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ABSTRACT 

MEMS TECHNOLOGY AND 

DEVICES FOR A MICRO FLUID 

DOSING SYSTEM 

Thesis by 

Ellis Meng 

Doctor of Philosophy in Electrical Engineering 

California Institute of Technology 

 

Microelectromechanical systems (MEMS) technology has matured to the point where practical 

biological and chemical applications are possible.  One particularly active research area is in the 

development of lab-on-a-chip type systems.  In order to create successful lab-on-a-chip and 

other microfluidic systems, it is necessary to have the capability of controlling and directing 

fluid flow.  Such functionality can be found on the front end of a microfluidic system and is 

known as a fluid delivery or dosing subsystem.  For a MEMS micro fluid dosing system to be 

realized, several components are necessary.  The essential components include a fluid actuator, 

a fluidic control device, and micro plumbing.  A prototype fluid delivery system is 

demonstrated here using a micropump as the fluid actuator, a thermal flow sensor as the 

fluidic control device, and micromachined couplers as plumbing.  The technology to build 

these components has been developed and each of these components have been fabricated 

and tested.  A prototype constructed of discrete components has also been demonstrated.  A 

truly integrated, channel-based fluid dosing system can be achieved through device scaling. 
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CHAPTER  1  

INTRODUCTION 

The invention of the transistor in 1947 by John Bardeen and Walter Brattain of Bell Labs 

marked the beginning of a revolution in electrical engineering that eventually led to the birth of 

microelectromechanical systems (MEMS).  Soon after this pivotal discovery, a research ensued 

at a frenzied pace in the development of microelectronics resulting in the introduction of 

commercial silicon transistors in 1954 and the invention of the first integrated circuit (IC) by 

Jack Kilby of Texas Instruments in 1958.  One of these early pioneers, Gordon Moore, made 

an astute observation in 1965 that the number of components per IC would double every 2 

years.  Moore’s prediction, now popularly known as Moore’s Law, is not completely correct 

and actually follows an 18-month doubling trend.  Even so, this phenomenal growth rate 

means that we are now able to enjoy personal computers that run on the computing power of 

tens of millions of transistors in centimeter scale CPU packages [1].  The impact these 

developments have had on society and the way we live are pervasive and profound.  In the 
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realm of engineering, the boom in microelectronic research has spun off countless new 

technologies that are continually changing the way in which we engineer solutions to problems.  

MEMS was inspired by the technologies used to create microelectronic devices.  The 

graduation from micro-electronic to electromechanical devices is a natural progression in the 

technological evolution of the IC world. 

1.1 THE BEGINNING OF MEMS 

Perhaps one of the most notable historical events in the development of MEMS was when 

Richard Feynman challenged the scientific community to explore the realm of miniaturization.  

During his talk to the American Physical Society in 1959 dubbed “There’s Plenty of Room at 

the Bottom,” Feynman pointed out the void in research done on “manipulating and 

controlling things on a small scale.”  He explained to scientists that this field “might tell us 

much of great interest about the strange phenomena that occur in complex situations…a lot of 

new things that would happen that represent completely new opportunities for design” and 

that “it would have an enormous number of technical applications.”  In order to properly 

explore this field and be able to construct small machines, it would be necessary to design a 

new set of infinitesimal machines that not only require scaling but also redesign.  Ironically, 

modern equipment used to construct semiconductor and MEMS devices is by no means 

infinitesimal but there is hope in self-assembly and nanotechnology that these tiny machines 

can be realized. 

To further entice scientists to think about these issues, Feynman ended his talk with two $1000 

competitions to the first person to print the information on the page of a book in an area 

1/25,000 smaller in linear scale and to make a working electric motor measuring no more than 

1/64 in3.  Clearly he turned some heads as two men stepped forth to claim these prizes: the 
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motor was completed in 1960 by William McLellan [2], an engineer, albeit by cleverly using 

conventional techniques and the book was reproduced using electron beam lithography by 

Thomas Newman, a Stanford University graduate student, in 1985 [3]. 

Feynman’s vision continues to be a source of inspiration to the MEMS community in addition 

to the relatively new nanotechnology field.  One might even go so far as to say that it 

represents the starting point for both fields.  As MEMS technology has reached maturity, it is 

expected that in the next 20 years, there will be a wealth of development in the MEMS 

applications arena.  MEMS has clearly become an international technology as evidenced by the 

various terms used to describe it in the different regions of the world (“MEMS” or 

“micromachining” in the US, “microsystems” in Europe and “micromachines” in Japan).  

Table 1.1 lists several defining moments and important developments in the history of MEMS. 

Table 1.1 A Brief History of MEMS 

 

1950’s 1960’s 1970’s 1980’s 1990’s 
“There’s Plenty of 
Room at the Bottom” 
[2] 

Silicon Piezoresistive 
Sensors (Honeywell) 
[4] 

Silicon Pressure 
Transducers 
(Honeywell) 

“Silicon as a 
Mechanical Material” 
[5] 

Commercial 
Accelerometer 
(Analog Devices) [6] 

Integrated Circuits Resonant Gate 
Transistor 
(Westinghouse Labs) 
[7, 8] 

Integrated Gas 
Chromatograph [9] 

Polysilicon Surface 
Micromachining 

Digital Mirror Display 
(TI) 

Metal Sacrificial 
Process 

HNA & EDP Etching Ink Jet Nozzles (IBM) 
[10] 

Polysilicon 
Micromotors [11, 12] 

Optical Network 
Switch (Lucent) 

  KOH Etching Silicon Wafer Bonding 
[13] 

Silicon Gyroscope 
(Draper Labs) 

   LIGA [14] RF MEMS 

    Optical MEMS 

    Bio MEMS 

    TMAH Etching 

    Micro EDM [15] 

    Deep Reactive Ion 
Etching (DRIE) 
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1.1.1 MODERN DAY MEMS AND FUTURE PROSPECTS 

While interest in MEMS in the early days was lacking, today we are already seeing the impact 

of MEMS on the society in which we live.  MEMS products have a growing commercial 

presence.  Undoubtedly, the pressure sensor and accelerometers in our cars; the ink jet heads 

in our printers; and the digital mirror displays in the digital light projectors (DLPs) in our 

movie theaters are the most popular and prevalent products to date.  With the increasing 

interest in national security, microfluidic systems are being explored as a means to warn of 

dangerous biological agents.  They are also being heavily explored in their ability to aid in 

chemical and biological assays.  MEMS are miniaturized, less expensive versions of their macro 

world analogs that perform as well as or better.  This technology has matured to the point 

where the transition from pure research to commercial products can be made. 

Many have forecasted a continually growing and extremely profitable MEMS market with the 

primary areas of interest being in data storage, displays, automotive applications, 

telecommunications, environmental monitoring, and medical/biochemical applications.  

According to the MEMS Industry Group, there is an estimate 1.6 MEMS devices per person 

today in the US.  By 2004, this number is expected to increase to 5.  Also, in 2000, the MEMS 

industry was estimated to be worth $2-5 billion and is expected to grow to $8-15 billion by 

2004 [16].  However, even with such positive market indicators, the success of MEMS is still 

hindered by several factors.  Thus far, it is typical that an inordinate amount of time, on the 

order of several years, is required to take MEMS inventions from research to the market.  

Another confounding problem is that most MEMS work is still being done in large part by 

universities and non-profit research facilities.  Packaging devices is an ongoing effort and is by 

no means a perfected technique.  Many are working hard to resolve these issues in the near 

future. 
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1.2 MEMS TECHNOLOGY 

The materials and techniques used in MEMS are continually evolving.  MEMS technology is 

still based largely on borrowed techniques from the semiconductor industry.  Some processes 

are essentially identical to their semiconductor industry analogs; however, other processes have 

been adapted to suit the specific needs.  The underlying focus of a semiconductor process vs. a 

MEMS process can be drastically different to the extent that frequently it is not possible or 

very difficult to integrate both electronics and MEMS on the same piece of real estate.  

Microfabricated semiconductor devices are contained mainly within the top few microns of 

the substrate material.  MEMS devices may require the entire substrate thickness, utilize both 

sides of the substrate, or even require bonding multiple substrates together.  Over the years, 

the spectrum of processes considered to be part of the MEMS toolbox has expanded greatly.  

Traditional techniques are still very popular but are now accompanied by a host of newer ones. 

1.2.1 FUNDAMENTAL MEMS TECHNIQUES 

MEMS has its roots in silicon-based devices from semiconductor fabrication.  In addition to 

silicon, alternative substrates such as metal, glass/quartz, ceramics, plastic, and silicone rubber 

are gaining in popularity.  Driving factors for this change are the desire to move towards 

producing devices that are biocompatible, use cheaper materials, and are easy to fabricate from 

both the process standpoint and when considering the required infrastructure to do so.  Even 

so, most devices are still fabricated in silicon because of its well-known electrical and 

mechanical properties [5].  Silicon-based devices are also attractive in that there is a possibility 

of integrating electronics next to MEMS devices on the same substrate. 

The MEMS toolbox consists of a set of processes that based in silicon microfabrication 

techniques.  The key process steps are lithography, bulk micromachining, surface 
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micromachining, LIGA, and wafer bonding.  The majority of devices are still fabricated using 

some combination of these techniques. 

1.2.1.1 LITHOGRAPHY 

Lithography is a method by which pattern transfer can be achieved from a master pattern to 

the substrate.  The fundamental idea is not a new concept and has in fact been employed by 

artisans since the late 1700’s [17].  Lithography in some form is typically the first step in most 

processes and, as a result, is probably the most important.  Photolithography is the most 

common technology used but in order to keep up with the demanding resolution needs of the 

semiconductor industry, as alluded to by Moore’s Law, technologies such as X-ray lithography, 

electron beam lithography, and ion beam lithography have been developed [18].  The basic 

steps for photolithography involving positive and negative resists are shown in Figure 1-1. 

Figure 1-1 Photolithography Process for Negative and Positive Resists 

1.2.1.2 BULK MICROMACHINING 

Bulk micromachining allows the production of structures carved out of the substrate.  

Typically, the substrate is silicon, which can be machined using a variety of physical and 
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chemical etching techniques.  Some of these techniques allow etching through the substrate, to 

fully utilize the entire substrate thickness.  In addition, the crystalline nature of silicon can be 

particularly advantageous when using certain wet etches.  Both isotropic and anisotropic, or 

orientation-dependent, wet etches are readily available (Figure 1-2 & Figure 1-3).  Traditional 

wet etch recipes include HNA (a hydrofluoric, nitric, and acetic acid mix), potassium 

hydroxide (KOH), ethylenediamine-pyrocatechol-water (EDP), and 

tetramethylammoniumhydroxide (TMAH) and are still a popular means of carving out 

channels or creating membranes in silicon.  Dry etching techniques such as plasma and gas 

phase etching (XeF2 and BrF3) are also extensively used.  Newer techniques, such as deep 

reactive ion etching (DRIE) [19-21], allow structures with complex in-plane geometry and high 

aspect ratios (> 20:1) to be fabricated (Figure 1-4).  Even so, bulk micromachining is not 

suitable to create all desired geometries.  Devices requiring complex, multi-layer or multi-depth 

structures are frequently difficult or not possible by bulk micromachining alone. 

Figure 1-2 Isotropic Etching of Silicon 
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Figure 1-3 Anisotropic Wet Etching of Silicon 

Figure 1-4 Anisotropic Dry Etching of Silicon via DRIE Using the Bosch Process 

1.2.1.3 SURFACE MICROMACHINING 

To create complex planar structures, it is necessary to use surface micromachining.  Here, 

alternating layers of structural and sacrificial materials are deposited and selectively removed to 

achieve the desired results (Figure 1-5).  As opposed to bulk micromachining, the substrate 

may or may not be structurally significant in the final device and is often used only as a 

mechanical support on which to build structural layers.  Virtually any material that can be 

deposited can be used as a structural layer.  An assortment of sacrificial layers is available 
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including phosphosilicate glass (PSG), polysilicon, polymers (photoresist and polyimide), and 

metals. 

Figure 1-5 Basic Surface Micromachining Process 

It is possible to build freestanding, released, and interlocking structures of any desired planar 

geometry with surface micromachining.  Surface micromachining examples include 

electrostatic micromotors [11, 12], out-of-plane hinged structures [22-24], and springs [25]. 

However, only thin layers (≤ µm) of both the structural and sacrificial materials can be 

deposited due to stress and other mechanical problems.  Thus, the overall thickness of devices 

created by surface micromachining is relatively thin.  In addition, sometimes devices are 

plagued by stiction. 

1.2.1.4 LIGA 

LIGA was initially developed in 1982 for the fabrication of micron-sized separation nozzles 

for nuclear power production applications in Germany [14].  The name is actually derived 

from the German acronym for “X-ray lithographie galvanoformung abformung, ” which 

means x-ray lithography, electrodeposition, and molding. 
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Figure 1-6 shows a typical LIGA process.  Thick x-ray resist is exposed and used as a mold for 

electroplating.  This newly formed metal mold can then be used to injection mold plastic parts 

or more plastic molds.  High aspect ratio structures ranging from microns to centimeters in 

height with high resolution (< 0.2 µm) can be formed in this manner.  An assortment of 

devices such as accelerometers [26], optical couplings [27], and microfluidic devices [28] have 

been fabricated using LIGA.  While the capability of producing three-dimensional structures 

using LIGA is attractive, LIGA is a costly process due to the synchrotron source required for 

x-ray exposure and x-ray masks.  Thus, less expensive means of producing the same results are 

being investigated. 

Figure 1-6 Typical LIGA Process 

1.2.1.5 WAFER BONDING 

Wafer bonding is a convenient means of permanently joining wafers together and 

circumventing the wafer thickness limitation on devices.  It also gives a means to create multi-

level devices by combining wafers processed using bulk or surface micromachining or even 

adding electronics.  Other applications of wafer bonding are device packaging and hermetic 
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sealing.  The three most common forms of bonding are fusion bonding (silicon-to-silicon) [19, 

29, 30], anodic bonding (silicon-to-glass) [31-33], and eutectic bonding (silicon-to-gold) [34].  

Historically, glass-to-metal bonding has been investigated as early as 1969 [35].  The high 

pressure, temperature, or voltage requirements of certain bonding processes may not be 

compatible with all devices. 

1.2.2 NON-TRADITIONAL MEMS TECHNIQUES 

Adding to the wealth of variety in the micromachinist’s processing toolbox are a number of 

non-conventional micromachining techniques that have been developed over the years.  The 

desire to create truly three-dimensional structures has lead to the development of micro EDM 

[15, 36-38], laser micromachining [39, 40], and 3D stereolithography [41, 42].  With the ever-

increasing demand for biocompatible devices, plastics have becoming more popular as are 

techniques to process them are more readily available.  Injection molding [43, 44] and 

compression molding/hot embossing [45, 46] can be used to fabricate inexpensive plastic parts 

quickly and in high volume.  Another inexpensive and fast process is the “soft lithography” 

[47, 48] of compliant silicone rubber structures.  This technique has become particularly 

popular in the microfluidics field.  As always, man looks back to nature for inspiration; self 

assembly [49] hopes to bring micromachining to a new level by taking advantage of naturally 

occurring biological and chemical processes to assemble useful devices and structures. 

1.3 MEMS FOR MICROFLUIDICS APPLICATIONS 

Much of the attention on MEMS in recent times has been devoted to the development of 

microfluidics.  Biosensors and other tools for chemistry and biology are among the many 

exciting applications of microfluidics.  These efforts are frequently referred to as lab-on-a-chip 

or micro total analysis systems (µTAS). 



 

 

12
The need for technology to produce devices capable of high throughput, low volume 

consumption, and producing accurate results already exists in genome sequencing and drug 

analysis.  While these reasons are compelling, miniaturization of systems can also provide 

impetus for continued progress in microfluidics.  Many laboratory techniques common to 

chemistry and biological require time consuming repetition of many tasks.  With microfluidic 

technology, it is possible not only to miniaturize one specific process, but also to combine a 

multitude of functionality into one chip level system.  By seamlessly integrating tasks such as 

sample preparation, sample reaction, and product detection, it is possible to speed up 

processes dramatically.  In addition to automating processes, microfluidics offers the 

possibility of the conduction of massively parallel processes. 

Lab-on-a-chip systems may consist of a number of components in a variety of subsystems 

(Figure 1-7).  In general, inputs are converted to the desired outputs through a network of 

fluidic channels and may encounter a combination of sample preparation stages, reaction 

chambers, or detectors during this process.  While each specific application may require 

different arrangements of the subsystems, one common element in all of these systems is a 

fluid delivery and transport mechanism.  The ability to control, monitor, and direct flow in a 

precise and meaningful manner is crucial in the development of practical microfluidic systems 

for biological and chemical processes. 

Many have demonstrated individual devices that are required in a fluid delivery system but 

complete systems are lacking.  In an effort to realize lab-on-a-chip systems, a micro fluid 

dosing system has been developed.  The essential components are a fluid actuator, a fluidic 

control device, and micro plumbing.  MEMS components that were chosen for the 

development of this system are a micro diaphragm pump (Chapter 2), microfluidic couplers 
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(Chapter 3), and a micro thermal flow sensing array (Chapter 4).  Each piece of the system has 

been designed, fabricated, and tested prior to implementation in a fluid dosing system (Chapter 

5). 

Figure 1-7 Overview of a Typical Lab-on-a-Chip System 

Figure 1-8 Overview of Components in a Fluid Delivery System
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CHAPTER  2  

A MICRO DIAPHRAGM PUMP 

Inasmuch as pumping is still the primary means of fluid transport for microfluidic systems 

today, micropumps are perhaps the most extensively researched topic in microfluidics.  With 

the drive to apply microfluidic solutions to research in genomics, proteomics, and drug 

discovery, micropump research is focused on producing a practical solution for providing the 

controlled and accurate transport of fluids.  Various actuation and pumping methods have 

been explored as a solution to moving fluids on the micro scale.  Even so, the controlled 

transport of fluids is critical but not yet practical by micropumps.  Also, a fully integrated 

solution for microfluidics still does not exist; methods presented thus far still have inherent 

limitations.  The two generations of pumps presented here are primarily targeted at moving 

fluids at relatively high flow rates. 
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2.1 MICROPUMPING FUNDAMENTALS 

Macro world devices directly inspire most of the micropumps that exist today.  In fact, many 

micropumps are modeled exactly after their macroscopic designs.  However, micropumps are 

uniquely able to take advantage of transport effects that provide meaningful forces only at the 

micro-scale.  Electrokinetic [1], acoustic streaming [2], and magnetohydrodynamic [3, 4] effects 

have inspired a new breed of non-mechanical pumping schemes.  In general, pumps can be 

classified as either mechanical or non-mechanical based on the method by which kinetic 

energy is obtained to drive fluid flow. 

2.1.1 BASIC PUMP OUTPUT PARAMETERS 

A designer must consider several parameters to optimize micropump performance.  These 

include maximum flow rate (Qmax ), maximum back pressure ( pmax ), pump power (Ppump ), and 

pump efficiency (η ). 

The maximum flow rate is obtained when the pump is working at zero back pressure.  Back 

pressure opposes the work done by the pump and at the maximum back pressure, the flow 

rate of the pump becomes zero.  Pump head (h ), or net head, can be derived from the steady 

flow energy equation assuming incompressible flow and neglecting viscous work and heat 

transfer.  It is the work done on a unit weight of liquid passing from the inlet to the outlet [5]: 

 
2 2

2 2out in

p u p uh z z
g gγ γ

   
= + + − + +   
   
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This represents an increase in Bernoulli head from the inlet to the outlet.  Usually, outu  and inu  

are about the same and out inz z−  is negligible, so the maximum pump head becomes: 

 out in
max

p p ph
γ γ
− ∆

≈ =  (2.2) 

Power delivered to the fluid by the pump is the product of the specific weight, discharge, and 

net head change.  It can be expressed as [6]: 

 pump max max max maxP p Q gQ hρ= =  (2.3) 

If the power required to drive the pump actuator is actuatorP , pump efficiency is expressed as: 

 
P
P

η = pump

actuator

 (2.4) 

In an ideal pump, losses would not exist and pumpP  and actuatorP  would be identical.  

Realistically, efficiency is governed by fluid leakage losses (volumetric efficiency), frictional 

losses (mechanical efficiency), and losses due to imperfect pump construction (hydraulic 

efficiency).  Traditionally, total efficiency is broken up into these three parts [5]: 
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 v m hη η η η≡  (2.5) 

 

where:
volumetric efficiency
mechanical efficiency
hydraulic efficiency.
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2.1.2 MECHANICAL PUMPING SCHEMES 

Mechanical pumps can be further classified into displacement vs. dynamic pumps, the 

distinguishing feature being how mechanical energy is applied to fluid.  Displacement systems 

involve the periodic addition of mechanical energy to modulate the pressure experienced in the 

pumping chamber.  Dynamic systems involve the constant addition of mechanical energy to 

increase fluid velocities.  No closed volumes are involved.  The focus here will be on 

mechanical displacement pumps and their actuation methods.  Mechanical pumps are 

particularly suited for delivering fluid at flow rates of about 10 µl/min to several milliliters per 

minute [7]. 

2.1.2.1 ACTUATION METHODS 

Regardless of type, mechanical pumps all required actuators to generate mechanical energy to 

initiate and sustain fluid flow.  The choice of whether to use an integrated versus an external 

actuator depends on the specific requirements of the application at hand.  To achieve large 

stroke for higher flow rates, the large force and displacement of external actuators is desirable.  

However, using an external actuator means sacrificing size.  Ideally, actuators are easy to 

construct and can provide large force, have large stroke, have fast response time, run under 

low power consumption, and have low thermal losses.  Various integrated actuation methods 

have been studied but tradeoffs associated with the various schemes may not be acceptable 
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based on pump design specifications.  Currently, a micro actuator that possesses all of the ideal 

characteristics mentioned does not exist.  Several popular micro actuation methods are 

discussed here. 

2.1.2.1.1 PNEUMATIC 

Pneumatic actuation is certainly the easiest to design for in a micropump and interfacing 

requires very little device real estate.  Micro-pneumatic sources are not readily available.  Thus, 

such an actuation scheme is not portable, however, new research towards on-chip pressure 

sources may make pneumatic actuation a practical for portable devices in the future.  The 

current state of the art is only able to sustain a short air pulse and is designed to be disposable 

[8].  Typically, bursts of gas used to drive micropumps are obtained from an external pressure 

source that is regulated by off-the-shelf pneumatic on-off valves [9, 10].  Commercial products 

for constructing pneumatic manifolds are readily available leaving only the micro-to-macro 

scale interface to the designer.  Thus, for prototyping needs, pneumatic actuation provides an 

inexpensive and quick means to validate designs. 

2.1.2.1.2 ELECTROSTATIC 

Electrostatic actuation is based on the Coulombic attraction force between oppositely charged 

plates.  By using the parallel plate approximation to Coulomb’s Law, the force generated 

between the plates when a voltage is applied can be expressed as: 
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where:
electrostatic attraction force
energy stored

dielectric constant
electrode area
applied voltage
electrode spacing.

 

The non-linear relationship between the generated force versus the applied voltage and 

generated force versus distance are not ideal.  It is evident that increasing the applied voltage 

will increase the force obtained, however, power consumption will be sacrificed.  Parameters 

that are more practical to consider when designing electrostatic actuators are the electrode area 

and spacing.  Large electrode area may not always be available so to maximize the force 

output, the gap distance should be as small as possible.  A force of about 400 µN is generated 

for the following conditions: 
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It can be seen that small forces and strokes are typical of electrostatic actuators.  Thus, only 

low flow rates are easily achievable using electrostatic actuation.  Such actuators also suffer 

from effects of fringing fields and large voltage requirements.  The benefits are fast response 

time, reliability, and low power consumption. 
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2.1.2.1.3 ELECTROMAGNETIC 

A wire carrying a current in the presence of a magnetic field will experience the Lorentz force, 

which can be describe by: 

 ( )L= ×F I B  (2.7) 

 

L

=
=
=
=

F
I
B

where:
electromagnetic (Lorentz) force
current passing through wire
magnetic field
length of wire.

 

A force on the order of 0.1 mN is generated for the following conditions: 
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While the forces generated are large, electromagnetic actuation requires an external magnetic 

field usually present in the form of an external permanent magnet.  Also, the current 

requirement can result in high power consumption as well as heating issues. 

2.1.2.1.4 PIEZOELECTRIC 

Piezoelectric actuation involves the strain induced by an applied electric field.  High stress and 

fast response times are typical of piezoelectric actuators.  However, fabrication is complex, as 

piezo-materials are not easily processed.  Given the fabrication constraint, frequently, 

piezoelectric actuators are external and not integrated. 
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2.1.2.1.5 THERMOPNEUMATIC 

Thermopneumatic actuation relies on the thermally induced volume change and/or phase 

change of fluids sealed in a cavity with at least one compliant wall.  For liquids, the pressure 

increase is expressed as: 

 VP E T
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where:
pressure change
bulk modulus of elasticity
thermal expansion coefficient
temperature increase

volume change percentage.

 

For simplicity, assume no volume expansion.  Thus, for water, the temperature-dependent 

pressure change can be expressed as 76 psi/°C for the following conditions: 
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Such a large pressure translates to large deflections and forces but suffer from high power 

consumption and slow response time which are characteristic of thermal actuation methods.  

In addition, the requirement for a sealed cavity implies that fabrication will be complicated and 

difficult. 

2.1.2.1.6 BIMETALLIC 

Bimetallic actuation depends on the thermal expansion coefficient differences of materials.  

When dissimilar materials are bonded together and subjected to temperature changes, 
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thermally induced stresses can provide a means of actuation.  However, even though forces 

generated may be large and the implementation can be extremely simple, the deflections 

achieved are small as the thermal expansion coefficients are also small.  The thermal expansion 

coefficients for some popular MEMS materials are given in Table 2.1 [11]. Large deflections 

are only achievable at higher temperatures, which limits the usefulness of such actuators. 

Table 2.1 Thermal Expansion Coefficients of Common MEMS Materials  

Material Thermal Expansion Coefficient (ppm/°K) 

Silicon 2.60 
Polysilicon 2.33 
Silicon Dioxide 0.35 
Silicon Nitride 1.60 
Aluminum 25.00 
Gold 14.20 
Nickel 13.00 
Copper 16.50 
Platinum 8.80 

 

2.1.2.1.7 SHAPE MEMORY EFFECT 

Shape memory actuators involve special alloys that undergo reversible temperature-dependent 

phase transitions.  Alloys start in the martensite phase and transform into the austensite phase 

when heated.  These phase transitions result in mechanical deformations that can be useful for 

actuation.  But, as with all thermal actuators, high power consumption is required and the 

response time is slow.  Also, special alloys such as Au/Cu, In/Ti, and Ni/Ti are required. 

2.1.2.2 DISPLACEMENT PUMPS 

2.1.2.2.1 CHECK-VALVE/DIAPHRAGM/MEMBRANE PUMPS 

Perhaps the most popular pump in both the micro- and macro-scale is the diaphragm pump.  

A simple schematic is shown in Figure 2-1.  The key components include an actuator, flexible 

pump membrane, pump chamber, and two check valves.  In diaphragm pumps, fluidic 
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transport is achieved by alternating the production of under- and over-pressures in the pump 

chamber. This results in a supply mode and a pump mode, respectively.  During these modes, 

pumping occurs only when enough pressure difference is produced to overcome the cracking 

pressure ( critp∆ ) of the rectifying valves.  The pressure generated is a function of the stroke 

volume ( V∆ ) produced by the actuator.  The actuator also has to contend with a dead volume 

( 0V ) present in the pumping chamber.  Diaphragm pump performance is governed by the 

compression ratio (ε ): 

 
0

stroke volume
dead volume

V
V

ε ∆
= =  (2.9) 

The compression ratio for diaphragm pumps is typically small due to small actuator strokes 

and large dead volume.  For liquid pumps, the minimum compression ratio is [12]: 

 liquid critpε κ> ∆  (2.10) 

where κ  is the compressibility of the liquid.  For water, 80.5 10
2m
N

κ −= × , which is small, 

like that of most liquids.  Thus, this condition is easily met if perfect pump priming is assumed.  

However, pump priming is by no means trivial and gas bubbles are frequently trapped in the 

pump chamber.  This relationship is a useful tool in designing self-priming micropumps.  

Given these parameters, successful micro diaphragm pumps are characterized by small critical 

pressures, large stroke volume, and small dead volume.  There are numerous examples of 

micro diaphragm pumps [13-15]. 
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Figure 2-1 Micro Diaphragm Pump Components 

2.1.2.2.2 PERISTALTIC PUMPS 

Peristaltic pumps operate based on the peristaltic motion of sequentially arranged pumping 

chambers (Figure 2-2) [16].  This motion squeezes fluid from one point to another.  Although 

they structurally simplistic compared to diaphragm pumps, which require check valves, reverse 

leakage can be a major problem for peristaltic pumps.  The planar layout of such pumps allow 

for ease of fabrication and assembly but multiple actuators with control electronics are 

required to drive these pumps.  Several MEMS implementations of peristaltic pumps have 

been explored (Figure 2-3) [9, 10, 17].  Large stroke volume and compression ratio are 

strategies for improving peristaltic pumps. 

Figure 2-2 Graphic Depiction of Peristaltic Pumping 
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Figure 2-3 A MEMS Peristaltic Pump [9] 

2.1.2.2.3 VALVELESS PUMPS 

Valveless pumps are similar to diaphragm pumps but do not use check valves to rectify flow.  

Instead, diffusers or nozzles are used.  These elements direct flow such that during the supply 

mode, more fluid enters through the inlet than exits at the outlet and the reverse occurs for the 

pump mode (Figure 2-4) [18, 19]. 

The pressure difference at a diffuser is given by: 

 21
2

p vξρ∆ =  (2.11) 

 

where:
pressure loss coefficient
fluid density
mean velocity at narrowest cross section.v
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Performance of the diffusers is characterized by the ratio between the pressure loss 

coefficients in the negative and positive flow directions: 

 negative

positive

ξ
η

ξ
=  (2.12) 
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High η  is required for good flow directing capability.  As suggested by lack of reverse flow 

blocking elements, valveless pumps are prone to leakage and back flow.  It is important to 

maximize stroke volume and minimize dead volume when designing valveless pumping 

systems. 

Figure 2-4 Valveless Pump Operation 

2.1.2.2.4 ROTARY PUMPS 

Rotary pumps potentially can be use to pump viscous fluids at the micro-scale [20, 21].  

However, the large loads make an integrated actuator impractical.  Also, the complexities 

involved in fabricating high aspect ratio rotating gears makes these types of pumps 

unattractive.  Although these pumps can potentially be self-priming, leakage effects can prove 

difficult to overcome during assembly. 

2.1.2.3 DYNAMIC PUMPS 

Dynamic pumps are further divided into ultrasonic and centrifugal pumps. 

2.1.3 NON-MECHANICAL PUMPING SCHEMES 

Non-mechanical pumps require the conversion of non-mechanical energy to kinetic energy to 

supply the fluid with momentum.  These phenomena are practical only in the micro-scale.  

Thus practical flow rates for non-mechanical pumps start at 10 µl/min and below [7].  Non-

mechanical pumps include electrohydrodynamic (EHD) [22, 23], dielectrophoresis [24], 
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electrokinetic [1, 25], magnetohydrodynamic (MHD) [3, 4], and surface tension driven pumps 

[26-28]. 

2.2 DESIGN AND FABRICATION 

Mechanical pumping is ideal for operation in presence of particulates, multi phase fluids, and 

for its immunity to properties of the flow.  In the micropump realm, mechanical pumps have 

been well studied.  While diaphragm pumps are somewhat complicated to fabricate, they have 

the potential to deliver large amounts of flow.  The limiting factor is typically the actuator.  

Micro actuators are restricted to small strokes so to utilize the flow throughput potential of 

micropumps, external actuators are required.  Here, a diaphragm pump with an external 

actuator is presented.  The design aims are to maximize actuator deflection, and thus stroke 

volume to explore higher flow rates than typically achieved by micropumps (> 1 ml/min). 

This diaphragm pump has gone through two iterations of the design process.  Significant 

improvements were made from one generation to the next as individual components were 

completely redesigned.  Micropumps, by nature, are composed of a significant number of 

components that are difficult to fabricate in a completely integrated manner.  Thus, the 

approach here is to create modular components that can be clamped together to form a pump.  

This prototyping method facilitates pump characterization. 

2.2.1 PARYLENE CHECK VALVES 

Check valves are rectifying fluidic elements and share an equivalent function to diodes do in 

electrical circuits.  Ideally, a check valve permits flow when exposed to forward fluid stream 

and inhibits flow for a reverse one.  However, a finite cracking pressure is required to initiate 

forward fluid flow and most implementations exhibit some amount of reverse leakage flow 

(Figure 2-5).  Another non-ideal behavior is that the valves fail when exposed to sufficiently 
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large reverse pressures.  Various implementations of check valves have been investigated 

including rectifying structures created from ring mesas [13], cantilevers [29], membranes [30], 

discs [31], V-flaps [32], and floats [33] (Figure 2-6).  These valves are constrained to operate 

within a specific flow range.  This is in large part due to the excessive flow resistance to 

forward flow experienced across the valve cap and valve seat.  As shown in Figure 2-6, MEMS 

check valves used in micropumps will result in out-of-plane flow.  Planar check valves have 

not been extensively researched and are currently not optimized for use with micropumps [34]. 

Figure 2-5 Check Valve Behavior [35] 

Figure 2-6 Check Valve Types Found in Literature [35] 

To reduce the forward flow resistance, an elastic material and appropriate valve cap geometry 

are chosen.  In this approach, parylene C check valves from [36] were used in the first pump 

design.  Large valve cap deflections are possible as parylene has a low Young’s modulus (~2.8 

GPa) and S-shape tethers allow the valve cap two degrees of freedom.  Flow resistance and, 

accordingly, cracking pressure are drastically reduced, as the valve cap is able to rotate and 
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elevate away from the valve seat (Figure 2-7).  In addition, reverse leakage is extremely low as 

valve-cap-to-valve-seat sealing is excellent and high reverse pressures can be tolerated.  The 

overall performance is further enhanced by the immunity to stiction and surface tension 

effects.  However, since these check valves were fabricated on the same side of the wafer, they 

are only able to rectify flow in one direction.  In order to construct a pump from these valves, 

complicated assembly was required to separate individual valves and glue them, facing in 

opposite directions, to a Plexiglas structural support.  As a result, in the second design, check 

valves were fabricated using a process modified from [36] to create a double-sided valve chip 

(Figure 2-8).  In addition, linear arrays of check valves were also fabricated using the same 

process. 

Figure 2-7 Parylene S-Tethered Check Valve Operation [35] 

Figure 2-8 Two Types of Fabricated Double Sided Check Valves 

2.2.1.1 PARYLENE FUNDAMENTALS 

Parylene is the generic name for a family of unique vapor phase deposited thermoplastic 

polymers.  Its ability to form continuous, pinhole free conformal coatings at room temperature 
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and biocompatibility are factors in its increasing popularity as a MEMS material.  Excellent 

dielectric properties have resulted in extensive use of parylene in semiconductor processing as 

well.  Three kinds of parylene are available commercially and each material has slightly 

different properties for flexibility in application (Figure 2-9).  A comparison of parylene N, C, 

and D is shown in Table 2.2.  Parylene C is the most commonly used form for its useful 

combination of physical and electrical properties. 

Figure 2-9 Types of Commercially Available Parylene 

Table 2.2 Physical and Thermal Properties of Parylenes [37] 

Property Parylene N Parylene C Parylene D 

Young’s Modulus (GPa) 2.4 2.8 2.6 

Tensile Strength (MPa) 41−76 69 76 

Yield Strength (MPa) 42 55 62 

Elongation (%) 20250 200 10 

Yield Elongation (%) 2.5 2.9 3.0 

Rockwell Hardness R85 R80 R80 

Melting Point (°C) 420 290 380 

Linear Coefficient of 
Expansion (/°C) 6.9 × 10-5 3.5 × 10-5 3−8 × 10-5 

Thermal Conductivity 
(cal/(cm ⋅ s ⋅ °C)) 3.0 × 10-4 2.0 × 10-4 − 

Specific Heat (cal/(g ⋅ °C)) 0.20 0.17 − 
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2.2.1.2 PARYLENE PROCESSING 

Parylene was discovered by Michael Mojzesz Swarc at the University of Manchester in 1947.  

Later, in the 1950’s, research to develop a commercial parylene deposition process was 

initiated by William F. Gorham of the Union Carbide Corporation.  A coating system was 

finally introduced to the market in 1965.  Although only three kinds of parylene are 

commercially available, it is interesting to note that Union Carbide developed over 20 different 

types [38].  The finalized synthetic process involves the vapor phase deposition of parylene 

from its dimer form (Figure 2-10).  The dimer (di-para-xylylene) is a stable compound that 

comes in granular form. 

The first step of the deposition process vaporizes the dimer at 150 °C.  Then pyrolysis occurs 

causing the dimer to be cleaved into a monomer radical (para-xylylene).  This monomer 

adsorbs and polymerizes when it reaches the room temperature deposition chamber.  The 

deposition rate of parylene C is about 5 µm/hr.  All depositions of parylene were performed 

using the PDS 2010 Labcoter® 1 from Specialty Coating Systems. 

Figure 2-10 Parylene Deposition Process [37] 



 

 

37
A convenient feature of parylene is that it integrates well into MEMS processes.  Oxygen 

plasma etching conveniently patterns the material using either an Al or photoresist masking 

layer.  In addition, adequate adhesion to silicon and silicon oxide are achieved by applying a 

special adhesion promoter (A-174) prior to deposition. 

2.2.1.3 PARYLENE CHECK VALVE FABRICATION 

The fabrication process starts with a thermally oxidized (1.5 µm thick) silicon wafer (Figure 

2-11).  This layer serves as a simply etching mask.  The first structural feature to be defined is 

the orifice.  However, as subsequent processing is necessary in these areas to form the valve 

cap, only a cavity is etched and not a through hole.  Cavities are etched using KOH.  The 

remaining 20 µm thick silicon membrane serves as a structural support on which to build the 

check valves.  A circular region of silicon is then exposed to BrF3 gas for the purpose of 

roughening the surface via etching [39].  This roughened silicon surface serves two purposes: 

(1) it prevents stiction of the parylene tethers to the substrate and (2) it enhances the adhesion 

of the anchored portions of the parylene tethers to the silicon substrate by increasing the 

contacted surface area (Figure 2-12).  A-174 adhesion promoter is applied and followed by the 

deposition of a 2 µm layer of parylene-C.  This layer is patterned in oxygen plasma to form a 

circular support ring for the valve cap layer.  Then a sacrificial photoresist layer (5 µm of AZ 

4400) is spun and patterned to separate the valve cap from the valve seat.  To prevent check 

valve failure due to mechanical failure from stresses experienced at sharp corners, the 

photoresist is hard baked to round off the convex corners as depicted in Figure 2-13.  A 

second layer of parylene (3 µm) is deposited and masked with a 1000 Å layer of thermally 

evaporated aluminum.  This Al masking layer was replaced with thick photoresist (10 µm of 

AZ 4620) in the double-sided process to avoid exposing the photoresist and parylene layers to 
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the high temperatures of the thermal evaporation process.  To release the check valves, the 20 

µm silicon layer between the eventual orifice and sacrificial photoresist layer is etched away in 

BrF3 gas.  After dicing, the Al/photoresist masking layer and sacrificial photoresist layer 

areremoved to complete the fabrication process.  Various views of the fabricated check valves 

are shown in Figure 2-8 and Figure 2-14. 

Figure 2-11 Double Sided Check Valve Fabrication Process 

Figure 2-12 BrF3 Roughened Silicon 
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Figure 2-13 Rounded Photoresist Step After Hard Baking 

Figure 2-14 SEMs of Fabricated Check Valves 

2.2.2 SILICONE RUBBER PUMPING MEMBRANE 

Desired properties of pumping membranes are large deflection and good sealing.  In addition, 

to improve the achievable compression ratio, a material that will allow the deflected membrane 

to efficiently match and conform to the pumping chamber geometry is needed.  Silicone 

rubber has low Young’s modulus and durometer, as well as high elongation.  These properties 

make it an excellent choice for this task. 
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2.2.2.1 SILICONE RUBBER FUNDAMENTALS 

Silicone is a general term that refers to a diverse class of partially organic polymers that can be 

found in multiple forms including elastomers, resins, and liquids.  The most notable difference 

of silicone from most polymers is that is formed from a silicon-based backbone, not a carbon 

one.  This contributes to the excellent chemical stability and electrically insulating properties 

valued in this family of materials.  Structurally speaking, silicone is composed of a chain of 

alternating silicon and oxygen atoms (a polysiloxane chain) with hydrocarbon radicals 

occupying the remaining silicon valences (Figure 2-15).  The radical is typically a methyl group 

(−CH3) as in polydimethylsiloxanes (PDMS). 

Figure 2-15 A Linear Polysiloxane Chain 

The particular type of silicone chosen for the pumping membrane is MRTV1-10E.  This is 

manufactured by Insulcast, a division of American Safety Technologies, and is a room 

temperature vulcanizing (RTV), addition cure mold making silicone rubber.  This particular 

formulation has a 10% reactive fluid dilution, which has been found to facilitate its application 

via spin coating and exhibits good adhesion to silicon and silicon nitride [40].  Typical physical 

parameters are given in Table 2.3.  Addition cure vulcanized silicone rubber typically starts as a 

two-part mixture consisting of a base and curing agent.  The curing agent contains a 

crosslinker.  By slightly altering the amount of crosslinker applied in a mixture, the physical 

properties of the cured silicone can be modified.  The recommended mixing ratio for MRTV1-

10E is 10 parts of the base to one part of the curing agent. 
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Table 2.3 Physical Properties of MRTV1 and Sylgard 184 

Manufacturer 
and Product 

Durometer, 
Shore A 

Tensile 
Strength (psi) 

Tear Strength 
(lb./in) 

Elongation 
(%) 

Color 
Viscosity 

(cps) 

Insulcast 
MRTV1 40 1030 15 140 Transparent 4000 

Dow Corning 
Sylgard 184 24 500 125 1000 White 60000 

 

2.2.2.2 SILICONE RUBBER PROCESSING 

The manufacturer recommended preparation procedure for MRTV1 is outlined in Table 2.4. 

Table 2.4 Silicone Preparation Procedure 

1. Premix the base and curing agent to reincorporate any settled filler. 
2. Weigh parts accurately allowing for one part of catalyst for each 10 parts of base. 
3. Mix thoroughly, scraping the container sides and bottom to ensure a homogeneous mixture. 
4. Degas the mixture by placing in a vacuum chamber.  Draw about 29 inches of mercury allowing 

the mixture to rise about 3-4 times its original volume and then collapse.  Maintain the vacuum 
for another minute or two and then vent. 

5. Apply the pre-cured silicone. 
6. Cure at room temperature (25°C) for 16-24 hours or apply heat (3-4 hours at 50°C or 1-2 hours 

at 65°C) for quicker curing. 

 

2.2.2.3 SILICONE MEMBRANE FABRICATION 

Incorporating the mixed silicone rubber precursor into a microfabrication process presents a 

challenge.  The material itself is both difficult to pattern via photolithography or etch after 

curing.  Also, the surface is inert and adhesion to most materials is poor.  Special effort must 

be expended to create silicone rubber structures.  Given that adhesion may be compromised 

during the long processing times required to create bulk micromachined membranes, the most 

straightforward way to form a silicone membrane is shown in Figure 2-16.  Here, a wafer is 

thermally oxidized (1.8 to 2.0 µm thick) to provide an etch mask.  After patterning the masking 

layer on the backside of the wafer, a thin silicon membrane (10 to 20 µm thick) is formed by 

etching in KOH.  Oxide is stripped on the front side of the wafer, providing a silicon surface 
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for adhesion to MRTV1.  Silicone is spun on this surface and then the entire structure is cured.  

The remaining silicon is etched away via RIE (reactive ion etching) in a SF6/O2 plasma to free 

the membrane.  Alternatively, a silicon nitride masking layer can be used. 

Figure 2-16 A Simple Silicone Membrane Process [40] 

A refinement on the above process is shown in Figure 2-17.  In this modified process, pillars 

are integrated in the membrane layer to control the compression of the rubber layer when 

exposed to clamping force.  This process also avoids thickness control difficulties encountered 

when applying the silicone in a spin coating process.  The pillars are formed during an 

additional patterning step followed by KOH etching.  The masking material can be identical to 

the one used in forming the silicon membrane.  Instead of spin coating, the silicone layer is 

applied by casting.  Membranes created using this technique measure 7 × 7 mm2 and are 80 

µm thick.  One is shown in Figure 2-18. 

Figure 2-17 Process Flow for Silicone Membrane with Pillars [40] 
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Figure 2-18 Fabricated Silicone Membrane with Pillars 

The previous processes all result in square membranes due to the anisotropic etching of 

silicon.  In order to achieve a circular geometry, it is necessary to use deep reactive ion etching 

(DRIE) to produce the membrane.  Circular pumping membranes are able to achieve better 

compression ratios and thus better pump performance.  DRIE is also ideal for creating circular 

bosses.  Bossed membranes can further improve pumping efficiency.  Wet anisotropic etching 

would required complicated mask geometries to achieve a similar structure. 

The process flow for fabricating circular silicone membranes is shown in Figure 2-19.  Thick 

photoresist (AZ 4620) is spun and patterned to define the membrane.  Thermal oxide can also 

be used as a mask, however, there is an additional step required to remove the front side oxide 

prior to the application of silicone.  A brief descum in oxygen plasma followed by an HF dip 

(10 % hydrofluoric acid) is necessary to prevent micrograss formation during DRIE etching.  

Wafers are then etched via DRIE until a thin silicon membrane (~20 µm thick) remains.  

Silicone rubber is spun on the backside at 1 krpm for 80 seconds to yield an approximately 140 

µm thick membrane layer when cured.  The remaining silicon is etched away via RIE (reactive 

ion etching) in a SF6/O2 plasma.  Circular diaphragms with and without bosses (5, 6, and 7 

mm in diameter) and measuring 8 mm in diameter where created using this procedure.  They 

are shown in Figure 2-20. 



 

 

44

Figure 2-19 Circular Silicone Membrane Fabrication Process 

Figure 2-20 Fabricated Circular Membranes 

2.2.3 SILICONE RUBBER GASKETS 

As previously mentioned, silicone rubber is a suitable material for sealing purposes.  Several 

levels of silicone gaskets were fabricated in the second pump design to seal the assembled 

pump and serve as spacers.  The physical properties of the silicones used are presented in 

Table 2.3 

2.2.3.1 CHECK VALVE TO PUMP SEAT GASKET 

Silicone gaskets were introduced in the second pump to seal the check valves to the pump 

seat.  A molding technique is used to create gaskets whereby silicone is molded into a DRIE 

etched silicon master, cured, and then release from the mold (Figure 2-21).  The gasket is 

designed so as to be self-aligning; cylindrical pegs in the gasket fit pits that are machined into 
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the Plexiglas pump seat.  10 µm of photoresist (AZ 4620) is spun and patterned to define the 

alignment pegs.  After a brief descum in oxygen plasma and an HF dip, the wafer is etched to a 

depth of ~ 300 µm via DRIE.  A second lithography (10 µm AZ 4620), descum, and HF dip 

are performed to define the gasket boundaries.  Both features are etched together to establish 

the thickness of the gasket (~ 100 µm) and finalize the height of the pegs (~ 400 µm).  Prior 

to silicone molding, a mold release layer of Parylene or plasma deposited Teflon (CHF3) can be 

applied.  Sylgard 184 is used for its transparency.  Molding is achieved by filling the mold with 

a layer of silicone precursor and using a flat blade to squeegee the excess material away.  This 

technique is similar to a molding technique used in fabricating valve membrane elements in 

[41].  The mating alignment structures between the pump seat and gasket can be seen in Figure 

2-22. 

Figure 2-21 Silicone Gasket Fabrication Process 
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Figure 2-22 Alignment Structures on a Fabricated Gasket and Machined Pump Seat 

2.2.3.2 CHECK VALVE TO PUMP CHAMBER GASKET 

One complication in using check valves with large cap deflections in a diaphragm pump is that 

additional structural layers are necessary to prevent damage to the check valves.  To prevent 

silicone membranes from adhering to the check valves during pump operation, a 

conventionally machined Plexiglas spacer was included in the second pump design.  This, 

however, creates the need for another silicone gasket to seal the spacer to the check valve chip 

(Figure 2-23).  Taking into account the gasket thickness requirement based on the Plexiglas 

spacer thickness and additional height required to prevent membrane-check valve contact (> 

500 µm), it is impractical to use a silicon wafer as the mold master for this gasket.  Therefore, 

these gaskets were molded from precision milled Delrin masters.  Delrin is similar to Teflon 

and thus no mold release layer is required.  Sylgard 184 was used again for its transparency and 

applied in exactly the same manner as described for the check valve to pump seat gasket.  For 

the check valve array case, it is difficult to make a machined master for due to tight spacing.  

Large openings for the check valve array were machined into the master so through holes for 

the orifices had to be cut by hand using an X-acto knife. 
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Figure 2-23 As-Molded Silicone Check Valve to Pump Chamber Gaskets 

2.2.3.3 PUMP CHAMBER SPACER AND GASKET 

The first generation spacer is simply an 8 × 8 mm2 orifice etched through a silicon substrate via 

KOH.  The front side is glued to the pump body and the backside is clamped to the pump 

membrane.  Second generation pump spacers are conveniently formed by carefully cutting out 

the released circular membrane portion of the membrane chips (Figure 2-24).  They serve to 

seal the pumping chamber from leaks as well as define the height of the chamber. 

Figure 2-24 Circular Pump Chamber Spacer and Gasket 

2.2.4 EXTERNAL ACTUATORS 

The choice to go with an external actuator in this design can be understood by evaluating the 

current state of art in micro actuator technology.  The deflections desired are on the order of 

the thickness of the silicone substrate (~ 500 µm).  Thus it is not practical to use a micro 
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actuator based on the discussion earlier.  Ideally, the actuator should have a maximum vertical 

deflection of 500 µm over a wide range of frequency. 

2.2.4.1 SOLENOID VALVE CONTROLLED PNEUMATIC ACTUATION 

Pneumatic actuators are a possibility as the membrane deflection is not physically limited by 

actuator travel but by the pumping chamber dimensions.  Hence, it is useful to characterize the 

pump using pneumatic actuation.  An external compressed air source and a Clippard ETO-3-6 

three-way solenoid valve are connected together to supply bursts of pressurized air to the 

pump.  One major drawback of this method is that the restoring force experienced by the 

membrane is solely due to the physical properties of the material from which it is made. 

2.2.4.2 SOLENOID PLUNGER ACTUATOR 

Another possibility is to use a solenoid actuator.  A modified version of the solenoid found in 

[42] can be made to give deflections of ~ 250 µm (Figure 2-25).  The solenoid actuator 

contains a plunger that is made to produce a reciprocating motion when the supply current to 

the solenoid is turned on and off (Figure 2-26).  The plunger is fully extended when no power 

is applied by a spring element in the body of the solenoid.  When the coil is supplied with 

current, the induced magnetic field creates a force that retracts the plunger into the body.  

Thus, in this manner, the restoring force is not completely dependent on the membrane 

material properties.  The plunger can also be outfitted with various tips (Figure 2-27).  Special 

tips were machined conventionally for both generations of pump designs. 
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Figure 2-25 Cross Section of Solenoid Actuator 

Figure 2-26 Solenoid Actuation Scheme 

Figure 2-27 Two Types of Tips Used on the Solenoid Actuator 

2.2.5 ASSEMBLY AND PACKAGING 

Pump prototype assembly involves the use of Plexiglas pump seats in addition to a 

combination of gluing and clamping.  The first generation pump was constructed by gluing the 

component chips together.  As this makes it difficult to assemble and repair, the second 
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generation was designed to eliminate the need for glue by taking advantage of the sealing 

property of silicone rubbers.  Alternating layers of silicone and silicon allowed the pump to be 

watertight when clamped. 

The first generation pump was assembled through a combination of clamping and gluing 

(Figure 2-28).  The membrane chip was glued to a Plexiglas plate and clamped to the rest of 

the pump, which consisted of chips stacked and glued together.  Tygon tubing was connected 

to the input and output to facilitate testing.  A solenoid actuator was then properly positioned 

beneath the membrane. 

Figure 2-28 Various Views of the 1st Generation Solenoid Driven Pump 

The second generation pump was entirely clamped and only required adhesive to connect the 

tubing and actuator to the packaging (Figure 2-29 & Figure 2-30).  This modular design allows 

easy access to and replacement of individual components.  Two different pump seats were 

precision milled from Plexiglas for the two different check valve configurations.  Plexiglas 

backing plates allowed the pump to be clamped together and provided a means for attaching 

the actuator.  A different backing plate was used during pneumatic testing to allow for 

attachment to the solenoid valve. 
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Figure 2-29 Clamped Pump Chamber Structure 

Figure 2-30 Various Views of Clamped Pumps 

2.3 PUMP CHARACTERIZATION 

2.3.1 CHECK VALVE PERFORMANCE 

Check valves (orifice dimensions of 780 µm × 780 µm) used in the first generation pump have 

been thoroughly tested and analyzed in [36].  Performance of the double-sided check valves 

was characterized for both air and water.  Flow rate versus applied pressure plots with the 

check valve in place and removed (orifice only) were obtained (Figure 2-31).  As shown in [36], 

the twist-up tether configuration of the check valves allows for enough deflection to achieve 

nearly atmospheric pressure at the exit.  Thus, flow resistance induced by the valve cap is 

negligible.  In comparison to valves of similar size designed with straight tethers, the 

membrane deflection owing to S-shaped tethers can be up to four times as high.  Check valve 

cracking pressures were below sensor resolution and therefore unknown.  As expected, the 
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BrF3 roughened silicon surface underneath the valve cap inhibits stiction and surface tension 

effects from interfering with valve performance. 

Figure 2-31 Single Check Valve Testing Results 

Figure 2-32 Check Valve Array Testing Results 

Check valve arrays, consisting of an inlet and outlet with three individual check valves each, 

were also characterized.  Figure 2-32 shows the flow rate increase as the number of check 

valves was increased.  It is evident from Figure 2-33 that a slight advantage in performance for 

water flow was observed in the array case.  The orifice dimensions for the solitary input/outlet 
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check valves are 770 µm × 770 µm and for each of the check valves in the array, 370 µm × 

370 µm.  Effective orifice areas are 5.93 × 10-3 mm2 and 4.11 × 10-3 mm2, respectively.  Thus, a 

check valve array is preferred over a single check valve design to maximize flow rates and 

decrease flow resistance. 

Figure 2-33 Comparison of Check Valve Schemes 

2.3.2 PNEUMATIC ACTUATION EXPERIMENTS 

Pneumatic actuation was utilized to verify the design of the second generation pump (Figure 

2-34).  Bursts of compressed air are supplied to control the deflection of the pumping 

membrane by turning on and off a three-way solenoid valve.  This pattern of actuation can 

achieve pumping action. 
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Figure 2-34 Pneumatic Testing Fixture Schematic 

Both check valve schemes were tested using an inflation pressure of 6.9 kPa that is regulated 

by the solenoid valve.  The flow rate of deionized water was determined by timing the passage 

of a bubble through a calibrated pipette downstream from the pump outlet.  A maximum flow 

rate of 4.4 µl/min at 13 Hz and back pressure of 3.6 kPa at 5 Hz were possible with the single 

inlet and outlet design (Figure 2-35).  A nearly threefold increase in achievable flow rate of 13 

µl/min at 11 Hz and back pressure of 5.9 kPa at 5 Hz were made possible by the array pump 

(Figure 2-36).  Thus, the check valve array pump outperformed the single check valve pump in 

both categories.  Nonlinear behavior in the flow rate dependency on frequency was observed.  

This is expected as the silicone membrane takes a finite time to return to its original, relaxed 

position after being deflected.  When the frequency of air bursts increases beyond the 

necessary relaxation time of the membrane material, the efficiency of the pump decreases 

dramatically.  This validates the need for an additional restoring force to operate the pump at 

higher frequencies and to achieve higher flow throughputs. It is unfortunate that pneumatic 

actuation cannot be easily optimized to overcome these problems as it provides the best means 

of attaining the maximum possible stroke volume, which in turn would lead to the best 

possible compression ratio.  No other means of actuation currently available can provide these 

features. 
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Figure 2-35 Pneumatic Testing Results of Single Check Valve Pump 

Figure 2-36 Pneumatic Testing Results of Check Valve Array Pump 

2.3.3 MECHANICAL ACTUATION EXPERIMENTS 

Solenoid actuation produces a reciprocating motion in which an integrated plunger is retracted 

and extended as current is turned on and off, respectively.  By using the plunger to deflect the 

silicone membrane repeatedly, water pumping is achieved.  During solenoid based actuation 

tests of the micropumps, the actuator was driven using an 11 V square wave signal at various 

frequencies.  This translates into a power consumption of about 700 mW.  An assembled 

pump in its testing jig is shown in Figure 2-37.  A BNC receptacle and switch are provided for 
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control of and connection to a power source.  Again, the flow rate of deionized water was 

determined by timing the passage of a bubble through a calibrated pipette downstream from 

the pump outlet.  Flow rate versus frequency and back pressure plots are displayed in Figure 

2-38.  This pump is not self-priming and so careful priming is necessary to achieve optimal 

performance.  As expected, flow rate is highly dependent on actuation frequency and is 

approximately linear for low frequencies.  However, above 10 Hz, this linear relationship is lost 

as the membrane is unable to respond at the speed at which the plunger is actuated.  The 

maximum achievable flow rate was 3.4 µl/min at 10 Hz and maximum sustainable back 

pressure was 2.1 kPa which occurs for both 10 and 20 Hz. 

Figure 2-37 Solenoid Actuated Pump Testing Fixture and Schematic 

Figure 2-38 Solenoid Actuation Testing Results of Single Check Valve Pump 
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To eliminate the fall off in flow rate at high frequencies, it is necessary to physically connect 

the actuator to the pumping membrane.  This provides an additional restoring force to pull the 

membrane back to its relaxed state after being actuated.  Thus, a new membrane with a circular 

silicon boss structure (7 mm in diameter) was implemented in the second design.  The surface 

of cured silicone is inert and not easily bonded to.  In order to physically connect the plunger 

of the actuator to the pumping membrane, a boss structure is necessary.  Figure 2-27 shows a 

7mm silicon boss is glued to a flat aluminum plunger.  The improvement in flow rate versus 

frequency performance for the single inlet/outlet pump is shown in Figure 2-39.  As expected, 

the flow rate vs. frequency relationship is linear at lower actuation frequencies, and at a critical 

frequency, the flow rate levels off as it limited by the maximum fluid flow that can be supplied 

by the check valves.  The additional load placed on the actuator from the physical coupling to 

the silicone membrane probably affects the pump output to some extent.  A maximum flow 

rate of 4.5 µl/min at 14 Hz was possible in this configuration.  However, the maximum back 

pressure decreased slightly to 1.32 kPa at 1 and 5 Hz. 

Figure 2-39 Solenoid Actuation Testing Results of Single Check Valve Pump with Bossed Membrane 
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2.4 DISCUSSION 

Table 2.5 summarizes the results of all the pump configurations tested. 

Table 2.5 Summary of Pump Testing Results 

Parameter Symbol Pump 1 Pump 2 Pump 3 Pump 4 

Actuation Method  Solenoid Pneumatic Pneumatic Solenoid 

Check Valve Type  Single Single Array Single 

Max. Flow Rate max  ( l/min)Q µ  3.4 4.4 13 4.5 

Max. Back Pressure max  (kPa)p  2.1 3.6 5.9 1.32 

Max. Stroke Volume max  ( l)V µ∆  8.4 14 28 9.5 

Pump Chamber Volume pump chamber  ( l)V µ  87 50 50 50 

Dead Volume 0  ( l)V µ  78.6 36 22 40.5 

Compression Ratio ε  0.1 0.4 1.3 0.2 

Actuator Power actuator  (W)P  0.7   0.7 

Pump Power pump  (W)P  1.2 × 10-7   1.0 × 10-7 

Pump Efficiency η  1.7 × 10-5   1.4 × 10-5 

 

Discrepancies between the maximum flow rate achieved for pneumatic versus solenoid 

actuation were due to the inability of the solenoid actuator to produce deflections equal to the 

height of the pump chamber.  Also, pneumatically driven pumps have much higher 

compression ratios.  Even though the dead volume was successfully reduced in the second 

design of the solenoid driven pump, the pump power and pump efficiencies remain roughly 

the same. 

In an ideal micropump, the volume of liquid pumped per actuation cycle is a constant 

regardless of the actuation frequency.  This translates into a linear relationship between flow 

rate and actuation frequency.  However, as can be seen in Figure 2-40, the volume decreases 

with increasing frequency.  In the pneumatically actuated pump, since flow rate is equal to the 
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pressure drop over the fluidic resistance ( fluidQ P R= ), the volume pumped per cycle is 

inversely proportional to the frequency.  Solenoid actuation, in which the membrane and 

plunger are physically connected, produces a more complicated behavior that cannot be 

completely described by this simple analysis.  The data suggest that the membrane deflection, 

which occurs in a finite amount of time, might be a contributing factor as it also decreases with 

increasing frequency. 

Figure 2-40 Volume Pumped Per Cycle vs. Frequency of the Various Pumps 

For the pumps presented, a solenoid actuator was sufficient to demonstrate the device.  

However, integrated actuators, perhaps either thermopneumatic or piezoelectric ones, would 

provide a more practical solution for an integrated system.  The pump footprint would be 

reduced, but there would be a trade-off in performance.  Both thermopneumatic and 



 

 

60
piezoelectric actuators have their advantages and disadvantages as discussed earlier in the 

chapter.  Although much knowledge has been gained on micropumps, much work remains to 

be done to achieve a practical MEMS micropump for integrated fluidics applications. 

2.5 SUMMARY 

Two generations of check-valved silicone rubber diaphragm pumps are presented.  Significant 

improvements have been made from pump to pump including the design and fabrication of a 

double-sided check valve, a bossed silicone membrane, and silicone gaskets.  For the first time, 

check valve arrays were implemented in a micro diaphragm pump.  Water flow rates of up to 

13 ml/min and a maximum back pressure of 5.9 kPa were achieved through pneumatic 

operation with an external compressed air source.  Using a custom designed solenoid actuator, 

flow rates of up to 4.5 ml/min and a maximum back pressure of 2.1 kPa have been 

demonstrated.
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CHAPTER  3  

MICROFLUIDIC COUPLERS 

MEMS devices bring forth new challenges in the interconnectivity between the micro and 

macro worlds.  The microelectronics world has relied heavily on advances in the packaging 

industry for technological advancement.  Without novel breakthroughs in microelectronic 

package engineering, the continued miniaturization of electronics would not be possible.  

Microelectronic packages are constantly shrinking and quickly approaching sizes on the order 

of the device they are protecting.  Perhaps one day, fabrication and packaging will be 

integrated and devices will be ready to plug in and use as soon as they are diced and separated 

from the wafer!  The MEMS world is, however, far from reaching this ideal.  While electrical 

connections are also important in MEMS, a comprehensive packaging technology does not 

exist.  In addition to electrical connections, MEMS devices often require another means of 

communicating with the environment.  For example, it is necessary to provide mechanical 

inputs to a pressure sensor or guide light into an optical switch.  Perhaps the most 
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confounding example of this dilemma is found in the microfluidics field.  The incompatibility 

of simultaneous electrical and fluid connections is a problem has not been solved.  Many 

difficult issues exist in defining the connections of micro-devices with the surrounding 

environment. 

3.1 THE NEED FOR MICROFLUIDIC COUPLERS 

Micromachined fluidic devices are posed to have a great impact on the field of biology and 

chemistry.  The benefits of adopting microfluidic techniques are many including laminar fluid 

flow, minimal reagent consumption, minimal power consumption, small footprint, and the 

possibility of integrating multiple functions within one device.  One major problem that has 

hampered the development and utilization of such devices is the lack of a reliable and efficient 

means of accessing the input/output fluidic ports.  In the infancy of microfluidics, research 

was primarily focused on the development of discrete devices.  With the change in direction 

towards the development of integrated systems, a means to efficiently connect fluidic devices 

together is needed.  As an off-the-shelf product does not exist, current commercial 

microfluidic systems require custom connectivity solutions and are, as a result, very expensive.  

The goal of mass-producing inexpensive, disposable fluidic devices can only be realized when 

the appropriate connectivity technologies are developed. 

The traditional method to provide fluidic connections to micro flow channels is to manually 

align and glue tubing to ports (Figure 3-1).  Needless to say, this method is only practical for 

making a few one-time connections to prototypes.  Batch processing and mass fabrication 

cannot rely on such a low yield, time consuming method.  Other drawbacks include complex 

assembly, misalignment problems, the large footprint, and instability of the connection.  Even 
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for the purposes of research, the numerous disadvantages of this method can outweigh its 

usefulness. 

Figure 3-1 Examples of Glued Fluidic Connections Between Fluidic Devices and Tygon Tubing 

In the macro world, connections are easily achieved due to the wealth of commercially 

available plumbing options.  Standard prefabricated tubing and fittings are easily configured to 

achieve the desired result.  The microfluidics world, which involves dimensions on the order 

of millimeters or smaller, does not have a readily available supply of fluidic connection 

products.  Only one manufacturer of microfluidic connections exists [1].  In fact, most of the 

effort to develop microfluidic connections comes from academic research [2-11]. 

3.1.1 SEARCH FOR THE IDEAL COUPLER 

As fluidic devices grow in diversity, it is entirely possible that a perfect one-size-fits-all type 

solution does not exist.  Instead, a whole suite of connectors may be necessary to 

accommodate all categories of use.  The possible constraints on fluidic coupler designs are 

many.  As a result, making fluidic interconnects is a complex problem that is not well defined.  

Part of the problem is the lack of a standard in defining fluidic openings.  Device prototypes 

are typically custom designs and fluidic ports are arbitrarily assigned sizes.  In addition, other 
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requirements may exist.  Some parameters that should be considered during coupler design are 

listed in Table 3.1. 

Table 3.1 List of Parameters Influencing Fluidic Coupler Design 

Temperature Operating Range Mechanical Strength 
Maximum Pressure Requirements Chemical Resistance 
Connection Density Clogging 
Volume Flow Requirements Ease of Assembly/Alignment 
Biocompatibility Cost 
Wetted Surface Properties Connection Yield 
Reusability Compatibility to Device 
Dead Volume Time to Assemble 
Ease of Removal/Replacement Overall Size 

 

3.1.2 CURRENT MICROFLUIDIC COUPLING SOLUTIONS 

3.1.2.1 ACADEMIC WORK 

Researchers have explored several different methods of achieving fluidic connections.  Each of 

these methods has benefits and drawbacks. 

One of the earliest efforts to create fluidic coupling is a capillary connector designed for a 

chemical analysis system [12].  This connection is created by a combination of wet and dry 

etching techniques.  Capillaries are glued directly to a fitted port with a built-in tubing stop 

(Figure 3-2). 

By taking advantage of the crystalline structure of silicon and the resultant geometries of wet 

etching, both an in-plane and out-of-plane interconnect were realized in [11] (Figure 3-2).  The 

in-plane connector consists of two symmetrically etched halves that are bonded together to 

form an edge-protruding fluid channel to which flexible tubing can be press-fitted onto.  A 

vertical interlocking coupler is formed by etching interlocking fins around a fluidic port.  A 

mating piece is pressed into place over a gasket sealing the fluid pathway.  The requirement of 
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stacking in the construction of these interconnects can needlessly complicate device design.  

High density connections are difficult given the space requirements for each coupling.  Also, 

the pressure range of these couplers is low due to the low sealing force of the press-fittings. 

Another group proposed a fluidic ribbon cable equivalent as a means to connect surface 

micromachined channels from device to device (Figure 3-2).  The flexible cable is made of 

embedded polymer channels with openings at the ends and is directly glued to channels on a 

device. 

Figure 3-2 Early Examples of Fluidic Interconnect Research 

A method of making a micro fittings system is presented in [9].  This is perhaps the most 

unique coupling solution in that only conventional machining techniques are required to 

fabricate the components.  The concept behind this method is to mimic commonly available 

threaded fittings that are used to hold precision machined PEEK connectors via compression.  

Fluidic devices are stacked and clamped into a housing into which is machined the necessary 

mating connections.  Three different types of interconnects were designed of which two are 

snap-in connectors and one is a ferrule based connector (Figure 3-3). 
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Figure 3-3 Precision Machined PEEK Connectors 

Another stacked system can be found in [8].  Here silicon fusion bonding is used to connect a 

DRIE etched layer with coupler receptacles to another layer with channels (Figure 3-4).  Fused 

silica tubing is fitted into a pit or sleeve structure on the coupler layer and glued into place.  In 

an effort to move away from gluing connections, an injection molded plastic connector was 

also designed for use in the same multi-layer system. 

Figure 3-4 Various DRIE Etched Connectors 

Recent work involves the use of polymer materials to make connections (Figure 3-5).  All of 

these are designed to avoid the use of adhesive or prevent adhesive from entering the fluid 

path.  An integrated silicone o-ring coupler is presented in [13].  Couplers are inserted into a 

slightly smaller silicone orifice and held in place by the compressed silicone ring.  Another 

group directly fused polyethylene tubing onto the roughened surface surrounding a fluidic port 

then reinforced the connection with epoxy [7].  This coupler was specifically designed for use 
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with a valveless pump.  A similar approach is found in [5].  Again epoxy is used to reinforce a 

temporary connection.  Adhesive coated mylar sheets or layers are used to mate a capillary 

with a fluidic port before being sealed into place permanently by epoxy.  Two techniques are 

developed for making discrete connections or for making multiple connections. 

Figure 3-5 Various Polymer Based Connectors 

A polymer/glass connection scheme is given in [4].  PEEK tubing, thermoplastic flanges, and 

a polycarbonate or glass substrate are used to create interconnects.  Compression molding and 

thermal treatment are used to create connections.  Again, both discrete and integrated 

solutions were developed (Figure 3-6). 

Figure 3-6 Compression Molded Polymer Connectors 
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3.1.2.2 COMMERCIAL PRODUCTS 

Upchurch Scientific makes the only commercial product line available for making microfluidic 

connections.  NanoPort™ Assemblies are specifically listed in their catalog as being for Lab-

on-a-Chip applications (Figure 3-7).  Assembly involves aligning and gluing a base unit to a 

fluidic port.  Once in place and cured, the base unit provides a means to connect a variety of 

tubing (360 µm, 510 µm, or 1/32 inch in outer diameter) or itself can serve as a reservoir for 

fluid.  Several cleverly designed features are available in their product.  First, adhesive can 

conveniently be purchased in pre-formed rings and is absent from the wetted path after 

application.  The adhesives were selected to bond well to silicon, quartz, glass, and polymers, 

all of which are commonly encountered materials in microfluidics.  In addition the connection 

is dead volume free and made of PEEK (polyetheretherketone) which is both inert and 

biocompatible.  As Upchurch Scientific provides specialty connections for HPLC (high 

pressure liquid chromatography) end users, it is not surprising that these microfluidic 

connections are also rated to withstand pressures up to 1500 psi.  While this solution is an 

excellent first entry in the market, it can still be improved.  The major drawbacks are that the 

adhesive requires a high temperature cure and the connectors take up a large amount of space.  

Reservoir units are 9.7 mm in diameter and port bases are 8.4 mm.  Assembled connections 

can extend upwards of 1cm.  Many devices are still designed around a 1 cm × 1 cm die, in 

which there is only enough space for one NanoPort™ connection.  A high density connector 

that can be applied in a parallel fashion is still sought. 



 

 

72

Figure 3-7 Upchurch Scientific NanoPort™ Assemblies 

3.2 DESIGN AND FABRICATION 

3.2.1 DESIGN CONSIDERATIONS 

Since the microfluidics field emerged out of MEMS, the fabrication processes through which 

fluidic ports are created are based in micromachining techniques.  When dealing with 

micromachined channels, two options are available for making fluidic connections: (1) front-

to-back through-substrate fluidic pathways or (2) front side fluidic connections, typically to 

surface micromachined channels.  Surface micromachined channels are fragile and can easily 

be crushed or otherwise damaged.  This makes front side coupling a non-trivial task.  Bulk 

channels are more robust and more forgiving of inelegant coupling solutions. 

Access to channels can be made in different ways.  Prior to the invention of DRIE, wet 

etching and mechanical drilling were the only practical ways to create front-to-back openings.  

Drilling can be quick and convenient for make a few connections but alignment and high 

density can be difficult to achieve.  Also, not all connections are possible by drilling access 

ports.  Usually, only bulk micromachined channels can accommodate drilling.  For wet 

etching, anisotropic etching is preferred to “conserve” real estate, as only large openings are 

possible by isotropic etching due to lateral undercut.  Structures produced by using KOH, 

EDP, or TMAH to etch silicon have the characteristic geometry predicted by the slowest 
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etching plane in the crystalline material, which, in the case of (100) silicon wafers, happens to 

be the (111) plane.  This results in geometries that are square and tapered at an angle of 54.74° 

(Figure 1-3).  It is possible that in some applications, this shape may have undesirable effects 

on fluid flow.  Given that tubing is typically round, a geometrical mismatch is present between 

the tubing and the port (Figure 3-8).  While it is possible to glue tubing directly to pyramidal 

pits, leakage paths due to mismatch (non-interlocking halves) may result in clogging by 

adhesives.  By using DRIE, the geometry of fluidic ports is no longer restricted in such a 

manner.  Also lower dead volumes can achieved by machining matched and interlocking 

structures. 

Figure 3-8 Cross Section of Mismatched and Matched Tubing-to-Fluidic Port Connections 

Fluidic ports cannot be designed without considering the tubing that will be used in the final 

connection.  It is important to select the appropriate tubing type and tubing material.  Only 

certain materials and sizes of tubing are commercially available so if, for example, a system 

requires the channel and tubing diameters to be matched, this should be taken into account 

when putting a device through the design phase.  Given this information, the maximum 

connection density is limited by the tubing selected.  Connection density is also hampered by 

human dexterity and visual capabilities.  Requiring adhesive to create bonds further 
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complicates the issue.  As some point, it will be necessary to use mechanical 

micromanipulators or automated machines to assemble fluidic connections. 

The usage of adhesive in fluidic coupling can be a controversial issue.  While biocompatibility 

issues may preclude the usage of glue in some applications, high-pressure connections are 

difficult to achieve using press-fitting techniques.  Most microfluidic connections rely on 

perpendicular coupling between ports and tubing.  Given the small surface contact area, 

adhesive is usually required to form the connection or provide mechanical strength to the 

connection, even when using press-fittings.  It is important in these situations to prevent 

adhesive from entering the fluid path   Not only do out-of-plane schemes cause difficulty for 

fluidic coupling, they can also complicate fluid flow or get the in way of electrical 

interconnects.  Ideally, connections could be made in plane but the limited area in which to do 

so makes it difficult; the thickness of a silicon wafer is typically only 500 µm.  Stacking dies 

helps but is not always an option.  For these reasons, vertical connections are still the most 

popular method. 

3.2.2 MICROMACHINED FLUIDIC COUPLERS 

To meet some of the aforementioned challenges, several types of fluidic couplers have been 

designed, fabricated, and tested.  The approach taken here is to introduce an intermediate 

mechanical structure to provide geometrically matched, interlocking connections between the 

tubing and the fluidic port.  Both silicon and polymer materials can be used to fabricated this 

mating connector.  In the case of silicon, bulk micromachining and DRIE techniques have 

been explored to yield couplers capable of being used with most microfluidic ports.  Virtually 

any two-dimensional geometry can be etched using DRIE and so nearly any arbitrary fluidic 

port shape can be accommodated.  Polymer couplers can be molded from etched silicon 
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masters.  To take advantage of the wealth of pre-existing commercial tubing products, these 

couplers interface with PEEK and fused silica capillary tubing.  Tubing types were selected for 

their small size, common acceptance in HPLC applications, and for versatility.  A wide variety 

of supporting products include adapters and fittings are readily available making them a 

convenient choice.  PEEK also has excellent chemical resistance. 

Features have been added to facilitate and guide assembly.  Fittings are designed to include 

alignment structures and if necessary, stepped sleeves that serve as a tubing insertion depth 

guide.  Couplers are joined to pre-existing fluidic ports via these fittings.  In addition to 

restraining the tubing insertion depth, it may also be necessary to control the coupler insertion 

depth.  When interfacing to devices with delicate membrane structures at the other end of a 

fluidic port, couplers with shoulders can be used.  These shoulders can effectively limit the 

penetration depth of a coupler into a port. 

Adhesive can be used to connect couplers to tubing, but, when the dimensions of the mating 

receptacle are appropriately calibrated, cryogenic insertion is also an option (Figure 3-9).  This 

approach is time consuming, inconsistent, and extremely inconvenient.  To mitigate these 

issues, a batch adhesive application and bonding process was developed.  By using 

Crystalbond, a thermoplastic adhesive, wafer level spray coating to thousands of couplers at 

once is achieved (Figure 3-10).  The thermoplastic nature of Crystalbond allows easy 

attachment and removal of parts through thermal cycling.  Applying epoxy to the formed joint 

can strengthen the connection.  Alternatively, couplers can also be molded with a 

thermoplastic material and subsequently reflowed to form a connection.  It is also possible to 

use other adhesive joining methods as well as solder and eutectic bonding at the coupler-to-
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I/O port interface.  Modified couplers with fitting structures at both ends of the capillary can 

also be used to concatenate microfluidic devices. 

Figure 3-9 Cryogenic Insertion Process 

Figure 3-10 Spray Coating Process 

A comparison of traditional manual coupling techniques with our new approach is 

demonstrated on thermopneumatic valves from [14] in Figure 3-11.  The space savings are 

readily apparent in this photography.  Fused silica capillaries attached to silicon bulk couplers 

are used to create inlet/outlet access in the valve on the left.  The valve on the right has tygon 

tubing directly glued to the inlet and outlet. 
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Figure 3-11 Comparison of Fluidic Coupling Techniques 

Four types of couplers using various sizes of capillary and PEEK tubing have been fabricated.  

Process flows for the various types of couplers are described below. 

3.2.3 BULK COUPLERS 

Bulk couplers are designed to match the geometry of anisotropically wet etched fluidic ports.  

The fabrication process (Figure 3-12) for bulk micromachined silicon couplers starts with the 

thermal oxidation of silicon wafers (~ 1.5 µm).  Then, the overall geometrical structure of the 

coupler is defined by a patterning step followed by etching in KOH (potassium hydroxide).  

Mesas of about 270 µm high are formed in this manner.  Each mesa will eventually become an 

individual bulk coupler.  On the other side of the wafer, press-fit pits for tubing are etched via 

DRIE to a depth of about 450 µm.  This method will leave a tubing stop structure so as to 

prevent the tubing from piercing through the other side of the coupler during assembly (Figure 

3-13).  Alternatively, for simplicity of fabrication, the pit can be etched through the wafer.  An 

additional shoulder is useful as an insertion guide and is depicted in Figure 3-13. 
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Figure 3-12 Bulk Coupler Fabrication Process 

Figure 3-13 Three Dimensional Rendering of a Bulk Coupler 

As evident from the desired geometry and given the properties of KOH etching, corner 

compensation is required to achieve sharp corners on the mesas.  Two corner layout schemes 

were investigated with the respective etching results are shown in Figure 3-14.  The merits of 

each method are described in [15] and [16], respectively.  Additional features in the rightmost 

figure are artifacts attributed to the DRIE of masking gaps due to poor photoresist step 

coverage. While both convex corners exhibit a certain degree of undercut, slight modifications 

to the etch mask and careful attention to etching progress should eliminate these features. 
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Figure 3-14 Corner Compensation Schemes and Results 

Different sizes of bulk couplers were fabricated based on the outer diameters of fused silica 

capillary available (440 µm, 680 µm, and 850 µm in outer diameter).  Various SEMs of bulk 

couplers are shown in Figure 3-15.  Bulk couplers are assembled by using the cryogenic 

insertion technique to achieve a press-fit between the capillary and coupler.  A coupler 

attached to a capillary is shown in Figure 3-16.  This assembly is placed in contact with a 

matching fluidic port and then fixed in place with adhesive.  A cross section of a coupler 

connected to a fluidic port is shown in Figure 3-17.  Although adhesive was used to fill the 

inside of the coupler and tubing for the purposes of the photo, it can be seen that adhesive 

does not enter the fluid path in this interconnect implementation. 

Figure 3-15 SEMs of Bulk Couplers 
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Figure 3-16 Bulk Couplers with Fused Silica Tubing and Assembly Process 

Figure 3-17 Cross Sectional SEM of a Glued Bulk Coupler 

3.2.4 MOLDED COUPLERS 

Molds for polymer couplers are created by bonding two etched wafers together.  One wafer 

defines the geometry of the coupler while the other provides posts to hold tubing in place 

during the molding process.  The fabrication process for molds is summarized in Figure 3-18.  

The “body” mold wafer starts with a thermally oxidized silicon wafer (~ 1.5 µm).  It is then 

patterned and etched through in KOH.  The mating “post” wafer also starts with a thermally 

oxidized silicon wafer (~ 1.5 µm).  Circular pegs about 300 µm tall are etched by DRIE.  After 

the remaining oxide is removed by BHF (buffered hydrofluoric acid), the wafers are diced and 

the two mating dies are bonded together using adhesive.  A PTFE (polytetrafluoroethylene) 
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based mold release layer is then sprayed onto the assembled mold.  The release layer facilitates 

removal of the molded coupler from the mold structure and prevents adhesion of the molded 

coupler to the mold.  It is also possible to substitute for other types of mold release layers.  

Plasma deposited teflon and parylene C are also candidates for mold release layers.  Moldings 

are realized by melting raw material such as a hot-melt polyolefin around fused silica tubing 

fitted on mold posts.  When the polyolefin material has cooled, couplers can be release simply 

by pulling them away from the mold.  Released structures are then attached to fluidic ports 

simply by re-heating polyolefin, allowing it to reflow and adhere to the silicon port.  In 

applications where heating is unacceptable, adhesive joining can be used. 

Figure 3-18 Molded Coupler Fabrication Process 

Different sizes of bulk couplers were fabricated based on the inner diameters of fused silica 

capillary available (320 µm, 545 µm, and 700 µm in inner diameter).  Various SEMs of coupler 

molds are shown in Figure 3-19.  A coupler attached to a capillary is also shown (Figure 3-20). 
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Figure 3-19 Views of Coupler Molds 

Figure 3-20 Molded Coupler with Fused Silica Capillary and Assembly Process 

3.2.5 POST COUPLERS 

The nature of DRIE processing allows flexibility in creating two-dimensional geometries 

across a wafer surface.  A two-dimensional feature corresponding to the desired coupler 

geometry can be defined and etched in silicon.  Thus, post couplers can used with virtually any 

fluidic port and tubing.  For example, if an odd coupling geometry such as the one depicted in 

Figure 3-21 is desired, it would be easy to fabricate by generating the appropriate masks and 

using DRIE to etch the structure.  Cylindrical couplers were fabricated here for use specifically 

with PEEK tubing and fused silica capillaries. 
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Figure 3-21 Example of a Possible Coupler System 

The procedure for fabricating post couplers is given in Figure 3-22.  Fabrication starts with the 

thermal oxidation of a silicon wafer (~ 1.5 µm).  The thermal oxide serves as a masking layer 

during etching.  First, the alignment ring feature is patterned.  Then a shoulder, which also 

serves as a bonding surface, is patterned and etched 100 µm deep using photoresist as a mask.  

A release ring is also patterned and etched in the same step.  The remaining photoresist is 

removed, exposing the alignment structures.  Another etch is performed to define the height 

of the alignment ring (~ 60 µm).  The total etched depth of the central opening that eventually 

becomes the through hole and the release ring is approximately 160 µm.  However, the 

opening is typically etched slightly deeper than the release ring due to geometrical loading 

effects common to DRIE systems.  This ring allows individual couplers to be snapped off the 

wafer at the end of the process.  On the other side of the wafer, a tubing stop and the other 

half of the release ring are patterned.  These structures are etched until the central fluid path in 

completed.  Individual couplers are snapped away from the wafer.  Then, PEEK tubes or 

fused silica capillaries are press-fitted into the mating receptacles and the entire structure is 

then ready to be joined to a fluidic port. 
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Figure 3-22 Post Coupler Fabrication Process 

Several different sizes of post couplers were fabricated based on the outer diameters of fused 

silica capillaries (440 µm, 680 µm, and 850 µm in outer diameter) and PEEK tubing available 

(363 µm, 508 µm, and 1/16 inch in outer diameter).  Also the central opening is matched to 

the tubing inner diameter.  SEMs of fabricated post couplers are shown in Figure 3-23.  A 

coupler attached to tubing and an assembled system is shown in Figure 3-24. 

Figure 3-23 SEMs of Post Couplers 
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Figure 3-24 Post Couplers and Assembly Process 

3.2.6 FLANGED COUPLERS 

The final type of coupler is designed to sit flush against the surface to which it will be bonded.  

This geometry is convenient for use with devices having densely packed ports with small 

openings.  Here, the density of the connections does not allow for alignment features to be 

included in the device.  The lack of alignment features, however, means that this coupler has to 

be manually aligned.  The flange is grooved so as to provide a greater surface area for bonding.  

Also, the grooves serve to guide adhesive away from the central opening to prevent clogging. 

An abbreviated process flow for the fabrication of flanged couplers is illustrated in Figure 

3-25.  A wafer is thermally oxidized (~ 1.5 µm) then the tubing receptacles and flange are 

patterned and etched in DRIE 350 µm deep. On the other side of the wafer, the tracks in the 

flange are patterned.  Then the through hole and release ring are patterned and etched 100 µm 

deep by DRIE with photoresist as a mask.  This release ring serves the same purpose as in the 

post coupler fabrication process.  After the remaining photoresist is stripped, the tracks are 

exposed and a global etch is performed until the fluid pathway is etched through.  The oxide 

mask layer is stripped in BHF then individual couplers are removed.  PEEK tubing is attached 

using adhesive and the assembly is mated to a fluidic port. 
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Figure 3-25 Flanged Coupler Fabrication Process 

The various sizes of flanged couplers were fabricated based on the outer diameters of smallest 

diameter PEEK tubing available (363 µm and 508 µm).  Tubing inner diameters are matched 

to the central opening of the couplers.  Fabricated couplers were observed using an SEM and 

are shown in Figure 3-26.  A coupler attached to tubing is shown in Figure 3-27. 

Figure 3-26 SEM Views of Flanged Couplers 
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Figure 3-27 Flanged Coupler with PEEK Tubing and the Assembly Process 

3.3 COUPLER TESTING 

Two custom high-pressure testing setups were designed to determine the failure point and 

operating range of the fabricated couplers.  The first setup is rated to pressures of 9 × 103 kPa 

(1300 psi) and filters particles in nitrogen gas down to 0.1 µm.  The second improved design is 

capable of sustaining pressures of 1.4 × 104 kPa (2000 psi) and filters down to 0.5 µm.  A 

graphical depiction of the testing setups is given in Figure 3-28.  The actual setups are shown 

in Figure 3-29 and Figure 3-30.  Testing setups were constructed of stainless steel Swagelok 

plumbing and components to sustain high-pressure operation.  PEEK and Valco stainless steel 

high pressure liquid chromatography (HPLC) fittings were used to connect the small diameter 

PEEK and fused silica capillary tubing from the coupler to the rest of the pressure testing 

setup.  Pressurized nitrogen gas is controlled through metering valves and monitored using an 

Omega PX120-2KGV pressure transducer in conjunction with an Omega DP25-S Strain Gage 

Panel Meter.  The operating pressure range of the couplers is determined by gradually 

increasing the pressure on a blocked coupler. 
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Figure 3-28 Schematic of Coupler Pressure Testing Apparatus 

Figure 3-29 Original Testing Setup 

Figure 3-30 Improved Testing Setup 

Bulk and post couplers with capillary tubing were tested using the first setup and were able to 

withstand at least 9 × 103 kPa (1300 psi).  This corresponds to the maximum measurable 
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pressure of the experimental apparatus.  Flanged couplers were tested on an improved setup 

and were able to withstand at least 1 × 104 kPa (1500 psi).  Post couplers with cryogenically 

inserted PEEK tubing were also tested and are identical in performance to couplers with glued 

tubing (at least 9 × 103 kPa or 1300 psi).  Molded couplers, however, failed at about 6.2 × 103 

kPa (900 psi) due to bond failure between the molding material and capillary.  Using adhesive 

to strengthen the bond should improve the pressure rating.  These results are summarized and 

compared to other work in Table 3.2. 

Table 3.2 Coupler Testing Results Compared to Other Work 

Coupler Description Operation Range Reference 

Polyethylene Coupler/Tubing and 
Epoxy Reinforcement > 5 kPa (0.7 psi) [7] 

Mylar Sealant and Epoxy 
Reinforcement with Capillary ~ 190 kPa (28 psi) [5] 

Polyimide/Parylene Ribbon Cable 
Style Interconnect ~ 200 kPa (29 psi) [10] 

Silicon Finger Microjoint with 
Silicone Gasket & Tygon Tubing > 210 kPa (30 psi) [11] 

Thermoplastic Retaining Flange 
with PEEK Tubing > 210 kPa (30 psi) [4] 

Silicon/Plastic Coupler with 
Silicone Gasket & Capillary ~ 410 kPa (60 psi) [8] 

Silicone Gasket Sealed Silicon 
Coupler with Capillary ~ 550 kPa (80 psi) [13] 

Silicon Sleeve Coupler with 
Capillary ~ 3.6 × 103 kPa (500 psi) [8] 

Polymer Coupler with Fused Silica 
Capillary ~ 6.2 × 103 kPa (900 psi) This Work 

Silicon Bulk Coupler with Fused 
Silica Capillary > 9 × 103 kPa (1300 psi) This Work 

Silicon Post Coupler with Fused 
Silica Capillary or PEEK Tubing > 9 × 103 kPa (1300 psi) This Work 

Silicon Flanged Coupler with 
PEEK Tubing > 1 × 103 kPa (1500 psi) This Work 

Mismatched Silicon Coupler with 
Capillary > 1.2 × 103 kPa (1740 psi) [12] 
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3.4 DISCUSSION OF RESULTS 

Determination of the failure load of the adhesive joint between the coupler and fluidic port is a 

difficult problem due to complex joint geometry and the inability to ascertain the exact failure 

mechanism(s).  However, general observations concerning the design and resultant mechanical 

behavior of the joints can be made.  Four types of stresses are considered when referring to 

adhesively bonded joints: (1) normal (or direct) stresses (including tensile and compressive), (2) 

shear stresses, (3) cleavage stresses, and (4) peel stresses. 

Stress concentrations, as always, should be minimized.  Also, to maximize strain capability and 

toughness of adhesives, joints are ideally designed to operate under compression and shear.  

Tension, cleavage, or peel stresses should be avoided as much as possible.  Given these factors 

for consideration, post couplers are expected to have better performance since compression 

and shear have the largest stress contributions under loading. In addition, the surface 

roughness accumulated during the DRIE process promotes mechanical interlocking in 

addition to increasing the surface area available for bonding.  This is also true of flanged 

couplers that not only provide a large flat surface for bonding but grooves for further 

increasing surface area available for bonding.  Flanged and bulk-type couplers experience a 

combination of tension and shear stresses.  By using liquid adhesives, the excess adhesive 

squeezed from the joint, or spew fillet, can provide the added benefit of reducing the stress 

concentration at the edges of joints and further increase overall strength [17]. 

Couplers have been successfully implemented with microchannels and flow sensors [18-20].  

Packaged devices with couplers are shown in Figure 3-31 and Figure 3-32. 
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Figure 3-31 Silicon Bulk Couplers with Polyimide Coated Fused Silica Capillaries in a Microchannel Device [18] 

Figure 3-32 Silicon Post Couplers with PEEK Tubing in a MEMS Flow Sensor [20] 

3.5 SUMMARY 

In order to implement successful microfluidic systems, there is a need to create micro-to-

macro world interconnects.  In an effort to create standardized microfluidic connections to 

MEMS fluidic devices/systems, micromachined fluidic couplers have been designed, 

fabricated, and tested.  These couplers are compatible with PEEK and fused silica capillary 

tubing and are capable of withstanding pressures up to 1 × 104 kPa (1500 psi).  Furthermore, 

these couplers can be used with typical fluidic ports and can be customized for use with special 

geometries if necessary. 
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CHAPTER  4  

A MICRO FLOW SENSING ARRAY 

Flow measurement is a centuries old science that dates back the ancient Romans.  Perhaps like 

no other, the field of flow sensing embodies the motivations for microfabrication and MEMS.  

Previously, it has been difficult, if not impossible, to monitor small flows (µl/min and lower) 

with conventional sensors.  By scaling down conventional sensors, higher sensitivity in low 

flow ranges (down to nl/min) as well as lower power consumption can be achieved.  Many 

diverse applications for flow sensing exist in the macro world.  However, they serve a more 

important role in the micro realm.  In microfluidics, flow sensors can complement valves and 

pumps in the role of flow control.  With the advent of micro flow sensors, the precise flow 

control needed for micro total analysis systems or lab-on-a-chip is now possible.  As interest in 

miniaturizing biological and chemical equipment continues to grow, flow sensing research will 

continue to advance and develop, becoming more sensitive and broader in operational range. 
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4.1 FLOW MEASUREMENT METHODS 

Two standard flow measurement problems are flow velocity measurement and fluidic 

transport rate determination.  The first case is for the flow velocity measurement in a flow 

field.  Fluidic transport rate refers to the mass or volumetric flow rate of fluid that is confined 

in, for example, a pipe or channel.  Both are possible using MEMS devices.  For the purpose 

of microfluidics, the major interest lies in measuring flow restricted to microchannels. 

4.1.1 PHYSICAL PRINCIPLES OF FLOW MEASUREMENT 

Flow sensing is amenable to wide variety of physical sensing principles.  A list of principles, 

along with some associated methods, is given in Figure 4-1, which is an adapted from [1].  This 

list is by no means comprehensive. 

Figure 4-1 Physical Principles Used in Flow Measurement 

It makes sense to categorize flow sensors as either non-thermal or thermal as heat and mass 

transfer are inseparably intertwined.  In addition, nearly all of the physical flow sensing 
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methods are temperature dependent.  A brief exploration of some of the more common types 

of flow sensors follows. 

4.1.2 NON-THERMAL FLOW MEASUREMENT METHODS 

A few non-thermal flow measurement methods are described here.  Schematics of some 

common flowmeters are depicted in Figure 4-2 [2]. 

Figure 4-2 Examples of Conventional Flowmeters 

4.1.2.1 DIFFERENTIAL PRESSURE FLOWMETERS 

Differential pressure flowmeters rely on the pressure difference that results when a restriction 

is placed in a pipe.  At the restriction, the flow velocity increases which in turn decreases the 

static pressure downstream.  The pressure difference generated is a measure of the fluid flow 

rate through the restriction and the pipe as well.  The two standard components found in 

differential pressure flowmeters are a differential producer (the restriction) and a differential 

pressure transducer. 

This observation, that a differential pressure is produced by a restriction placed in a pipe, was 

made by Bernoulli.  He also developed a useful relationship that describes the relationship 

between pressure, velocity, and elevation in a frictionless flow.  This relation is known as the 
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Bernoulli equation and is helpful in understanding the operation of differential pressure 

flowmeters.  For an inclined pipe, the generalized form of the Bernoulli equation holds [3]: 
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In a horizontal pipe ( 1 2h h= ), the equation reduces to: 
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By conservation of mass: 

 1 1 2 2v A v Aρ ρ=  (4.3) 

Equations 4.2 and 4.3 can be used to show how flow rate is measured by using a restriction in 

a pipe.  The volumetric fluid flow rate, Q , can be determined by rearranging the equations: 
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This illustrates the basic principle behind differential pressure flowmeters. 

4.1.2.1.1 ORIFICE PLATE 

The simplest, least expensive variety of differential pressure flowmeter is an orifice plate.  It is 

a thin plate with a hole cut into it that is inserted and then clamped between pipe flanges.  

Pressure taps before and after the orifice allow for the measurement of differential pressure.  

Although calibration is not needed, orifice plates suffer from limited range and sensitivity to 

flow disturbances. 

4.1.2.1.2 VENTURI TUBE 

The oldest form of differential pressure flowmeters is the Venturi tube (Figure 4-2).  The 

differential producer here is a section of tubing having a converging inlet, cylindrical mid-

section, and diverging outlet.  Venturi tubes are characterized by less permanent pressure loss 

but lower differential pressures compared to orifice plates. 

4.1.2.1.3 NOZZLE 

Nozzle type flowmeters use a converging inlet as a differential producer.  It combines 

beneficial features from both he orifice plate and Venturi tube. 

4.1.2.2 VARIABLE AREA FLOWMETERS 

As the name implies, variable area flowmeters achieve either a constant or variable differential 

pressure by forcing flow through a restriction that varies in size with the flow rate. 

4.1.2.2.1 ROTAMETER 

The most common variable area flowmeter is a rotameter (Figure 4-2).  The basic rotameter 

consists of an element that changes its elevation with flow rate until gravitational, buoyancy, 

and drag forces are at balance on it. 
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4.1.2.2.2 MOVABLE VANE 

Movable vane meters correlate flow rate to the position of a spring-loaded vane.  At zero flow, 

the vane is held shut by the spring.  Angular displacement of the vane occurs when flow forces 

the vane open.  The resting angle of the vane results from balance of the dynamic flow force 

and spring restoring force and is, thus, flow rate dependent. 

4.1.2.2.3 WEIR/FLUME 

As opposed to rotameters or movable vane meters, weirs and flumes are designed for 

measuring flow in open-channel situations.  Flow rate measurement is achieved by measuring 

the difference in height of the fluid level at an obstruction spanning the channel and at a point 

sufficiently upstream.  Weirs cause water to rise upstream by providing flow resistance.  

Flumes are a low-pressure loss alternative to weirs.  Instead of causing a rise in fluid level, a 

restriction in the channel causes the fluid level to sink due to the increase in flow velocity. 

4.1.2.3 POSITIVE DISPLACEMENT FLOWMETERS 

Positive displacement meters monitor the capture of discrete quantities of flow that are later 

released downstream.  Flow rate is determined by looking either at the number of capture 

events over a set time period or at the number per unit time.  Several types of positive 

displacement, or PD, meters are discussed below. 

4.1.2.3.1 SLIDING-VANE 

A sliding-vane meter traps fluid in known volumes in pockets defined by radially arranged 

vanes.  Spring-loaded vanes are mounted eccentrically and rotate to pass volumes of flow. 

4.1.2.3.2 BIROTOR & TRI-ROTOR 

Both birotor and tri-rotor meters trap fluid between the rotors and an outer wall defined by 

the meter casing. 
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4.1.2.3.3 OVAL GEAR 

Oval gear flowmeters deliver precise quantities of flow each revolution (Figure 4-2).  Fluid is 

trapped between the gears and the chamber wall.  Fluids that vary greatly in viscosity can be 

measured using this device. 

4.1.2.3.4 NUTATING-DISK 

The nutating-disk  flowmeter consists of a circular disk on a spherical center that is confined in 

such a manner that is not permitted to rotate (Figure 4-2).  When oriented correctly, the disk 

nutates when fluid strikes the disk.  Fluid eventually escapes the chamber when the disk rotates 

to allow access to the outlet. 

4.1.2.4 TURBINE AND IMPELLER FLOWMETERS 

Turbine and impeller flowmeters use the conversion of velocity to proportional rotational 

speeds in order to measure flow rate.  The rotating axis in turbine meters is parallel to the flow 

whereas in impellers, they are transverse to the flow. 

4.1.2.5 ELECTROMAGNETIC FLOWMETERS 

Electromagnetic flowmeters are only applicable to fluids that are conductive.  By treating fluid 

as a conductor, when flowing fluid crosses a magnetic field applied to a tube, a voltage is 

generated between two electrodes on opposite sides of the tube.  The induced voltage as a 

function of flow rate can be derived from Faraday’s law of induction: 

 4BQe
Dπ

=  (4.5) 
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where:
induced voltage
magnetic field flux density
volumetric flow rate
pipe diameter.

e
B
Q
D

=
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The two most commonly encountered electromagnetic flowmeters are AC and DC types. 

4.1.2.6 VORTEX SHEDDING FLOWMETERS 

When an obstacle is placed in a flow fluid, vortices form behind the obstacle and shed 

downstream.  An array of vortices, or a von Karman street, result as a vortex forms on one 

side of the object followed by the formation of another vortex with opposite rotation on the 

other side in an alternating, repetitive manner.  Vortex shedding flowmeters operate on the 

principle that the frequency of vortex shedding is proportional to and increases with flow 

velocity.  This relationship is expressed as: 

 fQ
K

=  (4.6) 
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4.1.2.7 ULTRASONIC FLOWMETERS 

Like electromagnetic flowmeters, ultrasonic flowmeters also measure flow rate without 

pressure or head losses.  Ultrasonic meters, however, can be applied to any fluid type.  The five 
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types of ultrasonic flowmeters commonly found are transit time (sonic pulse tracking), 

Doppler (frequency shift due to interaction with flow), cross-correlation (sonic energy 

absorption), phase shift (of transmitting and receiving signal directed at flow), and drift (sonic 

signal attenuation) types. 

4.1.2.8 DRAG FORCE FLOWMETERS 

Drag force flowmeters measure the force exerted on the fluid by a drag element exposed to 

fluid flow.  The expression for the drag force is: 
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where:
drag force
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fluid density
projected area of body normal to flow
fluid velocity.
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4.1.3 THERMAL FLOW MEASUREMENT METHODS 

Thermal flow measurement methods work on the conversion of mechanical variables (flow) to 

thermal variable (heat transfer) and then finally to electrical signals (current or voltage) for 

practical sensing.  This does not require any moving parts and so thermal flow sensors are 

perhaps the easiest to miniaturize.  The heat transfer variables that are typically monitored to 

deduce flow rate are temperature, temperature difference, heating power, and thermal signal 

transfer.  Thermal flow sensors consist of a combination of heaters and temperature sensors.  

The six possible operational modes of thermal sensors are given in Table 4.1 [1]. 
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Table 4.1 Operational Modes of Thermal Mass Flow Sensors 

Heater Control → Heater Control → 
Evaluation ↓ 

Constant Heating Power 
Evaluation ↓ 

Constant Heater Temperature

Heater 
Temperature 

Hot-wire/Hot-
film Heating Power

Hot-wire/Hot-
film 

Temperature 
Difference 

Calorimetric 
Time-of-flight

Temperature 
Difference 

Calorimetric 
Time-of-flight 

 

Based on this observation, there are three types of thermal flowmeters: hot-wire/hot-film, 

calorimetric, and time-of-flight.  They are described below. 

4.1.3.1 HOT-WIRE AND HOT-FILM 

Both hot-wire and hot-film sensors operate on the heat loss from a hot body when exposed to 

fluid flow.  The components of such sensors include a flow channel, sensing element, and 

electronics for control and/or evaluation.  The sensor element can be fabricated from a variety 

of materials with different temperature dependencies.  Metals such as platinum or platinum 

alloys are frequently used.  For most materials, the temperature dependence is expressed as: 

 ( )0 0( ) ( ) 1R T R T T Tα= + −    (4.8) 

 
( )

where:
resistance at temperature 
temperature
temperature coefficient of resistivity (TCR).

R T T
T
α

=
=
=

 

The thermal flow characteristics of four operational modes covered by these sensors are 

shown in Figure 4-3 [4]. 



 

 

105

Figure 4-3 Hot-Film Operational Modes 

4.1.3.2 CALORIMETRIC 

Calorimetric sensors monitor the flow induced temperature profile asymmetry around a 

heating element.  At least one sensor upstream and downstream is required to implement 

calorimetric sensing.  This technique is sensitive to small flows and amenable to production by 

microfabrication techniques.  Also, the presence of multiple sensors allows for the detection of 

flow direction.  An analytical analysis of micro calorimetric flow sensors is given in [5].  For a 

simple, one-dimensional model of a micro sensor, the heater temperature is expressed as: 
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where:
heater temperature for constant heat power
heat power
thermal conductivity of fluid
heater width
heater length
boundary layer thickness
average flow velocity
thermal diffusivity of 
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The temperature difference between temperature sensors is given by: 

 2 1[exp( ) exp( )]h d uT T l lγ γ∆ = −  (4.10) 
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where:
temperature difference

distance to upstream sensor
distance to downstream sensor.

u

d

T

v v a
a

l
l

κ δ
γ

κ

∆ =

± +
=

=
=

 

4.1.3.3 TIME-OF-FLIGHT 

Time-of-flight flowmeters consist of a heater and one or more temperature sensors 

downstream.  A pulse of heat is imposed on the fluid by the heater and detected downstream.  

The time difference between the generation of the heat pulse to when it the maximum 

temperature at the downstream heater is reached is determined by the diffusivity of the fluid at 

low flow rates and by the heater-sensor distance ratio and average flow velocity at higher flow 
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rates.  By approximating the heater as a line source, the analytical solution for heat transport is 

[6]: 

 ( )2
0( , ) exp

4 4
x vtqT x t

kt atπ

 −
= − 

  
 (4.11) 
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where:
temperature distribution at time 
distance from heater
time
pulse signal input strength
thermal conductivity of fluid
average flow velocity
thermal diffusivity.
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The top time is defined as the point where the maximum temperature is reached at the sensor.  

The time of flight of the heat pulse is deduced from the top time and if the heater-sensor 

distance is hsd , it can be expressed as: 

 hsdv
t

=  (4.12) 

On microfluidic scales, diffusion effects will dominate over forced convection and so the top 

time is given by: 
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4.1.4 FLOW SENSING PARAMETERS 

Several parameters are commonly referred to when considering flow sensors.  Most 

importantly, the quantity measured, or volumetric flow rate, is given as: 

 dVQ vA
dt

= =  (4.15) 

 

where:
volumetric flow rate
volume through in time 
time
average velocity
cross-sectional area of channel.

Q
V t
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The range of operation, or the maximum and minimum flow rate measurable, is often used to 

evaluate flowmeters.  Another figure of merit is the sensitivity, which is the derivative of 

sensor signal with respect to flow rate or flow velocity: 

   or  dV dVS S
dQ dv

= =  (4.16) 

In the case of nonlinear flow characteristics, the sensitivity at zero flow is used: 

 0 0
00

 or  
vQ

dV dVS S
dQ dv →→

= =  (4.17) 
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The response time, or amount of time a sensor takes to stabilize after a change in flow rate, 

can vary as a result of a variety of factors including biasing conditions, construction materials, 

and sensor geometry.  Power consumption will vary based on the sensor principle applied. 

Flow in microchannels is typically laminar due to the small channel size and Reynolds number.  

The Reynolds number is a dimensional number used in fluid mechanics to show the relative 

importance of inertial effects to viscosity effects.  It is expressed as: 

 Re vL
ν

=  (4.18) 

 

Re
where:

Reynolds number
average flow velocity
characteristic length

kinematic viscosity

dynamic viscosity
fluid density.

v
L

µν
ρ

µ
ρ

=
=
=

= =

=
=

 

For microchannels, the cross-sections encountered can be rectangular, circular, or whatever 

shape is desired.  The characteristic length is determined by the channel geometry.  For 

rectangular cross-section channels, the hydraulic diameter, hD , is used.  It is a function of the 

cross-sectional area, A , and wetted perimeter, U , and is expressed as: 

 4 2
h

A whD
U w h

= =
+

 (4.19) 
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where:

width of channel
height of channel.

w
h
=
=

 

Finally, pressure loss can also be a factor.  A derivation of the pressure loss in a microchannel 

of rectangular cross section can be found in [7].  The resulting expression is a linear function 

of flow velocity: 

 3

12 lp Q
h w
µ

∆ =  (4.20) 

 
where:

pressure drop along channel
length of channel.
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4.1.5 A BRIEF HISTORY OF MICROMACHINED FLOW SENSORS 

Micromachined flow sensors have close to 30 years of developmental history with the goal of 

producing inexpensive, accurate, and reliable sensors in mind.  During this time, flow sensors 

have evolved with the advancement of microfabrication technology and to meet new needs.  

The first silicon based flow sensor was presented in 1974 and is based on thermal sensing 

principles [8].  Research on discrete, monolithic sensors continued into the 1980’s until the 

first sensor with an integrated channel was introduced in 1985 [9].  Prior to this work, sensors 

were brought into contact with the flowing medium.  By fabricating channels to constrain fluid 

flow, even smaller flow rates could be measured.  The recent trend in flow sensor research has 

been towards integration into complex microfluidic systems that include valves and pumps 

[10-13]. 
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Arguably the most popular implementation of micro flow sensors is of the heat transfer type.  

It is the most promising flow sensing principle for measuring very low flow rates (< 1 

ml/min).  Other factors contributing to the continued popularity of thermal flow sensing are 

that thermal sensors can be simple in both structural and electronic implementation.  It is no 

wonder that the bulk of micro flow sensor research has been focus on thermal principles.  

Several types of hot-film, calorimetric, and time-of-flight flow sensors have been implemented 

on the micro scale [5, 14-16].  Materials such as platinum, permalloy, gold, silicon, and doped 

polysilicon are used as sensing elements and heaters.  While micromachined thermal flow 

sensors have a vast number of potential applications, sensor drift and the dependence on 

chemical properties of the fluid need can be problematic.  Thermal flow sensors in certain 

configurations are also capable of determining thermal properties of the sensed fluid, such as 

thermal diffusivity and thermal conductivity [6, 17]. 

4.2 DEVICE DESIGN 

Two iterations of a biocompatible MEMS thermal flow sensing array have been developed.  

Flow sensing is achieved by measuring the forced convective heat transfer from a thermal 

sensing element to the fluid in three different modes: hot-film, calorimetric, and time-of-flight.  

In this implementation, a linear array of seven metallic sensing elements is placed on a 

membrane that forms one side of a channel measuring 1 mm × .5 mm × 8 mm (Figure 4-4).  

The resistive sensors are spaced 500 µm apart, center-to-center.  By implementing a resistive-

sensing array, it is possible to use the three operational modes in the same device. 

Materials for the different components were carefully chosen for this device.  The membrane 

is made of parylene C, the properties and merits of which were discussed in detail in Chapter 

2.  It serves to prevent the flow from directly interacting with the sensors while minimizing 
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thermal losses.  Platinum is chosen as the sensor for reasons that will be discussed in the next 

section. 

Figure 4-4 3D Views of the Flow Sensor 

4.2.1 PLATINUM AS A THERMAL SENSING MATERIAL 

Platinum is commonly found in temperature sensing devices for its stability, accuracy, and high 

temperature coefficient of resistivity (TCR).  It is known for its excellent corrosion and 

oxidation resistance, biocompatibility, temperature stability, and wide temperature range.  

Unlike some metals, resistance dependence on temperature is quite linear (Figure 4-5) [18].  

While Pt does not have the highest resistivity that can be found in metals, a reasonable TCR 

and other favorable characteristics make it a favorite in temperature sensing applications [19-

22].  The properties of platinum are summarize in Table 4.2 [23] and a comparison of TCR 

and resistivity of common metals is found in Table 4.3 [18]. 
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Figure 4-5 Electrical Resistivity of Platinum vs. Temperature 

Table 4.2 Mechanical, Physical, and Thermal Properties of Platinum  

Material Property Value 

Density 3( g cm )  21.45 

Hardness - Vickers 40-100 
Bulk Modulus (GPa) (polycrystalline) 276 
Tensile Modulus (GPa) (polycrystalline) 170 
Tensile Strength (MPa) 125-300 
Yield Strength (MPa) 14-185 
Melting Point ( C)°  1772 

Thermal Conductivity ( W m K )°  71.6 

Specific Heat @ 25 °C ( J K kg )°  133 

Coefficient of Thermal Expansion @ 0-100 °C -6( 10 K )°  9.0 

 

Table 4.3 TCR and Resistance Characteristics of Common Metals 

Material Resistivity, 8(10  m)ρ Ω⋅  at 20 °C TCR, -4 ( 10 K )α °  

Aluminum 2.69 42.0 
Copper 1.67 43.0 
Gold 2.30 39.0 
Iron 9.71 65.1 
Nickel 6.84 68.1 
Palladium 10.8 37.7 
Platinum 10.6 39.2 
Silver 1.63 41.0 
Tungsten 5.50 46.0 
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Thin film platinum in microfabricated devices is typically deposited using one of three 

techniques: ac sputtering, magnetron evaporation, and electron beam evaporation.  While 

nitrogen annealing may be required for Pt to adhere well to some materials, it is noted in [24] 

that Pt adheres very well to parylene C.  Patterning platinum is typically done either by lift-off, 

as is standard with metal microfabrication, or wet etching in aqua regia.  Wet etching, however, 

is difficult to control and can result in lateral undercut. 

In this particular sensor, the presence of parylene C requires that the maximum process 

temperature to be kept lower than about 150 °C.  This does not allow for the annealing of 

platinum to improve the TCR.  As noted in [21], the TCR of thin film platinum is lower than 

in bulk platinum.  This is especially true in sputtering and magnetron deposition techniques.  

The TCR of electron-beam evaporated Pt is quite close to that of the bulk material but high 

temperatures can be encountered during this process.  Thus, sputtered Pt is used to fabricate 

these sensors. 

4.3 FABRICATION 

Two separate device runs were processed.  The first sensor process flow was plagued by 

various problems.  These issues were solved in the second run through a special platinum lift-

off process and electroless gold plating of the contacts. 

4.3.1 PROCESS FLOW 1 

The first fabrication process is illustrated in Figure 4-6 and begins with a thermally oxidized (~ 

1.8 µm) wafer.  Although the actual channel is not etched until the end of the process, an etch 

stop must be placed down prior to depositing the membrane and sensors.  A groove to 

contain the channel etch stop material is patterned and etched 4 µm deep by DRIE.  The 
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groove is then filled in and planarized to the wafer surface with photoresist.  Perfect 

planarization is difficult to achieve in this situation and is the result of many problems later in 

the process. 

Figure 4-6 First Run Fabrication Process for Flow Sensor 

The entire wafer is covered in a 4 µm thick layer parylene C.  The parylene is patterned and 

etched away in oxygen plasma to expose oxide in the contact pad regions.  This step 

anticipates Au wire bonding to the Pt pads that occurs during the packaging process.  Wire 

bonding requires that the pad be on a rigid and hard material.  If, for example, a soft material 

such as parylene is used below the metal pad, the wire bonding process will puncture and 

destroy the pad before a connection can be made. 
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A thick 6 µm layer of photoresist is spun, exposed, and developed in preparation for sensor 

patterning via lift-off.  Thicker photoresist is required when lifting-off sputtered metal layers, 

as the coating tends to be more conformal than evaporated layers.  For lift-off to occur, the 

deposited metal layer needs to be discontinuous.  Pt sputtering is performed by the Lance 

Goddard Associates.  A 200 Å layer of Ti/W adhesion is sputtered first as an adhesion layer 

and then 2000 Å of Pt is sputtered on top.  The actual lift-off process involves dissolving away 

the photoresist underneath the metal, removing the metal at the same time.  Wafers were 

immersed in acetone and placed in an ultrasonic bath.  The agitation was supplemented by 

using a cleanroom swab or paintbrush to brush away loose metal flakes.  Ideally, only the metal 

deposited directly on the parylene survives this process.  However, the degree to which 

sputtering yields a conformal layer was underestimated, making this part of the process very 

difficult.  Also, the non-uniformity in the parylene surface due to the texture of underlying 

layers made it difficult for the metal to cover certain portions of the wafer.  The resulting 

patterned sensors were riddled with shorts and discontinuities that had to be removed 

manually.  This entails manually connecting the metal traces using silver paste and a fine 

paintbrush.  Photographs of the lift-off results are shown in Figure 4-7.  This concludes 

processing on the front side of the wafer. 
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Figure 4-7 Lift-Off Results of First Fabrication Run 

After protecting the features on the front side with a layer of photoresist, the channel is 

patterned on the backside.  The channel is then etched through the wafer to the etch stop via 

DRIE.  The wafer is diced and then membranes are released by removing the photoresist etch 

stop layer.  Individual dies are cleaned thoroughly to remove any remaining photoresist and are 

prepared for packaging. 

4.3.2 PROCESS FLOW 2 

The improved and streamlined process flow begins in the same manner as the original process 

(Figure 4-8).  Wafers are thermally oxidized (~ 1.8 µm).  This layer later serves as an etch stop 

and etch mask during channel formation by DRIE.  Parylene adhesion promotion to the oxide 

layer is performed and then parylene C is deposited (2 µm).  Again contact pads are patterned 

and the parylene in these areas is etched away by oxygen plasma for the same reasons 

previously mentioned.  Next, sensors are patterned using a special lift-off patterning technique. 
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Figure 4-8 Second Run Fabrication Process for Flow Sensor 

In the previous run, the conformal nature of the sputtered Pt prevented uniform lift-off.  To 

avoid having the problem reoccur, an undercut photoresist lift-off mask is used.  This specially 

designed technique is illustrated in Figure 4-9.  The purpose of this process is to prevent the 

sputtered Pt layer from continuously covering the sidewalls of the photoresist liftoff pattern.  

The strategy here is to use a double photoresist layer to modify the edge profile.  First, a thin 

layer of photoresist is spun (AZ1518 at 4 krpm for 40 s) and globally exposed.  On top of this 

layer, a second, thicker layer of photoresist is spun (AZ4400 at 4 krpm for 40 s).  The 

combined thickness of these two layers is approximately 4 µm.  A 0.4 s exposure is sufficient 

to process this composite layer.  Evidence of undercut of the first layer of photoresist is 

evident in exposure test patterns shown in Figure 4-10.  A comparison is shown between a test 

pattern that has been perfectly exposed and developed and one that has been completely 

undercut during development. 
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Figure 4-9 Process Steps for New Lift-Off Technique 

Figure 4-10 Comparison of Lithography Results for New Lift-Off Technique 

Another process modification to avoid lift-off problems is that the Pt layer thickness was 

reduced.  A 200 Å Ti/W adhesion layer and 1000 Å layer of Pt were sputtered offsite (Lance 

Goddard Associates).  Lift-off is accomplished using the same technique discussed previously.  

The results are much improved over the first run (Figure 4-11).  To protect these sensors, a 

second parylene layer is deposited (4 µm).  Prior to the deposition, the wafer surface is briefly 

cleaned in oxygen plasma.  Contact pads are patterned a second time and parylene is etched 

away, exposing Pt bonding pads.  These pads are plated with electroless gold, a process that is 

described in more detail in the next subsection. 
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Figure 4-11 Lift-Off Results of Second Fabrication Run 

After plating, the front side of the wafer is protected with a layer of photoresist.  The backside 

is patterned to define the channel.  DRIE is then used to etch the channel all the way through 

to the oxide etch stop.  BHF vapor etching is performed to release membranes.  Prior to 

releasing, the stress in the oxide layer is obvious upon visual inspection ( 

Figure 4-12).  Finally, the wafers are diced to separate individual devices.  Each device is 

cleaned thoroughly before packaging. 

Figure 4-12 Effects of Oxide Stress on Sensor Membrane 
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4.3.2.1 ELECTROLESS GOLD PLATING 

While it is possible to wire bond directly to platinum bond pads, it is by no means a trivial task.  

The Au-Au bonding systems are common and fairly well understood.  One method to deposit 

Au onto Pt is electroless Au plating.  The major benefit of using this technique for this 

particular application is that it is a low-temperature process.  The autocatalytic Microgold 

Additive Deposition System (usually used with Al) produced by Stapleton Technologies Inc. 

was adapted for use with Pt.  It is also possible to deposit solderable Au using this system.  

The process for electroless Au plating onto Pt bond pads is given in Table 4.4. 

Table 4.4 Process for Electroless Au Plating on Pt 

Process Step Description 

1.  Residue Removal If the wafer has been exposed to the ambient environment or handled 
extensively, it is necessary to remove built up residue.  This can be achieved by 
immersing in citric acid of 20 g/l at 40 °C for 10 minutes.  Adding a few 
milliliters of the MICRO 204 wetter into the citric acid solution will facilitate this 
process. 

2.  Oxide Removal If the wafer has been exposed to the ambient environment, it is necessary to 
remove built up oxide.  This can be achieved by immersing in a solution of 20% 
HCL at 40 °C for about 30 seconds. 

3.  Ni Plating Plate an Au adhesion promoting Ni layer to about 5000 Å or for a few minutes 
at 83 °C.  The solution make up is 500 ml/l of deionized water and 500 ml/l of 
MICRO 282SX. 

4.  Immersion Au Plate a monolayer of Au onto the Ni undercoat.  This step requires a 200 second 
immersion in a solution of 880 ml/l of deionized water and 120 ml/l MICRO 
290B at 88 °C. 

5.  Auto-Catalytic Au Plate Au until the desired thickness is reached.  The solution make up is 400 
ml/l of deionized water, 500 ml/l of MICRO 294A, and 100 ml/l of MICRO 
294B where the optimal concentration of Au in the solution is 4g/l.  Thick 
plates will require a concentration of 5 – 6 ml/l.  The process temperature is set 
at 70 °C. 

 

The first two steps clean and deoxidize the surface to be plated.  A descum and oxygen plasma 

ashing process can further improve the surface properties prior to plating.  Following cleaning, 

an adhesion layer is grown.  A thin Ni layer allows Au to stick to the bonding pad.  Then Au is 

deposited in two steps.  First, an immersion Au is used.  The purpose of this solution is to 



 

 

122
prevent Ni contamination from affecting the regular, auto-catalytic Au plating bath.  In 

addition, the immersion solution is cyanide based.  During plating, the solutions need to be 

stirred for maximum film uniformity.  The plating process is highly dependent on temperature 

and pH.  Frequently, temperatures may need to be lowered in order to protect the device being 

processed.  While plating will still occur, the rate will be reduced drastically. 

4.4 PACKAGING 

Both electrical and fluidic connections are required to operate the flow sensor.  First, to 

complete the micro channel, a glass backing plate with inlet and outlet holes is necessary.  

Glass plates are cut to match the die and the fluidic ports are drilled into them by using small 

diameter diamond mandrels on a Servo mini drill stand.  Epoxy is applied to seal the glass 

plates onto the sensor dies.  This assembly can then be mounted onto a printed circuit board 

for making electrical connections.  To do this, a slot is conventionally milled into the PCB to 

allow access to the sensor inlet and outlet.  Assembled channels are then glued to PCB and 

positioned such that channel is over the milled slot.  In this configuration, one side of the PCB 

is used for electrical connections and the other side allows for fluidic access.  Once the chip is 

secured to the PCB, gold wire bonding is performed to electrically connect the sensor to the 

PCB.  Later, wires can be soldered to the board for easy electrical access to the sensors.  

Finally, fluidic connections are made using silicon micromachined couplers described in the 

previous chapter.  PEEK tubing is used in conjunction with silicon post couplers to provide 

fluid to the channel.  Fully packaged sensors are shown in Figure 4-13. 
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Figure 4-13 Views of Packaged Sensors With Electrical and Fluidic Connections 

4.5 DEVICE CHARACTERIZATION 

Devices from both process runs were calibrated and characterized against fluid flow. 

4.5.1 TEMPERATURE CALIBRATION 

The resistance dependence on temperature is given by Equation 4.8.  To determine the TCR 

empirically, sensors subjected to known temperatures in a Delta Design 9010 Oven and their 

resistances at these temperatures were measured with an HP 34970A Data Acquisition System.  

Results for sensors from both process runs are given in Figure 4-14 .  The TCRs are 1.2 × 10-3 

/°C (0.12 %/°C) and 1.0 × 10-3 /°C (0.1 %/°C), respectively.  The relation is linear as 

expected, however a second order polynomial fit gives slightly better results. 

Figure 4-14 Temperature Calibration Curves for Both Flow Sensors 



 

 

124

As previously mentioned, this measured TCR of thin film Pt is much less than bulk Pt (3.92 × 

10-3 /°C or 0.392 %/°C).  It is possible that contributions from the gold wire bonds and other 

electrical connections account for some part of this difference.  However, it is well noted in Pt 

resistance temperature detector (RTD) fabrication, which uses Pt wire, that the best TCR 

values are obtained for only for the purest, unstrained Pt. 

The IV curve for the first generation sensor is shown in Figure 4-15.  As expected, it reflects 

the positive TCR coefficient of platinum and is relatively linear. 

Figure 4-15 Flow Sensor IV Characteristics 

The overheat ratio allows the temperature rise of the resistor to be calculated.  It is the ratio of 

the change in resistance to the original resistance and is derived from Equation 4.8: 

 0
0

0

( ) ( ) ( )
( )

 or R T R T RT T T
R T R

α α− ∆
= − = ∆  (4.21) 

Typically, the overheat ratio is made as high as possible to maximize frequency response and 

sensitivity.  However, in applications where temperatures must be kept low, tradeoffs are 
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necessary.  The relationship of resistance and overheat temperature to the applied current for 

the first sensor is given in Figure 4-16.  As this sensor is designed to be biocompatible and to 

be used with biological agents, an overheat temperature limit of about 10 °C is imposed.  

According to the graph, this condition can be met using a bias current of 8 mA which 

corresponds to an overheat temperature of 11 °C. 

Figure 4-16 Resistance and Overheat Temperature Dependence on Current 

4.5.2 HOT FILM MODE FLOW TESTING 

Hot film mode flow sensors can be operated using two bias schemes: (1) constant heating 

power or constant heater current and (2) constant heater temperature.  The latter requires 

additional feedback circuitry to main the heater temperature and is thus more difficult to 

implement.  However, compared to constant current operation, constant temperature 

operation usually has better frequency response.  Here, only constant current biasing is 

considered. 
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4.5.2.1 CONSTANT CURRENT OPERATION 

The testing setup for constant current operation of the first generation sensor is given in 

Figure 4-17.  An HP 34970A Data Acquisition System monitors the output voltage of the 

sensor while fluid is forced through the channel by a compressed nitrogen source.  The flow 

rate is adjusted by a metering valve and calibrated using a stopwatch and precision pipette.  An 

HP 3245A Universal Source holds the sensor bias constant at 30 mA.  This corresponds to an 

overheat ratio of 1.9% and power consumption of 36 mW. 

Figure 4-17 Flow Sensor Testing Setup 

The sensor response to flow rate was adjusted to remove the effects of ambient temperature 

fluctuations and is shown in Figure 4-18.  The sensor can resolve up to 10 µl/min flow.  

Commercial devices with such resolution are not currently available. 
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Figure 4-18 Uncorrected and Corrected Sensor Output vs. Flow Curves 

The second generation sensor was tested with an improved testing setup (Figure 4-19).  

Instead of using compressed nitrogen to force fluid past the sensor, a syringe pump is used to 

accurately supply filtered deionized water.  During flow testing, the sensor is placed in a 

thermally isolating enclosure to reduce adverse effects from ambient temperature fluctuations.  

In addition to hot-film mode operation, these sensors were also tested under the calorimetric 

and time-of-flight modes.  Results for these modes will be discussed later.  For hot-film 

operation, the sensors were biased at constant current and placed in a half bridge for 

temperature compensation purposes.  The bridge is zeroed using a precision multi-turn 

potentiometer.  The bridge output vs. flow rate was observed for three different overheat 

ratios Figure 4-20. 
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Figure 4-19 Improved Flow Sensor Testing Setup 

Figure 4-20 Flow Sensor Output at Three Different Overheat Ratios 

Sensitivity values can be calculated for the sensors from Equation 4.17.  The following table 

summarizes the sensitivity performance of the sensors based on the above results. 

Table 4.5 Sensitivities in Hot-Film Mode 

 1st Sensor 
2nd Sensor 

(∆TOH = 10°C) 
2nd Sensor 

(∆TOH = 15°C) 
2nd Sensor 

(∆TOH = 20°C) 

Units [mV/µl/min] [µV/µl/min] [µV/µl/min] [µV/µl/min] 
Sensitivity 0.10 3.45 5.11 2.67 
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4.5.2.2 KING’S LAW 

It is useful to compare the sensor output results with King’s Law.  This heat transfer law for 

hot wire anemometry describes heat transfer from a cylinder of infinite length: 

 ( ) nV v a bv∆ = +  (4.22) 

 

, ,

where:
flow induced voltage difference
velocity
constants.

V
v

a b n

∆ =
=
=

 

For the first sensor, good agreement with King’s Law is obtained for the following constant 

values (Figure 4-21): 

 
0.8559

0.8788
0.51.

a
b
n

=
= −
=

 

Figure 4-21 Agreement of Sensor Output With King’s Law 
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4.5.2.3 TRANSIENT RESPONSE 

The transient response was also evaluated for the first sensor.  Results for sensor response at 

zero flow and non-zero flows are given in Figure 4-22.  As expected, the device responds more 

quickly to higher flow rates. 

Figure 4-22 Sensor Response at Various Flow Rates 

Based on the behavior seen above, the transient output voltage is governed by two time 

constants.  In other words, it can be expressed as the superposition of a short and long time 

response (two exponentials).  Time constants were measured for various flow rates and fitted 

(Figure 4-23).  The shorter time constant follows this relationship: 

 1 2
1( ) 0.987 0.0266 0.00026Q Q Qτ = − +  

The longer time constant can be estimated by: 

 1 2
2 ( ) 57.419 3.811 0.064543Q Q Qτ = − +  

The first time constant is typically less than 1 s and the second ranges from 10 to 60 s.  These 

decrease as flow rate increases. 
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Figure 4-23 Short and Long Sensor Time Constants 

4.5.3 CALORIMETRIC MODE FLOW TESTING 

Calorimetric testing involves measuring the displacement of the temperature profile around a 

heating element.  As the flow sensor consists of an array of resistive sensors, calorimetric 

operation can be achieved by converting a sensing element into a heater.  The responses from 

sensors on either side of the heater are simultaneously monitored.  Both symmetrical and 

asymmetrical upstream and downstream sensor arrangements can be investigated.  The heater 

is biased at 5 mA, which corresponds to a local rise in temperature of 15 °C.  Both the 

upstream and downstream sensors are placed in a bridge.  The bridge output for sensors 

spaced asymmetrically around a heater is shown in Figure 4-24. 



 

 

132

Figure 4-24 Calorimetric Testing Results 

4.5.4 TIME-OF-FLIGHT MODE FLOW TESTING 

Time-of-flight flow sensing involves tracking a heat pulse from an upstream heater.  Again, a 

resistive sensing element can be converted to a heater for this mode of operation.  The sensor 

response to a single heat pulse (3 V in amplitude and 1 s duration) is shown in Figure 4-25.  

The local temperature rise is approximately 24 °C for these settings.  A bridge is not required 

and the sensor output is read directly using the data acquisition system. 

The quantity of interest in time-of-flight operation is the “top time,” or time at which the 

maximum temperature is reached at the sensor.  This corresponds to the time at which the 

heat pulse response of the sensor peaks.  The top time is plotted against flow rate in Figure 

4-25.  The temperature sensed at the heater is calculated and also displayed.  It is also 

interesting to superimpose all of the detected heat pulses in one graph.  The difference in heat 

dissipation between lower and higher flow rates can easily be seen (Figure 4-26). 
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Figure 4-25 Heater Response to a Heat Pulse and Time-of-Flight Results 

Figure 4-26 Superimposed Detected Heat Pulses at Different Flow Rates 

4.5.5 BUBBLE DETECTION 

As the heat capacities of air and water are quite different, the heat transfer when an air bubble 

passes a biased sensor drops off dramatically.  This phenomenon is potentially useful for 

determining the passage of solid particles.  The signal output during the passage of a bubble 

train was recorded (Figure 4-27).  Bubble events are clearly indicated.  In addition, the widths 

of the bubble event peaks roughly correspond to the size of the bubble. 
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Figure 4-27 Sensor Response to the Passage of an Air Bubble Train 

4.6 DISCUSSION OF MULTI-MODE TESTING RESULTS 

A comparison of the testing results of the various operational modes shows that the 

calorimetric principle yields the best results in terms of sensitivity over a wide range of 

operation (0.5 to 300 µl/m).  The hot-film technique lacks resolution at lower flow rates, and 

below 5 µl/m, flows are difficult to observe.  Time-of-flight sensing yields good results for a 

specific flow range that is neither high nor low.  While it was not shown using this sensor, it is 

also possible to determine the direction of fluid flow using a combination of two sensors. 

One of the drawbacks of using thermal sensing is that a calibration must be performed for 

each type of liquid that needs to be measured.  The variation in response due to heat capacity 

differences between fluids can be exploited.  If a library of calibration curves for different 

fluids is compiled, the sensor can then be used to determine the identity of unknown samples.  

It is also possible to configure the sensor to measure different thermal quantities of the fluids. 
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4.7 SUMMARY 

The first parylene MEMS thermal sensor array capable of detecting small flows down to 0.5 

µl/min has been demonstrated. Because of the array design, for the first time we are able to 

study and compare the insightful results from three different methods of flow sensing using 

one single device. By using parylene and platinum to construct the device, it is suitable in 

applications requiring biocompatibility and minimal heating (<20 °C) of the sensed medium. 
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CHAPTER  5  

A MEMS FLUID DOSING SYSTEM 

Recently, there has been a great deal of interest in creating microfluidics for use in the 

chemistry and biology.  The possibility of systems level microfluidics promises improved 

performance and functionality.  By virtue of miniaturization alone, traditional processes can 

benefit from faster processing times and lower consumption of expensive reagents.  There is 

also the intriguing possibility that new solutions to studying interesting problems in chemistry 

and biology will be available by using microfluidic techniques. 

5.1 MICROFLUIDIC SYSTEMS 

Few question the benefits of moving towards microfluidic systems for biological and chemical 

applications.  In fact, several commercial efforts have embraced the new technology and are 

actively marketing pioneering products in the field.  Agilent’s now has a whole line of Lab-on-

a-Chip products aimed at bioanalysis.  Their primary product relies on a single platform to 

perform processes from protein purification to RNA isolation.  Caliper Technologies 
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Corporation producers a high throughput screening system that allows for tens of thousands 

of experiments on a single chip that require only nanoliters of reagent.  Academic researchers 

have also made significant contributions to the advancement of systems level microfluidics.  

One area of interest is in fluid dosing applications [1-4]. 

Micro-dosing systems are referred to as micro-dispensers, micro-injectors, and micropipettes.  

One might typically use a dosing system at the front end of an analysis system to provide 

accurate fluid doses or flow rates.  There are two categories of dosing systems: (1) open loop 

and (2) closed loop.  Open loop systems can actually be a single device that generates identical 

droplets or in-channel dispensers that deliver fixed flow volumes.  While simplistic and easy to 

implement in massively parallel dosing schemes, open loop systems are not suitable for 

continuous flow applications.  Closed loop systems are ideal for continually monitoring and 

adjusting the flow rate.  An electrical signal from the sensor is fed back to the fluid actuator to 

make this adjustment.  The components required to implement a closed loop fluid dosing 

system are a fluid actuator, flow sensor, fluidic interconnects, and control and bias electronics. 

5.2 DOSING SYSTEM CONSTRUCTION 

To demonstrate the possibility of using MEMS devices and technology to create integrated 

microfluidic systems, a fluid dosing system was assembled from the components previously 

presented.  Here, the check-valved diaphragm pump is connected to a downstream flow 

sensor aided by fluidic couplers and tubing.  For simplicity, closed-loop control is not 

implemented.  Alternatively, the flow sensor can also be placed upstream, between the pump 

and fluid supply.  The schematic of the system demonstrated here is shown in Figure 5-1. 
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Figure 5-1 Schematic of Micro Dosing System 

5.3 TESTING RESULTS 

To show the ability of the micro flow sensor to measure flow for the purposes of flow 

regulation, a solenoid-actuated micropump was attached to it.  Filtered deionized water was 

pumped through the system to a calibrated micropipette were the flow rate was measured by a 

stopwatch.  The flow sensor was operated in time-of-flight mode using a 3 V, 1 s electrical 

pulse. 

A comparison of the detected signal in terms of resistance change at 0 flow and at 46 µl/m is 

shown in Figure 5-2.  Values for top times and response peaks for both signals are indicated.  

The solenoid actuation frequency necessary to provide this flow rate is 10 Hz.  Noticeable 

roughness exists at the peak of the 10 Hz signal.  This is most likely due to the pulsing effect 

of the micropump.  Each pump cycle results in the ejection of a plug of flow.  However, in the 

ideal case, the supply cycle results in no flow.  Thus, flow is not entirely continuous.  This 

effect is more pronounced at lower flow rates.  It may be possible to provide more continuous 

flow by chaining two micropumps together an operating them at out of phase. 
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Figure 5-2 Flow Sensor Response to Micropump Induced Flow in Time-of-Flight Mode 

5.4 DISCUSSION 

Although time-of-flight mode testing is not ideal for non-continuous flow analysis, it can yield 

some information about the flow.  For the particular case of flow pulsing seen in the 

micropump, the relative effect at different actuation frequencies can be visualized using time-

of-flight testing.  As previously observed, the flow sensor response curves exhibit roughness.  

At lower frequencies (<10 Hz), the roughness is large and pulsing is evident.  At higher 

frequencies (> 10 Hz), the curves are smoother but the top time peaks are flattened.  These 

results correlate well with visual observations of the flow at these frequencies.  The signals 

deviate significantly from those in Figure 4-25, where the flow sensor was provided 

continuous flow by a syringe pump. 



 

 

143

Figure 5-3 Pump Behavior Analysis by Time-of-Flight Flow Testing 

This system demonstrates the feasibility and usefulness of an integrated dosing system.  A 

further refinement on this system would be to scale the entire system down to chip level.  In 

applications where small flow rates are desired, a surface micromachined channel with 

integrated flow sensor and pump can be designed.  Fluidic couplers can be used to provide 

fluidic access to the device.  In addition, it is easy to include valving structures. 

5.5 SUMMARY 

A system level implementation of MEMS fluidic devices has been presented using 

interconnected discrete devices.  A micro diaphragm pump and fluid flow sensor are 

connected using microfluidic couplers to form a fluid delivery system.  The flow analysis 

capability of a micro thermal flow sensor in a fluid dosing system has also been demonstrated.  

Further miniaturization of this system by surface micromachining can result in a chip level 

system.
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CHAPTER  6  

CONCLUSION 

For a MEMS micro fluid dosing system to be realized, several components are necessary.  The 

essential components include a fluid actuator, a fluidic control device, and micro plumbing.  A 

prototype fluid delivery system is demonstrated here using a micropump as the fluid actuator, 

a thermal flow sensor as the fluidic control device, and micromachined couplers as plumbing.  

The technology to build these components has been developed and each of these components 

have been fabricated and tested. 

Various micro diaphragm pumps were designed to achieve the maximum flow rate possible 

using microfabricated parts.  For the first time, high-flow parylene check valves are 

demonstrated for flow rectification in pumping applications.  A new double-sided check valve 

process was designed and fabricated in two flavors, including a novel three check valve array 

format.  Additional technological improvements include the usage of a bossed silicone 

membrane to improve pump performance at higher frequencies and silicone gaskets for 
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watertight sealing.  Both pneumatic and external solenoid actuation were explored.  High water 

flow rates of up to 13 ml/min and a maximum back pressure of 5.9 kPa were achieved 

through pneumatic operation with an external compressed air source.  Using a custom 

designed solenoid actuator, flow rates of up to 4.5 ml/min and a maximum back pressure of 

2.1 kPa have been demonstrated. 

Microfluidic devices require custom solutions to achieve fluidic and electrical interconnects in 

the same real estate.  To successfully connect to a wide variety of microfabricated fluidic 

devices, a family of couplers were created that take into account the most commonly 

encountered geometries of fluidic ports in the various types of construction materials used.  In 

addition, the technology used in fabricating the couplers is amenable to creating couplers with 

any arbitrary two-dimensional shape.  Four types of couplers adapted for compatibility with 

PEEK and fused silica capillary tubing were designed, fabricated, and tested.  The large 

operational range of up to 1 × 104 kPa (1500 psi) allows flexibility in both high- and low-

pressure applications.  These couplers have been implemented in bulk and surface 

micromachined channel systems. 

Flow sensing plays a crucial part in flow control.  For micro flow sensing applications, thermal 

sensing arrays provide many advantages over other methods including simplicity of fabrication 

and implementation.  The first parylene MEMS thermal sensor array has been demonstrated.  

Furthermore, this device is constructed of parylene and platinum, making it suitable for 

applications were biocompatibility is necessary.  This sensor is integrated into a bulk 

micromachined channel and is capable of detecting flows down to 0.5 µl/min.  By virtue of 

the array format, it is possible to study and compare insightful results from three different 

methods of flow sensing using one single device.  The methods demonstrated here are hot-



 

 

149
film, calorimetric, and time-of-flight.  Only minimal heating of the sensed medium is required 

in the operation of this device (<20 °C).  The potential application of bubble detection has 

also been demonstrated. 

Discrete system components were joined using micromachined couplers to assemble a micro 

dosing system.  Analysis of the non-continuous flow characteristic of cycled micro diaphragm 

pump operation was performed using time-of-flight sensing methods.  This demonstrated yet 

another facet of thermal flow sensing.  By scaling this discrete system down into a surface 

micromachined channel with integrated pump and flow sensors it is possible to remove 

troublesome external connections between the fluid actuator and flow sensor.  While other 

pump actuation methods and layouts may be necessary for channel integration, the thermal 

flow sensor requires scaling alone.  Micromachined fluidic couplers can conveniently bring 

fluid into and out of such a system. 

All the necessary components for a micro fluid dosing system have been demonstrated here.  

A prototype constructed of discrete components has also been shown.  Both the pump and 

flow sensor can be scaled down to provide a truly integrated, channel-based fluid dosing 

system. 
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