1) · (xk1+k2+1, . . . , xn)

pxk1+2 + p(b1,2, . . . , bm−1,2) · (xk1+k2+1, . . . , xn)

...

...

pxk1+k2 + p(b1,k2 , . . . , bm−1,k2) · (xk1+k2+1, . . . , xn)

where bi,j ’s with j = 1, 2, . . . , k2 are the rows of Bi.

Continuing this way we get all these kinds of equations with the common multiple being

increasing exponents of p, and thus we end up with

pm−1xk1+k2+···+km−1+1 = pm−1c1

(
xk1+k2+···+km+1, . . . , xn

)

pm−1xk1+k2+···+km−1+2 = pm−1c2

(
xk1+k2+···+km+1, . . . , xn

)

...

...

pm−1xk1+k2+···+km−1+km = pm−1ckm

(
xk1+k2+···+km+1, . . . , xn

)

where ci’s are rows of C.

All the above equations show that xk1+k2+···+km+1, . . . , xn are all free Zpm-variables.

However, for each xk1+···+km−1+1, . . . , xk1+···+km−1+km , we have pm−1 choices, for each

xk1+···+km−2+1, . . . , xk1+···+km−2+km−2 , we have pm−2 choices, and so on and finally for each

xk1+1, . . . , xk1+k2 , we have p choices, while x1, x2, . . . , xk1 are uniquely determined. This
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proves the theorem.

We will give the analogous corollaries for the case of the other rings:

Corollary 3.27. Suppose C is a linear code of length over GR(p`, m) of length n and of

type

(p`m)k1(p(`−1)m)k2 . . . (pm)k` .

Then C∗ = C⊥ is also a linear code over GR(pe,m) of length n and of type

(p`m)n−k1−k2−···−k`(p(`−1)m)k`(p(`−2)m)k`−1 . . . (pm)k2 .

Corollary 3.28. Suppose that C is an [n, k] linear code over Fpm. Then C∗ is an [n, n−k]

linear code over Fpm .

Corollary 3.29. Suppose C is a linear code over F2m + uF2m of type (22m)k1(2m)k2. Then

C∗ is a linear code over F2m + uF2m of type (22m)n−k1−k2(2m)k2 .

Remark 3.30. Looking at Theorem 3.26 and the subsequent corollaries, we see that, for a

linear code C over the ring R of length n, where R is one of the rings considered above, we

have

|C∗| = |R|n
|C| . (3.57)

Remark 3.31. The result in the above remark is obvious for the case of group codes, as was

proved by Delsarte in [5], where he proved that if C is an abelian group code of length n

and C∗ is its dual, then

C∗ ' Gn/C (3.58)

where ' is the group isomorphism.

Note that the inclusion C ⊆ (C∗)∗ is obvious, and so the remarks we made above about

the sizes give us the following corollary:

Corollary 3.32. For a linear code C over the ring R of length n, where R is one of the
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rings considered in this chapter, we have

(C∗)∗ = C. (3.59)

Benefits of the identities for complete weight enumerators

In this chapter, we found MacWilliams-like identities for the complete weight enumerators

of linear codes over rings. One of the benefits of this comes from that fact that we can find

any weight enumerator from the complete weight enumerator. This is especially very useful

if we are looking at a linear code with a high dimension.

As an example, we will go back to the code that gave us the counter example in Section

3.1. Note that in that example, we had a linear code C over Z4 of type (4)2 and length

30, and we needed to calculate the Euclidean weight enumerator of the dual C⊥, which is a

linear code of type (4)28 and has 428 = 72057594037927936 > 7× 1016 codewords. If we try

to calculate the Euclidean weight enumerator of this code by brute force with a computer,

assuming that the computer can calculate the weight enumerators of one million codewords

in one second, then we would need more than 2000 years to finish the calculation. With a

computer that would calculate the weight enumerator of one billion codewords in a second,

we would still need more than 2 years. Looking however at the dual of this code, which

happens to be a small code, only of size 16, for which we can easily calculate the complete

weight enumerator, and then using the identities (3.6), (3.7) and (3.12), we were easily able

to calculate the Euclidean weight enumerator of the code in a matter of seconds.

Knowing the MacWilliams identities for complete weight enumerators can help us find

the weight enumerators of high-dimensional codes that have small duals as we saw in the

above example. So, even though the counter example in Section 3.1 proved that we cannot

have a MacWilliams-like identity for the Euclidean weight enumerators of linear codes over

Z4 contrary to the case of Lee and Hamming weight enumerators, it still showed us a

nice application and use of knowing the MacWilliams identities for the complete weight

enumerators of linear codes over rings.

Lee weight and not the Euclidean weight is the homogeneous weight that was defined

in 2.3. Since we have MacWilliams identities for the Lee weight enumerators, one can
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ask the question whether a MacWilliams-like identity exists for the homogeneous weight

enumerators of linear codes over GR(p`,m).
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Chapter 4

Gray Maps

Gray maps from Zn
4 to Z2n

2 were effectively used by Sloane, Calderbank, et al. in their

work [2], as a tool to obtain the binary nonlinear Kerdock, Preparata, and Goethals codes

as the Gray images of linear codes over Z4. Their definition of the Gray map is quite a

simple one. To define it, they defined maps α, β, γ from Z4 to Z2 such that for any c ∈ Z4,

c = α(c) + 2β(c) is the unique 2-adic expansion of c. The identity α(c) + β(c) + γ(c) = 0

completed the definition of those maps. Then, extending these maps in an obvious way to

Zn
4 , they defined the Gray map φ : Zn

4 → Z2n
2 as

φ(c) = (β(c), γ(c)), c ∈ Zn
4 . (4.1)

The most important property of this map is that it is a distance preserving map, that is, it

is an isometry from

(Zn
4 ,Lee distance) to (Z2n

2 , Hamming distance).

Carlet, in [8], extended this map to Z2k with the homogeneous weight and used this to

obtain the generalized Kerdock codes that were non-linear binary codes with large minimum

distances. Several other authors, like Ling and Grefrath generalized the notion of Gray maps

to more general rings with certain homogeneous weights defined on them in [10] and [22].

In section 1, we will use a Gray map from Z9 to Z3
3 and similar techniques to the ones

used in [2] and [8] to obtain some non-linear ternary codes with comparably high minimum

distances. In section 2, we will give an inductive and coordinate-wise construction of a
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Gray map from Zpk to Zpk−1

p , which will be distance preserving. In section 3, we will give a

purely combinatorial construction of the Gray map that we defined earlier, using the affine

geometries. In section 4, we will talk about the Gray map for the ring F2m + uF2m and we

will obtain some results about the Lee weights of linear codes over these rings.

4.1 A Ternary Gray Map

We will define a Gray map from Z9 to Z3
3 that will be distance preserving with the homoge-

nous distance on Z9 and with the Hamming distance on Z3. Before getting into that we

will make some observations about linear codes over Zp2 .

Recall from Section 2.3 that the homogeneous weight on Zp2 is defined as

whom(u) =





0 if u = 0

p− 1 if u ∈ Zp2 \ pZp2

p if u ∈ pZp2 \ {0}.

Note that Zp2 \ pZp2 = (Zp2)∗, the set of units in Zp2 .

A very important property of the homogeneous weight is that it can be expressed in

terms of exponential sums. So, suppose f(x) is a Zp2-valued function over a set Ω. Then

whom(f) =
∑

x∈Ω

whom(f(x))

where we assume f denotes a codeword of length |Ω| as the value of f is evaluated at

each element of Ω. We will prove the following useful lemma that relates the homogeneous

weights to the exponential sums:

Lemma 4.1. Suppose f is a Zp2-valued function over a set Ω, and suppose we view f as a

codeword of length |Ω| with the coordinates being the value that f takes at each element of

Ω, and suppose ω = e
2πi
p2 . Then we have

whom(f) = (p− 1)|Ω| − 1
p

∑

λ∈(Zp2 )∗

( ∑

x∈Ω

ωλf(x)

)
. (4.2)
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Proof. To understand the exponential sum, we will first calculate, for a fixed x ∈ Ω,

Υx =
∑

λ∈(Zp2 )∗
ωλf(x).

We will split this into a few obvious cases:

(i) Suppose f(x) = 0. Then ωλf(x) = 1 for all λ ∈ Zp2 \ pZp2 . So, we see that in this case

we have

Υx = |(Zp2)∗| = p2 − p. (4.3)

(ii) Suppose f(x) ∈ pZp2 \ {0}. Then wf(x) is a primitive pth root of unity, and without

loss of generality we might assume that ωf(x) = e2πi/p = θ. Then, we get

Υx =
∑

λ∈(Zp2 )∗
θλ = (θ + θ2 + · · ·+ θp−1) + θp(θ + θ2 + · · ·+ θp−1) + · · ·+

θ(p−1)p(θ + θ2 + · · ·+ θp−1). (4.4)

Now, we know that θpi = 1 for all i = 0, 1, . . . , p−1. On the other hand since θ is a primitive

pth root of unity, 1+ θ + · · ·+ θp−1 = 0, which means that θ + θ2 + · · ·+ θp−1 = −1. Putting

all these into (4.4), we get, in the case f(x) ∈ pZp2 \ {0},

Υx = −p. (4.5)

(iii) Finally, we assume that f(x) ∈ (Zp2)∗ = Zp2 \ pZp2 . Note that, in this case, ωf(x) is

still a primitive (p2)th root of unity, and hence, without loss of generality we might assume

f(x) = 1.

Then, the sum we want to calculate becomes

Υx = ω + ω2 + · · ·+ ωp−1 + ωp+1 + · · ·+ ω2p−1 + · · ·+ ωp(p−1)+1 + · · ·+ ωp2−1

= 1 + ω + · · ·+ ωp2−1 − (1 + ωp + ω2p + · · ·+ ωp(p−1))

= 0
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since

1 + ω + · · ·+ ωp2−1 =
1− ωp2

1− ω
= 0

and (ωp)p = 1 and wp is not 1, and so from

0 = (ωp)p − 1 = (ωp − 1)(1 + ωp + ω2p + · · ·+ ωp(p−1)),

we get

1 + ωp + ω2p + · · ·+ ωp(p−1) = 0.

So, combining (i), (ii), and (iii) we get

∑

λ∈(Zp2 )∗
ωλf(x) =





p2 − p if f(x) = 0

−p if f(x) ∈ pZp2 \ {0}
0 if f(x) ∈ Zp2 \ pZp2 .

(4.6)

Now, (4.6) and a change of the order of summations gives us

∑

λ∈(Zp2 )∗

( ∑

x∈Ω

ωλf(x)

)
= (p2 − p)

∣∣{x ∈ Ω|f(x) = 0}∣∣− p
∣∣{x ∈ Ω|f(x) ∈ pZp2 \ {0}}

∣∣. (4.7)

Putting this into the right-hand side of (4.2) we get

R.H.S = (p− 1)|Ω| − 1
p

∑

λ∈(Zp2)∗

( ∑

x∈Ω

ωλf(x)

)

= (p− 1)|Ω| − (p− 1)
∣∣{x ∈ Ω|f(x) = 0}∣∣+∣∣{x ∈ Ω|f(x) ∈ pZp2 \ {0}}

∣∣

= (p− 1)
[∣∣{x ∈ Ω|f(x) ∈ (Zp2)∗}

∣∣+∣∣{x ∈ Ω|f(x) ∈ pZp2 \ {0}}
∣∣
]

+
∣∣{x ∈ Ω|f(x) ∈ pZp2 \ {0}}

∣∣

= (p− 1)
∣∣{x ∈ Ω|f(x) ∈ (Zp2)∗}

∣∣ + p
∣∣{x ∈ Ω|f(x) ∈ pZp2 \ {0}}

∣∣

= whom(f).

We define a non-degenerate polynomial from [7]:
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Definition 4.2. A polynomial g(x) ∈ GR(p2, m)[x] is said to be non-degenerate if it cannot

be written in the form

g(x) = ϕ(f(x))− f(x) + u (mod p2)

for any f(x) ∈ GR(p2,m)[x] and u ∈ GR(p2,m), and ϕ is the Frobenius map defined on

the Galois ring GR(p2,m) as was defined in Section 2.2.

The following theorem is taken from [7] and is a main tool used in [2] and [8] as well.

Theorem 4.3. Let f(x) ∈ GR(p`,m)[x] be non-degenerate and of weighted degree N` and

suppose ω = e
2πi

p` . Suppose also that λ ∈ Zp` is relatively prime to p`. Then we have

∣∣∣∣
∑

x∈Tm

wλTr(f(x))

∣∣∣∣ ≤ (N` − 1)pm/2.

We need to say something about the weighted degree here. If f(x) ∈ GR(p`,m)[x], then

it has a unique p-adic expression in the form

f(x) = F0(x) + pF1(x) + · · ·+ p`−1F`−1(x), Fj(x) ∈ Tm[x]

where Tm is the Teichmuller set defined in Section 2.2. Suppose nj = deg(Fj). Then the

weighted degree of f is defined as

N` = max
{
n0p

`−1, n1p
`−2, . . . , n`−1

}
.

After these introductions, we are finally ready to define a ternary Gray map and con-

struct ternary codes. We will define G : Z9 → Z3
3 coordinate-wise, as follows:

G(0) = (0, 0, 0), G(1) = (1, 1, 0), G(2) = (0, 1, 1),

G(3) = (2, 1, 2), G(4) = (0, 2, 2), G(5) = (1, 0, 2),

G(6) = (1, 2, 1), G(7) = (2, 0, 1), G(8) = (2, 2, 0). (4.8)
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We then extend this map in the obvious way to Zn
9 .

Remark 4.4. By straightforward calculations, we can obtain a very important property of

this map G, that is, G is distance preserving:

dhom(u, v) = dH(G(u), G(v)) = wH(G(u)−G(v)), u, v ∈ Z9 (4.9)

where dH and wH denote the Hamming distance and the Hamming weight, respectively.

A construction of ternary codes using the Gray map

We will use the same technique that Carlet used in [8] to get some non-linear ternary codes

as images. We will use linear trace codes. We define a linear code C over Z9 as follows:

C =
{(

b, Tr(a) + b, Tr(aξ) + b, . . . , Tr(aξ3m−2) + b
)∣∣a ∈ GR(9,m), b ∈ Z9

}
(4.10)

where Tm = {0, 1, ξ, . . . , ξ3m−2}. Note that since Tr is a Z9-linear function, we see that C is

a linear code over Z9 of length 3m and of size 32m+2. We will prove the following theorem

that gives us the construction we wanted:

Theorem 4.5. Suppose that C is the linear Z9-code of length 3m and of size 32m+2 given

by (4.10). Let C̃ = G(C), the Gray image of C. Then C̃ is a ternary [3m+1, 32m+2,≥
2 · 3m − 4 · 3m/2] code.

Proof. Let F (x) = Tr(ax) + b. Since Tr : GR(9,m) → Z9 is onto by Lemma 3.17, we

know that ∃u ∈ GR(9,m) so that Tr(u) = 1. For such u ∈ GR(9,m), we can then write

F (x) = Tr(ax + bu). But then, by Lemma 4.1, we see that

whom(F ) = 2 · 3m − 1
3

∑

λ∈(Z9)∗

( ∑

x∈Tm

e
2λπi

9
Tr(ax+bu)

)
. (4.11)

By Theorem 4.3 however, we see that, for each λ ∈ (Z9)∗,

∣∣∣∣
∑

x∈Tm

e
2λπi

9
Tr(ax+bu)

∣∣∣∣ ≤ 2 · 3m/2 (4.12)
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since the weighted degree of ax + bu is 3. Combining (4.11) and (4.12) we see that

wh(F ) ≥ 2 · 3m − 4 · 3m/2 (4.13)

for each codeword F ∈ C. The theorem now follows from the fact that the Gray map

G : Z9 → Z3
3 is distance preserving.

Remark 4.6. This construction would yield good results for codes with large size. As an

illustration of how good our construction is, we refer to [9] in which the authors obtained

a linear ternary code with parameters [190, 10, 110], which has size 310. To match the

size, we take m = 4 in our construction, which then yields a non-linear ternary code with

parameters [243, 310,≥ 126]. This shows that our construction might lead to ternary codes

with comparably large minimum distances, especially when the size of the code is high.

4.2 An Inductive Construction of a Gray Map from Zpk to

Zpk−1

p

In this section, we will give an inductive construction of a Gray map from Zpk to Zpk−1

p .

Since it is going to be inductive, let’s denote this by Gk : Zpk → Zpk−1

p . Obviously, we

will take G1 = 1Zp , the identity map on Zp. We will define the Gray map coordinate-wise,

which is going to be different than the way it is defined in [10] and [22]. Our definition is

however equivalent to those definitions because ours is just going to be a permutation of their

definitions. Since we want to have a distance-preserving map from Zpk with homogeneous

weight to Zpk−1

p with the Hamming distance, let us recall how the homogeneous weight whom

was defined on Zpk .

whom(u) =





0 if u = 0

(p− 1)pk−2 if u ∈ Zpk \ pk−1Zpk

pk−1 if u ∈ pk−1Zpk \ {0}.
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Definition 4.7. We define the map for coordinates of Zpk for different types of elements:

Gk(j · pk−1) =
(

Gk−1(j · pk−2), . . . , Gk−1(j · pk−2)
)

, j = 0, 1, . . . , p− 1. (4.14)

Gk((mp + j)pk−2 + i) =
(

Gk−1

(
γ(mjpk−2 + i)

)
, Gk−1

(
γ((m + 1)jpk−2 + i)

)
, . . . , Gk−1

(
γ((m + p− 1)jpk−2 + i)

))

(4.15)

for 0 ≤ m, j ≤ p − 1 and for 1 ≤ i ≤ pk−2 − 1, where γ(.) is the map that takes a number

to its residue modulo pk−1. Finally, for 0 ≤ j ≤ p− 1 and 1 ≤ n ≤ p− 1, we define

Gk(j · pk−1 + npk−2) =
(

Gk−1

(
γ((j + n · 0)pk−2)

)
, Gk−1

(
γ((j + n · 1)pk−2)

)
, . . . , Gk−1

(
γ((j + n(p− 1))pk−2)

))
.

(4.16)

The main result of this section is proving the distance-preserving property of this map.

Theorem 4.8. The map Gk defined above is a distance-preserving map from

(
Zpk , homogeneous distance

)
to

(
Zpk−1

p , Hamming distance
)
.

Proof. The proof will be just exhausting all the cases and verifying the distance-preserving

property for all these. There are several things to check here:

(i) wH(Gk(u)) = pk−1 for u ∈ pk−1Zpk \{0}, wH(Gk(v)) = (p−1)pk−2 for v ∈ Zpk \pk−1Zpk

where wH denotes the Hamming weight.

(ii) Suppose that u, v ∈ pk−1Zpk with u 6= v. Then dH(Gk(u), Gk(v)) = pk−1.

(iii) Suppose that u, v ∈ Zpk \ pk−1Zpk . Then dH(Gk(u), Gk(v)) = (p − 1)pk−2 if u − v ∈
Zpk\pk−1Zpk and dH(Gk(u), Gk(v)) = pk−1 if u−v ∈ pk−1Zpk\{0}. Moreover, if u ∈ pk−1Zpk

and v ∈ Zpk \ pk−1Zpk , then dH(Gk(u), Gk(v)) = (p− 1)pk−2.
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Note that if we prove (i), (ii), and (iii), then we will have proved

dH(Gk(u), Gk(v)) = wH(Gk(u)−Gk(v)) = dhom(u, v), u, v ∈ Zpk , (4.17)

which will prove that the Gray map Gk is indeed distance preserving.

Proof of (i) First of all, if u ∈ pk−1Zpk \ {0}, then this means that u = j · pk−1 for some

1 ≤ j ≤ p− 1, and hence by the definition of the Gray map, we get

Gk(u) =
(
Gk−1(j · pk−2), . . . , Gk−1(j · pk−2)

)
.

So, we get

wH(Gk(u)) = p · wH(Gk−1(j · pk−2))

= p · pk−2

= pk−1

since by induction hypothesis, Gk−1 is a distance-preserving map.

Now, suppose u ∈ Zpk \ pk−1Zpk and suppose we have u = (mp + j) · pk−2 + i where

0 ≤ m, j ≤ p− 1 and for some 1 ≤ i ≤ pk−2 − 1. But then we note that

γ
(
(m + r)jpk−2 + i

) 6= 0, (mod pk−2) r = 0, 1, . . . , p− 1

since (m + r)jpk−2 ≡ 0 (mod pk−2) but i 6= 0 (mod pk−2). But this means, since by induc-

tion hypothesis Gk−1 is a distance-preserving map, that we have

wH

(
Gk−1

(
γ((m + r)jpk−2 + i)

))
= (p− 1)pk−3, r = 0, 1, . . . , p− 1. (4.18)
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By the definition of Gk however, we see that by using (4.18), we get

wH

(
Gk(u)

)
=

p−1∑

r=0

wH

(
Gk−1

(
γ((m + r)jpk−2 + i)

))

= p(p− 1)pk−3

= (p− 1)pk−2

as expected.

Now, suppose that u ∈ Zpk \ pk−1Zpk and we have u = j · pk−1 + npk−2 for some

0 ≤ j ≤ p− 1 and 1 ≤ n ≤ p− 1. Then note that

{
j + n · 0, j + n · 1, . . . , j + n(p− 1)

}
=

{
0, 1, . . . , p

}
(mod p)

since GCD(n, p) = 1. But this means that

{
γ((j + n · 0)pk−2), γ((j + n · 1)pk−2), γ((j + n(p− 1))pk−2)

}

=
{
0, pk−2, 2pk−2, . . . , (p− 1)pk−2

}
(mod pk−1).

So, using the induction hypothesis that Gk−1 is a distance-preserving map, we get

wH

(
Gk(u)

)
=

p−1∑

r=0

wH

(
Gk−1

(
γ((j + n · r)pk−2)

))

= (p− 1)pk−2

as expected.

Proof of (ii) Suppose that u, v ∈ pk−1Zpk and that u 6= v. This means that u = j1p
k−1

and v = j2p
k−1 where j1 6= j2 with both j1 and j2 being in

{
0, 1, . . . , p − 1

}
. Then by the

definition of the Gray map, however, we have

Gk(u) =
(
Gk−1(j1p

k−2), Gk−1(j1p
k−2), . . . , Gk−1(j1p

k−2)
)

(4.19)
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and

Gk(v) =
(
Gk−1(j2p

k−2), Gk−1(j2p
k−2), . . . , Gk−1(j2p

k−2)
)
. (4.20)

But then by induction hypothesis we get

dH

(
Gk(u), Gk(v)

)
= p · dH

(
Gk−1(j1p

k−2), Gk−1(j2p
k−2)

)

= p · pk−2

= pk−1. (4.21)

Proof of (iii) First, we assume that u ∈ pk−1Zpk \ {0} and v ∈ Zpk \ pk−1Zpk . Then we

know u = j1 · pk−1 for some 1 ≤ j1 ≤ p− 1. Hence

Gk(u) =
(
Gk−1(j1p

k−2), . . . , Gk−1(j1p
k−2)

)
. (4.22)

Now, for v we can have two forms.

Suppose that v = j2p
k−1 + npk−2 where 0 ≤ j2 ≤ p− 1 and 1 ≤ n ≤ p− 1. Now using

the definition of Gk and using the hypothesis that Gk−1 is distance preserving, we see that

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
j1 · pk−2

)
, Gk−1

(
γ((j2 + nr)pk−2)

))
. (4.23)

However, as r ranges over 0, 1, . . . , p− 1 so does n · r modulo p, which means that

dH

(
Gk−1

(
j1 · pk−2

)
, Gk−1

(
γ((j2 + nr)pk−2)

))
= pk−2

for all r except the one r for which we have j1 ≡ j2 + nr (mod p). Putting this into (4.23),

we get

dH

(
Gk(u), Gk(v)

)
= (p− 1)pk−2 (4.24)

as expected.

Now, suppose that v = (mp + j3)pk−2 + i with 0 ≤ m, j3 ≤ p− 1 and 1 ≤ i ≤ pk−2 − 1.
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But this means that

j1p
k−2 − γ

(
(m + r)j3p

k−2 + i
) ∈ Zpk−1 \ pk−2Zpk−1

for all r = 0, 1, . . . , p− 1, which by induction hypothesis means that

dH

(
Gk−1

(
j1 · pk−2

)
, Gk−1

(
γ((m + r)j3p

k−2 + i)
))

= (p− 1)pk−3

for all r = 0, 1, . . . , p− 1 and hence we get

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
j1 · pk−2

)
, Gk−1

(
γ((m + r)j3p

k−2 + i)
))

= (p− 1)pk−2 (4.25)

as expected.

We now assume that both u, v ∈ Zpk \ pk−1Zpk . Then there are three possibilities as to

the form of u and v:

(a) Suppose that u = j1p
k−1 + n1p

k−2 and v = j2p
k−1 + n2p

k−2 for 0 ≤ j1, j2 ≤ p − 1

and some 1 ≤ n1, n2 ≤ p − 1. Now if u − v ∈ pk−1Zpk , then this can happen only if

n1 = n2. Since we assume u 6= v, we see that j1 6= j2 in this case. This means that

(j1 + n1r)− (j2 + n2r) = j1 − j2 6= 0 (mod p) for each r = 0, 1, . . . , p− 1. This means that,

by induction hypothesis, we have

dH

(
Gk−1

(
γ((j1 + n1r)pk−2)

)
, Gk−1

(
γ((j2 + n2r)pk−2)

))
= pk−2

for each r = 0, 1, . . . , p− 1. But then we see that

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
γ((j1 + n1r)pk−2)

)
, Gk−1

(
γ((j2 + n2r)pk−2)

))

= pk−1

as expected.
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If, on the other hand, u − v ∈ Zpk \ pk−1Zpk , then this means that n1 6= n2. Hence we

get
{
(j1 + n1r)− (j2 + n2r)

∣∣r = 0, 1, . . . , p− 1
}

=
{
0, 1, . . . , p− 1

}
(mod p),

which means, by induction hypothesis, that

dH

(
Gk−1

(
γ((j1 + n1r)pk−2)

)
, Gk−1

(
γ((j2 + n2r)pk−2)

))
= pk−2

for all r except the r for which we have j1 + n1r ≡ j2 + n2r (mod p) for which the above

distance is 0. Then we get

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
γ((j1 + n1r)pk−2)

)
, Gk−1

(
γ((j2 + n2r)pk−2)

))

= (p− 1)pk−2

as expected.

(b) Suppose now that u = (mp+j1)pk−2+i and v = j2p
k−1+npk−2 for some 0 ≤ m, j1, j2 ≤

p− 1, 1 ≤ n ≤ p− 1 and 1 ≤ i ≤ pk−2 − 1. One readily observes that in this case we must

have u− v ∈ Zpk \ pk−1Zpk . It is also obvious, from the presence of i that

(m + r)j1p
k−2 + i− (j2 + n · r)pk−2 6= 0 (mod pk−2)

for all r = 0, 1, . . . , p− 1. This means that, by induction hypothesis, we have

dH

(
Gk−1

(
γ((m + r)j1p

k−2 + i)
)
, Gk−1

(
γ((j2 + nr)pk−2)

))
= (p− 1)pk−3

for all r = 0, 1, . . . , p− 1. So, then we have

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
γ((m + r)j1p

k−2 + i)
)
, Gk−1

(
γ((j2 + nr)pk−2)

))

= (p− 1)pk−2

as expected.
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(c) Suppose that u = (m1p + j1)pk−2 + i1 and v = (m2p + j2)pk−2 + i2, for some 0 ≤
m1,m2, j1, j2 ≤ p− 1 and 1 ≤ i1, i2 ≤ pk−2 − 1.

First, we assume that u− v ∈ pk−1Zpk \ {0}. This can happen if and only if i1 = i2 and

j1 = j2, but since we don’t want u to be the same as v, we must have m1 6= m2. But this

means that

(
(m1 + r)j1p

k−2 + i1
)−(

(m2 + r)j2p
k−2 + i2

) ∈ pk−2Zpk−1 \ {0}

for all r = 0, 1, . . . , p−1. Hence, by induction hypothesis, since Gk−1 is distance preserving,

we see that

dH

(
Gk−1

(
γ((m1 + r)j1p

k−2 + i1)
)
, Gk−1

(
γ((m2 + r)j2p

k−2 + i2)
))

= pk−2

for all r = 0, 1, . . . , p− 1. But then we will have

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
γ((m1 + r)j1p

k−2 + i1)
)
, Gk−1

(
γ((m2 + r)j2p

k−2 + i2)
))

= pk−1

as expected.

Now, assume that u− v ∈ Zpk \ pk−1Zpk . This can happen only if i1 6= i2 or j1 6= j2 or

both. Now, suppose i1 6= i2. Then

(
(m1 + r)j1p

k−2 + i1
)−(

(m2 + r)j2p
k−2 + i2

) ∈ Zpk−1 \ pk−2Zpk−1

for each r = 0, 1, . . . , p− 1. Hence, by induction hypothesis, we see that

dH

(
Gk−1

(
γ((m1 + r)j1p

k−2 + i1)
)
, Gk−1

(
γ((m2 + r)j2p

k−2 + i2)
))

= (p− 1)pk−3
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for all r = 0, 1, . . . , p− 1. So, we see that

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
γ((m1 + r)j1p

k−2 + i1)
)
, Gk−1

(
γ((m2 + r)j2p

k−2 + i2)
))

= (p− 1)pk−2

as expected. If, on the other hand, we have i1 = i2, but j1 6= j2, then we get

{(
(m1 + r)j1p

k−2 + i1
)−(

(m2 + r)j2p
k−2 + i2

)∣∣∣∣r = 0, 1, . . . , p− 1
}

=

{
0, pk−2, . . . , (p− 1)pk−2

}
(mod pk−1)

since GCD(j1 − j2, p) = 1. But this means, since Gk−1 is distance preserving, that,

dH

(
Gk−1

(
γ((m1 + r)j1p

k−2 + i1)
)
, Gk−1

(
γ((m2 + r)j2p

k−2 + i2)
))

= pk−2

for all r except the 0 ≤ r ≤ p− 1 for which we have

(
(m1 + r)j1p

k−2 + i1
)−(

(m2 + r)j2p
k−2 + i2

) ≡ 0 (mod pk−1).

But then we get

dH(Gk(u), Gk(v)) =
p−1∑

r=0

dH

(
Gk−1

(
γ((m1 + r)j1p

k−2 + i1)
)
, Gk−1

(
γ((m2 + r)j2p

k−2 + i2)
))

= (p− 1)pk−2

as expected.

4.3 A Combinatorial Construction of the Gray Map

In the previous section, we introduced an algebraic construction of a Gray map from Zpk

to Zpk−1

p that is distance preserving. In this section, we want to give a purely combinatorial

construction using Affine geometries. So, we will divide this section into two parts, the first
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part consisting of an introduction about Affine geometries and the second part consisting

of the construction of the Gray map.

Affine geometries

Most of the material presented here was taken from [6]. An Affine space AGk(p) of order

k over Fp is defined to be the set V = Fk
p of all points and all Affine subspaces of V . An

Affine subspace of V is the empty set or a linear vector subspace of V or a coset of a linear

subspace of V in the additive group.

An Affine Hyperplane in AGk(p) is defined to be an Affine subspace of V of dimension

k − 1. We observe the following remark:

Remark 4.9. Two hyperplanes in AGk(p) are either disjoint or they intersect in an Affine

subspace of dimension k − 2.

Definition 4.10. Suppose A,B are hyperplanes in AGk(p). We say that A and B are

parallel if A = B or A and B are disjoint. We denote this by writing A ∼ B.

Lemma 4.11. The relation ∼ on the set of all hyperplanes of AGk(p) is an equivalence

relation.

Proof. Since reflection and symmetry are obvious, we will try to prove transitiveness. So,

suppose A ∼ B and B ∼ C. If A = B or B = C, then we obviously get A ∼ C. So, suppose

that A 6= B, and also B 6= C. Suppose for contradiction that A ∩ C 6= ∅. Then A ∩ C is

a (k − 2)-dimensional Affine subspace of V . Now we know, from basic properties of Affine

geometry, that the hyperplanes that contain A ∩ C partition the rest of the points in V .

Hence there are a total of
pk − pk−2

pk−1 − pk−2
= p + 1

hyperplanes that contain A ∩ C; call them A,C, H1, . . . , Hp−1. Now, A,C, H1, . . . , Hp−1

partition the rest of the points in V means, since A ∩ B = C ∩ B = ∅, that all the points

in B lie in the hyperplanes H1,H2, . . . , Hp−1. But, notice that Hj 6= B for j = 1, . . . , p− 1

because Hj ’s intersect with A and C. But Hj ∩B then can have at most pk−2 points, which

means that H1,H2, . . . , Hp−1 can contain at most (p− 1)pk−2 of the points in B, which is

a contradiction since |B| = pk−1.
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Let us define, by a parallel class of a hyperplane A, the equivalence class Ā of A with

respect to ∼. The following lemma will be quite useful.

Lemma 4.12. There are exactly p hyperplanes in each parallel class and there are pk−1 +

pk−2 + · · ·+ p + 1 parallel classes in AGk(p).

Proof. Suppose A is a hyperplane. Then all cosets of A in the additive group are also

hyperplanes. We know from group theory that two cosets of the same subgroup are either

identical or disjoint. Since each element in V is in some coset of A, we see that there are

at least p distinct cosets of A, but since distinct cosets are disjoint, it follows that there are

exactly p disjoint cosets of A. Since two disjoint cosets are parallel, we see that the disjoint

cosets of A make up the whole set Ā and hence the first part of the lemma is proved.

For the second part of the lemma, we observe that the number of parallel classes of

hyperplanes is exactly the same as the number of (k − 1)-dimensional vector subspaces of

V , which is the same as




k

k − 1




p

=
(pk − 1)(pk−1 − 1) . . . (p2 − 1)
(pk−1 − 1)(pk−2 − 1) . . . (p− 1)

=
pk − 1
p− 1

.

Now, let’s look at the parallel classes of lines. We know that in each parallel class of

lines, there are exactly pk−1 lines. Let’s fix one such parallel class in AGk(p). Suppose it is

L̄ =
{
L0, L1, . . . , Lpk−1−1

}

where each Lj is a line in the Affine space AGk(p). Let’s write the lines in this parallel class

as columns and let us label each element in each line with numbers in {0, 1, . . . , p− 1}.

L̄ =








0

1
...

p− 1




,




0

1
...

p− 1




, . . . ,




0

1
...

p− 1








(4.26)
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where we have pk−1 columns lined up above.

We observe that, if a hyperplane contains two points from a line, it contains the whole

line. So, each hyperplane that doesn’t contain any of the lines L0, L1, . . . , Lpk−1−1 contains

exactly one point from each column in (4.26). Using this observation we will prove the

following quick lemma:

Lemma 4.13. Suppose that a hyperplane A doesn’t contain any of the lines L0, L1, . . . ,

Lpk−1−1. If B ∈ Ā is any hyperplane, then B doesn’t contain any of the lines L0, . . . , Lpk−1−1

either.

Proof. If B ∈ Ā, this means that B and A are disjoint. By the above observation, we know

that A must contain exactly one point from each line Lj , j = 0, 1, . . . , pk−1 − 1. But if B

contains one of the lines Lj , then we would have A ∩ B 6= ∅, contradicting the fact that A

and B are disjoint.

Remark 4.14. The result of Lemma 4.13 implies that the hyperplanes that don’t contain

any of the lines L0, L1, . . . , Lpk−1−1 are partitioned into parallel classes of hyperplanes.

The following lemma will give us the number of hyperplanes that don’t contain any of

the lines:

Lemma 4.15. There are exactly pk−1 parallel classes of hyperplanes that don’t contain any

of the lines L0, L1, . . . , Lpk−1−1, or equivalently there are exactly pk hyperplanes that don’t

contain any of the lines L0, L1, . . . , Lpk−1−1.

Proof. Since, by lemma 4.13, we know that the hyperplanes that don’t contain any of the

lines L0, L1, . . . , Lpk−1−1 are partitioned into parallel classes, we see that the hyperplanes

that contain at least one of the lines L0, L1, . . . , Lpk−1−1 are also partitioned into parallel

classes. So, the number of parallel classes of hyperplanes that contain at least one of the

lines in L0, L1, . . . , Lpk−1−1 is the same as the number of (k − 1)-dimensional subspaces of

a k-dimensional vector space that contains a particular line, which is

pk−1 − 1
p− 1

= pk−2 + pk−3 + · · ·+ 1.
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This means, however, that the number of the parallel classes of hyperplanes that don’t

contain any of the lines L0, L1, . . . , Lpk−1−1 is

(pk−1 + pk−2 + · · ·+ p + 1)− (pk−2 + · · ·+ p + 1) = pk−1.

The Construction of Gk

Assume that Γ0, Γ1, . . . , Γpk−1−1 are the parallel classes of the hyperplanes that don’t contain

any of the lines L0, L1, . . . , Lpk−1−1. So, each hyperplane in these parallel classes is formed

by taking one element from each column of (4.26). Suppose, without loss of generality that

we have labelled (4.26) in such a way that there exists a hyperplane that corresponds to a

labelling of (0, 0, . . . , 0) and that it is in Γ0. From now on, by the vector that corresponds

to a hyperplane, we will mean the {0, 1, . . . , p− 1}-vector of length pk−1, which comes from

the labelling of the elements of the hyperplane in accordance with the labelling of (4.26).

So now we are finally ready to describe the Gray map Gk : Zpk → (Zp)pk−1
.

Definition 4.16. For u = jpk−1, j = 0, 1, . . . , p − 1, Gk maps u to the vector of the

hyperplanes of Γ0 bijectively in such a way that 0 is mapped to the hyperplane (0, 0, . . . , 0).

For 1 ≤ j ≤ pk−1 − 1, we map j, pk−1 + j, . . . , (p − 1)pk−1 + j to the vectors of the

hyperplanes of Γj bijectively.

Note that this is a well-defined map from Zpk to Zpk−1

p .

Theorem 4.17. The map Gk defined above is indeed a distance-preserving map from Zpk

with the homogeneous distance to (Zp)pk−1
with the Hamming distance.

Proof. Suppose u ∈ pk−1Zpk \{0}. Then this means that Gk(u) is the vector of a hyperplane

in Γ0 that is disjoint from the hyperplane of (0, 0, . . . , 0). But this means that Gk(u) doesn’t

have any zeros, which means that

wH(Gk(u)) = pk−1.
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If v ∈ Zpk \ pk−1Zpk , then Gk(v) is the vector of a hyperplane in some Γj with j 6= 0. But

since any hyperplane in Γj will intersect with any hyperplane in Γ0 in exactly pk−2 points

and since (0, 0, . . . , 0) belongs to a hyperplane in Γ0, we see that Gk(v) has to have exactly

pk−2 0’s. Hence we see that

wH(Gk(v)) = pk−1 − pk−2 = (p− 1)pk−2.

Now, suppose u, v ∈ Zpk so that u − v ∈ pk−1Zpk \ {0}. This means that u ≡ v

(mod pk−1). Then by the construction of Gk, we see however that Gk(u) and Gk(v) come

from two distinct hyperplanes in the same parallel class Γj for some j. But this means that

Gk(u) and Gk(v) are different in each coordinate since their hyperplanes are disjoint, which

means that

dH(Gk(u), Gk(v)) = pk−1.

Suppose now that u − v ∈ Zpk \ pk−1Zpk and hence u and v are in different residue

classes modulo pk−1. This means that Gk(u) and Gk(v) correspond to hyperplanes from

Γj1 and Γj2 , respectively, where j1 6= j2. But since two hyperplanes from different parallel

classes must necessarily intersect, and since they intersect in a (k − 2)-dimensional Affine

subspace, we see that Gk(u) and Gk(v) will have exactly pk−2 coordinates where the entries

are equal. Hence we see that

dH(Gk(u), Gk(v)) = pk−1 − pk−2 = (p− 1)pk−2.

Note that, by the exact same methods that we applied above, we can come up with a

combinatorial construction of a distance-preserving map from the Galois ring GR(p`,m) to

Fp(`−1)m

pm . The tools will be very similar; we will use the Affine geometry AG`(pm).
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4.4 Gray Maps over F2m + uF2m and the Lee Weight

In this section, we will study the linear codes over the ring Rm = F2m + uF2m with u2 = 0.

Linear codes over these rings were studied in [11] by Betsumiya and Ling. We first introduce

a special notion of a basis:

Definition 4.18. Suppose B = {α1, α2, . . . , αm} is a basis for F2m over F2. We say that B

is a Trace Orthogonal Basis (TOB), or self-dual basis if we have

tr(αi · αj) =





1 if i = j

0 of i 6= j

where tr is the usual Trace function from F2m to F2.

Remark 4.19. By [23], there exist TOBs for F2m for all m > 1.

At this point, we will define some different types of Gray maps. First define

ψ′m,1 : Fn
2m → Fmn

2

with respect to a TOB B, as

ψ′m,1(x1α1 + x2α2 + · · ·+ xmαm) = (x1, x2, . . . , xm) (4.27)

where x1, x2, . . . , xm are vectors in Fn
2 . We also define

φm : Rn
m → F2n

2m

by letting

φm(x + uy) = (y, x + y) (4.28)

where x, y are vectors in Fn
2m .

Definition 4.20. A linear code over the ring Rm = F2m + uF2m of length n is an Rm-

submodule of Rn
m.
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We will next define the Lee weight for such codes.

Definition 4.21. Suppose B = {α1, α2, . . . , αm} is a TOB of F2m over F2. Then for

x = x1α1 + · · ·+ xmαm ∈ F2m , the Lee weight of x with respect to the basis B is defined to

be the number of xj ’s that are non-zero. The weight wB
L of x = a + ub ∈ Rm is defined to

be the sum of the Lee weight of b ∈ F2m and that of a + b ∈ F2m .

We define an analogous Gray map

ψm,1 : Rn
m → Rmn

1

such that

ψm,1(x1α1 + · · ·+ xmαm) = (x1, x2, . . . , xm)

where x1, x2, . . . , xm are vectors in Rn
1 . The way the weight is defined, it is easy to see

that ψm,1 is Lee weight-preserving. Note that the Lee weight on F2 + uF2 is defined to be

wL(0) = 0, wL(1) = wL(1+u) = 1, wL(u) = 2. We summarize some of the properties of the

map ψm,1 in the following lemma:

Lemma 4.22. (i) ψm,1 is an F2 + uF2-linear map.

(ii) ψm,1 is a weight-preserving map where the map in Rm is the Lee weight defined with

respect to the TOB B, and the weight for R1 is the usual Lee weight.

(iii) ψm,1 is an injective map.

Proof. Let

c1 = x1α1 + · · ·+ xmαm, c2 = y1α1 + · · ·+ ymαm ∈ Rn
m.

It is enough to show that ψm,1(c1+c2) = ψm,1(c1)+ψm,1(c2) and that ψm,1(uc1) = uψm,1(c1).

Now,

ψm,1(c1 + c2) = ψm,1

(
(x1 + y1)α1 + · · ·+ (xm + ym)αm

)

= (x1 + y1, . . . , xm + ym)

= (x1, . . . , xm) + (y1, . . . , ym)

= ψm,1(c1) + ψm,1(c2).
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We also have

ψm,1(uc1) = ψm,1

(
(ux1)α1 + (ux2)α2 + · · ·+ (uxm)αm

)

= (ux1, ux2, . . . , uxm)

= u(x1, x2, . . . , xm)

= uψm,1(c1).

This proves the first part of the lemma, and the second part of the lemma just follows from

the definition of the Lee weight on Rm.

For part (iii), we note that if ψm,1(c1) = ψm,1(c2), then this means that xi = yi for all i,

which means that c1 = c2.

The following theorem is a similar result obtained for linear codes over Z4 in Chapter

2, and the proof is exactly in the same lines and so will be omitted here:

Theorem 4.23. Suppose that C is a linear code of type (4)k1(2)k2 over F2+uF2. If NL
C(j, 2e)

denotes the number of codewords in C that have Lee weights congruent to j modulo 2e, then

NL
C(j, 2e) ≡ 0 (mod 2q), j = 0, 1, . . . , 2e − 1

where

q =
⌊

k1 + k2 − 2e−2

2e−2

⌋

for all e ≥ 2. Moreover,

NL
C(j, 2) ≡ 0 (mod 22k1+k2−1), j = 0, 1.

Now, suppose that C is a linear code over F2m + uF2m of length n. Then by [13], C is

permutationally equivalent to a code with a generator matrix

G =




Ik1 A B1 + uB2

0 uIk2 uD



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where A, B1, B2, D are all F2m-matrices. This means that our linear code C is a linear code

of type (22m)k1(2m)k2 for some k1 and k2 nonnegative integers. We want to resolve the

question of the Lee weights of C modulo 2e as we did for F2 + uF2-codes above. Our basic

tool will be to reduce the situation to the case of F2 + uF2-codes by using the Gray map

ψm,1. We know that the weights are going to be preserved and, also by Lemma 4.22, we

know that the image will be a linear code over F2 + uF2. But in order to get the results,

we need to understand what kind of a linear code we get as the image of C under the map

ψm,1. For this, we have the following lemma:

Lemma 4.24. Suppose that C is a linear code over F2m + uF2m of type (22m)k1(2m)k2 and

of length n. Then, ψm,1(C) is a linear code over F2 + uF2 of type (4)mk1(2)mk2 of length

mn.

Proof. Suppose that ψm,1(C) has type (4)r(2)s for some non-negative integers r, s. The

first observation we make is that, since by Lemma 4.22, ψm,1 is an injective map, the size

of ψm,1(C) has to be the same as the size of C. This gives us the following equation:

2mk1 + mk2 = 2r + s. (4.29)

Now, suppose C has the generating matrix given above, and let the rows of the generating

matrix be c1, c2, . . . , ck1 , b1, b2, . . . , bk2 . Let C̃ be the subcode of C generated by

{uc1, uc2, . . . , uck1 , b1, b2, . . . , bk2}.

Then C̃ is a linear subcode of C. In fact it is the largest uF2m-subcode of C. Because if some

non-uF2m combination of c1, c2, . . . , cm were in (uF2m)n, then multiplying the combination

by u would yield a nontrivial combination of c1, c2, . . . , cm being 0, contradicting the fact

that they are linearly independent. This means that all the codewords in C that are in

(uF2m)n are in C̃, which is a linear code of type (2m)k1+k2 . Now, since ψm,1 is a F2 + uF2-

linear map, all the codewords in ψm,1(C) that are in (uF2)mn come from C̃. Now, the type

of ψm,1(C) implies that there are exactly 2r+s such codewords in ψm,1(C). But since ψm,1

is an injective map, the size of such codewords in ψm,1(C) has to be exactly the same as
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the size of C̃, so this gives us another equation:

mk1 + mk2 = r + s. (4.30)

So now, combining equations (4.29) and (4.30), we get

r = mk1, s = mk2

as desired.

We are now ready to introduce the following corollary to Theorem 4.23:

Corollary 4.25. Suppose that C is a linear code of type (22m)k1(2m)k2 over F2m + uF2m.

If NL
C(j, 2e) denotes the number of codewords in C that have Lee weights with respect to a

given TOB B = {α1, . . . , αm} congruent to j modulo 2e, then

NL
C(j, 2e) ≡ 0 (mod 2q), j = 0, 1, . . . , 2e − 1

where

q =
⌊

mk1 + mk2 − 2e−2

2e−2

⌋

for all e ≥ 2. Moreover,

NL
C(j, 2) ≡ 0 (mod 22mk1+mk2−1), j = 0, 1.

Proof. This result follows directly from Theorem 4.23 by using Lemma 4.22 and Lemma

4.24.

We will also be interested in proving that the result in Corollary 4.25 is best possible.

To do this, we need to understand the weight of a codeword with respect to a given TOB

B = {α1, α2, . . . , αm}.
Suppose αi1 + αi2 + · · ·+ αir ∈ F2m is fixed with 1 ≤ i1 < i2 < · · · < ir ≤ m. We will be
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interested in the Lee weight with respect to B of

αi1 + αi2 + · · ·+ αir + u(y1α1 + y2α2 + . . . ymαm)

where y1, y2, . . . , ym runs through F2. Note that the Lee weight of such a coordinate is the

Lee weight of

(
y1α1 + y2α2 + · · ·+ ymαm, (x1 ⊕ y1)α1 + (x2 ⊕ y2)α2 + · · ·+ (xm ⊕ ym)αm

)

where ⊕ denotes the summation modulo 2 and where xi = 1 for all i ∈ {i1, i2, . . . , ir} and

0 otherwise. Then, it follows that the Lee weight with respect to B of such a coordinate is

y1 + y2 + · · ·+ ym + (1− yi1) + · · ·+ (1− yir)+
∣∣∣∣
{

j ∈ {1, 2, . . . ,m} \ {i1, . . . , ir}
∣∣yj = 1

}∣∣∣∣.

So the Lee weights with respect to B of the set of coordinates of the form

αi1 + αi2 + · · ·+ αir + u(y1α1 + y2α2 + . . . ymαm)

where y1, y2, . . . , ym runs through F2 is the set

{
2(z1 + z2 + · · ·+ zm−r) + r

∣∣z1, . . . , zm−r ∈ F2

}
,

for all yi1 , . . . , yir ∈ F2. This means that if

C =
(
F2m + uF2m

)k

,

then the Lee weight distribution polynomial of C is

PC(z) =
[ m∑

r=0

m−r∑

j=0

(
m

r

)(
m− r

j

)
2rz2j+r

]k

. (4.31)
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Writing up the sums in their orders we get

m∑

r=0

m−r∑

j=0

(
m

r

)(
m− r

j

)
2rz2j+r =

m∑

r=0

(
m

r

)
2rzr

m−r∑

j=0

z2j

=
m∑

r=0

(
m

r

)
(2z)r(1 + z2)m−r

= (1 + 2z + z2)m

= (1 + z)2m.

This means that, for

C =
(
F2m + uF2m

)k

,

the weight distribution polynomial PC(z) of C is simply given by

PC(z) = (1 + z)2mk. (4.32)

Now, what happens if we take an element of the form u(αi1 + αi2 + · · · + αir) for

0 ≤ r ≤ m. Then its Lee weight with respect to B is the weight of

(αi1 + αi2 + · · ·+ αir , αi1 + αi2 + · · ·+ αir),

which is 2r. So the Lee weight distribution polynomial of Cu =
(
uF2m

)k is

PC(z) =
( m∑

r=0

(
m

r

)
z2r

)k

= (1 + z2)mk. (4.33)

We are now ready to prove the following theorem:

Theorem 4.26. The result in Corollary 4.25 is best possible.

Proof. Let us take the trivial block code

C =
(
F2m + uF2m

)k1
(
uF2m

)k2 . (4.34)
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Then, by (4.32) and (4.33), the Lee weight distribution polynomial of C is given by

PC(z) = (1 + z)2mk1(1 + z2)mk2 . (4.35)

This can be written as

(1 + 2z + z2)mk1(1 + z2)mk2 = (1 + z2)mk1+mk2+

2z ·A(1 + z2)mk1+mk2−1 + 4z2 ·B(1 + z2)mk1+mk2−2 + . . .

where A and B are polynomials with integer coefficients. Now, by Corollary 2.14, we know

that the coefficients of (1 + z2)k modulo z2e − 1 are strictly divisible by 2q where

q =
⌊

k − 2e−2

2e−2

⌋
.

But since

j+
⌊

mk1 + mk2 − j − 2e−2

2e−2

⌋
>

⌊
mk1 + mk2 − 2e−2

2e−2

⌋

for all e > 2 and j ≥ 1,we see that

min
{

ν2

(
NL

C(j, 2e)
)∣∣j = 0, 1, . . . , 2e − 1

}
=

⌊
mk1 + mk2 − 2e−2

2e−2

⌋
(4.36)

for all e > 2, which proves that the result in Corollary 4.25 is best possible when e > 2.

For e = 1, we have

PC(z) = (1 + z)2mk1(1 + z2)mk2

≡ 2mk2(1 + z)2mk1

≡ 22mk1+mk2−1 + 22mk1+mk2−1z (mod z2 − 1).

This means that the result in Corollary 4.25 is best possible for e = 1.

Just as in Chapter 2, the case when e = 2 will be considered separately. We will take
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in this case

C2 =
(
F2m + uF2m

)k1 × Ck2

where Ck2 is the k2-dimensional uF2m-code that is generated by

{
(u, 0, 0, . . . , 0, u), (0, u, 0, 0, . . . , 0, u), . . . , (0, 0, . . . , 0, u, u)

}
.

It can easily be seen that any codeword in Ck2 has a Lee weight that is divisible by 4, which

means that, modulo z4 − 1, we will have

PC2(z) ≡ 2mk2(1 + z)2mk1 (mod z4 − 1),

but then by Corollary 2.14, the coefficients of (1+z)2mk1 modulo z4−1 are strictly divisible

by 2mk1−1, which means that the coefficients of PC(z), modulo z4 − 1, are strictly divisible

by 2mk1+mk2−1, which proves that the result in Corollary 4.25 is best possible for e = 2 as

well.

Remark 4.27. Comparing the results obtained in Chapter 2 for linear Z4-codes with the

results obtained in this section for linear codes over F2 + uF2, we see that the results are

exactly the same. In fact, these two rings are very similar, with the u in F2 + uF2 working

like the 2 in Z4. But there is one major difference between the two rings. The Gray map

defined from F2 + uF2 to F2
2 is a linear isometry while the Gray map defined from Z4 to F2

2

is not a linear map. More on this will be said in the next chapter.

Remark 4.28. While F2 + uF2 is very similar to Z4, the extension of the Lee weight to the

ring F2m +uF2m is not a homogeneous weight unlike the extension of the Lee weight from Z4

to the Galois rings that we used in Chapter 2. In this aspect, the results that we obtained

in this section, in particular the ones summarized in Corollary 4.25, are different than the

results obtained in Chapter 2.
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Chapter 5

Gray Images of Linear Codes and
Permutation Invariance of Binary
Codes

In this chapter we will see some applications of the Gray map in linking the invariance of

some binary codes under some permutations with linearity over certain rings. The moti-

vation for this chapter came from [2], in which the authors found necessary and sufficient

conditions for a binary code to be the Gray image of a linear code over Z4. Using this, they

reached some results about Z4-linearity of Reed-Muller codes that can be summarized in

the following theorem:

Theorem 5.1. ([2]) The rth order binary Reed-Muller code RM(r,m) of length n =

2m,m ≥ 1, is Z4-linear for r = 0, 1, 2,m− 1,m.

When r doesn’t have the form in Theorem 5.1, they conjectured that RM(r,m) is not

Z4-linear, and they proved this when r = m− 2.

In both [11] and [13], the authors linked linearity over the rings F2+uF2 and F2m +uF2m

with the so-called swap map, which essentially is the permutation group Z2, and so this led

us to consider the question of whether the Reed-Muller codes are linear over these rings.

In section 1 we will give a brief introduction about permutations of binary codes in

section 2, we will consider the connection between permutation invariance and linearity

over certain rings, and in section 3 we will consider the Reed-Muller codes and we will

answer the question about these codes being linear over the rings previously studied. In

section 4 we will find the exact pre-images of the Reed-Muller codes that are linear over the
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rings considered in section 2. In the last part of the chapter, we will settle the question of

invariance of Reed-Muller codes under the permutation group Z2k and we will also consider

linear codes over the ring F2 + uF2 + · · ·+ u2k−1F2.

5.1 Permutations of Binary Codes

Suppose that C is a binary code of length n. Then we know that the permutation group

Sn acts on this code by acting on the coordinates. Suppose τ ∈ Sn is a permutation, and

c = (c1, c2, . . . , cn) ∈ C is a codeword in C. Then

τ(c) = (cτ(1), cτ(2), . . . , cτ(n)). (5.1)

Definition 5.2. Suppose C is a binary code of length n. Then, for τ ∈ Sn, we say that C

is invariant under τ if

τ(C) = C.

We will say C is invariant under a subgroup H of Sn if C is invariant under τ , for all τ ∈ H,

i.e.,

τ(C) = C, ∀τ ∈ H.

Remark 5.3. We note that τ is an injective map from C to τ(C), which means that |C| =
|τ(C)| for all τ ∈ Sn. So, we can modify the definition of τ -invariance of a code C by

requiring that τ(c) ∈ C for all c ∈ C.

We start with a lemma that will be useful for the rest of the chapter:

Lemma 5.4. Suppose that C is a k-dimensional linear binary code and suppose the gener-

ators are c1, c2, . . . , ck and let τ ∈ Sn be a permutation. Then we have:

(i) τ(x + y) = τ(x) + τ(y) for all x, y ∈ C.

(ii) τ(x ∗ y) = τ(x) ∗ τ(y) for all x, y ∈ C where ∗ is the component-wise product.

(iii) τ(C) is a k-dimensional binary linear code with generators τ(c1), τ(c2), . . . , τ(ck).

(iv) τ(C⊥) = τ(C)⊥ if τ2 = 1.

Proof. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two codewords in C. We then
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see that

τ(x + y) = τ(x1 + y1, x2 + y2, . . . , xn + yn)

= (xτ(1) + yτ(1), xτ(2) + yτ(2), . . . , xτ(n) + yτ(n))

= (xτ(1), xτ(2), . . . , xτ(n)) + (yτ(1), yτ(2), . . . , yτ(n))

= τ(x) + τ(y).

The case when the operation is ∗ is exactly the same, which means that (i) and (ii) are

proved.

To prove (iii), note that by (i) and by the remark above, it suffices to show that

τ(c1), τ(c2), . . . , τ(ck) are linearly independent. Suppose that

α1τ(c1) + α2τ(c2) + · · ·+ αkτ(ck) = 0

with αi ∈ {0, 1} and not all αi being 0. Since αi = 0 or 1, by (i) we see that the above

equation is equivalent to

τ(α1c1 + α2c2 + · · ·+ αkck) = 0,

which is equivalent to saying that

α1c1 + α2c2 + · · ·+ αkck = 0

since τ is injective, which implies that αi = 0 for all i = 1, 2, . . . , k as c1, c2, . . . , ck form a

set of generators for C and hence are linearly independent.

To prove (iv), we first note that, since τ is injective, we have

|τ(C⊥)| = |C⊥| = 2n−k. (5.2)
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However, since by (iii), τ(C) is a k-dimensional binary linear code, we have

|τ(C)⊥| = 2n−k. (5.3)

Combining (5.2) and (5.3), we see that

|τ(C)⊥| = |τ(C⊥)|. (5.4)

So, in order to complete the proof, we only need to prove a one-sided inclusion. To this

extent, suppose that y = (y1, y2, . . . , yn) ∈ τ(C)⊥. Then we have

y1xτ(1) + y2xτ(2) + · · ·+ ynxτ(n) = 0

for all (x1, x2, . . . , xn) ∈ C. Now, since τ2 = 1, we know that τ(j) = i ⇔ τ(i) = j. Hence

the above equation can be written in the form

x1yτ(1) + x2yτ(2) + · · ·+ xnyτ(n) = 0

for all (x1, x2, . . . , xn) ∈ C, which means that τ(y) ∈ C⊥ or that y ∈ τ(C⊥) since τ2 = 1,

which proves that

τ(C)⊥ ⊆ τ(C⊥).

5.2 Permutation Invariance and Linearity over Rings

We will first start with the ring F2 +uF2 that was studied in [13] and the permutation that

we will discuss is the swap map.

The swap map and the ring F2 + uF2

We recall that the ring F2 + uF2 is constructed by letting u2 = 0. We recall also that a
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Gray map φ : (F2 + uF2)n → F2n
2 is defined as

φ(x + uy) = (x + y, y), x, y ∈ Fn
2 . (5.5)

Definition 5.5. Suppose that C is a binary code of length 2n for some n ∈ N. The swap

map σ on C is defined to be the permutation

σ = (1, n + 1)(2, n + 2) · · · (n, 2n). (5.6)

So, if c = (x, y) with x, y ∈ Fn
2 , then

σ(c) = (y, x). (5.7)

Remark 5.6. Note that σ2 = 1 and hence if we let the permutation group H be H = {1, σ},
then we see that H ' Z2. In fact, for notational purposes that will be apparent in the latter

part of the chapter, we will view the swap map as the permutation group Z2.

The connection between σ-invariance and linearity over F2 + uF2 was given in [13],

but we still want to state the theorem and prove it here, as it will be a reference for the

extensions that we will study.

Theorem 5.7. A binary linear code C of even length is the Gray image of a linear code

over F2 + uF2 if and only if C is invariant under the swap map.

Proof. Suppose that C = φ(D) where D is a linear F+ uF2-code of length n, here 2n is the

length of C. Suppose c = (x, y) = φ(d) where d ∈ D and x and y are in Fn
2 . Note that, by

the construction of the Gray map, we must have

d = (x + y) + uy. (5.8)

Now, since D is a linear code over F2 + uF2, we see that (1 + u)d = (x + y) + ux ∈ D as

well. Since C = φ(D), we see that φ
(
(1 + u)d

) ∈ C as well. But

φ
(
(1 + u)d

)
= φ(x + y + ux) = (y, x) = σ(c). (5.9)
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This proves the necessary condition.

To prove sufficiency, suppose that C is invariant under the swap map. Then if we look

at the inverse image of C under φ, we get an F2-additive code over F2 + uF2. To show that

the pre-image is a F2[u]-module, we notice that the pre-image of the swap of a codeword is

(1 + u) times the original codeword by the discussion in the first part of the proof. This

means that the pre-image is invariant under multiplication by (1 + u) and hence by u, so it

is F2 + uF2-linear.

Since σ2 = 1, we can use Lemma 5.4-(iv) to prove the following theorem:

Theorem 5.8. Suppose that C is a binary linear code of length 2n for some n and let C⊥

be its dual. If C is F2 +uF2-linear or equivalently if C is invariant under σ, the swap map,

then so is C⊥

Because of Theorem 5.7, we will have the following corollary to Theorem 5.8, which in

fact is a stronger way of stating the same theorem:

Corollary 5.9. Suppose C is a binary linear code of length 2n and suppose that

C = φ(D)

for some F2 + uF2-linear code D of length n. Then

C⊥ = φ(D⊥).

Proof. Suppose that a binary linear code C of length 2n is the image under the Gray map

of a linear code D over F2 +uF2 of length n. Now, suppose that x+uy ∈ D⊥, which means

that

(x + uy) · (d1 + ud2) = 0

for all d1 + ud2 ∈ D, which is equivalent to saying that

x · d1 = 0, x · d2 + y · d1 = 0 (5.10)
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for all d1 + ud2 ∈ D. However, then we see that

φ(x + uy) · φ(d1 + ud2) = (x + y, y) · (d1 + d2, d2)

= y · d2 + x · d1 + x · d2 + y · d1 + y · d2

= x · d1 + x · d2 + y · d1

= 0

by (5.10). This means that

φ(D⊥) ⊆ C⊥. (5.11)

Now, since φ is injective, we see that |C| = |φ(D)| = |D|. And since |C| · |C⊥| =

|D| · |D⊥| = 4n, we see that |C⊥| = |D⊥|. Again, using the injective property of φ we

conclude that

|φ(D⊥)| = |C⊥|. (5.12)

The result of the corollary now follows from (5.11) and (5.12).

The ring F2 + uF2 + u2F2 + u3F2 and the permutation group Z4

The first natural extension to the swap map, that is, the permutation group Z2, will be the

permutation group Z4, which we can denote as

Z4 = {1, ρ, ρ2, ρ3}

where ρ acts on a binary word of length 4n as the permutation

ρ = (1, n + 1, 2n + 1, 3n + 1)(2, n + 2, 2n + 2, 3n + 2) · · · (n, 2n, 3n, 4n). (5.13)

So, if

x = (x1, x2, x3, x4)

is a binary codeword of length 4n for a positive integer n, then we can simply write
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ρ(x) = (x4, x1, x2, x3). (5.14)

Definition 5.10. Suppose that C is a binary code of length 4n for some integer n. Then

we say C is ρ-invariant or, equivalently, that it is invariant under the permutation group

Z4 if we have

ρ(C) = C.

Remark 5.11. If ρ(C) = C, then ρ2(C) = ρ3(C) = C so indeed Z4-invariance and ρ-

invariance are equivalent.

The ring F2 +uF2 +u2F2 +u3F2 is constructed in the usual way subject to the condition

u4 = 0 and the ring has characteristic 2. A linear code over F2+uF2+u2F2+u3F2 of length n

is defined as usual to be an F2 +uF2 +u2F2 +u3F2-submodule of (F2 +uF2 +u2F2 +u3F2)n.

As in the case of F2 + uF2-linear codes we can define a Gray map that is a linear map,

denoted by ψ. So it is defined as

ψ : (F2 + uF2 + u2F2 + u3F2)n → F4n
2

in such a way that

ψ(a + ub + u2c + u3d) = (a + b + c + d, b + d, c + d, d) (5.15)

with a, b, c, d ∈ Fn
2 . Note that, ψ is an F2-linear map, and so it maps linear codes over

F2 + uF2 + u2F2 + u3F2 of length n to binary linear codes of length 4n. We are now ready

to state the theorem that is analogous to Theorem 5.7.

Theorem 5.12. Suppose C is a binary linear code of length 4n. Then C is the Gray (ψ)

image of a linear code over F2+uF2+u2F2+u3F2 of length n if and only if C is Z4-invariant.

Proof. The proof is exactly the same as the proof of Theorem 5.7, so most of it will be

omitted. We will only note that any given binary codeword

x = (a, b, c, d)
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can be considered as the image of a codeword

y = (a + b + c + d) + u(b + d) + u2(c + d) + u3d.

We then have

ψ((1 + u)y) = (d, a, b, c) = ρ(x).

ψ((1 + u2)y) = (c, d, a, b) = ρ2(x).

ψ((1 + u + u2 + u3)y) = (b, c, d, a) = ρ3(x).

The ring F2 + uF2 + vF2 + uvF2 and the permutation group K4

Suppose C is a binary code of length 4n for some integer n. Then we introduce the following

permutations that are regarded as the elements of the Klein-4 group, K4 = {1, α, β, γ}:

α =
[
(1, n + 1)(2n + 1, 3n + 1)

]·[(2, n + 2)(2n + 2, 3n + 2)
] · · · [(n, 2n)(3n, 4n)

]

β =
[
(1, 2n + 1)(n + 1, 3n + 1)

]·[(2, 2n + 2)(n + 2, 3n + 2)
] · · · [(n, 3n)(2n, 4n)

]

γ =
[
(1, 3n + 1)(n + 1, 2n + 1)

]·[(2, 3n + 2)(n + 2, 2n + 2)
] · · · [(n, 4n)(2n, 3n)

]
.

Note that, if we denote a codeword x as (x1, x2, x3, x4) where each xi is a binary vector of

length n, then we have

α(x1, x2, x3, x4) = (x2, x1, x4, x3)

β(x1, x2, x3, x4) = (x3, x4, x1, x2) (5.16)

γ(x1, x2, x3, x4) = (x4, x3, x2, x1).

Note that β is the same as the usual swap map defined in the previous sections.

As usual we define K4-invariance of a binary code C of length 4n as being invariant

under the permutations α, β, γ. We will connect the invariance under this permutation

with linearity over a certain ring.
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Let F2 + uF2 + vF2 + uvF2 be the ring of characteristic 2 that is constructed subject to

u2 = v2 = 0 and uv = vu. As usual, we consider linear codes over F2 + uF2 + vF2 + uvF2

of length n to be F2 + uF2 + vF2 + uvF2-submodules of (F2 + uF2 + vF2 + uvF2)n. Let D

be such a linear code. Then we can write any codeword d ∈ D in the form

d = x1 + ux2 + vx3 + uvx4

where xi ∈ Fn
2 .

We define a Gray map ϕ : (F2 + uF2 + vF2 + uvF2)n → F4n
2 as

ϕ(x1 + ux2 + vx3 + uvx4) = (x1 + x2 + x3 + x4, x3 + x4, x2 + x4, x4). (5.17)

Note that ϕ is a linear map and it maps a linear code over F2 + uF2 + vF2 + uvF2 of

length n to a linear binary code of length 4n. Moreover, it is obvious that ϕ is injective.

The analogous theorem that connects the K4-invariance to linearity over these rings can be

stated as follows:

Theorem 5.13. Suppose that C is a binary linear code of length 4n. Then C is the Gray(ϕ)

image of a linear code over F2+uF2+vF2+uvF2 of length n if and only if C is K4-invariant.

Proof. Suppose that C is the image of a linear code D over F2 +uF2 + vF2 +uvF2 of length

n. So, suppose c = (x1, x2, x3, x4) ∈ C is a codeword. Then it is easy to see that it is the

image under the Gray map of the codeword

d = (x1 + x2 + x3 + x4) + u(x3 + x4) + v(x2 + x4) + uv(x4).

But then we have

ϕ
(
(1 + u)d

)
= (x3, x4, x1, x2) = β(c).

ϕ
(
(1 + v)d

)
= (x2, x1, x4, x3) = α(c).

ϕ
(
(1 + u + v + uv)d

)
= (x4, x3, x2, x1) = γ(c)
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which proves one side of the implication.

For the other implication, we suppose that we have a binary linear code of length 4n that

is K4-invariant. Suppose D is the code over F2+uF2+vF2+uvF2 of length n that is obtained

as the pre-image of C, which is obviously additive. Now, from the above calculations, C

being invariant under β means that D is invariant under left multiplication by 1 + u and

hence u. The invariance of C under α implies that D is invariant under left multiplication by

1+v and hence v. Finally, the invariance of C under γ implies that D is invariant under the

left multiplication by (1+u+ v +uv), but since it is already invariant under multiplication

by u and v and since it is additive, it implies that it is invariant under multiplication by uv.

This proves that D is a F2 +uF2 + vF2 +uvF2-submodule of (F2 +uF2 + vF2 +uvF2)n.

5.3 Reed-Muller Codes and Permutation Invariance

In this section, we will apply the results of the previous sections to see that Reed-Muller

codes, in most cases, are actually linear over the rings F2 +uF2, F2 +uF2 +u2F2 +u3F2 and

F2 +uF2 + vF2 +uvF2 unlike the case of Z4-linearity. To do this, we will first introduce the

Reed-Muller codes and see some of their properties. Most of the information can be found

in books like [6] and [20].

We first let v = (v1, v2, . . . , vm) denote a vector that ranges over Fm
2 , and we let f be the

vector of length 2m obtained from a Boolean function f(v1, v2, . . . , vm), i.e., a polynomial in

v1, v2, . . . , vm where the degree of each vi is at most 1. A Boolean function of this form will be

an F2-linear combination of terms of the form vi1vi2 . . . vir with 1 ≤ i1 < i2 < · · · < ir ≤ m.

The highest such r > 0 in f is said to be the degree of f . So, if we consider f to be a

polynomial in the variables v1, v2, . . . , vm, then the degree is the total degree of f . We then

define the Reed-Muller codes as follows:

Definition 5.14. The rth order binary Reed-Muller (or RM) code RM(r,m) of length

n = 2m, for 0 ≤ r ≤ m, is the set of all vectors f , where f(v1, v2, . . . , vm) is a Boolean

function that is a polynomial of degree at most r.

Remark 5.15. RM(r,m) is a linear binary code of length 2m and is of dimension 1 +
(
m
1

)
+

· · ·+ (
m
r

)
.
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Remark 5.16. We can actually specify all the generators of RM(r,m). A set of generators

for RM(r,m) would be

{1, v1, v2, . . . , vm, v1v2, . . . , vm−1vm, . . . , v1v2 · · · vr, . . . , vm−r+1 · · · vm}.

We can consider these as binary vectors of length 2m, for example, 1 will correspond to

the all 1 vector of length 2m. v1 will be the {0, 1}-vector of length 2m that has 1 that

corresponds to the vectors in Zm
2 that have their first coordinate as 1 and 0 for all the

others. Note also that vivj , as a binary vector, is just vi ∗vj , the component-wise product of

the vectors of vi and vj . This means that once we specify v1, v2, . . . , vm, we can find all the

generators of RM(r,m) for 0 ≤ r ≤ m. It is obvious that we can define the Reed-Muller

code RM(r,m) uniquely up to a permutation equivalence by fixing a sort of ordering on

the elements of Zm
2 , which we will describe inductively as:

Zm
2 = Zm−1

2 0 ∪ Zm−1
2 1, m ≥ 1. (5.18)

For the rest of this work, when we talk about the Reed-Muller code RM(r,m), we will con-

sider the binary linear code obtained uniquely from the basic boolean generators 1, v1, . . . , vm

with the ordering that was fixed for Zm
2 in (5.18).

In [20], the automorphism group of RM(r,m) is given as the general Affine group,

denoted by GA(m), which can be defined as the group of all Affine transformations:

T




v1

v2

...

vm




= A




v1

v2

...

vm




+ b

where A is an m ×m binary matrix and b is a binary m-tuple. MacWilliams and Sloane

showed in [20] that

Aut(RM(r,m)) = GA(m), 1 ≤ r ≤ m− 2.
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Of course we know that RM(0,m), RM(m− 1,m), and RM(m, m) are invariant under the

whole S2m .

We are now ready to prove the first theorem about permutation invariance of RM(r,m):

Theorem 5.17. The Reed-Muller code RM(r,m) is invariant under the permutation groups

Z2, Z4, and K4 for all 0 ≤ r ≤ m.

Proof. Recall that the permutation group Z2 means the swap map, Z2 = {1, σ}, and Z4 =

{1, ρ, ρ2, ρ3} while K4 = {1, α, β, γ} with their actions defined in (5.7), (5.14), and (5.16),

respectively. Let v1, v2, . . . , vm be the basic boolean generators of RM(r,m). It is enough

then by Lemma 5.4 to show that the permutations acting on the Boolean functions of degree

≤ r will be in RM(r,m) too.

In order to see this, we will write these generators in terms of the generators of RM(r,m−
2) by using the ordering (5.18). Note that we can write

Zm
2 = Zm−2

2 00 ∪ Zm−2
2 10 ∪ Zm−2

2 01 ∪ Zm−2
2 11, (5.19)

which means if w1, w2, . . . , wm−2 are the basic boolean generators of RM(r,m−2) of length

2m−2, then we have

vi = (wi, wi, wi, wi), ∀i = 1, 2, . . . ,m− 2. (5.20)

And for vm−1 and vm we get

vm−1 = (02m−2 , 12m−2 , 02m−2 , 12m−2), vm = (02m−2 , 02m−2 , 12m−2 , 12m−2). (5.21)

Let’s start with σ, which is the swap map. By the above equations we see that

σ(vi) = vi, i = 1, 2, . . . , m− 2

and σ(vm−1) = vm−1 while σ(vm) = 1 + vm. So, if we apply σ to a Boolean function

of v1, v2, . . . , vm of degree r, then by Lemma 5.4, we will still get a Boolean function of

v1, . . . , vm of degree r. This means that RM(r,m) is invariant under sigma or equivalently
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under the permutation group Z2. We could also see this by noticing that σ defines an Affine

transformation of v1, v2, . . . , vm and hence is in the automorphism group of RM(r,m).

To extend this to Z4, we only need to check the action of ρ. By (5.20) and (5.21), we

see that

ρ(vi) = vi, i = 1, . . . , m− 2, ρ(vm−1) = 1 + vm−1, ρ(vm) = 1 + vm−1 + vm. (5.22)

Now, let’s look at the binary vector vi1 ∗ vi2 ∗ · · · ∗ vis , which is the vector that corresponds

to the Boolean function vi1 · · · vis . By Lemma 5.4 and by (5.22), we have

ρ(vi1 ∗ vi2 ∗ · · · ∗ vis) = vi1 ∗ vi2 ∗ · · · ∗ vis ∈ RM(r,m), i1, . . . , is ∈ {1, 2, . . . ,m− 2}.

Since F2 is a field, multiplication is distributive over addition, which means that x∗(y+z) =

x ∗ y + x ∗ z for binary vectors x, y, z. Note also that x ∗ x = x for all binary vectors x. But

this means that

σ(vm−1 ∗ vi1 ∗ · · · ∗ vis) = vi1 ∗ vi2 ∗ · · · ∗ vis + vm−1 ∗ vi1 ∗ vi2 ∗ · · · ∗ vis

and

σ(vm ∗vi1 ∗vi2 ∗ · · · ∗vis) = vi1 ∗vi2 ∗ · · · ∗vis +vm−1 ∗vi1 ∗vi2 ∗ · · · ∗vis +vm ∗vi1 ∗vi2 ∗ · · · ∗vis

for all i1 < i2 < · · · < is ∈ {1, 2, . . . , m− 2}.
The only remaining case is to look at a vector of the form vm−1 ∗ vm ∗ vi1 ∗ · · · ∗ vis , but

then by the above discussion we see that

σ(vm−1 ∗ vm ∗ vi1 ∗ · · · ∗ vis) = vi1 ∗ · · · ∗ vis + vm−1 ∗ vi1 ∗ · · · ∗ vis + vm ∗ vi1 ∗ · · · ∗ vis

+ vm−1 ∗ vm ∗ vi1 ∗ · · · ∗ vis ,

which is still in RM(r,m). Since ρ takes all generators of RM(r,m) to vectors in RM(r,m),

by Lemma 5.4 we can conclude that RM(r,m) is invariant under the permutation ρ or
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equivalently under the permutation group Z4.

To see the permutation invariance under K4, we look at the images of the basic gener-

ators under the permutations of K4:

α(vi) = vi, i = 1, . . . , m− 2, α(vm−1) = 1 + vm−1, α(vm) = vm

β(vi) = vi, i = 1, . . . , m− 2, β(vm−1) = vm−1, β(vm) = 1 + vm

γ(vi) = vi, i = 1, . . . , m− 2, γ(vm−1) = 1 + vm−1, γ(vm) = 1 + vm.

By the same reasoning as above in the case of Z4, we can easily see that all the generators of

RM(r,m) with 0 ≤ r ≤ m are mapped to vectors in RM(r,m), which proves that RM(r,m)

is invariant under the action of the permutation group K4 by Lemma 5.4.

Note that for r = 0, we have RM(0,m) = {0, 1} which is invariant under all permuta-

tions in S2m . So, the proof of the theorem is concluded.

An immediate corollary of Theorem 5.17 comes from the results of the previous section,

which were summarized in the form of Theorems 5.7, 5.12 and 5.13:

Corollary 5.18. The Reed-Muller code RM(r,m) is the Gray image of linear codes over

the rings F2 + uF2, F2 + uF2 + u2F2 + u3F2 and F2 + uF2 + vF2 + uvF2 for 0 ≤ r ≤ m, for

the appropriate Gray map defined for each ring as was done in Section 5.2.

As we see, this turns out to be another big difference between Z4 and F2 + uF2, as

another corollary could be stated as follows that is in contrast to Theorem 8 in [2] for the

case of Z4.

Corollary 5.19. The binary code RM(m−2,m), i.e., the extended Hamming code of length

n = 2m, is F2 + uF2-linear.

5.4 The Pre-images of Reed-Muller Codes under Gray Maps

Theorem 5.17 and Corollary 5.18 in the previous section tell us that the Reed-Muller codes

RM(r,m) can be obtained as the Gray image of linear codes over the rings F2 + uF2,
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F2 + uF2 + u2F2 + u3F2 and F2 + uF2 + vF2 + uvF2 for all 0 ≤ r ≤ m. We are curious to

find these linear codes that give us the Reed-Muller codes in this section. Before starting

to find the exact pre-images, we need to introduce a theorem about Reed-Muller codes that

proves to be very useful in finding these pre-images:

Theorem 5.20. ( Theorem 2, [20] ) For 0 ≤ r ≤ m, we have the following identity for

Reed-Muller codes:

RM(r + 1,m + 1) =
{

(c, c + d)
∣∣ c ∈ RM(r + 1,m), d ∈ RM(r,m)

}
.

We start by finding the pre-image of RM(r,m) as a linear code over F2 + uF2.

Definition 5.21. Define by FRM(r,m − 1), for r = 0, 1, 2, . . . , m, the linear code over

F2 + uF2 that is generated by RM(r − 1,m− 1) and uRM(r,m− 1).

Remark 5.22. We are making the conventions that RM(−1,m− 1) = RM(m,m− 1) = 0.

At this point we want to introduce the following useful lemma:

Lemma 5.23. For 1 ≤ r ≤ m− 1, we have

FRM(r,m− 1) =
{
αc + βud

∣∣ c ∈ RM(r − 1, m− 1), d ∈ RM(r,m− 1);α, β ∈ Z2

}
.

Proof. We know that

FRM(r,m−1) = {(α+γu)c+λud
∣∣c ∈ RM(r−1,m−1), d ∈ RM(r,m−1);α, γ, λ ∈ Z2}

= {αc + (γ + λ)u(c + d)
∣∣c ∈ RM(r − 1, m− 1), d ∈ RM(r,m− 1);α, γ, λ ∈ Z2}.

Now, as λ, γ run through the elements of Z2, so does β = λ + γ. Also, since RM(r −
1,m− 1) ⊂ RM(r,m− 1), we see that c + d runs through the codewords of RM(r,m− 1)

as c and d run through codewords of RM(r − 1,m − 1) and RM(r,m − 1), respectively.

Putting these into the above, we see that

FRM(r,m− 1) = {αc + βud
∣∣c ∈ RM(r − 1,m− 1), d ∈ RM(r,m− 1);α, β ∈ Z2}
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as expected.

Remark 5.24. FRM(r,m− 1) is generated by

1, v1, v2, . . . , vm−1, . . . , v1v2 . . . vr−1, . . . , vm−r+1 . . . vm−1, uv1v2 . . . vr, . . . , uvm−r . . . vm−1.

So, as a code over F2 + uF2, it is of type

(4)1+(m−1)+···+(m−1
r−1 )(2)(

m−1
r ).

We can observe the following lemma about the sizes of the codes FRM(r,m − 1) and

RM(r,m):

Lemma 5.25.

|FRM(r,m− 1)| = |RM(r,m)|.

Proof. From Remark 5.24, we see that

|FRM(r,m− 1)| = 2q

where

q = 2
[
1 + (m− 1) + · · ·+

(
m− 1
r − 1

)]
+

(
m− 1

r

)
.

Now we will use the classical identity

(
m

r

)
=

(
m− 1

r

)
+

(
m− 1
r − 1

)
.

So we get

q = 2
[
1 + (m− 1) + · · ·+

(
m− 1
r − 2

)]
+

(
m− 1
r − 1

)
+

(
m

r

)
.

Applying the same identity for r − 1, we get

q = 2
[
1 + (m− 1) + · · ·+

(
m− 1
r − 3

)]
+

(
m− 1
r − 2

)
+

(
m

r − 1

)
+

(
m

r

)
.
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Continuing in this manner, we see that inductively, we will get

q = 1 + m +
(

m

2

)
+ · · ·+

(
m

r

)
,

which is the dimension of RM(r,m), proving the assertion.

We observe, from Lemma 5.23 that since αc ∈ RM(r − 1,m − 1) for all α ∈ Z2,

c ∈ RM(r − 1,m − 1) and also βd ∈ RM(r,m − 1), for all β ∈ Z2, d ∈ RM(r,m − 1), we

have

FRM(r,m− 1) =
{
c + ud

∣∣ c ∈ RM(r − 1,m− 1), d ∈ RM(r,m− 1)
}

(5.23)

for all 1 ≤ r ≤ m− 1.

Theorem 5.26. The image of FRM(r,m− 1) under the Gray map φ : (F2 + uF2)n → F2n
2

is the Reed-Muller code RM(r,m).

Proof. We know by Lemma 5.23 and (5.23) that

FRM(r,m− 1) =
{
c + ud

∣∣ c ∈ RM(r − 1,m− 1), d ∈ RM(r,m− 1)
}
.

Since RM(r − 1,m − 1) ⊂ RM(r,m − 1), we see that c + d runs through the elements of

RM(r,m− 1) as c runs through RM(r − 1, m− 1) and d runs through RM(r,m− 1). So,

if we call a = c + d, then we get

φ
(
FRM(r,m− 1)

)
=

{
(c + d, d)

∣∣ c ∈ RM(r − 1,m− 1), d ∈ RM(r,m− 1)
}

=
{
(a, a + c)

∣∣ c ∈ RM(r − 1, m− 1), a ∈ RM(r,m− 1)
}

= RM(r,m)

by Theorem 5.20.

Remark 5.27. When r = 0, FRM(0,m− 1) is generated by u12m−1 whose image under the

Gray map is {02m , 12m} = RM(0,m).
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When r = m, FRM(m,m− 1) = (F2 + uF2)2
m−1

. The Gray map of this obviously is

{
(c + d, d) | c, d ∈ F2m−1

2

}
= F2m

2 = RM(m,m).

This means that the result in Theorem 5.26 is true for all 0 ≤ r ≤ m.

In exactly the same way as we did above, we can find the pre-images of the Reed-Muller

code as linear codes over the rings F2 + uF2 + u2F2 + u3F2 and F2 + uF2 + vF2 + uvF2. We

will summarize them in the following theorems, but omit the proofs as they are very similar

to the proof of Theorem 5.26.

Theorem 5.28. Suppose that SRM(r,m) is the linear code over F2 + uF2 + u2F2 + u3F2

of length 2m−2 generated by

RM(r − 2,m− 2), uRM(r − 1,m− 2), u2RM(r − 1,m− 2), u3RM(r,m− 2).

If ψ : (F2 + uF2 + u2F2 + u3F2)n → F4n
2 is the Gray map as defined in Section 5.2, then we

have

ψ
(
SRM(r,m)

)
= RM(r,m).

Theorem 5.29. Suppose that DRM(r,m) is the linear code over F2 + uF2 + vF2 + uvF2

of length 2m−2 generated by the codes

RM(r − 2,m− 2), uRM(r − 1,m− 2), vRM(r − 1,m− 2), uvRM(r,m− 2).

If φ : (F2 + uF2 + vF2 + uvF2)n → F4n
2 is the Gray map defined in Section 5.2, then

φ
(
DRM(r,m)

)
= RM(r,m).

5.5 Reed-Muller Codes and the Permutation Group Z2k

In sections 5.3 and 5.4, we proved that the Reed-Muller codes RM(r,m) are invariant under

the permutation groups of Z2, Z4, and K4 by proving it directly as well as by proving that
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they are the images under the Gray maps of certain linear codes over the rings F2 + uF2,

F2 + uF2 + u2F2 + u3F2 and F2 + uF2 + vF2 + uvF2, respectively. In fact, we were able to

find the exact pre-images of Reed-Muller codes in these rings. Since the Reed-Muller codes

are of length 2m, it is natural to ask the question about the invariance of Reed-Muller codes

under the permutation group Z2k , of course with k ≤ m. The work in the two previous

sections tells us that RM(r,m) is invariant under the permutation group Z2k for k = 1 and

k = 2 for all 0 ≤ r ≤ m.

Let us remember that the permutation group Z2k is generated by τ , where

τ(x) = (x2k , x1, x2, . . . , x2k−1). (5.24)

Here, x = (x1, . . . , x2k) with xi being binary vectors of length n.

We first start with a special case that rules out the possibility for the Reed-Muller codes

to be invariant under Z2k for all k.

Lemma 5.30. RM(1,m) is not Z2m-invariant when m ≥ 3.

Proof. We will use the construction that we have of Zm
2 as

Zm−1
2 0 ∪ Zm−1

2 1,

which means that if 1, w1, w2, . . . , wm−1 denote the basic generators of RM(1,m− 1), then

we have

vi = (wi, wi), i = 1, 2, . . . ,m− 1

and

vm = (02m−1 , 12m−1).

Now, if we apply the permutation τ = (1, 2, . . . , 2m) to vm, we get

τ(vm) = (1, 02m−1−1, 0, 12m−1−1).

Now, suppose τ(vm) ∈ RM(1,m). Then this would be true if we were to restrict ourselves
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to the left-half of the codes. But each codeword in the left-hand half of RM(1, m) with

m ≥ 3 has even weight while the left hand half of τ(vm) has weight 1, which gives us the

contradiction we need.

In order to get a result about Z2k -invariance of RM(r,m), we will need to impose some

restrictions on k, r, and m. To do this we will first start with the basic generators of

RM(r,m) and we will use similar techniques to the ones we used in the previous section.

Suppose v1, v2, . . . , vm are the basic Boolean generators of RM(r,m). We will have to prove

that τ applied to each generator of RM(r,m) will still be in RM(r,m). Now, suppose k ≤ m.

We will construct Zm
2 inductively as

Zm−k
2 000 . . . 0 ∪ · · · ∪ Zm−k

2 1111 . . . 1,

which means we will have the following forms for vi in terms of the basic Boolean functions

w1, w2, . . . , wm−k of Zm−k
2 :

vi = (wi, wi, . . . , wi), i = 1, 2, . . . , m− k

vm−k+1 = (0, 1, . . . , 0, 1)

vm−k+2 = (0, 0, 1, 1, . . . , 0, 0, 1, 1)

vm−k+3 = (0, 0, 0, 0, 1, 1, 1, 1, . . . , 0, 0, 0, 0, 1, 1, 1, 1)

....

....

vm = (0, 0, . . . , 0, 1, 1, . . . 1)

where each 0 and 1 is a vector of length 2m−k that consists of 0’s and 1’s, respectively. So,

then we have

τ(vi) = vi
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for all i = 1, 2, . . . , m− k.

Now we need to see what happens when i > m− k. It is easy to see that

τ(vm−k+1) = (1, 0, . . . , 1, 0) = 1 + vm−k+1, (5.25)

and

τ(vm−k+2) = (1, 0, 0, 1, 1, . . . , 0, 0, 1) = vm−k+2+τ(vm−k+1) = 1+vm−k+1+vm−k+2. (5.26)

Now let’s look at vm−k+3. It is easy to see that

τ(vm−k+3) + vm−k+3 = (1, 0, 0, 0, 1, 0, 0, 0, 1 . . . , 0, 0, 0)

= τ(vm−k+1 ∗ vm−k+2)

= τ(vm−k+1) ∗ τ(vm−k+2)

= (1 + vm−k+1) ∗ (1 + vm−k+1 + vm−k+2)

= 1 + vm−k+1 + vm−k+2 + vm−k+1vm−k+2.

This means that

τ(m− k + 3) = 1 + vm−k+1 + vm−k+2 + vm−k+1vm−k+2 + vm−k+3. (5.27)

To see the general picture we look at τ(vm−k+i) inductively, and we see that for i ≥ 3, we

have

vm−k+i + τ(vm−k+i) = ((1, 0, 0, . . . 0), (1, 0, 0, . . . , 0), . . . , (1, 0, 0, . . . , 0)) (5.28)

where each (1, 0, 0, . . . , 0) is of length 2i and hence can easily be seen to be

τ(vm−k+1 ∗ vm−k+2 ∗ · · · ∗ vm−k+i−1).
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So we see that

τ(vm−k+i) = vm−k+i + τ(vm−k+1 ∗ vm−k+2 ∗ · · · ∗ vm−k+i−1), i ≥ 3. (5.29)

However, by induction on i, we can conclude the following lemma:

Lemma 5.31. τ(vm−k+i) is a Boolean function of vm−k+1, . . . , vm−k+i of degree i− 1.

This of course puts a restriction on k in terms of r because the codewords in RM(r,m)

are Boolean functions of 1, v1, . . . , vm of degree at most r, and Lemma 5.31 tells us that

τ(vm) is a Boolean function of vm−k+1, . . . , vm of degree k − 1. As an example if we look

at RM(2, 4), with 1, v1, v2, v3, v4 its basic Boolean generators, and if τ is the generator

permutation of the permutation group Z8, we see that τ(v1v4) is not in RM(2, 4). In fact,

we have the following theorem that will basically tell us that invariance under Z2 and Z4

is, in a sense, the best we can expect.

Theorem 5.32. Suppose 3 ≤ k ≤ m is an integer. Then RM(r,m) is invariant under the

permutation group Z2k if and only if r = 0, r = m, or r = m− 1.

Proof. Recall that RM(0,m) = {02m , 12m} and RM(m,m) = F2m

2 which are both invariant

under any permutation. Note also that from [20], we know that RM(m − 1,m) consists

of all binary vectors of length 2m that have even weight, and since weights are preserved

under any permutation, RM(m− 1,m) will also be invariant under any permutation.

Now suppose that r = 1 and let τ be the generator of the permutation group Z2k and let

v1, v2, . . . , vm be the basic generators of the Reed-Muller code. Then, since by Lemma 5.31,

τ(vm) is a Boolean function of vm−k+1, vm−k+2, . . . , vm of degree k − 1 and since k ≥ 3,

we see that τ(vm) is a Boolean function of degree k − 1 ≥ 2, which means that by the

construction of the Reed-Muller codes, τ(vm) is not in RM(1, m).

Now let 2 ≤ r < m− 1 and let k < m. Then, let’s look at vmvi1vi2 · · · vir−s−1v1 · · · vs ∈
RM(r,m), where 1 ≤ s ≤ m−k and i1, i2, . . . ir−s−1 are distinct numbers that are in {m−k+

1, . . . , m−1}. Then, by (5.29) and by Lemma 5.31, we see that τ(vmvi1vi2 · · · vir−s−1v1 · · · vs)

is a Boolean function of v1, . . . , vs, vm−k+1, . . . , vm of order k− 1+ s. Now, we want to take
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the maximum possible s such that s ≤ r − 1 and s ≤ m− k. We have to look at two cases

then.

Suppose that m− k ≥ r − 1. Then, take s = r − 1, which means that

τ(vmv1 · · · vr−1)

is a Boolean function of v1, . . . , vr−1, vm−k+1, . . . , vm of degree k − 1 + r − 1, which means

that τ(vmv1 · · · vr−1) ∈ RM(r,m) if and only if k − 1 + r − 1 ≤ r, which means k ≤ 2.

Now, suppose that m− k ≤ r − 2. Then, we will take s = m− k, which means that, in

this case, we will have

τ(vmvi1vi2 · · · vir−s−1v1 · · · vs) = τ(vmvi1vi2 · · · vir−m+k−1
v1 · · · vm−k)

as a Boolean function of v1, v2, . . . , vm−k, vm−k+1, . . . , vm of degree k−1+m−k = m−1 > r,

which means RM(r,m) is not invariant under Z2k in this case.

Remark 5.33. As we see in Theorem 5.32, we know that RM(r,m) is not usually invariant

under the permutation group Z2k except in special cases like k = 1, k = 2 or r = 0, r =

m,m− 1. This means that the discussion about the permutation invariance of Reed-Muller

codes under the permutations in Section 5.3 is in a sense complete.

5.6 Linear Codes over F2+uF2+· · ·+u2k−1F2 and Z2k-invariance

We will finish this chapter by working out analogous results to Theorem 5.7 and Theorem

5.12. In fact we will be generalizing those results. To this extent, we will first define linear

codes over the ring Sk = F2+uF2+ · · ·+u2k−1F2, which is constructed just like the previous

cases of k = 1 and k = 2, where we have u2k
= 0 here. Notice that we have

Sk ' F2[X]/(X2k
). (5.30)

Note that Sk is a finite chain ideal ring with all its ideals defined as {Ij = ujSk|j =

0, 1, 2, . . . , 2k} where u2k
S2k = 0, the zero ideal. A linear code C over the ring Sk of length
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n is defined in the usual way, that is, C is an Sk-submodule of Sn
k .

Since the ring Sk is a finite chain ideal ring, we can talk about the type of the code C.

So, every linear code C is permutational equivalent to a code with type

(22k
)r1(22k−1)r2 . . . (2)r

2k

with rj ’s being non-negative integers. This means that the generating matrix of C will have

the following form:

G =




Ir1 A1 . . . Am

0 uIr2 uB1 . . uBm−1

. . . . . .

. . . . . .

. . . . . .

0 . . 0 um−1Irm um−1D




where m = 2k and Ai, Bj and so on and D are matrices over Sk. Note that in this case we

have

|C| = 2r12k+r2(2k−1)+···+r
2k . (5.31)

Next, we will define a Gray map φk : Sn
k → F2kn

2 .

Definition 5.34. Let

a = a0 + ua1 + · · ·+ u2k−1a2k−1 ∈ Sn
k

be given with ai ∈ Fn
2 for each i = 0, 1, . . . , 2k − 1. Write a in the following way:

a = a0 + ua1 + · · ·+ u2k−1a2k−1

= (a0 + u2k−1
a2k−1) + u(a1 + u2k−1

a2k−1+1) + · · ·+ u2k−1−1(a2k−1−1 + u2k−1
a2k−1).
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Then we define φk(a) as follows:

φk(a) =
(
φk−1(A0(a)) + φk−1(A1(a)), φk−1(A1(a))

)
(5.32)

where

A0(a) = a0 + ua1 + · · ·+ u2k−1−1a2k−1−1 (5.33)

and

A1(a) = a2k−1 + ua2k−1+1 + · · ·+ u2k−1−1a2k−1. (5.34)

Remark 5.35. Note that this definition is indeed an extension of the Gray maps for S1 =

F2 + uF2 and S2 = F2 + uF2 + u2F2 + u3F2 because φ1 = φ that was defined in (5.5) for S1

and φ2 = ψ, which was defined for S2 in (5.15).

Before stating and proving the main result of this section, which is an analogous result

to those obtained in Section 5.2, we need to understand the map φk better.

We introduce the notation Bk
i by letting

φk(a0 + ua1 + · · ·+ u2k−1a2k−1) =
(
Bk

0 (a0, . . . , a2k−1), B
k
1 (a0, . . . , a2k−1), . . . , B

k
2k−1(a0, . . . , a2k−1)

)
(5.35)

where each Bk
i (a0, . . . , a2k−1) is a {0, 1}-linear combination of the vectors a0, a1, . . . , a2k−1

and it is given inductively as

Bk
i (a0, . . . , a2k−1) = Bk−1

i (a0, . . . , a2k−1−1) + Bk−1
i (a2k−1 , . . . , a2k−1) (5.36)

for all i < 2k−1, and

Bk
i (a0, . . . , a2k−1) = Bk−1

i−2k−1(a2k−1 , . . . , a2k−1) (5.37)

for all i ≥ 2k−1.

Using (5.35)–(5.37) and induction together with Pascal’s identity one can prove that

exactly
(
k
i

)
of the Bk

j ’s have 2k−i terms in their linear combinations. Our first observation
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will be the following quick lemma:

Lemma 5.36.

Bk
0 (a0, . . . , a2k−1) = a0 + a1 + · · ·+ a2k−1

and

Bk
2k−1(a0, a1, . . . , a2k−1) = a2k−1

for all k.

Proof. This follows easily from the fact that these statements are true for k = 1 and k = 2

and by induction, using the identities (5.35)–(5.37), which basically is the construction of

φk.

A main tool in understanding φk will be the following lemma:

Lemma 5.37. For a ∈ Sn
k and τ the generator of the permutation group Z2k , which basically

is the cyclic shift of the n-vectors, we have the following:

φk

(
(1 + u)a

)
= τ

(
φk(a)

)
.

Proof. We will use induction. This statement is certainly true for k = 1 and k = 2. Suppose

it is true for k − 1. We first note that

(1 + u)a = a0 + u(a0 + a1) + · · ·+ u2k−2(a2k−3 + a2k−2) + u2k−1(a2k−2 + a2k−1)

=
(

a0 + u(a0 + a1) + · · ·+ u2k−1−1(a2k−1−2 + a2k−1−1)
)

+ u2k−1

(
a2k−1−1 + a2k−1 + u(a2k−1 + a2k−1+1) + · · ·+ u2k−1−1(a2k−2 + a2k−1)

)
.

But this means that

A0

(
(1 + u)a

)
= (1 + u)A0(a) (5.38)

and

A1

(
(1 + u)a

)
= a2k−1−1 + (1 + u)A1(a). (5.39)
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Now suppose that

φk−1(A0(a)) = (x0, x1, . . . , x2k−1−1)

and

φk−1(A1(a)) = (y0, y1, . . . , y2k−1−1)

so that we would have

φk(a) = (x0 + y0, . . . , x2k−1−1 + y2k−1−1, y0, y1, . . . , y2k−1−1). (5.40)

By using (5.38) and (5.39), we see that

φk((1 + u)a) =
(

φk−1((1 + u)A0(a)) + φk−1(a2k−1−1) + φk−1((1 + u)A1(a)),

φk−1(a2k−1−1) + φk−1((1 + u)A1(a))
)

. (5.41)

We now use induction hypothesis to note that

φk−1((1 + u)A0(a)) = (x2k−1−1, x0, . . . , x2k−1−2) (5.42)

and

φk−1((1 + u)A1(a)) = (y2k−1−1, y0, . . . , y2k−1−2) (5.43)

and we also note that

φk−1(a2k−1−1) = (a2k−1−1, 0, . . . , 0) = (x2k−1−1, 0, 0, . . . , 0) (5.44)

because by Lemma 5.36, x2k−1−1 = a2k−1−1. Now, combining (5.40)–(5.44) we get

φk

(
(1 + u)a

)
= (x2k−1−1 + y2k−1−1 + x2k−1−1, x0 + y0, . . . , x2k−1−2 + y2k−1−2,

x2k−1−1 + y2k−1−1, y0, y1, . . . , y2k−1−2)

= (y2k−1−1, x0 + y0, . . . , x2k−1−1 + y2k−1−1, y0, . . . , y2k−1−2)

= τ
(
φk(a))

)
.
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Remark 5.38. An easy induction shows that φk is an F2-linear and injective map from Sn
k

to F2kn
2 .

We are finally ready to state and prove the analogous result to the ones that we obtained

in Section 5.2:

Theorem 5.39. Suppose that C is a linear binary code of length 2kn. Then C is invariant

under the permutation group Z2k if and only if C is the image under φk of some linear code

over Sk of length n.

Proof. Suppose that C is a binary linear code of length 2kn and suppose it is the Gray image

under φk of a linear code over Sk of length n, say C = φk(D). Let c = (x0, . . . , x2k−1) be

any codeword in C, and suppose that c = φk(a) for some a ∈ D. Then since D is linear

over Sk, we see that (1 + u)a ∈ D, and so by the hypothesis, we see that φk

(
(1 + u)a

) ∈ C,

but then by Lemma 5.37, we see that

τ(c) = (x2k−1, x0, . . . , x2k−2) = φk

(
(1 + u)a

) ∈ C

for all c ∈ C. This means that C is invariant under τ , which means that it is invariant

under τ i for all i = 0, 1, . . . , 2k − 1, which means that C is invariant under the action of the

permutation group Z2k .

Conversely, suppose that C is a binary linear code of length 2kn that is invariant under

the action of the permutation group Z2k . Since φk is one-to-one and F2-linear, we can define

φ−1
k : C → Sn

k . Let D = φ−1
k (C). Since φk is additive, we see that D is an additive subgroup

of Sn
k . All we need to prove now is that D is an Sk-module. For this, all we need to show is

that D is invariant under the multiplication from the left by powers of u. We observe, by

repeated use of Lemma 5.37 and induction, that

φk

(
(1 + u)ia

)
= τ i

(
φk(a)

)
(5.45)

for all a ∈ Sn
k and for all i = 0, 1, . . . , 2k−1. So, suppose that c ∈ C and let d = φ−1

k (c) ∈ D.
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This means that φk(d) = c, and, by (5.45) as well as by the hypothesis, we know that

φk

(
(1 + u)id

)
= τ i(c) ∈ C,

which means that by the definition of D that

(1 + u)id ∈ D, i = 0, 1, . . . , 2k − 1.

This means that D is invariant under multiplication from the left by (1 + u)i for i =

0, 1, . . . , 2k − 1. But then, the fact that D is additive and an easy induction leads us to

conclude that D is invariant under multiplication from the left by ui, i = 0, 1, . . . , 2k − 1

and so D is an Sk-module, which means that D is linear over Sk.

Remark 5.40. Note that if we make the transformation v = 1 + u in Sk we will get an

equivalent ring

Tk = F2 + vF2 + . . . v2k−1F2 ' F2[X]/(X2k − 1).

In this case, the Gray map that we defined above simplifies quite considerably because one

can easily show in that case that

φk(a0 + va1 + · · ·+ v2k−1a2k−1) = (a0, a1, . . . , a2k−1). (5.46)

Of course in that case, Theorem 5.39 becomes quite trivial to prove. Unfortunately I realized

this simplification much later than I considered all the cases above.
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