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Abstract

The non-Newtonian effects of semi-dilute polymer solutions in laminar two-
dimensional steady and time-periodic strong flows are examined separately in two
parts of this thesis. Strong flows are flows that can induce large deformation of
the polymer molecules. The first part of this thesis is the study of flow-induced
stretching of macromolecules in semi-dilute solutions and the subsequent modifica-
tion to ezxtensionalflows in a two-roll and a four-roll mill. Experimental results are
presented for flow birefringence, which provides a measure of the degree of polymer
extension. In addition, we report on velocity gradient measurements via the tech-
nique of homodyne light scattering for solutions of various polymer concentrations
in the dilute to semi-dilute regime. Model predictions are also discussed using an
interacting dumbbell model. In the second part of the thesis, we examine fluid
mixing and transport in two-dimensional time-periodic Stokes flows produced in a
blinking two-roll mill (BTRM) for both Newtonian and polymer solutions. Here,
we report experimental data obtained by the technique of flow visualization using

dye tracer, as well as quantitative measurements using a digital imaging technique.

The flow birefringence results for 100, 1500, and 4500 ppm polystyrene in
viscous solvents indicate that increasing concentration will inhibit stretching of
polymer molecules due to strong intermolecular interactions. The birefringence
data for all three solutions correlate with the eigenvalue of the velocity gradient
tensor for different extensional flows in the 2-roll and the 4-roll mill. Inception
and cessation of steady extensional flows show distinctive overshoots in birefrin-
gence for the semi-dilute (1500 and 4500 ppm) solutions. Complementary velocity
gradient measurements show a significant inhibition of large strain rates when
a sufficient amount of eztended polymer is present (the dilute 100 ppm solution
shows no flow effect). The onset of polymer-induced changes in the flow (flow
modification) occurs at a critical effective volume concentration, ¢. ~ 175, based

upon the volume of spheres that circumscribe the extended polymer chain, for
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both semi-dilute solutions. The magnitude of flow modification is larger in the
less concentrated 1500 ppm solution due to the competing effects of increasing
concentration and the inhibition of polymer extension which tends to lower the
effective volume concentration, ¢.s¢. The correlation of the magnitude of flow
modification with ¢.ss is revealed by the local (pointwise) velocity gradient mea-

surements for different concentration polymer solutions.

Various molecular models for non-dilute polymer solutions are discussed.
The best comparison with the present flow birefringence data is obtained from
the predictions of an interacting nonlinear elastic dumbbell (FENE-IDB) model.
The FENE-IDB model predictions show a smooth transition of dilute solution
behavior to semi-dilute solution behavior. In dilute solutions, the birefringence
normalized with polymer concentration (or specific birefringence) is independent
of concentration, c. However, the specific birefringence is proportional to ¢~ when
plotted versus the dimensionless eigenvalue of the velocity gradient tensor, vV,
for semi-dilute solutions. We also noted that the relaxation time of polymer, 7, is

dependent on ¢ for semi-dilute solutions.

Studies of mixing and fluid transport properties in time-periodic laminar
BTRM flows are first performed for Newtonian solutions. Fluid mixing is shown
to be either reqular or chaotic depending on the characteristic period of oscillation,
. Chaotic (efficient) mixing is achieved globally in the flow device when u > 0.5.
The results in the mixing study can be compared qualitatively with dynamical
systems theory predictions of chaos in time-periodic vortex-pair flows. The effect
of polymer (a 1500 ppm solution of polystyrene in viscous solvent) on chaotic
mixing and fluid transport in the BTRM flows is an O(1) decrease in both the
area of mixing and the rate of fluid transport between different regions of the flow
when compared with the corresponding Newtonian data. The onset of the polymer
effect on the flow occurs at a critical Deborah number of (De), ~ 2. This high
De effect may be related to polymer-induced changes to both the weak and strong
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flow regions in the BTRM since the time-periodic flow is alternatively strong and

mostly weak in the Lagrangian frame of reference.
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INTRODUCTION

Dilute polymer solutions in strong flows have been shown to exhibit dramatic
non-Newtonian effects. Strong flows correspond to flows that are capable of in-
ducing large deformation of the polymer molecules. Specifically, a linear polymer
chain in a strong flow can be extended exponentially in time. The dilute solutions
exhibit no measurable non-Newtonian flow effects in simple shear flow, which is
classified as a weak flow. The well-known Toms phenomenon [1] of turbulent drag
reduction in pipe flows due to the presence of a minute amount of polymer addi-
tive in a solution is the classical, and the ealiest (discovered in 1948) example of
a strong flow effect for dilute polymer solutions. Although turbulent flows cannot
be characterized in detail to determine the existence of critical strong flow condi-
tions for polymer stretching, the local flow structure of turbulent pipe flow near
the wall is likely to provide an extensional component (time-dependent) in the
flow. Indeed, Batchelor [2] has shown using a simple model for particle motion
in homogeneous turbulence that exponential stretching of material line can occur
in these turbulent flows. In addition, experimental observations of a sharp pres-
sure increase in laminar flow through porous media [3] and in sink flow [4], and
inhibition of large strain rates in two-dimensional extensional flows [5], have also
suggested that the polymer-induced flow effect in dilute solutions is the result of

large deformation of polymers that are oriented and stretched by a strong flow.

In order to understand the strong flow effects, it is important to study both
the effects of the flow on polymer conformation and the effect of the polymer
on the flow. A two-roll and a four-roll mill can provide an approximation of
two-dimensional linear extensional (strong) flows that are well-characterized by
previous investigators from this laboratory [5,6]. In Chapter I, the technique of
flow birefringence, which provides a measure of polymer extension, and velocity
gradient measurements using homodyne light scattering, are performed on poly-

mer solutions with concentrations in the dilute to semi-dilute regime in steady
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extensional flows generated by the two-roll and the four-roll mill. Transient flow
birefringence experiments are also performed for inception and cessation of steady
extensional flows. We are interested in the effect of increasing concentrations on
flow-induced stretching of polymer and subsequent flow modification. The onset
and magnitude of flow modifications are found to be dependent on an effective
volume concentration based upon the volume of spheres which circumscribe the
extended polymer molecules. The degree of flow modification also shows a correla-
tion with the effective volume concentration using different concentration polymer
solutions. The results may provide an explanation for the observation of maximum

drag reduction with increasing polymer concentrations.

The flow birefringence data are useful for testing dumbbell models for non-
dilute polymer solutions. In Chapter II, an interacting FENE dumbbell (FENE-
IDB) model is developed for semi-dilute polymer solutions in two-dimensional ex-
tensional flows. The theory is based on a Hookean dumbbell model for interacting
dumbbells proposed by Hess [7]. The effect of a nonlinear spring (Warner spring)
is examined. The predicted dynamic behavior of the polymer in extensional flow
is distinctively different from dilute solution behavior. A polymer molecule in di-
lute solution can be extended to its full contour length by the extensional flow,
whereas a significant decrease in the degree of extension of polymer is predicted
for semi-dilute solutions. Model predictions agree well with steady birefringence
data that show inhibition of stretching as the polymer concentration is increased,

presumably due to an increased level of intermolecular interactions.

The studies above are for steady flows and show localized interaction between
the polymer and the flow. However, polymer molecules in turbulent flow would
experience a complicated time-dependent flow history. The blinking two-roll mill
(BTRM) is built to provide a time-periodic laminar flow that shows chaotic particle
motion when the strength of the flow is sufficiently large. The dynamics of dilute

polymer solutions in the BTRM flow is more directly relevant to the polymer
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behavior in the context of turbulent drag reduction, than studies in steady flows.
First, from the Lagrangian frame of reference seen by a polymer molecule, the
BTRM flow is alternatively strong and (mostly) weak and this is similar to the
environment seen by a polymer in a turbulent flow. Second, the region of the
flow domain where the flow is strong on average, in the sense that there is an
exponential separation of material points, is substantial — in fact the region covers
the whole of the two-roll mill for a high enough roller speed or a long enough

period for blinking.

Before the study of the effect of polymer in time-periodic flows, the charac-
teristics of the BTRM flow is first investigated using Newtonian fluids. The results
are presented in Chapter III. The essential proofs, such as the existence of Smale
horseshoe structure or a positive Liapunov exponent, for chaos in the context of
dynamical systems theory, are revealed by performing mixing experiments using
the techniques of flow visualization with dye tracer and quantitative measurements
using digital imaging analysis for Newtonian solutions in the BTRM flows. The
rate of interfacial area generation, the area and regions of chaotic mixing, and the
rate of fluid transport (redistribution of fluid elements) between various regions
of the flow are obtained from the quantitative measurements. The results can be
compared qualitatively with theoretical studies of time-periodic vortex-pair flows

by Aref [8] and Rom-Kedar et al. [9].

The mixing results for Newtonian fluids indicate the potential for a strong
flow effect with polymer solutions in the BTRM flow. In Chapter IV, experimental
evidence of non-Newtonian effects for a dilute polymer solution in the BTRM flow
is reported. The area of chaotic mixing and the rate of fluid transport show an O(1)
decrease when compared with the corresponding Newtonian results. The onset of
polymer effect on the flow occurs at a critical Deborah number of (De). ~ 2. This
high De effect for dilute polymer solution may be related to the polymer-induced
changes in both the weak and strong flow regions of the BTRM flow.
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Abstract

The effect of polymer concentration on flow birefringence and flow modifica-
tion (polymer-induced changes on the flow field) in two-dimensional extensional
flows for polystyrene solutions with concentration from dilute to semi-dilute regime
in a two-roll and a four-roll mill are examined. The experiments are performed
using the techniques of flow birefringence which provides a measure of macro-
molecular extension, and homodyne light scattering which directly measures the
velocity gradient in the flow field. The concentration of the polymer solutions are
1500 and 4500 ppm that correspond to ~ 0.33 and 1.0 xc*, the critical concentra-
tion for domain overlap of the coiled polymer molecule at equilibrium, respectively.
Results from a dilute 100 ppm solution of the same polymer sample by previous
investigators [8] are also presented for comparison. From the steady flow bire-
fringence results, high concentration appears to inhibit extension of the polymer
chains due to intermolecular interactions. In addition, inception and cessation
of steady flow experiments show distinctive overshoots in birefringence. Various
molecular models for non-dilute polymer solutions are discussed and compared
with flow birefringence data. The main result in this study is that the semi-dilute
polymer solutions (1500 and 4500 ppm) show significant inhibition of high strain
rates as is evident from the velocity gradient measurements. The decrease in ve-
locity gradient from the Newtonian value is up to 28% in the 4-roll mill and 20%
in the 2-roll mill. The onset of flow modification corresponds to a critical effective
volume concentration of spheres circumscribing the extended polymer chain to be
¢ ~ 175 for both semi-dilute solutions. The degree of flow modification also shows
correlation with ¢ using different concentration polymer solutions.



1. Introduction

The interesting Toms phenomenon [1] of drag reduction, where the presence
of a minute amount of polymer additive in a solution causes a great reduction
in drag in turbulent pipe flow, provides one strong motivation for studying the
dynamic behavior of dilute solutions of macromolecules in flow. These long chain
molecules respond to straining forces in a flow by deforming and reorienting from
their initial or equilibrium configuration. This macromolecular motion can give
rise to non-Newtonian fluid behavior, even in solutions of only a few parts per
million by weight (ppm) of the polymer. The deformation (conformation change)
of a flexible polymer induced by a strong flow [2,3] corresponds to the so-called
coil-stretch (C-S) transition, in which the equilibrium coiled configuration of the
polymer chain extends abruptly to a near fully stretched state. Important indi-
cations of the C-S transition in dilute polymer solutions include a sharp pressure
drop increase in flow through porous media [4] and in sink flow [5]; the abrupt
onset of flow birefringence in stagnation flows of various geometry [6-8]; and drag

reduction in turbulent pipe flows [9,10].

In order to understand the effect of flow induced stretching of dilute poly-
mer solutions on a flow field, previous investigators from this laboratory [7,8] have
applied flow birefringence and homodyne light scattering techniques to provide,
respectively, a direct indication of thé C-S transition and the detection of a sig-
nificant decrease in the velocity gradient relative to that for a Newtonian fluid.
Dunlap and Leal [8] correlated the onset of a polymer-induced decrease in the
velocity gradient (we will refer to this polymer-induced effect as flow modification
throughout this paper) to strong interactions between the stretched polymer chains
aligned locally along the outflow axis near the stagnation region of a four-roll mill.
Their measurements suggested that the necessary condition for flow modification
was that an effective volume concentration based on spheres circumscribing the

elongated polymer chains must exceed ~ 4000 — 6000. They also estimated that
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the corresponding increase in elongational viscosity (or equivalently extra stress)
due to the stretched polymer was around ~ 500 times that of the solvent. There-
fore, the dilute polymer solution appeared to inhibit development of high strain
rates due to this apparent increase in elongational viscosity. However, Dunlap and
Leal only found an O(1) change in the velocity gradient even though the estimated
extra stress due to polymer stretching is of O(10?). Since one would expect to see
an influence on the flow for even an O(1) increase in polymer stress, Dunlap and
Leal suggested that the polymer effect may be so localized in their flow device that
changes in the flow are difficult to detect with a scattering volume that is ~ 150um
in diameter ( 1/40'" and 1/200%* of the gap between the opposing rollers in the
2-roll and 4-roll mills, respectively). Thus, it was hypothesized that actual onset
of flow modification did not show up until the polymer effect had spread over a
region of size comparable to the scattering volume. With higher concentrations,
the birefringence is initially spread out over a larger region of the flow field and

this question is not so significant.

Delocalization of birefringence for moderately concentrated polymer solu-
tions has, in fact, been demonstrated by earlier investigators [11-14]. In addition,
Gardner et al. [11] have measured flow modifications for polymer solutions in
a cross-slot device using laser-doppler velocimetry. However, these investigators
could detect an effect of the polymer only when the polymer concentration was
above the critical value c¢*, corresponding to the existence of polymer-polymer
interactions in the equilibrium state. In the present study, we compare rheolog-
ical properties of polymer solutions with concentrations well below and near the
critical concentration c*, using both birefringence and pointwise velocity gradient
measurements by homodyne light scattering to provide a correlation between poly-
mer conformation and flow modification. The application of the homodyne light
scattering technique to study the flow has a definite advantage over conventional

laser velocimetry studies. In particular, Dunlap and Leal [8] have already pointed
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out the better sensitivity of homodyne light scattering (which directly provides
velocity gradient data) relative to the LDV technique used by Gardner et al. [11].

In the present work, we considered concentrations in the transition regime
between dilute and semi-dilute in order to achieve a qualitative understanding
of the role of intermolecular interactions and high effective volume concentration
on the onset of stretching, the transition from coil to stretch (C-S) state, and
flow modifications. Our studies include both steady state and transient data,
for flows generated in a four-roll and two-roll mill where the velocity v is given

approximately by

vV ="y (P . l‘) (1)
where
01 0
'=1X 0 0 , -1<A<1
0 0 O

The range of flow types in this study is for A > 0 which is in the strong flow
regime necessary for high chain extension [3,15]. The transient birefringence data
is particularly interesting because birefringence overshoot has been observed by
Fuller and Leal [16] for start-up of a pure straining flow in the 4-roll mill for
moderately concentrated polymer solutions. Fuller and Leal related the over-
shoot phenomenon to predictions of a temporary entanglement network theory
[17]. However, no overshoot was observed either experimentally and theoreti-
cally for dilute solutions in these strong flows. It is therefore interesting to study
transient behavior of polymer solutions in the intermediate concentration regime.
Time-dependent birefringence results are presented here for both the inception
and cessation of steady extensional flows in the two-roll and four-roll mills. Pro-
nounced overshoots in birefringence were detected when the shear rate exceeds a

critical value in these semi-dilute solutions.
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The relevance of studying different polymer concentrations in the drag re-
duction context is due to the fact that the degree of drag reduction reaches an
asymptote with increasing concentration, even though it is found to increase pro-
portionally to concentration for extremely dilute solutions. The polymer concen-
tration which exhibits maximum drag reduction is of the order of one tenth of the
critical (entanglement) concentration c* [18]. Therefore, the response of polymer
molecules to straining flow in the concentration regime between dilute and con-
centrated solutions should provide a better understanding of the inhibition of drag
reduction by too large quantities of polymer in a solvent. Berman [9] was able to
correlate drag reduction in turbulent pipe flow for dilute and semi-dilute solutions
of flexible polymer with concentration to the one-half power and interpreted this as
a result of high effective volume concentration and molecular interactions. We will
show that the changes of flow measured in this concentration regime also exhibit
a similar inhibition with increasing concentration in the ability of the polymer to

produce a decrease in the strain rate.

We will briefly discuss experimental details. Then, results for flow birefrin-
gence (in steady and transient flows) and homodyne light scattering (in steady
flows) for polystyrene solutions with concentration in the dilute to semi-dilute
regime will be presented in the following sections. The onset and degree of flow
modification show a correlation with both the polymer extension and polymer
concentration. Since the birefringence data can provide a measure of polymer ex-
tension, predictions from non-dilute molecular models can be tested with the data.
This may explain certain features that are observed experimentally. In particular,
in the present study, the birefringence data are compared with predictions from an
interacting FENE dumbbell model which combines a polymer-polymer interaction
(force) term introduced by Hess [19] with the dilute FENE dumbbell model in an

attempt to account for non-dilute concentration effects.
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2. Experimental Details

Experimental investigations of the dynamics of semi-dilute polystyrene so-
lutions were conducted in both a four-roll mill and a two-roll mill using a flow
birefringence technique to provide a measure of macromolecular extension, and
homodyne light scattering to study flow modifications (velocity gradient changes)
in the polymer solutions. The characteristics of the polymer solutions, the homo-
dyne light scattering technique, the flow devices, and experimental techniques for

steady and transient flow birefringence are discussed next.
2.1 Materials

The polymer used is a polystyrene sample (PS2) of M,, ~ 1.86 x 10® and
polydispersity index M, /M, = 1.06, manufactured by Pressure Chemical Co.
The solvent (TCP6) is a low M, ~ 6000 polystyrene from Polysciences dissolved
in tricresylphosphate(TCP). In order to achieve high viscosity and thus keep all
experimental runs at a low Re number (< 5) even at the highest strain rates, 10%
by weight of the low M, sample is needed as a thickener. The low M, sample was
first dissolved in TCP with gentle heating and stirring. Dissolution took about
a week. Then, the solvent TCP6 Wés filtered through a 0.22pum Duropore filter
by Millipore. This step is essential for the dynamic light scattering experiments
discussed below. High molecular weight PS2 is then added to TCP6 with heating
at ~ 45°C and slow stirring. Two concentrations of 1500 and 4500 ppm PS2 were
prepared independently in solvent TCP6. These polymer solutions appeared to

be optically clear after about a week of heating and stirring.

Another batch of polystyrene (PS2) from Pressure Chemical was also used
in a preliminary experiment. This sample had a polydispersity index of 1.30 and
a slightly higher M, of 2 x 108. This fairly monodisperse polymer was dissolved
in a high viscosity mixed solvent (CW) which is a mixture of 40% by weight TCP
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and 60% Chlorowax 40 (CW40), a chlorinated paraffin product from Diamond
Shamrock. Chlorowax is a rather poor solvent for polystyrene but its high vis-
cosity (~ 50 poise) and compatibility with TCP and polystyrene are desirable for
increasing the solution viscosity. The polymer was first dissolved in the better
solvent TCP with warming at ~ 35°C. Then, CW40 was added to the mixture to
increase the solution viscosity. Gentle heating and stirring were necessary to speed
up the dissolution process. This solution took more time (about three weeks) to
become optically clear because of the slow dispersion of large clumps that ex-
isted even in the mixed solvent. The polystyrene concentration used in this mixed

solvent is about 1500 ppm.

Table 1. Solvent Properties at 20°C

Solvent Ns P n C = :f(—]%%;?—:
(poise) (gm/cc) x10%(gm/cc)
TCP6 11.3 1.160 1.562 0.57
Cw 9.29 1.174 1.526 0.18
LV 11.2 1.120 1.520 0.12
TCP 0.87 1.166 1.550 0.36*

*  measured at 7.5°C, ns = 2.75 poise

The solvents were characterized by independent measurements of density,
viscosity, and refractive index. Density of the solvent was measured by a pycnome-
ter. Cannon-Fenske and Ubbelohde viscometers were used to measure viscosity
with temperature control at 20° + 0.01°C. An ABBE-56 refractometer was used
to measure refractive indices for the solutions at 20°C. Solvent properties for the
polymer solutions are presented in Table 1 together with values for the LV solvent

for comparison.
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The concentrations of the polymer solutions are 1500 and 4500 ppm which
corresponds to about 0.33 and 1.0 xc*. Here, ¢* is the so-called critical concen-
tration above which molecular entanglements begin to dominate the macroscopic
equilibrium (or near equilibrium) behavior of the polymer solution, such as the
relaxation spectrum in shear flow. For a closed packed sphere configuration with

the macromolecules in their equilibrium coil state, ¢* may be written as

. M, 0*
= =
Nazmrgp

(2)

where ¢* is the volume fraction above which polymer-polymer interaction becomes
important in the equilibrium state, and r¢ is the equilibrium radius of gyration.
The value for rg can be estimated from quasi-elastic light scattering. Earlier data
from this laboratory [20] determined rg to be ~ 560 A for the 2x 108 M, sample in
a different solvent, and thus ¢* ~ 4500 ppm for our case neglecting any differences
in the solvent. Since we are interested in concentrations near or below the critical
concentration c*, the two concentrations 1500 and 4500 ppm were used. Results
from a 100 ppm PS2 sample in Chlorowax LV(LV) by Dunlap and Leal [8] are also

presented here for comparison.

In order to characterize the polymer solutions, zero shear viscosity measure-
ments were performed using Ubbelohde capillary viscometers to give an estimate of
the polymer relaxation time. The characteristic relaxation time 7 for the polymer

can be obtained from the measured viscosity via the relationship [61]

_ £77 = 1) Muw :
= cpRT (3)

where ¢ is polymer concentration in ppm, R is the gas constant, and T is the
temperature. In the limit of ¢ — 0 for a truly dilute solution, eq.(3) would give
the same relaxation time that is relevant for the dilute dumbbell model. This

dumbbell relaxation time (7) differs from the Rouse or Zimm longest relaxation
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time (7; = ¢;7) for a bead-chain model by a constant, ¢; = 0.608 and 0.422,

respectively [21,22].

Fig. 1 shows the solution viscosity versus polymer concentration for the di-
lute and semi-dilute solutions of PS2 in TCP6. Initially, a linear relationship is
obtained. However, near the critical concentration of 4500 ppm, the viscosity
deviates positively from this linear relationship which is indicative of strong in-
termolecular interaction even in the équilibrium state. This is consistent with the
earlier estimate that the 4500 ppm solution is at or near the critical concentration
for domain overlap. The dependence of polymer relaxation time on the solution
viscosity is also brought out by Chow et al. [13] who have shown that relaxation
times estimated from coil-stretch experiments in opposing jet flows for semi-dilute
solutions increase linearly with concentration. The effect of high concentration is
such that a typical polymer molecule only feels the presence of neighboring ones
as an apparent increase in viscosity. The estimate of polymer relaxation time
from viscosity data via eq.(3) agrees well with the relaxation time calculated as
the inverse of the onset eigenvalue of the velocity gradient tensor, (Yv/)onset, for
coil-stretch transition in the birefringence experiments presented later. Table 2

summarizes the polymer solution properties.

Table 2. Solution Properties (PS2) at 20°C

concentration Solvent n T
(ppm) (poise) (s)
100 LV 229* 0.21
1500 CwW 14.8 0.26
1500 TCP6 14.3 0.13
4500 TCP6 23.0 0.17

*  intrinsic viscosity [n] (cc/gm)

From the viscosity measurements, the increase in zero shear viscosity for the
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1500 ppm and 4500 ppm semi-dilute solutions compared to the mixed solvents is
~ 27% and ~ 105%, respectively. However, there is only a 2-3 % increase for the
dilute PS2 solution (100 ppm). Since the relaxation time for the polymer also
depends on solution viscosity, shear viscosity measurements were also performed
using a parallel plate rheometer which showed no shear thinning effect for all the

solvents and polymer solutions in this study up to v ~ 10 sec™!.

2.2 Homodyne Light Scattering

Homodyne light scattering is used to measure the velocity gradient in the
flow field, and thus investigate the modifications of the flow field that are caused
by the presence of the polymer. Fuller et al. [16,23] described the thepry and
application in the four-roll mill in detail. Dunlap and Leal [8] extended this work
to the two-roll mill for dilute PS solutions (100 ppm). Here, we briefly discuss
the experimental procedure and some important parameters for determining the

absolute value of the velocity gradient.

Fig. 2 shows a schematic of the homodyne light scattering experiment. A
monochromatic Argon-ion laser (Spectra-Physics model 165) at 488 nm was inci-
dent along a plane normal to the x-y plane of the 2-D flow at some angle §/2 to
the normal z-axis. This defines the incoming wave vector k;. A photomultiplier
tube was placed along the same plane at the same angle but on the opposing side
of the z-axis for measuring the scattered light k,. Therefore, the scattering vector
q = k; — k, always lies in the x-y (flow) plane, with a scattering angle 6, and
an angle ¢ relative to the x-axis. Two 300um pinholes separated by about 1 foot
were placed in front of the photomultiplier tube to define the characteristic length
of the scattering volume. The normal plane was chosen to be along the x-axis
(¢ = 0°) for the 2-roll mill and along the extensional x’-axis (¢ = 45°) for the
4-roll mill. Thus, q is parallel to the local mean velocity so that q = ¢(1,0), where
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q = (4mwn/ ,\g)sin-g. With this choice of q, the only contribution of the measured
velocity gradient is from the extensional component of the velocity gradient tensor
2¢  The scattering angle 8 is fixed at 25.5° (26.0° for the 1500 ppm PS2 in CW
solution).

The resulting auto-correlation function for a Gaussian intensity distribution
was given by Dunlap and Leal [8] as

1 1
Fiat) = gy exp | —5 0 14| @

where L is a characteristic width of the scattering volume, and A is a function of
A, ¢, 8, and «, with a being the ratio of a characteristic length of the scattering
volume to its width L. For the specific choices of 8, p, and flow types A in this
study, A is equal to one in the two-roll mill flow and is approximately equal to
one (A = 0.95+ 0.26 a?) in the four-roll mill flow. The auto-correlation function
is generated using a 64-channel Brookhaven Instruments BI2030 correlator which
can correlate photon counts with a smallest sample time of ~ 0.2us. The duration

of each correlation was generally taken to be 1-3 sec.

We introduced PS Latex spheres of size 0.091 +0.0058um from Dow Chem-
ical as scattering particles. Although a slightly different size of 0.109 0.0027um
Latex spheres were seeded in the 4500 ppm solution, this would only affect the cal-
ibration for the absolute value of the velocity gradient but not for relative values.
Since the correlation function is very sensitive to noise and dust in the solution,
the solvents were carefully filtered through a 0.22 um Millipore filter. The mea-
surements were made at the center plane of the flow field to avoid end effects.
This was done carefully by aligning the incident and scattered light to cross at the
half height of the flow device using a 5 mW He-Ne laser and a goniometer to give

precision alignment and scattering angle measurements.

The absolute value for v can be determined by calculating the half height

time ¢ from the Gaussian shape correlation function. This value for 5 is the time
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for the correlation function to decay to half of its maximum value. Thus, eq.(4)

gives

2 1n 2
y= Y202 )
g Ltn/A4

Since the auto-correlation F3 depends on the Gaussian intensity profile of the
beam, which would fluctuate from time to time on the order of days, calibration
for absolute values for v was based on the known linear relationship between ~
and roller speed when no flow modification is present. It turned out, from the
calibration, that the apparent value for L is about the size of the laser beam

which is ~ 160um if A is assumed to be equal to one.

Since previous investigators [8] have made extensive measurements on the
2-roll and 4-roll mill using homodyne light scattering, we briefly discuss the appa-

ratus and similar measurements for the solvent TCP6 in the next section.
2.8 Two-Roll and Four-Roll Mills

Flow devices to generate the two-dimensional (2-D) flow field v = I' - r as
given in eq.(1) have been described in detail by Fuller and Leal (four-roll mill) [7],
and Dunlap and Leal (two-roll mill) [8]. The four rollers in the four-roll mill (1.5
inches in both diameter and height) are enclosed in a square box (8 x 8 x 1.5
inches), and its dimension (and thus the gap width between rollers) is chosen such
that the roller surface closely coincides with a hyperbolic streamline, corresponding

to the velocity field in eq.(1) with A = 1.

Fig. 3 shows schematic streamlines for several different flow types in the four-
roll and the two-roll mill (-1 < A < 1). Strong flows are essential for high chain
extension, namely flows with A > 0 so that the strain rate exceeds the vorticity.
We are interested in the whole range of strong flows (0 < A < 1). However,

the four-roll mill cannot provide reliable 2-D linear flow for 0 < A < 0.2 [16], so
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previous workers [8] have produced three sets of rollers for the two-roll mill which
give flow types near simple shear with A = 0.094, 0.485, and 0.019, respectively.
An analyical solution for Newtonian fluids relating shear rate v with roller speed
w for a co-rotating roller pair has been obtained by Dunlap and Leal [8] in the
form

A
7= W (6)
where A is constant for a given roller size. They have shown good agreement with
eq.(6) for a Newtonian fluid over the entire range of roller speeds available in the

apparatus using homodyne light scattering and streakline photography [8].

Unfortunately, however, secondary flow occurs at the higher roller speeds
that are necessary to achieve significant chain extension when the solvent is less
viscous. Flow visualization studies were performed to investigate the stability of
both flow devices. Lagnado [24] showed that end effects from the top and bottom
glass plates of the four-roll mill started to disturb the 2-dimensionality of the flow
at Re ~ 5 where Re = rwd/v with r being the roller radius, w the roller speed, d
the gap width between adjacent rollers, and v the kinematic viscosity. We have
also performed a flow visualization study in the two-roll mill. Hollow glass beads
(~100 pm) were seeded into a Newtonian liquid (glycerol) as scattering particles
for streakline photography. Then, a thin sheet of light from a 300 watt projector
lightbulb with variable intensity control was used to illuminate the vertical cross-
section of the incoming asymptotic streamline which was located at an angle ¢ ~
tan™! v/ to the x-axis (¢ ~ 17° for the A = 0.094 roller pair). Next, a Polaroid
camera with a macrolens was used to take streakline pictures with half- to one-
second exposure time which turned out to be adequate to provide good streakline
photographs. Similar end effects were observed. The critical Reynolds number for
the two-roll mill with largest gap width (A=0.094) is Re. ~ 15 for onset of end
boundary effects. Beyond that Reynolds number (Re.), vortices developed near

the top and bottom plates of the flow device inside the gap region and grew larger
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with increasing shear rates. Lagnado et al. [25] showed that critical conditions
for instability to set in for an unbounded linear flow depended on the eigenvalue of
the velocity gradient tensor yv/A. Combining the results above for A = 0.094 with
the results for with results for 4-roll mill (A = 1), it is apparent that the onset of
end effects also correlates with 7\/:\_ for these two flow types. If the roller speed
w used in the definition of Re is replaced by wv/A, we obtain a critical Reynolds
number Rev/A ~ 5 in both the 4-roll and 2-roll mills.

Because of this onset of secondary flows from the top and bottom surfaces, it
1s necessary to use high viscosity solvents like CW and TCP6 to ensure a stable 2-D
flow within the range of shear rate of interest. A series of viscosity measurements
of different solvents for PS2 was performed and the mixed solvents actually used
were chosen so that the flow would remain laminar and 2-D for v greater than
the critical value «, for high chain extension. The criteria for choosing a viscous

solvent was based on the following conditions

_rmyd A » -
Re = — [A} < Re, (7)
v = 0(1) (8)

- (n = n)M,

(ke (9)

where c; is a constant depending on the model relaxation time.

From the critical Reynolds number determined by visualization experiments,
it is apparent that the two-roll mill is more stable than the four-roll mill. One
explanation is that the gap-width to height ratio is smaller in the two-roll mill
which inhibits disturbance growth or developing vortices near the top and bot-
tom boundaries. Homodyne light scattering performed by previous workers on a
Newtonian glycerol/water mixture with n ~ 10 poise, were used to characterize
the flow field and to calibrate velocity gradient measurements for the semi-dilute

PS2 solutions. Table 3 shows the characteristics of the flow devices reported by

Dunlap and Leal [8].
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In this study, experiments were performed only in the 4-roll mill and the
2-roll mill # 2. In order to distinguish polymer effects from the behavior of
the solvents, homodyne light scattering was also performed here for the solvent
TCP6. Fig. 4 shows the measured velocity gradient (relative value) versus the
Newtonian velocity gradient yv/\ at.the stagnation point in both the 2-roll and
4-roll mill. The measured velocity gradient varied linearly with vv/\ up to about
YV ~ 45sec™1 (Re ~ 4.3) for the 2-roll mill. Then, v deviates positively from
linearity for larger roller speeds. However, linearity is preserved in the 4-roll mill
up to YV A ~ 32sec™! where Re ~ 10. Therefore, the solvents can be considered to
be Newtonian. We will later show that flow modifications induced by the polymer

are distinctively different from boundary effects.

Table 3. Characteristic of the Flow Devices

Device r* Measured Theory
(cm) A v/w A v/w
2-Rolls  #1 2.906 0.09 4.7 0.094 4.66
# 2 3.170 0.05 9.5 0.049 9.64
#3 3.361 0.02 25.0 0.019 26.12
4-Rolls 1.905 2-1 0.64 — 0.678

* 1+ 9= 3.488 cm (diagonally in 4-roll mill)

2.4 Steady State Flow Birefringence

Flow birefringence measurements have been applied extensively in shear flow,
and reviews by Janeschitz-Krieg [26] and Peterlin and Munk [27] are useful in
understanding some of the fundamental concepts. The level of birefringence is a
measure of the conformation change of the macromolecular chain which has signif-

icant optical segment anisotropy. In particular, Peterlin [28] derived an expression
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for the birefringence of a polymer solution in linear 2-D flows as

, 2 2 o
%? ZW[M +2)} NAN(;L"—/L“L)[(<$2>*—<y2>)2+4<3¢y>}2 (10)

- 3n M,

<zrr > —<yy >
2< 2y >

cot 2y = (11)

where An is the birefringence, n is the refractive index of the solution, ¢ is the
polymer concentration in gm/cc, N4 is Avogadro’s number, M, is the molecular
weight, 1| —p 1 is the difference in the intrinsic polarizability parallel and normal to
a subunit of the polymer chain, < -+ > are the second moments of a distribution
function for the end-to-end vector of a polymer chain, and y is the (polymer)
orientation angle between the principal axis of the refractive index tensor and the
x-axis of the flow device. The above expressions neglect any contribution of form
birefringence and are thus expected to be a good approximation only when the
mean refractive indices of the polymer and solvent are similar in value and/or
the solution is concentrated. Since the mean square end-to-end dimension of a
polymer chain is < r? >=< 22 > + < y2 > 4+ < 22 >, birefringence data
provides a measure of the degree of polymer extension assuming that no chain-
folding exists. Previous workers [7,8] have found good agreement between flow
birefringence experiments for dilute PS solutions and predictions using eqs.(10)
and (11) in conjunction with the FENE dumbbell model. In the present study, we
compare experimental data with a modified FENE dumbbell model that includes

an intermolecular interaction term as proposed by Hess [19].

Birefringence experiments involve the measured light intensity which passes
through the flow device between a crossed polarizer and analyzer. Fig. 5 shows a
schematic of the experiment, and the relative orientation of the analyzer, polarizer,
principal axis of polarization tensor of polymer, and the flow coordinates. The

relationship between light intensity and birefringence is given by the following



expression [29]
, ThAn

Ao

where I is the light intensity measured by a photodetector that is connected to

I = Iysin® 26 sin (12)

a laser power meter, I, is the intensity of the incident light beam, 8 is the angle
between the polarizer and the principal optical axis of the polymer solution, h
is the thickness of the birefringent zone (which is assumed to be the complete
distance across the flow device ~ 3.8 cm), and Ag is the wavelength of the light
source which is 4880 A for the Argon-ion laser used in the present study. The
analog signal from the power meter is sent to a Metrabyte A/D converter (model
DAS-8) in an IBM/AT computer for data averaging and analysis. Birefringence
data is usually accurate to within 1% except at extremely high roller speed where
local viscous dissipation would decrease the apparent viscosity of the solution, and
thus reduce the relaxation time of the polymer. This would result in a horizontal
shift of the birefringence curve when the data are plotted versus the dimensionless

velocity gradient normalized by the relaxation time of the polymer.

By rotating the flow device to achieve maximum intensity (i.e., determine the
orientation where 6 is 45°), both the birefringence An and the orientation angle
x between the principal axis of refractive index tensor and the x-axis of the flow
device can be determined (refer to Fig. 5b). This angle y is consistent with the
classical definition of the extinction angle for birefringence experiments in simple

shear flow [30].

In order to calculate the contribution to birefringence from the polymer
alone, a correction for the solvent contribution must be made. Philippoff [31]
introduced the following relationship assuming that the orientation angle Y, for

the solvent is always 45°

Anp2 = An? + An,? — 2An,Ansin 2y (13)

" cos 2x (14)
Tp

cos 2xp =
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where the subscripts p and s refer to the polymer and solvent, respectively.

In the present case, the birefringence of the mixed solvents was measured,
and x, was found to be 45° except at low roller speeds where y, < 45°. In any
case, the solvent contribution to solution birefringence is still negligible at low
roller speeds. Therefore, eq.(13) was used to calculate the polymer contribution
to the birefringence. Solvent birefringence is presented in Fig. 6 as An plotted
versus the Newtonian rate of strain (1 + A)/2 which is proportional to the stress.
The linearity of the data suggests that the stress-optical law is valid for these low
molecular weight Newtonian solvents. We can define the stress-optical or Maxwell

constant in a more general manner for linear 2-D flows as
Ang = Cne(1+ A)y (15)

since the principal stress difference Ap o 7,(1+ A)y for our flow field [30,31]. The
stress-optical constant (C) for the solvents, obtained by calculating the slope of
the least-square fitted straight line in Fig. 6, is given in Table 1. Values of C for
other solvents from previous workers are presented for comparison. The Maxwell
constants obtained here are of the same order of magnitude as values for other

organic solvents reported by Tsvetkov [32].

2.5 Transient Birefringence for Inception and Cessation of Flows

For time-dependent birefringence experiments, two measurements need to be
performed to calculate An(t) and x(t) since both are unknown and varying with
time. Osaki et al. [33] has previously done experiments in shear flow using two
distinct orientations for the analyzer-polarizer combination relative to the flow
axes. The same technique is employed here. First, we performed the experiments
with the flow device rotated to an angle where the maximum intensity is obtained

at steady state. Then, the polarizer and analyzer are rotated 45° with all other
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parameters remaining the same as in the first experiment. The two experiments

then correspond to the following time-dependent intensity equations

Ig(t) = I sin® 26(t) sin® Zr—]y—i—?@ (16a)
Igi450(t) = I cos® 26(t) sin? mhan() (160)

where 6 is the relative orientation angle (same definition as in eq.(12)) for maxi-
mum steady birefringence in the first run, and 6 + 45° is the relative orientation
angle in the second run. The orientation angle x is equal to the angle of the
polarization vector relative to the x-axis minus the angle §. An Metrabyte A/D
converter board in an IBM/AT is used for data acquisition. The data is usually
obtained at 200 Hz and averaged for 3-5 runs. Synchronization of data acquisition
and the inception (or cessation) of flow is achieved by building a digital circuit
into the A/D converter. When magnetic clutches are engaged/disengaged for in-
ception/cessation of the flow, the digital circuit is triggered to send a TTL pulse
of width ~ 7usec to the A/D converter to start data acquisition. Therefore, no
significant time-lag exists between the start-up of flow and the initial data acqui-
sition. In principle, some error in the measured intensity might arise from the
slight difference in mechanical response of the motor-clutch units. Nevertheless,
since the response time of the clutches is ~ 10 — 20 millisec and the motors are
kept at a steady speed at all times, this error would be significant only when the
time scale of the flow is comparable to the mechanical response time of the flow

device which is estimated to be about 40 millisec.

Time-dependent results for both birefringence An(t), and the orientation
angle x(t) (which differs from the relative orientation angle 6 by a constant),
can now be obtained by simply adding and dividing the two egs.(16a) and (16b).
When the polarizer is set at 0°, the angle of rotation of the device is fixed so that

the steady birefringence is at a maximum. Thus, when the polarizer is at 45°,
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the birefringence values tend to be much smaller at all times compared to the
corresponding values at 0°. Osaki et al. [33] has pointed out that experimental
error in intensity measurements for I44450 would lead to a significant error in

calculating the time-dependent extinction angle.

3. Results

Flow birefringence experiments were done in the four-roll mill (A = 1.0, 0.5,
0.25) and for one pair of rollers in the two-roll mill (A = 0.0485) for the semi-dilute
polystyrene solutions. This provides a sequence of strong flows, with a range of
ratio of the magnitude of the strain rate to the vorticity. A flow modification
study, via homodyne light scattering, was also performed for A =1.0 and 0.0485
to provide a correlation with the birefringence data. It should be noted that
previous investigators reported no change in the flow for a dilute 100 ppm PS2
in LV, even though the birefringence is very strong. We first present the flow
birefringence results, and these are then followed by the homodyne light scattering
data. Results obtained earlier for the 100 ppm PS2 solution are also reproduced

here for comparison.
3.1 Flow Birefringence

Flow birefringence is a common tool for study of flow-induced conformation
changes for macromolecules, and numerous previous studies of polystyrene solu-
tions have been done in both simple shear and extensional flows [6-8,11-16,29)].
Pope and Keller [6] reported a linear dependence of the maximum birefringence
on concentration in the range of 300-5000 ppm for a M,, ~ 2 x 10° polystyrene
sample. The critical concentration, i.e., c*, for their sample was ~ 1.5%. How-
ever, their results show scattered data especially in the high shear region which
was possibly due to instability of the sucking jet device they used. Another limi-

tation of their experiments was the unknown thickness % of the birefringence zone.
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Although polystyrene solutions with similar concentrations in the dilute to semi-
dilute regime are studied here, our birefringence data is complemented with flow
data in a well-characterized 2-D laminar flow by velocity gradient measurements

and flow visualization studies.

Specific birefringence values (i.e., An/c) for different flow types are plotted
in Fig. 7 as a function of yv/X. The velocity gradient v in this figure is uncor-
rected for deviations from Newtonian values. Instead, the correlations between
roller speed and shear rate for Newtonian fluids were used. Later, we will show
the experimentally measured velocity gradient data along with the birefringence
results. For dilute polymer solutions, the specific birefringence for different con-
centrations would collapse to a single curve. However, An is no longer linear with
c for the two semi-dilute concentrations of 1500 and 4500 ppm, which correspond
to ¢/c* ~ 0.33 and 1.0, respectively. Since birefringence is related to the confor-
mation of the polymer, a decrease of the of specific birefringence from linearity
with concentration is an indication of inhibition of flow-induced stretching. This
effect can only be ascribed to strong polymer-polymer interactions as the local
effective (volumetric) concentration increases dramatically with increased length
and concentration of polymer. We will discuss this inhibition effect in more detail

in section 4.

The birefringence data in Fig. 7 shows that the onset velocity gradient yv/\
for the apparent coil-stretch (C-S) transition for the 1500 and 4500 ppm PS2 in
solvent TCP6 solutions is dependent on concentration. In particular, onset of
stretching occurs at a value of yv/A ~ 5.0 and 8.0 for the 1500 and 4500 ppm
concentration respectively. The change in the onset velocity gradient is indicative
of a change in the characteristic relaxation time of the polymer solution. The
critical velocity gradient for onset of a C-S transition based upon birefringence
experiments has been used for dilute solutions to give a reasonable estimate of the

longest relaxation time for the polymer. Many birefringence experiments in pure
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extensional flows have shown that onset occurred at yr ~ 1 [6-8,34-37] . Specifi-
cally, Leal and coworkers [7,8] have shown both experimentally and theoretically
that the condition

Wor > 1 (17)

must be satisfied for high chain extension in dilute solutions. Further, these in-
vestigators [7,8] showed that 7 evaluated from birefringence data was in good
agreement with the Zimm relaxation time [22] for dilute polymer solutions. In our
case, the dependence of the onset shear rate on concentration can be accounted
for in terms of the increase in solution viscosity and thus the relaxation time.
In particular, relaxation times calculated from the inverse of the onset velocity
gradient, (yv/A)~!, agree with values determined from viscometry via eq.(3) (cf.,
Table 2). Thus, the semi-dilute concentrations used in this study do not appear

to affect the correlation between onset shear rate and relaxation time.

This is clearly evident in Fig. 8 where the birefringence data from Fig. 7 is re-
plotted versus the nondimensional eigenvalue of the velocity gradient 7yv/\, where
7 is the relaxation time determined via viscometry. The 1500 ppm solution of PS2
in CW is also presented in Fig. 8. For both concentrations, the dimensionless
onset strain rate ryv/\ is approximately one, which is consistent with results for
dilute and semi-dilute solutions by other investigators [8,11,12]. Clearly, the onset
point scales with the characteristic relaxation time 7 given by eq.(3). The slight
differences between the two 1500 ppm solutions are presumably due to the higher
molecular weight and polydispersity (high M, tail) for the 1500 ppm solution in
CW. However, all of the data for each concentration correlate well with ryv/\ for
various flow types A down to the smallest value (A=0.0485) which corresponds
to an extension to vorticity ratio (s/w) of only 1.1. At higher shear rates, the
correlation of An/c versus Tyv/\ for the 1500 ppm PS2 in TCP6 starts to break
down. It can be seen that this occurs at 7yv/A ~ 2.4, which coincides with the

point where a decrease in the slope of An versus shear rate occurs. This decrease
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in slope is very likely a manifestation of a corresponding decrease in the velocity
gradient relative to values for a Newtonian fluid, as we shall see in section 3.3.
In particular, the decrease in birefringence slope definitely has nothing to do with

any approach to saturation birefringence corresponding to full polymer extension.

In order to clarify this point, the PS2 data for the 100 ppm in LV, which
does reach saturation at high shear rates [8], is included in Fig. 9 for comparison.
All three solutions show an apparent saturation in birefringence, but at different
birefringence levels which would not be expected if the polymer chains behave
independently and are at full extension. Peterlin [28] showed that the birefringence

for non-interacting fully extended polymer chains would give a saturation value of

Ang _or (n? +2) 2 N4
nc 3n My,

N(py—p1) (18)
From this prediction and experimental results for the saturation birefringence
An for a dilute solution, a best fit value of N can be obtained, and this gives a
good measure of the conformation change (extension) that a particular polymer
sample is capable of undergoing. The linear chain of polystyrene has a segmental
intrinsic optical anisotropy of (u) — p.L) = —145 x 107 23cc [26]. Dunlap and Leal
[8] thus showed that for the dilute PS2 (100 ppm) in LV, N~ 1200 assuming near
complete extension of the polymer chains at the experimental value of saturation
birefringence (see Fig. 14 in Ref. 8). Since the contour length R for a Gaussian
chain is given by R = Na, where N is the number of statistical segments each of
length a making up the chain, and the equilibrium end-to-end distance isr ~ v/ Na,
this means that the maximum stretch ratio R/r (~ v/N) for complete extension

of PS2 is ~ 35.

For the semi-dilute (1500 and 4500ppm) solutions, the specific birefringence
shows dramatically lower saturation values. Further, the saturation birefringence
is no longer linearly increasing with concentration. Therefore, the values of satu-

ration birefringence for the semi-dilute solutions clearly do not represent complete
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extension, apparently due to local polymer-polymer interactions in the moderately
deformed state. Indeed, using N ~ 1200 or a ~ 16 monomer units for one statis-
tical segment, the measured saturation birefringence values for the 1500 and 4500
ppm solutions give an approximate chain extension of only 0.23 and 0.15 of the
maximum attainable contour length (r & v/An). In another words, the increase of
concentration actually inhibits the achievable chain extension of the polymer pre-
sumably because of increased molecular interactions. This is, perhaps, the most

important observation from the present study.

The breakdown in the correlation of birefringence with yv/X for the 1500
ppm solution in the 4-roll mill at high strain rates (cf., Fig. 7) may be a re-
sult of hydrodynamic or elastic instability. Dunlap and Leal [8] pointed out
two phenomena that might cause a lowering of An in the 4-roll mill, relative
to its value in the 2-roll mill at the same yv/A. First, is hydrodynamic instabil-
ity and/or three-dimensionality of the flow induced by vortex generation at the
boundaries. The Reynolds number corresponding to the maximum birefringence
(v ~ 30 or w ~ 44) for the four-roll mill is ~ 7 which is just above the criti-
cal Reynolds number where end vortices start to creep into the local birefringent
region. As this three-dimensional flow develops near the walls, the strongly bire-
fringent layer becomes thinner (i.e., the vertical section at the stagnation region in
which the flow remains two-dimensional becomes smaller) because polymer near
the unstable wall region does not align or extend as efficiently as the polymer in
the 2-D middle section. The birefringence values An calculated from the measured
retardation assume that there is a vertical birefringence layer of length h, which
we chose to be a constant, 3.81 cm, equal to the height of the rollers. Therefore,
any non-birefringent region due to three-dimensionality in the end regions would
reduce the measured retardation and thus reduce the apparent (averaged) value of
An. For the more concentrated solution (4500 ppm), the Reynolds number (Re)

is about 2 times smaller at the same strain rate than for the 1500 ppm solution,
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assuming that the solution viscosity is used to calculate Re. This might be the

reason that better correlation is obtained for the more concentrated case up to

*y\/X ~ 30.

Another source of instability may come from viscoelastic effects due to the
high Weissenberg number (W1i) associated with the flow. This disturbance is more
localized and could not be detected by Dunlap and Leal [8] using only flow visual-
ization. However, Lagnado et al. [25] predicted unstable flow of an Oldroyd type
fluid in a 2-D linear flow at a critical Wi, of O(1), where Wi = 47, and 7y is a
model relaxation time for the polymer. Some experimental evidence of flow insta-
bility for a viscoelastic fluid in a two-roll mill by Broadbent et al. [39] and in flow
through a contraction by Muller et al. [40] appear to agree qualitatively with the
theoretical prediction. The 2-roll mili data for the 1500 ppm solution also showed
some fluctuation in the birefringence when vVA > 30. We stopped taking data
beyond yv/A ~ 37 at which birefringence started to fluctuate more. A Hewlett
Packard model 3582A spectrum analyzer (0.02 Hz to 25.5 kHz) was used to look at
the frequency spectrum of the unstable data, but no conclusive result was obtained
except that the intensity sometimes fluctuates at a frequency equal to the inverse
of the roller speed at high speeds. The Reynolds number at the maximum strain
rate vv/X in the 2-roll mill is only Re ~ 4, which is considerably smaller than the
critical Reynolds number (~ 15) for inertial instability of the two-roll mill. Hence,
the instability observed may actually be induced by high W+:. In this regard, it
is interesting to estimate the value of Wi in our experiments. For this purpose,
we use a characteristic relaxation time 7; ~ 0.4227 where 7 is the experimental
relaxation time (Table 2). The relaxation time 7y is the Zimm estimate of the
longest relaxation time for a bead-chain model of a polymer molecule [22]. The
Zimm model has a similar constitutive equation to one of the limiting forms of the
Oldroyd type fluid (convected Maxwell model) studied by Lagnado et al. [25]. Us-

ing this estimate for the characteristic relaxation time, we calculate Wi, ~ 7.5 at
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the critical value of yv/A ~ 30(y ~ 136). This seems qualitatively consistent with
the possibility of a high Weissenberg number viscoelastic instability as suggested
by the fluctuations of birefringence intensity for these low Reynolds number flows.
Similar fluctuations also appear in birefringence for the 4500 ppm solution when

¥V A > 30 due to elastic instability.

Another important result from the flow birefringence experiments for the
semi-dilute polymer solutions is that the width of the birefringent region broad-
ens considerably with increasing concentration. Figs. 10(a) and 10(b) show the
birefringence profile across the x'-axis (outgoing asymptote) and x-axis for two
semi-dilute solutions in the 4-roll and 2-roll mills, respectively. The measurable
birefringent region for the 4500 ppm solution is about twice the width of the 1500
ppm case which is also about twice that found earlier for the dilute solution (in
which the birefringence zone was less than 0.02" in width). The decrease in An
away from the stagnation point is typical of both the 2-roll and 4-roll mills, in
which the polymer chains reside in the region of strong stretching only for a finite
period of time. Another way to express the same idea is to note that the total
strain experienced by a fluid element in one pass through the strong-flow region
depends strongly on the proximity of the streamline to the dividing streamline
that passes directly through the stagnation point. Therefore, An, which might be
thought of being proportional to a characteristic dimension of the polymer, drops
off rapidly away from the local stagnation region as is evident from Fig. 10. We
have also plotted in Fig. 11 the birefringence across the x-axis in the 2-roll mill for
x = 0 and 0.12" at vv/A = 14.82 sec™! which is approximately the critical strain
rate for intermolecular interaction to affect the flow. The birefringence width and
peak value appears unchanged even after the polymer leaves the stagnation re-
gion. The strain rate near this stagnation region is still strong enough to sustain
the stretched conformation of the polymer. The measured velocity gradient at

z = 0.12" is only about 12% less than the value at the stagnation point as we will
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Next, time-dependent birefringence data for inception and cessation of steady
flow will be presented. The transient birefringence data for our semi-dilute so-
lutions shows distinctively different behavior from either dilute or concentrated

solution behavior.
8.2 Birefringence upon Inception and Cessation of Flow

First, transient birefringence data for the solvent TCP6 in 4-roll and 2-roll
mill flows are shown in Fig. 12. No overshoot is observed up to a strain rate +VA
of ~ 24 and 30 sec™! for the two flow types A = 1.0 and 0.049. A time scale
characteristic of either the inception and cessation of flow for a Newtonian fluid is
just the time for vorticity diffusion from the roller surface to the stagnation point.
This characteristic time is ~ d?/v. No other intrinsic (fluid) time scale is present

for the Newtonian solvent.

For the polymer solutions, vefy interesting dynamical behavior is observed.
Figs. 13(a) and 13(b) show time-dependent birefringence data for flow inception
and cessation experiments for the 1500 ppm and 4500 ppm PS2 solutions in a pure
extensional flow. Clearly, the birefringence data begins to show overshoot at some
critical value of 7\/X. Such overshoots have not previously been shown to exist
in the concentration regime between dilute and semi-dilute. It is evident in the
4500 ppm case, however, that the overshoot goes through a maximum, until no
overshoot was again observed at the higher strain rates. The maximum per cent of
overshoot relative to the steady value for the 1500 and 4500 ppm solutions is ~ 34
and 39 % at 7\/—): = 26.0 and 11.8 respectively. Onset of overshoot occurred at a
critical yv/X of ~ 20 and 9.5, respectively, for the 1500 and 4500 ppm solutions. A
lowering in the slope of the steady birefringence versus vV/X also occurs at these

onset strain rates. This sudden decrease in An/yV/X is an indication of possible
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flow modification. In the next section, any possible correlation of the overshoots

in birefringence with flow modification will be discussed with the flow data.

Although the birefringence does not exhibit overshoot for dilute solutions in
extensional flows, this type of overshoot phenomenon has previously been demon-
strated for concentrated solutions. Indeed, Fuller and Leal [16] found similar over-
shoots in concentrated solutions (=% > 1) of both polyox in water and polystyrene
in TCP. They also predicted overshoots in the A = 1 flow using a temporary en-
tanglement network model with a conformation-dependent destruction function
[17]. The observed overshoot phenomenon for the present semi-dilute solutions
could again provide a window into the dynamics of entanglement creation and
destruction. Although these solutions are not strongly entangled at equilibrium,
one possible point of view is that enough topological entanglements can still exist
so that the polymer chains are stretched as a temporary network at the inception
of strong flow. This can occur only if the time scale of the deformation process
(which is proportional to ¥~!) is much shorter than the time scale of the disen-
tanglement process. Thus, the time scales for disentanglement are calculated to
be 0.05 and 0.11 seconds for the 1500 and 4500 ppm solutions, respectively. At
the start-up of flow, the deformed network gives overshoot in birefringence that is
related directly to a high stress level that is supported in the temporary network
of polymer chains. As the system reaches steady state, however, the temporary
network breaks down and birefringence drops back to its steady state value. This
disentanglement explanation of overshoots in extensional flow is essentially the
same as the Fuller and Leal explanation for concentrated (highly entangled) so-
lutions. While seemingly plausible, it does seem contradictory to the steady flow
data obtained by Keller and coworkers [11-14], who claim to have demonstrated the
existence of an increasing number of entanglements with increasing (high) strain
rates for semi-dilute to moderately concentrated polymer solutions at steady state.

One obvious difference between our work and the study of Keller et. al. [11-14]
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is that the strain rates and concentrations used here are much lower but we are
unable to understand how or why this should lead to a fundamental difference in

the results.

Overshoot also appears in the two-roll mill at high strain rates for the semi-
dilute solutions, cf., Figs. 14(a) and 14(b), though no overshoot was observed for
the dilute 100 ppm solution even at the highest strain rate. The maximum percent
of overshoot observed is ~ 15 and 24 % at 7\/X = 27.8 and 14.8 sec™! for the
1500 and 4500 ppm solutions, respectively. This percent of overshoot in the 2-roll
mill (A = 0.049) is relatively smaller than in the case of pure extensional flow.
The reason for the smaller overshoot in the 2-roll mill case is not clear at this
point. Since one distinction between the pure extensional flow (A = 1) and the
2-roll mill flow is the existence of vorticity in the latter case, one might believe
that the time-dependent orientation of the polymer could be the cause. Therefore,
typical data for the orientation angle, x(t), is plotted in Figs. 15(a) and 15(b) as
a function of time for the 1500 ppm and 4500 ppm PS2 solutions, respectively. At
inception of flow, the polymer is oriented near the principal strain axis (x = 45°),
which is the direction of strain of the extensional component of the flow. As the
polymer is being elongated, it is also being rotated and aligned with the direction
of the steady state orientation at a time which lags slightly behind the time to
achieve maximum birefringence (see Fig. 14). For some instances, the elongated
polymers experienced large torque at flow inception resulting in undershoots in the
orientation angle. This is evident in Fig. 15(a) for the 1500 ppm solution where a
small amount of undershoot in x (~ 2°) exists. However, no undershoot is found
for the more concentrated 4500 ppm solution at any of the shear rates studied.
In order to investigate the effect of orientation of the extended polymer on the
overshoot in birefringence, the effective strain rate experienced by the polymer as

1t reorients to the steady state is studied next.

The steady state orientation at high strain rates is near the direction of the
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outflow axis with y = tan™! V/A. The effective strain rate, S, £f, experienced by

the polymer for time-dependent flows can be shown to be

(1+XA)

F

Seps(t) = v sin 2x(t) (19)

Therefore, even though the polymer would initially experience a maximum rate
of strain as it elongates in the direction of the principal strain axis, it would
then reorient towards the outflow axis with a monotonically decreasing effective
strain rate down to ¥V/\ in the 2-roll mill flows. Thus, at the same value of
vV/A, the initial strain rates experienced by the polymer in a 2-roll mill flow are
always greater than those occurring in a pure extensional flow (Note that y = 45°
and Sefs = ~vV/X for the A = 1 case at all times). This analysis suggests that
larger overshoots should thus exist in the 2-roll mill flow if network deformation
and subsequent flow-induced disentanglement is the primary mechanism for the
overshoot to occur. However, our experimental data suggests otherwise. Thus,
other effects such as the degree of flow modification must be invoked to explain
this discrepancy. In the above results, we have assumed that the polymer has
no effect on the flow, even at the highest values of vV/A where the maximum
overshoots were observed. This indeed is true for the 4500 ppm solution, but
not so for the less concentrated 1500 ppm solution, as we will see in the next
section. Therefore, the time scale to modify the flow at inception may also be a
key factor in the observed overshoot behavior. We will see later that significant
inhibition of high strain rates induced by the polymer begins at a critical strain
rate that coincides with values of yv/A for overshoots in birefringence in the less

concentrated 1500 ppm solution.

On inception of flow, the rise time to reach maximum birefringence is in-
versely proportional to the effective strain rate VX for all cases. However, the
characteristic relaxation time for birefringence, calculated from the exponential

decay time at cessation of flow, only shows a small increase with increasing strain
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rate. The value of this relaxation time at the highest strain rate is typically smaller
than the calculated relaxation time from viscometric measurements. Some appar-
ent overshoots were observed at the beginning of flow cessation. This small over-
shoot is possibly created by mechanical inertia of the clutches and motors when

the clutches are disengaged at cessation of flows.

Little or no overshoot shows up at the highest shear rates. This could be
attributed to the fact that the mechanical system of motors and clutches responds
too slowly compared to the time scale of the overshoot which is proportional to %r'
Another experimental artifact that needs to be considered is the boundary effect,
which intrinsically reduces the birefringence level. Thus, the absolute percent
of overshoot at high shear rates may not be exact. Likewise, the steady state
birefringence could be higher than the apparent value that is deduced from the
measured light intensity by assuming that the birefringence magnitude is uniform
across the layer. When the boundary effect creeps in, the true birefringence layer
thickness is less than the solution thickness, and a smaller value of birefringence
is deduced. It is our belief that this is not the case in the results that we obtained
above because flow visualization did not show any significant deviation from 2-D

flow over the complete range of experimental strain rates.
3.3 Flow Modification

The homodyne light scattering technique described earlier was employed to
measure the velocity gradient in two flow types corresponding to A = 1.0 and 0.049
in the 4-roll and 2-roll mills for semi-dilute PS2 solutions. The flow field was well-
characterized by previous workers [8,16,23] for a Newtonian liquid (glycerol) using
this light scattering technique. The absolute velocity gradient was found to depend
linearly on roller speed except at some critical roller speed where instability set

in. Dunlap and Leal [8] also showed the same linear relationship as the Newtonian
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(glycerol) flow data between v and w for a 100 ppm solution of PS8 in LV at low
shear rates below the v,nset for polymer induced flow modification. In this study,
flow data for the solvent TCP6 is also measured at the stagnation point for various
roller speeds. With this solvent data, we can distinguish the polymer effect with

no ambiguity.

In the two-roll mill, all realizable experimental roller speeds correspond to
a Reynolds number well below the critical one determined from flow visualization
experiments. Even though Re ~ 10(> Re.) at the highest strain rate used in the
4-roll mill, linearity in 7 versus roller speed is still preserved for the Newtonian
data which is less viscous than the polymer solutions. Therefore, we believe that
we have avoided any large effect from vortex growth from the top and bottom
boundaries. Any flow modifications are entirely due to molecular interaction and
a corresponding viscoelastic effect. The scattering volume is located at the mid-
plane between the top and bottom of the flow device so as to avoid end effects.
This can be done by ensuring symmetry in the velocity gradient profile along
the flow axis [8,23]. The polymer solutions still contain some dust particles even
though the solvents were carefully filtered before use. Scattering from large dust
particles obscured the smoothness of the correlation function. However, better
Gaussian correlation curves were obtained by introducing a relatively large number
of scattering particles (~ 50ppm) and a longer duration time (1-3 sec) for the
correlation, thus averaging out the scattering contribution from dust particles.
The photon count was ~ 4 x 10* /sec which proved to be sufficient for good
correlation with the above duration time. The laser intensity is operated at ~ 0.16
watt for all of the light scattering experiments and temperature is controlled to
~ 20° £ 0.04°C. This stringent temperature control is necessary to ensure that
the viscosity of the solution does not change significantly (which would in turn
alter the relaxation time of the polymer solutions). In the velocity gradient data

presented next, the vertical bar is the standard deviation of several data points
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(and is sometimes even smaller than the symbol size). Under the same operating
conditions, the light scattering data can be reproduced easily except at high shear
where viscous dissipation and thus inertial effect introduces large fluctuations in

the data.

Fig. 16 shows the measured velocity gradient at the stagnation point versus
the Newtonian velocity gradient for the two semi-dilute polymer solutions for A = 1
in the 4-roll mill. The velocity gradient for various roller speeds shows a dramatic
decrease from the Newtonian result at a critical value (yv/A). ~ 16 and 14 s~ for
the 1500 and 4500 ppm solutions, respectively. Beyond this ("y\/X)C, the velocity
gradient was reduced for both cases by up to 26-28 % from the Newtonian value.
This effect was not observed for the dilute (100 ppm) solution of the same polymer
sample. It is our belief that the onset of flow modification can clearly be related
to molecular interaction due to chain stretching of the polymer. In particular,
the decrease in the slope of An vs VA in Fig. 7 also occurs at (’y\/}\.)c ~ 13,
which coincides quite closely with the onset of flow modification (induced by the
polymers) for the 4500 ppm case. Since the apparent saturation birefringence
levels for the 1500 and 4500 ppm solutions correspond only to 0.23 and 0.15 of
the maximum contour length, this decrease in the slope of An vs y/\ is not due
to an approach to maximum extension, rather, it is due to a marked change in
the velocity gradient which is smaller than the expected Newtonian value. Even
though the critical strain rate for the 1500 ppm solution is somewhat less than the
value at which a lowering occurs in the slope of birefringence versus vv/A, it can
be explained by considering the effective concentration necessary to induce a flow

effect and is discussed in section 4.1.

The velocity gradient cross-profile at x’ = 0 in the 4-roll mill for a few strain
rates is also shown in Fig. 17. The measured velocity gradient data for all strain
rates and locations (y) are normalized by the Newtonian (solvent TCP6) value at

the stagnation point at the lowest strain rate. The regions in which the flow is
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modified extend beyond 40.3" for both semi-dilute solutions, which means that
the flow is affected over a much broader region than was observed in the dilute
PS8 (M, ~ 8.4 x 10°) solution [8]. This non-local flow effect is also reflected in

the broadness of the birefringence region in these semi-dilute solutions.

The velocity gradient data in the 2-roll mill for these solutions are also shown
in Fig. 18 versus Newtonian 'y\/X at the stagnation point. The maximum per cent
of decrease in the velocity gradient is about 20% for both concentrations. The
critical velocity gradient yv/A for onset of flow modification is about 21 and 13
sec™! for the 1500 and 4500 ppm solutions. By comparing these results with the
4-roll mill velocity gradient data, it can be seen that the values of (yV/\). are
about the same for the 4500 ppm solution in the two flow types (A = 1 and 0.049),
but that a similar correlation does not seem to exist for the less concentrated 1500
ppm solution. It is not clear why the critical ’y\//_\_ does not correlate better in the
1500 ppm case, especially in view of the fact that the corresponding birefringence
does correlate with vv/A. We do note, however, that the birefringence region is
much more localized for the 1500 ppm solution in the 2-roll mill, than for the 4500
ppm solution, or for the 4-roll mill, which may contribute to a delay to large WA
values in observation of flow modification. Indeed, the cross-profile of the velocity
gradient across the gap at x = 0 and 0.12" is shown in Figs. 19(a) and 19(b) for
several strain rates, for the 1500 ppm solution in the 2-roll mill. These data show
that the extent of the flow effect is only ~ +0.1" (note that the roller surfaces are at
+0.125"). Normalization of the measured velocity gradient is also done using the
Newtonian (solvent TCP6) value at the center point for x = 0.0 and x = 0.12" at
a low roller speed. A 26% decrease in velocity gradient is obtained away from the
stagnation point at x = 0.12"” and vv/A = 33.35s!. This larger flow effect shows
that the polymer actually extends further after leaving the stagnation region even
though the Newtonian velocity gradient at z = 0.12" is actually smaller (about

12% lower than the value at the stagnation point, x=0).
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With the above flow data, the question of a possible correlation of overshoots
in birefringence with the existence of flow modification can now be addressed. In
particular, it is our belief that the dynamical behavior of the birefringence in start-
up flow observed in the previous section could be related to the inhibition of high
strain rates observed here. We have previously suggested that a network-based
disentanglement mechanism could account for the existence of overshoots in bire-
fringence even for semi-dilute solutions. However, the disentanglement mechanism
depends strongly on the initial amount of entanglements existing in the solution at
equilibrium. Since the 1500 ppm solution only corresponds to 0.33 c¢*, it is difficult
to imagine that the network deformation and disentanglement mechanism is the
only factor in this case. Another possibility may be that the overshoot of bire-
fringence in this case is due, essentially, to an overshoot in the velocity gradient,
which becomes more strongly inhibited once the polymer has time to become fully
oriented and stretched to the degree possible in the particular solution. In fact,
our results show that little or no flow modification exists at the critical values of
VA for maximum overshoot in the 4500 ppm solution for either the 2-roll or 4-roll
mill flows. Thus, it appears that the idea of network deformation and disentan-
glement is the only viable explanation for large overshoot in birefringence in this
semi-dilute case (the flow field does not change at the values of vv/X that are rel-
evant to the overshoot). However, there does appear to be a correlation between
the onset values of yv/\ for flow modification and the values of vv/ for over-
shoot of birefringence in the 1500 ppm solution. The maximum overshoot for the
1500 ppm solution in the 2-roll and 4-roll mill occurs at 7\/X ~ 26 and 28 sec™!,
where we observe a 27% and 20% decrease in the velocity gradient, respectively,
for steady flow. The primary conclusion from this is that it is critical to know
the time-history of the velocity gradient at inception of flow if we are to clarify
the mechanism for overshoot in birefringence. Our comparison for the transient

birefringence with the flow data suggests that the time-history of the strain rate
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experienced by the polymer may govern the dynamics of the polymer in the flow
and subsequent flow modifications. Time-dependent measurements of the velocity
gradient by the same technique of homodyne light scattering is currently being

pursued in our laboratory.

4. Discussion

4.1 Concentration Effects on Flow Modification

In order to investigate the effect of concentration changes on the amount of
flow modification, the measured velocity gradient is replotted in Fig. 20 versus the
nondimensional velocity gradient mv’X. The amount of strain rate inhibition is
generally larger in the less concentrated 1500 ppm solution for both flow types at
the same value of 7'7\&. This is unezpected because one would expect that the
flow modification effect should increase with increasing concentration. However,
we notice from the birefringence results that increasing concentration also inhibits
the high degree of chain extension that is necessary to produce the large stresses

in the flow, that are essential to cause a decrease in the velocity gradient.

We can estimate the amount of polymer extension from the birefringence
data by calculating the expected saturation birefringence An, for each concen-
tration based on dilute solution results from Dunlap and Leal [7]. They determined
N=1200 for PS2. Using this value for N and adjusting the differences in refractive
index and molecular weight for our PS2 solutions, we determined by using eq.(18)
that Ans ~ 6.8 x 107° and 2.0 x 10~* for full polymer extension in the 1500 and
4500 ppm PS2 solutions, respectively. Then, an effective volume concentration of
spheres (¢, fy) with radius r., equal to half of the extended length for the polymer
can be calculated as [§]

4 N
¢eff = ‘é’?{'?‘eqs']‘\‘d,‘é"c (20)
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where r., = %Lm is the equivalent radius of the extended chain, and
L is the contour length (~ 4.5 x 10™%*cm). Fig. 21 shows the calculated effective
concentration versus 7/ in the 4-roll mill (A = 1.0). The effective concen-
tration of the 4500 ppm, @45, is higher than that of the less concentrated 1500
ppm, é15, up to 7yVA ~ 1.9. However, beyond that point, ¢;5 is much larger
than @45 (up to 27%). The critical effective volume concentration ¢. for onset of
flow modification can be determined by comparing the critical velocity gradient
(79vV/A). from Fig. 20(a) with the corresponding effective volume concentration
from Fig. 21. We find ¢, ~ 170 and 180 for the 1500 and 4500 ppm semi-dilute
solutions, respectively. Thus, an effective critical effective volume concentration of
~ 170 — 180 correlates well with onset of flow modification for polymer solutions of
different concentrations. This shows that the onset of flow modification depends
strongly on both polymer concentration (amount of polymer) and configuration
(effective chain length) of the polymer. The idea of a minimum effective volume
concentration for an effect of polymer on flow gives good correlation with the ac-
tual occurrence of a flow effect in these experiments. However, the value of ¢,
estimated from the semi-dilute solution experiments is O(10) times less than that
of the dilute PS8 solution previously determined by Dunlap and Leal [8]. It is
likely that this is due to experimental uncertainty in pinpointing the onset point
for dilute solutions where the flow effect is eztremely localized, but we will discuss

this point in the next section.

Another noteworthy observation is that the magnitude of the effect of poly-
mer on flow also correlates with the effective concentration. Using results from
Fig. 20(a) and Fig. 21, an 11% reduction in velocity gradient for the 4500 ppm
solution is achieved when ¢ = 220 (at ryv/A = 3.3). By comparison, a 9% ve-
locity gradient reduction also occurs at the same effective concentration ¢ = 220
(at TyV\ = 2.2) in the 1500 ppm solution. This correlation of effective concen-

tration with onset and magnitude of the flow modification for polymer solutions
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of different concentrations has not been demonstrated previously. The presump-
tion that an increase of concentration will automatically lead to a stronger flow
effect needs to be considered carefully in different concentration regimes. Since
¢ depends both on concentration and polymer configuration (characteristic chain
length), an increase of concentration alone cannot guarantee a prior: that the flow

modification will increase except for truly dilute solutions.

The large effective volume concentration required to induce a change in the
flow is indicative of the necessity for strong hydrodynamic and possibly molecular
interaction induced by the presence of stretched polymer chains, which are aligned
locally near the stagnation region. We can also estimate the extra stress that is
associated with the aligned polymer chains. By assuming that the stretched and
aligned polymer acts as an elongated particle, we can use an equation due to
Batchelor [42] to calculate the ratio of the normal stress contribution due to the

elongated chains o, relative to that of the suspending fluid o,

i’lNﬁcE13
_q_p_ — 9 My (21)
os  log & log 22 2

where 2/ is the effective polymer chain length, h = m is the lateral
spacing between polymers, and r is the width of the polymer. It should be noted
that o,/ ~vv/Xis the Trouton viscosity which is 3n, for the Newtonian solvent in 3-D
extensional flows. Fig. 22 shows the nondimensional polymer chain length 2r.,/L
calculated from birefringence results. The calculated stress ratio for the case of
1500 ppm PS2 in TCP6 at the onset of a flow effect is based upon the fact that the
polymer is extended to about 20% of its maximum contour length when the onset
of a decrease in yv/X is observed. If we assume that the polymer occupies about
the same volume in the stretched and equilibrium states, the width of the polymer
can be calculated to be r ~ 157A. We thus calculate the polymer axis ratio as

I/r ~ 31 and the stress ratio to be 85 using eq.(21). (This estimate for the width
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of the polymer, r, is later compared with model prediction from section 4.3 that
gives |/r ~ 28 when 2] ~ 0.2L, and thus justifies the assumption.) The calculated
value of the stress ratio is also an order of magnitude smaller than reported earlier
for the dilute PS8 case [8] at the point where both cases showed an order one flow
effect. This seems to indicate two distinct interaction mechanisms for dilute and

non-dilute polymer solutions.

One more comparison can be made regarding the issue of drag reduction. Za-
kin and Hunston [43] were able to demonstrate an effect of concentration changes
for polystyrene 2M (M, ~ 2.4x 10°%) in both poor and good solvent on the amount
of drag reduction in turbulent pipe flow. Comparing the intrinsic viscosity of the
polymer solutions, our solvent lies right in between the good and poor catagory.
Adjusting for the slight difference in molecular weight and using the above effec-
tive volume concentration concept, our 1500 ppm PS2 in TCP6 is approximately
equivalent to 1000 ppm of the 2M in a poor solvent (the 100 ppm PS2 in LV
corresponds to ~ 70ppm of 2M). The percent drag reduction is thus ~ 25% cor-
responding to our semi-dilute solution whereas the corresponding dilute solution
only gives ~ 6% drag reduction from Fig. 2 in Ref. 43. This drag reduction result
agrees in general with the flow modification data we obtained. The criteria of high
chain extension and intense molecular interaction necessary for flow modification
in the 2-D linear flow may be one reason for inhibition of turbulent momentum
transfer by large eddies near the buffer region causing a reduction in drag at the
wall in turbulent pipe flow. The less than linear increase of drag reduction with
concentration could be a result of inhibition of polymer stretching, and thus of the

magnitude of flow modification, as revealed by our birefringence and flow data.

The dynamics of polymer in the semi-dilute solutions is further discussed
next using the idea of delocalization in birefringence as an attempt to explain the

anomalous flow modifications discovered in our study.



~ 47 -

4.2 Local and Non-Local Effects

As mentioned before, our use of the phrase non-local effect refers to the fact
that the breadth of the birefringence region is many times that for the dilute case.
Dunlap and Leal [8] found a minimum value of ¢. ~ 4000 — 6000 for any flow
modification to occur in dilute PS8 (M, ~ 8.42 x 10°) solutions. However, the
value of critical effective volume concentration for semi-dilute polymer solutions
is an order of magnitude less than that of the dilute PS8 solutions. The fact that
their 100 ppm PS2 solution exhibited no flow modification was attributed to the
fact that the maximum value of ¢.fy was only 2000 even in the fully stretched
state. However, a significant flow effect occurs even when ¢.rs ~ 200 in semi-dilute
solutions. Clearly, some additional factors must be important other than the local
value of ¢ (local effect in here refers to the birefringence width of size similar to
the size of the probing laser beam in the dilute solution). In the dilute case, since
a high effective volume concentration exists only in a very small region around the
extensional outflow axis, the increase in elongational viscosity only directly affects
the flow very locally. Therefore, a measurable (averaged) effect only appears at
a much higher ¢, in the dilute case. In the semi-dilute case, interaction of the
polymer with the flow field occurs over a broader region. Rallison and Hinch [44]
have done a local analysis of velocity gradient changes for dilute polymer solutions
along the outflow stagnation streamline of a 4-roll mill using a nonlinear FENE
dumbbell model. By assuming a thin region of high viscosity due to the polymer
along the stagnation streamline, they found good agreement with the flow data of
Dunlap and Leal [8] in the 4-roll mill. However, it appears that their method is
not strictly applicable for semi-dilute solutions in which the birefringence zone is

much larger than assumed in their analysis.

Next, we examine the extent of flow modification around the stagnation

region. Comparing the flow effect with different concentrations at about the same
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value of 7yv/A ~ 3.3 from Fig. 23, the decrease in velocity gradient is about
2 times larger for the less concentrated 1500 ppm than for the 4500 ppm at the
stagnation point y = 0. However, the 4500 ppm solution shows a larger effect away
from the stagnation point. This correlates with the fact that the birefringence
region is much broader — about 2 times wider than in the 1500 ppm solution (see
Fig. 10). Therefore, a larger non-local flow effect (strain rate inhibition) would be
experienced because of the cumulative effect of high ¢ (indicative of high stresses)
existing over a broader region in the more concentrated solution. This explanation
is also discussed in Ref. 44. The existence of non-local flow modification is also
shown by Miiller et al. [14]. These investigators have shown that the pressure
drop increase for 4 x 10M,, polystyrene solutions for pure extensional flow in
an opposed-jet increases with concentration up to 1%. They further showed that
delocalization of birefringence occurred at high strain rates which induced a large
flow effect. The measured flow change by pressure drop across the opposed-jet
i1s a macroscopic property averaged over the entire flow region. Therefore, the
non-local birefringence would tend to affect the flow more in a global sense for
higher concentration solutions in their study. Our velocity gradient measurement
is pointwise (beam size is ~ 160um) so that it is more sensitive to local effect,
and enables us to detect the importance of inhibition of polymer extension due
to increased concentration on reduction of local flow effect. The dynamics of the
polymer for non-dilute polymer solutions as in our case will be discussed via model

predictions in the following section.
4.3 Non-Dilute Dumbbell Models

The experimental birefringence data obtained above can be compared to
certain theoretical models for better understanding of the rheological behavior of
polymer molecules in semi-dilute solutions under strong flows. We are hopeful

that this can provide evidence for distinguishing certain features necessary for the
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molecular theory to mimic closely the response of the actual polymer to flows. The
appropriate models should take into account intermolecular interactions between
neighboring polymers. This interaction would exhibit a similar excluded volume
effect (as in truly dilute solutions for segment-segment interactions in the same
polymer chain) between polymers for non-dilute solutions. Network models [17,45]
for concentrated polymer solutions are not applicable here because these models
assume a highly entangled system of polymer chains, and no explicit dependence
of rheological properties on concentration except, via its effect on junction density,
is found. Reptation models as proposed by Doi and Edwards [46], are designed
only for highly concentrated systems, and have clear limitations for application
to semi-dilute flexible polymer solutions in elongational flow. For example, the
elongational viscosity decreases monotonically when the strain rate is larger than
a critical value, and this prediction contradicts many recent experimental c;bservav
tions for semi-dilute systems which show an initial monotonic increase in effective
elongational viscosity with strain rate [13,14,47,48]. Thus, we do not consider
these concentrated solution models for detailed comparison with our current ex-

perimental data.

Bird and DeAguiar [49,50] have proposed an encapsulated dumbbell (ED)
model in which the effect of polymer-polymer interactions is to inhibit the mobil-
ity of polymer in the direction perpendicular to its backbone. This effect is intro-
duced into the usual elastic dumbbell model as an anisotropic contribution in both
the hydrodynamic friction and Brownian motion encountered by a test polymer
molecule. This idea of anisotropy in bead friction was first introduced by Giesekus
[51] to mimic the drag experienced by a deformed polymer coil, which should be
at least qualitatively analogous to the anisotropic frictional force experienced in
low Reynolds number flow by a nonspherical body such as an ellipsoid. Giesekus
later used this concept to obtain a constitutive equation for concentrated polymer

solutions and melts [52]. The ED model, as proposed by Bird and DeAguiar, con-
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tains two parameters, namely ¢ and 3, which govern the degree of anisotropy in
the tensorial drag and Brownian motion, respectively. These parameters should
presumably be a function of concentration and other molecular properties of the
polymer system (though this is not mentioned in Refs. 49 and 50). From the
steady state birefringence data obtained in the 2-roll and 4-roll mill flows, it is
apparent that the polymer-polymer interactions for a semi-dilute solution have

resulted in significant inhibition of the stretching of the polymer (Fig. 22).

DeAguiar [50] has obtained predictions for the mean square end-to-end length
((fT)) of a polymer in uniaxial extensional flow with various values of the model
parameters o, 3, and b. The parameter, b, in the ED model is a nondimensional
quantity that is equal to 3V in the notation used here (note that we have deter-
mined previously that N = 1200 for the high M,, polystyrene used in the present
study and this would suggest a value of 3600 for b). The general predicted trend
is that the mean dimension of the polymer will increase with strain rate more
rapidly with increasing values of 0. However, the range considered for b is only
up to b = 200, while the range for o is only down to 1/3 (note that o must be less
than one for concentrated solutions[50]). This limited range of parameters in their
study does not allow a direct comparison with our current data. Therefore, the
ED model prediction is again calculated numerically in the present study using
the experimentally determined value for the parameter b (i.e., N in our case). We
integrated numerically the second moment equations for the ED model, including
the effect of finite transit times in the calculation to account for the fact that the
polymer only resides near the stagnation region for a finite amount of time in the
real extensional flow generated by 2-roll and 4-roll mills. This transient nature of
the extensional flow (as seen by the polymer) has been pointed out by previous

workers to be critical for model comparisons 7,8].

Following the approach of Ref. 7 with {/D = 0.003, and using the value of

N = 1200 determined earlier from Ref. 8, the predicted root-mean-square end-to-
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end length of the polymer is plotted versus nondimensional strain rate 77V in
Fig. 24, with 3 = 1 and various values of o for the 2-D extensional flow (A = 1)
in the 4-roll mill. We have neglected anisotropy in Brownian diffusion by taking
$ =1 but this does not change the general behavior of the prediction except near
the equilibrium state. This assumption of isotropy in Brownian motion is justified
by the fluctuation-dissipation theorem suggested by Phan-Thien et al. [53], who
have pointed out the inconsistency of having an independent degree of anisotropy
in the frictional drag and Brownian diffusion force. From the results in Fig. 24, it
is apparent that the polymer is predicted to extend to maximum contour length
quite rapidly with increasing strain rate regardless of how small o is. Indeed,
the cases of ¢ = 0.01 and ¢ = 0.001 collapse to a single curve which is also the
limiting solution for ¢ = 0. The physical significance of ¢ — 0 is that the polymer
is restricted to reptate along its backbone for concentrated solutions. The dilute
FENE dumbbell model is recovered for the case of o0 = § = 1. Negative values of ¢
are not allowed in this ED model because physically unrealistic results ensue. The
lack of a significant inhibition of polymer extension is not surprising because the
ED model incorporates the effects of direct interaction between polymers only as an
effective increased frictional resistance in directions perpendicular to the polymer
backbone. The polymer can reptate and/or extend freely along the backbone
in the encepsulated dumbbell model. Therefore, at high strain rates, the strong
extensional component acting along the end-to-end length of the polymer simply
dominates all other effects and the model predicts that the polymer extends in
the open-ended tube to its maximum possible length. The prediction of the ED
model is apparently in contrast to our limited birefringence data which shows
strong inhibition of stretching with increasing concentration in the semi-dilute
regime even at moderate strain rates. Although the ED model has shown some
success with steady and transient (start-up) simple shear flows for semi-dilute

polymer solutions [50], the model predictions in strong flow have not previously
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been tested in detail (note that simple shear flow is a weak flow [2,3,15]). It is
apparent that the ED model does not capture the inhibition of extension in strong

flows that is characteristic of semi-dilute solutions.

An alternative dumbbell model which attempts to incorporate polymer-
polymer interactions in an ad hoc way was proposed recently by Hess [19]. This
is the so-called interacting dumbbell (IDB) model. In order to include polymer-
polymer interactions for non-dilute polymer solutions, Hess [19] has introduced
the concept of a pairwise (non-hydrodynamic) interaction among beads of differ-
ent dumbbells. This led to a predicted /¢ dependence in the slope of birefringence
versus shear rate for polymer solutions in simple shear flow, which was shown to
agree with birefringence results by Tsvetkov & Frisman [54] for semi-dilute poly-
isobutylene solutions. The IDB model also predicted that the specific birefringence
(plotted against the nondimensional velocity gradient) is inversely proportional to
concentration in 2-D extensional flows, when the concentration dependence on the
relaxation time is accounted for in the nondimensional velocity gradient (normal-
ized by the relaxation time) [55]. This indicates that the absolute birefringence
value should collapse to a single curve for different concentrations in the semi-dilute
concentration regime, when plotted versus 7yv/A. Thus, the absolute birefringence
for the semi-dilute polymer solutions is replotted versus measured values of 7yv/A
in Fig. 25. The measured eigenvalues of the velocity gradient tensor were obtained
from the independent homodyne light scattering experiments, and thus represent
the actual strain rate experienced by the polymer. The result shows a good corre-
lation for the slope of birefringence versus 7yv/A at the onset point, except for a
slight shift in the abscissa. This shift could be the result of the difference between
relaxation time by viscometry estimation and the dumbbell model relaxation time,
T45. In view of the lack of a more general theory for semi-dilute solutions with

¢ < ¢*, we proceed to compare our birefringence data with the FENE interacting

dumbbell (FENE-IDB) model in more detail (i.e., quantitatively). The FENE
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(finitely extensible nonlinear elastic) dumbbell uses a constant friction coefficient
and Warner spring to describe the dynamical response of polymer in flows. Bird
et al. [56] have shown that the FENE dumbbell is quite adequate in describing

the behavior of dilute polymer solutions in shear flows and extensional flows.

The FENE-IDB model is a modified version of Hess’s original IDB model
which used a Hookean spring to describe the conformational diffusion of a de-
formed polymer chain back to equilibrium configuration. The Warner spring is
essential for limiting the polymer extension to its maximum contour length es-
pecially in strong flows. Ref. 55 explains the development of the model in some
detail, and presents predictions of rheological properties using this modified IDB
model. In the present communication, we briefly discuss the main features of
the model and then compare predictions with the steady birefringence data. The
FENE-IDB model differs from the dilute FENE dumbbell model by an additional
interaction force term. This interaction force is intended to take account of inter-
molecular forces among polymer chains which could include close contact forces
and even topological entanglements when polymer concentration approaches the
overlapping concentration, c*, at equilibrium. By using a mean field approxima-
tion, the interaction becomes an effective one-particle potential which acts upon
a test dumbbell. There are two parameters, namely k, and k;, which describe the
anisotropic interaction potential of the test dumbbell when it is oriented parallel
and perpendicular to the main axis of the mean field created by neighboring poly-
mers, respectively. For simplicity, we take ks = k;. No change in the results would
occur, however, even for k;/k, ~ O(10) [55]. The dominant terms are governed by

the parameter k,.

In order to compare the experimental data with model predictions, we need
to make a physically reasonable choice for the relaxation time of the polymer
solution, 7y, given by eq.(9). The (longest) Rouse or Zimm relaxation time will be

used to determine 7; for the 1500 and 4500 ppm solutions from the viscometric
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measurement of 7 in Table 2 via eq.(3). The Rouse model [21] differs from the
Zimm model [22] by neglecting hydrodynamic interaction between segments of the
same polymer chain. The relaxation time predicted by these bead-spring (Rouse or
Zimm) models should give a physically better estimate than the simple dumbbell
model prediction from eq.(3) for polymer solutions. The Rouse or Zimm formula

for the longest relaxation time is given by [21,22]

= {0.6087’, Rouse formula; (22)

0.4227, Zimm formula.
Peterlin [57] had also shown that the polymer expansion predicted by the dumbbell
model is markedly larger than in the case of the Rouse or Zimm model by the same
factor due to the difference in their relaxation times. Since the FENE-IDB model
always predicts the onset velocity gradient to be at g vvV/A = 1 /2 (Tap is the IDB
model relaxation time), and the measured onset point nondimensionalized by the
relaxation times from viscometric data appears to be somewhat smaller than 1 (see
Fig. 8), we conclude that the Rouse relaxation time is a better estimate for the
semi-dilute solution data than the Zimm relaxation time. This is consistent with
the idea of a hydrodynamic screening effect due to high concentration as suggested
by other investigators [58,59]. In particular, the polymer in these solutions behaves

like a free-draining chain due to hydrodynamic screening by neighboring polymers.

The only parameter left to be determined in the FENE-IDB model is the
interaction parameter, k,, which depends approximately linearly on the concen-
tration (¢) [19]. The simplest way to determine k, is to compare the asymptotic
value of the mean end-to-end length, (r?) %, at the largest value of 717v/\ obtained
in the experiment for the 1500 ppm solution, with the corresponding model pre-
diction for various values of k,. Then, the value of k, for the 4500 ppm solution
is assumed to be just three times the k, value for the 1500 ppm solution. In this
way, the interaction parameter is determined to be k, = 10 and 30 for the 1500

and 4500 ppm solutions, respectively. The interaction parameter for the 100 ppm
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is k, = 0 which is equivalent to the dilute FENE dumbbell prediction, and the
polymer relaxation time is taken from Ref. 8 to be 7, = 0.04 sec. The model
predictions are done by integrating the second moment equations as before with
finite transit time included. Fig. 26 shows the predicted values for the square root
of the specific birefringence (~ <r2>%) for A = 1 and 0.049, compared with the
experimental data for the three dilute and semi-dilute solutions (100 ppm PS2 in
LV, 1500 and 4500 ppm PS2 in TCP6). The experimental data is plotted using
the measured velocity gradient for the case of A = 0.049. This is representative of
the data for all other flow types studied because the birefringence has been shown
to correlate well with yy/A.

The model predictions show excellent agreement with data for the semi-
dilute solutions. The reason for the rather poor agreement in the dilute 100
ppm solution is likely due to the relatively high polydispersity sample used with
M /M, = 1.30, whereas the semi-dilute samples have a narrow molecular weight
distribution of M,,/M, = 1.06. Fuller and Leal [7] have pointed out the need
to include polydispersity in the model prediction even for fairly narrow molecular
weight distribution polymer samples. The birefringence data for the 100 ppm,
which is reproduced from Dunlap and Leal [8], had been shown to agree well with
the dilute FENE dumbbell model predictions when polydispersity is included in
the model by means of data averaging with a log-normal distribution [8]. In
the present analysis, no such averaging is performed. Instead the single value
of N = 1200 is used for model comparisons with experimental results. This still
gives good quantitative predictions as shown in Fig. 26 for our semi-dilute samples.
The correlation of birefringence predictions with different flow types agrees with
the quasi-steady data. Although only two semi-dilute solutions are compared,
the overall agreement of model predictions with data leads us to believe that the
FENE-IDB model provide a useful basis for modeling the dynamics of polymer

solutions with concentration in the dilute to semi-dilute regime in strong flows.
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Hess [19] had also shown good qualitative agreement with earlier experimental
observations, such as steady birefringence, shear viscosity, and first normal stress

coeflicient, for simple shear flow.

From the above results, the concentration dependence of specific birefrin-
gence (plotted versus 77\/5\_) is predicted to be ¢™! for semi-dilute polymer solu-
tions in 2-D extensional flows. This is quite surprising because it means that the
absolute birefringence remains the same even if more polymer is introduced into
the solution. However, the characteristic relaxation time for semi-dilute polymer
solutions can be a strong function of polymer concentration. An approximate
equation for 7 as a function of concentration ¢ can be derived using the Huggins’
equation [60] and the dumbbell model prediction for the zero shear viscosity of

the polymer solution 7 to be
T = 7o (1 + ki[n]e) (23)

where 1¢ is the characteristic relaxation time of the polymer in truly dilute solu-
tions, k; is the Huggins’ coefficient, and [n] is the intrinsic viscosity. Since both
ky and [n] are independent of concentration, the relaxation time shows a simple
relationship with ¢. Therefore, the actual concentration dependence of absolute
birefringence from the FENE-IDB model prediction is An o (1 + mec) with
m = ki[n] being a constant. Therefore, experimental data should be compared
with the knowledge of the characteristic relaxation time for high concentration
solutions so that explicit concentration dependence of rheological properties can
be determined (for example, the velocity gradient should be nondimensionalized
by 7 when comparing birefringence data for polymer solutions of different concen-

trations).

In spite of the good quantitative agreement between the FENE-IDB model
predictions and the steady state birefringence data, transient predictions from the

model do not give any overshoots in birefringence and this is in marked contrast
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to the flow data presented earlier. The model only predicts a steady rise of bire-
fringence to the final steady value with a characteristic time scale that is inversely
proportional to yv/X, for inception of extensional flow for any positive A\. The rea-
son for failure of the FENE-IDB model for start-up of extensional flow is likely due
to the fact that the IDB model neglects higher order interaction between polymers
that contributes most to the overshoots in birefringence by entanglement forma-
tion and destruction mechanism. The value of the interaction parameter will no
longer be a linear function of concentration. More importantly, the interaction
force term will have complicated nonlinear terms which depend on higher order
moments of the configuration tensor. This discrepancy is especially significant for
high concentration solutions which would have many polymer-polymer interpene-
trations at equilibrium to give rise to large overshoots in stress (or birefringence).
This may be the case for the 4500 ppm solution as discussed in section 3.3 be-
fore. The overshoots in birefingence can then be explained qualitatively by the
dynamics of network formation and destruction mechanism as proposed by the

temporary network model [17].

A modified version of the FENE-IDB model was also tried including con-
formation dependent friction as is generally used for dilute solution models [7,8].
No overshoot in birefringence is found even for this FENE-IDB model with vari-
able friction coefficient. This feature of variable friction (VF) can be incorporated
into the FENE-IDB model by replacing v with yv/Nr and multiplying the time-
derivative terms by v/Nr in eq.(11) of Ref. 53 for the IDB model, with r = (7'2>é.
The steady state prediction shows that the asymptotic value of specific birefrin-

gence, An/Ang, at intermediate velocity gradients is given by

An N ,
Ane . 2k 7V (24)

This prediction shows that the birefringence depends on the square of the velocity

gradient, (yv/A)?, which disagrees with many experimental observations of a linear
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dependence in strain rate with birefringence for semi-dilute polymer solutions in
extensional flows at intermediate strain rates [16,37]. The present experimental
results also show the same linear dependence in ~v/X with birefringence. Since
both An, and k, depend linearly with ¢, eq.(24) shows that the absolute bire-
fringence decreases with increasing concentration (An o« ¢™!) which contradicts
our experimental results shown in Fig. 25. All these results indicate that the VF
feature could not properly mimic the hydrodynamic response of the polymer in

semi-dilute solutions where hydrodynamic screening could be important.

5. Conclusion

The results we presented for flow birefringence and velocity gradient mea-
surements of semi-dilute PS2 solutions show a distinctive effect of polymer con-
centration in this concentration regime. The flow birefringence data indicates
that the onset strain rate is (74v/X)onses ~ 1 for the three concentrations studied
including the dilute solution. Thus, the onset of stretching depends on concentra-
tion only through the characteristic relaxation time which is some linear function
of concentration, (1 + mc), for semi-dilute solutions. Flow birefringence for the
three polystyrene solutions in this study correlates well with the eigenvalue of the
velocity gradient tensor 7\/1 for various extensional flow types of A > 0. The
increase of steady birefringence with ~¥V/X is shown to be linear initially, but the
slope decreases at higher shear rates because of flow modification by an apparent
increase in elongational viscosity. The specific birefringence is no longer inde-
pendent of concentration in this semi-dilute regime. It is found to be inversely
proportional to concentration when the data for the two semi-dilute solutions is
plotted against the dimensionless shear rate 7yv/\ (note that 7 is also a function
of polymer concentration). This shows that high concentration would inhibit high

chain stretching since birefringence provides a measure of polymer dimension.

When the steady flow birefringence is compared with predictions from ex-
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isting molecular theories for semi-dilute polymer solutions, we find that the most
appropriate choice is the FENE-IDB model. This modified version of Hess’s model
for interacting dumbbells provides excellent predictions for polymer conformation
change in strong (eztensional) flows for this concentration regime. The effect of
concentration on the onset strain rate, the slope of the birefringence increase with
~vV/'A, and specific birefringence, can be captured explicitly by varying the interac-
tion parameter, k,, linearly with the concentration. The model predictions such
as the linear increase of birefringence with strain rate also agree with observations
by other investigators for semi-dilute polyethylene oxide solutions in extensional
flows [6,16,37]. Our experimental data also suggest that a hydrodynamic screen-
ing effect exists in these semi-dilute solutions. The Rouse free-draining behavior
is shown to provide better fit of model predictions with experimental data, than
the non-free-draining model. However, the FENE-IDB model is inadequate in
predicting the overshoots in birefringence for inception of extensional flows that
are observed in the experiments. This overshoot in birefringence is believed to be
the result of strong initial intermolecular interactions followed by disentanglement
of the network at high strain rates. Since the FENE-IDB model neglects higher
order interactions, the failure to predict overshoots due to network deformation

and destruction is thus not surprising,.

The main result in this study is that the concentration dependence of the flow
effects induced by the different concentration polymer solutions is shown for the
first time. Significant inhibition of high strain rate occurs in both the semi-dilute
1500 and 4500 ppm PS2 solutions whereas no measurable change is observed for the
dilute 100 ppm solution. This effect is believed to be the result of high elongational
viscosity in the birefringent region. The onset of flow modification corresponds to
a high effective volume concentration of ¢, ~ 175 for both semi-dilute solutions.
This also represents an apparent increase in the normal stress difference of ~ 85

times that of the Newtonian solvent. These critical values are O(10) times less than
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the corresponding critical values determined by previous workers in this laboratory
for dilute PS8 solutions. The reason may be that the birefringent region is much
broader in the semi-dilute case. This extended region of high stress by aligned
and extended polymers can create stronger flow modification than in the dilute
case. The correlation of the magnitude of the decrease in v with ¢.rs is also
revealed by the local measurement of the velocity gradient for polymer solutions
of different concentrations. This dependence of flow modification on ¢ leads to the
opposing effect of high concentration on the magnitude of strain rate inhibition.
High concentration would inhibit high chain stretching, but it would increase the
local stress due to the increased amount of polymer present in the solution. That
is the reason for larger local flow modification in the less concentrated 1500 ppm
solution. This competing effect of increasing concentration on the changes to the
flow may provide a new explanation (via the dynamics of the polymer in strong
flows) for the inhibition of drag reduction by increasing concentration. The less
than linear increase in drag reduction with concentration [9,18] is possibly due
to the inhibition of polymer extension for semi-dilute polymer solutions in locally

strong flow regions in the turbulent pipe flow.

Therefore, increasing the polymer concentration alone would not guarantee
a locally, larger flow modification in this semi-dilute regime. However, the 4500
ppm solution shows globally larger flow effect extending away from the local stag-
nation region due to broader birefringent region. The above local and nonlocal
effect is only detectable by the pointwise velocity gradient measurements in this
study. Work is now directed towards obtaining experimentally the time-dependent
velocity gradient measurement by a modified homodyne light scattering technique.
This would allow us to clarify the origin of overshoots in birefringence and provide

a basis for testing constitutive equations for polymeric fluids in flow.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Solution viscosity versus polymer concentration for PS2 in TCP6 so-

lutions.

Schematic of the homodyne light scattering experiment with the two-
dimensional flow in the x-y plane of the roll mill device. P represents

the pinhole location, and F is a laser line filter (488 £ 7 nm).

Schematic streamlines for the linear two-dimensional flow with various
flow type A. The X-Y and X'-Y' coordinates are used for experiments

in the 2-roll and the 4-roll mill, respectively.

Measured velocity gradient v (arbitrary value) versus the eigenvalue
of the velocity gradient tensor, yv/X (theoretical Newtonian value), for
the Newtonian solvent TCP6 in the 2-roll and the 4-roll mill.

Birefringence experiment: (a) schematic of experimental setup; (b)
relative orientation of the analyzer, polarizer, principal axis of polar-

ization tensor of polymer, and coordinate of the flow.

Flow birefringence of the solvents TCP6 and CW versus the Newtonian
strain rate, v(1 + A)/2.

Specific birefringence, An/c, versus eigenvalue of the velocity gradient

tensor, yv/X, for the 1500 and 4500 ppm solutions of PS2 in TCPS.

Specific birefringence, An/c, versus the dimensionless eigenvalue of the
velocity gradient tensor, 7yv/A, for the 1500 and 4500 ppm solutions
of PS2 in TCP6, and for the 1500 ppm solution of PS2 in CW (dashed

line).
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Figure 9. Specific birefringence, An/c, versus dimensionless eigenvalue of the

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

velocity gradient tensor, 7yV/\, for the 100 ppm, 1500, and 4500 ppm

PS2 solutions (same nomenclature as in Fig. 8).

Flow birefringence profile across the x'-axis (4-roll mill) and the x-
axis (2-roll mill) for the semi-dilute PS2 solutions at x' = x = 0, for

the two flow types: (a) A = 1.00; (b) A = 0.049.

Flow birefringence profile across the x-axis in the 2-roll mill for the
4500 ppm solution of PS2 at YV = 14.82 sec™!, and for x = 0 (o),
x = 0.12"(x).

Flow birefringence of the Newtonian solvent TCP6 versus time for
inception and cessation of steady extensional flows at the stagnation

point: (a) A = 1.00 (4-roll mill); (b) A = 0.049 (2-roll mill).

Flow birefringence versus time for inception and cessation of steady
pure extensional flows at the stagnation point in the 4-roll mill (A =
1.00) for the semi-dilute solutions of PS2 in TCP6: (a) 1500 ppm;
(b) 4500 ppm. ‘

Flow birefringence versus time for inception and cessation of steady
extensional flows at the stagnation point in the 2-roll mill (A = 0.049)
for the semi-dilute solutions of PS2 in TCP6: (a) 1500 ppm; (b) 4500

Orientation angle, x, versus time for cessation of steady extensional
flows at the stagnation point in the 2-roll mill (A = 0.049) for the
semi-dilute solutions of PS2 in TCP6: (a) 1500 ppm; (b) 4500 ppm.

Measured velocity gradient vy (arbitrary value) versus the eigenvalue

of the velocity gradient tensor, yv/A (theoretical Newtonian value),



Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.
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in the 4-roll mill (A = 1.00) for the semi-dilute solutions of PS2 in
TCP6: (a) 1500 ppm (solvent TCP6 data represented by the squared
symbol); (b) 4500 ppm.

Measured velocity gradient (relative values of v) profile across the
x'-axis at the stagnation point in the 4-roll mill (A = 1.00) for the
semi-dilute solutions of PS2 in TCP6: (a) 1500 ppm; (b) 4500 ppm.

Measured velocity gradient v (arbitrary value) versus the eigenvalue
of the velocity gradient tensor, yv/\ (theoretical Newtonian value),
in the 2-roll mill (A = 0.049) for the semi-dilute solutions of PS2 in
TCP6: (a) 1500 ppm (solvent TCP6 data represented by the squared
symbol); (b) 4500 ppm.

Measured velocity gradient (relative values of ) profile across the
x — axis in the 2-roll mill (A = 0.049) for the 1500 ppm solution of
PS2 in TCP6 at: (a) x = 0" (roller surface located at y = 4+0.125");
(b) x = 0.12" (roller surface located at y = £+0.14").

Measured velocity gradient v (arbitrary value) versus the dimension-
less eigenvalue of the velocity gradient tensor, 7vv/A (theoretical New-
tonian value), for the solvent and the polymer solutions, and for two

flow types: (a) A = 1.00 (4-roll mill); (b) A = 0.049 (2-roll mill).

Effective volume concentration, @, versus the dimensionless eigen-
value of the velocity gradient tensor, 7yv/A (theoretical Newtonian
value), for the polymer solutions in the 4-roll mill (A = 1.00).

Dimensionless effective polymer chain length, 2r.,/L(= \/An/An,),

calulated from the birefringence results in Fig. 9 plotted versus the



Figure 23.

Figure 24.

Figure 25.

Figure 26.
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dimensionless eigenvalue of the velocity gradient tensor, rvV/A, for

solutions of various polymer concentrations.

Measured velocity gradient (relative values of v) profile across the
x'-axis in the 4-roll mill (A = 1.00) for the 1500 ppm (dashed line)
and the 4500 ppm (solid line) solutions of PS2 in TCP6 at the di-
mensionless shear rate: 7yv/A ~ 0.44 (@); 7yVA ~ 0.33 (x).

Predictions of the ED model with a = # = 1 for the root-mean-square
end-to-end length of a dumbbell versus the dimensionless eigenvalue
of the velocity gradient tensor, m\/X, and for various values of the
parameter o: o = 10, 2, 1, 0.1, 0.01, 0.001 (from left to right of the

graph).

Flow birefringence (absolute value), An, versus the dimensionless
measured values of the eigenvalue of the velocity gradient tensor,
7(YVX)measured, for the 1500 ppm (solid line) and the 4500 ppm
(dashed line) solutions of PS2 in TCP6 (same symbols for different
flow types are used as in Fig. 8).

Predictions of the FENE-IDB model for A = 1.00 (solid line) and
A = 0.049 (dashed line) for various values of the parameter, k,, along
with representative flow birefringence data for solutions of various
concentration: ¢ = 0 ppm ( @ ); ¢ = 1500 ppm (A); ¢ = 4500 ppm
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Abstract

The effect of polymer concentration on the rheological properties of semi-
dilute polymer solutions in extensional flows is studied with a nonlinear molecular
theory. The theory is based on a elastic dumbbell model for interacting dumb-
bells proposed by Hess [16]. The elastic restoring force of a dumbbell is modeled
by using a nonlinear Warner spring (FENE dumbbell) which replaces the lin-
ear Hookean spring originally in Hess’s interacting dumbbell (IDB) model. The
conformation change of polymer is shown to be a decreasing function of concentra-
tion. High concentration tends to inhibit large extension of polymer due to direct
polymer-polymer interaction. The Hookean spring in the original IDB model has
resulted in stretching of polymer chain beyonds its maximum contour length for
large strain rates in extensional flows. When the nonlinear FENE dumbbell is
incorporated into the IDB model, the defect of the Hookean spring disappears.
A smooth transition of dilute solution behavior to semi-dilute solution behavior
is obtained with this FENE-IDB model. The mean square end-to-end length of
the polymer has the same prediction as the flow birefringence. The specific bire-
fringence is proportional to ¢™! for semi-dilute solutions when plotted versus the
dimensionless eigenvalue of the velocity gradient tensor, 84'v/A, but it is indepen-
dent of concentration for dilute solutions as expected. For semi-dilute solutions,
the characteristic relaxation time for the polymer, 6, is also a linear function of
concentration. The flow birefringence is predicted to increase linearly with 7'v/A
in the semi-dilute solution regime for a wide range of shear rates. All these pre-
dictions agree qualitatively with some experimental observations [15,23,24].
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1. Introduction

The dynamics of polymer molecules in shearing flows have been widely stud-
ied by modeling the polymer as an elastic dumbbell [1,2,3]. Bird and coworkers
[4] have shown detailed derivations of the equations of change for polymer confor-
mation and rheological properties of polymeric fluids using the dumbbell model.
Although the dumbbell model is crude in the sense that the polymer molecule is
modeled by just two beads connected by a spring (versus the bead-spring chain
model such as the Rouse model [5]), it has proven successful in predicting the dy-
namical behavior of polymer solutions in both simple shear flows and extensional
flows when compared with experimental data [6,7,8]. Most of the aforementioned
models were applied to isolated polymer chains in a dilute polymer solution. When
the concentration becomes larger, intermolecular interactions need to be consid-

ered.

Earlier molecular models such as the temporary network model, which origi-
nates from Yamamoto’s network theory [9] for entangled polymer systems, describe
the polymer-polymer interaction solely in terms of entanglement junction forma-
tion and destruction with various empirical formulae used to model the details
of these processes [10,11]. There is no simple basis to account for concentration
effects on the rheological properties of polymers within the context of the network
model. Its application is restricted largely to concentrated polymer solutions and
melts where the entanglement effect is dominant. The reptation model proposed
by Doi and Edwards [12] has similar limitation in its applicability. In the rep-
tation model, the interactions between polymers in a concentrated solution are
effectively reduced to the description of the dynamics of a single reptating chain in
a tube, though no detailed microscopic description is given of the interactions (or
entanglements) of the confined single chain with other polymer molecules. Another

proposal to describe non-dilute solutions is the encapsulated dumbbell model pro-
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posed by Bird and DeAguiar [13,14]. This model also incorporates the reptation
concept by describing the intermolecular interactions between a test chain and
its neighbours with an anisotropic friction force and anisotropic Brownian mobil-
ity. However, it gives similar predictions to the dilute solution dumbbell model
in extensional flow, and this result appears to disagree with recent experimental
observations in our laboratory [15]. In summary, then, the utility of these existing
molecular models for moderately concentrated polymer solutions is quite limited,
especially in elongational flows where the polymer can be subjected to large defor-
mations, and in the absence of any basis to account explicitly for the concentration

dependence of the interaction of the test chain with other polymer molecules.

Recently, however, Hess [16] has proposed an interacting dumbbell (IDB)
model for moderately concentrated (semi-dilute) polymer solutions which includes
an explicit interaction force to account for concentration effects. The assumed ex-
istence and the form of the interaction principles are both ad hoc, but the mean
field approximation for the resulting force on a test dumbbell is rigorous. The
model leads to an explicit concentration dependence in the rheological functions
such as birefringence and stress. It can also provide a description of transition in
the dynamical behavior of a polymer solution as we go from dilute to semi-dilute
solution concentrations. One limitation of the model, however, is that Hess used a
linear Hookean spring to describe the elastic effect of the polymer in flows. In the
dilute limit, this feature of the model is known to have limited application espe-
cially for modeling polymer dynamics in strong flows. In particular, the Hookean
dumbbell is predicted to extend beyond its maximum contour length at high strain
rates. This unrealistic result can be circumvented by replacing the linear spring
with a nonlinear one. The nonlinear spring that will be used in the present study
is the Warner spring [17] which has been discussed extensively in Ref. 3 for the
finitely extensible nonlinear elastic (FENE) dumbbell model with constant fric-

tion coeflicient and Warner spring. The Warner spring provides an infinitely large
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spring force when the polymer is being stretched by the flow to near its maximum
extension. Thus, the polymer can no longer extend beyond its maximum length.
The purpose of this paper is to explore the effect of the Warner spring on the
IDB model for polymer solutions with concentration in the dilute to semi-dilute
regime. The type of flow field that we are interested in is the so-called strong flows
in the sense that exponential stretching of the polymer is possible in these flows,

which have a strain rate greater than vorticity.

Here, we will first examine the IDB model in homogeneous flows with a spring
contribution given by either the Hookean or the Warner spring. The equation of
change for the dumbbell configuration and the polymer stress tensor will be pre-
sented. Then, we will derive the rheoiogical equations for general two-dimensional
(2-D) linear flows ranging from pure rotational flow, to simple shear flow, and to
pure extensional flow. Next, asymptotic and numerical results for the end-to-end
length of the polymer and flow birefringence are presented for the IDB model with
Hookean spring in 2-D extensional flows. The motivation for considering these 2-D
strong flows is that this type of flow can be generated approximately in the 2-roll
and 4-roll mill, so that comparison with experiments can be performed readily [8].
This part of the work is similar to Hess’s results on uniaxial extensional flows.
The difference is that the defect of the interacting Hookean dumbbell is clearly
shown here but not in Hess’s paper [16]. Finally, we will present asymptotic re-
sults for polymer conformation and flow birefringence using the IDB model with
the nonlinear Warner spring (FENE-IDB model). This modified version of Hess’s
model for dilute to semi-dilute polymer solutions shows significantly improved pre-
dictions for the polymer dynamics in these strong flows. Numerical simulation is
also presented for the birefringence and orientation of polymer in the same flows.
The predictions agree in general with experimental results for semi-dilute polymer
solutions in extensional flows by other investigators. Our results also show that

a smooth transition from dilute to semi-dilute solution behavior can be obtained
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with the improved model.

2. Development of the Model

Hess [16] has developed a dumbbell model with linear spring and constant
bead friction for semi-dilute polymer solutions by incorporating the effect of finite
concentration into the dilute dumbbell model via an interaction force term. The
pair-wise interaction between beads of different dumbbells is modeled as a con-
servative interaction potential. By using a mean field approximation, an effective
one-particle potential is obtained which depends on the end-to-end vector, r, of
a test dumbbell and on concentration. This interaction force is intended to ac-
count for all interactions among polymer chains which could include close contact
forces or even topological entanglements when polymer concentration approaches
the critical overlap concentration ¢* at equilibrium. Since the model was derived
by neglecting higher order terms in the multipole expansion for the interaction
force, it should be applied to dilute to semi-dilute solutions whose concentrations

are below the critical concentration c*.

The interaction force F', acting on the test dumbbell by the external potential
is then given by [16]

. 1o /o = .

Fc=~——-2—V<r~E-r) (1)
where

E = (k; trC) I+ (ks — k) C
and

¢ = (F¥).

Here, E is the interaction matrix, C is the configuration tensor averaged with the
configuration distribution function, and k,, k; are two phenomenological parame-

ters describing the anisotropic interaction potential of the test dumbbell when it
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is oriented parallel and perpendicular to the main axis of the mean field respec-
tively. In the above interaction potential, we have dropped an isotropic term which
can be renormalized with the spring constant. Following Hess’s analysis, we will
assume that the interactions between the dumbbells are predominantly repulsive
[16]. This assumption is similar to the existence of excluded volume effects for
segment-segment interactions in the same polymer chain, in that both k, and k;
are positive. For low concentrations, the dependence of the interaction parameters
k, and k; is taken to be linear in the concentration as a first order approxima-
tion. Some experimental support for these assumptions has been given by Hess
[16] using birefringence results of Tsvetkov and Frisman [18] for polyisobutylene
solutions in shear flow. Furthermore, we assume k; > k, so that the interaction
is stronger when the test dumbbell is oriented perpendicular to the mean field
orientation of the neighbouring dumbbells than parallel to the mean field. Hess
[16] also observed that different coordinate systems are not equivalent in the mean
field, therefore the main (principal) axis coordinates of the configuration tensor

are used. This implies that
(F*F)ij =0 if ¢+ . (2)

All the vectors and tensors in this coordinate system are denoted by a tilde ( ™).

With the interaction force given by eq.(1), we can perform a force balance
on the beads of the dumbbell to obtain an equation of motion for the dumbbell.
Besides the interaction force from eq.(1), other forces includes the usual Stokes’
friction (constant friction coefficient) force, an entropic force due to Brownian
motion, and either a Hookean or Warner spring force, which are described in great
detail in Ref. 4. This equation of motion for the dumbbell can then be combined
with the continuity equation for the configuration distribution function, (¥, t), for
the end-to-end vector T to give eq.(3) below. The terms on the right hand side of

eq.(3) represent the force contributions from the Stokes’ friction, Brownian motion,
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the spring force, and the interaction force, respectively. In the present analysis,
we will examine both the linear (Hookean) and Warner spring (FENE dumbbell)
for the interacting dumbbell (IDB) model in two-dimensional extensional flows.
Following the same procedure as in Ref. 4, the following nondimensional diffusion
(Fokker-Planck) equation for the configuration distribution function, ¥(¥,t), for

the dumbbell conformation can be easily derived as

- ~ 1 = 1 - = .
%tf—z-«v-{z/){71"?——-5‘]—\{—‘71111/)——-2'((7:)I‘“‘QE'I’:!} (3a)

where
)1 for Hookean spring;
(r) = 1/(1 —7?), for Warner spring.

(3b)
The above diffusion equation is nondimensionalized using t =t'/6, r =r'/R, v =
7'8, and k; = (R*/12NkT) ki';i = s,l, where R = Na is the maximum contour
length of the polymer with N Gaussian subunits each consists of a monomers,
6 = £,R?/12NkT is the Zimm relaxation time, kT is the Boltzmann temperature,
£o is the Stokes’ friction coefficient for a bead on the dumbbell, and vT - F is the
velocity field which is assumed to be linear in the velocity gradient with v being

the magnitude of the transpose of the velocity gradient tensor I'. All the primed

variables are dimensional variables.
The equation of change for the second moment (F¥) can now be obtained by

multiplying eq.(3) with FF and integrating over the configuration space. We get

d(FF)
dt

= (T (f) + (FF) - TT) — ((FF) + gﬁx ~o (B9 + (59) BT (9

The above equation for the FENE interacting dumbbell has been simplified using
Peterlin’s preaveraging approximation [19]. This preaveraging scheme is accurate
when the configuration distribution function is strongly peaked and is exact for a
delta function. For the Warner spring with a large value of N in a strong flow,

the preaveraging approximation is applicable because the distribution function is
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expected to be highly peaked [20,21]. Macroscopic properties such as birefringence
and excess stress due to the polymer can then be calculated from the second
moment (F¥F). The stress tensor, 7,', neglecting the isotropic contribution can be

expressed as [3]

7' =n((Fe+ Fo)r') (5)

where F and F are the external interaction force from neighbouring polymers and
the spring force respectively, and n is the number of dumbbells per unit volume.
The dimensionless stress tensor, 7, = 7,/ 3nkT, due to the polymers in the mean

field approximation is thus given by
7= N (g(ﬁ) +4E - (Ff')) . (6)

This excess stress tensor is diagonal in the principal axis coordinate system with
its principal components represented by 7, i=1, 2, 3. For pure extensional flow,
the rheological function of interest is the elongational viscosity 7 which can be
expressed as

Tl — T

== (7)
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3. General Two-Dimensional Linear Flows

In this study, we are interested in two-dimensional linear flows described by

the transpose of the velocity gradient tensor in the laboratory frame as

01 0
=[x 00 (8)
00 0

where A is a flow type parameter. The range of flow types —1 < A < 1 covers the
entire possible class of linear, two-dimensional flows from purely rotational flow
(A = —1) to pure extensional flow (A = 1), with A = 0 being simple shear flow.
The representation of I' in the principal axis coordinate system is facilitated by a

coordinate transformation involving the rotation matrix Q in the flow plane as

r=qQr-Qt (9)
where

cosp —sinp 0
Q= | sinp cosp O
0 0 1

and ¢ is the orientation angle of the end-to-end vector for the test dumbbell

relative to the laboratory frame. Thus,

_ [Te Ty 0
r={r,, I'y, 0 (10)
0 0 0
where
Tzz = —(1 + A)sinpcosp
f‘,;y = coszga - /\sinch

L }}

yz = Acos?p — sin®p

i~

Tyy = (1 4 X)cospsing.
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Substituting the above velocity gradient into eq.(4), we obtain the following

equation of change for the principal components of the configuration tensor C;

dcC o L 1
—d-g-z(zyr”-c-wl)cﬁgﬁ (11a)
dC . |
ﬁ:(zyrw-g—wg)cwgﬁ (11b)
dC . 1

——*23- =(=(—4E3) C3 + 3N (11c)

where E;, i=1, 2, 3, are the principal values of the interaction matrix given by
3
Ei=(ks—k)Ci+ kY Ci, i=1,23. (12)
=1 }

The orientation angle ¢ can be determined from the condition given by eq.(2)
for the off-diagonal components of the configuration tensor in the principal axis

coordinate system as

L I

y2C1 +T4,C2 = 0. (13)

Material functions in these flows are governed by the stress tensor due to the
polymer. The stress tensor in the laboratory frame can be calculated from eq.(6)

by using the inverse of the rotation matrix QT to obtain

Hn=QT 7 Q. (14)
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4. Results for Two-Dimensional Extensional Flows

The range of flow types in this study is for A > 0 which is in the strong flow
region (with strain rate exceeding vorticity) necessary for high chain extension
[22]. This class of flows can also be simulated quite accurately in the four-roll
and two-roll mills so that a comparison of model predictions with experimental
data such as flow-induced birefringence can be made. Predictions for semi-dilute
polymer solutions using the interacting dumbbell model with a Hookean spring in
uniaxial extensional flow have been obtained by Hess [16]. His analysis shows that
the well-known singularity at v = 1/2 from the linear spring assumption has been
removed in the interacting dumbbell model. However, asymptotic results for the
average end-to-end length still showed a linear increase with the velocity gradient
v at large extension rates. Thus, the polymer can extend beyond its maximum
contour length at high values of y. We have also performed an asymptotic anal-
ysis of the IDB model with Hookean spring in the steady two-dimensional pure
extensional flow(A = 1). From eqs.(10) and (13), the orientation angle can be
shown to be ¢ = —45° for the A = 1 hyperbolic flow. Since we are interested in
high molecular weight polymer, which is essential for exhibiting non-Newtonian
behavior in strong flows, we choose N = 1200 for all calculations. This high value
of N corresponds to a polymer with molecular weight ~ O(10%) [8]. The asymp-
totic results for the average conformation of the polymer are similar to the case
of uniaxial extensional flow. For large extension rates (i.e., v > 1), the principal

values of the configuration tensor are given by

Cy T (15a)
N ks i -
02 GN(ks n k:) Y (1Db)
. k,

Cy ~ —— 71 (15¢)

6Nk ‘
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and the root-mean-square end-to-end length of the dumbbell is given by
0t _ (e e o)t 4
(r*)? = (%) 3(C1+02+C9.) . (16)
Since the extensional axis is in the 1-direction, the dominant component in the

configuration tensor is C; with Cy ~ <r2> < 1. Another quantity of interest is

the flow birefringence, An, which is given by

A N -
= =Ci-C (17)

where B is proportional to polymer concentration, segmental optical anisotropy
of the polymer molecule, and also depends on the refractive index of the solvent.
For intermediate extension rates, if 3 (1+4ks(r?)) (r?) > 1 (which is always
true for N = 1200 and v > 0.5) and k, ~ ky, then

An 1 1 ,
2 — N . —
)~ 5 ~ (=3 (18)

In the limit of v > 1, eq.(18) converges to eq.(15a). Since the maximum extension
i
of the polymer corresponds to (7'2)’ = 1, it follows that the model fails if the

following condition is not satisfied

k> %(27—1) . (19)

The asymptotic prediction from eq.(18) shows that the mean-square end-to-end
length of the polymer is inversely proportional to concentration (or k). At a fixed

k4 value, the birefringence would increase linearly with the extension rate 7.

Exact results at all shear rates can be obtained numerically. We performed
numerical calculations using the Hookean spring ({ = 1) in eqs.(11-13) for steady
state two-dimensional extensional flows with A = 1 and A = 0.049. The steady
state prediction for the root-mean-square end-to-end length, <r2>%, is shown in

Fig. 1 for the Hookean IDB model (i.e., Hess’s model) with various values of k, (for
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simplicity, we take k; = k,). The dilute non-interacting dumbbell case corresponds
to ks = 0. The singularity at v = 0.5 is evident for the dilute Hookean dumbbell
model. For the IDB model with linear spring, Fig. 1 shows that <r2>% > 1 for the
cases of ky = 0.5 and k, = 3 even when the velocity gradients are of moderate
values (yV/A < 7) such that the condition from eq.(19) is violated. This is a
defect of Hookean spring approximation which can be eliminated by using the
nonlinear Warner spring, and will be discussed next. The onset velocity gradient
for coil-stretch transition is only weakly dependent on concentration (i.e., upon
ks). Indeed, the onset velocity gradient for the range of concentration parameters
ks studied in Fig. 1 is essentially equal to 1/2 for all cases. Another noteworthy
point is the correlation of the average end-to-end length of the polymer with
the flow strength yv/\ for the IDB model. For all the values of the interaction
parameter studied, the correlation is excellent for all flow types down at least
to the near shear flow case where A = 0.049. The corresponding prediction for
the absolute birefringence k,(An/B) is plotted in Fig. 2 versus vv/\ for the pure
extensional case (note that same results can also be obtained for other flow types
with A > 0.049). The absolute birefringence collapses into a single curve for
the given range of k, values (0.5 to 30) as predicted by eq.(18). The quantity
ks(An/B) is called the absolute birefringence because both k, and B are linear
in concentration, so that k,(An/B) is just the solution birefringence, An, times a
constant which is independent of concentration. However, since the Hookean IDB
model still gives unrealistic predictions for arbitrary high values of shear rates or
small values of the interaction parameter k,, its usefulness is limited. Therefore,

we will next present predictions for the IDB model with a nonlinear Warner spring.

The nonlinear Warner spring has been recognized as an essential feature for
high chain stretching in strong flows by many investigators. Experimental results
for dilute polymer solutions have shown that even this simple ad hoc form for the

nonlinear elastic spring law can provide reasonable agreement between theoretical



-121 -

prediction and experimental data such as birefringence in extensional flows [8]. We
thus incorporate the Warner spring into Hess’s IDB model. The resulting model
was shown earlier to be the same as for the linear IDB model, i.e., the governing
equations (11-13), but with the entropic spring contribution ¢ given by

1

(= —i_—<7-3>— (20)

An asymptotic analysis can again be performed for intermediate to large
shear rates. The extension axis is assumed to be in the 1-direction which gives a
negative value for the orientation angle, ¢, because the convention of the rotation
matrix for positive values of ¢ corresponds to anti-clockwise rotation. For large
extension rates (or C, > é’z), the principal components of the velocity gradient

tensor can be calculated approximately from eq.(13) to be

~

I,. = -Iy ~ VA (21)

In the following analysis, the ratio of k;/k, is taken to be equal to one so that
the dependence of <r2> or An on the interaction parameter (or concentration)
can be illustrated in a simple asymptotic form. This would still give a reasonable
approximation even for k;/k, ~ O(10) because the dominating term is C; which
can be O(10%) times the values of Cy or C5 for intermediate shear rates. Another
approximation is that we assume 3N({ + 4k3<r2>)(r2> > 1 which is always true
for N = 1200 and v > 0.5 similar to the case of the linear IDB model. The large
v/ limit for (r?) can be shown from eqs.(11) to be

1
- 22
Y (22)

The Warner spring thus has restricted the extension of the dumbbell (polymer) to

An
<7‘2> ~ "—é" ~1

values that are less than or equal to its maximum contour length for any value of

k. The minimum shear rates for eq.(22) to hold is given by

WA > 2k, (23)
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For intermediate flow strength ¥/}, i.e., the condition from eq.(23) is not
satisfied, and the following asymptotic limits for the averaged length of the polymer

or specific birefringence can be shown

(B LR < k) k> (20

For larger shear rates, we obtained

3

<T2>N“é7lw7\/—/\_+ks"ks

L
ke — k2 A s ks > 1.
5 iF. T for 2( ) € WA < 2% >1

(25)
Since k, is assumed to be proportional to the concentration ¢, the mean-square end-
to-end length is predicted to be inversely proportional to ¢ for small to intermediate
shear rates. This means that an increase in the polymer concentration would
actually inhibit stretching of the polymer. The above results also show that the
slope of k,(r?) versus ~vv/A would decrease from 1/2 to 1/4 with increasing shear
rates at a fixed value of ks. For small values of the interaction parameter, k, < 1,

the following asymptotic limits can be obtained

oy & pvare(k-kF)], i 2k <yVE <2k, + kD)
r N e
B

1, i 2k + kE) < VA < 0.
(26)
This case of k, < 11is almost the same as the dilute non-interacting dumbbell model
prediction where the polymer end-to-end length approaches maximum extension
rapidly with shear rate. The onset of stretching can be predicted by calculating
the asymptotic limit for small shear rates (or (r?)_ < 1). It can be shown that
by ignoring the contribution from Brownian diffusion, which is only important at

equilibrium, the following approximation is obtained

An 1 1 1
2 NG e ) e —_—— A - 2
(r*), 5 zks(’y\/x 2), for VA 5 (27)
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The onset velocity gradient is at (vv/A)o = (1 + 4ky(r?),)/2. This result is the
same as in the case of the linear IDB model in the sense that the onset velocity
gradient is only weakly dependent on concentration. Since <r2)o <« 1, the onset
of stretching should occur at (yv/A), = 0.5 for finite values of the concentration
(or k). ’

We have also calculated steady state predictions numerically using eqs.(11-
13) and eq.(20) for several values of the interaction parameter k, and a few different
flow types. Fig. 3 and Fig. 4 show the predictions for (7'2)% and the extinction
angle (= —¢) versus flow strength yv/X. It is apparent from F ig. 3 that the
average length of the polymer tends to a much lower value when the concentra-
tion is high (i.e., larger k;). The effect of high concentration tends to increase
polymer-polymer interaction and this creates an additional constraint for unrav-
elling of the coiled polymer away from equilibrium. This effect diminishes as k,
is decreased towards zero which represents the behavior of a truly dilute solution.
When the concentration is extremely small so that k, = 0, an unrestrained coil-
stretch transition of the polymer conformation occurs. This coil-stretch transition
occurs smoothly with increasing shear rate for the present constant-friction non-
linear IDB model. For the case of k, = 0.5, the result is very close to the dilute
limit, ky = 0, which agrees with eq.(26) from the asymptotic analysis. In the dilute
limit, the polymer would extend to near its maximum contour length rapidly at
small shear rates. From the predictions, we could expect dilute solution behavior
for all k, < 1. The onset velocity gradient for all values of k, studied is about
1/2 as expected from eq.(27) which verifies the weak concentration dependence of
the onset of stretching as predicted by the asymptotic analysis. The correlation of
<r2>% with yv/X is excellent for all flow types down to A ~ 0.01 which has a ratio
of strain rate to vorticity (S/Q) of only 1.02 (simple shear flow has S/Q = 1). The
value for (r2>% for A = 0.001 at a fixed value of vv/X is generally larger than that

of the higher A cases at all shear rates. Fig. 4 shows the predictions for the extinc-
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tion angle, x, with several values of k; for the flow type A = 0.049. It is obvious
that the extinction angle is also weakly dependent on concentration. The value of
Y decreases more slowly with increasing concentration from the equilibrium value
of 45° corresponding to the principal strain axis to the outgoing flow axis, which
corresponds to the principal eigenvector of the velocity gradient tensor. This angle

for the outgoing flow axis can be approximated from eq.(13) to give
¥ ~ tan" 1V}, if Cy> Cs. (28)

This limiting value for x can be reached at a relatively small shear rate (yv/A ~ 1)
as is evident from Fig. 4. Thus, the polymer becomes aligned along the eigenvector
of the velocity gradient tensor when the shear rate exceeds about one for all the

cases studied here.

Next, we consider steady state birefringence predictions for the FENE-IDB
model. In order to show the concentration dependence as calculated by asymptotic
analysis, the value of the absolute birefringence (k,An/B) is plotted versus the
magnitude of the velocity gradient tensor vV in Fig. 5. Although we have only
presented results for A = 1, the correlation of birefringence with yv/X is the same as
the (7‘2>th correlation with v,/7 (note that (r?) ~ An/B from eqs.(22-27) for the
whole range of shear rates). The onset velocity gradient is 1/2 as expected from
previous results for (7‘2). For the cases of k, < 1, the absolute birefringence, which
1s just the solution birefringence times a constant independent of concentration,
saturates at a value which is linear in k&, or concentration. This corresponds to
dilute solution behavior as we have noted before. The initial slope of the curve
for k, = 0.5 is about 1/4 which is predicted by eq.(26). At higher values of vv/},
the absolute birefringence approaches a maximum value which corresponds to
complete extension of the polymer. This is almost equivalent to the non-interacting

dumbbell model predictions for truly dilute polymer solutions.

On the other hand, the absolute birefringence collapses to a single curve for
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various cases of ks > 1, which correspond to semi-dilute solution behavior, at in-
termediate values of 'y\/X . The slope of absolute birefringence versus vV is equal
to one half which agree with the asymptotic results from eq.(24). At higher shear
rates, the slope starts to decrease for the smaller k; = 3.3 case, and is expected
to decrease to a slope of 1/4 as predicted by eq.(25) for larger values of YV
When the concentration is much higher, ks > 1, the absolute birefringence is just
linear to yv/A with a small positive deviation at higher shear rates. This devi-
ation is governed by the concentration dependent term (k, — vk,)/2 in eq.(25).
If the concentration is extremely high, this deviation is minimum for finite shear
rates and the prediction will then be governed by the asymptotic result in eq.(24).
Therefore, by varying the interaction parameter k,, which is approximately pro-
portional to concentration, we can predict distinctive birefringence features for
dilute to semi-dilute polymer solutions. The specific birefringence An/B is inde-
pendent of concentration for dilute solutions (k; < 1). However, An/B is inversely
proportional to concentration for semi-dilute solutions (ks > 1). For polymer so-
lutions with concentration in the intermediate (dilute to semi-dilute) regime, we
would have a more complicated concentration dependence which is governed by

the asymptotic results from eqs.(22-23).

We can now compare the above predictions with experimental observations.
The absolute birefringence predicted by the model shows a linear relationship with
the dimensionless shear rate, v/}, for semi-dilute polymer solutions (ks > 1) over
a wide range of shear rates. This prediction agrees in general with flow birefrin-
gence of semi-dilute polyethylene oxide solutions measured by Fuller and Leal [23]
and by Pope and Keller [24] for pure extensional flow in a 4-roll mill. Although
their birefringence data showed a larger than linear dependence on concentration,
this is not inconsistent with our predictions that the birefringence collapses to
a single curve for different concentrations when plotted versus the dimensionless

eigenvalue of the velocity gradient tensor, yv/A. It is because the characteristic
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relaxation time of the polymer can be a strong function of concentration for semi-
dilute solutions. In dimensional form, v/ is written as v'v/A8, where 6 = 6(c).
It can be shown that 6(c) is approximately given by

6 = 8o(1 + mc) (29)

where 6, is the characteristic relaxation time of polymer in dilute solutions, m is a
constant related to the intrinsic viscosity of the polymer solution, c is the polymer
concentration. This equation is derived formally using the Huggins’ equation [25]
and the model prediction for the zero shear viscosity of the polymer solution.
Higher order terms are truncated so that eq.(29) is only applicable to polymer
solutions with concentration in the dilute to semi-dilute regime. This shows that
a strong concentration dependence on the rheological properties is intrinsically
included in the model for semi-dilute and concentrated polymer solutions. We
also note that the FENE-IDB model predictions have been shown to agree in
great detail with recent experimental results for flow birefringence of dilute to

semi-dilute polystyrene solutions in 2-roll and 4-roll mill flows [15].

Inception of flow calculations are also attempted for the extensional viscosity
versus time at various shear rates. However, no overshoot is found for the the
same range of k, and shear rates used in the steady state case. The extensional
viscosity would increase monotonically from the equilibrium value of 2n, (n, is the
zero shear solution viscosity) to the steady state value at a time which is inversely

proportional to the shear rate 7\/}‘.
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5. Concluding Remarks

The advantage of the FENE-IDB model for dilute to semi-dilute polymer
solutions is that explicit concentration dependence can be obtained. By varying
the interaction parameter k,, which is proportional to concentration, we can ob-
tain systematically dilute to semi-dilute solution behaviors. However, this model
definitely oversimplifies all the interactions involved for concentrated solutions.
The truncation of higher order terms in the interaction potential given by eq.(1)
is a source of error for concentrated solution behavior. Hydrodynamic interaction
is not considered here because its contribution should be negligible compared to
the non-hydrodynamic forces described by the external interaction force in eq.(1)
for semi-dilute solutions, where domain overlap of the polymer coils exists. The
main result in this study is the inhibition of chain stretching by increased polymer-
polymer interaction for high concentration solutions. The specific birefringence is
inversely proportional to concentration for semi-dilute solutions and the depen-
dence is less for lower concentrations. In the limit of truly dilute solution, the
specific birefringence is, in fact, independent of concentration. Since the relax-
ation time of polymer is also a function of concentration, model comparison with
experimental results should be performed with the shear rate being nondimension-
alized by the solution relaxation time. Then, the above concentration dependence

for flow birefringence can be shown explicitly.

Although the FENE-IDB model has its limitations because of many sim-
plifications, we are able to show reasonable predictions for dilute to semi-dilute
solution behavior in flows for a wide range of shear rates, flow types, and concen-
tration regimes [15,23,24]. It is hopeful that this model can shed some light on the
development of molecular theory for the entire range of concentration from dilute
to concentrated polymer solutions. Another molecular model for concentrated
polymer solutions has recently been developed by Hess [26], who has extended

his concept of interacting polymer chains to obtain a generalized Rouse theory for
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entangled polymeric fluids. The polyiner chain is forced (by model assumptions)
to reptate in the curvilinear direction along the polymer chain which has a similar
effect to the original reptation model. However, the generalized Rouse theory can
only be applied to the other limit of concentration for highly entangled systems.
Work is warranted on the development of a molecular theory for polymeric solu-
tions that can provide reasonable description of polymer dynamics in various types
of flows and for the entire concentration regime ranging from infinitely dilute to

concentrated polymer solutions.



- 129 -

References

(1] Peterlin, A., J. Polym. Sci.: Polym. Lett., 4b, 287 (1966).
[2] Tanner, R. 1., Trans. Soc. Rheol., 19, 37, 557 (1975).

[3] Bird, R. B., Dotson, P. J., Johnson, N. L., J. Non-Newt. Fluid Mech., 7,
213(1980); errata 8, 193 (1981).

[4] Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O., Dynamics of
Polymeric Liquids, Vol. 2: Kinetic Theory, 2"¢ ed., Wiley, New York (1987).

[5] Rouse, P. E., J. Chem. Phys., 21, 1272 (1953).

[6] Mochimaru, Y., J. Non-Newt. Fluid Mech., 9, 179 (1981).

[7] Fuller, G. G., Leal, L. G., Rheol. Acta, 19, 580 (1980).

[8] Dunlap, P. N., Leal, L. G., J. Non-Newt. Fluid Mech. 23, 5 (1987).

[9] Yamamoto, M., J. Phys. Soc. Jpn., 11, 413 (1956); 12, 1148 (1957); 13,
1200 (1958).

[10] Phan-Thien, N., Tanner, R. 1., J. Non-Newt. Fluid Mech., 2, 353 (1977).
[11] Fuller, G. G., Leal, L. G., J. Polym. Sci. Polym. Phys. Ed., 19, 531 (1981).

[12] Doi, M., Edwards, S. F., J. Chem. Soc. Faraday Trans. II, 74, 1789, 1802,
1818 (1978); 75, 38 (1979).

[13] Bird, R. B., DeAguiar, J. R., J. Non-Newt. Fluid Mech., 13, 149 (1983).
[14] DeAguiar, J. R., J. Non-Newt. Fluid Mech., 13, 161 (1983).

[15] Ng, R. C.-Y., Leal, L. G., “Concentration Effects on Birefringence and Flow
Modification of Semi-Dilute Polymer Solutions in Eztensional Flows,” to

appear (1989).
[16] Hess, W., Rheol. Acta, 23, 477 (1984).

(17] Warner, H. R., Ind. Eng. Chem. Fundam., 11, 379 (1972).



- 130 -

[18] Tsvetkov, V. N., Frisman, E., Acta Physicochim U.S.S.R., 20, 61 (1945).
[19] Peterlin, A., Polymer, 2, 257 (1961).

[20] Dunlap, P. N., Leal, L. G., Rheol. Acta, 23, 1 (1984).

[21] Phan-Thien, N., Manero, O., Leal, L. G., Rheol. Acta, 23, 151 (1984).

[22] Leal, G. L., Fuller, G. G., Olbricht, W. L., Prog. Astro. Aero., 72, 351
(1980).

[23] Fuller, G. G., Leal, L. G., J. Polym. Sci. Polym. Phys. Ed., 19, 557 (1981).
[24] Pope, D. P., Keller, A., Colloid and Polymer Sci., 255, 633 (1977).

[25] Billmeyer, F. W., Textbook of Polym. Sci., Interscience Publishers, John
Wiley & Sons, New York, p. 81 (1962).

[26] Hess, W., Macromolecules, 21, 2620 (1988).



- 131 -

Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

End-to-end length, <r2>%, vs. eigenvalue of the velocity gradient ten-
sor, VA, for A = 1 (solid line) and A = 0.049 (dashed line), and with
various values of k, for the Hookean IDB model, N = 1200.

Absolute birefringence, ks(An/B), vs. eigenvalue of the velocity gradi-
ent tensor, 7\/X, for the Hookean IDB model in pure extensional flow
(A = 1), and for values of the interaction parameter, ks = 0.5 A ; 3.0
+ ;5.0 v7; 10.0 x ; 30.0 o, and for N = 1200.

End-to-end length, <r2>%, vs. eigenvalue of the velocity gradient ten-
sor, vV, for A = 1 (solid line); 0.049 (broken-dashed line); 0.001
(dashed line), and for various values of ks, for the nonlinear FENE-
IDB model, N = 1200.

Extinction angle, x, vs. eigenvalue of the velocity gradient tensor,
vV, for A = 0.049, and for various values of k, = 0 (solid line); 3.3
(interior dashed line); 10.0 (broken-dashed line); 30.0 (exterior dashed
line), for the nonlinear FENE-IDB model, N = 1200.

Absolute birefringence, k,(An/B), vs. eigenvalue of the velocity gra-
dient tensor, yV/\, for the nonlinear FENE-IDB model in pure exten-
sional flow (A = 1), and for various values of the interaction parameter,

ks, and for N = 1200.
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Part II: Chaotic Mixing in Time-Periodic Flows
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Abstract

An apparatus, the blinking two-roll mill (BTRM), which can simulate a pair
of blinking vortices, is built for the study of laminar mixing in two-dimensional
time-periodic Stokes flows. This study is analogous to the study of chaos in a
deterministic system (the flow). Particle advertion is shown to be either regular or
chaotic depending on the characteristic period of oscillation, u, for the BTRM flow.
Efficient mixing is achieved globally in the flow device when g > 0.5. The essential
proofs, such as the existence of Smale horseshoe structures or a positive Liapunov
exponent, for chaos in the context of dynamical systems theory are revealed by
the mixing experiments using flow visualization with dye tracer and quantitative
measurements using a digital imaging technique. The quantitative measurements
provide a better understanding of the mixing mechanisms and fluid transport
properties in this time-periodic flow. The results can be compared qualitatively
with theoretical studies of time-periodic vortex-pair flows by Aref [9] and Rom-
Kedar et al. [10], and provide a basis for future comparisons with theoretical
predictions for the specific flow.
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1. Introduction

Laminar mixing of very viscous fluids is an important process in many chem-
ical engineering applications such as polymer blending, low-shear mixing of bio-
materials, and many reaction engineering problems. The primary goal of current
research is to understand mixing mechanisms and to predict the ultimate char-
acteristics of the product. Various techniques have been used in the past to cor-
relate mixing mechanisms with the characteristics of the final (or intermediate)
mixture. Some examples are: (a) Statistical measures of the degree of mixedness
by Danckwerts [1] using the intensity and scale of segregation as a mixing index;
(b) Dynamical measures by Calderbank [2], Uhl and Gray[3], and others [4] using
empirical correlations between power consumption and mixing; (¢) Deterministic
approaches by Spencer and Wiley [5], Mohr et al. [6], using the concept of stria-
tion thickness and interfacial area as a measure of the quality of mixing. However,
there is still not a complete theory that can bridge the gap betweem different

complex mixing processes.

Recent efforts to study laminar mixing have relied on understanding the
kinematics of two-dimensional (2-D) time-periodic laminar flows and its connec-
tion with dynamical systems theory [7,8]. The transition between regular and
chaotic advection tor these relatively simple flows can serve as a model system
for many mixing applications where fluid mixing is accomplished by stretching,
orientation, and redistribution of fluid elements locally in the domain of interest,
which can either be closed (batch mixing) or open domain (continuous mixing).
The onset of chaotic advection here corresponds to exponential separation of two
neighboring material points due to the stretching and reorienting of fluid elements
and extremely efficient mixing. The purpose of this paper is to provide physical
evidence and quantitative measurements of the characteristic features of chaotic

particle motion for a specific mixing flow, known as the blinking two-roll mill.
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In fact, many experimental and theoretical studies of mixing in 2-D chaotic
flows have already provided a better understanding of the complex dynamics of
chaotic mixing processes [7-15]. Theoretically, Aref [9] has done numerical exper-
iments for a pair of blinking vortices (corotating) to show chaotic advection of
tracer particles in this closed domain time-periodic flow. Khakhar et al. [8] also
demonstrated chaotic behavior for Lagrangian particles in the tendril-whorl and
Aref-blinking-vortez flow. Some measures of mixing characteristics were presented
for these chaotic flows, namely the Liapunov ezponent (a positive value implies ex-
ponential stretching of an infinitesimal material line as a long-time average) and
the intensity of segregation (the ratio of root-mean-square concentration fluctu-
ation of tracer particles at one location relative to the initial condition). These
closed domain flows are relevant to certain batch mixing processes. Rom-Kedar et
al. [10] and Wiggins [11] have studied a time-periodic model of a counter-rotating
vortex pair (the oscillating vortex pair, or the OVP flow) which has an open flow
domain. Transport and mixing of segregated fluids in different parts of the domain
of the flow were predicted by analytical and numerical techniques via dynamical
systems theory. Conversely, since the dynamics (in a Lagrangian framework) of
particle (fluid element) motion in these flows is described by dynamical systems
theory, certain important concepts in dynamical systems theory can be revealed
by studying fluid mixing [7,11-14]. Indeed, some characteristic features of chaos in
dynamical systems theory such as the Smale horseshoe [16-19], which is analogous
to stretching and folding of fluid elements in fluid mixing, could be revealed by

mixing experiments [7,14].

However, experimental studies of mixing in a physical system currently lag
behind theoretical predictions. Some recent experimental works have shown en-
couraging results in relating chaotic mixing with dynamical systems theory pre-
dictions. Chaiken et al. [12] have experimentally demonstrated the existence of

Lagrangian turbulence (chaotic advection) for a time-modulated (blinking) Stokes
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flow between two eccentric cylinders. Ottino and coworkers [7,14] have done ex-
periments on the motion of a Newtonian fluid in a cavity flow. Structures shown
in their pictures clearly support certain theoretical expectations (such as the exis-
tence of Smale horseshoe structures) for chaotic mixing. Their work is similar in
certain respects to the present study. Both the cavity and two-roll mill flows have
two elliptic and one hyperbolic point in the steady flow configuration. One differ-
ence is that the flow structure in our apparatus (the two-roll mill) shows a close
resemblance to Aref’s blinking vortex flow [9]. In the present study, flow visual-
ization and standard digital imaging techniques are used to investigate laminar
mixing in a blinking two-roll mill (BTRM). We will present quantitative measure-
ments by digital image processing to illustrate mixing and transport in chaotic

flows.

The objective of the present work is to experimentally provide physical evi-
dence of chaotic mixing, and to provide gquantitative measurements of measurable
quantities such as interfacial area, the area and regions of chaotic mixing, and fluid
transport (redistribution of fluid elements) in various regions of the flow. There
have been no other measurements of this type except from Ottino’s group [7]. The
analysis and measurements presented in this paper are an essential complement to
a study of mixing processes via dynamical systems theory which is currently being
pursued for the BTRM flow. In the next section, we will briefly discuss dynamical

systems theory and its application to the present study.
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2. Background on Dynamical Systems Theory

Theoretical criteria for the existence of chaotic motion of advecting particles
in the flow include any one of the following properties (see Guckenheimer and
Holmes [19]): (a) existence of a Smale horseshoe map; (b) positive Liapunov ex-
ponent; (c¢) transverse intersection of homoclinic or heteroclinic orbits. If the flow
or the mapping exhibits any of the above characteristics, either locally or globally,
then the long-time average behavior of an infinitesimal material line in the chaotic
region 1s that it will stretch exponentially in the flow, and thus two neighboring
particles will also separate exponentially on a long-time average. Many Hamilto-
nian dynamical systems show chaotic behavior when perturbed periodically [8-21].
In this paper, we will limit our discussion to two-dimensional laminar flows, which
can always be modelled as Hamiltonian systems. In two-dimensional laminar flow,
the velocity field v(x,y,t) in an Eulerian representation is related to the stream

function 3 by

oY 61/)) (1)

viz,y,t) = | — , ——
@)= (Fo . -5
where the stream function plays a role that is similar to an equipotential surface

in Hamiltonian mechanics. The motion of particle (passive tracer) in this flow is

governed by the set of differential equations in the Lagrangian form

de 0%

H - '5"3'/' (2(1)
dy _ 0% <
it T o (20)

This is a Hamiltonian system whose Hamiltonian is just the stream function
Y(z,y,t). For time-independent flows, this dynamical system has one degree of
freedom and is integrable which means that a passive tracer particle in the flow will
follow a smooth path along a streamline. The phase space, i.e., the 2-D flow plane,
of this integrable system consists of streamlines of constant value. However, when

the flow is time-modulated periodically, the time-dependent Hamiltonian with one
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degree of freedom is then equivalent to an autonomous Hamiltonian with two de-
grees of freedom, and is likely to produce chaotic behavior [16,17]. The motion of
a particle initially at X.(zo,yo) reduces to an area-preserving map corresponding

to the solution for eq.(2) with a given initial condition X,.

In order to identify certain important characteristics of the time-periodic sys-
tem, it is best to study its Poincaré map rather than following particle trajectories
at all times. The Poincaré map of the system can be represented experimentally by
taking a snapshot of the positions of any passive particles, such as dye molecules,
at each time period of the flow. This periodic flow visualization is the same as
looking at the Lagrangian representation of the dynamics of particle trajectories
in a time-periodic flow with a large number of initial conditions. By studying the
physical analogue of the Poincaré map, structures such as islands, tendrils, and
whorls near fixed points in the map can be shown to exist in mixing experiments.
In addition, chaotic behavior can be identified experimentally via the existence of

horseshoe structures, as predicted by the theory of dynamical systems.

In the present study, the time-dependent flow in the 2-roll mill is an ana-
logue of Aref’s blinking vortex flow [9]. The two rotating cylinders are alternately
switched on and off, and thus qualitatively simulate the blinking vortices in Aref’s
system. The steady flow corresponding to the case under study is the corotating
two-roll mill flow [22]. In an unbounded domain, this flow has a central hyperbolic
point and two elliptic points (hypothetically at the centers of the rollers) on each
side of it. Two homoclinic orbits are formed in this configuration which appear
as a figure-eight-shaped separatrix. This separatrix can be thought of as a barrier
to transport of materials in the sense that there is no advection across it in the
steady flow configuration, and thus no mechanism for transport of material (aprart
form diffusion) from the region inside to the region outside (or vice versa). Fig. 1
shows the schematic of the streamlines for the steady corotating flow. Since we are

only interested in Stokes flows in which all inertial and acceleration effects can be
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neglected, the time-periodic BTRM flow can be decomposed into a time-periodic
counter-rotating pair of cylinders plus a steady corotating pair of cylinders. Thus,
the streamfunction for the BTRM flow is just the superposition of the stream-
function for the steady corotating two-roll mill and the steady counter-rotating

two-roll mill of equal strength

¢ = ¢3($,y)93 +¢’p($7y)Qp(t) (3)

where 1 is the streamfunction, 2 is a function of the roller speed defined below, and
subscripts s and p represent the steady corotating and periodic counter-rotating

cases respectively. For the blinking protocol, the two {’s are given by
Q, = w, t>0 (4a)

Q, = { +w, nT/2<t<(n+1)T/2; (4b)

—w, (n+1)T/2<t<(n+2)T/2, forn=0,2,.
where w is a constant roller speed, and T is the period. The linear relationship
between the stream function and roller speed has been shown by Frazer [23] for
the two-roll mill in an unbounded domain, and is consistent with the general
expectations for Stokes flows. By i)erturbing the steady system with a time-
periodic flow, homoclinic orbits will break apart. The stable and unstable invariant
manifolds may then intersect transversely and consequently create a countable
infinity of homoclinic points. This is one of the criteria for the presence of chaos
[16,19].

Rom-Kedar et al. [10] and Wiggins [11] have studied a similar case of per-
turbing a counter-rotating vortex flow with a continuous sinusoidal straining field.
In their study, transport of material is enhanced dramatically by formation of a
heteroclinic tangle of the stable and unstable manifolds in the time-periodic field.
Using the invariant property of these manifolds, the orientation preserving prop-

erty of the Poincaré map, and the Melnikov technique, they were able to identify
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important structures in the flow and quantify mixing via a procedure that they
termed lobe dynamics. Transport of material through the separatrix is enhanced
by the tangling of the stable and unstable manifolds that subsequently form the
lobes. This behavior is common to many near integrable dynamical systems such
as the time-dependent Duffing’s equation. Fig. 2 shows a perturbed Poincaré map
that results in tangle (or lobe) formation due to the transverse intersection of
homoclinic orbits. Near the homoclinic points, the fluid is stretched, oriented,
and even folded over itself after several periods. This leads to the possible for-
mation of a Smale horseshoe which is a visual sign of chaos. This phenomenon
was demonstrated vividly by the lobe or tangle dynamics [10,11]. Since our flow
resembles the OVP in many aspects, we would expect similar behavior to occur

in the BTRM flow.

In the next section, experimental details will be presented. In the section
that follows, we try to illustrate the possible existence of a horseshoe map, which
gives rise to chaotic particle motion, by examining the flow structures formed in the
BTRM mixing experiment. These structures appear to be the physical analogue
of the horseshoe map described above. The existence of this type of mapping
is essential to efficient mixing. In addition, we will demonstrate the existence
of exponential stretching of a blob of fluid for high frequency flows. This could
be related to a positive Liapunov exponent for proof of the existence of chaotic
mixing. Further, we will discuss the governing parameters for the existence of the
morphological structures, material line and area stretching, and fluid transport

between different regions of the BTRM flow.
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3. Experimental Details

3.1 Apparatus

The flow device is a two-roll mill in a closed square box of 178x178 cm?
similar to the one used in this laboratory for flow birefriﬁgence and visualization
studies [22]. The rollers have a radius(R) of 1.91 cm and a height(H) of 3.81 cm.
The gap width (2d) between rollers is 3.17 cm. A schematic for the experiment and
a photograph for the flow device are shown in Figs. 3a and 3b, respectively. The
flow device is made of acrylic walls with two glass plates at the top and bottom.
In this configuration, flow visualization can be achieved in all directions. The rate
of rotation of the rollers is controlled by Bodine electric motor controllers. The
blinking two-roll mill configuration is realized by alternately engaging a electro-
magnetic clutch for each motor using computer-controlled switching. This switch-
ing is done using an IBM/AT computer with an I/O interface board to trigger
a set of electromagnetic relays. The time for switching the rollers on and off is
about 10-20 milliseconds, which is the response time (< 10 ms) for the clutches
operating at a maximum load, plus the operate or release time (< 10 ms) of the
electromagnetic relays. However, since the time for each blinking period is of the
order of 1-40 sec, we assume that transient effects from the electronics can be
neglected. It is observed from flow visualization by dye tracer that negligible me-
chanical inertia is present when disengaging the clutch to stop the roller. With
this computer-controlled switching of the periodic motion for the rollers, we can
simulate a blinking protocol similar to Aref’s blinking vortex flow. The alternating

rotation of the rollers is shown schematically in Fig. 4.

Flow visualization is carried out by injecting a blob of red dye Sudan IV,
which is soluble in organic solvents such as the ones used here, into a clear, viscous

organic solvent. Dye blobs can be placed either inside or outside the stagnation
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streamline (the separatrix) of the steady flow by simply moving the injector (lo-
cated near the side wall of the flow device to avoid disturbing the flow) to the
desired strategic location at the beginning of the experiments (see Fig. 3a). Then,
a 150 watt projector lamp is used to apply back lighting for the pictures with
the aid of a reflector and a 45° angled first-surface mirror that are located in
between the flow device. The pictures are captured by a high resolution Sony
XC-77 monochrome CCD video camera and are recorded on a Panasonic 4-Head
video cassette recorder during the entire course of the experiments. The recorded
images can then be digitized by an ITT PCVision-Plus frame grabber using the
IBM/AT and analyzed by Image-Pro II which is a utility software package by

Media Cybernetics for image enhancement, analysis, and measurements.
3.2 Ezperimental Conditions

In order to ensure a Stokes flow and a high degree of two-dimensionality in
the two-roll mill, viscous Newtonian solvents are used in this study. The Newto-
nian fluids for these mixing experiments are Chlorowax 45 (CW45), a chlorinated
paraffin product from Diamond Shamrock, and 70/30 wt% of a mixed solvent of
CW45 and tricresylphosphate (TCP). These fluids are chosen for their high vis-
cosities and because they are effective solvents for polystyrene which is used for
a companion study of mixing with polymer solutions, that is reported separately
[24]. The molecular diffusivity of the dye in these organic solvents is estimated to
be O(107%)cm?/sec based on the known diffusivities for organic dye molecules in
less viscous organic liquids. Therefore, we can ignore molecular diffusion and in-
ertial effects in this study relative to mixing via kinematical evolution of material

lines. Properties for the two fluids are shown in Table 1.

By using a 5 wt% Sudan IV red dye dissolved in the same suspending fluid,
good monochrome contrast is obtained with the back lighting setup which is similar

in certain respects to the more sophisticated shadowgraph imaging. The suspend-
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ing fluid, which is contaminated with dye from a previous experiment, can still
be used after thorough mixing. Indeed, after several minutes of mixing, the sus-
pending fluid again appears in the video image as a uniformly bright background
whereas a freshly injected dye blob appears as a dark spot that has a significant
difference in grey scale for image analysis (the frame grabber has a resolution
of 256 grey levels). In this way, many sets of experiments can be run without
draining the flow device every time dye is introduced into the solution. This is
the primary reason for using a monochrome (black and white) digital imaging

technique instead of a color one.

Table 1. Newtonian Fluid Properties at 20°C

Fluid n P
(poise) (gm/cc)
CW45 190.0 1.30
CW45/TCP 44.9 1.26

The initial conditions for all experiments are as close to identical as possible,
with a 0.4-0.5 cc blob of red dye injected near the center of the gap between
the rollers at about the half-height of the flow device. Experimental results are
reported at 20°C' which is the controlled temperature in our laboratory. Local
temperature increase due to viscous dissipation in the solution is found to be
negligible by examining the flow structures both from the top and side view. For
the investigation of transport rates reported in section 4.3, the initial condition
is an annulus of dye between roller #2 and the left stagnation streamline (i.e.,
the separatrix). It is important to inject the dye at about half height of the flow
device to minimize boundary effects associated with the finite vertical dimension
of the flow device. Since the Reynolds (Re) and Strouhal (S) numbers govern the

characteristics of the flow, we would like to keep both of these parameters as low
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as possible to reduce inertial and transient effects respectively and to preserve two-
dimensionality in this flow device. These characteristic nondimensional parameters

are defined as follows

Re = B4 (5a)
v
d |
= b
S RwTL (5)

where R is the roller radius, w is the roller speed, d is the half gap width between
the two rollers, v is the kinematic viscosity, and T% is the half period which is
the time of rotation for one roller in the blinking cycle (period). The range of
experimental values is Re = 0.03-1.5 and § = 0.01-0.24. Most of the experiments
that revealed important structures in the BTRM flow are performed at Re or
S ~ O(107%). The condition for neglect of transient effect due to vorticity
diffusion is Ty > d*/v. Although T% is 1 to 40 sec, which is much larger than the
largest value of d?/v = 0.07 in our experiments, we still observed some evidence
of transient effects for high frequency flows. Later, we will discuss these observed

effects due to high ReS in the enclosed two-roll mill device.



- 152 -

4. Results and Discussions

In the next few subsections, flow visualization and quantitative measurements
of the digitized image of the flow structures will be presented to demonstrate
chaotic behavior for Lagrangian particles (passive dye tracer) in the flow. The
length and area of mixing represented by stretching and redistribution of a blob of
dye in both the regular and chaotic flow regimes are measured to show the distinct
measurable differences between these flows. Furthermore, fluid transport through
the stagnation streamline (i.e., the separatrix) and mixing characteristics via tangle
dynamics in this BTRM flow will also be discussed. The results presented are for

experiments in the Newtonian fluid CW45 unless otherwise stated.
4.1 Regular and Chaotic Mizing

For steady laminar flow in the two-roll mill, the flow is deterministic (which
is also true for time-periodic cases for 2-D Stokes flows) and integrable. Since
the BTRM is a closed domain flow enclosed in a box, tracer particles represented
by the red dye should traverse along a closed streamline and stay in this orbit
for all times. Fig. 5 shows streamline patterns for three possible steady flow
protocols in our apparatus. The corotating two-roll mill and the single-roller flows
correspond to the limiting cases in the general time-periodic or blinking flow with
T% = 0 and T’i = oo respectively. The counter-rotating flow can be interpreted
as a large periodic perturbation that is added to the steady corotating case to
generate the BTRM protocol by virtue of the linearity and quasi-steady nature of
the Stokes equations describing the flow as shown previously. Mixing is inhibited
due to the existence of the invariant manifolds (for example, the separatrix in the
steady corrotating flow) which restricts the convective transport of fluids from one
region to another. These steady flows or integrable systems can be classified as
regular mizing where the stretching of material lines is at best linear with time

and a particle trajectory is deterministic (the pathline is the same as a steady
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streamline). However, for time-periodic flows (likely to be nonintegrable as shown
later), such as the blinking protocol described earlier, material lines can experience
exponential stretching as a consequence of the formation of the Smale horseshoe,
and this gives rise to chaotic particle advection. Therefore, by introducing a
time-periodic modulation of the steady case, the mixing of fluid may go through
a transition from regular to chaotic behavior, depending upon the frequency and
amplitude fo the modulation. The critical parameters which determine the mixing
characteristics of dye with the suspending fluid in the BTRM are the half period
T%, the roller speed w, and the total mixing time t'. The BTRM device is capable
of generating a large region of chaotic mixing at large critical periods and/or
roller speeds. The nondimensional characteristic parameters are the dimensionless

period of oscillation y, and total dimensionless mixing time ¢ (or number of periods

of time Ty ), defined as

wT%

p=— (6a)
tl

t = To (6b)

where w is the roller speed in rad/sec, Ty is the half period in sec, and T is a
characteristic time for a particle to travel one revolution along a closed steady
streamline near the center of the gap between the rollers at a roller speed of w,
when one roller is rotating. Experimentally, we determined T, to be ~ 40 sec for
a roller speed w, of 1.75 rad/sec (this is almost the lowest roller speed accessible
in our apparatus and provides a 0(1072?) Reynolds number). The value of y
corresponds to the number of revolutions of a fluid element near the center of the
device in a half period of time. The mixing characteristics are almost identical for
a fixed value of u with various combination of T and w. The reason for the present
choice of 1 and ¢ nondimensional parameters is so that a qualitative comparison

can be made with predictions from Aref’s blinking-vortex flow [9]. Aref [9] has



- 154 -

predicted that a transition from regular to chaotic particle motion should occur
when g (in his case) increases from zero to about one. The size of the chaotic
region is also predicted to increase with increasing p until the entire low domain

became globally chaotic.

In the present study, similar results are observed. Intricate structures of
stretching and folding of material lines are obtained as the flow strength parameter
i is increased. Figs. 6 and 7 shows two time sequences of pictures for 4 = 0.05 and
0.50, respectively, both at w = 1.75 rad/sec. The dye blob is placed initially near
the center of the device. If we compare the pictures at t=>5, a distinct difference
in the mixing structure is evident. For the case of small flow strength which has a
short blinking period of 4 seconds, fluid elements represented by the red dye can
only be stretched linearly and stay near the unperturbed stagnation streamline.
However, a small degree of folding and exponential stretching still occurs locally
near the hyperbolic fixed point such that a particle trajectory is not necessarily
deterministic. This is the case of transition to chaotic behavior because the folding
and stretching action still do not form a complete horseshoe. However, when
structures resembling the horseshoe map occur at or near hyperbolic points in the
stronger flow with a period of 40 seconds (¢ = 0.50), the particle path becomes
chaotic as we will show later. This leads to a large region of efficient mixing as is
apparent from the pictures at large times. After 15 periods, the dye is dispersed
quite thoroughly in a relatively large region spanning the entire experimental zone

of observation (which is the size of the mirror).

Morphological structures such as tendrils and whorls arise naturally in those
chaotic systems which have both hyperbolic and elliptic fixed points in the un-
perturbed configuration [20]. Berry et al. [20] in the study of a quantum map
proposed to call the spiral structure near an elliptic fixed point a whorl and the
wiggling manifolds near a hyperbolic fixed point a tendril. We have also observed

structures resembling the tendrils around the central hyperbolic fixed point for



- 155 —

the BTRM flow. Fig. 8 shows clearly the tendril-like structure near the central
hyperbolic fixed point for the fast blinking case with a 4-second period. For higher
flow strengths, these tendrils will grow and intermingle with each other to form
the observable structures analogous to the Smale horseshoe map from dynamical
systems theory. Chien et al. [14] have demonstrated the existence of such struc-
tures in their cavity flow experiment by examining carefully the characteristics of
the striations at the expected location of the horseshoe. In order to ensure that
the observed structure was indeed the physical manifestation of a horseshoe map,
they verified that the experimental construction satisfied all of Moser’s conditions
[17]. The properties of the structures satifying Moser’s conditions were given by
Chien et al. [14] as: (a) the existence of a quadrilateral S with hyperbolic points
at opposing vertices that is formed by intersection (transversally) of the stream-
lines from the forward and inverse map after several periods of the flow; (b) the
forward striations in S should be the images of the inverse striations (this rule
also applys to the top and bottom of the striations); (c)the forward and inverse
map must produce thinner striations which lie inside the striations produced by

the map from one period before.

Following the above procedure for identifying possible horseshoe structures,
the evolution of the striations from a dye blob initially in the BTRM is examined
carefully to search for a candidate for a horseshoe. Since most of the dynamics of
the system are governed by hyperbolic fixed points of low order [7], the search is
concentrated on the central portion of the flow (between the two cylinders) where
periodic points of a hyperbolic nature are likely to exist. With the aid of the
4-Head HQ Video Cassette Recorder, we examine the motion of the dye filament
at a very slow speed to determine whether Moser’s conditions are satisfied. A
sequence of pictures for y = 1.0(T 1 =40 sec) at various times is shown in Fig. 9
to show the increase in number of striations inside the location of a horseshoe

candidate. The candidate horseshoe took more than one period to form because
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the initial blob location is not the same as that for the horseshoe. The dyed
fluid has to travel to the horseshoe location before the structure appears in the
pictures. For every other period forward in time, more striations, which are thinner
(not darker in grey level) than those from previous cycle, move to the horseshoe
location. Therefore, we determine that the candidate for a horseshoe is formed
in one period from ¢t = 1.5 to t = 2.5 as shown in Fig. 9. Next, the dye pattern
(forward map) at ¢ = 2.5 and its mirror image (backward map) is superimposed
in the picture shown in Fig. 10. The intersection of the striations is indicative
of transverse crossing of the streamlines of the forward and backward map at the
location of the horseshoe candidate. The picture thus reveals the existence of a
quadrilateral with characteristics that satisfy most of the required conditions for
horseshoe formation except for the hyperbolic property of the vertices that cannot
be determined from experiments. This horseshoe (if indeed the vorticeé of the
quadrilateral is hyperbolic) is a period 1 horseshoe. From the appearance of the

horseshoe map, the flow is guaranteed to be chaotic.

The same technique is also applied to other cases of lower period flows, u < 1.
By studying the video carefully, we determine that the transition to chaotic be-
havior occurs at about g = 0.125 (i.e., no horseshoe can form for p < 0.125).
For intermediate values of period, 0.125 < p < 1.0, the period for a candidate
horseshoe increases with decreasing value of p. The period 1 horseshoe disappears
in these intermediate period (or flow strength) flows because the striations for the
forward and backward map do not intersect at all. This observation is analogous
to predictions by Khakhar et al. [8] in the study of their Aref-blinking-vortex
flow. These investigators found that bifurcation of periodic points from hyper-
bolic, elliptic, or parabolic type to other types and periods occurred when the
characteristic flow strength was varied between 0.5 to 10.0. For mixing purposes,
it is desirable to have a low period horseshoe map so that efficient mixing can

be achieved rapidly. In the BTRM, a period 1 horseshoe appears for p > 0.5.
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Therefore, it is apparent that an optimum flow strength for efficient mixing exist
in this flow in the range 0.5 < p <« oo. However, islands of unmixed fluid or
regular regions still exist even for intermediate values of y as shown in Fig. 11,
that are probably due to the presence of an incomplete horseshoe map [7] where

the stable and unstable manifolds just fail to intersect.
4.2 Area of Chaotic Mizing and Liapunov Ezponent

As mentioned before, the area of chaotic mixing (area refers to the area of
dye coverage) depends on both the flow strength yx and the total mixing time, t.
By increasing either the roller speed or the period of blinking, the motion can go
through a transition from regular to chaotic, and subsequently to globally chaotic
behavior. For various roller speeds w, the area of mixing (nondimensionalized with
the area of a roller) is plotted against p in Fig. 12 where p is a measure of flow
strength (i.e., the number of revolutions a fluid element traverses along the center
streamline between the rollers in a half period). The total time of mixing is t = 25,
which is equivalent to a physical time of 1000 sec. Although most of the mixing
of dye and suspending clear fluid is completed after the first 10 periods (40-sec
each), we chose this large mixing time so that the density of dye in the measured
area is fairly homogeneous. We can actually quantify the degree of homogeneity
by analyzing and comparing grey levels at different locations within the mixed
area. The region of chaotic mixing increases rapidly as the flow strength increases
from zero. Then, the size of the chaotic area gradually levels off because it is
approaching the side walls of the apparatus. This behavior is qualitatively similar
to results from Aref’s simulation of the blinking vortex flow [9]. By increasing
the period of oscillation, y, to some optimum number p. > 0.125, we can achieve
chaotic mixing in this device. This optimum period has to be much less than
total mixing time such that we do not approach the limit of T% — oo which gives

regular mixing behavior (only one cylinder is rotating in this case).
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As we can see from Fig. 13, data for different periods but the same p appear
to scatter more at low p values. For T%z 1 sec and p < 0.25, the dye area tends
to spread radially outward even though the Reynolds number is still less than
one. This is probably because the boundary effect is significant for high frequency
flows and the particle motion is no longer slowly varying. The Strouhal number is
between 0.05 to 0.24 in these cases. Lagnado [25] has studied both experimentally
and theoretically the stability of steady hyperbolic flows. Experimental results
showed that steady flow in the four-roll and two-roll mill is 2-D for Re < 5.
However, Lagnado’s study concentrated locally only on the central region, and it is
not clear whether secondary flows due to boundary effects might occur in the outer
regions for similar or even smaller Reynolds number. In the BTRM experiments,
the Reynolds number is always less than 1.5. From the data shown in Fig. 12, it is
apparent that the results do not depend on the Reynolds number (proportional to
the roller speed w) because the transient effect (dyed fluid being pushed radially
outward) occurs at different values of w. However, this effect does depend rather
strongly on the characteristic frequency, ReS (inversely proportional to the half
period), because it is evident from Fig. 13 that this effect is most significant for the
fast blinking case of T% = 1 sec for different cases of u. Experimentally, we observe
that no secondary flow develops in the BTRM as long as ReS < 0.04. In particular,
for ReS < 0.04, the depth of the dye (less than 0.5 cm) remains constant during
the course of the experiment when observed from the side of the transparent flow
device. However, a significant increase in the depth of the dyed region (from less
than 0.5 cm to approximately 1.0-1.5 cm) is observed for ReS > 0.04. Another
related observation is based on the sharpness of the holes or unmixed regular
regions such as the one shown in Fig. 11, for ReS < 0.04. During the course of
an experiment, the fact that these islands (holes) stay as a clear unmixed region
again suggests strongly that the flow must be 2-D. Therefore, the kinematic of the

flow field (Stokes flow) would determine the dynamics of a material line or blob
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for the period of time as long as the flow is still two-dimensional for slowly varying

flows.

In dynamical systems theory, one criterion for chaotic behavior is the ex-
istence of a positive Liapunov exponent for the average rate of stretching of an
infinitesimal material line. In the BTRM flow, the rate of stretching of a blob of
dye shows qualitative behavior that is consistent with the onset of chaotic flows.
In Fig. 14, the area of dye is plotted against the total mixing time t. The di-
mensionless time is equivalent to the number of 40-sec periods. In the two steady
cases of regular flows (4 = 0 and g = o0), stretching of the dye blob is only linear
in time. Mixing is extremely poor in these steady cases. However, exponential
stretching occurs in the blinking protocol for 4=0.25 and 0.5. A semi-log plot is
shown in Fig. 15 from which a positive exponent for the rate of increase in area
of mixing for the blinking cases can be measured for the first few periods. This
exponential rate of stretching of fluid elements creates thin striations rapidly in
the first few periods. The exponent starts to decrease at long times because part
of the dye has moved to regions of mostly linear stretching in the outer part of the
domain near the side walls. Interfacial contact length (or interfacial surface area
per unit depth) between the dyed and the clear fliud also increases exponentially
with time as shown in Fig. 16. The results for ¢ < 10 are measured from the
digitized pictures directly. However, we estimate the contact length for ¢ > 10 by
dividing the total area of mixing by the thickness of a typical striation. The reason
is that it is very difficult to measure the perimeters (length on both sides) of the
striations when they are too thin to be distinguished via the digitized data. These
striations also overlap each other at higher periods which makes measurements
from the digitized image impossible except for the total area measurement. The
results in Fig. 16 are comparable to Aref’s results on rate of chord length stretch-
ing in a blinking-vortex flow where exponential rate of stretching is observed for

chaotic systems [26]. The exponent is analogous to the Liapunov exponents for
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infinitesimal portions of the blob in the mapping of the BTRM flow averaged over
long time. This exponential generation of interfacial surface area is what make

the chaotic flows so efficient for mixing.
4.9 Transport of Blob of Passive Tracer

Transport of fluid is important in the context of mixing where good mixing
is desirable at all locations of the device. In the steady corotating flow (u=0),
convective transport of material is inhibited by the existence of invariant manifolds
which make up the homoclinic orbits (the separatrix). By time-modulating the
steady case to the blinking protocol in this study, materials can be transported
across the separatrix (the stagnation streamline) via the lobe dynamics mechanism

described in the earlier study by Rom-Kedar et al. for the OVP flow [10].

The integrable system (steady flow) considered here is the corotating two-
roll mill. A large amplitude perturbation (i.e., the time-periodic counter-rotating
flow) is added to the steady case which makes the particle motion chaotic. The
stream function (i.e., the Hamiltonian) of the blinking protocol is represented by
eqs.(3) and (4), and has the same form as a time-periodic Hamiltonian with one
degree of freedom. Thus, the present system is expected to result in tangling (in
the notion of dynamical systems theory) of the stable and unstable manifolds and
thus via the lobe dynamics mechanism in an enhanced rate of fluid transport. In
fact, we observe structures in the BTRM flow that show a qualitative resemblance

to those predicted theoretically in the OVP flow by Rom-Kedar et al. [10].

The time-periodic (blinking or piecewise continuous) BTRM flow has a char-
acteristic frequency which is 1/T. Rom-Kedar et al. [10] have shown that lobe
area increases with decreasing frequency for the OVP flow up to some large pe-
riod. In the BTRM flow, similar results are observed. Dye patterns resembling the
lobes are formed possibly due to the tangling of the stable and unstable manifolds

that emanate from the central hyperbolic point, when the period is greater than
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zero but still less than the total mixing time. Fig. 8 clearly shows the formation
of lobes near the hyperbolic fixed point for T = 4 sec (¢ = 0.05). For this fast
blinking case, the lobes formed are very small and only a small amount of fluid
is transported from the region inside the separatrix to the region outside at each
period (a dye blob is placed inside the right homoclinic orbit initially). This lobe
structure is almost identical to the tendrils found in Aref’s blinking vortex flow
[8,25]. When the period is being increased, however, the size of the lobes becomes
larger. Fluid patch inside one lobe will be stretched and folded when it hops over
to another lobe that is nearer to the hyperbolic fixed point at the next period of
time. One should note that these lobes are constructed by the Poincaré map so
that we are marching in discrete time period in the phase space. In the flow visu-
alization experiments, the lobe structures traced out by the dyed fluid show the
dynamics of the unstable manifolds in the chaotic flows. Fluid transport across

the separatrix is greatly enhanced by this mechanism of lobe dynamics.

We have also performed quantitative measurements of the amount of fluid
transported from the region inside the separatrix to the region outside. In order
to measure this transport rate, a thin layer of dye is placed in the annular region
between the right roller and the corresponding homoclinic orbit (i.e., the separa-
trix) that encloses the roller. This is done by placing a thick line of dye inside
the right separatrix and running the experiment with =0 (one-roller rotating)
for a few minutes until a homogeneous area of dye has filled in the annulus region,
that is labelled as region B. The annular region on the left is labelled as region A
whereas the outer region is C. Fig. 17 shows the a time sequence of pictures for
p = 0.25 to show the dyed fluid being transported from one region to another.
The measurements are performed from the digitized pictures by superimposing
the separatrix from the steady case with the pictures from the blinking cases to
identify dyed fluids in different regions. For the cases of t = 0.5 and ¢t = 1.5 in

Fig. 17, the lobe structure that emanates from the right separatrix provides the
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primary mechanism for fluid transport. Fig. 18 shows the measured area of fluid
transport from region B to the outer region C for two different flow strengths. It
is apparent that fluid transport is greatly enhanced by increasing the value of .
The amount of fluid transport to the outer region for x = 0.50 is two times that
for the case u = 0.125 at ¢t = 2. Thus, the fluid transport by the so-called lobe

dynamics in the BRTM flow determines the extent of the region of chaotic mixing.
4.4 Reversibility of Chaotic Flows and Sensitivity to Initial Conditions

For integrable systems such as the steady (or time-independent) corotating,
counter-rotating, and Couette flows, the particle trajectories coincide with the
streamlines on which they are initially located. Neglecting inertial and transient
effects, these steady flows must be reversible which is a consequence of the lin-
earity of Stokes equation describing the flow. Fig. 19 shows a time sequence of
reversibility experiments for p = 0.05 which is in the transition regime to chaotic
mixing. The dye blob, that is initially placed near the central hyperbolic point,
is being stretched and wrapped around the separatrix forward and backward for
10 periods. The dye reverts back almost precisely to its original shape except for
a small filament emanating from the stagnation point where most of the folding

and stretching of dye occurs.

For large flow strength where chaotic mixing is present, the flow is not re-
versible after even two periods. The reason for irreversiblity of the flow is the
presence of Smale horseshoe structure where neighboring fluid elements separate
exponentially in time. Any small disturbance in the flow, such as mechanical vi-
bration or inertia at the moment of switching on and off the motors, in the flow
would alter particle trajectories, by a large amount. This effect would then be
amplified due to the presence of the Smale horseshoe. Fluid elements would no
longer reverse along their original trajectory when the flow is reversed. Similar

results were shown by Khakhar et ¢l. [8] in a computer-simulated experiment
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where the disturbance arose from numerical error because of finite accuracy in the

computer.

Another observation regarding the sensitivity to initial conditions in chaotic
flows is shown in Figs. 20a and 20b. Two identical blinking flow experiments for
the case of u = 0.125 are performed with the inital dye blobs being placed at
distinct locations. In the first case (Fig. 20a), regular mixing occurs when the
position of the dye blob is outside the region of chaotic mixing. Dye tracer only
advects along streamlines with little or no mixing. However, when the dye blob
is positioned near the central hyperbolic point which is within the chaotic mixing
region, efficient mixing is achieved as shown in Fig. 20a. This is the reason that the
preceeding mixing experiments were all carried out with the same initial location
for the dye blob so that essential features of the mixing experiments inside the

chaotic region are retained.

5. Concluding Remarks

The chaotic advection of a fluid particle is observed in the 2-D time-periodic
BTRM flow when the characteristic period of oscillation, g, is larger than about
0.125. Morphological structures resembling the Smale horseshoe are revealed by
the mixing experiments and thus suggests chaotic mixing in the flow. This chaotic
flow provides efficient mixing over a large region of the flow device, which can be
achieved by either increasing the roller speed or the time period for the alternate
rotation of the cylinders. The digital imaging technique is essential for obtaining
quantitative measurements of the rate of stretching of the dye blob, and of the
rate of fluid transport in different domains of the flow device. The exponential
rate of increase of interfacial contact length of the dye blob can be related to a
positive Liapunov exponent in the context of dynamical systems as another proof
for chaos. Some unmixed regions (islands) are also observed that might be the

result of resonant structures when the period of the fixed point in the island is a
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multiple of the characteristic period of the flow. These islands can also exist due

to an incomplete horseshoe [7].

The main accomplishment of this study is to provide quantitative measure-
ment of mixing properties (area of mixing and fluid transport rates) in chaotic
flows. These mixing properties are related qualitatively to theoretical predictions
for chaos using dynamical systems theory. By applying dynamical system theory
in the context of laminar mixing or vice versa, we are one step closer to a better
understanding of the dynamical behavior of the time-periodic flows that occur in
many mixing applications. We are currently in the process of obtaining detailed
theoretical predictions of transport rates, lobe structure, area of mixing, etc., for
both an unbounded two-roll mill, and for a two-roll mill in a box of the same
lateral dimensions used here. The theoretical framework of nonlinear dynamics
shows that the phenomena observed are robust in the sense that we should expect
only quantitative, rather than qualitative differences, due to the idealizations in-
herent in the assumptions of a quasi-steady, two-dimensional Stokes flow that are
built in to the theory. However, the present study will provide the first quantita-
tive comparison between theory and experiment, from which to see how important

those differences may be.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Schematic streamlines for the steady corotating two-roll mill flow.

A perturbed Poincaré map with transverse intersection of homoclinic

orbits leading to homoclinic tangles (or lobes).

Experimental equipment for the BTRM flow: (a) schematic of experi-
ment; (b) photograph for the flow device.

Roller speed versus time for the two rollers, with Ty being the half

period, and w; = wy for the BTRM experiments.

Streamline patterns for three possible steady flow protocols in the two-
roll mill: (a) corotating (x = 0); (b) one rotating cylinder (p = co);

(¢) counter-rotating.

Dye patterns in the BTRM experiment for p = 0.05, T ;= 2 sec, and
at various times: (a) t =0, (b) t = 5, (¢) t = 10, and (d) t = 15 (total

mixing time = t x40 sec).

Dye patterns in the BTRM experiment for p = 0.50, T% = 20 sec, and
at various times: (a) t =0, (b) t = 5, (¢) t = 10, and (d) t = 15 (total

mixing time = t x40 sec).

Tendril-like structure near the central hyperbolic fixed point for u =
0.05, w = 1.75 rad/sec, and T% = 2 sec.

A sequence of pictures for 4 = 1.0 and T% = 40 sec for the CW/TCP
solution at various times: (a) t = 1.0; (b) t = 1.5; (¢) t = 2.0; (d) t =

2.5; (e) t = 3.0. The arrow indicates possible location of a horseshoe.

Figure 10. A superimposed picture of the dye pattern (forward map) and its

mirror image (backward map) for the case of t = 2.5 in Fig. 9. Note



Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.
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that the possible horseshoe formation along the central region with

transverse intersection of streamlines.

Islands of unmixed fluid or regular regions (bright patches of clear
fluid at some distance away from the upper and lower side of the
rollers) inside the chaotic mixing area at the total mixing time f =15
and two cases of p: (a) pp = 0.125(Ty = 1 sec,w = 17.45rad/sec); (b)
p = 0.50(Ty = 20 sec,w = 1.75rad/sec).

Area of mixing (dye coverage) A, normalized by Ar (area of the
roller), versus the characteristic period p in the CW/TCP solution
at various roller speeds w(rad/sec): w = 1.745(x); w = 4.363(e);
w = 8.725(+4); w = 17.450(A).

Area of mixing (dye coverage) A, normalized by Ag (area of the
roller), versus the characteristic period p in the CW/TCP solution
for various half period Ty(sec): Ty = 1(0); Ty = 2(A); Ty = 4(+);
Ty = 8(e); Ty = 20(*). The solid line is for the fast blinking case
of Ty = 1 sec to illustrate increase in mixing area due to transient

effect.

Area of mixing (dye caverage) A, normalized by Ag (area of the
roller), versus dimensionless time t (physical time t' = 40 x t sec) in
the CW/TCP solution for various values of the characteristic period:
p=0.00(x); p = 0.25(+); p = 0.50(A); u = oo(n).

A semi-log plot of the area of mixing (dye coverage) A, normalized
by Ag (area of the roller), versus dimensionless time t (physical time
t' = 40x t sec) in the CW /TCP solution for various values of the char-

acteristic period that would result in chaotic mixing: p = 0.25(+);



Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.
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p = 0.50(*). The case for CW45 solution at p = 0.50(A) is shown

here to illustrate similar results for fluids of different viscosities.

Interfacial contact length L (interfacial surface area per unit depth)

versus dimensionless time t (physical time t’ = 40 X t sec) in the

CW/TCP solution for = 0.50 and Ty = 20 sec.

A sequence of pictures for 4 = 0.50 and T;i = 20 sec at various times:
(a) t = 0.00; (b) t = 0.50; (c¢) t = 1.00; (d) t = 1.50. Inset shows the

different regions inside and outside the separatrix.

Fluid transport into region C (A¢), normalized by the area of annulus
of dye in region B (Ap,) at t = 0, versus dimensionless time t for
the CW/TCP solution for two cases of pu: u = 0.125 (dashed line, x);
p = 0.50 (solid line, A).

A sequence of pictures for ¢ = 0.05 and T% = 2 sec at various times
t (physical time t' = 40 x t sec): (a) t = 0.0; (b) t = 1.0; (¢) t = -
1.0. Note that negative value of t indicates a backward transform for
the experiment, i.e., the rotation direction and order of rotation for

the two rollers are reversed.

Different initial conditions for u = 0.125, T% = 5 sec, and total mixing
t' = 600 sec: (a) initial dye blob inside the chaotic mixing region; (b)
initial dye blob outside the chaotic mixing region (at the bottom left

corner).
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Chapter IV

Chaotic Mixing and Transport in a Two-Dimensional
Time-Periodic Stokes Flow — the Blinking Two-Roll
Mill (BTRM): II. Dilute Polymer Solution
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Abstract

The chaotic mixing and fluid transport properties of a dilute polymer solution
in a two-dimensional time-periodic Stokes flow are compared with those of the
Newtonian solvent. This time-periodic flow is generated in a blinking two-roll mall
(BTRM) apparatus that was described in a companion paper for the Newtonian
fluid case [7]. The BTRM flow has been demonstrated to produce chaotic particle
advertion when the characteristic period of oscillation, y, is larger than 0.125 [7].
The results for the polymer solution also show similar features for chaotic mixing.
However, the area of mixing and the rate of fluid transport in the polymer solution.
show an O(1) decrease when compared with the corresponding Newtonian results.
The polymer-induced flow effect is revealed in the mixing experiments using flow
visualization with dye tracer and quantitative measurements via digital imaging
technique. The onset of the polymer effect on the flow occurs at a critical Deborah
number of (De). ~ 2. This high Deborah number effect may be related to the
large deformation of polymer in the BTRM flow where the polymer experiences a
succession of strong and weak flows at different time intervals. The residence time
of the polymer in the extensional region will determine the extent of modification
of the flow by the polymer. This mechanism may explain the fact that the largest
decrease in the area of mixing is obtained in high frequency flows in the BTRM.
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1. Introduction

Dilute polymer solutions have been shown to exhibit non-Newtonian fluid
behavior in strong flows [1,2]. Strong flows correspond to flows that are capable of
inducing large deformation of the polymer molecules. Specifically, a linear polymer
chain in a strong flow would be stretched exponentially in time. The strong flow
criterion has been discussed in detail by Tanner [3] and more recently by Olbricht
et al. [4]. Some observable examples of non-Newtonian effects for dilute polymer
solutions in extensional flows are the large pressure drop increase that occurs in
flow through porous media [5] and in sink flow [6]; and polymer-induced flow
modifications in stagnation flows of various geometry [1,2]. Those flows that have
been studied to date are typically steady from an Eulerian point of view, though
the polymer molecules experience a time-dependent flow history in a Lagrangian
framework. furthermore, in the cases where the flow can be characterized in detail
(i.e., neither turbulent nor porous media flows), the region of interaction between

the polymer and the flow is extremely localized.

The present study is intended to provide experimental evidence of non-
Newtonian effects for a dilute polymer solution in a time-periodic (or blinking) two-
roll mill. The steady flow in a co-rotating two-roll mill has been well-characterized
by previous investigators in this laboratory [2]. Indeed, Dunlap and Leal [2] have
studied both polymer conformation and flow in this system, demonstrating that
strong birefringence and a local inhibition of large strain rates can occur near the
stagnation point and along the outflow symmetry axis. The blinking two-roll mill
differs in interesting and important ways from the steady flow, provided that the
strength of the flow is sufficient to undergo a transition from regular to chaotic
motions, and those differences offer an opportunity to understand dilute solution
dynamics in a framework that is much more directly relevant to the major tech-
nological application of dilute solutions in polymer drag reduction. First, from

the Lagrangian frame of reference seen by a polymer molecule, the flow is alter-
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natively strong and mostly weak, and this is much more like the environment seen
by a polymer in a turbulent flow. Second, the region of the flow domain where the
flow is strong on average, in the sense that there is an exponential separation of
material points, is substantial — in fact the region covers the whole of the two-roll
mill for a high enough roller speed or a long enough period for blinking. Finally,
in spite of the complexity of particle paths in the flow, it can be simulated com-
pletely, either analytically or numerically for a Newtonian fluid, or (presumably)
numerically in the case of a dilute solution model. Hence, detailed comparisons
between model predictions and experimental observations should ultimately be
possible, thus allowing a much more demanding test of the capabilities of existing
models in time-dependent, spatially complex flows, that is much more relevant
to turbulent flows than anything studied heretofore, but without the impossible

complexity of fully developed turbulence.

In this paper, we take only the first step of studying some overall flow and
mixing characteristics of the BTRM flow for a dilute polymer solution that can be
compared with a companion study of similar phenomena for a Newtonian fluid.
Later, we shall report on more detailed measurements of polymer conformation
and flow, in a framework that is philosophically comparable to our earlier studies
of dilute solution behavior in steady flows, in anticipation of comparisons between

model predictions and experimental observations that were alluded to above.

The flow generated in the two-roll mill is a two-dimensional laminar flow
(the Reynolds number is kept below O(1) for all experiments), and the velocity

field v(x,y,t) in an Eulerian representation is related to the stream function ¢ by

-2 )

V(xyyat) = (‘é—; ’ ""a -

where the stream function plays a role that is similar to an equipotential surface

in Hamiltonian mechanics. The motion of particle (passive tracer) in this flow is
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governed by the set of differential equations in the Lagrangian form

dz _ 0¥ 2
dt =~ Jy (2a)
dy _ 0%

dt Oz (25)

This is a Hamiltonian system whose Hamiltonian is just the stream function
Y(z,y,t). For time-independent flows, this dynamical system has one degree of
freedom and is integrable which means that a passive tracer particle in the flow will
advect along a streamline or a pathline. Phase space of this integrable system con-
sists of streamlines of constant value. However, when the flow is time-modulated
periodically, the time-dependent Hamiltonian with one degree of freedom is then
equivalent to an autonomous Hamiltonian with two degrees of freedom, and is
likely to produce chaotic behavior [9,10]. The previous mixing study in the BTRM
flow for a Newtonian fluid has already demonstrated the existence of chaotic mix-
ing behavior via flow visualization and various gquantitative measurements. These
characteristic features of chaotic particle motion agree qualitatively with predic-

tions from dynamical systems theory.

In the present study, flow visualization and standard digital imaging tech-
niques are used to investigate the effect of polymer on the mixing characteristics
in the time-periodic BTRM flow. Significant deviation from the Newtonian result
is observed in mixing experiments for the polymer solution when the Deborah
number (a measure of the viscoelastic effect of the polymer that will be defined

later in section 3.1) is large enough to affect the flow.
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2. Experimental Details

2.1 Apparatus

The flow device is the same blinking two-roll mill (BTRM) that was used
in the earlier study of chaotic mixing for a Newtonian fluid. Details of the ap-
paratus, the flow visualization technique, and the digital image processing are
described in Ref. [7]. A schematic for the experiment is shown in Fig. 1. The
two alternately rotating rollers, are switched on and off periodically by computer-
controlled switching, and thus simulate quantitatively a pair of blinking vortices
similar to Aref’s blinking-vortex flow [11]. The periodically alternating rotation
of the rollers # 1 and #2 is shown schematically in Fig. 2. At any instant of time,
one of the rollers is rotating at a constant speed and the other roller is stationary.
The direction of rotation is counter-clockwise for both rollers. Flow visualization
is performed by injecting a blob of red dye into the solution which is pale yellow
in color. Then, the dye patterns from the mixing experiments are captured by
a Sony XC-77 monochrome CCD video camera and recorded on a Panasonic 4-
Head video cassette recorder. These recorded images can be digitized by an ITT
PCVision-Plus frame grabber using an IBM/AT computer and then analyzed by
Image-Pro II (a utility software package by Media Cybernetics) for image analysis

and quantitative measurements.
2.2 Ezperimental Conditions

The polymer solution used in this study is prepared by first dissolving a high
molecular weight polystyrene sample (PS2) of M, ~ 1.86 x 10° (manufactured by
Pressure Chemical Co.) in tricresylphosphate (TCP). This polymer has a narrow
molecular weight distribution of M, /M, = 1.06. The polymer took about a

week to dissolve completely in the solvent TCP with gentle heating and stirring.
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This solution is then mixed thoroughly with a high viscosity solvent, Chlorowax-
45 (CW45), to increase the solution viscosity. This is important for minimizing
boundary and inertial effect. The final composition of the mixed solvent is 70/30
wt% of CW45/TCP. The polystyrene concentration is 1500 ppm by weight in the

mixed solvent.

The reason for choosing this concentration is because the same polymer
sample in a different solvent has been shown to inhibit high rate of strain in
steady two-dimensional extensional flows at a polymer concentration of 1500 ppm
[12]. Since the previous study [7] has demonstrated that exponential stretching of
material lines occurs in the BTRM flow, it is suggested that the polymer molecules
can be deformed significantly enough to have an effect on the flow. The 1500
ppm PS2 in CW45/TCP solution is characterized by measuring the zero shear
viscosity of both the solution and solvent. These measurements are performed
using a Ubbelohde capillary viscometer. The characteristic relaxation time 7 for
the polymer can be obtained from the measured viscosity via the relationship [13]

_ (n=ns)My
= cpRT (3)

where 7 is the viscosity of the polymer solution, n, is the solvent viscosity, ¢ is the
polymer concentration in ppm, p is the solution density, R is the gas constant, and
T is the temperature. Table 1 summarizes the properties of the polymer solution

and the solvent.

Table 1. Solution Properties at 20°C

Fluid n P T
(poise) (gm/cc) (sec)
CW45/TCP 44.9 1.26 -

1500 ppm PS2 95.1 1.26 0.41
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The increase in zero shear viscosity due to the presence of the polymer in the
solvent is about 23%. Since the polymer relaxation time depends on the solution
viscosity, any shear thinning effect would consequently reduce the characteristic
relaxation time. Therefore, shear viscosity measurements are also performed using
a parallel plate rheometer. The result shows constant solution viscosity for both

the solvent and the polymer solution for shear rates up to v ~ 6.3 sec™!.

The dye solution used for flow visualization is a 5 wt% Sudan IV red dye
dissolved in the same suspending fluid (i.e., the polymer solution). The dye is
used in lieu of tracer particles, and provides a Lagrangian representation of the
dynamics of particle trajectories in the time-periodic flow for a large number of
initial conditions. The initial conditions for all mixing experiments (section 3.1)
are as close to identical as possible, with a 0.4-0.5 cc blob of red dye injected near
the center of the gap between the rollers at about the half-height of the flow de-
vice. For investigating the fluid transport in different regions of the flow (section
3.2), the initial condition is an annulus of dye between roller #2 and the left stag-
nation streamline. At each time period, the dye pattern represents the Poincaré
map in dynamical systems theory. By studying the the dye pattern experimen-
tally at each time period, the results in the mixing experiments can be related to
many characteristic features of chaotic mizing [7,14,15]. It may be noted that the
molecular diffusivity of the dye in the organic solvent is estimated to be about
O(107%)cm?/sec, and thus diffusion can be neglected during the course of each
experiment, which is typically less than 1000 sec. It follows that the final charac-
teristics of the dye pattern will be determined solely by the kinematics of the flow.
In order to facilitate comparisons with existing theory from nonlinear dynamics
for chaotic flows, as well as future comparisons with detailed simulations of the
2-roll mill flow, it is important that the Reynolds (Re) and Strouhal (S) numbers
be kept as low as possible. The primary reason is to preserve two-dimensionality

and to avoid transient effects in the flow device. These dimensionless parameters



are defined as follow:

Rwd ,

Re = ” (4a)
d

§ = RwT, (40)

where R is the roller radius, w is the roller speed, d is the half gap width between
the two rollers, v is the kinematic viscosity, and T% is the half period which is
the time of rotation for one roller in a cycle (period). The range of experimental
values is Re = 0.15-1.5 (based on the solvent viscosity) and S = 0.01-0.24. The
condition for neglecting the start-up and relaxation transients due to vorticity
diffusion when the cylinders are started and stopped is T% > d?/v. Although T% is
1 to 40 sec, which is much larger than the value of d2/v = 0.07 in our experiments,
we still observed transient effects for high frequency flows (i.e., Ty ~1 sec) in the
Newtonian solvent. However, this transient effect is greatly reduced in the polymer

solution as we will observed in the next section.

In the next section, results for the area of mixing and fluid transport in
the BTRM flow for the polymer solution will be presented and compared with the
Newtonian case. Similar mixing behavior is observed but the efficiency of mixing is

reduced due to viscoelastic effects (high Deborah number) in the polymer solution.
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3. Results and Discussion

3.1 Area of Chaotic Mizing

The general qualitative features of chaotic mixing in the BTRM flow are not
changed by the presence of the polymer in the Newtonian solvent. The mixing
characteristics of dye with the suspending polymeric fluid are still governed by
the half period T%’ the roller speed w, and the total mixing time ¢'. The dimen-
sionless characteristic parameters are the flow strength (or dimensionless period of

oscillation) p, and total mixing time ¢ (or number of periods of time T, ), defined

as
wT;z_ s
H= woTo . ( a)
) ¢
t=— (5b)

where w is the roller speed in rad/sec, T% is the half period in sec, and T, is a
characteristic time for a particle to travel one revolution along a closed steady
streamline near the center of the gap between the rollers, and at a roller speed of
wo when one roller is rotating. Experimentally, we determined T, to be ~ 40 sec
for a roller speed w, of 1.75 rad/sec. The value of u corresponds to the number of

revolution of a fluid element at the center of the device in half period time.

Fig. 3 shows a sequence of pictures for 4 = 0.50 at various time periods.
The dye patterns show almost identical morphological structures as in the Newto-
nian case. Therefore, the transition from regular to chaotic mixing behavior with
increasing value of u should be qualitatively identical to the Newtonian results
from our previous study [7]. By increasing either the roller speed or the period
of blinking, the motion of a particle can go through a transition from regular
to chaotic, and subsequently to globally chaotic behavior. In Fig. 4, the area of

mixing (dye coverage) is plotted against u for various roller speeds. This area is
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measured for a total dimensionless mixing time t = 235 (equivalent to physical time
of 1000 sec). The region of chaotic mixing increases rapidly as the dimensionless
period pu increases from zero. When p > 0.50, the chaotic area starts to level
off to an apparent saturation value that corresponds to the maximum area (very
close to the side walls of the flow device) of the closed flow domain. The critical
value of p for chaotic mixing to occur is for p > 0.125. This is the same as the
Newtonain result from a previous study in this laboratory [7]. Note, however,
that the area of chaotic mixing shows a consistent decrease at high roller speeds
(w > 4.363 rad/sec). This is clearly not due to transient or inertial effects since the
area of mixing would increase for high Re and/or high S number flows. The result

suggests a measurable polymer effect on the flow. One would normally expect

such effects for Deborah numbers of O(1).

The Deborah number (De) in this case is defined as the ratio of the charac-
teristic relaxation time for the polymer, 7, to a characteristic flow time, which we

choose to be w™? for the time-periodic BTRM flow,
De = wr. (6)

The area of mixing is replotted in Fig. 5 against De for both the Newtonian solvent
and the polymer solution for various values of . The values of De for the solvent
are calculated by multiplying the roller speed with 7 for the polymer. This so-
called Deborah number for the Newtonian solvent is used solely for comparison
without any physical significance. The area of mixing in the polymer solution
shows a very significant decrease when compared with the Newtonian data. The
onset of this decrease in the area of mixing seems to occur at a critical Deborah
number of (De). ~ 2. The magnitude of the decrease in mixing area increases with
increasing De but decreasing u. It is apparent that the effect of polymer on the
flow is significantly larger for low T_% cases (high frequency flows). The distinctive

difference between the Newtonian and polymer solution is the disappearance of
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any transient effect in the polymer solution for high frequency flows at p = 0.125.
The transient effect is so prominent in the Newtonian fluid that the dyed fluid
would tend to spread radially outward for Ty = lsec (De = 3.6 in Fig. 5). Thus,
the area of mixing is much larger than that of the lower frequency case, TJz. > 1 sec,
for the same value of u = 0.125. However, the corresponding result for the polymer
solution (i.e., at g = 0.125 and De = 3.6) shows in contrast a decrease in the area
of mixing.

The reason for the decrease in mixing area in the polymer solution may be
related to similar effects observed in steady elongational flows in the 2-roll mill
where inhibition of large strain rates occurs at high Weissenberg number [2,12].
Since exponential stretching of material line on a long-time average exists in the
time-periodic blinking 2-roll mill flow (7], significant deformation of the polymer
is expected to occur. This would then lead to an increase in the apparent viscosity
in the solution, and consequently would inhibit the stretching and transport of
fluid elements. The increased polymer effect for high frequency flows may be
because the polymer can reside in the strong flow region in the BTRM flow for
many successive periods of time. In the strong flow region, significant deformation
of the polymer can occur that could result in large modification to the flow. As
mentioned before, since most parts of the flow domain in the BTRM flow is a
weak flow, blinking flows with a large time period would cause the polymer to
experience weak flows for most of the time and consequently leads to a smaller

polymer-induced effect to the mixing and transport characteristics in the flow.

Another noteworthy point from the mixing experiments is that different re-
sults are obtained when the experiment is performed either continuously or discon-
tinuously (i.e., stopping in between two consecutive periods). At the same value
of u = 0.5 and De = 7.2, a 15% reduction in mixing area (compared to Newto-
nian case) is observed for the continuous mode of operation, but only about 8% is

observed for the discontinuous case. This indicates that the polymer should not
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be allowed to relax back to its equilibriuim coiled conformation at any moment of
the entire experiment. The consistently deformed and aligned polymers are nec-
essary to induce large viscoelastic effect on the mixing characteristics of the flow.
viscosity. Thus, all the results shown before are obtained when the experiment
is operated in the continuous mode. The above proposed mechanism for polymer
effect on the flow is also supported by results for fluid transport in the Newtonian

and polymer solution presented in the next subsection.
3.2 Transport of Blob of Passwve Tracer

In the steady corotating two-roll mill flow, the convective transport of fluid
is inhibited by the existence of the stagnation streamline (the figure-eight-shaped
separatrix made up of two homoclinic orbits). By time-modulating the steady flow
(i.e., implementing the BTRM flow in this case), materials can be transported
across the separatrix, and thus chaotic mixing can occur over a large region of
the flow. The amount of fluid transport across the separatrix depends on the
characteristic frequency of the flow which is 1/7. The mechanism of transport
has been related in our previous study [7] to the so-called lobe dynamics due to
tangling of the stable and unstable manifolds that originated from the central
hyperbolic point. The basic ideas of transport via lobe dynamics were introduced
first by Rom-Kedar et al. [16] in their study of mixing and transport in the
oscillating vortex pair (OVP) flow. A more detailed discussion can be found in
Ref. [7] of the similarity of the flow structures observed in the BTRM and the
OVP flows.

In the present study, quantitative measurements are performed of the trans-
port rate for the polymer solution in the BTRM flow. The transport of fluid from
the region inside the separatrix to the region outside is measured by filling the
annular region in the right separatrix with a thin layer of dye. This inner region

is labelled as region B. The other inner region (the annulus region between the
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left separatrix and roller #1) is labelled as region A, whereas the outer region is
labelled as region C. Fig. 6 shows results for the area of fluid transported into the
outer region C versus dimensionless mixing time ¢ for both the Newtonian and
polymer fluid, and for p = 0.125 and 0.50. The results are obtained at w = 8.73
rad /sec, or De = 3.6. The amount of fluid transport is greatly enhanced by
increasing the characteristic blinking period p for both solutions. From ¢ = 1 to 2
(t' = 40 to 80 sec), the rate of transport for x4 = 0.50 is four times that of the case
for p = 0.125 for both the polymer solution and its Newtonian solvent. However,
a significant decrease in the rate of fluid transport into the outer region for the
polymer solution is evident in Fig. 6, presumably reflecting a decrease in lobe size.
The measurable decrease in the rate of fluid transport across the separatrix is up
to 20% at t = 2 for both values of u. Thus, the effect of polymer on the flow has

resulted in the inhibition of transport (or stretching) of material fluid.

As discussed in the last subsection, the mechanism for the polymer-induced
flow effect is believed to be similar to the effect of the polymer in the steady case
where a strong flow would inhibit high strain rates due to elongated and aligned
polymers. Although the time-periodic blinking flow in this study consists of mostly
weak flow regions, the region between the rollers represents a region of converging
flow that has an extensional component in the velocity gradient tensor. If the
polymer is being elongated to some extent at each time that it passes through the
extensional zone and is maintained in this stretched state by the shearing action
at other regions, then it is possible for the polymer to create a significant effect
on the flow. Nollert and Olbricht [8] have shown by using an elastic nonlinear
dumbbell model for a test polymer molecule that large deformations of the poly-
mer can occur in a time-periodic flow consisting of alternating simple shear and
extensional flow. The reason is that the polymer has a long retraction time for
conformational diffusion from an extended state back to the equilibrium coiled

state. This means that once the polymer is being stretched in a strong flow region
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for some time interval, it can be maintained in this stretched state or even ex-
tended further in weak flow regions at other times. Therefore, the inhibition effect
observed is believed to be the result of extended polymer molecules that create
large elongational stress over a broad region of the flow field. An analytical and
numerical study of the two-roll mill flow is now being pursued in this laboratory

in order to provide a better understanding of the deformation of microstructures

in the BTRM flow.

4. Concluding Remarks

The effect of polymer does not change the general qualitative features of
chaotic mixing in the BTRM flow. The area of chaotic mixing and the rate of fluid
transport increases with increasing values of the characteristic period of oscillation
p. By increasing either the roller speed or the time period of blinking, efficient
mixing and an enhanced rate of ﬂuia transport can occur over a large region of
the flow due to globally chaotic behavior. However, the area of mixing and rate
of fluid transport in the polymer solution show a significant decrease from the
Newtonian results. This decrease in mixing area is about 15% of the total mixing
area for 4 = 0.50 and ¢ = 25, and the decrease in fluid transport rates is about
20% for the same p but at t = 2. These measurable effects are dependent on the
Deborah number which is a measure of the viscoelastic effect of the polymer to
the flow. The onset of polymer-induced flow effect occurs at a critical Deborah
number of (De). ~ 2. The viscoelastic effect leads to the inhibition of material

line stretching and fluid transport.

The result for the area of chaotic mixing in the polymer solution shows
the most deviation from the Newtonian measurements for a fast blinking case of
Ty =1 sec at a Deborah number of De = 3.6. This is believed to be due to the
sensitivity of the response of polymer to the details of the types of time-varying

flow (in the Lagrangian point of view) in the BTRM. Nollert and Olbricht [g]
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have demonstrated that large deformation of a polymer depends on the time of
pre-stretching by an inital period of extensional flow followed by a steady simple
shear flow. When the time of pre-stretching by extensional flow is a few times
(> 27) the characteristic relaxation time of the polymer, significant extension of
the polymer occurs, and this highly stretched state can then be maintained in
a weak flow at later times. The requirement of a residence time (in the strong
flow region) of comparable magnitude to the characteristic relaxation time of the
polymer is consistent with the high frequency flow effect observed in this study.
For high frequency flow (T% = 1 sec), the polymer that resides in the extensional
region in between the rollers could have a long residence time before it is being

convected to other weak flow regions.

A complementary investigation on the kinematics of the BTRM flow is es-
sential to clarify the suggested mechanism for the polymer-induced flow effect.
Work is currently being pursued on the numerical calculation of the time-periodic
BTRM flow, and the dynamics (conformation change) of polymer in this flow via
a simple dumbbell model. Further work is also directed at correlating the effect
of high Deborah number to the mixing characteristics by using various polymer
samples with a wide range of relaxation times. This would allow us a better un-
derstanding on the roles of large flow strength (shear rate) and long relaxation

time of polymer to the polymer-induced flow effect.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Schematic for the BTRM experiment.

Roller speed, w, versus time for the two rollers, with T—; being the half

period.

Dye patterns in the BTRM experiment for u = 0.50, T% = 12 sec, and
at various times: (a) t =0, (b) t =5, (¢) t = 10, and (d) t = 15 (total

mixing time = t x40 sec).

Area of mixing (dye coverage) A, normalized by Ag (area of the roller),
versus the characteristic period u in the 1500 ppm PS2 solution for
various roller speeds w(rad/sec): w = 1.745(X); w = 4.363(A); w =
8.725(a); w = 17.450(+).

Area of mixing (dye coverage) A, normalized by Ag (area of the roller),
versus the Deborah number (De) for the Newtonian solvent (solid line),

and for the 1500 ppm PS2 solution, at various characteristic periods:

p=0.05(x); = 0.125(A); p = 0.25(a); p = 0.50(+); g = 1.00(V).

Fluid transport into region C (A¢), normalized by the area of an-
nulus of dye in region B (Ap,) at t = 0, versus dimensionless time
t for the Newtonian solvent (lines), and for the 1500 ppm solution
(symbols) at De = 3.6 for two cases of u: p = 0.125(dashed line, x);
@ = 0.50(solid line, A).
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(d)

Fig. 3
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