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“Abstract

In this work the technique of molecular beam epitaxy is used to grow GaAs/AlGaAs
multiquantum well structures. The material composition and thicknesses are chosen
in a way that the electrons in the device interact resonantly with infrared radiation.
This interaction originates from quantized energy states (subbands) in the conduc-
tion band of the material. The infrared absorption and photocurrent spectroscopies,
in conjunction with standard DC-characterizations, are used to investigate electron
transport in these structures.

After a brief description of electronic energy states based on the multi-band k.p
approximation, the optical properties of intersubband transitions are theoretically and
experimentally investigated. Evidence for the above-the-barrier energy states {con-
tinuum minibands) affecting the absorption and photocurrent spectra is presented.

Studying electron transport perpendicular to the multiquantum well layers, dif-
ferent regimes of miniband and hopping conduction are distinguished. It is shown
that sequential resonant tunneling and electric field domain formation occur even
in very weekly coupled quantum wells (separated by 44 nm barriers), its applica-
_ tion to the design of voltage-controlled multi-color infrared detectors is discussed and
demonstrated. Finally, the low bias behavior of quantum well detectors is analyzed
and evidence for photocurrent flowing in the opposite direction to the applied bias is
presented.
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Chapter 1

Introduction

In the middle of the twentieth century the use of semiconductors revolutionized var-
ious aspects of information processing. This was due mainly to the fact that the
semiconductor conductivity can be changed precisely and reproducibly by several or-
ders of magnitude by doping or by varying some external parameters such as voltage
and temperature. The introduction of the transistor and other semiconductor devices
and circuits open the road for machines with a higher level of complexity including
modern computers. The need for faster speeds of operation, given the limitations
in the speed of carriers in available semiconductors, lead to the introduction of inte-
grated circuits and smaller size of devices. On the other hand, for the transmission
of information, the introduction of low loss fibers open the road for speed-of-light
communications, and subsequently optoelectronic devices.

The availability of high precision growth of ultrathin layers of semiconductors
through molecular beam epitaxy (MBE) and metal organic chemical vapor deposition
(MOCVD), permitted the introduction of quantum devices and man-made semicon-
ductors. With the thickness of thesc structures being smaller than the electron de
Broglie wavelength in the material, the wave nature of carriers, as predicted by quan-
tum mechanics, is manifested. The electron wave interference effects give another
degree of freedom in designing various devices. Two most intriguing examples are

quantum wells and superlattices, in the former the carrier motion in one dimension is
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restricted by an ultrathin layer, limiting electron energies to a set of discrete values
so that the boundary condition for a standing wave are satisfied; in the latter, the
additional tr_a,nslational symmetry by a seriés of alternating thin layers, gives rise to
the fbrmation of minibands separated by energy gaps in the conduction and valence
bands of the structure. Both of these effects, modifying the electronic density of

states, dramatically change electrical and optical properties of the material.

1.1 Outline of the thesis

In this work the technique of molecular beam epitaxy (MBE) is used to grow multi-
quantum well structures. The material composition and thicknesses are chosen in a
way that the electrons in the device interact resonantly with infrared radiation. This
interaction originates from quantized energy states in the conduction band of the
material. As the material used in this study (GaAs/AlGaAs) has a conduction band
with spherical s-type symmetry, electrons behave like free particles with an effective
mass m*. This permits study of how the electron transport is effected by the forma-
tion of energy levels originating from alternating layers of material, without worrying
about the underlying individual atomic potentials which may be very complicated.

The infrared absorption and photocurrent spectroscopies, in conjunction with
standard DC-characterizations, are used to investigate electron transport in these
_ structures; and some of the applications such as multi-color tunable detectors are
discussed. The presentation in this thesis is divided as follows:

In chapter two, the theory of epitaxial growth of ultrathin semiconductors is briefly
mentioned, and important practical issues for MBE growth of high quality materi-
als (involving UHV system, sample preparation and various characterizations) are
presented.

Some theoretical background about modelling of electronic states in bulk semicon-

ductors and heterojunctions, through envelope function approximation, are reviewed
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in chapter three. The multi-band analysis of the electronic states reveals the differ-
ences between interband and intersﬁbband transitions. A self-consistent solution of
Schrodinger _and Poisson equations is used fo calculate electronic energy levels and
wavefunctions in multiquantum wells. The absorption spectrum of bound-to-bound
and bound-to-continuum quantum well infrared photodetectors are analyzed, with a
particular attention to the role of continuum states above the barriers.

Chapter.four outlines theory of electron transport perpendicular to the layers, in a
multiquantum well structure. After a brief review of the classical and quantum theo-
ries of transport, two regimes of miniband and hopping conduction are distinguished.
‘We will see how in both of these cases negative differential conductivity can give rise
to instabilities and electric field domain formation.

In chapter five, evidences for sequential resonant tunneling and electric field do-
main formation in very weakly coupled quantum wells, are presented. Its application
to the design of voltage-controlled multi-color infrared detectors are discussed.

And finally in chapter six, the low bias behavior of quantum well detectors is
analyzed and evidence for photocurrent flowing in the opposite direction to the applied

bias are presented.



Chapter 2

Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is one of several techniques for growing high quality
thin films on a single crystal substrate. All of the devices and structures described
in this thesis are grown using this method. In this chapter a brief description of the
physics of epitaxial growth, MBE system, and various calibrations and characteriza-

tions are given.

2.1 Physics of epitaxial growth

Epitaxy, from the Greek words epi and tazis meaning “upon” and “ordered,” is the
ordered growth of a material upon a substrate. This refers to the growth of a single
crystal in a unique crystal orientation on a single-crystal substrate either of the same
- or a foreign material [8,19,32]. It can be viewed as a two-step process consisting of
the deposition of atoms onto the surface of the growing crystal and migration of these
atoms into their proper lattice positions (see figure 2-1). Thus adsorption, desorption,
diffusion and surface reactions are the relevant processes. The rate of adsorption is
primarily determined by the incoming particle flux. Whereas desorption, diffusion
and reactions are activated processes, so that temperature plays a crucial role on
whether a quasi-equilibrium is maintained during the growth process or not.

The crystal growth is a non-equilibrium phenomenon whether in the stationary or
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Figure 2-1: Various processes involved in the epitaxial growth: adsorption, desorp-
tion, diffusion and surface aggregation|[19).
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transient regime. However, growth conditions might be set so that at any stage the
distribution of the atoms on the surface might be such that if an appropriate vapor
pressure were established above the surface, no redistribution of atoms would occur.
The vla,yer—by—la,yer growth is assured by nucleation of condensed islands which grow
together by migration of particles from the surrounding 2-d gas and adhere to the

rim of the islands.

2.2 Molecular beam epitaxy

‘What is known today as MBE began in the 1960s following studies of evaporation
rates and sticking coefficients of various elements on substrates [8]. As the name
implies, in this case the material is supplied to the surface of the wafer as beams of
molecules from thermal cells in a vacuum chamber. This contrasts with liquid phase
epitaxy (LPE) in which the component materials are supplied from a metallic solvent
bath, and chemical vapor deposition (CVD), in which the materials are supplied by
a gas which reacts on the surface of the wafer to deposit the material.

One of the main virtues of the MBE technique is that since the materials are
transported to the surface of the substrate by a collisionless beam (molecular beam),
it is possible to modulate the incorporation of a material by simply imposing a shutter
between the source of the beam and the growing layer. A typical growth rate during
_an MBE deposition is one atomic layer per second, or approximately one micron
per hour, which means that a reasonably fast shutter action results in an atomically
abrupt transition in the composition of the growing layer.

The difference between MBE and a simple vacuum evaporation deposition are the
degree of elimination of contaminants in the source materials, in the vacuum cham-
ber, and in the processing of the single crystal substrate which provides a nearly
ideal terminated lattice. The growth is carried out at an elevated substrate tem-

perature, allowing the deposited material to crystalize into the lattice provided by
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the underlying substrate. In the case of compound semiconductors, it would seem
an impossible task to supply the constituent materials at precisely the right ratio
to grow a stoichiometric material. In this éase, use is made of the fact that one of
the elements involved is usually much more volatile than the other at the substrate
growth temperature (The group V element in the case of I1I-V semiconductors.). This
allows an excess of that material to be supplied to the surface. That which is not
imxﬁediately incorporated in the growing semiconductor is then re-evaporated. This
makes it possible to grow a stoichiometric semiconductor material without requiring
a degree of control over the beam fluxes and uniformity which would be impossible
‘to achieve. For the group III materials, the sticking coefficient, the ratio of the atoms
incorporated in the growth to those incident on the surface, is generally near unity,

but re-evaporation must be taken into account at higher substrate temperatures.

2.2.1 MBE System

The MBE system used in our laboratory is a commercially manufactured Riber 2300
with 2” wafer caﬁ;a,bilities. It consists of a load chamber, an analysis chamber and a
growth chamber [19]. All of these are under ultra high vacuum (UHV), pumped with
ion pumps. Recently a cryo-pump was added to the growth chamber to reduce the
background pressure. Two of the chambers serve primarily as sample introduction
chambers, or load locks, so that the integrity of the vacuum in the growth chamber is
- maintained. A cross section of the growth chamber is shown in Figure 2-2. During the
growth, the pumping speed is increased by filling the cryo-panels with liquid nitrogen,
and pressures in the 107'% Torr range are achieved. The growth chamber is exposed to
atmospheric pressure only when the material in the cells are depleted or a repair inside
the chamber is needed. After each opening, several weeks of baking, degassing and
calibration are required to grow crystals with a purity demanded by optoelectronic
devices. The purpose of baking is to heat up the MBE system to a temperature high

enough (& 200°C ) that most gas molecules condensed during opening will outgas.
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This is because the sticking coefficient of most molecules on the system walls changes
by several orders of magnitude, in this range of temperature variation. During the
baking the water vapor concentration in the chamber is monitored by a quadrupole

mass spectrometer.

2.3 Sample preparation

The materials described in this thesis are known as III-Vs since they are comprised
of elements from columns III and V of the periodic table. The epitaxial layers
‘mainly consisted of GaAs, AlGaAs and InGaAs. The nearly exact lattice parame-
ter match between Gads (a=5.6544) and AlAs (a=5.661A4) permits the growth of
closely matched heterostructures over the entire compositional range of Al,Ga;_,As
with nearly ideal hyperabrupt interfaces.

The substrate which is a commercially available (100)-oriented GaAs slice, is first
cleaned in a boiling trichloroethylene (TCE), and then rinsed in acetone, methanol,
and deionized water, to remove any wax or oil-based contamination on the wafer.
After a wet chemical etching, the substrate is In-mounted to a Molybdenum block.
As a result of these steps almost all of the carbon and other contaminations of the
substrate are removed and a thin native oxide is left. This oxide layer protects the

surface until it is introduced into the vacuum chamber.

2.4 'Growth

In the loading chamber the sample is first heated to 250°C, to remove any water
vapor condensed on it, without affecting the wafer’s protective oxide coating. Then
the substrate is transferred to the analysis chamber where the pressure is about two
orders of magnitude lower than that in the loading chamber. Finally the wafer is
introduced into the growth chamber where a liquid nitrogen cooled shroud assures

pressures in low 107° or 1071° Torr range. These shrouds also attract excess material
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which does not deposit on the substrate during the growth, preventing “memory
effects” where a species from a previously grown layer can contaminate a present
growth. A

Iﬁ the growth chamber the substrate is heated to 580°C over approximately five
minutes, while the surface is monitored with the reflection high energy electron diffrac-
tion (RHEED) apparatus. As the substrate temperature approaches 580°C, the pro-
tective oxide is desorbed. The RHEED pattern changes from a diffuse scattering oft
the disordered surface of the oxide, into the parallel lines generated by diffraction
off the two-dimensional lattice of the crystal. When this pattern becomes shafp, an

atomically clean surface is obtained and is ready for the growth.

2.4.1 RHEED pattern

RHEED uses a 8-15 KeV electron beam directed at a glancing angle (= 1°) to the
substrate surface, and the diffracted beam is forward scattered and viewed on a
phosphorous screen. The diffraction pattern from a crystal with a smooth surface
is that of a two-dimensional surface due to the rapid attenuation of the beam in
the crystal. The identification of the diffraction pattern requires knowledge of the
surface reconstructions [8,19] . These rearrangements occur to minimize the surface

free energy. The following notations are often used:

1. GaAs (100)-(mXxn) means that a GaAs crystal is oriented with the (100) di-
rection normal to the surface, and has a surface structure whose unit mesh is

mxn times larger than the underlying bulk unit cell.

2. If the mesh is centered, the notation would be GaAs (100)-C(mxn).

In the case of GaAs (100) substrate there are two surface structures which are
reported a Ga-stablized C(8x2) (or(4x2)) and an As-stablized C(2x8) (or(2x4)), see
figures 2-3 and 2-4. Studying the interaction of Ga and As beams with GaAs surface,

it was found that adsorption and desorption of Ga followed a simple first-order rate
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(2 x 4 unit cell)
a) b)

@ Top Layer As Atoms

O Second Layer Ga Atoms

0 Third Layer As Atoms

Figure 2-3: The structure (a) of the unreconstructed GaAs (100) arsenic-rich surface.
The missing dimer model (b) for the GaAs (100) (2 x 4) surface[73].

equation and, in contrast, the behavior of arsenic was found to depend on the surface
coverage of Ga. Thérefore, stoichiometric GaAs may be grown with the excess As
flux being re-evaporated. Because of this, the substrate temperature and the flux
ratio of incoming ITI/V materials are set so that As-stablized surface is maintained

- during the growth.

2.4.2 Asy or Asy fluxes?

Two types of arsenic sources are available. A typical Knudsen cell similar to the
furnaces for the other sources may be used to supply tetrametric arsenic, Asy which
is the equilibrium vapor species over arsenic. However, the equilibrium vapor species
over GaAs is the As, dimer. Hence directly supplying As; is desirable. In our system

the dimer arsenic is obtained using a 200cc Perkin-Elmer two-stage arsenic cracking
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Figure 2-4: Reciprocal lattice section showing (4 x 2) and C(8 x 2) structures with
the associated schematic RHEED pattern in different azimuths.



13

furnace or “cracker.” A cracker consists of a low temperature sublimator section where
solid arsenic is heated to control the magnitude of the flux, and a high temperature
cracking section which produces As,. It is believed that the incorporation of As, is a
secoﬁd order process whereby the As, molecule must first break into two As, dimers
before incorporating on the surface. The sticking coefficient of Asy 1s estimated to be
< 0.5 while that of As, is appreciably higher, approaching unity. Thus less As; than
As, is required for successful growth. Studies have shown improved optical quality
for material grown with As; [8]. High purity growth requires the minimum possible

V/1II ratios while maintaining an As-stablized condition.

2.5 Calibration

The oscillation of the RHEED intensity of the specular beam is related to the rough-
ness of the growing surface. The MBE growth process is a layer-by-layer mode, with
the individual layer starting at random nucleation sites that grow into islands and,
finally, islands coalescing into a complete layer. The reflected beam intensity, there-
fore, has a maximum value at the completion of a monolayer (atomically smooth
surface) and a minimum value at the half-monolayer point (atomically rough sur-
face). The oscillations in the diffraction pattern from a growing surface, therefore,
have a period corresponding to the growth of one monolayer. The intensity oscillation
_of the RHEED pattern is used to calibrate the GaAs growth rate and the AlAs mole
fraction in Al Ga;_,As to an unprecedented accuracy (see figure 2-5).

Further calibration of growth rates is done with flux measurement, using an ion-
ization gauge which can be rotated into the path of the molecular beam (see figure
2-6). One notices a large transient overpressure, just after shutter opening. As dis-
cussed in the page 79 this transient was reduced by a 2’ spacer between the cell and
the MBE system.

After the growth, with the help of SEM, TEM and photoluminescence spec-
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Figure 2-5: Typical intensity oscillations of the specular beam in the RHEED pattern.
The period corresponds to the growth rate of a single Ga + As layer.

troscopy, the thicknesses and compositions of the grown structures can be investi-
gated. The concentration and the mobility of free carriers is measured using the Hall
effect in a four-point Van der Paul geometry. The concentration of various contami-
nations in our MBE-grown samples was analyzed by secondary ion mass spectroscopy
(SIMS) at Charles-Evans and Associates. Figure 2-7 shows that in the first samples
grown after the opening of MBE (sample 1403), the background concentration of O
“and C was 1 —2 x 10" and 4 — 5 x 10"°atoms/cc respectively. After a year of growths
(126 wafers), these contaminations were 5 x 10%® and 6 x 10'°atoms/cc.

With these high quality MBE-grown samples, the electron wave interference effects
were observed over distances of the order of 40-50 nm [64,69]. These observations,
based on the shape of the photocurrent spectrum and the sequential resonant tunnel-
ing induced negative differential resistance in the low temperature I-V characteristics,

will be discussed in the future chapters.
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Figure 2-6: Flux of various materials arriving upon the substrate, measured with an

ionization gauge. Note the transients after opening of the shutters
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Figure 2-7: Secondary Ion Mass Spectroscopy of two MBE-grown wafers, showing the
concentration of background impurities (C and O). The sample 1403 was grown after
two weeks of baking and degassing following the opening of the MBE system to the
atmospheric pressure. The sample 1529 was grown after 125 growths.



17

Chapter 3

Optical properties of quantum well intersubband

transitions

In this chapter a description of the electronic states in the conduction band of
GaAs]AlGaAs multiquantum wells is presented using an envelope function approxi-
mation [1,2,7). Deriving the wavefunctions and dipole matrix elements from the full
multi-band Kane Hamiltonian, the controversial question of the strength of inter-
subband transitions versus interband transitions in quantum wells [28] is discussed.
We will then study theoretically and experimentally, the absorption spectrum for
transitions between energy levels inside a quantum well (i.e. bound-to-bound), and
transitions between an energy level inside the quantum well and the states above the
barrier (i.e. bound-to-continuum). For the latter case, the formation of minibands

above the barrier, will modify the absorption lineshape. And finally, The effect of
; a DC electric field pefpendicula.r to the MQW layers on the absorption spectrum is
investigated. We will see that the experimental observations are well described by
calculations based on the transfer matrix method, when the conduction band non-

parabolicity and many-body effects are considered.
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3.1 Electronic states in quantum wells

3.1.1 Band structure of the bulk GaAs

GaAs, like other III/V compounds, crystallizes in the zinc-blende structure. This
lattice consists of two interpenetrating, face-centered cubic lattices, displaced from
one another by a fourth of one of the cube main diagonals. There are 8 electrons per
unit cell (3 from Ga and 5 from As) which contribute to the chemical bonds. Basically,
orbitals of every atom (s-like or p-like) hybridize with an orbital of the neighboring
atom, producing two levels, one bonding and one antibonding. Because there are a
large number of unit cells, bonding and antibonding levels broaden into bands. The
bonding s levels are strongly bound and always occupied by two electrons per unit
cell. The remaining six electrons per unit cell completely fill the three bonding p
orbitals (which form the valance band). The bands originating from the antibonding
orbitals are all empty, the lowest lying (an s band) forms the conduction band of the
material [2].

Electrons in the crystal obey the single-particle Schrédinger equation (neglecting
many body effects):

2

P V()4 —" (o x VV).p| ¥(r) = e¥(r), (3.1)

2.2
2m, dm,c

~ where m, is the free electron mass and V/(r) is the crystalline potential. The third
term in Eq. 3.1 is the spin-orbit coupling (o is fhe Pauli spin operator). This term
results from the interaction energy of the electron’s intrinsic magnetic moment with
the magnetic field which appears in the electron frame when it is moving in an elec-
trostatic potential (V(r)). The solutions to the Eq. 3.1 give the electronic stationary
energies ¢ and wavefunctions ¥(r). Using the translational invariance of the crys-

talline potential, these solutions can be written in the Bloch form:

U,k (r) = Nugk(r)ezp(ik.r), (3.2)
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where N is a normalization coefficient and u,x(r) a periodic function of r with the
periodicity of the lattice. Various electronic eigenfunctions are labelled by two indices:
a discrete one, n, which is called the band index; and a crystal wavevector k, which
can be restricted to the first Brillouin zone of the reciprocal lattice (the spin index is

omitted for brevity). Substituting Eq. 3.2 in Eq. 3.1 gives

p2

" h
2m, + V(I‘) + W(U X VV).p +
R*k* Rk
2m + m (p + 4m 620 X VV)] Unk = EnkUnk- (3.3)

k.p analysis

For many aspects of semiconductor electronic properties, the knowledge of the e,
relationship only over a small £ range around the band extrema is needed, where the
free carriefs are located. One uses the fact that for any given k, the set of all u,y(r)
(n € N) is complete for functions having the periodicity of V(r) [23,25]. Hence if we
choose k = 0, the Bloch function for any k may be expressed in terms of the Bloch

function for k = 0,

Unk(t) = 3 Comn (K)o (). (3.4)

This is called the k=0 representation. Eq. 3.3 can be formally rewritten as:

[H(k = 0) + W(k)]unk = nkink, (3.5)

where H(k = 0) is the crystal Hamiltonian whose eigenfunctions are W,g (or usp

equivalently):

H(k = O)UHO = E,0Uno- (36)
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One can easily convert Eq. 3.3 to a matrix eigenvalue equation by inserting Eq. 3.4
into Eq. 3.3, multiplying both sides of Eq. 3.3 by u}g(r), and integrating over the

unit cell in which the u’s are normalized. Neglecting the spin-orbit term one gets:

h2k? hk
> { (eno — Enk + o ) Onm + m—(nOlplmO)} emn(k) =0, (3.7)

m o] o

where:

(nO|p|m0) = ppm = / U o PUmod-T. (3.8)

unitcell
In the equation 3.7, the explicit term due to the crystalline potential V(r) is
eliminated. So, one only (!) needs the k = 0 Bloch state matrix elements (pP.n)
and energies (£,0) to calculate the band structure for all other k’s. But there is
no direct way of measuring all of the Bloch state matrix elements. Eq. 3.7 is most
useful when k is near O so that the nondiagonal part of the Hamiltonian can be
treated as a perturbation. If all of the Bloch state matrix elements (p,,,) vanished,
we would recover the free electron dispersion relation for all of the bands: €,x = €,0+
R2k? /2m,. Thus, it is the presence of p,, terms which determine the semiconductor
electrical characteristics. There are two ways of treating the nondiagonal part of the
Hamiltonian as a perturbation. One is through Lowdin’s perturbation theory [46,23],
which is presented in the next section. And the other one, proposed by Luttinger and
_ Kohn [47], is by a canonical transformation of the basis in the form of C' = exp(S5)B, S
chosen such that the nondiagonal term of the Hamiltonian is removed. Through both
of these methods, the removal of the nondiagonal p,,, term, will add a k-dependent
term to the diagonal part, which will modify the electronic dispersion relation. In the
case of a single nondegenerate band, one finds:
2.2 2 2
o 1 3 B

0 m#n

Enk = Eno + (3.9)

where the quadratic dependence on crystal momentum k can be interpreted as a
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tensorial effective mass.
In the case of GaAs and AlGaAs, the accurate description of electronic states
requires a nonperturbative treatment of coupling between several bands (conduction

and valence), which is the subject of the next section.

Lowdin’s perturbation theory

In ordinary perturbation theory an attempt is made to diagonalize the Hamiltonian A
completely by an iterative process which works when all off-diagonal matrix elements
hunm are small compared to the unperturbed energy separations (e, — €,) of the
interacting levels. In Lowdin’s method [46] one assumes that all states can be divided
into two classes A and B. States in category A may interact strongly with one
another but any state in category A interacts weakly with any state in category B.
The interactions connecting states in A with states in B are then removed iteratively
just as in ordinary perturbation theory, but no attempt is made in this first step
to remove matrix elements connecting states in A. After removal of the interactions
connecting A and B the states in A are left with “renormalized” interactions with one

another. This “renormalized” interaction matrix must then be diagonalized exactly.

Use of symmetry

With the use of symmetries in the crystalline structure, one can chose a more conve-
" nient linear combination of Bloch states, to express the momentum matrix elements
Pmn With minimum number of parameters. The irreducible representations of the
point group at k = 0 (the I' point) [11,53], show that the valence band has the
triply degenerate I'ys representation, which corresponds to the bonding p-functions
(Jz), ly) and |2)) in the tight-binding picture. The conduction band corresponding
to antibonding |s)-states, has the symmetry type I';. Each of these states is twolold
degenerate depending on electron spin. Because these bands are strongly coupled,

it is appropriate to lump the conduction and valence bands together in Lowdin’s
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class A and put all other states in class B. In this case we will end up with an

. 8 x 8 Hamiltonian (4 bands, each twice degenerate due to spin). To further simplify

the Hamiltonian, we will use the following linear combination of (k=0)-Bloch states,

based on the total angular momentum J and its z-projection J,:

In

= s 1)

(Conduction band) u;9 =

[

(Heavy hole band) ugg = +1Y) 1)

M

1
oL
2 1 .
= —\/;IZ T+ \—fEI(X +:¥) 1) (3.10)
1 : 1
- —\/—§|(X +3Y) ) + %IZ 7,

(Light hole band) usp =

N
N = N Do b —
DO B = NN~

-

l

(Split — off band) usp =

M

-

and similarly for 4 other bands: |S,1/2,-1/2), |P,3/2,-3/2),|P,3/2,-1/2),|P,1/2,—1/2).
Assuming k; = 0 (for example in the z — y plane), the matrix equation 3.7 will be

reduced to the following 3 x 3 form:

E.—Ek)+ 5% \[ihk, —\[3B2hk,
ﬁ%hkz Eip — Enp(k.) + Z%kz’“ 0 X
—/LExhk, 0 Euo — Eoo(k:) + 252
eelks)  copn(ks)  coso(k:) 0
che(kz) cmin(k:) cnsolks) | =] 0 | (3.11)
Csoc(kz) Csoin(kz)  Coos0(k:) 0

where c, [h, and so label conduction, light—holé and, split-off bands, respectively.
The momentum matrix element p., between bulk Bloch states can also be written as
Pev = im, where E, is the Kane energy (~ 20eV in III-V semiconductors). In
the Hamiltonian matrix the non-diagonal terms (c k,) represent the direct coupling

between conduction and valence bands. To take into account the coupling to the other
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bands a la Lowdin, the following matrix should be added to the 3 x 3 Hamiltonian:

(2 — ;}L—o)hzkf 0 0
0 (Fm - R LR (312)
0 V2 h2k? (32 - )Rk,

where, m' (conduction band effective mass due to remote bands), y1, and 7, (the
Luttinger parameters [2]) can be expressed using the momentum matrix elements,

and the band-edge energies. For example, from an equation similar to 3.9 one gets:

I35l

11 S [(slpalujo)|®
—_—= —_— Nl
2m'  m2 ZJ: E.—-E; (3.13)

It is interesting that Luttinger [48], derived the minimum parameters needed to
describe a quadratic band structure, based solely on symmetry arguments, without
calculating the k.p perturbation series. These parameters are actually determined
experimentally, and are given for various semiconductor compounds.

Solving the matrix eigenvalue equation 3.11, one gets the bulk band structure (i.e.
the dispersion relations: E.(k.), En(k.), and E,,(k,), and in the same way E,(k) for
other bands or k-space directions).

To see how we can apply the results of the previous section to the case of het-
erostructures (made of layers of different semiconductors), we will first briefly review

the effective-mass equation.

3.1.2 The effective mass equation

We consider the motion of an electron in a semiconductor in the presence of some
additional slowly varying and weak potential U(r). We will follow the derivation of
Luttinger and Kohn [47] (this problem is also known as the treatment of shallow
impurity states in semiconductors [30]). The solution to the Schrodinger equation

(neglecting spin-orbit term):
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p2

2m,

+V(r) + U(r)| &(r) = Ey(r), (3.14)

can be written as a linear combination of the solutions without the perturbation,

which was given in the equation 3.2. For example using (k=0)-Bloch states, we get:

8

P(r)= D cafal(r)uno(r), (3.15)

bands: n=1
where the f,(r)’s are envelope functions which vary slowly over the scale of a unit
cell in the crystal, and where the u,o(r)’s are the I'-point Bloch functions for the
conduction and valence bands (8 bands). For instance, if U(r) vanishes, the f, are
the plane waves Nezp(k.r).

By inserting equation 3.15 into equation 3.14, multiplying by u} ,f~ and inte-
grating over the crystal volume we obtain an eigenvalue matrix equation for the
coeflicients ¢, fn(r). Using the fact that there are two scales in the problem, one rep-
resenting the variations over unit cells (u,,0), and the other one varying very slowly
over the unit cell (f,,); the eigenvalue equation is further simplified, and it can be

formally rewritten as:

8
Zl [Hn(=iV) + U(r)bmn] fu(r) = Efm(r), (3.16)
where Hp,(—iV) is the (8 x 8) k.p Hamiltonian (a simplified 3 x 3 version was
; given in-the equation.[ 3.11] + [ 3.12]), in which the momentum k is replaced by
the differential operator —iV. This is a very important result, revealing that in
presence of a slowly varying and weak potential,Aone does not need to directly solve
the Schrodinger equation with the crystalline potential term. Instead, one can use
an effective Schrodinger equation in which the influence of the underlying crystalline
structure is represented through some effective parameters (m*,y1,72,73, etc.). This

result is a direct consequence of the slow variation of envelope functions over the unit

cell. In the case of superlattices and quantum wells the additional potential term
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in the Schrodinger equation is not slowly varying anymore, but the fact that the

~ . electronic wavefunctions are still smoothly varying is an indication of the possibility

of using the effective mass equation, when care is taken for the boundary conditions

(see section 3.1.3).

Electronic wavefunctions for the effective mass equation

Solving the effective mass equation 3.16, one gets the electronic state eigen-energies
(E) and the associated envelope functions (f,). The total electronic eigenfunction is

given by the equation 3.15:

8

br)= Y cafalr)un(r). (3.17)

bands: n=1
It is important to note that rigorously, the summation in this equation should
run over all of the bands n = 1,---,00. When one uses only a limited number of
them (e.g. 8) and considers the interaction with the remote bands through Lowdin’s
method; not only the Hamiltonian matrix elements are “renormalized” but also the

band edge Bloch states [1]:

K.pmn
Uno(r, k) = uno(r) + Umo(r). 3.18
o(r, k) = uno(r 28 om0 — em0) o(r) (3.18)

The linear term in k, gives an additional term to the total wavefunction, which

-can be written as:

pr)= Y ca|fa(t)uno(r) + D — iV n(r )p”’"umo(r). (3.19)

bands: n=1 m>8 mO(E’ILO - E:mO)

Equation 3.19 shows that to the lowest order, the electronic wavefunction is a
sum of the conduction and valence band Bloch states times the associated envelope

functions. The correction term is due to the contribution of other bands (k = 0)
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Bloch states, and is proportional to the gradient of the envelope functions.

3.1.3 Band structure of Gads/AlGaAs quantum wells

To find the electronic structure of quantum well devices, we need to find out how the
above bulk-like envelope functions are connected at the boundaries between different
semiconductor layers. The boundary condition for an electron at a potential bar-
rier is normally simply taken to be continuity of the wavefunction and its derivative
normal to the boundary. This is a direct result of first and second integrations of
the Schrodinger equation across the boundary. This is not valid for envelope func-
tions, becaﬁse they are not the full wavefunctions. In the following section, based on
the effective mass equation, the boundary conditions for the envelope functions are

derived.

Boundary conditions

Heterojunctions, quantum wells and superlattices are made of several layers of dif-
ferent semiconduc’;or materials. Each layer has its own band structure parameters
(m*, E., En, E,,, etc.). One could think of writing a more general form of equa-
tion 3.16, in which the effective masses and the band edges vary as a function of z
(the growth direction). For example the conduction band envelope function equation

(scalar version of the equation 3.16) could be written as:

m*(z

The kinetic energy term has been rewritten, for a z-dependent mass, in a way

| [—%Zv. (—1—)v) LUK+ Ec<z>] J.(x) = E£(r). (3.20)

which restores the hermitian character of the Hamiltonian. But we can not take this
equation seriously, because the variations in m*(z) and E.(z), takes place over a few
lattice distances. These variations are too fast for the effective mass formalism to

be valid. Nevertheless, we can learn something about the boundary conditions from
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this differential equation. Integrating equation 3.20 between infinitesimal distances

" z = —¢ (on one side of the heterojunction in the material A) and z = +¢ (on the

other side of the heterojunction in the material B), we obtain:

fA—e) = fP(+e
1 (0 1 (3 g
= (Ef:‘)_e - = (azfc)+€- (3:21)

In order for the boundary conditions 3.21 on the envelope functions to make

physical sense, we must see their implication on the total wavefunction as described
by the scalar version of the equation 3.19. In order for ¢ to be continuous when f,
is, one must assume u’ ~ uf and that the second term of the wavefunction in the
equation 3.19 be small, i.e. that the k-dependence of the Bloch function u, about
k = 0 be weak. The former assumption is plausible in the III-V semiconductor family,
as long as we are considering the same band edges on both side of heterojunctions
(e.g. the conduction band direct minimum).

One can also show that the above mentioned boundary conditions, assure the
conservation of the probability current, and ultimately the stationarity of the het-

erostructure wavefunction.

Conduction band energy levels in quantum wells and superlattices, non-

\ parabolic effects

Based on the arguments of the previous section, to calculate the energy levels and
wavefunctions of a GaAs/AlGaAs multiquantum well structure, we can use the k.p
Hamiltonian. Taking the growth direction as z, and assuming the in-plane momentum
to vanish, the 8 x 8 Hamiltonian is reduced to a 3 x 3 one. We thus get the following

equation for the envelope functions:
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EC(Z) %%pz - %%ﬁ'pz fc(z) fc(z)
—/322p, Ey(z) 0 fn(z) | =E| ful2) |- (3.22)
ViEp 0 E(2) fool2) faol2)

This (3 x3) Hamiltonian is deduced from the equation 3.11, replacing p, with the
operator —ihd/dz, ignoring the contribution of the remote bands (i.e. equation 3.12),
and also neglecting the diagonal “free electron” term p2?/2m,, which can be shown to
only contribute terms of order (E. — Ej 5,)/ E, << 1 (we saw that p,., = i\/m,
and E, ~ 20eV). The total electronic wavefunction, in the lowest order approxima-

tion, can be written as:

P(r) = fo(2)uco(r) + fin(2)uimo(r) + foo2)uso0(r). (3.23)

Now, as we are only interested in the energy levels located above the edge of the
conduction band, the problem can be solved using the second and third rows of 3.22

to express the equation in the first row as

pzmpzfc + EC(Z)fc = Ef., (3'24)

with the energy- and position-dependent effective mass

1 1 [2  E, 1 E,
= |z - . 2
m(E,z) mo |3E — Enp(z) + 3E — E,(2) (3:28)

This energy-dependent effective mass represents the deviation of electronic disper-
sion relationship from the k2-law (free electron type) behavior, so it is often refered
to as nonparabolicity.

The solutions of the differential equation 3.24 give the conduction component and
the energy of the stationary states. However the total stationary wavefunction is given

by the three components f., fin, and f5, weighted with their corresponding Bloch
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functions, so that the only knowledge of the conduction component is, in principle,
insufficient for the complete physical description of the stationary state. One should
use the solution of equation 3.24, to derive the light-hole and split-off components
from équation 3.22.

To solve the Schrodinger equation 3.24 for a multiquantum well device, the struc-
ture is divided into a series of bulk-like regions. In each region the effective mass
m(E) and the band edge E, are position independent, so the equation 3.24 is reduced
to a second-order differential equation with constant coeflicients. The solution to the
equation in each region is a combination of two plane waves, one right-going, and
the other one left-going. Writing the appropriate boundary conditions at the inter-
face between two semiconductors(equation 3.21), we end up with a matrix equation
relating the coefficients of right- and left-going waves on both sides of the interface.
Multiplying these matrices from one side of the device to the other side, and imposing
the “physical” boundary conditions at the edges, we will get a nonlinear eigenvalue
equation for the energy E, the corresponding eigen-functions f. are the conduction-
band envelope-function stationary states. This so called “Transfer matrix method”
was implemented by Yuanjian Xu, and was used to calculate electrical and optical

properties of our MBE-grown devices.

3.1.4 Coulomb and exchange interactions, self-consistent

‘calculations
Using the transitions between energy levels in the conduction band for infrared de-
tector applications requires a high doping density, so the Coulomb interaction may

lead to a substantial modification of the band structure. This was taken into account

by solving the one-dimensional Poisson equation:

Edz' (E(z)%) = = (NB(2) = n(2)), (3.26)
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self-consistently with the Schrédinger equation. Here, €(z) is the bulk material’s
_ static dielectric function, N} (z) doping density, n(z) the electronic charge density,
and V¢ the Coulomb potential. Furthermore, at these high densities the many-body
effecfs become important. This was taken into account by an additional term in the

Hamiltonian (exchange-correlation potential energy):

1/3 1 IR*
Vyo(rs) = —_(99 (1 +0.7734 2 In (1 + 2—)) v (3.27)

Ts wr
where the Rydberg energy, R} = e?/87e,€.d,, dois the semiconductor Bohr radius,

and the density parameter is given as: r, = (3/4ra3n(z))/3.

3.2 Optical transitions

Optical transitions between stationary states of a system are commonly described in

terms of oscillator strengths f, defined as

2 (WP
Y m, E,—FE; ’

(3.28)

where ¥ and ©() are stationary states and P is the momentum operator. In the ma-
trix notation adopted in the preceding section, the momentum operator corresponding

to the Hamiltonian 3.22 is given by [2]:

0 \/épw ﬂ/%pw
P=| =/t 0 0
\/gpcv 0o 0

In order to be consistent with Hamiltonian 3.22, where the free-electron term was

(3.29)

neglected, we have dropped the diagonal p, term in the momentum matrix. One can
show that the momentum matrix element in 3.28 is simply related to the conduction

components of the total wavefunction as
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m m,

P Barz) T m(E;, )

WOrP) = 3 (1

7). (3.30)

with m(FE) given by 3.25. It is interesting to note that if the z-dependence of effective

mass is ignored, the equation for oscillator strength 3.28 becomes:

2 (fOlp.|fO)?
(E) E-E

(3.31)

. N
fzJ—m

The interpretation of this equation is as follows: when an electron of mass m, is
excited by photons from the stationary state [ > to the stationary state |¢) >,
it can be viewed as an “envelope” electron of effective mass m(FE) making transitions
between envelope states |f() > and |f() >. Or alternatively, the envelope electron is

“dressed” through its interactions with various other bands, by an effective mass.

3.2.1 Strengths of intersubband transitions versus inter-

band transitions
Single-band analysis

INTERBAND TRANSITIONS The transition probability between quantum well states
due to an incident radiation is given by Fermi’s golden rule, and it is the product of
an optical matrix element times a density of states. In the dipole approximation the

_interaction Hamiltonian is -er.E, and the optical matrix element (M) has the form:

M « |{e|r.n]h)] = /fe(z)eik%*‘rlue,ke(r)n.rfh(z)eik"f*'r*uh,kh(r)dr, (3.32)

where |h) and |e) are initial and final transition states, f,, f. the envelope wave
functions, kj, k. are the wavevectors, 5 the polarization vector of light, uk, (r) and
uk, (r) are the usual Bloch functions. The integral contains fast-varying functions

over unit cells (u’s) and slowly varying functions (f’s). One transforms equation 3.32
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in a summation of localized integrals involving only Bloch functions over the [V crystal

unit cells labeled by their centers R;:

cell

M~ fu(R) f(R;)eiErr—ker) R [ 4 o (r)p.ru, k., (r)dr. (3.33)
R.

5

The latter integral is independent of R; and is QP where ) is the unit cell vol-
ume and P the usual 3D matrix element that contains the selection rules due to
the band symmetries and light polarization. When summing for the transverse di-
rections, exponential factor gives a null contribution unless ky ; = ke 1, which is
‘the vertical transition selection rule. The only difference between equation 3.33 and
the usual 3D summation lies in the z-direction summation, which produces a factor
¥ fe(R;) fr(R;)a, where the R;’s are the lattice cell centers in the z direction and a
is the lattice constant.

Transforming back into an integral, [ f.(z)fn(z)dz, one finds a unity factor for
the transitions between electron and hole states with the same quantum number n,
as the f’s are identical (~ sin(nrz/L)) and normalized to unity. The optical matrix
element is therefore the same in 2D and 3D. In the abscence of excitonic effects, the

absorption coefficient should reflect the reduced 2D density-of-states.

INTERSUBEAND TRANSITIONS The optical matrix element M takes a much different
shape when dealing with intersubband transitions, i.e. between confined electron
" states or hole states only. In this case, the fast-varying integrals involve the same
periodic part of the wavefunction, which then have zero matrix element with r. We

will then have:

M~ OO ()dr [ e (ru, (). (3.34)

crystal cel
The second integral yields unity when using normalized Bloch functions. The

matrix element now has large values, of the order of L, dimension of the quantum
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well, instead of an atomic dimension, as in interband transitions. This is what is

. known as the “giant” dipole effect.

Multi-band analysis

Based on the analysis of the previous section, one is tempted to say that the strength
of the intersubband transitions is much larger than the interband ones. But in reality,
we should compare the oscillator strength of these two transitions:
[{(fln-pli)* _ 2mw ,
f =2l RBIE 2y e (3.35)

mhw

It is true that for the usual material parameters of GaAs/AlGaAs quantum wells,
the dipole matrix element of intersubband transitions is larger than the interband
one, but for the same material parameters, the intersubband energies are smaller
than the interband ones. So the two effects might cancel each other in the equation

for oscillator strength. In, fact using the infinite well approximation, Khurgin proved

(28] that:

[{hin-ple)* _ (e, Lln-ple, 2)|*
mhwe, mhws g '

(3.36)

But in Khurgin’s analysis (equation (10) in his paper), the masses in the oscil-
lator strength equation 3.35 are assumed to be free electron mass (m,), for both
-interband and intersubband transitions. Through the derivation of the equation 3.31,
we saw that for iﬁtersubband transitions one should use the effective mass for oscil-
lator strength [2]. A similar multi-band analysis for interband transitions can show
that the correct mass to use is the free electron mass.

So, in fact the intersubband transitions have a larger oscillator strength than the
interband ones. This is because the conduction band electrons are “lighter” (through
interactions with other bands), and not inherently for the spatial extent of envelope

functions.
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3.2.2 Absorption spectrum of bound-to-bound and bound-

to-continuum transitions

In the case of bound-to-bound QWIPs, the absorption spectrum is a Lorentzian shape
peak corresponding to a transition between the ground state and the first excited
state. The contribution of other states in the continuum above the barrier is negligible
because of the oscillator strength sum rule (one-to-two transition, both states being
localized in the well, has the most significant dipole matrix element). Figure 3-1
shows the experimental absorption spectrum of a sample of thirty periods of 7Tnm
GaAs quantum wells, separated by 44nm Alp3Gag7As barriers. The quantum wells
were doped with Silicon to 2 x 108e¢m™>. The absorption spectrum of a 2.6mm
long sample, cleaved and lapped to 45° angled facets on both ends, was measured by
Gilad Almogy, with a Fourier transform infrared spectrometer. One can see excellent
Lorentzian curve fits at 77K and 300K, showing a homogeneous broadening.

When the quantum well parameters allow only one state in the well (i.e. a bound-
to-continuum QWIP), the absorption spectrum is not Lorentzian any more, several
states above the barriers have a strong contribution to the absorption. At zero bias,
due to the translational symmetry of the potential there are well known minibands
in the continuum states of the superlattice. Figure 3-2 shows the experimental and
the theoretical absorption spectrum at a temperature of 80K, for a sample consisting

of 50 periods of 4nm GaAs wells, uniformly doped with Si to n = 2 x 10*¥cm™3,
~ separated by 20nm Az0.22Ga0‘78As barriers [69]. kOne notices an excellent fit with
the calculations which included exchange-correlation potential and energy dependent
effective mass. The shallow satellite peaks correspond to the position of miniband in
the continuum states.

Under an applied bias, such that the voltage drop per period is bigger than the
miniband gaps, the miniband structure is destroyed. But the theoretical calculations
(see figure 3-3), and the experimental photocurrent spectrum at low temperatures

(see figure 3-4) show that the satellite peaks in the spectrum are becoming more
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Figure 3-1: Absorption spectrum of bound-to-bound transitions in a multiquantum
well device at 77K and 300K. The dashed lines are Lorentzian curve fits.

pronounced. The physical origin of these observed peaks is that the dipole matrix
element which is i)asically an overlap integral between the localized ground state in
the well and the excited states above the barrier, is sensitive to the local density-
of-states (i.e. density-of-states normalized by the amplitude of the wavefunction in
the well region), and it reflects the electron interferences over neighboring wells [69].
Whereas the total density-of-states, which shows the energy level spacing for the

" whole superlattice, does not have any noticeable structure.
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;Figure 8-2: Theoretical and experimental absorption spectrum of a bound-to-
continuum quantum well infrared photodetector
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Figure 3-3: Theoretical absorption spectrum of a bound-to-continuum quantum well
infrared photodetector, calculated for different biases
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Chapter 4

Electron transport in multiquantum well

structures

4.1 Introduction

The devices analyzed in this thesis are composed of ultra thin layers of semicon-
ductors. Because of the thickness of layers being smaller than electron de Broglie
wavelength in the material, the wave nature of electrons, as predicted by quantum
mechanics, is manifested. In chapter 3, studying the optical properties of MQW de-
vices, some of these quantum mechanical effects were discussed, such as formation of
energy levels in quantum wells and its effect on the absorption lineshape of intersub-
band transitions. In this chapter we will see that the current-voltage characteristic of

these devices is also affected by electron wave nature, and the simple effective point
; particle description of' carriers moving under an ‘external electric field is not valid
anymore.

After a brief discussion of the quantum mechanical treatments of carrier transport
in MQWs, we will focus on two subjects relevant to the devices which are analyzed:
miniband transport and sequential resonant tunneling. We will see how these two
phenomena lead to negative differential resistance and electric field domain formation

in the device.



40
4.1.1 Classical transport

" The usual method employed to determine the electrical conductivity of bulk semicon-
ductors is to calculate the average value of the current obtained from the probability
distribution function, f(r,p,t). fdr is the probability of finding an electron with
crystal momentum p = kk in a volume dr centered at r at time ¢.

This distribution function is found by solving the Boltzmann Transport Equation

(BTE):

of i
Bt +v.V.f+qF.V,f = (’a'{) - ’ (4.1)

where v is the electron velocity and F the electric field.

The equation is determined by the requirement that in the steady state the total
rate of change of the distribution function must vanish. This is in turn a sum of
the change due to the acceleration by the electric field, and a term due to collisions,
which limits this acceleration ((0f/0t)ficta + (0f | 0t)cottisions = 0)-

Equation 4.1 is incomplete in several respects. First of all, because of the uncer-
tainty principle, the function f(r,p,t) does not have any precise meaning as a prob-
ability function in both r and p. In fact if wavepackets are formed, then ArAp ~ &,
and if the uncertainty in Ap is to be only a small fraction of p (so that we can describe
a state with a well defined p), then the spread in the wavepacket in space Ar must be
_ many electron wavelengths long. This is a particularly serious restriction in ultrathin
semiconductor structures. Second, the assumption that the scattering takes place
locally in space and time is incorrect since the scattering potentials are extended in
space and take a finite amount of time to complete. Third, the transition rate is
generally calculated by assuming it arises from an incoherent sum of single scattering
events. However, if the scatterers are dense (i.e., more than one within a de Broglie
wavelength), multiple coherent scattering effects are possible. These considerations

show that the classical Boltzmann transport equation is not always suited to treat
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the problem of electrical conduction in multiquantum wells. In the following we will

review various quantum mechanical treatments of transport.

4.1.2 Quantum transport
Density matrix formulation

In quantum mechanics if we wish to find the average of a physical quantity, we need
in general not only the prdbabilities of different states being occupied, but the entire
density matriz. Now the occupation probabilities of some complete set of states are
just the diagonal elements of the density matrix in this representation. Therefore
for 4.1 to contain all necessary information, we have to assume that we can find a
“natural representation” for our system, and that for this representation the density
matrix may be considered diagonal at all times.

Kohn and Luttinger [30], considering a system of electrons in the presence of a
homogeneous electric field interacting with randomly distributed impurities, derived
a quantum theory of electrical transport based on the entire density matrix. They
developed the Liouville equation of motion in ascending powers of the strength of the
scattering potential, and recovered the Boltzmann transport equation in the limiting
cases of very weak or very dilute scatterers. The treatment of electron transport in
multiquantum well structures following Kazarinov and Suris work [26], is based on
) the density matrix; but for the sake of completeness, we will briefly mention other

methods as well.

Wigner functions

The Wigner function is a mathematical transform of the density matrix which ap-
proaches the classical distribution function as the system becomes classical. It mimics
the averaging of the density matrix operator p: (< A(r,p) >= Tr{pA}, where A is
the quantity to be measured, which is a function of the operators r and p). The

Wigner function Pw(r,p) is a function of the complez numbers r and p, and it is
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defined such that:

< A>= / / A(r, p) Py (r, p)drdp, (4.2)

where A is the Weyl transform of A, and it is a function of r and p which are complex
numbers.
The Wigner function is generally nonpositive definite and nonunique, but its time

evolution gives a Boltzmann-like transport equation.

Green’s functions

This is a more sophisticated approach to quantum transport theory. The nonequi-
librium Green’s functions are defined as expectation values of single-particle creation
and annihilation operators and they describe the state and time evolution of the sys-
tem. The presence of the energy dependence in the Green’s function distinguishes it
from the Wigner function. Because the Wigner function measures the state of the
device at a particular time and its evolution is described by a first-order differential
equation, it can comprehend only external interactions which occur instantaneously
in time. The energy dependence of the Green’s functions permits a description of
the processes which are not local in time, or “non-Markovian” processes, because the
energy argument provides a way to include convolution integrals over the past history

of the system.

4.2 Electron transport in multiquantum wells

In this section we will see how general methods bf quantum transport are applied to
study electron motion perpendicular to the layers in a multiquantum well structure. It
is shown that at small electric fields, the transport can be described by miniband and
hopping conduction, while at large electric fields, the sequential resonant tunneling

is manifested. It is useful first to look at the solution of the Schrodinger equation in
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the presence of an electric field.

4.2.1 Schrodinger equation with a steady electric field

The Schrodinger equation for an electron in a one-dimensional periodic potential V()

with a period a and in a static field F' has the form:

2
(ng +V(z) - eF:c) P(z) = Ey(z), (4.3)
where p, = —ih(0/0z) is the momentum operator, e is the charge, and m the electron

“effective mass. In the plane perpendicular to z, the electron behaves as a free electron.
Therefore, the corresponding wavefunction has the form expi(p,y + p.z) with an
energy ——(pz + p?)/2m = —p? /2m. The quantity £ in Eq. 4.3 represents the
total energy minus the energy corresponding to the transverse motion. The energy
spectrum of the system can be obtained on the basis of symmetry considerations. In

fact, the translation through n periods of the superlattice transforms Eq. 4.3 into:

(i +V(z) - er) ¥(z — na) = (E — eFan)yp(z — na). (4.4)

2m

Therefore, if the function ¥(z) is an eigenfunction of Eq. 4.3 with an energy F,
then the function ¢(z — na) (Vn € N) is also an eigenfunction of this equation with
an energy F — eFan. This implies that the electron energy eigenvalues are split into
" new levels (Wannier-Stark “ladders”) whose mutual distance is eF'a. Kane [24], using
crystal momentum representation, derived the explicit wavefunction for these energy
levels that showed localization under the application of an electric field. There have

been several objections about this derivation:

Objections about Wannier-Stark ladder and localization

(a) The eigenvalues of the energy are not quantized but are continuous with all values

of E allowed.
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(b) The Hamiltonian is not periodic on the boundaries of a (finite) crystal because
of the scalar potential eFz. It is not clear that one can employ the crystal
momentum representation since Bloch functions are periodic on the boundary
and a superposition of Bloch functions representing the wavefunction 3 will

automatically yield a ¢ which is periodic on the boundary.

(c¢) The crystal-momentum representation of the operator  which enters in the cal-
culation may not be well defined because zu,x (where u,y is the Bloch state)
can not be represented as a linear combination of Bloch states, i.e., [ |zuyk|dr

diverges as the crystal approaches infinite extent in the = direction.

Using a vector potential to preserve the symmetry, Krieger and lafrate [33] were
able to remove these objections. They replaced the scalar potential eF'z in the
Schrodinger equation with p — p — (e/c)A, and showed that the calculated optical
absorption has the same ladder-like structure that would be obtained if Wannier-
Stark quantized energy levels are assumed. Actually the issue is similar to the fact
that the states of a Hydrogen atom in a constant field are not discrete, but rather

there are narrow resonances.

Wannier representation

Keeping in mind the above mentioned resolution of the objections, we return to the
_original Schrodinger equation 4.3 and seek solution in the form of an expansion in
terms of the orthogonal and localized Wannier functions (following the treatment by

Kazarinov and Suris [26]):

=Y Ciw,(z — na). (4.5)

The Wannier wavefunctions are defined by

ke=naly,, (1), (4.6)

w,(z — na) =

vk
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where N is the total number of periods in a crystal, v the band index and, n the
lattice site index. wu,k(z)e’*® are the Bloch eigenfunctions of the operator H, =
(p2/2m)+V (z). The eigenvalues of this Hamiltonian E, represent the band structure
of the problem in absence of an electric field. Here, v labels the bands and k is the
wavevector in a Brillouin “minizone”: —(r/a) < k < (7 /a).

In writing the Schrédinger Eq. 4.3 in Wannier representation the following matrix

elements are introduced, which are shown pictorially in figure 4-1:

1 : '
Ln—-n)==>" gikn=ndap (4.7)
N5
1 ikna
L(k)= =" e*L,(n), (4.8)
N ns#0
X,(n—n)= /w,,(:v)a:w,,/(:v —an' + an)dz. (4.9)

We consider a strong coupling case when the separation between adjacent bands

A, =E, 11— F, ios greater than their widths, which may be denoted by

I, = |1,(0) — L(x/a)]. (4.10)
In this case, it can be shown that there are two regimes:

" Case eFla << A,: One finds that the electron energy spectrum is a series of regularly

spaced levels (Wannier-Stark ladder), and the corresponding wavefunctions are
localized in each cell. If the energy eFa is lower than the width of the allowed

band I, the electron is essentially localized within the space I,/eFa.

Case eFa ~ A,: Now the ground state of a site is aligned with the excited state

of the adjacent site. It can be shown that in this situation, in the absence of
collisions and intra-site relaxation, the peak of the electron probability den-

sity oscillates back and forth between the two sites with a frequency equal to
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Figure 4-1: Multiquantum well energy levels under an electric field, showing the
Wannier-Stark ladder and various matrix elements describing the interaction between
levels.
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Q = eFX;3. This is very similar to Rabi oscillations observed in the coherent
interaction of light with two-level systems (such as in the case of paramagnetic

spin resonance).

In both of these cases, there is no net current flowing. It is the presence of collisions
and scattering, in combination with the above mentioned evolutions, which produce
a current. Carrier transport in the presence of scattering is the subject of study in

the next section.

4.2.2 General treatment of carrier transport in superlat-

tices

Recently Laikhtman and Miller [36,37] treated the problem of current transport per-
pendicular to the layers in a superlattice using the Keldysh technique to drive a
kinetic equation for the electron density matrix. This technique, based on the Dyson
equation for the Green’s functions, can treat the problem of conductivity of multi-
quantum wells, for an arbitrary relation between the width of the subbands (I, given
by equation 4.10), the electric potential drop per period (eFa), and the energy un-
certainty due to scattering (I'). All these energies, however, are considered to be
much smaller than the width of the electron energy distribution in each layer of the
superlattice. This assumption, which arises because of the in-plane electron motion,
~ justifies a perturbative calculation of the transport properties. Laikhtman and Miller
found the following expression for the transition probability (w) between two energy

levels in adjacent wells:

AT
R Tt A2

w XX

(4.11)

where A is the energy separation between levels, I' the level width due to elastic
scattering, and A the overlap integral between the wavefunctions of the two levels (It

can be shown that 4A is the intrinsic width of the subband (1, ), see section 4.2.3).
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This transition probability gives the following expression for the electric current

from the vth level in the nth well to the »'th level in the (n + 1)th well:

2dp 9T A2,
Four vy Ep) — p'(Ep + An )], 4.12

'n vi!

where p is the density of states. In the case of tunneling between ground states
(Anq = eF;z), one recovers Ohm’s law for eFa << T', and j « 1/F in the opposite
situation.

The above mentioned treatment is quite general and it can reproduce the I-V char-
acteristics of multiquantum well structures. It was used to study the current-voltage
instabilities [36], and electric field domain formation [37] in superlattices. It is still
more intuitive to derive the electrical properties of MQWs directly in some limiting
cases. This gives more insight about different mechanisms which affect the electron
traveling perpendicular to the layers in a MQW structure [62]. In the following,

depending on the parameters A, I', and eFa, we will distinguish two regimes:

o If eFa << T << A (miniband regime) the Stark levels are not resolved and the

electron transport can be described by classical Boltzmann transport equation.

o If I >> A, VeFa (hopping regime) the electrons are scattered after each tun-
neling across a barrier and no minibands exists. The transport is by hopping
between adjacent wells of the superlattice. In this regime whenever the energy

levels of adjacent wells are aligned, there is resonant tunneling between them.

We will first describe with more details these two limiting cases, and we will see
that both of these give rise to negative differential resistance and instabilities in the

I-V characteristics.

4.2.3 Miniband transport

In this case the superlattice is considered as a perfect crystal in which both the electric

field and the various scattering act as weak perturbations. The simplest band model
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Figure 4-2: Energy, velocity, and effective mass of an electron in a superlattice mini-
band as a function’of crystal momentum [22].

is the tight-binding one which leads to an energy versus wavevector relationship as

[50]:

E(k) = e(ky, k.) + 2A (1 - ‘cos(kxa)) , (4.13)

in which e(ky,k.) is the parallel kinetic energy, = the growth direction, 4A the
miniband width and a the superlattice period. The average group velocity along the

superlattice axis (drift velocity) is obtained from 4.13 (see figure 4-2):

1dE 2Aa
— =) =27 4.14
Vg (h dkx> 7 sin k.a (4.14)

From the acceleration theorem h(dk,/dt) = eF, we see that the electron wavevec-
tor grows proportionally to time, k ~ eFt/h. Such a free acceleration can last no

longer than the relaxation time i/T. If the scattering is very weak equation 4.14
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Figure /-3 Change of the distribution function due to acceleration by the field F', to
ordinary scattering processes, and to Bragg scattering [3].

shows that the constant electric field induces an oscillatory electronic motion in k-
space. The time preriod for these so called “Bloch oscillations” is given by h/eFa. The
Wannier-Stark states described in section 4.2.1 are, in fact, the stationary counterpart
of the time-dependent description above.

Assuming a relaxation-time approximation with collision time % /T, the Boltzmann

equation gives:

<o Se 2Aa I;(2A/kgT)  eFa/T
77 h I,(2A/kgT) 1+ (eFa/T)?

(4.15)

in which I, is the modified Bessel function. The factor I;/Ip accounts for reduction
of the drift velocity at elevated temperatures describing thermal saturation of the
miniband transport in a superlattice. Equation 4.15 shows that there is a critical
field (o< (I'/a)), above which there is negative differential velocity. This result, first

pointed out by Esaki and Tsu [12], is due to Bragg reflections from the zone-boundary
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Figure 4-4: Negative differential velocity and domain formation

"GaAs. In the next paragraphs the formation of electric field domains in single crystal
GaAs is briefly reviewed, and some important observations of voltage instabilities in

superlattices are mentioned.

4.3.1 Electric field domains in bulk semiconductors

The formation of electric field domains (EFD) was first observed in bulk GaAs and
InP and is mostly known as the cause of Gunn oscillations [16]. In 1963, when J.B.

Gunn was studying the current-voltage characteristics of GaAs and InP devices, he
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discovered that when the applied electric field was greater than some critical value
of several thousand volts per centimeter, spontaneous current oscillation appeared
in the circuit. Using probe measurements of the potential distribution across the
sample, he established that a propagating high field domain forms in the sample. It
nucleates near the cathode, propagates toward the anode with velocity of the order of
10°m/s, and disappears near the anode. Then this process repeats itself. The domain
formation leads to a current drop, the domain annihilation results in an increase in
the current, and periodic current oscillations exist in the circuit. Later, Kroemer
pointed out [34] that all the observed properties of the microwave oscillation were
~ consistent with a theory of negative differential resistance independently proposed
by Ridley and Watkins [55] and by Hilsum [20]. The mechanism responsible for the
negative differential resistance is a field-induced transfer of conduction-band electrons
from a low-energy, high-mobility valley to higher energy, low-mobility satellite val-
leys. Using the Poisson equation and the equation of current continuity, it can be
shown [72,75] that a semiconductor exhibiting bulk negative differential resistivity is
inherently unstable, because a random fluctuation of carrier density at any point in
the semiconductor produces a momentary space charge that grows exponentially in
time (see figure 4-4). Eventually this leads to the formation of high and low field
domains in the sample. The continuity of the current requires in most cases that the

high field domain moves from the cathode to the anode.

4.3.2 Electric field domains in multiquantum wells

Miniband conduction regime and the associated negative differential ve-

locity

We saw that in the miniband conduction regime (i.e. when the applied bias per su-
perlattice period is smaller than the width of the miniband), electrons accelerated
perpendicular to the layers may exhibit negative differential velocity due to the nega-

tive effective mass and Bragg reflections that they would experience. And this would
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give rise to negative differential conductivity. Recently, Sibille et al. [51] and Beltram
. et al. [5] have observed Esaki-Tsu negative differential velocity in superlattices. Le
Person et al. have observed Gunn oscillations in the growth direction of a noninten-
tionélly doped GaAs/AlAs superlattice [52]. And finally, the Bloch oscillations were
directly observed by detecting the submillimeter-wave emission from coherent charge

carrier oscillations in a superlattice [29].

Hopping conduction and resonant tunneling regime and the associated

negative differential resistance

‘Another negative differential conductance mechanism in superlattice structures was
observed by Esaki and Chang [13] in 1974, when the miniband conduction was broken.
They studied the transport properties of a GaAs(4.5nm)/AlAs(4.0nm) superlattice.
Because of the thin barriers, there is a strong coupling between wells which produces
a large ground-state bandwidth (5meV) and thus the electron transport is by mini-
band conduction. By studying the I-V characteristics, they observed an oscillatory
negative conductance due to the formation of an expanding high field domain pro-
duced by the electric field induced breaking of the miniband conduction. The voltage
drop across this domain aligns the ground state of one well with the first excited state
of the neighboring well allowing resonant tunneling to occur. A similar phenomenon
was observed by Choi et al. in the case of weakly coupled quantum wells [10]. In this
- case the superlattice consisted of 49 periods of GaAs(7.6nm)/ Aly27Gao.73As(8.8nm)
multiqua;ntum Wells. The ground state bandwidth being 0.4meV, the quantum well
states are localized (by well width fluctuations and also by applied voltage). There-
fore electron transport is dominated by sequential resonant tunneling (SRT). In spite
of important differences in transport mechanism (between miniband conduction and
SRT), Choi et el. observed similar negative conductance oscillations in the I-V char-
acteristics. SRT was first studied theoretically by Kazarinov and Suris in 1971 [26],

who predicted the existence of peaks in the I-V characteristics of weakly coupled
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multiquantum wells (tight-binding superlattices), which correspond to resonant tun-
neling between the ground and excited states of adjacent wells. Later, Capasso et
al. observed these peaks in a AlInAs/GalnAs superlattice [4]. Recently, in addition
to transport experiments which showed high field domain formation, there have been
optical studies of these domains in superlattices. Grahn, Schneider et al. used Stark

shift in the photoluminescence spectra to identify different electric field domains in a

GaAs|AlAs superlattice [15].

4.4 Conclusion

In this chapter the main features of the carrier transport in multiquantum well struc-
tures were reviewed. Depending on the applied bias, coupling between wells, and
scattering, different regimes of miniband conduction and hopping transport were
identified. In both cases current-voltage instabilities are observed. Their physical
origin is due to Bragg reflections over the miniband’s zone boundary, and resonant

tunneling between adjacent wells, respectively.
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Chapter 5

Negative differential resistance and domain
formation in multi-stack quantum well infrared

photodetectors

In chapter 4 we saw that electron transport perpendicular to the layers in mul-
tiquantum well structures, has different regimes of miniband conduction, hopping
transport, and sequential resonant tunneling, depending on the applied bias, width of
the minibands, and broadening due to the various scattering. We also saw that these
transport mechanisms can give rise to negative differential resistance, which in some
cases leads to the formation of électric field domains in the multiquantum well region.
In this chapter we will see how the switching behavior of the photocurrent response
of multi-stack quantum well detectors, under different biases, can be explained by the

-formation of elect‘ric field domains.

5.1 Introduction

Quantum well infrared photodetectors (QWIPs) are based on intersubband transitions[74,
43,27]. As it was discussed in chapter 3, when a thin GaAs layer is surrounded by
wider band gap material such as AlGaAs, electron motion perpendicular to the layers

is quantized. This creates a series of subbands in the conduction and valence band. If
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the quantum well is, for example, n-doped, the lowest subband in the conduction band
is populated with electrons. Now under an incident infrared radiation these electrons
can be excited to a higher subband. This is called a bound-to-bound transition when
the sé,cond subband is below the top of the well, and a bound-to-continuum transition
in the case where the excited state is above the barrier. An electric field applied per-
pendicular to the layers, collects the photoexcited carriers, and a photocurrent can
thus ‘be measured.

These detectors usually have a narrow spectral range of detection ranging in width
around 10 — 20% of the peak wavelength [43]. In some applications this could be
considered an advantage; in many other situations one would like to achieve as broad
a range of detection as possible. A second issue which can be seen as limiting in
many applications is the lack of flexibility, as for the peak wavelength and the whole
spectral range, once the device has been designed and grown [41,57].

Recently, Gravé et al. [63] proposed and demonstrated a new type of QWIP,
consisting of different stacks of quantum wells arranged in series. All the wells in a
given stack are identical, but each stack is designed for absorption and detection at a
different wavelength, featuring distinct well widths and barrier heights. This detector
can operate as a multi-color voltage controlled IR detector or as a broad band detector
depending on the bias [63,64]. In the following sections we will discuss design and
characterization of this detector, and we will see how the analysis of the photocurrent

_spectrum and the dark current enables one to study different transport mechanisms
of opticaﬂy or thermally excited electrons in these structures. We will also discuss the
evidence for sequential resonant tunneling induced electric field domain formation in

the multiquantum well region.
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Figure 5-1: Absorption spectrum at room temperature. The measurement was per-
formed with a Fourier transform spectrometer using a 45° multipass geometry; the
spectrum is normalized to reflect the contribution of the intersubband absorption
alone. An absorption coefficient aus=600 cm ™! for the peak at 1364 cm™! was de-
rived. The inset shows the device structure.

5.2 Sample structure and characterization of the
multi-stack infrared detector

The structﬁre was grown by molecular beam epitaxy on a semi-insulating GaAs sub-
strate. The multiquantum well region, clad by two n-doped contact layers, consisted
- of three stacks of 25 quantum wells each; the first 25 wells (called stack (a)) were 3.9
nm wide and were separated by Alg3sGagezAs barriers; the second stack (b) consisted
of 4.4 nm wide wells with Aly30Gag70As barriers; the last stack (c¢) had 5.0 nm wide
wells and Al 24Gag7eAs barriers. All the barriérs were 44 nm wide; the wells and

3

the contacts were uniformly doped with Si to n = 4 x 10®c¢m™ (a schematic of the

device is drawn in the inset of figure 5-1).
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5.2.1 Absorption spectrum

The absorption spectrum at zero field and room temperature is shown in Figure 5-1.
The measurement was taken with a Fourier transform infrared spectrometer in the
usual 45° multipass geometry [38]; the absorption of the light polarized in compliance
with the selection rules was normalized by the absorption of light polarized in the
perpendicula;r direction, to allow for only the intersubband contribution. The absorp-
tion peak at 1364 cm™! is due to the 3.9nm wells while the stronger absorption at 964
cm™! is the composite contribution of the two other stacks of quantum wells, which,
individually, have absorption peaking at 1080 and 920 cm~'. These results agree with
our design values; our calculations, which included band nonparabolicity [80] and a
band offset value of 0.60, anticipated absorption peaks at room temperature at 1335,
1052, and 880 cm ™1, respectively. We see that in each of the three different types of
wells, light is absorbed by electrons excited from the first subband to a second sub-
band which is located close to the top of the well.The existence of the two absorption
peaks that merge into a wide and strong peak was also experimentally verified by
analyzing the asz)rption of a few additional MBE grown control wafers, which were

designed to include, each time, only two of the stacks described above.

5.2.2 Photocurrent spectrum

~ Devices were processed out of the grown wafer and prepared as etched mesas, 200um
in diameter. Figure 5-2 displays the photocurrent spectroscopy of a device at a
temperature of 10K, for positive values of applied voltage. It is seen that, for low
applied fields (< 5V), the stack (a) of 3.9nm wells, closer to the substrate, provides
most of the photocurrent at the appropriate excitation energies around the peak of
1450 ¢m~1. When the bias is increased to 6V, the contribution of stack (a) increases
while the contribution of the other two stacks disappears. Increasing the bias even
further (to 7V) reduces the photocurrent peak at 1450 cm™!, but the other two

stacks start to contribute again. When the bias reaches a threshold of 8V, a sharp
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~ Figure 5-2: Spectral photoresponse for a few values of applied positive voltage. Note
the switching in peaks at an applied voltage around 8.0V. The responsivity, at the

peak of 1140cm ™! and the applied voltage of 8.0V, is 0.75 A/W. The units are the
same for both Figure 5-3 and Figure 5-2.
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- Figure 5-8 Spectral photoresponse for a few values of applied negative voltage for
the three-stack quantum well infrared photodetector. Note the broadening in the
spectral response below —9.0V.
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transition takes place and the responsivity peak switches to 1190 em™'. It is apparent
. that stack (b) and (c) are now responsible for most of the photocurrent, while the
contribution from the stack (a) has sensibly decreased. Note that the small shifts of
the photocurrent peaks with regard to the absorption peaks are due to the different
experimental temperatures [42] and to the applied electric field [17] (see also [56] ).

If we apply a negative bias to the detector [see figure 5-3], again, at low voltages,
the photocurrent is due mostly to electrons excited in the stack (a). The responsivity
increases with the applied voltage, but its magnitude is always less than that corre-
sponding to the same forward bias; in addition, one observes that the photocurrent
peak around 1450 em™! is = 50% broader in the forward bias mode. When the bias
is increased to more negative values (-9V), the responsivity extends to lower energies,
showing increasing contributions from stack (b); stack (a) still contributes equally, in
contrast to the sharp reduction in response experienced in the opposite polarity of
the applied electric field.

These features in the photocurrent, which are observed at a temperature of 10K,
persist at higher temperatures. In the reverse bias direction, one observes the same
general behavior also at 77K. In the forward polarity, the switching of the photore-
sponse from the higher energy peak to the lower one is observed up to a temperature
of 60K; the critical voltage at which the switching occurs increases slightly with tem-

perature.

5.2.3 Current-voltage characteristics

The I-V curves of the device at different temperatures are shown in Figure 5-4. One
can note a strong asymmetry between the two ‘pola,rities. A fine structure in the
plateau of the I-V curves, corresponding to regions of negative differential resistance,
was observed. For example the T=10K curve has oscillations in the voltage range of
-10.0 to -7.0 volts and +4.0 to +7.0 volts. In each of these intervals 2442 oscillations

with a period of 0.12840.008 volts were measured. Figure 5-5 shows an expansion
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Figure 5-4: 1-V characteristic at different temperatures. The solid curves are without
illumination and the dashed ones are with illumination of a black body source. Note
the important contribution of photo-assisted transport to the total current, specially
at low biases.
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- Figure 5-5: An expansion of the [+4,47] range in the 10K I-V curve (without illu-
mination). One can see 24 oscillations with a period of 0.1284-0.008 volts. The inset
shows oscillations in the differential resistance of the device.
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of the forward bias plateau region. One can see in the inset, the oscillations of
the differential resistance of the device. This measurement gives a most important
clue to the possible origin of photocurrent peaks disappearing and switching, since
these negative differential resistance oscillations are the signature of the formation
and expansion of a high field domain along the sample multiquantum well region
[13,10,26,4,15,36).

The data of the photocurrent spectral measurement were taken with a Fourier
transform spectrometer, complemented by a setup including a calibrated black-body
source and a set of cooled filters at different wavelengths. The noise equivalent volt-
age was measured directly with a spectrum analyzer in the cold, shielded window
configuration. One should also note the very low values of dark current, which, com-
bined with a responsivity ranging up to 0.75 A/W, ultimately yield high D* for this
detector (D*=4 x 10'* cmHz'/2W~" at 40K and 1140 cm™?).

5.3 Interpretation of experimental results

We saw in the previous chapter that when a series of quantum wells are under large
applied bias, a uniform distribution of electric field is not stable because all of the
quantum wells will be out of resonance, i.e. none of the energy levels of pairs of
adjacent wells will be aligned. Instead, the system will settle into a configuration
_in which the electric field profile includes high and low field regions (see figure 5-6).
In the high field region we have ground level to excited level sequential resonant
tunneling, and in the low electric field region ground level to ground level tunneling.
Transport within each domain is thus resonant, while at the boundary between the
two regions it is generally non-resonant. This boundary then acts as a bottleneck that
limits the current. Charge accumulation or depletion at this boundary takes place
because of the change in the slope of electric fields, as required by Poisson’s equation.

An increase in the bias will cause more quantum wells to enter the high field domain
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Figure 5-6: Formation of high and low field domains in the case of a weakly coupled
Si-doped GaAs/AlGaAs multiquantum well structure

region, and this is reflected by the oscillatory behavior in the I-V curve.

Under illumina:-tion, the light is absorbed in all the quantum wells but only pho-
toexcited carriers which are in a region with a high electric field can be swept out of
the quantum well and contribute to the photocurrent. Those in the low field region
have a high probability of being recaptured by their own well, contributing negligi-
bly to the photocurrent. The observed oscillations in the I-V curve are in the same
\ voltage range where photocurrent peak disappearance and switching occurs. This is
an indication that electric field domain formation can be responsible for the observed
behavior in the photocurrent spectrum. On the other hand, the low bias behavior of
this device did not show any negative differentiai resistance, and different contribu-
tion of the three stacks to the photocurrent can be explained using Liu’s equivalent
circuit analysis [45].

The presence of plateaux in the I-V characteristic is consistent with the cur-

rent being limited by the boundary between high and low field domains (see e.g.
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Figure 5-7. Spectral photoresponse for the two-stack MQW device with 44nm bar-
riers in both stacks. At low bias there is a peak at &~ 1600cm ™! and as we increase
the applied bias another peak at longer wavelengths = 1200cm ™' appears. (Inset)
Spectral photoresponse of another two-stack MQW device with similar well charac-
teristics but the barriers in the long wavelength stack are shortened to 20nm. At low
bias there is a peak at & 1550cm ™! and as we increase the applied bias another peak
at shorter wavelength ~ 1800cm~! appears.

refs.[10,15]). The period of oscillation (0.12840.008 volts) is close to the separation
~ between ground state and the excited state in stack (c) (123 meV). However, for these
bound-to-continuum detectors where the excited state is near the quantum well edge
(typically 10 meV above the barrier), it is possible that sequential resonant tunnel-
ing does not occur to the states which are maximally localized in the well region

(corresponding to the absorption peak).

5.4 Design of multi-stack infrared photodetectors
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Even though there are a lot of processes and parameters which can influence the
transport in the superlattice, such as impurity or phonon-assisted tunneling, reso-
nant tunneling through different states in the continuum, relaxation times and space
charvge effects; it is still possible to design samples with the desired responsivity peaks
for applications like tunable multi-color infrared detectors [64]. This is done by con-
sidering the-charge accumulation effects at the boundaries between different stacks,
and at the boundary between high and low field domain.

Figure 5-7 shows the photocurrent spectroscopy at different applied biases for a
two-stack MQW IR-detector with a design similar to that of our original three-stack
device (stack (a):4.0 nm GaAs wells separated by 44 nm Alp36GagesAs barriers.
Stack (b):5.2 nm GaAs wells separated by 44 nm Aly,4GagreAs barriers). At low
bias there is a peak at short wavelengths ~ 1600cm ™! and as we increase the applied
bias another peak at longer wavelengths =~ 1200cm™! appears.

Figure 5-7(inset) displays the photocurrent of a second two-stack MQW detector
where the barriers in the stack (b) (having absorption peak at longer wavelength) were
shortened to 20 nm (stack (a):4.0 nm GaAs wells separated by 44 nm Aly3sGape2As
barriers. Stack (b):4.7 nm GaAs wells separated by 20 nm Aly30Gagr0As barriers).
By this means we can achievé the requirement that the electric field for the ground
state to excited state SRT be increased in stack (b) and become larger than the
corresponding value of the electric field in stack (a). As a result we see that this time
- the peak at longer wavelength (& 1550cm™!) appears first, and then, by increasing
the bias furthér, the peak at shorter wavelength (=~ 1800cm™!) appears.

5.5 Conclusion

Evidence was presented for sequential resonant tunneling induced negative differential
resistance in very weakly coupled quantum wells (separated by 44nm barriers). This

is an indication of electric field domain formation in the device. As electrons which are
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photoexcited in each quantum well, can sweep out and contribute to the photocurrent
only when there is a large enough electric field assisting them; the photocurrent is
dominated by the wells in the high field region. Now if the quantum well widths and
ba,rrier heights are not the same at different places of the superlattice (i.e. in the
case of multi-stack device); the photocurrent spectrum can be tuned by changing the

applied bias; which changes the electric field distribution.
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Chapter 6

Small bias behavior of the photocurrent spectrum

in quantum well infrared photodetectors

In this chapter an abnormal low bias behavior of the photocurrent spectrum in quan-
tum well infrared photodetectors (QWIPs) is reported [70], and its possible origin
due to the doping segregation during the MBE growth is discussed.

6.1 Sample structure and its characterizations

The sample analyzed for this study was grown by molecular beam epitaxy on a semi-
insulating GaAs substrate. It consisted of 25 periods of 5.4nm GaAs wells separated
by 42.5nm Aly30GaggoAs barriers. The multiquantum well region was clad by two
0.5pm n-doped contact layers. The wells and the contacts were uniformly doped with
Si to a concentration of n = 5 x 101%cm~2, |

The quantum well width and the barrier height in this device are such that there
are two stationary states for electrons with an energy smaller than the barrier height
(1.e. this is a bound-to-bound detector). The oscillator strength of the transition
between these two states is very large (fi2 & 0.9). This is because both of these
states are localized in the well region. The oscillator strength which is proportional

to the dipole matrix element is basically the overlap integral of these two state’s

wavefunctions with the position operator:
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Figure 6-1: Integrated photocurrent of the device as a function of applied bias, at a
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This discrete and large oscillator strength gives the absorption spectrum a Lorentzian
lineshape. The width of the Lorentzian is due to various scattering mechanisms (inter-
" face, impurity and alloy disorder scattering), non-parabolicity and many-body effects.
The optical transition to the states above the barrier is possible, but their contribu-
tion is very small. This could be seen from the oscillator strength sum rule (see

chapter 3):

S fi=1 (6.2)
J#l

Figure 6-1 shows the integrated photocurrent of these detectors measured at a
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Figure 6-2: Photocurrent spectrum for large values of applied negative bias (defined
with respect to the bottom contact layer).
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Figure 6-3: Photocurrent spectrum for smaller values of applied negative bias. Note
the position of conduction band edge of AlGaAs barrier, indicated on the figure.
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temperature of 10K. Only for large biases can one see an appreciable photocurrent.
This is because the photoexcited carriers in these bound-to-bound detectors need to
tunnel out of the quantum wells to contribute to the photocurrent. Very thick barriers
in this sample (42.5nm) require a large electric field to assist the electrons tunnelling
out.
Figure 6-2 shows the photocurrent spectrum for several values of the applied nega-
tive bias (defined with respect to the bottom contact layer). As expected the spectrum
has a narrow width (x 15meV), characteristic of bound-to-bound transitions. When
the applied bias is smaller (see figure 6-3), the electron tunneling is greatly reduced,
one can see more clearly the contribution of the states above the barrier (continuum
states) to the photocurrent spectrum. The exact barrier height (conduction band
edge of the AlGaAs layer), with respect to the quantum wells ground state energy,
can be measured directly from this figure. One sees that the excited state in the well
is & 12meV below the conduction band in the barrier region.

At still lower biases (see figure 6-4) the photocurrent spectrum develops a strange
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Figure 6-6: Comparison of the total photocurrent, integrated photocurrent, and the
sign adjusted integrated photocurrent (i.e. The high energy photoexcited electrons
moving in the opposite direction of the low energy ones).
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(!) double peak. By changing the bias from —0.5V to +0.5V, the high energy peak
(at ~ 1550 — 1700cm™?) is reduced while the low energy peak (at = 1300em™1) is
increased.

The fact that in the energy range between these two peaks, the photocurrent
spectrum goes to zero, was an indication that probably the sign of the photocurrent
is not the same in the high and low energy part of the spectrum. In the following,
we will look at the details of measuring the photocurrent spectrum with an FTIR

spectrometer.

- 6.1.1 FTIR spectrometer

These photocurrent spectra were measured using the multiquantum well device as
an external detector for a Fourier transform infrared (FTIR) spectrometer. FTIR
is based on a Michelson interferometer in which one of the mirrors is moving (see
figure 6-5). When the two light beams (one reflected from the stationary mirror
and the other one reflected from the moving mirror) recombine at the beamsplitter,
an interference p:':mttern is generated. This pattern varies with the displacement of
the moving mirrors and is detected by the infrared detector as variations in the IR
energy level. In the case of monochrdmatic source light, as the the interferometer
mirror scans back and forth, light and dark bands that correspond to constructive
and destructive interference at the beam splitter, are observed by the detector (i.e.
~ the detector response as a function of the mirror displacement, which is called the
interferogram, will be a cosine function).

Infrared sources emit light over a broad range of frequencies, each frequency pro-
ducing a unique cosine signal. The resulting intérferogra,m represents the sum of the
cosine waves. The frequency and intensity of each cosine wave in the interferogram
is resolved by the Fourier transformation.

As we are using a black body source whose spectrum is almost constant in the

frequency range of our analysis (1200 to 1800cm™'). The photocurrent spectrum
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measured at the detector gives the frequency response of the detector itself. This
detection scheme is not sensitive to the phase of the photocurrent generated (at least
in its straightforward Fourier transformation). So this cannot produce the sign of
the‘photocurrent, and what we see in the figure 6-4 is the absolute value of the

photocurrent spectrum.

6.1.2 Integrated photocurrent

To check if there are both positive and negative components in the photocurrent spec-
~ tra, we looked at the total photocurrent. This was directly measured by subtracting
the detector currents in the presence of the IR source and without it. This total pho-
tocurrent was then compared with the integrated photocurrent, which was calculated
from the measured spectra. The result is plotted in the figure 6-6. One can see
that, as expected, for higher biases (|V| > 0.5V), the two curves of integrated and
total photocurrent match very well over two orders of magnitude of current change.
But in the voltage range —0.5V to 0.5V, the two curves differ by almost one order of
magnitude. |

If at small biases, the low energy photoexcited electrons move in the opposite
direction to the ones having higher energies, their contribution should be subtracted
to calculafe the total photocurrent. In the figure 6-6, the integrated photocurrent,
assuming different signs for the low and high energy peaks, more closely matches
the measured total photocurrent. This indicates that effectively at small biases the
photocurrent has two components one moving in the same direction as the applied

bias and one moving in the opposite direction.

6.2 Explanation of the experimental results

The quantum well structure as designed, is symmetric with respect to the applied

bias. But as it can be seen from figure 6-4, the negative bias photocurrent spectra
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are different from the positive ones. This asymmetry is also seen in the current-voltage
characteristics and has been reported by several other research groups [60,61,44,76]

Intuitively, many factors may give rise to the asymmetry:

(a) An asymmetry in the height of the two barriers, from the unintentional asym-

metries of the Al fraction during the growth.

(b) A difference in roughness of the two heterointerfaces confining a quantum well.
It is commonly stated that the interface resulting from AlGaAs grown on
GaAs (normal interface) is smoother than that of GaAs on AlGaAs (inverted
interface)[54]. This is plausible due to the known lower atomic mobility of Al

atoms versus Ga on the growing MBE surface.

(c) An asymmetry caused by impurity incorporation. The inverted interface incorpo-
rates more impurities (like oxygen), due to impurity surface segregation during
AlGaAs growth followed by rapid incorporation in GaAs. This is plausible if
we consider Fhe competition for lattice sites between the impurities and the

chemically very active Al

(d) An asymmetry caused by segregation of the dopants during growth, which results
in a spreading out of the dopants in the well regions and into the barriers[54].
The migration of dopant atoms in the direction of crystal growth is driven by
a competition between Si and Ga (and Al in the case of the barrier), for the

available Ga lattice sites.

Factor (a) is related to molecular beam flux transients commonly occurring on the
opening of the cell shutters . The cell experiences a different environment when the
shutter is closed than when it is open. This leads to a decrease in cell temperature,
and therefore growth rate, with time. In our MBE system, the use of 1” spacers
between the cells and growth chamber increases the distance between the shutter

and the cell and has reduced the flux transients from 15% to 4%. For the growth of
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the quantum wells the Aluminum shutter is only closed for about 15 seconds, so the
expected flux transient is estimated to be less than 2%. This gives an asymmetry of
the barriers of about 1meV, which is negligible.

Factors (b) and (c) are difficult to model quantitatively. Moreover, it has becn
shown that Si segregation can explain 75 to 100% of the experimentally observed
asymmetricI-V characteristics of the QWIPs. So focusing on factor (d), we will see

how the abnormal low bias behavior of the photocurrent spectrum could be explained.

6.2.1 Effect of Si-segregation on the quantum well band

structure

Figure 6-7 shows the conduction band of the two periods of multiquantum well struc-
ture, which was calculated by self-consistently solving the Schrodinger and Poisson
equations. The dopant segregation during the growth was taken into account by
assuming an exponentially decreasing profile in one side of the barriers. The charac-
teristic decay length of this exponential was taken to be 3nm, consistent with values
reported in the literature for Si-segregation during growth at a substrate temperature
of 580°C [44,60].

Donor atoms in the barrier region are completely ionized and separated from their
electrons which are trapped in the quantum wells. The separation between positive
and negative charges produces internal electric fields which give an asymmetrical
triangular shape to tﬁe barrier profile (see figure 6-7). It is the presence of these
internal fields which make the photogenerated carriers go in a direction opposite to
the applied bias. The reason the photogenerated carriers with different energies go
in different directions can be explained as follows: The photogenerated carriers with
energies below and close to the barrier height have wavefunctions mostly extended into
the right-hand barrier. So that they will feel an average internal electric field pushing
them toward the top of the sample. On the other hand, the high energy photoexcited

carriers, having wavefunctions spreading over both right and left barriers, are swept
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towards the substrate side of the sample (see figure 6-8).

~This argument explains not only the behavior of photocurrent spectrum at small
biases in our sample, but also the remarkable observation of the reference [59,60]
haviﬁg a device in which the photocurrent is actually opposite to the dark current.
In their double barrier quantum well device (see figure 6-9), the presence of thin
AlAs layers pushed the excited state of these detectors deep into the continuum. As
the dark current is still dominated by the states near the AlGaAs barrier, because of

Si-segregation, these two currents go in opposite directions.

6.3 Conclusion

It was seen that Si-segregation during the growth can explain the observed low bias
spectrum of QWIPs. This spectrum was attributed to the fact that becausc of local
electric fields, and different spatial extension of excited states, the photogenerated car-
riers with energies below and near the barrier edge are preferentially emitted towards
the top side of the sample; while those excited with higher energies are transported

towards the substrate side.
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Figure 6-7 The calculated conduction band profile of two periods of the superlattice,
assuming a Si-segregation of 3nm in the direction of growth (to the right).
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Figure 6-9: Conduction band profile and the position of energy levels in double barrier
quantum well device of reference [58].
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