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Abstract 

The further development of performance-based earthquake engineering (PBEE) is on the 

current agenda of the earthquake engineering community. A part of assessing the seismic 

performance of civil engineering structures involves estimation of seismic damage. The 

conventional approach to damage estimation is based on fragility functions that relate 

some chosen parameters of structural response to incurred damage. Therefore, damage 

prediction is based exclusively on the knowledge of the chosen structural response 

parameters, meaning that damage analysis is uncoupled from the structural analysis. The 

structural response parameters selected for use in damage analysis are usually referred to 

as engineering demand parameters (EDP). In the present study, it is shown that for 

structural damage estimation, the uncoupled damage analysis has deficiencies that lead to 

less accurate damage prediction. These shortcomings originate from two sources: first, 

dependence of practically all EDPs on structural damage and second, inexact damage 

description. To overcome these deficiencies, another approach to structural damage 

estimation is proposed. The proposed approach, besides using an EDP, uses all 

information available from structural analysis that is relevant to the damage to be 

assessed, implying that damage analysis is coupled with structural analysis. It is shown 

that utilization of this additional information provides more accurate damage prediction. 

The difference between the two approaches is studied by comparison of results of 

damage estimation performed for a 2-D structural model of a reinforced-concrete frame. 

The results show that difference between uncoupled and coupled damage analysis 

estimates could be significant and that it depends on specific characteristics of the chosen 

structural model and the damage model in a complex way, preventing the possibility of 
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estimating this error in a general form that is applicable to all practically possible cases. 

Damage estimation is performed for various damage models that include both single and 

multiple damage states. Since the final goal of seismic performance evaluation is 

estimation of decision variables such as repair cost, downtime, etc., the two approaches to 

damage estimation are also compared in terms of repair cost that is calculated for the 

reinforced-concrete frame. A case where structural damage prediction is based on 

observation of EDP alone, without a structural model available, is also studied. It is 

shown that incorporating site-specific information can significantly change the damage 

estimates and, therefore, may be worth doing.   

 

 

 



vi 

Table of contents 

1 Introduction................................................................................................................. 1 

2 Methods and challenges of performance-based earthquake engineering ................... 7 

2.1 Decision making for a real estate owner............................................................. 7 

2.2 Methods of performance-based earthquake engineering .................................. 10 

2.2.1 Overview of structural reliability theory for seismic safety ..................... 11 

2.2.2 Performance-based earthquake engineering framing equation................. 13 

2.2.2.1 Standard integral form for arbitrary decision variables ........................ 13 

2.2.2.2 Evaluation of damage and decision variables....................................... 15 

2.2.2.3 Performance-based earthquake engineering framing equation............. 18 

2.2.2.4 Fragility functions in PBEE framework ............................................... 23 

2.3 Challenges of PBEE design .............................................................................. 24 

3 Theory of fragility functions..................................................................................... 31 

3.1 Single damage state........................................................................................... 31 

3.1.1 Fragility functions of the structural members........................................... 36 

3.2 Multiple damage states ..................................................................................... 43 

3.2.1 Fragility functions (not mutually exclusive damage states) ..................... 48 

3.2.2 Selecting damage states ............................................................................ 49 

4 Damage estimation coupled with structural analysis (single damage state)............. 53 

4.1 EDP dependent on damage ............................................................................... 53 

4.1.1 Methods of damage estimation ................................................................. 53 

4.1.2 Structural model description ..................................................................... 58 

4.1.3 Damage model .......................................................................................... 60 

4.1.4 Interpretation of the chosen damage model .............................................. 64 

4.1.5 Parameters of the damage model and ground motions ............................. 65 

4.1.6 Results and conclusions ............................................................................ 67 

4.2 Inexact damage state description (imperfect limit-state function).................... 80 

4.2.1 Structural model........................................................................................ 82 

4.2.2 Damage model .......................................................................................... 83 

4.2.3 Model parameters for the methods of damage estimation ........................ 84 



vii 

4.2.4 Results and conclusions ............................................................................ 89 

4.2.5 Alternative damage models for uncoupled damage analysis. ................... 98 

4.2.5.1 Utilizing additional information about components ............................. 98 

4.2.5.2 Utilizing multidimensional fragility functions.................................... 106 

5 Damage estimation coupled with structural analysis (multiple damage states) ..... 111 

5.1 Structural model.............................................................................................. 111 

5.2 Damage model ................................................................................................ 112 

5.3 Repair cost ...................................................................................................... 115 

5.4 Results............................................................................................................. 116 

6 Combined methods of damage estimation.............................................................. 153 

6.1 Example of application ................................................................................... 153 

6.2 Damage states of reinforced concrete members ............................................. 158 

7 The use of in-situ information for fragility functions ............................................. 161 

7.1 Generic fragility function (no in-situ information included) .......................... 162 

7.2 Fragility function with in-situ information included ...................................... 164 

7.3 Results and conclusions .................................................................................. 170 

8 Conclusions and future research ............................................................................. 177 

9 References............................................................................................................... 181 

Appendix A. Probabilistic relation between damage states and repair methods. ........... 189 

A.1 Available repair methods ..................................................................................... 189 

A.2 Statistics of application of repair techniques ....................................................... 194 

A.3 Relating damage states to repair efforts............................................................... 195 



viii 

Table of Figures  

Figure 2.1 Example of utility function for decision making based on safety. 7 

Figure 2.2 Example of a decision making process for a real estate owner. 10 

Figure 2.3 Implementation structure of the PEER PBEE framing equation. 22 

Figure 3.1 Fragility functions for multiple damage states 47 

Figure 3.2 Damage states probability space for different values of EDP 47 

Figure 3.3 Original state space and redefined state space with corresponding probability 

measures 51 

Figure 4.1 Relations between the variables in the state space. 53 

Figure 4.2 Uncoupled structural and damage analyses. 54 

Figure 4.3 Coupled structural and damage analyses 55 

Figure 4.4 Methods used for the sample case study damage estimation. 57 

Figure 4.5.  Reinforced concrete moment-resisting frame chosen for the case study. 59 

Figure 4.6. Flexural members hysteretic rule: Q-HYST. 60 

Figure 4.7 Relation between force-displacement history and observed damage states of a 

reinforced concrete column (Tanaka and Park, 1990) 65 

Figure 4.8. Expectation of damage E[Nt] as a function of spectral acceleration, ground 

motion LA15. 73 

Figure 4.9. Relative errors of estimation of E[Nt] by different methods as a function of 

spectral acceleration, ground motion LA15. 73 

Figure 4.10. Variance of the damage estimate as a function of spectral acceleration, 

ground motion LA15. 74 

Figure 4.11.  Coefficient of variation of the damage estimate as a function of spectral 

acceleration, ground motion LA15. 74 

Figure 4.12. Expectation of damage E[Nt] as a function of spectral acceleration, set of 

ground motion records. 76 

Figure 4.13. Relative errors of estimation of E[Nt] by different methods as a function of 

spectral acceleration, set of ground motion records. 77 

Figure 4.14. Variance of damage estimation as a function of spectral acceleration, set of 

ground motion records. 77 



ix 

Figure 4.15. Coefficient of variation of the damage estimate as a function of spectral 

acceleration, set of ground motion records. 78 

Figure 4.16 Example of the yield surface of the flexural members (axial force - moment 

interaction). 83 

Figure 4.17. Expectation of damage E[Nt] as a function of spectral acceleration for the 

axial force-flexure interaction model, ground motion LA15. 92 

Figure 4.18. Relative errors of estimation of E[Nt] by different methods as a function of 

spectral acceleration for the axial force-flexure interaction model, ground motion 

LA15. 92 

Figure 4.19. Variance of damage estimation as a function of spectral acceleration for the 

axial force-flexure interaction model, ground motion LA15. 93 

Figure 4.20. Coefficient of variation of the damage estimate as a function of spectral 

acceleration for the axial force-flexure interaction model, ground motion LA15. 93 

Figure 4.21. Expectation of damage E[Nt] as a function of spectral acceleration for the 

axial force-flexure interaction model, set of ground motion records. 94 

Figure 4.22. Relative errors of estimation of E[Nt] by different methods as a function of 

spectral acceleration for the axial force-flexure interaction model, set of ground 

motion records. 94 

Figure 4.23. Variance of damage estimation as a function of spectral acceleration for the 

axial force-flexure interaction model, set of ground motion records. 95 

Figure 4.24. Coefficient of variation of the damage estimate as a function of spectral 

acceleration for the axial force-flexure interaction model, set of ground motion 

records. 95 

Figure 4.25 Safety regions for exact (hatched) and approximate (shaded) limit-state 

functions, fragility function is CDF of capacity at zero axial force 99 

Figure 4.26 Using flexural member's yield surface for determining safety region in terms 

of yield moment at zero axial force 100 

Figure 4.27 Comparison of the safety regions defined by exact and approximate limit-

state functions for the assumed probability distribution of current axial force. 103 

Figure 4.28 Safety regions for exact (hatched) and approximate (shaded) limit-state 

functions, fragility function is CDF of capacity at expected axial force 104 



x 

Figure 4.29 Safety regions for exact and approximate limit-state functions, lower values 

of axial force expected value and standard deviation are used 105 

Figure 4.30 Safety regions for exact (hatched) limit-state function and two-dimensional 

approximate (shaded) limit-state function, axial force is relatively small 108 

Figure 4.31 Procedure of finding safety region for two dimensional fragility function, 

axial force is relatively high 108 

Figure 4.32 Safety regions for exact (hatched) limit-state function and two-dimensional 

approximate (shaded)  limit-state function, axial force relatively large 109 

Figure 5.1 Hysteretic rule for flexural members (Q-HYST with strength degradation). 112 

Figure 5.2 Expected number of flexural members in three damage states of interest, 

obtained by Method 1, correlation of capacities 0.6, ground motion LA15. 120 

Figure 5.3 Expected number of flexural members in three damage states of interest, 

obtained by Method 2, correlation of capacities 0.6, ground motion LA15. 121 

Figure 5.4 Expected number of flexural members in three damage states of interest, 

obtained by Method 3, correlation of capacities 0.6, ground motion LA15. 121 

Figure 5.5 Expected number of flexural members in DS = 1 for multiple damage states 

model with correlation of capacities 0.6, ground motion LA15. 122 

Figure 5.6 Expected number of flexural members in DS = 2 for multiple damage states 

model with correlation of capacities 0.6, ground motion LA15. 122 

Figure 5.7 Expected number of flexural members in DS = 3 for multiple damage states 

model with correlation of capacities 0.6, ground motion LA15. 123 

Figure 5.8 Variance of number of flexural members in DS = 1 for multiple damage states 

model with correlation of capacities 0.6, ground motion LA15. 123 

Figure 5.9 Variance of number of flexural members in DS = 2 for multiple damage states 

model with correlation of capacities 0.6, ground motion LA15. 124 

Figure 5.10 Variance of number of flexural members in DS = 3 for multiple damage 

states model with correlation of capacities 0.6, ground motion LA15. 124 

Figure 5.11 Coefficient of variation of number of flexural members in DS = 1 for 

multiple damage states model with correlation of capacities 0.6, ground motion 

LA15. 125 



xi 

Figure 5.12 Coefficient of variation of number of flexural members in DS = 2 for 

multiple damage states model with correlation of capacities 0.6, ground motion 

LA15. 125 

Figure 5.13 Coefficient of variation of number of flexural members in DS = 3 for 

multiple damage states model with correlation of capacities 0.6, ground motion 

LA15. 126 

Figure 5.14 Expected repair cost estimate for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 126 

Figure 5.15  Variance of repair cost estimate for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 127 

Figure 5.16 Coefficient of variation of repair cost estimate for multiple damage states 

model with correlation of capacities 0.6, ground motion LA15. 127 

Figure 5.17 Expected number of flexural members in three damage states of interest, 

obtained by Method 1, correlation of capacities 0.6, set of ground motion records.

 128 

Figure 5.18 Expected number of flexural members in three damage states of interest, 

obtained by Method 2, correlation of capacities 0.6, set of ground motion records.

 128 

Figure 5.19 Expected number of flexural members in three damage states of interest, 

obtained by Method 3, correlation of capacities 0.6, set of ground motion records.

 129 

Figure 5.20 Expected number of flexural members in DS = 1 for multiple damage states 

model with correlation of capacities 0.6, set of ground motion records. 129 

Figure 5.21 Expected number of flexural members in DS = 2 for multiple damage states 

model with correlation of capacities 0.6, set of ground motion records. 130 

Figure 5.22 Expected number of flexural members in DS = 3 for multiple damage states 

model with correlation of capacities 0.6, set of ground motion records. 130 

Figure 5.23 Variance of number of flexural members in DS = 1 for multiple damage 

states model with correlation of capacities 0.6, set of ground motion records. 131 

Figure 5.24 Variance of number of flexural members in DS = 2 for multiple damage 

states model with correlation of capacities 0.6, set of ground motion records. 131 



xii 

Figure 5.25 Variance of number of flexural members in DS = 3 for multiple damage 

states model with correlation of capacities 0.6, set of ground motion records. 132 

Figure 5.26 Coefficient of variation of number of flexural members in DS = 1 for 

multiple damage states model with correlation of capacities 0.6, set of ground 

motion records. 132 

Figure 5.27 Coefficient of variation of number of flexural members in DS = 2 for 

multiple damage states model with correlation of capacities 0.6, set of ground 

motion records. 133 

Figure 5.28 Coefficient of variation of number of flexural members in DS = 3 for 

multiple damage states model with correlation of capacities 0.6, set of ground 

motion records. 133 

Figure 5.29 Expected repair cost estimate for multiple damage states model with 

correlation of capacities 0.6, set of ground motion records. 134 

Figure 5.30 Variance of repair cost estimate for multiple damage states model with 

correlation of capacities 0.6, set of ground motion records. 134 

Figure 5.31 Coefficient of variation of repair cost estimate for multiple damage states 

model with correlation of capacities 0.6, set of ground motion records. 135 

Figure 5.32 Expected number of flexural members in DS = 1 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 135 

Figure 5.33 Expected number of flexural members in DS = 2 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 136 

Figure 5.34 Expected number of flexural members in DS = 3 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 136 

Figure 5.35 Expected number of flexural members in DS = 1 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 137 



xiii 

Figure 5.36 Expected number of flexural members in DS = 2 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 137 

Figure 5.37 Expected number of flexural members in DS = 3 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 138 

Figure 5.38 Variance of number of flexural members in DS = 1 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 138 

Figure 5.39 Variance of number of flexural members in DS = 2 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 139 

Figure 5.40 Variance of number of flexural members in DS = 3 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 139 

Figure 5.41 Variance of number of flexural members in DS = 1 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 140 

Figure 5.42 Variance of number of flexural members in DS = 2 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 140 

Figure 5.43 Variance of number of flexural members in DS = 3 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, ground 

motion LA15. 141 

Figure 5.44 Expected repair cost obtained by Method 1 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, ground motion LA15. 141 

Figure 5.45 Expected repair cost obtained by Method 2 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, ground motion LA15. 142 

Figure 5.46 Variance of repair cost obtained by Method 1 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, ground motion LA15. 142 



xiv 

Figure 5.47 Variance of repair cost obtained by Method 2 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, ground motion LA15. 143 

Figure 5.48 Expected number of flexural members in DS = 1 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 143 

Figure 5.49 Expected number of flexural members in DS = 2 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 144 

Figure 5.50 Expected number of flexural members in DS = 3 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 144 

Figure 5.51 Expected number of flexural members in DS = 1 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 145 

Figure 5.52 Expected number of flexural members in DS = 2 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 145 

Figure 5.53 Expected number of flexural members in DS = 3 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 146 

Figure 5.54 Variance of number of flexural members in DS = 1 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 146 

Figure 5.55 Variance of number of flexural members in DS = 2 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 147 

Figure 5.56 Variance of number of flexural members in DS = 3 obtained by Method 1 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 147 



xv 

Figure 5.57 Variance of number of flexural members in DS = 1 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 148 

Figure 5.58 Variance of number of flexural members in DS = 2 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 148 

Figure 5.59 Variance of number of flexural members in DS = 3 obtained by Method 2 for 

low (0.6) and high (0.9) coefficient of correlation of member capacities, set of 

ground motion records. 149 

Figure 5.60 Expected repair cost obtained by Method 1 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, set of ground motion records. 149 

Figure 5.61 Expected repair cost obtained by Method 2 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, set of ground motion records. 150 

Figure 5.62 Variance of repair cost obtained by Method 1 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, set of ground motion records. 150 

Figure 5.63 Variance of repair cost obtained by Method 2 for low (0.6) and high (0.9) 

coefficient of correlation of member capacities, set of ground motion records. 151 

Figure 6.1 Repair cost estimates based on combined method of damage analysis, set of 

ground motion records. 156 

Figure 6.2 Expectation of repair cost estimate and one-sigma confidence intervals 

obtained by combined method of damage analysis, set of ground motion records. 157 

Figure 6.3 Standard deviation of repair cost estimate obtained by combined method of 

damage analysis, set of ground motion records. 157 

Figure 7.1 Column model 161 

Figure 7.2.  Force-deformation characteristics of the shear spring (left) and flexural 

spring (right). 162 

Figure 7.3 Failure region and safe region in the Ω space. 164 

Figure 7.4 Surface Ωz for different values of IDR 166 

Figure 7.5 Surface Ωz for different values  of α 166 

Figure 7.6 Site-specific fragility function and CDF of capacity for the "normal strength" 

design. 171 



xvi 

Figure 7.7 Site-specific fragility functions for “normal strength” design for different 

values of α 172 

Figure 7.8 Site-specific fragility function and CDF of capacity for the "over-strength" 

design. 174 

Figure 7.9 Site-specific fragility functions for “over-strength” design for different values 

of α 174 

Figure 7.10 Site-specific fragility function and CDF of capacity for the "under-strength" 

design. 175 

Figure 7.11 Site-specific fragility functions for “over-strength” design for different values 

of α 175 

Figure 7.12 Site-specific fragility functions for the "normal strength", "under-strength" 

and "over-strength" design ( α= 0.0001). 176 





xviii 



1 

1 Introduction 

The primary focus of the present study is structural damage estimation. Damage 

estimation is a vital part of the seismic performance evaluation of buildings and other 

structures with respect to multiple performance objectives. In turn, the proper evaluation 

of seismic performance is essential for decision making involved in managing the risk to 

building, bridges, and other infrastructure in seismically active areas. Today, the 

earthquake engineering community faces new challenges that are brought about by the 

latest needs of the real estate development and management industries. The safety of 

buildings and other structures used to be the main concern of designers, owners, and 

regulators. The development of modern building codes has provided society with 

guidelines that serve well for achieving the required safety levels.  However, nowadays 

other issues are becoming significant for owners and risk managers. Providing that safety 

requirements are met, the questions being asked now are “how much does it cost to 

repair?”, “how long it will be shut down in case of the earthquake?”, etc. These questions 

relate to the economic aspect of the seismic performance of real estate. Given the 

multiple performance objectives, accurate damage estimation becomes more important 

than ever. The issues involved in the decision-making process with respect to various 

performance objectives and the role of damage estimation in this process are discussed in 

detail in Sections 2.1 and 2.2, respectively.  

Depending on the decision maker’s needs, a building’s seismic performance can 

be evaluated on different levels of accuracy. A rough performance estimate can be 

obtained by category-based techniques, where all facilities are subdivided into classes 
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that are specified by some formal feature and/or parameters. For example, such classes 

may be: reinforced-concrete shear-wall building higher than 7 stories, or single-span 

bridge with monolithic abutment. Then a performance prediction model is built on the 

observed seismic performance of all available samples within the category. This approach 

is used, among others, by Hart and Srinivasan (1994) and by Basoz and Kiremidjian 

(1999).  

More advanced techniques include specific building information in the damage 

analysis, such as particular design features and the site seismic hazard. The information 

about structural design is usually included in a finite element structural model.  The 

structural model is used for carrying out a structural analysis. Damage analysis is then 

executed based on the results of the structural analysis. If better performance prediction is 

desired by the decision maker, then more site-specific information can be incorporated in 

the structural analysis and the analysis can be closer to the real-life behavior of the 

structure. For a relatively rough analysis, a simplified building model, like a shear beam, 

can be used in a pushover analysis. If more accurate results are desired, then more 

sophisticated structural models should be used, such as detailed finite-element models 

together with dynamic time-history simulation. Accordingly, the damage estimation 

technique should match the accuracy of the structural analysis.  

Here is where the key point of the present study lies. It is apparent that structural 

analysis tools are making steady progress in increasing the accuracy of models. More and 

more features of real structure behavior are included in the mathematical models, such as 

shear-flexure interaction or complex load interaction in 3-D. However, it will be shown 

that current damage analysis techniques in some cases do not match the enhanced 
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performance of the advanced structural analysis tools, making these advances largely 

wasted for loss estimation studies. Indeed, since the seismic performance assessment is 

based both on structural analysis and damage analysis, the inaccurate damage evaluation 

prevents reliable performance estimation from being achieved. The highly accurate 

structural analysis will not contribute to the final goal – accurate performance estimation, 

because the structural analysis results will be diluted by the larger errors at the stage of 

the damage estimation. Thus, the goal here is to develop improved methods of damage 

estimation that are capable of providing the results with an accuracy that matches the 

accuracy of the most sophisticated structural models.  

From a practical perspective, as it is mentioned before, if more precise 

performance estimation is desired, then more site-specific information should be included 

in the analysis and more complicated analysis should be performed. It is true for the 

structural analysis and it is true for the damage analysis. In general, this means that the 

better performance estimation requires more effort and expense to perform the analysis. 

Such efforts are not justified for all real estate risk management problems. In most cases a 

high-end solution is unnecessary. However, there are problems when maximum accuracy 

is necessary despite the cost of achieving it. This is the case when calibration of less 

complex methods of performance analysis is needed; that is, the sophisticated method 

must provide the most accurate solution so that the performance of simplified techniques 

may be judged by how close their results are to the “exact” one. This is also the case 

when evaluation of the unique and expensive facilities is performed, where the additional 

expense for the more complicated analysis is justified.   
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Before we proceed with the introduction to the different damage estimation 

approaches, we want to point out that increasing utilization of site-specific information in 

the seismic performance analysis can lead to a potential problem, related to the inherent 

difficulty of experimental verification of the site-specific analysis results. A more 

detailed discussion of this problem is given in Section 2.3. Another problem of seismic 

performance evaluation that can arise is due to the different sensitivity of the decision-

making process to the errors in performance assessment for different decision criteria. 

The issues relevant to this problem are also considered in Section 2.3  

At the present time, the common tools of general purpose damage analysis are 

fragility functions that are used for uncoupled damage analysis. These functions establish 

a probabilistic relation between structural response to seismic loading and the resulting 

damage to individual components. Historically, fragility functions were developed within 

nuclear engineering to evaluate the seismic resistance of nuclear reactors with respect to 

operational or safety failure. Later, their area of application was extended to other fields, 

such as estimation of the seismic resistance of electrical equipment or the seismic 

performance of civil engineering structures such as bridges and buildings. For all these 

applications, fragility functions proved to be convenient, versatile and reasonably 

accurate tools of damage estimation.  

In order to use fragility functions for a general, multiple criteria performance 

analysis, they must be applied to a broader range of objects than previously and serve for 

evaluation of a broader range of issues. The objects for damage evaluation can be any 

damageable piece of the structure or nonstructural components, such as beams, columns, 

partitions, windows, equipment, furniture, etc. The loading parameters (input to a 
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fragility function) can be spectral acceleration Sa, inter-story drift ratio (IDR), ductility 

demand, peak ground acceleration (PGA), etc., with the latter having been most heavily 

utilized before. The assessed damage can be fracture, full or partial loss of functionality, 

toppling, leakage, cracking, spalling, etc. As we can see, this amounts to a significant 

extension of fragility functions’ applications. The adequacy of fragility functions and 

uncoupled damage analysis as tools to handle all of this newly introduced variety of 

problems can not be taken for granted. Indeed, we shall see that fragility functions as a 

part of uncoupled damage analysis have certain limitations, especially in the area of 

structural damage estimation. Chapter 3 provides a rigorous mathematical description of 

fragility functions from the perspective of structural reliability theory. The theory 

identifies the limitations of fragility functions and provides a foundation for devising a 

coupled approach to structural response and damage estimation.    

 Using the results presented in Chapter 3, we have developed a coupled approach 

to structural analysis and damage estimation that does not have the shortcomings of the 

uncoupled damage analysis. Within the proposed approach, we have developed a method 

of damage estimation that is referred to as Method 1 henceforth. Seismic damage has 

been estimated for some chosen case-study facilities by the proposed method and also by 

the uncoupled method. Chapter 4 describes the case studies and provides the results of 

damage estimation performed by the different techniques.  

The problem with multiple damage states is explored in Section 3.2 and Chapters 

5 and 6. Section 3.2 discusses theoretical issues arising from the multiple damage state 

case. Chapter 5 presents a case study of structures that consist of members with multiple 

damage states. Damage of the structure is evaluated by the existing methods and by the 
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proposed method of damage analysis. The same chapter describes how repair cost can be 

calculated based on the known damage state. The repair cost estimates are obtained for 

damage states that have been evaluated by different damage analysis methods. Results 

are compared in terms of both a damage measure (number of damaged members) and 

repair cost.  A combined approach to damage analysis is developed in Chapter 6. To 

demonstrate a practical value of the proposed combined damage evaluation technique, the 

repair cost of an example structure is evaluated.  

Chapter 7 deals with the problem of using fragility functions for structural health 

monitoring applications. It considers a model of a reinforced-concrete column and 

demonstrates that fragility functions applicable to in-situ structural members may differ 

from fragility functions that are developed using experimental data from in-lab test 

results.  
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2 Methods and challenges of performance-based earthquake 
engineering 

2.1 Decision making for a real estate owner 

Seismic performance is a vital characteristic of buildings and other structures for 

all agents that are involved in operations with real estate located in seismically affected 

areas. How well a particular building will perform during an earthquake at some point in 

the future is important because it affects the present value of the property. In particular, at 

any present time, a real estate owner can face a set of seismic risk-management options to 

choose from: do nothing, sell the property, perform seismic retrofit or buy earthquake 

insurance. Likewise, a potential owner (a person who wants to buy a real estate property) 

faces similar choices: do not buy, buy and do nothing, buy and retrofit, buy and insure. 

 

Figure 2.1 Example of utility function for decision making based on safety. 

The process of making a choice between several alternatives can be analyzed by 

decision theory. Here we outline a simple procedure of formal decision making process. 

This analysis does not consider uncertainty in the outcomes or risk preferences of 

decision makers. The general approach of decision theory states that the best choice is the 

one that gives the highest utility among different options (for details about utility and 

Safety 

Utility 

Sac 

U(Sac) 
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decision theory see, for example, Resnik 1987). Calculation of utilities for different 

options depends on the decision maker’s objectives and preferences. When applying this 

concept to the case of a real estate owner or a buyer, usually the most prevalent concern 

is safety. In terms of decision theory, this means that the higher the safety of some option, 

the higher is its utility, meaning that utility is the increasing function of safety. Normally, 

it suffices to use a very simplistic utility function to account for the matter of safety. It is 

convenient to utilize a step function like one shown in the Figure 2.1. Such function 

basically states that any option with the safety less than some acceptable level should be 

rejected. When the safety is higher than Sac, the utility is constant, implying that there is 

no marginal benefit from increasing safety beyond the acceptable level. This situation 

reflects an approach of real estate owners, where Sac represents the safety level provided 

by modern building codes. Alternatively, for some owners, the acceptable level of safety 

is the one that meets minimum legal requirements. In both cases, once the safety 

requirement is satisfied, he or she does not care if the safety level is significantly higher 

than Sac or just barely exceeds the threshold value.   

If several options meet the safety requirement, then the owner can use some other 

criteria in order to choose between these options. For many owners, it appears that the 

other important issue that affects decision making is economic performance. There are 

different ways one can measure the economic performance of buildings and other 

structures with respect to seismic activity. Some of the quantities that are important for 

economic performance are repair cost and downtime. The repair cost represents the direct 

losses that the owner can incur – it is an uncertain expense associated with owning real 

estate. Downtime is the total time required to make the facility operational again and it 
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can be related to both direct and indirect losses, where “direct” losses are understood as 

decrease of value (e.g., cash outflow) and “indirect” losses refer to missed opportunities 

to acquire value (loss of profit due to business shut down). For example, for the 

residential owner, the downtime could be the time when the building is not livable. 

Therefore, temporary lodging would be needed, which means that the owner would bear 

the direct rental expenses associated with the lodging. For the commercial real estate, the 

downtime induces a loss of profit, which may be considered as the indirect loss. Clearly, 

both direct and indirect potential seismic losses associated with different options can 

affect the owner’s choice. Depending on the preferences of a particular owner, a utility 

function can be defined for repair cost and downtime.  

Implementation of the decision choices usually involves some cost for the 

decision maker. For example, if a potential buyer decides to buy a property he will have 

to pay the purchase price. Similarly, if he resolves in favor of retrofitting measures or 

purchasing earthquake insurance, he will have to bear the price of the retrofit or insurance 

premium. The cost of each choice has a certain negative utility for the decision maker as 

well. Summing the utilities of the implementation cost and the future benefits, the option 

with the highest utility can be found. An illustration of the decision-making procedure for 

a current building owner is shown in Figure 2.2. In this example, the building owner can 

choose between three options: retrofit, insure or do nothing. By analysis, the owner can 

determine the option that maximizes his utility. In this case, all choices are associated 

with losing value: retrofit cost, insurance premium, future deductible and future losses 

that can include repair cost and downtime. Therefore, the best option minimizes the total 

loss. 
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Figure 2.2 Example of a decision making process for a real estate owner. 

The decision making process presented by Figure 2.2 disregards the uncertainty of 

the future losses and discounting of the future losses. A more sophisticated analysis 

would use the expected value of the utility of the future losses and benefits discounted to 

the present time, that is, use their present value (PV); see, for example, Beck et al. 2002. 

For the purpose of the present study it suffices to note that the optimal choice is based on 

a formal decision making process. An essential part of this process is evaluation of future 

losses that can be expressed in terms of repair cost or downtime or some other 

parameters. In the following chapters, we shall consider the ways to calculate these 

parameters.  

2.2 Methods of performance-based earthquake engineering 

The decision-making procedure described in Chapter 2.1 can be performed only if 

reliable estimates of building performance are available. Obtaining such estimates is not a 

trivial problem. The quantities of interest, such as the expected number of lives lost, 

repair cost and downtime depend on a huge number of uncertain variables. The number 

1. Retrofit U1 = U( Retrofit Cost + 
              Future Losses ) 

2. Insure U2 = U(Insurance Premium + 
Future Deductible)  

3. Do nothing U3 = U(Future Losses)  

Ub = max(Ui) 

Chose option 

with utility Ub 
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of lives lost is one of the measures of the safety performance of buildings. The analysis of 

the safety of buildings and other structures has long been the subject of study of structural 

reliability theory. We give here a brief overview of the structural reliability approach. 

2.2.1 Overview of structural reliability theory for seismic safety 

Structural reliability theory for analysis of seismic safety usually does not directly 

consider such safety measures as expected number of lost lives. Instead, it deals with the 

events that can be directly related to the deaths caused by an earthquake. Such events are 

usually referred to as life safety failure (LSF). Two examples of LSF are total structural 

collapse and partial structural collapse.  The problem of interest for practical applications 

is finding the probability of LSF. In general, this probability can be calculated according 

to the following probability integral 

 ( ) ( ) SS
XQ

xdqdxqfLSFP
F

S∫
Ω

= ,
,

 (2.1)  

where Q is a vector of random variables that fully define the seismic excitation (ground 

acceleration time history is commonly used); XS is a vector of random variables defining 

the values of all relevant structural properties; q and xS are particular values of the 

random vectors Q and XS, respectively; ( )S
XQ

xqf S ,
,

 is the joint probability density 

function of random vectors Q and XS; and ΩF is the failure region comprising all the 

values of Q and XS for which LSF occurs. 

  For convenience of calculation, the failure region is usually given a 

mathematical description as follows. Define a function ( )Sxqg ,  in such a way that it 

possesses the following property 
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  ( ) 0, <Sxqg   F
Sxq Ω∈],[  (2.2) 

meaning that region of negative values of ( )Sxqg ,  coincides with the failure region. 

Function ( )Sxqg ,  is called a limit-state function for the LSF. Then the probability of LSF 

becomes 

 ( ) ( )
( )

S

xqg

S
XQ

xdqdxqfLSFP
S

S∫
<

=
0,

,
,  (2.3) 

Limit-state functions can be defined in a number of ways. One example is to 

define it in terms of maximum inter-story drift ratio (IDR) 

 ( )Sxqg ,  = ( )S
ml xqdd ,−  (2.4) 

where dm is the maximum IDR resulting from a particular earthquake excitation q  

applied to a structure with properties xS; dl is a chosen threshold value. This limit-state 

function implies that life safety failure occurs once the threshold value is exceeded: dm > 

dl. Therefore, this approach assumes that it is likely that the structure undergoes partial or 

complete collapse once the maximum IDR exceeds the threshold value. The choice of 

threshold value depends on a structure type and may be based on experimental or field 

observations. Substituting (2.4) into (2.3), we obtain a special case of the structural 

reliability integral 

   ( ) ( )
( )

S

xqdd

S
XQ

xdqdxqfLSFP
S

ml

S∫
<

=
,

,
,          (2.5)  

Evaluation of integral 2.3 (or 2.5) is not a trivial task because vectors Q and XS 

can contain up to several thousand variables and calculation of the function ( )Sxqg ,  is 
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often computationally expensive because it involves a nonlinear structural analysis. A 

number of methods have been developed to estimate integral (2.3). Some of them are 

FORM, SORM and various Monte Carlo simulation based techniques (see, for example, 

Au and Beck, 2001a and Au and Beck, 2001b).  

The well-developed methods of structural reliability are designed for estimation 

of the safety performance of structures. They do not provide ready tools for estimation of 

the economic performance of real estate. The development of such tools is on the current 

agenda of the earthquake engineering community. In this work, we shall discuss the 

approaches and methods used for development of such tools in detail. 

2.2.2 Performance-based earthquake engineering framing equation 

2.2.2.1 Standard integral form for arbitrary decision variables 

Economic performance of real estate depends on more variables than safety 

performance. From Equation 2.1, it can be seen that in dealing with safety issues, 

structural reliability theory considers the sets of random variables that describe the 

ground motion and the structural properties. However, the knowledge of these variables 

is not sufficient for estimation of many important performance criteria, such as repair cost 

or downtime. For example, parameters like equipment price or labor cost are essential for 

estimation of the building repair/replacement cost. Including all the variables that affect 

the economic performance of the real estate into (2.1) leads to 

 P(EF) = ( ) mdxdqdmxqf
EF

MXQ∫
Ω

,,,,   (2.6) 

where Q defines ground motion time history as before, X contains both structural and 

nonstructural properties of the real estate (nonstructural properties can be the properties 
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of the building nonstructural elements or the building contents), M is composed of 

variables that represents market conditions (prices, availability of materials and 

contractors, etc.); ( )mxqf MXQ ,,,,  is a joint probability density function of all the 

variables; EF is an event that is classified as an economic failure and ΩEF is the failure 

region for EF. The term “economic failure” is chosen to be consistent with “life safety 

failure.” For different decision makers, EF can mean different things. For example, for an 

owner of commercial real estate, economic failure can mean that the repair cost is higher 

than some acceptable level. Alternatively, the owner may be intolerant to a downtime that 

is too long.      

The limit function for EF is defined in a way similar to (2.2), with nonstructural 

properties and market conditions included in the independent variables 

 ( ) 0,, <mxqg   EFmxq Ω∈],,[  (2.7) 

Depending on the priorities of the decision maker, the limit-state function can be 

defined in various ways. For example, it can be expressed in terms of repair cost or some 

other performance criteria. For repair cost, the limit-state function can be defined 

similarly to (2.4) as: ( ) ( )mxqCCmxqg Rl ,,,, −= . For the present study, we shall use a 

general formulation of the limit-state function 

 ( ) ( )mxqDVDVmxqg l ,,,, −=  (2.8) 

where DV (decision variable) stands for repair cost, downtime or any other variable that 

is important for a decision maker and DVl is a chosen threshold value. The name 

“decision variable” is adopted because it is involved in the performance criterion that is 
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used in the decision making process subsequent to the building evaluation. Using (2.7) 

and (2.8), we can rewrite (2.6) in the following way 

 P(DV > DVl) = ( )
( )

mdxdqdmxqf
lDVmxqDV

MXQ∫
>,,

,, ,,  (2.9) 

Comparing (2.9) and (2.5), it can be seen that in general the problem of economic 

performance evaluation is more complex than the problem of safety performance 

evaluation. First, the number of integration variables is larger, implying a corresponding 

increase in the dimensions of the integration space and the computational effort.  The 

second hurdle stems from the fact that the limit function (2.8) is more difficult to evaluate 

for economic decision variables than for decision variables that are typically used in 

safety performance analysis. We shall now discuss this problem in more detail. 

2.2.2.2 Evaluation of damage and decision variables 

Consider the limit function (2.4) for the safety integral (2.5). Besides the 

designated threshold value of IDR dl, it contains the maximum IDR which is a function 

of the ground motion and structural properties ( ),( S
m xqd ). The problem of evaluation of 

),( S
m xqd  is equivalent to the problem of evaluation of the structural response of the 

building with the properties defined by xS subjected to the seismic excitation q. This 

problem has been extensively addressed in the past. A number of structural simulation 

software packages are freely or commercially available. New tools (e.g., OpenSees, 

PEERC, 2004) are under development to provide better accuracy in structural simulation. 

Therefore, the limit-state function (2.4) can be readily evaluated with existing tools.  

Consider now the limit function (2.8) with the repair cost as DV. The repair cost 

of the whole structure can be found as a function of the repair or replacement cost of each 
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of its damaged components. Therefore, in order to evaluate (2.8), we need to know the 

repair or replacement cost of each building assembly as a function of vector ],,[ mxq , 

where small letters, as before, stand for particular values of the corresponding random 

variables ],,[ MXQ . For instance, take the repair/replacement cost of a window pane. 

The question to answer is: what is this cost for the particular window given that the 

building is subjected to the ground motion q, properties of the building structural and 

non-structural components are x, and market prices for parts and labor are m? Let us 

assume that the window is not repairable, meaning that it can only be left as it is (if 

intact) or it can be replaced (if broken). Then if the market conditions are known, we 

know the cost of replacement of the window with the known dimensions and quality. 

Also, given the ground motion q and building properties x, we can utilize structural 

properties xS to obtain the structural response of the building (standard structural 

simulation packages can be used). With this kind of information, it is still unknown what 

has happened to the window. The window may or may not need replacement, meaning 

that the window replacement cost may be the market price of the replacement or zero. 

Therefore, we can not determine the exact value of the window repair/replacement cost 

and, consequently, we can not evaluate the limit-state function (2.8).   

To find the window repair/replacement cost, we need additional information. This 

additional information is associated with the damage of the window. It can be easily seen 

that once we know how badly the window is damaged, we can determine the 

consequences with a high degree of certainty. For the window example, the 

repair/replacement cost can be defined with absolute certainty if the market conditions 

are also known, where the known market conditions mean that a particular supplier has 
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been chosen from the market participants and the supplier’s price for the window (cR) is 

fixed. Therefore, if the window is broken, then it needs to be replaced (repair/replacement 

cost equals the market price of the replacement), while if the window is intact then it does 

not need replacement (repair/replacement cost equals zero). Thus, for a particular 

window we have 

 




=

=
=

""
""0

brokenDSc
ntactiDS

C
R

R   (2.10) 

where cR ∈ m is the known market window replacement price and DS denotes the damage 

state of the window. A similar relation between damage and repair cost (or any other DV) 

can be obtained for every assembly. Such a relation for repair costs is routinely 

established by cost estimators for post-earthquake conditions once the damage to the 

building is known. 

Therefore, once the damage state of the window is known, the repair/replacement 

cost can be easily found. We can use the concept of damage states for the estimation of 

the limit-state function (2.8). We assume that the damage state of a component is 

independent of the market conditions m (for example, damage state of a window does not 

depend on how much the window replacement cost is). It is also obvious that the damage 

to the window depends on the magnitude of the applied damaging factor and the ability 

of the window to resist this damaging factor, that is, its “strength.” In our problem, the 

magnitude of the damaging factor (or factors) depends on the seismic excitation q and the 

strength of the members and other relevant structural properties that are contained in x. 

Therefore, it is reasonable to assume that the damage state of the window is a function of 
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x and q: DS = gDS(q, x). The general expression for the window repair/replacement cost 

can be rewritten as follows 

 
),(

)),,((),,,(

RR

DSRR

cDSC

mxqgCmxqC

=

=
 (2.11)    

It is easy to see that (2.10) gives the repair replacement cost (2.11) for the 

particular assembly (a window), leading to the limit-state function (2.8) trivially.  

2.2.2.3 Performance-based earthquake engineering framing equation 

Applying the idea of damage states to the general case, we can find the 

probability of DV exceeding the threshold value DVl in a way that is different from (2.9). 

Consider now a case of arbitrary DV estimated for the structure under consideration and 

the limit-state function in the form (2.8). Suppose that the damage state is some function 

of the seismic excitation Q and building properties X: DS = gDS (Q, X). Suppose further 

that damage states are defined in such a way that DV is a function of the damage state and 

market conditions only 

  
),(

)),,((),,(

MDSDV

MXQgDVMXQDV DS

=

=
 (2.12) 

where DS is a vector of damage states of all the assemblies that affects the value of DV. 

Clearly, (2.12) is generalization of (2.11) for the DV of the whole structure as opposed to 

the DV of a particular assembly (a window).   

DV is a function of random variables and so it is a random variable itself. Thus, 

the probability of exceeding threshold value DVl can be found through integration of the 

probability density function (PDF) of DV 
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 ( )∫
∞

=>
LDV

DVL dvvfDVDVP )(  (2.13) 

where fDV (v) is the PDF of DV. Using (2.12), it is possible to find the PDF of DV as a 

marginal PDF of the joint PDF of DV and the damage measure DS 

 ( ) dsddsvfvf DSDVDV ∫
∞

∞−

= ,)( ,  (2.14) 

where DS is a vector of the damage states of all the damageable components. Actually, 

DS is a discrete random variable whose positive values range over all the combinations of 

the damage states of all components. Therefore, we can count all the possible 

combinations and number them in some order. If there exist N different values of DS (N 

different combinations of damage states), then (2.14) can be rewritten as 

 ( )∑
=

=
N

i
iDSDVDV dsvfvf

1
, ,)(   (2.15) 

For the i-th value of the damage state vector DS, we can find the joint PDF as a 

product of the joint probability mass function of DS and the conditional PDF of DV given 

DS = dsi 

  ( ) ( ) ( )iDSiDSDViDSDV dspdsvfdsvf |, |, =  (2.16) 

Consider the conditional PDF: ( )iDSDV dsvf || . It can be found by differentiating 

the corresponding conditional cumulative distribution function CDF: ( )iDSDV dsvF || . This 

CDF can be evaluated in the following way 

 ( ) ( )iiDSDV dsDSvDVPdsvF =≤= |||  
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Substituting (2.12), and assuming independence of damage state and market conditions, 

we obtain 

 

( ) ( )
( )
( )
( )iv

i

ii

iiDSDV

MP
vdsMDVP

dsDSvdsMDVP

dsDSvDSMDVPdsvF

,

|

),(
|),(

|),(|

Ω∈=
≤=

=≤=

=≤=

 

where iv,Ω  is the domain in the space of market conditions variables M, which satisfies 

the following properties: ivM ,Ω∈  if and only if the inequality vdsMDV i ≤),(  holds. 

Thus, assuming that the joint PDF of the market conditions variables is known, the 

conditional CDF is found as 

 ( ) ( ) mdmfdsvF
iv

MiDSDV ∫
Ω

=
,

||  

and the conditional PDF is 

 ( ) ( ) mdmf
dv
ddsvf

iv

MiDSDV ∫
Ω

=
,

||  (2.17) 

Therefore once the function DV(M,DS) is defined, the conditional PDF 

( )iDSDV dsvf ||  can be evaluated. Substituting (2.16) and (2.15) into (2.13), the probability 

of DV exceeding a threshold value DVl can be written as 

 ( ) ( )∫ ∑
∞

=

=>
LDV

N

i
iDSiDSDVL dvdspdsvfDVDVP

0
| |)(  (2.18) 

where ( )iDSDV dsvf ||  is obtained according to (2.17).  
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The joint probability mass function ( )iDS dsp  can be found by the approach 

similar to one that is used for the estimation of ( )vf DV . Thus, the set of structural response 

parameters that are vital for determining DS should be chosen. This kind of idea has been 

used for further modification of (2.18). As a result, the analytical methods of seismic 

performance evaluation for civil engineering structures with respect to multiple 

performance objectives have been proposed (Porter 2000, Porter et al. 2001, Beck et al. 

1999, Irfanoglu 2000). Also, the integral (2.18) is rewritten in the form that is proposed to 

be the basis of performance-based earthquake engineering (PBEE) (Cornell and 

Krawinkler 2000, Krawinkler 2002, Miranda and Aslani 2003) as follows 

 
( ) ( ){ ( )

( )} ( ) ( )imdedpdimfimedpf

edpdmpdmDMDVDVPDVDVP

IMIMEDP

iEDPDM

N

i
ill

)|(

||

|

|
1 0 0

∑∫ ∫
=

∞ ∞

=>=>
 (2.19) 

where damage measure (DM) is the authors’ term for DS used before, that is, a vector 

containing the discrete damage states of all damageable components (henceforth, we shall 

use DM while considering a whole structure and DS for a separate component of the 

structure); EDP is a vector of engineering demand parameters containing structural 

response characteristics such as inter-story drift ratio (IDR), peak diaphragm acceleration 

(PDA), etc.; IM is an intensity measure of the ground motion such as spectral acceleration 

(Sa ), peak ground acceleration (PGA), etc.; ( )il dmDMDVDVP => |  is the 

probability of the decision variable being greater than DVl conditioned on knowledge of 

the component damage states, i = 1...N, where N  is the number of possible damage states 

for vector DM; ( )edpdmp iEDPDM ||  is the conditional probability mass function that is 

equal to the probability that the structure suffered the damage defined by dmi given that it 
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has been subjected to the EDP whose value is equal to edp;  )|(| imedpf IMEDP  is the 

conditional PDF of the structural response (EDP) given that the intensity of the ground 

motion is im; )(imf IM  is the PDF of the seismic event intensity measure (IM) given that 

an earthquake has occurred. Equation (2.19) gives the probability of a decision variable 

being greater than some threshold value given that an earthquake has happened. 

 

Figure 2.3 Implementation structure of the PEER PBEE framing equation. 

Note that the left-hand sides of (2.9) and (2.19) are the same and so the integrals 

on the right-hand side must be also equal. However, the equality of two integrals can not 

be taken for granted. The integration over state space variables Q, X, M is implicit in 

(2.19) as opposed to the explicit integral form (2.9). Whether the implicit integration 

scheme is equivalent to the explicit integral depends on the choice of the intermediate 

variables used in the analysis: EDP, DM. One of the goals of the present study is to 

develop guidelines that can be used for adopting the proper EDP and DM.  

The factoring of the joint PDF in (2.9) into the product chain of conditional joint 

PDFs (2.19) provides an additional advantage. The whole problem can be divided into 

four separate parts as shown Figure 2.3. Each part can be analyzed independently of the 
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others, by the experts that are most qualified in the related area: seismic hazard analysis, 

structural analysis, damage analysis and loss analysis. Also, the analysis can be 

performed in parallel to provide a quicker result. 

2.2.2.4 Fragility functions in PBEE framework 

One of the essential parts of the PBEE framing equation is the conditional 

probability of being in particular damage state given the response: ( )edpdmp iEDPDM ||  . 

We shall investigate this expression in detail. The vector DM is a collection of damage 

states of every damageable component, where damage state is a discrete variable defining 

the severity of the damage for each component: DM =[DS1, DS2, …DSNa], where DSi is 

the random variable that is equal to the damage state (DS) of the i-th damageable 

assembly, and Na is the total number of the damageable assemblies in the structure. In 

practice, it usually suffices to deal with the state of each component of DM independently 

rather than with the whole vector at once. Therefore, we consider the j-th damageable 

component: ( )edpEDPnDSP j == | , where n = 1…k is the damage state number, k 

being the number of possible damage states of the j-th component. It is also reasonable to 

chose EDPs in such a way that only one variable in the vector EDP is relevant for 

evaluation of the damage of the j-th component. Denote this variable by EDPj. Note that 

in general the number of damageable components is not equal to the number of EDPs, 

making the adopted indexing not quite general. However, we shall use the notation for 

simplicity, since it does not adversely affect the following considerations. Assuming that 

none of the other members of EDP except EDPj provides any information about the 

damage state of the j-th component, it is easy to see 
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  ( )edpEDPnDSP j == |  = ( )zEDPnDSP jj == |  (2.20) 

where z  is the known value of the  j-th member of EDP: EDPj.  

Damage states for each component are numbered according to the severity of the 

damage, giving higher numbers to the more severe damage.  For example, for a window 

we can define three damage states: “undamaged,” “cracked” and “broken.” Then if the j-

th component happens to be a window, the damage measure is defined as follows: DS j = 

0 means that the window is undamaged, DS j = 1 corresponds to the window being 

“cracked” and DS j = 2 corresponds to the window being “broken.” These damage states 

are mutually exclusive and collectively exhaustive, meaning that none of them can 

happen together with the any of the others and there are no other outcomes that can 

happen to the window. For such damage states, the conditional probability of the j-th 

component being in n-th damage state can be found as follows 

 ( )zEDPnDSP jj == |  = ( )zEDPnDSP jj =≥ |  – ( )zEDPnDSP jj =+≥ |1 (2.21) 

where ( )zEDPnDSP jj =≥ |  is the fragility function of the j-th component with respect 

to n-th damage state, expressed in terms of EDPj. Therefore, fragility functions in PBEE 

are used to relate structural response and the induced damage. In the present study, we 

shall examine how well the fragility functions can serve this purpose for commonly 

encountered earthquake engineering applications. 

2.3 Challenges of PBEE design 

The difficulty in making seismic performance predictions for real estate comes, in 

the first place, from the incomplete knowledge about factors that define the seismic 

performance. The most important factors are associated with the seismic loading and the 
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ability of the structure to resist this loading. All the particular characteristics of both the 

seismic load and the structure are important for obtaining accurate estimates of decision 

variables. Different sites are capable of producing ground motions with different 

characteristics, such as intensity or frequency content. These characteristics define the 

destructive potential of the seismic event. Similarly, different structures have different 

strengths to resist the seismic loading. Destructiveness of the seismic event and the 

strength of the structure are the key factors that determine the overall seismic 

performance. Therefore, by including the knowledge of the particular characteristics of 

the ground motions specific to the site under consideration, one can improve the accuracy 

of seismic performance analysis. The same is true for the details of a particular building 

design. Indeed, the incorporation of site-specific seismic hazard information and 

building-specific structural information into seismic performance analysis is an 

increasingly popular way to improve the accuracy of seismic performance predictions.    

However, the site-specific approach has a shortcoming: the more site-specific 

information is included in the mathematical models of seismic performance, the less 

verifiable those models are. For example, suppose that a decision maker uses a future 

repair cost as a criterion for his decision regarding a shear wall high-rise building located 

at a distance of 5 miles from a fault.  Suppose further, that some estimate of the expected 

facility repair cost is obtained as a result of the seismic performance evaluation carried 

out by a method that is based on detailed information about the site hazard, such as soil 

conditions and seismicity of the fault, and a detailed structural model of the building. It 

turns out that the estimate can be confirmed by neither real-life observations nor 

experimental results. This can be seen from the following considerations.  
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In general, mathematical model results are verified by comparison with the results 

of experimental testing, where all the conditions of the test set up are equivalent to the 

conditions used in the mathematical model. Alternatively, verification can be performed 

through observations of naturally occurring phenomena in conditions similar to the ones 

used in the mathematical models. In the present example, the mathematical model 

includes the properties of the whole structure and surrounding terrain, therefore, exactly 

the same building and its environment must be recreated for the full-scale experimental 

program, which is practically impossible. Similarly, it is unrealistic to find a set of 

identical buildings and seismic conditions somewhere among already existing civil 

engineering structures, due to the great variety of designs and site conditions. Therefore, 

reliable verification of the mathematical model results is practically impossible.   

The other potential problem comes from the increasing number of performance 

criteria. For example, consider two cases of decision making: one is based on safety and 

the other is based on money losses. Suppose in both cases a decision maker has a choice 

between two options: mitigate or do not mitigate.  

First, consider safety-based decision making. Suppose, as a measure of safety, the 

number of lost lives is used. The performance analysis provides the following estimates 

for the two decision options: if mitigation is chosen then the future life losses are 

estimated to be from 2 to 4; if “do nothing” option is chosen then the life losses can be 

from 3 to 7. The usual decision making approach in such situation is conservative: choose 

the option with the best worst outcome. The outcomes include both implementation 

expenses and future losses 

Option: “mitigate,” the worst outcome: – (cost of mitigation + 4 lives) 
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Option “do nothing,” the worst outcome:  – 7 lives 

Clearly, the “mitigate” option would be preferable if the cost of mitigation is less 

than “cost” of three lives. The cost of mitigation is estimated $1.75M. Putting a price tag 

on a human life is a very sensitive issue that is usually avoided. At best, a very broad 

range of numbers can be inferred based on some real-life situations, such as court 

decisions. Facing the uncertainty of human life “cost,” one usually uses a conservative 

approach picking up a value from high end of the cost range. For most of the practical 

applications, this value is much higher than the mitigation cost. Therefore, the cost of 

mitigation might be assumed to be negligible in comparison with the value of human life, 

justifying the implementation of mitigation measures irrespective of the cost of such 

measures. Now, suppose we have developed a more accurate performance estimation 

method that gives a narrower range than in the original loss estimates:  in case of 

mitigation, the future life losses are from 2.5 to 3; in case of no action, the future life 

losses can be from 3.5 to 4.5. The worst case outcomes become 

Option: “mitigate,” the worst outcome: – (cost of mitigation + 3 lives) 

Option: “do nothing,” the worst outcome:  – 4.5 lives 

The rational decision would be to choose the mitigate option if the cost of 

mitigation is less than the “cost” of 1.5 lives. However, since the human life is assumed 

to be practically invaluable, the mitigation option has to be chosen again, disregarding its 

cost. Therefore, in this case the decision making process that is based on safety criteria is 

insensitive to the accuracy of the seismic performance estimation method.   

Second, consider economic-based decision making. Suppose the performance 

analysis provides the following estimates for the two decision options: if mitigation is 
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chosen then the future money losses are estimated to be from $2.0 M to $4.0 M; if “do 

nothing” option is chosen then the money losses can be from $3.0 M to $7.0 M. 

Exploiting the same conservative approach, we have the worst case estimates 

Option: “mitigate,” the worst outcome: – (1.75 + 4.0) =  – $5.75 M 

Option: “do nothing,” the worst outcome:  – $7.0 M  

Clearly, the mitigation option is more attractive, since it provides lesser total 

losses. Now, suppose we have developed a more accurate performance estimation 

method that provides the following loss estimates:  in case of mitigation, the future 

money losses are from $2.5 M to $3.0 M; in case of no action the future money losses can 

be from $3.5 M to $4.5 M. The worst case outcomes become: 

Option: “mitigate,” the worst outcome: – (1.75 + 3.0) =  – $4.75 M 

Option: “do nothing,” the worst outcome:  – $4.5 M  

It can be seen that the optimal choice has changed. The best strategy in this case is 

to do nothing. Therefore, in this case the decision making process that is based on 

economic criteria is sensitive to the accuracy of the seismic performance estimation 

technique.  

The same conclusion may also be derived from the following considerations. The 

economic performance is determined by a monetary value that is expected to be lost in 

the future due to seismic activity.  The money equivalent life safety performance is 

defined by a number of lives lost and the value of a human life. Therefore, uncertainty of 

the monetary value loss contributes directly to uncertainty of the overall economic 

performance. But uncertainty of the overall money equivalent life safety performance 

combines both uncertainty of lives lost and very high uncertainty of the life value. Thus, 
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an increase of accuracy of the future money lost estimation (decrease of uncertainty) has 

an immediate impact on estimation of economic performance, possibly affecting a 

decision making process. The same increase of accuracy of the estimated future lives lost 

has a lesser impact on estimation of life safety performance, because it is swamped by the 

high uncertainty of human life value. Consequently, the impact on decision making 

should be less significant. 

As we have seen, there are at least two reasons for a more thorough examination 

of seismic performance estimation techniques. First, since the results of a site-specific 

analysis are practically unverifiable, the number of assumptions and simplifications made 

in the mathematical model has to be minimized and each assumption has to be accurately 

estimated in terms of the margin of error that it introduces. Second, utilization of 

economic performance criteria in decision making makes the optimal choice more 

sensitive to the accuracy of the seismic performance estimation. Therefore, it is especially 

important for presumably “more accurate” performance estimates to be reliable and 

unbiased, which again depends on the assumptions that are made during the development 

of a particular method of seismic performance estimation. 
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3 Theory of fragility functions 

The PBEE methodology should be applicable to any type of structure that is 

exposed to seismic risk, so equation (2.19) is relevant for buildings, bridges and other 

structures of concern. Usually such structures consist of many substructures, assemblies 

and subassemblies. Since an arbitrary DV is considered, damage to any of the structural 

components may affect the value of the DV. Therefore, fragility functions should be 

developed for any kind of component that can be damaged: building structural and 

nonstructural members, building contents, etc. This is a significant extension from the 

original area of application of the fragility functions in nuclear engineering, where 

fragility functions are primarily used to estimate damage to nuclear reactors. We 

investigate henceforth whether such an extension can lead to potential problems. 

3.1 Single damage state 

In this section, we shall consider the fragility functions of a component with 

respect to a single damage state. However, for generality, we use a notation that is 

consistent with the multiple damage state case but we do not discuss in this section the 

specific issues arising from the possible multiplicity of the damage states, leaving these 

problems for Section 3.2.  

By definition, the fragility function of an arbitrary element is the probability of 

the element being in the n-th or higher damage state, given that EDP is equal to z 

 Fn(z) = ( )zEDPnDSP =≥ |  (3.1) 

We apply this definition to a generic type of component, meaning that it may 

apply to structural or nonstructural components or building contents. We refer to this 
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generic component as “an element.” Thus, consider an element under seismic loading, 

which has k damage states. In general, the occurrence of damage to the element depends 

on various conditions: the earthquake characteristics, design of the structure affected by 

the earthquake, property of the elements of the structure including the properties of the 

element under consideration. As before, we denote the variables that define the 

earthquake properties (time history) by the vector Q, and variables that define the 

structural properties by the vector X. For the vector X, we can write X = [X1, X2,…, Xi,…], 

where vectors Xj contains the properties of the j-th element, j = 1,2…m, and m is the 

number of elements in the structure. Suppose there exists a function gn(X, Q) with the 

following property 

 gn(X, Q) < 0    DS ≥ n   (3.2) 

It is said in structural reliability theory that the function gn(X, Q) defines the limit state of 

the n-th damage state. Given that (3.2) holds, we can rewrite (3.1) as follows 

 Fn(z) = P(gn(X, Q) < 0 | EDP = z) (3.3) 

Consider the conditioning part EDP = z. Normally, EDP is chosen in a way to 

provide some information about the damage state, that is, the knowledge that EDP = z 

gives some information about the event gn(X, Q) < 0. In other words, once we know that 

EDP = z, the conditional probability of the event gn(X, Q) < 0 is different from the 

probability of the event gn(X, Q) < 0 without knowledge of the value of EDP. Therefore, 

the limit-state function and EDP are probabilistically related. It is convenient to assume 

that the limit-state function and EDP are also functionally related, meaning that the limit-

state function gn(X, Q) can be written as an explicit function of EDP: gn(EDP, X, Q). 

Then the fragility function assumes the following form 
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 Fn(z) = P(gn(EDP, X, Q) < 0 | EDP = z)  

  = P (gn (z, X, Q) < 0 | EDP = z) (3.4) 

The conditioning part in (3.4) can be dropped in the case that there is no more 

relevant information in the event EDP = z, or, using the theory of probability 

terminology, events gn(z, X, Q) < 0 and EDP = z are independent 

  Fn(z) = P(gn(z, X, Q) < 0) (3.5) 

However, the general form of fragility function (3.5) is very inconvenient for 

practical use. In order to find the probability of the event gn(z, X, Q) < 0, it is necessary to 

integrate over the whole space of random variables {X, Q } 

 
( )

qdxdqxfQXzgP
QXzg

QXn

n

∫
<

=<
0,,

, ),()0),,((  (3.6) 

where ( )qxf QX ,,  is the joint probability density function of the random variables that are 

contained in vectors X and Q. The calculation of the integral (3.6) for the purpose of  

finding the fragility function is computationally expensive (we have to calculate the 

whole integral for each value of z). Also, the resulting fragility function has little practical 

value. Vectors X and Q and their joint PDF are different for each particular site and for 

each particular structure. Therefore, the fragility function calculated according to (3.6) is 

valid only for that particular element within the particular structure at the particular site. 

This leaves no room for utilizing the obtained fragility function for estimation of the 

fragility of the same element as part of another structure at some other site. Effectively, it 

means that the computational effort that is necessary for estimation of (3.6) would not be 

transferable. 
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To avoid this problem, let us assume that the limit function gn(X, Q) can be 

rewritten in the following way  

 gn(X, Q) = gn(EDP(X, Q), Xi),  (3.7) 

where Xi are the properties of the element under consideration. Therefore, (3.5) can be 

rewritten 

 Fn(z) = P(gn(z, Xi) < 0) (3.8) 

and the fragility function can be estimated by the following integral 

 ( )( ) ( )
( )

i
Xzg

iXin xdxfXzgP
in

i∫
<

=<
0,

0,  (3.9) 

where ( )iX xf
i

 is the joint probability density of the element properties Xi. Since Xi 

includes just a small fraction of the random variables that are contained in the vectors X 

and Q, the integral (3.9) can be calculated much more easily than (3.6). Moreover, the 

fragility function calculated by (3.9) remains the same for all elements with the 

equivalent properties (same Xi and ( )iX xf
i , ) and does not depend on any external 

conditions. Therefore, the problem is made very generic and more convenient to treat.  

However, such simplification can lead to potential problems that can be seen by 

considering the key step of the solution: the assumption that gn(X, Q) = gn(EDP(X, Q), 

Xi). Making this transformation, we need to satisfy the assumption (3.2), which for the 

current case takes the form 

  gn(EDP(X, Q), Xi) < 0    DS ≥ n (3.10)   

Whether (3.10) is satisfied obviously depends on the choice of EDP and possibly 

some other conditions. Note that violation of (3.10) effectively invalidates (3.9), since 
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once the event gn(EDP(X, Q), Xi) < 0 is not equivalent to the event DS ≥ n, the 

corresponding probabilities are not guaranteed to be equal either. Therefore, the 

consequence of violation of (3.10) will be that the function estimated by (3.9) is not equal 

to the desired function (3.3). In Chapter 4, we shall consider the problems of the 

appropriate choice of EDP and conditions to ensure assumption (3.10) is valid. Also, we 

shall deal with the estimation of the possible error arising from its violation. 

Assuming that (3.10) holds, it is convenient to introduce a new random variable 

that is usually called “capacity.” The capacity is assumed to be the only property of the 

element that is relevant for determining its damage. Therefore, all the rest of the 

properties of the element, which are contained in Xi, are used only for calculating the 

capacity: C = C(Xi). Then the limit-state function is usually formulated as follows 

 gn( X, Q ) = gn( EDP(X, Q),C( Xi)) (3.11) 

 = C( Xi ) - EDP(X, Q)       

We shall use this model to estimate the fragility function. Substituting (3.11) into (3.3) 

 Fn(z) = P(C( Xi) - EDP(X, Q) < 0 | EDP = z) (3.12) 

 = P(C( Xi ) - z < 0 | EDP = z) 

 = P(C( Xi ) < z | EDP = z) 

Assuming that C( Xi ) < z and EDP = z are independent, we find the fragility function as 

 Fn(z) = P(C( Xi ) < z ) (3.13) 

We can conclude that if all of the aforementioned conditions are satisfied, then the 

fragility function of the element is a cumulative distribution function of its capacity, 

providing that capacity is a continuous random variable. To distinguish the particular 
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capacity defined in (3.11) – (3.13) from other properties of the element that are similar in 

nature we call it “capacity with respect to n-th damage state, formulated in terms of 

EDP.”  

3.1.1 Fragility functions of the structural members 

So far, all assumptions that have been made to arrive at formulation (3.13) have 

not involved any special provisions regarding the particular characteristics of the element 

under consideration. The derivation is made for an abstract, generic element. From now 

on we shall consider elements that represent the structural members of a facility, where 

we define structural member as a component that significantly affects structural response. 

Examples of structural members are beams, columns, shear walls, etc. 

We start by exploring the general functional form of engineering demand 

parameters: EDP(X, Q). In practice, all EDP that are used in earthquake engineering can 

be subdivided into two groups: the parameters that depend purely on the excitation Q, 

such as PGA, PGV, and other similar characteristics of ground motion, and EDPs that 

depend on the structural response and so both on the excitation Q and the properties of 

the structure X. Some of the latter EDPs are: Inter-story Drift Ratio (IDR), ductility 

demand, peak diaphragm acceleration (PDA), spectral acceleration Sa (since it depends 

on the first natural period and damping of the structure), various damage indices – the list 

includes practically all of the structural response parameters that are being used by the 

earthquake engineering community. We shall consider the EDPs of the second type as 

“structure-dependent.” Since such EDPs depend on the structure (X) in general, it is 

reasonable to assume that they depend on the each structural member (Xi) in particular. 

Otherwise, if an element does not have any effect on the structural response (EDP does 



37 

not depend on Xi), then that element is not a structural member. Therefore we can write 

down EDP in the unfolded form 

 ),,,,,(),( 21 QXXXEDPQXEDP i KK=  (3.14) 

 Substitute (3.14) into (3.12) 

 )),,,,,(|)(()( 21 zQXXXEDPzXCPzF ii
n =<= KK  (3.15) 

The classic understanding of conditioning presumes no other knowledge beside 

the value of EDP: EDP = z. It corresponds to the case of observation of actual structural 

behavior, where EDP is the only relevant observable parameter and we know neither the 

properties of the structural members (Xj, j = 1…m) nor the earthquake time history (Q). In 

that case, the only available information is that an earthquake has happened and EDP = z. 

This situation is applicable to structural health monitoring. 

Recall that the conditioning part in (3.15) can be ignored if and only if events 

EDP(X1, X2,…, Xi ,…, Q) = z  and C(Xi) < z are independent. Equivalently, the 

conditioning in (3.15) can be discarded if and only if event EDP(X1, X2,…, Xi ,…, Q) = z 

does not contain any information about the event C(Xi) < z. In the present case, the events 

at issue are not independent in general, because both of them depend on the properties of 

the element, for which the fragility function is estimated. Therefore, there is some 

information in the event EDP(X1, X2,…, Xi ,…, Q) = z, which can change the probability 

of the event C(Xi) < z. Mathematically, a certain care is needed for the proper application 

of conditioning in the multivariate state space (X, Q). A standard way to do it is by 

transformation to a different coordinate system. Let us introduce a coordinate system Y = 
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ψ(X, Q) with total number of coordinates (yi) equal to the total number of variables in 

vectors X and Q. The transformation ψ is defined as follows 

 ψ:    y1 =EDP,      yi = ei, i = 2..np   (3.16) 

where ei are the members of the vector [X, Q]  and np is the length of the vector [X, Q]. 

Therefore, the new coordinates Y are equal to the old coordinates [X, Q] except that the 

first variable is equal to EDP. In Y coordinates, (3.15) takes form 

 Fn(z) = P(C( Yi ) < z | Y1 = z) (3.17) 

where Yi = Xi  - the properties of the i-th element. Equation (3.17) can be evaluated with 

the standard integral expression 
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where the conditional PDF is found as a ratio of the joint PDF of vector ],[ 1YY i  and PDF 

of 1Y : ( ) ( ) ( )zfzyfzyf YiYYiYY ii 111
,| ,| = . The joint PDFs for any subset of the state space 

variables Y can be found from the joint PDF of the whole set ( )yfY  as marginal PDFs 
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where, for each integral, yR are the remaining variables of the vector Y. The joint PDF of 

Y can be obtained from the joint PDF of [X, Q] and transformation of variables (3.16) via 

a conventional mathematical technique (see for example Williams, 2001) 
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where X* = [X, Q], ψ -1(.) is the inverse of the transformation (3.16) and |J(.)| is Jacobian 

of the inverse transformation: ( )ji dydx∗det , i, j = 1..np. 

In general, a fragility function calculated according to (3.18) does not necessarily 

equal the CDF of capacity (3.13). Therefore, using (3.13), although convenient, can lead 

to potential errors in estimation of the damage. Expression (3.18) provides the exact 

fragility function, but due to mathematical complexity it can only be evaluated for 

relatively simple cases. Some of such instances can still be of a practical value. For 

example, in Chapter 6, we consider in detail the shear fragility of a reinforced concrete 

column, which is evaluated according to both (3.13) and (3.18).   

Now, consider a problem of structural damage evaluation using a structural 

model. This problem is relevant for a case when we want to evaluate seismic 

performance of an existing structure by developing its structural model and performing 

structural analysis with the model. It is also the case for a building that is planned for 

construction, where the seismic performance evaluation of the design is usually based on 

a structural model as well. We shall see that in this case we can perform a much better 

structural damage evaluation using additional information available from the model, 

other than known values of EDPs.  

When seismic performance evaluation is conducted for a structural model, the 

value of an EDP is obtained as a result of the mathematical simulation rather than as a 

result of real-life observation. To perform this mathematical simulation, it is necessary to 

have some preliminary work completed: first, a structural model of the structure has to be 
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developed, and second, all the parameters of the model have to have known values. 

Therefore, some suset of the structural member properties (Xj, j = 1…m) has to be 

specified before the EDP value is obtained. We denote the subset of the member 

properties that defines the structural behavior by Xi
S (Xi

S ⊂ Xj). In general, the properties 

of the element, which are used for the calculation of the EDP, do not coincide with the 

element properties controlling the occurrence of damage. For the chosen limit-state 

function, damage depends on capacity. We define a subset of Xi that defines the capacity 

of the element by Xi
C. It general, the subsets Xi

S and Xi
C do not coincide, but it is typical 

that they overlap: Xi
C ∩ Xi

S ≠ ∅. The size of overlapping depends on the definition of 

damage states, on the choice of EDP and on how the structural model is built and how 

detailed the structural model is. Incorporating all the available information into the 

conditioning part of (3.15), we can obtain the probability of an element being in the n-th 

or higher damage state as follows 

 ),,,),,,,(|)(()( 111 KKKK
S
i

S
i

SSS
i

SC
i

n
SM xXxXzQXXEDPzXCPzF ===<=  (3.21) 

where we denote a fragility function with the known structural model properties included 

in the conditioning part by )(zF n
SM and xj , j = 1…m are the specified values of member 

properties Xj.  

Let us assume that the intersection of the sets Xi
S and Xi

C is not a null set. Then we 

denote by Xi
CO the part of parameters that affect only the capacity and are not important 

for the structural model, by Xi
CS the parameters that enter both structural model and 

capacity function (Xi
CS = Xi

C ∩ Xi
S ) and by Xi

SO the parameters that are input into 



41 

structural model but do not affect the capacity of the element. Then vector Xi can be 

rewritten in terms of these sub-vectors: Xi = [Xi
CO, Xi

CS, Xi
SO], and (3.21) takes the form 
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Now, beside EDP = z, the conditioning part contains another piece of 

information, which is relevant to the event )( C
iXC < z. This piece is CS

i
CS
i xX = . Taking 

this additional information into account, we can find a probability of the n-th or higher 

damage state as  
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The fragility function with conditioning on structural properties becomes a CDF 

of the capacity of the element where some part of the elements properties is known and 

the other part is uncertain (random). Therefore, the uncertainty in the damage estimation 

is reduced by the knowledge of some parameters. In the limit it is possible to have a case 

where we have the complete knowledge about damage. To see this, consider an element 

for which the following condition holds  

 Xi
C ⊂ Xi

S  (3.24) 

The condition (3.24) states that all the properties that define the element’s capacity are 

also needed for development of the structural model, meaning that knowledge of 

structural properties implies a full knowledge of “capacity” properties. Then, a 

probability of being in the n-th or higher damage state can be found in a way similar to 

(3.23) as follows  
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Because of the known value of )( C
ixC , such a structural model based fragility 

function becomes deterministic, providing full knowledge about occurrence of damage. 

Depending on )( C
ixC , the fragility function takes on the value of 0 or 1. In practice, the 

knowledge of the element properties is usually neglected for the purpose of the damage 

analysis by fragility functions. Ignoring this information can lead to a less accurate 

damage estimation. We shall investigate this in detail in Chapter 4 by considering 

damage of the sample model: a reinforced-concrete moment frame. 

For the case study in Chapter 4, we shall explore the situation where subset Xi
C 

belongs to Xi
S, providing complete information about Xi

C once Xi
S is known (condition 

3.24 holds). This case requires the use of (3.25) for damage estimation. It also should 

provide an upper bound on the error arising from neglecting information about element 

structural properties.  

From the theoretical consideration presented above, it can be seen that difference 

between a classic fragility function ( )(zF n ) and a structural model based fragility 

function ( )(zF n
SM ) depends on the size of overlapping of the two sets of element 

properties: Xi
CS = Xi

C ∩ Xi
S. If the two sets do not overlap then there is no difference 

between )(zF n  and )(zF n
SM , implying that the standard fragility function provides the 
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best accuracy possible. This case is normally applicable to nonstructural building 

components and building contents because it is usually assumed that they do not affect 

the response behavior (EDPs) of the structure.   

For structural members, the situation is different. It is almost always the case that 

there is an overlapping between structural model properties and capacity properties: Xi
C 

∩ Xi
S ≠ ∅. In that case we can always achieve better accuracy by using a structural model 

based fragility function )(zF n
SM  rather than a standard fragility function )(zF n .  

3.2 Multiple damage states 

In practice, it is often desirable to consider more than one damage state for some 

damageable component. Multiple damage states can be used to represent different levels 

of damage (for example, a window can have three levels of damage: intact, cracked or 

broken), or to represent different modes of failure. An example of the latter could be a 

heavy and valuable piece of equipment for which the following three damage states can 

be considered: sliding more than some threshold value, overturning and loss of 

functionality (breaking). In this section, we shall consider the theoretical implications of 

the multiple damage states case.  

Suppose that we want to consider several damage states for a damageable 

component. Let us assume that there are N +1 damage states: DS=0,..., N, where DS = 0 

corresponds to the undamaged state. For any given level of response EDP = z, there 

exists a set of possible outcomes (damage levels) 

 (Ω | z) = {DS = 0, DS = 1, DS = 2,…, DS = N} (3.26) 
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The obvious goal is to find the probability distribution associated with this set, so 

that we can determine the probability of occurrence of all possible outcomes including 

individual events (DS = i) and unions and intersections of events. First, we assume the 

most general relation between damage states, meaning that all unions and intersections of 

events and subsets of the events of the state space have non-zero probability associated 

with them. We will use fragility functions for the analysis. Assume that we have found N 

fragility functions 

 ( ) ( ) ( )zEDPNDSDSDSPzEDPDSPzF ==∪∪=∪===≥= |21|11 K  (3.27) 

 ( ) ( ) ( )zEDPNDSDSDSPzEDPDSPzF ==∪∪=∪===≥= |32|22 K   
 … 
 ( ) ( ) ( )zEDPNDSPzEDPNDSPzF N ====≥= ||   

Now, consider the union of two events  

 { } { } Ω==∪≥ 01 DSDS  (3.28) 

then it follows 

 ( ) ( ) ( ) 10101 ==∩≥−=+≥ DSDSPDSPDSP  

regrouping the terms we have 

 ( ) ( ) ( )01110 =∩≥+≥−== DSDSPDSPDSP  

where we have skipped the conditioning on EDP for convenience. It is always true 

that ( ) 001 ==∩≥ DSDSP , because DS = 0 means that the element is undamaged and 

the event DS ≥ 1 means that some damage has occurred and so, the event DS=0 ∩ DS ≥ 1 

can not happen. Then, the probability of an element being undamaged is 

 ( ) ( ) ( )zFzEDPDSPzEDPDSP 11|11|0 −==≥−===  (3.29) 
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Similarly for DS = 1  

 { } { } { }112 ≥==∪≥ DSDSDS  (3.30) 

 ( ) ( ) ( ) ( )11212 ≥==∩≥−=+≥ DSPDSDSPDSPDSP  

 ( ) ( ) ( ) ( )12211 =∩≥+≥−≥== DSDSPDSPDSPDSP  

Assuming that events DS ≥ 2 and DS = 1 are also mutually exclusive, then 

 ( ) ( ) ( )zFzFzEDPDSP 21|1 −===  (3.31)  

Applying the same procedure to the remaining damage states, we can obtain    

 ( ) ( )zFzEDPDSP 11|0 −===  (3.32) 

 ( ) ( ) ( ) 11,| 1 −=−=== + NizFzFzEDPiDSP ii K  

 ( ) ( )zFzEDPNDSP N=== |  

providing that the following holds  

 DS = i, i = 0…N are mutually exclusive (3.33) 

The assumption (3.33) is usually satisfied if the damage states are defined to 

represent increasing severity of damage. However, if the damage states represent 

different failure modes, then they are not necessarily mutually exclusive. In the 

aforementioned example of heavy piece of equipment, all the damage states are not 

exclusive. For example, the equipment can just break, or it can break and overturn, or it 

can break and slide. Therefore, the damage states can happen in any combination, making 

the damage analysis more complicated. We shall discuss such a case in Section 3.2.1. 

From (3.32), we can easily derive the following property of a set of fragility 

functions: for every value of the argument z, the fragility functions provide a decreasing 
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sequence of values as DS goes from 1 to N. Since P( DS = i | EDP = z ) ≥ 0 for any i, it 

follows              

 1 ≥  F1(z) ≥  F2(z) ≥… ≥ FN(z)      ∀ z (3.34) 

The condition (3.34) holds even when the damage states are not mutually 

exclusive. We can show this as follows. Consider events DS ≥ i and DS ≥ i+1. Clearly 

 { } { }NDSiDSiDSNDSiDSiDS =∪∪+=∪=⊆=∪∪+=∪+= KK 121  (3.35) 

 { } { } iiDSiDS ∀≥⊆+≥ 1   

so giving 

 izEDPiDSPzEDPiDSP ∀=≥≤=+≥ )|()|1(  

 Figure 3.1 shows a set of fragility functions for the case of five damage states and 

the corresponding probabilities of damage state occurrence. Figure 3.2 shows the 

probability space structure for different values of EDP: EDP = z1, EDP = z2. Probability 

space is presented in terms of sets Ai denoting the event DS ≥ i.  

It is important to remember that (3.32) can be used to find the probability 

distribution on damage states, conditioned on EDP, only if property (3.33) holds. In many 

cases, this can be assured by the appropriate definitions of the damage states. Otherwise, 

we can not use the simple and convenient relations (3.32), and we need to work out some 

other approaches that are discussed in Section 3.2.2. 
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Figure 3.1 Fragility functions for multiple damage states 

 

Figure 3.2 Damage states probability space for different values of EDP 
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3.2.1 Fragility functions (not mutually exclusive damage states) 

Consider the case when the damage states are not mutually exclusive. First, we 

will investigate a nonstructural element that has three damage states. We assume, as 

before, that nonzero damage states exclude the zero damage state, but DS = 1 and DS =2 

are not mutually exclusive. Thus, probability of the event DS = 1 ∩ DS = 2 is not zero. 

In general, the event DS = 1 ∩ DS = 2 represents an extra level of damage, that is 

equivalent to a damage state that is defined as the onset of both DS = 1 and DS = 2. In 

this case there are four distinct events corresponding to the four damage states: DS = 0, 

DS = 1, DS = 2, DS = 1 ∩ DS = 2. Since the assumption (3.33) is not satisfied, the 

relations (3.32) take the following form 

 ( ) ( )zFzEDPDSP 11|0 −===  (3.36)  

 ( ) ( ) ( ) ( )zEDPDSDSPzFzFzEDPDSP ==∩=+−=== |12|1 21  

 ( ) ( )zFzEDPDSP 2|2 ===  

Now we can not find the probabilities of all the damage states of interest from the 

standard set of fragility functions alone. From the second equation, we can only find the 

difference between the probability of DS = 1 and the probability of DS = 1 ∩ DS = 2. 

Therefore, the set of two fragility functions does not have enough information to 

determine the probabilities of all events, if the damage states are not disjoint. For the case 

of two damage states, we need one more function that is defined as follows 

 ( ) ( )zEDPDSDSPzF ==∩== |1212  (3.37) 

then the probability of each damage state is given by 

 ( ) ( )zFzEDPDSP 11|0 −===  (3.38) 
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 ( ) ( ) ( ) ( )zFzFzFzEDPDSP 1221|1 +−===  

 ( ) ( )zFzEDPDSP 2|2 ===  

 ( ) ( )zFzEDPDSDSP 12|12 ===∩=  

For the general case of N +1 damage states (including undamaged), the number of 

all possible distinct events includes all combinations of the damage states and can be 

found as follows 

 1
121

+







−

++







+








=

N
NNN

N total K  (3.39) 

The first term is equal to N and represents the individual events. Note that this is 

exactly the number of distinct events if all the damage states are mutually exclusive. The 

second term represents the combination of two types of damage: DS = i ∩ DS = j. The 

third term is the number of all possible combinations of three damage states and so on. 

The total number of all possible distinct events is given by 

 12 −= NtotalN  (3.40) 

In order to find the probability of all these events, we have to have exactly N total 

fragility functions. This is achievable but quite cumbersome. In some cases, this situation 

can be avoided by a proper definition of the damage states or by taking into account 

additional considerations, as shown in the Section 3.2.2.  

3.2.2 Selecting damage states 

There are cases where it is possible to reduce the number of distinct events even if 

the damage states are not mutually exclusive. Consider an element with three damage 

states: DS = 0, DS = 1, DS = 2, and assume that DS = 1 and DS = 2 are not mutually 
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exclusive, implying that there is a nonzero probability of the event DS =1 ∩ DS = 2. In 

practice, if DS = 2 represents a more severe damage state, it can be true that damage 

states DS = 2 and DS = 1 ∩ DS = 2 are equivalent in terms of their consequences. This 

can be written as a condition 

 ( ) ( )212 =∩=== DSDSCDSC  (3.41) 

where C( ) is some function representing the consequences of the event. Some common 

consequence functions are cost of repair or downtime. Then we can combine these two 

damage states into one  

 { } { } { }122*2 =∩=∪=== DSDSDSDS  (3.42) 

For this case, DS = 2* is equivalent to DS = 2. Furthermore, we introduce another 

new event 

  { } { } { }12\1*1 =∩==== DSDSDSDS  (3.43) 

This means that DS = 1* is equivalent to DS = 1, without DS = 2 as shown on Figure 3.3. 

The redefined damage states {DS = 0, DS = 1*, DS = 2*} are indeed mutually exclusive. 

Therefore, the theory developed for mutually exclusive events is applicable. Moreover, 

we do not even have to find the new fragility functions. Consider the second equation of 

the relations (3.36) for the events DS = 0, DS = 1, DS = 2  

 ( ) ( ) ( ) ( )zFzFzEDPDSDSPzEDPDSP 21|12|1 −===∩=−==  (3.44) 
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Figure 3.3 Original state space and redefined state space with corresponding probability measures 

It can be seen that the left-hand side of this equation is just the probability of DS = 1*. 

Using the fact that DS = 2 is equivalent to DS = 2*, we can write 

 ( ) ( )zFzEDPDSP 11|0 −===  (3.45) 

 ( ) ( ) ( )zFzFzEDPDSP 21|*1 −===  

 ( ) ( )zFzEDPDSP 2|*2 ===  

Fragility functions that have been obtained for damage states DS = 1, DS = 2 are 

applicable to the damage states DS = 1*, DS = 2* in the most simple and effective form 

(3.32). Therefore, the rule for choosing the damage states might be as follows: the 

consequences of a higher damage state should include the consequences of a lower 

damage state, so that condition (3.41) will be satisfied. This is usually easy to accomplish 

for the case where damage states represent the severity of damage.  

In case of different failure modes, distinct damage states may cause very different 

consequences. Take the example of a heavy piece of equipment with three damage states 

of interest: sliding more than some threshold value, overturning and breaking. The 

potential respective consequences for these damage states are: blocking egress, injuring a 
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human, and lost of functionality. Clearly, none of the outcomes can be encompassed by 

the other. Therefore, condition (3.41) can not be satisfied and we have to develop 

fragility functions for all intersections of events (3.39). In the case where developing the 

complete set of fragility functions is not possible, it may be reasonable to introduce the 

assumption of independence of damage states. Then the probabilities of all events can be 

found with the standard set of fragility functions (P(DS ≥ i | EDP = z), i = 1..N, where N 

is the number of damage states). In particular, for a component with two damage states, 

we have ( ) ( ) ( )zEDPDSPzEDPDSPzEDPDSDSP =======∩= |1|2|12 , so 

substituting into (3.36), we have 

 ( ) ( )zFzEDPDSP 11|0 −===  (3.46) 

 ( ) ( ) ( )( ) ( )( )zFzFzFzEDPDSP 221 1|1 −−===  

 ( ) ( )zFzEDPDSP 2|2 ===  

Thus, probabilities of all events of interest are expressed in term of fragility functions. 

For a general case of N damage states, the assumption of mutual independence of all 

damage states allows one to obtain probabilities of each damage state in terms of N 

standard fragility functions. The accuracy of such a simplified model depends on whether 

the damage states are indeed independent. If the different damage states are only slightly 

correlated, the assumption of independence can be a reasonable practical option to exploit 

for damage analysis.   
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4 Damage estimation coupled with structural analysis (single 
damage state) 

4.1 EDP dependent on damage 

4.1.1 Methods of damage estimation 

In structural reliability theory, the probability of damage is estimated by 

integration over the failure region in the corresponding state space (Section 2.2.1). Given 

the complexity of earthquake engineering applications, the integral is usually calculated 

by simulation. Figure 4.1 shows the structure of the state space and relation between 

different groups of variables in the space. Notations in this figure are consistent with 

those used previously: Q – properties of the earthquake, XSO – properties of the structural 

members that are used for structural analysis only, XCS – properties of the structural 

members that are used both for structural analysis and damage analysis, XCO – properties 

that are used for damage analysis only, EDP – engineering demand parameters, DM –

damage measure.  Early  

 

Figure 4.1 Relations between the variables in the state space. 

In the case that the structural response defining properties overlap with damage 

defining properties (Xi
CS ≠ ∅), one should use care while disaggregating the analysis into 

two separate modules, one for structural analysis and one for damage analysis. A 
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disaggregated analysis assumes that only the vector of EDPs is transferred from the 

structural analysis to the damage analysis. Utilizing relation (3.13) instead of (3.23) or 

(3.25) assumes that there is no knowledge about XCS when doing the damage analysis, 

contradicting the fact that these properties have already been defined during the structural 

analysis. Therefore, in the case of Monte Carlo simulation, two distinct samples of XCS 

are used: one for structural analysis and another one for damage analysis, as shown in 

Figure 4.2. It is foreseeable that such approach could reduce the accuracy of damage 

estimation. If equations (3.23) or (3.25) are used for damage analysis, the integration 

does not have inconsistencies. But this approach requires that damage analysis is 

performed, in part, together with structural analysis as shown in Figure 4.3. We shall 

investigate the difference between a coupled damage analysis (Figure 4.3) and an 

uncoupled damage analysis (Figure 4.2) by studying three separate simulation methods 

for damage assessment.  

    

Figure 4.2 Uncoupled structural and damage analyses. 

Structural analysis Damage 
analysis 
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DM EDP

XSO
XCO XCS

XCS
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Figure 4.3 Coupled structural and damage analyses 

Method 1. Vector X = [XSO, XCS, XCO] is randomly sampled according to its probability 

distribution at the start of each simulation. EDP is then calculated as a result of a 

nonlinear dynamic time history structural analysis, using these sampled structural 

properties [XSO, XCS] Then DM is calculated according to (3.25) by using the obtained 

values of EDP and the sampled values of XCS and XCO. For each damage calculation, only 

one sample of the structural properties, XCS, is used. To perform the integration over the 

state space of structural random variables, X, they are generated a statistically significant 

number of times. In essence, the method performs a coupled damage analysis with a 

randomized structural model and a structural model based fragility function (3.23). It 

results in an implementation of the scheme presented by Figure 4.3. 

Method 2. Vector XS = [XSO, XCS] is randomly sampled according to its probability 

distribution. EDP is then calculated as a result of a nonlinear dynamic time history 

structural analysis using these sampled structural properties. Then DM is estimated from 

EDP by using (3.13). This is equivalent to ignoring the previous sample of XCS, used in 

the structural analysis, and estimating these damage properties from a new random 
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sample of XCS and XCO. The two samples of XCS are independent and identically 

distributed. Effectively, the method implements the structure shown by Figure 4.2, where 

a part of the structural model is randomized twice: one time for the purpose of structural 

analysis and the other time for the purpose of damage analysis. The method is 

inconsistent because of the “double-counting” of the structural properties XCS. However, 

it provides a desirable disaggregation of the problem and it is often used in to damage 

estimation. 

Method 3. The uncertainty in the structural properties is ignored by taken them to be 

equal to their expected values XS = E[XS], for the purpose of the structural analysis. 

Everything else is the same as in Method 2.  The method is the easiest of all three 

methods to implement in practice, since in the case of fixed excitation (Q), it uses the 

computationally intensive dynamic structural simulation only once.  For this reason, it is 

often used and so it is included in the present study along with Methods 1 and 2. 

In addition to the sampling of structural properties, there exist two ways to apply 

the earthquake load Q. One way is to choose different ground motion time histories (by 

selecting a set of appropriate recorded time histories or by randomly generating the time 

histories from a stochastic ground motion model) and the other way is to use a single time 

history for all simulations. In the latter case, the particular properties of the chosen 

ground motion can be a factor in the final damage estimation. Therefore, three methods 

together with the two ways to apply the earthquake load constitute six different cases of 

analysis that will be studied further.  

For the present study, we consider the case where the structural properties include 

all the damage-related properties, so (3.24) holds and XCO = ∅. Therefore, a structural 
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model based fragility function (3.23) becomes a step function (3.25). Also, we do not 

randomize the structural properties that are not used for damage analysis, XSO. Figure 4.4 

illustrates all cases that are considered in the present study; i.i.d. in the figure stands for 

independent identically distributed random variables; XCO is not shown since it is a null 

set and XSO is a know deterministic value equal to its best estimate, E[XSO ]. 

 

Figure 4.4 Methods used for the sample case study damage estimation. 

It is noted that the idea of Method 1 can be expressed by the following: some 

damage to the structural elements is determined by the structural model and is derivable 

from the results of the structural analysis. In the examples in this chapter, we deal with 

the case when (3.24) holds, therefore damage to the structural elements is completely 
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defined by the structural model. Mathematically, Method 1 represents the correct 

integration performed according to (2.9). Method 2 ignores the damage information 

obtained from the structural analysis and introduces a separate module of damage 

analysis on top of the structural simulation that uses the fragility functions. 

Mathematically, it is equivalent to double integration over the subset of the structural 

properties XCS in (2.9). Method 3 is a variation of the semi-deterministic approach in 

damage estimation: for the sake of computational convenience, the uncertainty of the 

structural properties is ignored while performing the structural analysis. Then at the last 

step, the uncertainty is introduced by fragility functions for the damage estimation. This 

“late” introduction of the structural uncertainty, although convenient, is mathematically 

inconsistent with rigorous damage estimation.        

4.1.2 Structural model description 

The reinforced concrete moment frame shown in Figure 4.5 is chosen as a case 

study. The frame represents the south frame of a 7-story hotel building located in Van 

Nuys, California. For a detailed building and structural model description see Beck et al. 

(2002) and Li and Jirsa (1998). The 2-D model of the frame is developed for the present 

study. The model is a simplified version of the model that was used in Beck et al. (2002). 

The flexural behavior of the beams and columns is represented by one-component 

Giberson beams with plastic hinges at the ends (Sharpe, 1974). Shear deformation for the 

beams and columns is assumed to be elastic and is incorporated in the flexural elements.  

The Q-HYST bi-linear hysteresis (Saiidi and Sozen, 1979) is used to model the stiffness 

degradation of reinforced concrete members in flexure as shown in Figure 4.6. 
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Properties of the reinforced concrete members are taken from the original 

structural drawings (Rissman and Rissman Associates, 1965).  The software program for 

cross-section analysis of reinforced concrete members, UCFyber (ZEvent, 2000), is used 

to calculate parameters of the Q-HYST hysteretic rule of the force-deformation curves for 

each flexural member. Interactions of axial load and flexure and also shear and flexure 

are not considered in the model. The inelastic dynamic analysis program, Ruaumoko 

(Carr, 2001), is used to perform the structural analyses. 

 
Figure 4.5.  Reinforced concrete moment-resisting frame chosen for the case study. 
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Figure 4.6. Flexural members hysteretic rule: Q-HYST. 

 

4.1.3 Damage model 

For the present study, only structural damage is considered. It is assumed that 

each structural member has only two damage states: “undamaged” (DS = 0) and “yield” 

(DS =1). A member is considered to be in damage state “yield” if the yielding point in the 

moment-curvature relations has been reached. Alternatively, the damage state can be 

defined as a reduction of the minimal stiffness from the original value K0 to the post-yield 

value αK0. 

The “yield” damage state of the i-th flexural member can be described by the 

following damage model 

 DS = “yield”   )( iy Xd  < ),(max QXd i  (4.1) 

where )( iy Xd  is the yield curvature of the reinforced concrete member, ),(max QXd i  is 

the maximum curvature attained by the element during the simulation. For each member, 

dy is calculated by UCFyber assuming zero axial load. Since there is no interaction of 

axial load and flexure or shear and flexure in the model, the flexural properties of the 
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member do not depend on the other member properties or load characteristics. Therefore, 

the yield curvature dy of each member depends only on the properties of the member Xi, 

implying that the form (C(Xi )) used in (4.1) is valid. It can be seen that (4.1) is satisfied 

for the damage state and structural model as we have defined them.  

Note that (4.1) is the problem-specific version of (3.10), where the limit-state 

function has been formulated according to the particular features of the element under 

consideration. Therefore, the validity of (4.1) is essential for further analysis because the 

effects of violation of (3.10) can appear in the results of the analysis and disturb the 

whole picture. For example, if we were to use a structural model with axial load – flexure 

interaction, the yield curvature dy would depend on the axial force, meaning that there is a 

dependence on the overall structural properties and earthquake excitation: dy (X, Q). In 

this case (4.1) would not be satisfied regardless of the choice of the member yield model 

)( iy Xd . 

Comparing the limit state model (4.1) with the one used in (3.11) – (3.13), it can 

be noted that )( iy Xd  is, by definition, the capacity of the structural member with respect 

to the “yield” damage state, formulated in terms of maximum curvature idmax . Therefore, 

the maximum curvature idmax  is the EDP chosen for the damage analysis. According to 

(3.13), the fragility function for this case is a CDF of capacity 

 ))(()(1 zXdzF iy <=  (4.2) 

This is the fragility function to be used for the damage estimation in Method 2 and 

Method 3.  
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Consider the chosen EDP – maximum curvature of the element idmax . In order to 

obtain its value, it is necessary to perform a dynamic structural analysis. To do this, we 

need to specify the parameters of the structural model. From the flexural hysteresis rule 

(Figure 4.6), it can be observed that two of the needed parameters are yield moment, My, 

and initial stiffness, K0. From these two parameters, the yield curvature can always be 

derived: dy = My ⁄ K0. Therefore, as a result of the dynamic simulation, the value of 

maximum curvature idmax  for each element and the value of yield curvature are obtained. 

Substituting this information into the conditioning part of (3.21) for the i-th element 

  ),~)(,),(|)(()( max Ki
yi

i
y

i
i

i
y

n
SM dXdzQXdzXdPzF ==<=  (4.3) 
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where i
yd~  is the numeric value of the yield curvature of the i-th element and is drawn 

from the probability distribution defined by (4.2), which has been used during the 

dynamic simulation. Thus, whenever the maximum curvature attained during the 

dynamic simulation exceeds the sampled yield curvature of the element, the element is 

considered to be in damage state “yield.” This is the structural model based fragility 

function that is used for damage estimation by Method 1. 

 Note that i
yd~  is one of the properties of the element, which is known from the 

input structural data and which is also relevant to the “capacity” of the element with 

respect to the “yield” damage state in terms of the maximum curvature. In fact, for the 
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chosen model, this parameter actually is the abovementioned capacity, meaning that 

knowledge of the structural properties provides complete information about the element’s 

capacity. Therefore, the presented model also satisfies (3.24) as intended for the present 

study. 

Once the damage state of each element is determined, the global damage is 

estimated as the number (Nt) of the elements in the “yield” damage state. Since each 

structural member (beam or column) can yield at each of its ends, the number of damaged 

elements is equal to the number of plastic hinges formed. Therefore, the number of 

damageable elements (beam or column ends) is twice of the number of flexural members 

in the frame. For the chosen frame, the total number of flexural members is 119, hence 

there are 238 damageable elements in the frame. For each dynamic structural simulation, 

the number of damaged elements Nt is calculated by afore-described three different 

methods. The results are presented in Section 4.1.6. 

Note that the final goal of the building evaluation is the decision variable. In the 

present study, Nt is chosen to be a performance criteria primarily for demonstration 

purposes and because of the easiness of its calculation. However, this parameter is 

closely related to some important decision variables, such as repair cost. The relation 

between Nt and repair cost can be estimated as follows: if the cost to repair each yielded 

beam or column end is denoted by Cph, then the total cost of repair is CphNt. Therefore, 

the conclusions that are made for Nt are also valid for a decision variable such as building 

repair cost, making the results viable for practical purposes. 
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4.1.4 Interpretation of the chosen damage model 

In earthquake engineering, damage states are used to quantify structural damage 

inflicted by an earthquake. There are different ways to choose damage states. In this 

chapter, we used a damage state that is formulated in terms of a structural state – 

“yielding.”  

In a more conventional approach, damage states are formulated in terms of visible 

signs of deterioration. For example, typical damage states of reinforced concrete 

members can be defined as cracking, concrete crushing, concrete spalling, buckling of 

longitudinal reinforcement and breakage of longitudinal reinforcement. 

It is generally accepted within the earthquake engineering community that the 

structural states of reinforced concrete members (such as “yielding”) are related to the 

visible degradation of the members. There are experimental studies that support this 

relation. For example, Tanaka and Park (1990) conducted a test program that 

demonstrates a very close relation between yielding of longitudinal reinforcement and a 

damage state that they described as “first visible crushing of cover concrete.” Figure 4.7 

shows the test results for one of the eight specimens they tested. It can be seen that 

crushing of cover concrete occurs shortly after the onset of tensile yielding of the 

longitudinal reinforcement. This picture is typical for all eight tested specimens. Crushing 

of cover concrete occurs in close proximity to yielding. In six cases, crushing happened 

shortly after yielding and in two cases just before yielding.  
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Figure 4.7 Relation between force-displacement history and observed damage states of a reinforced 

concrete column (Tanaka and Park, 1990) 

Based on these results, we can interpret a damage state used in this chapter 

(“yielding”) as “first visible crushing of cover concrete,” making the chosen damage 

model fully meaningful in terms of an intuitive (descriptive) understanding of damage.                

4.1.5 Parameters of the damage model and ground motions  

Before the damage analysis by either of three methods can be performed, we need 

to define the probability distribution of the parameters that are important for damage 

analysis. In the present case, the only parameter that is relevant to the damage analysis is 

yield curvature. Therefore, for each element we define its probability distribution by 

specifying the cumulative distribution function of the yield curvature. For the present 
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study, we adopt a lognormal probability distribution. For each element, the parameters of 

the probability distribution are found as follows. The yield moment is assumed to be 

equal to 

 My
i = i

yM̂ x (4.4) 

where i
yM̂  is the best estimate of the yield moment of the i-th element, as calculated by 

UCFyber (ZEvent, 2000) and x is a lognormally distributed random variable with 

expectation E[x] = 1 and the coefficient of variation δ[x] = 0.08, making the yield 

moment a lognormal random variable with expectation E[My
i]= i

yM̂  and coefficient of 

variation δ[My
i] = 0.08. The study by Ellingwood et al. (1980) suggests that coefficient 

of variation 0.08 is a reasonable estimate of uncertainty of the flexural strength of 

reinforced concrete members. The stiffness iK0  is assumed to be known and equal to the 

value calculated by UCFyber (ZEvent, 2000). Therefore, yield curvature is a lognormal 

random variable with the following CDF 

  ( )( )x
ii

yxd KMLNzF i
y

σµ ,ln~)( 0+  (4.5) 

where µx = - 0.0032 and σx = 0.08 are mean and standard variation of ln(x) that has 

normal distribution. These values of µx and σx provide the required expectation and 

coefficient of variation of x. Formula (4.5) is used for generating a randomized structural 

model and as a fragility function (4.2). 

Note that for the present study we are not concerned with effects of the 

uncertainty of the model parameters on the damage estimation. The focus is on an 

investigation of how different ways to implement the uncertainty in the model influence 
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the damage estimation. Therefore, the choice of capacity probability distribution is not of 

high importance here. 

The mass properties and stiffness properties ( iK0 ) of the structural model are 

assumed to be known. Therefore, the natural frequencies of the original (undamaged) 

structural model are the same for all randomly generated samples of the structural model. 

The first natural frequency of the present model is T1 = 1.5 sec., which agrees with the 

value exhibited by the Van Nuys 7-story hotel in the longitudinal direction during the 

1994 Northridge earthquake, as reported by Islam (1996). As the intensity measure of the 

input acceleration time histories, we use linear spectral acceleration Sa calculated for the 

first natural frequency of the model. The software program Bispec (Hachem, 2003) is 

used to determine Sa. Ground motions for the analysis are taken from the set of the 

ground motions developed for the SAC Steel Project (Woodward-Clyde Federal Services, 

1997). We refer to this set as the SAC database. 

4.1.6 Results and conclusions 

In this section, we present the results of damage estimation performed by the three 

afore-described methods in terms of the calculated number Nt of yielded elements. Out of 

all three methods, only Method 1 is strictly correct. Therefore, we treat the results 

obtained by Method 1 as exact and results obtained by the other methods as approximate.  

To compare the damage evaluation techniques, it is reasonable to isolate any other 

factors affecting the damage, such as the uncertainty of the ground motion. Thus, for the 

first analysis, we collect the statistics of total damage Nt calculated by three different 

methods for the same ground motion. For each acceleration time history, we perform 40 

dynamic simulations with the structural model where yield curvature i
yd  is randomly 
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generated for every element. These simulations are used to calculate Nt by Method 1 and 

Method 2. For each acceleration time history, one dynamic simulation is performed with 

the structural model where the yield curvature i
yd  is set equal to its expected value:  

E[ i
yd ], then the total damage Nt is estimated by Method 3.  

Table 4.1 gives the results of damage estimation for the ground motion time 

history LA15 from the SAC database at the level of intensity Sa = 0.5g. It can be seen that 

for this particular ground motion, Method 2 overestimates the damage on average by 

(102.1 – 96.3)/ 96.3 = 6.0% and Method 3 overestimates the damage on average by 

(103.7 – 96.3)/ 96.3 = 7.7%. It can be seen from the data that Method 2 gives a the 

variance for Nt that is 42% of that of Method 1. The variance is underestimated by (76.7 – 

32.2)/ 76.7 = 58%. It is also observed that Method 3 produces a damage estimate with a 

variance that is 6.7% of the variance of the Method 1 estimation.  

The effects that have been observed for this one particular ground motion might 

be occasioned by some particular features of this ground motion. To ensure that similar 

phenomena take place in general, independently of  the  individual  characteristics  of  the  
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Table 4.1. Results of damage estimation for LA15 ground motion at 0.5g. 

Simulation number Nt  Method 1 Nt  Method 2 Nt  Method 3 

1 81 97 106 
2 94 97 104 
3 95 97 103 
4 89 103 104 
5 97 104 103 
6 106 104 97 
7 94 102 103 
8 91 96 108 
9 98 105 105 

10 88 103 102 
11 103 101 104 
12 85 92 108 
13 105 104 103 
14 82 105 101 
15 115 112 106 
16 80 91 104 
17 96 95 106 
18 86 95 104 
19 103 103 101 
20 85 104 106 
21 102 110 106 
22 88 102 104 
23 103 106 103 
24 101 103 103 
25 101 98 101 
26 90 102 103 
27 81 89 102 
28 100 96 105 
29 109 112 105 
30 105 105 102 
31 95 105 106 
32 95 97 103 
33 89 103 104 
34 97 104 103 
35 106 104 97 
36 94 102 103 
37 91 96 108 
38 98 105 105 
39 88 103 102 
40 103 101 104 

Mean 96.3 102.1 103.7 

Variance 76.7 32.2 4.9 
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Table 4.2 Statistical properties of the damage estimation for different ground motion time histories. 

Ground 
motion 

file 

E[Nt] 
Method 1 

E[Nt] 
Method 2 

E[Nt] 
Method 3 

Var[Nt] 
Method 1 

Var[Nt] 
Method 2 

Var[Nt] 
Method 3 

LA01 111.2 115.8 115.9 127.7 62.6 6.5 
LA02 120.1 123.3 118.4 46.0 20.7 3.5 
LA03 106.9 112.9 112.7 125.7 56.7 5.5 
LA05 108.6 112.3 110.4 75.1 32.8 4.5 
LA07 113.1 117.5 118.9 68.3 26.9 6.3 
LA08 103.1 108.6 107.9 157.2 41.6 4.6 
LA10 61.7 65.5 64.9 77.1 74.8 8.4 
LA11 92.6 97.8 97.9 92.9 48.1 6.9 
LA12 147.0 151.5 151.6 157.3 44.6 9.3 
LA13 68.8 72.4 72.0 38.4 27.5 6.1 
LA14 89.3 93.4 94.6 71.7 38.9 4.7 
LA15 96.3 102.1 103.8 76.7 32.2 4.9 
LA16 83.0 87.9 86.8 72.8 41.1 8.0 
LA17 86.9 90.8 91.0 79.1 29.3 3.2 
LA18 96.3 100.4 101.2 96.1 36.5 6.9 
LA19 124.9 129.1 127.0 85.6 44.9 7.3 
LA20 101.6 106.8 106.3 112.2 54.7 7.1 
LA22 109.8 113.0 112.2 45.0 24.3 5.4 
LA23 97.3 99.7 95.4 57.8 30.1 5.3 
LA27 87.4 91.7 93.5 75.6 35.3 2.6 
LA29 98.3 101.0 96.5 105.9 56.8 9.5 
LA30 104.6 111.3 108.6 109.2 49.7 10.3 
LA33 71.4 76.6 74.1 52.2 44.0 8.0 
LA39 91.9 96.8 95.5 63.7 36.5 7.4 
LA41 90.2 93.9 90.8 66.5 39.0 5.7 
LA42 85.0 88.8 86.0 82.0 50.5 7.9 
LA55 77.6 80.9 81.8 71.5 37.0 4.5 
LA56 46.8 49.7 42.2 109.2 59.7 5.1 
LA58 68.2 72.2 71.2 103.7 71.7 7.8 
LA59 132.7 137.5 137.7 47.4 23.9 4.5 
LA60 111.9 115.5 112.0 60.9 36.3 6.9 

Average 
values 96.3 100.5 99.3 84.2 42.2 6.3 

 

input excitation, we conduct an analogous analysis for 30 other acceleration time 

histories from the SAC database. The chosen records and corresponding results are 
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shown in Table 4.2 together with the LA15 time history. All time histories in Table 4.2 

are scaled to provide Sa = 0.5g. The scaling factor does not exceed 2 for all time histories. 

Statistical properties (mean and variance) of the global damage Nt are based on 40 

dynamic simulations for each ground motion. 

For the chosen set of earthquake ground motions, the damage estimated by 

Method 2 is on average (100.5 – 96.3)/96.3 = 4.4% greater than the exact solution 

(Method 1). This seems to be a reasonably good agreement for practical purposes. 

Method 3 exhibits slightly better results for average values: E[Nt] has been overestimated 

by (99.3 – 96.3)/96.3 = 3.1%, providing essentially the same accuracy for the expected 

damage as Method 2. As far as the dispersion of the damage estimates is concerned, it 

can be noted that Method 2 gives the variance of Nt on average 50% less than the exact 

solution. The variance estimated by Method 3 on average is 7.5% that calculated by 

Method 1. 

For a comprehensive evaluation of the seismic performance of a facility, it is 

usually necessary to estimate the decision variable of interest for different levels of 

seismic excitation. The accuracy of damage estimation may be different for different 

excitation intensities, affecting the reliability of the decision variable estimate. Therefore, 

we examine how the damage estimation changes depending on the intensity level. First, 

we perform damage estimation at different intensity levels by scaling one ground motion 

time history. We choose the ground motion that provides the values of damage that are 

the closest to the average values. The ground motion LA15 satisfies this criterion best of 

all. We scale LA15 to provide values of Sa from 0.1g to 1.0g at a 0.1g step. The results 

are shown in Figures 4.8 - 4.11. Figure 4.8 depicts the average values of Nt as a function 
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of Sa. As before, Nt is calculated by the three different methods. Assuming that Method 1 

provides the exact result, the relative error of Nt estimation performed by Methods 2 and 

3 is plotted in Figure 4.9. For Method 2, the error decreases from 40.5% to 3.2% over the 

range from 0.1g to 1.0g. For the range between 0.4g and 1.0g the error does not exceed 

6.8%, averaging at 4.6%. Figure 4.10 displays the variance of Nt as a function of Sa. We 

can see that Method 2 underestimates the variance by approximately 50% for the lower 

end and provides roughly the same results as Method 1 for the high values of spectral 

acceleration (Sa > 0.5g). Method 3 underestimates the variance quite significantly: the 

variance of the damage estimate is on average about 10% of the variance obtained by 

Method 1 for the chosen range of ground motion intensity.  

Figure 4.11 shows the coefficient of variation of the damage estimate. The 

average value of the coefficient of variation for Method 1 is 14.6%. For this example, the 

uncertainty of the damage estimate is caused by the uncertainty of building properties 

only (the ground motion is deterministic). More specifically, it is caused by the 

uncertainty of the capacity of the flexural members with respect to the yield damage 

state. Therefore, we can see how the one isolated factor of uncertain capacity affects the 

uncertainty of the damage estimate. The coefficient of variation of the flexural members’ 

capacity is 8%. That has resulted in a coefficient of variation of the damage estimate of 

14.6%. Thus, uncertainty in building structural properties approximately doubles when it 

gets to the damage estimate. Figure 4.11 also reveals that at the lower end, the uncertainty 

of the damage estimate is much higher than the average value. In the range of Sa < 0.5g 

the coefficient of variation is on average 30%. For the high end it is 6.8%, which is lower 

than the coefficient of variation of the source of uncertainty, the uncertain capacity. The 
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other two methods give much lower estimates of the coefficient of variation, essentially 

repeating the behavior shown by the variances: Method 2 – 8.6%, Method 3 – 4.3% on 

average over the whole range of Sa.  

 

 
Figure 4.8. Expectation of damage E[Nt] as a function of spectral acceleration, ground motion LA15. 

 
Figure 4.9. Relative errors of estimation of E[Nt] by different methods as a function of spectral 

acceleration, ground motion LA15. 
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Figure 4.10. Variance of the damage estimate as a function of spectral acceleration, ground motion 

LA15. 

 

Figure 4.11.  Coefficient of variation of the damage estimate as a function of spectral acceleration, 

ground motion LA15. 
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process is conducted as follows. For a given intensity level, we pre-select at least 40 

ground motion time histories that do not require excessive scaling (no more than 2.0 no 

less than 0.5), and then we scale all of them to that intensity level. This way we avoid 

over-scaling of ground motion time histories and a possible use of ground motions that 

are not typical for the given intensity. Then if there are 40 pre-selected time histories than 

we use all of them, if there are more than 40 time histories we arbitrary select 40 of them. 

These 40 selected ground motions are used for all structural analyses performed at the 

given intensity level, meaning that the same set of 40 ground motions is used for all three 

methods of damage analysis. At each value of Sa, we performed 40 (one for each of the 

selected 40 ground motion time history) dynamic simulations using 40 randomly 

generated structural models (Method 1 and Method 2 used for damage estimation, the 

same set of 40 generated structural models is used for both methods) and 40 dynamic 

simulations with the best estimate structure (Method 3 used for damage estimation). The 

results are presented in Figures 4.12 – 4.15. Note that for this case, Method 3 does not 

have any computational advantage over Method 1 and 2. For each of the 40 ground 

motion records, for each Sa value, we need to perform a dynamic simulation. Therefore, 

using the best estimate structural model instead of the randomized one does not reduce 

the number of dynamic analyses. Method 2 overestimates the expected value of damage 

with the relative error in the range 3% to 21%, with the maximum error at 0.2g. The 

average error for higher end (between 0.4g and 1.0g) is 4.1%. Method 3 provides damage 

estimates closer to the results of Method 1. The estimation error is less than 9.8%, the 

maximum occurring at 0.2g. The average error at the high end (0.4g –1.0g) is very low: 

0.8%.  
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Figure 4.14 shows the variances of the damage estimates produced by the three 

methods for the set of ground motion time histories. There is no statistically significant 

difference between the variance estimates provided by the different methods. Therefore, 

the case of a set of ground motion records is appreciably different from the case of a 

single record (LA15) where the discrepancy between the variance estimates is apparent. 

Figure 4.15 shows the coefficient of variation of the damage estimate for the three 

methods. The results are practically identical for all three methods. The value of the 

coefficient of variation is considerably higher than for the case of the single excitation 

(Figure 4.11), reflecting the uncertainty introduced by the multiple ground motion time 

histories.  

 

Figure 4.12. Expectation of damage E[Nt] as a function of spectral acceleration, set of ground motion 

records. 
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Figure 4.13. Relative errors of estimation of E[Nt] by different methods as a function of spectral 

acceleration, set of ground motion records. 

 

Figure 4.14. Variance of damage estimation as a function of spectral acceleration, set of ground 

motion records. 

0.0%

5.0%

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

35.0% 

0 0.2 0.4 0.6 0.8 1 Sa

Method 2 
Method 3 

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 Sa

Var[Nt]

Method 1 
Method 2 
Method 3 



78 

 

Figure 4.15. Coefficient of variation of the damage estimate as a function of spectral acceleration, set 

of ground motion records. 
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4.2 for details). Then we have used three different methods of damage estimation. The 

approach based on coupled structural and damage analysis is implemented through 

Method 1. This method uses one set of randomly generated structural properties to 

conduct structural analysis and consecutive damage analysis. Method 2 and Method 3 are 

based on uncoupled structural and damage analyses. Both of them make use of two sets 

of structural properties. The difference is that Method 2 uses two randomly generated sets 

of structural properties, but Method 3 uses the best-estimate structural properties for the 

structural analysis and randomly generated properties for damage analysis.  

The results have shown that all three methods provide fairly close estimates of the 

expected damage, providing some justification of the uncoupled damage and structural 

analyses. However, it still needs to be determined if this holds for other problems 

encountered in reality. The effects of possibly important factors, such as the level of 

uncertainty in the structural properties, the form of the probability distribution of the 

structural properties or redundancy of the structural model, have not been studied. These 

factors might be an interesting subject of future research. More importantly, the 

acceptable performance of the uncoupled analyses is shown for the case where the double 

sampling of structural properties is the only cause of the discrepancy between the results 

obtained by the uncoupled analyses and the results obtained by the coupled structural and 

damage analyses. As we shall see in Section 4.2, this is hardly the case with fragility 

functions for practical applications, since there is also usually an error caused by an 

inexact limit-state function. 

The variance estimates exhibited a more diverse pattern of behavior than the mean 

estimates. While the estimates from Methods 1 and 2 in general agree, the variance 
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estimated by Method 3 is significantly lower for deterministic excitation. Therefore, 

performance of the uncoupled structural and damage analyses is adequate for this 

problem only if the randomized structure or multiple ground motion time histories are 

used. When the deterministic, best-estimate structure is employed together with a single 

ground motion record, the dispersion of the damage estimate is significantly 

underestimated. It means that the application of the Method 3 is not justified for the 

purpose of the analysis beyond mean values. Whenever one wishes to estimate variance 

of the damage or the probability of exceeding (or not exceeding) some damage threshold 

value, Method 3 should not be used. This is an important result because Method 3 can be 

viewed as a particular implementation of a general family of methods that can be defined 

in the following way: deterministic load – deterministic structure – probabilistic damage 

model. For example, deterministic load can be a monotonic lateral force used in push-

over analysis. Therefore, it might be possible to extend the present results to a common 

damage estimation technique where a deterministic push-over analysis is complemented 

with a damage analysis using fragility curves, implying that the results obtained by such 

techniques should be treated with caution. 

4.2 Inexact damage state description (imperfect limit-state function)  

In this section, we deal with limit-state functions that define the damage state 

imprecisely. In terms of the theory outlined in Chapter 3, a limit function is imprecise if 

the condition (3.2) is violated. The violation of this condition is a common case in 

damage analysis. In practice, a perfect limit-state function is rarely used. The reason for 

this is that a perfect limit-state function is usually impossible to determine or it is very 

complex and unsuitable for practical applications. In order to handle the problem, 
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assumptions and simplification are introduced to make the function usable. These 

simplifications always introduce some errors, as a result, when the limit-state function is 

sufficiently simple for practical use, the condition (3.2) is violated to some extent. 

Indeed, the most common form of limit-state function is the one exemplified by (3.11). 

The underlying idea of such limit-state function formulation is quite intuitive: a particular 

damage state is achieved once “capacity” is less than “demand,” leading to limit-state 

function of the kind: “capacity” – “demand” < 0. In the terminology adopted for the 

present study, “demand” is referred to as EDP – engineering demand parameter. This 

simplistic approach, although convenient, does not always adequately represent the onset 

of the damage state. This follows from the fact that only one damaging factor is taken 

into consideration, while there may be a combination of independent factors that lead to a 

particular damage state.       

The error arising from the discrepancy between the failure region and limit-state 

function (condition 3.2 violated) can be handled in different ways. In the case that a 

perfect limit-state function is unattainable, the conventional approach involves 

introduction of a set of parameters into the limit-state function, which are treated as 

uncertain. The probability distributions of the parameters are estimated by some 

statistical method from experimental observations of real damage (see for example 

Kiureghian 1999, Gardoni et al. 2001).   

In cases when the exact limit-state function is available, we have a choice 

between using the exact (possibly complicated) and inexact (but simple) limit-state 

functions. The choice can be made based on some sort of a cost-benefit analysis, where 

cost is the error of estimation introduced by the simpler model and the benefits are the 
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computational effort and time savings associated with it. In the present section, we 

perform a damage analysis based on two limit-state functions: one exact and the other 

inexact. Then we compare the results and perform a cost-benefit analysis to find out if the 

usage of the simplified limit-state function is justified. We do this as part of the case 

study that is described next. 

4.2.1 Structural model 

     The structural model is similar to the one described in Section 4.1.2. The 

reinforced concrete moment-resisting frame depicted in Figure 4.5 is used. The moment-

curvature relation for the flexural members is shown in Figure 4.6. All members are 

linear in shear. For the analysis in this section, we modify the moment-curvature behavior 

to account for the axial load-flexure interaction; that is, we introduce a yield surface into 

the model. The yield surface for each member is evaluated by the cross-section analysis 

program UCFyber (ZEvent, 2000) based on the member properties. The properties are 

taken from the structural drawings. For each member, the analysis has been performed to 

provide the calculated yield surface in moment vs. axial force coordinates. An example of 

the analysis result is shown in Figure 4.16. The calculated yield surface is used as an 

input for the structural model. Therefore, the yielding curvature in the hysteretic rule 

(Figure 4.6) is modeled as depending on the current axial force, making the structural 

model closer to reality.   
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Figure 4.16 Example of the yield surface of the flexural members (axial force - moment interaction). 

4.2.2 Damage model 

For the present study, we choose a damage model that is based on the model 

described in Section 4.1.3. We modify it to reflect the changes made to the structural 

model. The damage states are preserved unchanged: “undamaged” (DS = 0) and “yield” 

(DS =1). A flexural member is considered to be in damage state “yield” if the yielding 

point in the moment-curvature relations has been reached. The exact limit-state function 

for this damage state can be written as follows  

 DS = “yield”   ∃ t ∋ ( )[ ] ( )tdtPXd iaiy <,  (4.6) 

where t represents time during the dynamic structural simulation, ( )tPi  is the axial force 

in the i-th flexural member at time t, ( )[ ]tPXd iiy ,  is the  yield curvature of  the i-th 

member at time t, ( )tdi  is the current curvature of the i-th member at time t. Statement 

(4.6) is equivalent to stating that the i-th flexural member is in damage state “yield” if 
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and only if at some point during the seismic event the curvature in the element has 

exceeded the yield curvature.     

The limit-state function defined in (4.6) is perfect, meaning that we can not 

observe the “yield” damage state without satisfying the right-hand inequality in (4.6). In 

the following analysis, the damage estimate based on this limit-state function is 

considered to be accurate and is used as a reference when compared to the damage 

estimation based on an approximate limit-state function.  

We can see that using the structural model with axial load-flexure interaction 

leads to a more complex limit-state function for the “yield” damage state. The simpler 

limit-state function defined in (4.1) fails to accurately describe the damage state of 

interest, meaning that condition (4.1) for the present system is not satisfied. Therefore, 

exploiting the limit-state function (4.1) for the estimation of damage will introduce some 

error. Evaluation of this error is one of the goals of the present case study. We use the 

inexact limit-state function defined in (4.1) for uncoupled damage estimation. The result 

obtained from this analysis is compared with the results based on the exact limit-state 

function (4.6). From a comparison, the error associated with the imperfect limit-state 

function can be evaluated. 

4.2.3 Model parameters for the methods of damage estimation 

In order to isolate the error introduced by the imperfect limit-state function, one 

would need to use estimation methods that do not bring in any additional errors. The 

exact method of damage estimation has been presented in Section 4.1.1 (Method 1). 

Therefore, to perform the comparison of the exact and inexact limit-state functions, one 

would need to use this method for both of them. However, the goal of this study is not to 
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study the errors arising just from a particular limit-state function, but rather studying the 

errors that can emerge as a result of using the uncoupled structural and damage analyses 

as applied to structural damage. Therefore, we use Method 1 in conjunction with the 

exact limit-state function (4.6) to obtain the mathematically correct damage estimate. 

This estimate is then used as a reference point for comparison with the damage estimates 

obtained by Methods 2 and 3. 

Method 1 needs to be adjusted to accommodate the present structural model and 

damage model.  First, we need to properly randomize the structural model. Previously, 

we used the lognormally distributed yield curvature (4.5). The parameters of this 

distribution correspond to the yield curvature of the flexural member not subjected to 

axial force. In order to be consistent with the structural properties utilized before, we 

assume that yield curvature defined by (4.5) corresponds to the zero axial force point at 

the yield surface (point O in Figure 4.16), meaning that the zero axial point is defined 

exactly as in (4.4) 

 Mo
i = i

OM x (4.7) 

where Mo
i is the yield moment of the i-th element at zero axial force, i

OM  is the best 

estimate of the yield moment of the i-th element at zero axial force, as calculated by 

UCFyber (ZEvent, 2000) and x is a lognormally distributed random variable with 

expectation E[x] = 1 and a coefficient of variation δ[x] = 0.08. Then the randomization of 

the whole yield surface is performed by multiplying by x in such a way that it provides a 

uniform radial expansion or contraction of the whole yield surface.  

Second, in order to assess the damage for each element, we need to define how 

the limit-state function (4.6) is to be evaluated. It is conveniently done by keeping track 
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of the current ductility ratio during the dynamic simulation: ( ) ( )[ ]tPXdtd aiyi , . It easy to 

see that for this ratio, the following is true 

 ( ) ( )[ ]( ) 1,max >tPXdtd aiyit
  ∃ t ∋ ( )[ ] ( )tdtPXd iaiy <,  (4.8) 

 The maximum ductility demand is the output provided by many standard 

dynamic structural simulation programs, including the one that is used in the present 

study (Ruaumoko by Carr, 2001). Whenever the structural analysis provides a maximum 

ductility ratio for a particular element greater than 1, the element is considered to be in 

the “yield” damage state. Therefore, Method 1 easily accommodates the exact limit-state 

function (4.6), despite its complexity. Moreover, to perform damage estimation with 

Method 1, one does not need to exert any additional effort besides those that have been 

taken for building the structural model and conducting structural simulations. The 

damage estimate obtained via this procedure is considered to be exact and is used as a 

reference point for the approximate methods that we define next. 

Method 2 represents the uncoupled analyses approach to damage estimation. As 

shown in Chapter 3 and Section 4.1 this approach has an inherent deficiency if applied to 

structural members. This deficiency is occasioned by interdependency between properties 

of the structural members and practically all EDPs that are encountered in practice. It 

results in using two sets of structural properties for the same analysis instead of the single 

set. The effects of this discrepancy have been studied in Chapter 4.1. This is the first 

source of error associated with the fragility functions of structural members. Also, this 

source is characteristic only for structural members analyzed by uncoupled methods.  

The second source of error, inexact limit-state functions, can appear in many 

damage estimation techniques. We want to know how the effects of an inexact limit-state 
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function manifest themselves if uncoupled analyses are used. To study the isolated effects 

of the inexact limit-state function (avoid double sampling), one would need to use such 

inexact limit-state function, where arguments of this limit-state function are not used for 

calculation of the EDP, and estimate damage by Method 2. However, for structural 

elements it is usually the case that the damage, at least partially, is defined by the same 

parameters that are used for calculation of EDP. It is also true for the damage state model 

(“yield”) and EDP (curvature) used in this study, since yield curvature (defines capacity 

with respect to “yield” damage state) is used in the structural model to calculate 

curvature. Therefore, the effects of the inexact limit-state function can not be studied 

separately, if the chosen damage model is used.  

Since we want to study the performance of the uncoupled analyses approach 

(Method 2), there is a logical question to ask: is it possible, within such approach, to use 

the exact limit-state function? If it were, a damage estimate obtained by Method 2 would 

be off by the error caused by double sampling of element properties that define both 

damage state and structural response (and this error has already been studied), and we 

would not need any further research. Let us investigate if Method 2 can be used with the 

exact limit-state function (4.6). Method 2 is based on standard fragility functions (3.13). 

The fragility function has to be generally applicable to the element of interest, meaning 

that it has to be independent of the particular design and location (see Section 3.1). The 

most general expression of the limit-state function that can possess such a property is 

given by (3.7). Comparing the exact limit-state function ( ( )[ ] ( )tdtPXd iaiy <, ), and 

general form (gn(EDP(X, Q), Xi) < 0) it can be seen that the former can not be written in 

the form of latter since the crucial (damage defining) element property – yield curvature, 
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can not be separated from the site specific building properties and earthquake excitation 

Q, meaning that yield curvature of the element can not be written as a function of element 

properties only. The yield curvature of the element depends also on the current axial 

force that is the function of the site specific seismic loading (Q) and the specific building 

properties (X), that is, dead and live load distribution and force paths in the load-bearing 

structure. Therefore, the general (independent of site conditions) form of the limit-state 

function is incompatible with the exact limit-state function (4.6), implying that Method 2 

can not be used with the exact limit-state function because of the generality requirement 

for the fragility functions. Some ways to reduce the error caused by inexactness of the 

limit-state function are explored in Section 4.2.5. In particular, it is shown that by 

selecting an appropriate fragility function for the uncoupled damage estimation, the 

discrepancy between a safety region defined by the exact limit-state function and a safety 

region defined by the inexact one can be reduced.    

Since Method 2 can not be used with the exact limit-state function, we use the 

approximate limit-state function defined by (4.1). In this case, the fragility function is the 

CDF of capacity given by (4.5), where the parameters of this CDF of capacity are the 

same as the ones used for the structural model without axial force-flexure interaction. 

Therefore, the damage estimate will bear the error introduced by inexactness of the limit-

state function. Since the results of Method 2 are not exact because of using two sets of 

structural properties, the error of estimation obtained by Method 2 will include the errors 

originating from two different sources: double sampling the set of structural properties (a 

result of dependent damage and EDP) and inexact limit-state function (a result of the 

universal applicability requirement for fragility functions). Since both error sources are 
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inherent for any problem of this kind (site-specific structural damage estimation), we 

evaluate here the combined error resulting from both factors.  

Method 3 is used for damage evaluation to explore the benefits and cost of 

simplification of Method 2. The method is identical to the Method 3 used before: the best 

estimate structural model (with axial force-flexure interaction) is used for all dynamic 

simulations, and then the CDF of capacity (4.5) is applied as the fragility function. 

4.2.4 Results and conclusions 

The results of damage estimation for the LA15 ground motion record are 

presented in Figures 4.17 - 4.20. The damage estimates have been obtained for the range 

of Sa between 0.1g and 1.0g. The mean values of damage estimate for this excitation are 

shown in Figure 4.17. The relative error of estimation for Method 2 and Method 3 is 

given in Figure 4.18. It can be noted that inexact limit-state function introduces a 

significant error into the damage estimate. Method 2 consistently overestimates the 

damage by 40 – 60% with the average 50%. Method 3 overestimates the damage by 50 – 

70% with average 61%. This is significantly worse than for the case of the exact limit-

state function (see Chapter 4.1).  

Note that if a compressive axial force is not excessive (less than PO’ in Figure 

4.16), then the yield moment at this force is greater than in a zero axial force case. 

Therefore, if moderate compressive axial loads are present, the model with axial force-

flexure interaction is stronger than the model without such interaction. In the present 

model, the compressive axial forces due to the dead load are low enough to provide some 

increase of the yield moment for all columns. Therefore, the model with axial force-

flexure interaction is, on average, stronger with respect to “yield” damage state, than the 
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model without the interaction. Comparing Figures 4.8 and 4.18, we can see that Method 1 

reflects this increase of strength by providing considerably lower values of Nt than for the 

case without axial force-flexure interaction. No significant increase of strength can be 

deduced from estimates provided by Methods 2 and Method 3. The opposite trend can be 

observed: the Method 2 and 3 damage estimates for the stronger (with axial force-flexure 

interaction) structure are slightly higher than for the weaker (without axial force-flexure 

interaction) one, which contradicts the actual physical behavior. 

Figures 4.19 and 4.20 show the variance of damage estimates and coefficient of 

variation, respectively, for the LA15 ground motion record. Differences between the 

variances estimated by the different methods are less significant than for the structure 

without axial force-flexure interaction. However, as far as the coefficient of variation is 

concerned, the picture is similar with the one we had before: the coefficient of variation 

for Method 2 is slightly lower than for Method 1 at the low end and approximately equal 

to it at the high end, Method 3 provides a coefficient of variation that is approximately 

30% of that of Method 1 similar to that for the structure without axial force-flexure 

interaction (Figure 4.11). 

 The results of damage estimation for the previously described set of SAC ground 

motion records (40 at each Sa level) are presented in Figures 4.21 - 4.24. The mean values 

and the relative error of the damage estimates of Methods 2 and 3 are given in Figures 

4.21 and 4.22, respectively. The expected values of the damage estimates obtained by 

Methods 2 and 3 are practically identical. All the trends that have been observed for the 

LA15 record are also manifested for the set of ground motion records. Methods 2 and 3 

are insensitive to the increase of the structural strength, providing the same (or slightly 
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higher) values of expected damage than for the structure without axial force – flexure 

interaction (Figure 4.12). The overestimation of damage by both Methods 2 and 3 is in 

the range 30% – 50% with average 42%.   

Figure 4.23 and 4.24 present the variance and coefficient of variation of the 

damage estimates, respectively. The behavior of both parameters is distinctly different 

from the single (LA15) excitation case (Figures 4.14 and 4.15). The estimates  for 

Methods 2 and 3 are quite close and both overestimate the variance by approximately 

100% over most of the Sa range, only converging with the Method 1 estimate at Sa = 1g. 

For the coefficient of variation, the picture is the opposite. Because of the higher values 

of the expected damage, the coefficient of variation is approximately 50% lower for 

Methods 2 and 3 than for Method 1. This ratio holds for Sa between 0.2g and 0.7g, while 

for higher values of Sa, all the coefficients of variation of the estimates converge. The 

surprising observation is that the overall uncertainty of the damage estimation, measured 

by the variance and coefficient of variation, is much lower than for the LA15 excitation 

case, independently of the method used for estimation. Such a result is counter intuitive. 

The expected behavior would be an increase in the dispersion of the damage estimates, 

since using multiple ground motion records introduces additional variability compared to 

the single excitation case. 
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Figure 4.17. Expectation of damage E[Nt] as a function of spectral acceleration for the axial force-

flexure interaction model, ground motion LA15. 

 

Figure 4.18. Relative errors of estimation of E[Nt] by different methods as a function of spectral 

acceleration for the axial force-flexure interaction model, ground motion LA15. 
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Figure 4.19. Variance of damage estimation as a function of spectral acceleration for the axial force-

flexure interaction model, ground motion LA15. 

 

Figure 4.20. Coefficient of variation of the damage estimate as a function of spectral acceleration for 

the axial force-flexure interaction model, ground motion LA15. 
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Figure 4.21. Expectation of damage E[Nt] as a function of spectral acceleration for the axial force-

flexure interaction model, set of ground motion records. 

 

Figure 4.22. Relative errors of estimation of E[Nt] by different methods as a function of spectral 

acceleration for the axial force-flexure interaction model, set of ground motion records. 
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Figure 4.23. Variance of damage estimation as a function of spectral acceleration for the axial force-

flexure interaction model, set of ground motion records. 

 

Figure 4.24. Coefficient of variation of the damage estimate as a function of spectral acceleration for 

the axial force-flexure interaction model, set of ground motion records. 
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is on average 50%-60%. This error partially comes from using two samples of the 

structural properties (yield curvatures) in the analysis. But comparing the results from 

Section 4.1.6 and this section it is apparent that the contribution of double sampling of 

structural properties is insignificant. As far as expected damage is concerned (E(Nt)), the 

major part of the error arises from the inexact limit-state function. The magnitude of the 

error caused by the inexact limit function is particularly notable because of the simplicity 

of incorporating the exact limit-state function when Method 1 is utilized.  

The exact limit-state function can be easily implemented if the structural analysis 

based damage estimation technique (Method 1) is used. It is remarkable that despite the 

increased complexity of the limit-state function for the model with axial force-flexure 

interaction, Method 1 can include this limit-state function into the analysis without any 

additional effort. This reduced computational effort is ensured by the existence of the 

built-in indicator of “yielding,” the ductility. Ductility indicates the onset of yielding 

independently of how exactly the yielding moment (curvature) is specified. Therefore, 

switching to a more complicated structural model (more complicated limit-state function) 

does not cause any difficulties with pinpointing the “yield” damage state: we just have to 

pick up members with ductility demand greater than 1.  Ductility output is provided by 

the majority of modern structural analysis programs, and so to correctly estimate the 

“yield” damage state, one does not need to modify standard software: once the structural 

model is established, the damage and the damage gauge are “built-in” there. 

We can see that for the present problem there is no trade-off between accuracy 

and cost since the better accuracy can be achieved for no additional effort. This can be 
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done by switching from uncoupled structural and damage analyses to coupled structural 

and damage analyses.  

Discussing the result from a more general perspective, it can be noted that Method 

2 fails to capture the effects of a very common feature of modern structural models: axial 

force-flexure interaction. It does not reflect the increase of the strength of the model 

resulted from such interaction. It is a special example of an intrinsic shortcoming of 

fragility functions: it is unable to capture enhancement of structural models. It might be 

seen as the down side of the fragility functions generality: universal fragility functions 

can not account for many of the details of the structural model exactly because they are 

designed to fit them all. Therefore, they are bound to bring in the errors that can be quite 

significant, as demonstrated in this chapter, and these errors can not be generally 

estimated for each problem beforehand. 

On the other hand, advances in structural modeling can be easily accommodated 

by a Method 1 type analysis. For example, the yield model can be improved by various 

features, like shear-flexure interaction or interaction between different directions in 3D 

models, and the hysteretic rule can change or fiber-based elements can be used. No 

matter how the yielding is implemented, its onset can always be monitored using the 

ductility ratio. This ratio is calculated by all modern structural simulation software 

packages, implying no additional effort for evaluating the “yield” damage state. Similar 

advances can be made in the modeling of post-yielding behavior, like predicting the point 

of maximum strength or the pattern of strength degradation. Once a model of post-yield 

behavior is developed, it is easy to define parameters that can be a marker of any point of 

interest on the force-deformation curve, such as maximum strength or the point of 
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strength decrease to 80% of the maximum. The latter are often used to define member 

collapse. Such parameters can be easily implemented in existing and future structural 

analysis software, and can be used for evaluating the corresponding damage states in a 

way similar to how the ductility ratio is used for evaluating the “yield” damage state. 

Summarizing the results of this chapter, it can be concluded that the proposed 

damage analysis that is coupled with structural analysis (Method 1) proves to be 

advantageous compared with the approach using uncoupled damage and structural 

analyses with respect to both accuracy of damage estimates and required computational 

effort. This makes it a valuable contribution to the coming performance-based earthquake 

engineering era.      

4.2.5 Alternative damage models for uncoupled damage analysis. 

Although in the present case, only an inexact limit-state function can be used for 

an uncoupled damage analysis, there are ways to improve this function, making it closer 

to the exact one. One of them is to use more information about a component. The other is 

to use more information about the structural analysis results, that is, considering more 

parameters of structural response (EDPs) and using multidimensional fragility functions. 

Both of these approaches can provide better damage estimation but both of them require 

additional efforts, and are expected to perform worse than a coupled damage analysis. 

4.2.5.1 Utilizing additional information about components 

First, consider the discrepancy between the limit-state functions used for the 

different methods of damage estimation.  Figure 4.25 gives a subset of the safety region 

for the exact-state function and both failure and safety regions for the approximate limit-

state function given the maximum curvature obtained during the analysis. The horizontal 
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axis represents the yield moment of the element under consideration. In the present case, 

the yield moment is taken at the zero axial force and is a random variable given by (4.7). 

Therefore, Figure 4.25 depicts the regions in the state space for the case where the CDF 

of yield curvature at zero axial force is taken as a fragility function. These regions are 

determined as follows. 

MB

B*PB 

0
yM >MB 

dmaxK0 
0
yM  

jt
aP  

 

Figure 4.25 Safety regions for exact (hatched) and approximate (shaded) limit-state functions, 

fragility function is CDF of capacity at zero axial force 

Given the maximum curvature, Methods 2 and 3 use the limit-state function (4.1) 

that can be rewritten in terms of yield moment    

 DS = “yield”   0
yM  < 0max Kd  (4.9) 

where 0
yM  is the yield moment at zero axial force, maxd is the maximum curvature 

attained during the analysis, 0K  is the initial flexural stiffness of the element under 

consideration. For this approximate damage model, given the maximum curvature, the 

occurrence of damage depends only on the value of yield curvature and does not depend 

on anything else. Therefore, the failure region is given by the inequality in (4.9) and the 

safety region is given by 0
yM  > 0max Kd  (shaded area in Figure 4.25). 
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Consider now the exact limit-state function (4.6) used in Method 1. This function 

describes the failure region in a multivariate state space that includes the current yield 

moments (corresponding to the current axial force) at every time step, as well as the 

current applied moment at every time step during the dynamic structural analysis. It is 

impossible to portray the limit-state function in this multivariate state space, since it can 

have thousands of variables. However, we can partially depict the exact limit-state 

function (4.6) in a 2-D space that includes the axial load at an arbitrary point in time jt
aP  

and some parameter defining the yield surface (“defining” means that this parameter 

defines a particular sample of yield surface, e.g., known value of yield moment at some 

level of axial force). The exact failure region can not be found in this 2-D space, but the 

safety region can be determined and is shown as a hatched area in Figure 4.25. The 

algorithm for finding the safety region for the exact limit-state function is illustrated by 

Figure 4.26.  
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Figure 4.26 Using flexural member's yield surface for determining safety region in terms of yield 

moment at zero axial force 
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According to (4.6), the “yield” damage state occurs whenever the current yield 

moment is less than the current applied moment. In the chosen 2-D coordinate system, it 

is impossible to consider the current applied moment. However, it can be seen that if the 

current yield moment is greater than the product 0max Kd  then there is no yielding at this 

time step. In this case, 0max Kd  can be interpreted as the maximum applied moment 

observed during the analysis, providing that there is no yielding at the time step when the 

observation of maxd is made. Clearly, if the current yield moment is greater than the 

maximum applied moment then it must be greater then the applied moment at each time 

step. Therefore, we can find the lower bound (sufficient condition) on the safety region as 

the following inequality  

 jt
yM > 0max Kd  (4.10) 

where jt
yM  is the yield moment at the current time step, ti. The lower bound means that 

we know for sure that if at time ti the current axial force and the yield moment at zero 

axial force correspond to a yield moment satisfying the inequality (4.10) then no damage 

can occur; if (4.10) is violated, we do not know if the “yield” damage state takes place or 

not at this particular time, because jt
yM  may be either greater or less than the current 

applied moment.  

We determine the area corresponding to (4.10) as follows. If the current axial 

force is zero, then jt
yM = 0

yM  and (4.10) becomes 0
yM > 0max Kd . Therefore, at jt

aP = 0, the 

safety region for the exact limit-state function coincides with the safety region for the 

approximate limit-state function (4.9). Next, consider the case where the axial force is 
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non-zero and compressive, jt
aP = PB. In the axial force-moment plane, take the point B 

with the coordinates: 0max Kd  and PB, as shown in Figure 4.26. Then we choose a value 

MB of the yield moment at zero axial force that insures that the yield surface goes through 

this point. Clearly, if 0
yM > MB then BP

yM > 0max Kd , where BP
yM  is the yield moment at 

axial force PB. Since we consider the case where jt
aP = PB, it is also true that jt

yM = BP
yM , 

therefore, jt
yM > 0max Kd , meaning that the condition of the safety region is satisfied. 

Thus, at jt
aP = PB, the safety region is defined by 0

yM > MB as shown in Figure 4.25. In a 

similar way, all points can be found to define the safety region for the exact limit-state 

function, which is shown as a hatched area in Figure 4.25. 

Figure 4.27 compares two limit-state functions for a typical distribution of the 

axial force (moderate compressive load is prevailing). Clearly, in the range of values 

where the axial force is most likely to be, the safety region is smaller for the approximate 

limit-state function than for the exact one. Figure 4.27 shows the lines corresponding to 

10th and 90th percentiles for the assumed probability distribution of jt
aP . In this range, the 

approximate limit-state function assumes no damage for the area inside the infinite strip 

CBED, while the exact function indicates no damage for at least the area inside the 

infinite strip CAGFD and the latter can be noticeably larger. Therefore, the approximate 

limit-state function is conservative for this case. One can expect that damage estimates 

for the uncoupled damage analysis that uses the CDF of yield curvature at zero axial 

force as the fragility function will be higher than for the uncoupled damage analysis. This 

is confirmed by the results presented in Section 4.2.4. 
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Figure 4.27 Comparison of the safety regions defined by exact and approximate limit-state functions 

for the assumed probability distribution of current axial force. 

The framework presented so far in this section framework can be used for 

analyzing possible improvements to the uncoupled damage analysis. For example, 

consider a case where the CDF of yield curvature at the expected value of axial force, 

E[ jt
aP ], is used as a fragility function. Denote the corresponding yield moment at E[ jt

aP ] 

by ][ aPE
yM . Then we can compare the exact and approximate limit-state functions by 

drawing the corresponding safety regions in 2-D space where the coordinates are ][ aPE
yM  

and current axial force jt
aP . Utilizing the same procedure that was used for plotting Figure 

4.25, we obtain Figure 4.28. It is noted that for the most probable values of the current 

axial force (between the 10th and 90th percentiles), the discrepancy between the two safety 

regions is smaller than in the previous case. However, the approximate limit-state 

function may become non-conservative, since the safety region may be larger than that 
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defined by the exact limit-state function (Recall that the hatched area in Figure 4.28, as in 

Figure 4.25, is a subset of the actual safety region).  
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Figure 4.28 Safety regions for exact (hatched) and approximate (shaded) limit-state functions, 

fragility function is CDF of capacity at expected axial force 

Depending on the location of the expected axial force relative to the yield surface 

of the flexural member under consideration and on the dispersion of the axial force, the 

difference between the exact and inexact limit-state functions can change. For example, 

Figure 4.29 compares the safety regions for the case where both the expected value and 

standard deviation of the axial force are significantly lower than in the previous case 

(Figure 4.28). It can be seen, that in this case, the approximate limit-state function should 

provide results that are the closest to the exact one. The areas of the important parts of the 

safety regions agree most closely out of all previously considered cases. Although the 

safety regions are still far from coinciding, the triangles OAB and ODC partially offset 
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each other, providing approximate equality of the safety regions’ areas, but not 

necessarily equality of the probabilities of being in the safety regions in the two cases.     

][ aPE
yMdmaxK0 

E ][ jt
aP  90% 

10% A B 

C D
O

jt
aP

 

Figure 4.29 Safety regions for exact and approximate limit-state functions, lower values of axial force 

expected value and standard deviation are used 

In summary, the use of the CDF of yield curvature at the expected axial load as 

the fragility function should provide better performance then the CDF of yield curvature 

at zero axial force. Therefore, this is a viable way of improving the performance of the 

uncoupled damage analysis. A good practical approximation to the expected values of 

axial force may be the dead load applied to the structural components. In this way, we are 

improving the uncoupled damage analysis by using additional information about the 

component (dead load axial force). However, it requires first, estimation of the dead load 

for each appropriate component and this may not be necessarily the input information for 

the structural model and, therefore, this will involve additional efforts to perform this 

estimation and second, increase of the number of different fragility functions used in the 
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analysis, since the components that are otherwise equal may have different dead load, 

necessitating usage of several fragility functions (each for each dead load value) instead 

of one. Therefore, the improvement of the uncoupled damage analysis here comes at 

some cost, and it still does not match the performance of the coupled damage analysis.    

4.2.5.2 Utilizing multidimensional fragility functions  

The other way of advancing uncoupled damage analysis is using additional 

information about the structural analysis, that is, multiple EDPs. For the present model, a 

logical approach would be to use the information about the axial force, that is, besides 

maximum curvature we can also use maximum axial force observed during the structural 

analysis. Then a two dimensional fragility function is needed: 

),|""( maxmax uPzdyieldDSP === , where Pmax is the maximum compressive axial 

force. We shall analyze how this function can be developed and what are the benefits of 

using it.  

First, the limit-state function must be developed. Now, the function can be 

developed in terms of maximum curvature, maximum compressive axial force and any 

relevant member property or a set of properties, e.g., yield curvature at zero axial force or 

yield curvature at expected axial force, as used previously. There is an infinite number of 

ways to formulate this limit-state function. Depending on what particular form is chosen, 

the function may be closer or further from the exact one. For demonstration purposes, we 

define a simple limit-state function as follows 

 DS = “yield”  max
0 dd y < or max

0 PPa <  (4.11) 
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where 0
yd  is the yield curvature at zero axial force and 0

aP  is the yield compressive axial 

force at zero moment  (marked as PYC in Figure 4.16). Thus, the “yield” damage state is 

assumed to be caused by either excessive moment or excessive axial force. We shall see 

how this function compares to the exact one by considering a 2-D space in the same 

coordinates as before, 0
yM  and jt

aP .  

There exist two different cases with respect to relative magnitudes of the 

maximum curvature and the maximum compressive axial force. In a case where the 

maximum axial force is relatively small, the safety region for the inexact limit-state 

function does not change and is found exactly as in the case of one-dimensional fragility 

function. For the exact limit-state function, the knowledge of the maximum axial force 

observed during the analysis does not directly affect the shape of the safety region either. 

However, it puts an upper bound on the value of jt
aP , effectively changing its distribution. 

It also excludes a part of the 2-D space (i.e., the part corresponding to inequality jt
aP > 

Pmax) out of consideration. Figure 4.30 shows how the knowledge of maximum force 

affects the analysis in this case. Note that the conditional PDF of jt
aP  is not a cut and 

inflated part of the unconditional PDF, since the conditioning here is on the event it
aP ≤ 

Pmax, i = 0…Nts where Nts is the number of time steps in the dynamic structural analysis 

rather than on the event jt
aP ≤ Pmax, also axial forces at different time steps are correlated 

and, therefore, can not be discarded in the conditioning. It can be seen that introduction of 

the axial force as a second EDP improves the uncoupled damage analysis performance. 

The improvement is achieved primarily due to the down-shift of the range of most likely 
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values of jt
aP , which makes the situation similar to one presented in Figure 4.29 where 

the non-overlapping areas of the two safety regions partially offset each other.  
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Figure 4.30 Safety regions for exact (hatched) limit-state function and two-dimensional approximate 

(shaded) limit-state function, axial force is relatively small 
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Figure 4.31 Procedure of finding safety region for two dimensional fragility function, axial force is 

relatively high 
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Next, consider a case where the maximum axial force is relatively large. Figure 

4.31 shows how the safety region is found in this case. It can be seen that whether 

damage occurs or not is controlled by the maximum axial force, that is, if Pmax < 0
aP , the 

yield moment at zero axial force is high enough to ensure that the inequality 0
yM  >  

0max Kd  is satisfied also, so according to (4.11), no damage is assumed. Therefore, the 

safety zone is given by 0
yM  > max,0 P

yM , where max,0 P
yM  is the yield moment at zero axial 

force that makes the yield force at zero moment equal the maximum observed axial force, 

0
aP = Pmax. Note that this safety region is smaller than for the case of the one-dimensional 

fragility function, since max,0 P
yM is greater than 0max Kd .  
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Figure 4.32 Safety regions for exact (hatched) limit-state function and two-dimensional approximate 

(shaded)  limit-state function, axial force relatively large 

Figure 4.32 pictures the two safety zones for this case. As before, the shaded area 

marks the safety region for the approximate limit-state function and the hatched area 

depicts the safety region for the exact limit-state function. It can be seen from the figure 
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that discrepancy between the two safety regions is greater than in the case of one-

dimensional fragility function, since the safety zone for the approximate function is 

moved to the right as compared to Figure 4.25 and the safety zone for the exact limit-

state function is approximately the same.  

This analysis shows that it is unclear whether using the two-dimensional fragility 

function reduces the discrepancy between exact and inexact limit-state functions. For the 

particular form of 2-D limit-state function considered in this section, the overall effect 

depends on the distribution of maximum axial forces and maximum curvatures 

throughout the whole structure. If the case with relatively low maximum axial force is 

prevailing, the damage estimates for the uncoupled damage analysis will be closer to the 

exact solution; for the other case they will probably be less accurate than the ones 

obtained through the original one-dimensional fragility. Note that developing and using 

two-dimensional fragility functions is much more complicated than one-dimensional 

ones, therefore, one have to be careful when implementing such functions, since the 

benefits might be questionable.      

In summary, we can see that there are ways to improve the uncoupled damage 

analysis, but they require additional efforts that have to be measured against the benefits 

they provide. The merits of different ways to implement the uncoupled damage analysis 

have to be considered on a case by case basis. For the present study, we select the 

implementation that requires approximately the same effort as the coupled damage 

analysis. Therefore, in this way, the comparison of the two approaches is valid, since it is 

made on the “apple to apple” basis.     
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5 Damage estimation coupled with structural analysis (multiple 
damage states) 

In this chapter, we shall compare the results obtained by the three methods of 

damage estimation for the case of multiple damage states. For all three methods, we use 

the exact limit state. Therefore, only the error caused by the double sampling of structural 

properties is present. As before, we use a reinforced-concrete moment frame shown in 

Figure 4.5 as a case study. A more advanced structural model of the frame is used. We 

shall describe the modifications of the structural model next.  

5.1 Structural model 

The structural model used in this chapter is based on the structural model 

described in Chapter 4.1.2. We assume the same properties for all of the structural 

members, including no axial force-flexure interaction. The difference is in post-yield 

behavior of the flexural members. The present model accounts for strength degradation of 

the reinforced concrete members. The hysteretic behavior of the flexural members is 

shown in Figure 5.1.  All parameters unrelated to strength degradation are identical to the 

parameters of the hysteretic rule presented in Figure 4.6. Strength loss begins at the 

curvature of maximum strength (dm). The best estimate of maximum strength curvature 

( md̂ ) is found for each flexural member by UCFyber (ZEvent, 2000). After dm, the 

strength is assumed to degrade linearly to the value of 0.3My. The slope of the declining 

backbone curve is defined by specifying the location of the point of 20% strength 

decrease from the maximum value (0.8Mm). We call this point the “ultimate” curvature: 

du. The best estimate of the ultimate curvature ( ud̂ ) is assumed to be: ud̂  = 1.65 md̂ . 
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Figure 5.1 Hysteretic rule for flexural members (Q-HYST with strength degradation). 

5.2 Damage model 

We consider three damage states. The first one (DS = 1) is “yield”; we modify its 

definition to account for the presence of multiple damage states: a flexural member is in 

the “yield” damage state if the maximum curvature attained during the structural analysis 

has exceeded the yield curvature (dy) but has not yet reached maximum strength 

curvature (dm). The second damage state (DS = 2) is the “maximum strength,” which is 

defined by the following: a flexural member is in “maximum strength” damage state if 

the maximum curvature has exceeded dm but has not yet reached the curvature (du) 

corresponding to a strength decrease to 80% of the maximum strength. The third damage 

state (DS = 3) is “ultimate,” which is defined as follows: a flexural member is in 

“ultimate” damage state if the maximum curvature has exceeded du. Thus, all three 

damage states are defined in terms of structural behavior. This approach is not 

uncommon in the earthquake engineering community (see for example Stone and Taylor, 

1993), and also, as we have shown in Section 4.1.4, damage states defined in terms of 

structural behavior can be related to damage states defined in terms of detectable (visible) 
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deterioration. It is easy to see that all three damage states are mutually exclusive. 

Therefore, as shown in Section 3.2, it is sufficient to have three fragility functions in 

order to obtain the probabilities of all damage states.  

In order to find the fragility functions, it is necessary to specify the limit-state 

functions for the events DS ≥ 1, DS ≥ 2, DS = 3. From the damage state definitions, we 

can derive limit-state functions for the i-th flexural member 

   DS ≥ 1    dy(Xi ) – ),(max QXd i  < 0 (5.1) 

 DS ≥ 2    dm(Xi ) – ),(max QXd i  < 0 

 DS = 3    du(Xi ) – ),(max QXd i  < 0 

All limit-state functions are written in the form (3.11) where maximum curvature 

( idmax ) represents a demand parameter (EDP) and characteristic curvatures: dy, dm, du 

represent the capacities with respect to “yield,” “maximum strength” and “ultimate” 

damage states, respectively. Therefore, neglecting the dependence of maximum curvature 

on the capacities, the fragility functions can be found according to (3.13) 

 F1(z) = P( dy( Xi ) < z ) (5.2) 

 F2(z) = P( dm( Xi ) < z ) 

 F3(z) = P( du( Xi ) < z ) 

Thus, fragility functions for damage states DS ≥ 1, DS ≥ 2 and DS = 3 are the CDF of dy, 

dm and du, respectively. We shall use these fragility functions for damage analysis by 

Methods 2 and 3, where the probabilities of separate events (DS = 1, DS = 2 and DS = 3) 

given EDP (maximum curvature idmax ) are found according to (3.32). 
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Since the critical curvatures dy, dm and du are necessary input data for the 

structural analysis (they define the backbone curve for the flexural hysteretic rule in 

Figure 5.1), the capacities in limit-state functions (5.1) are fully defined by the 

parameters of the structural model, implying that (3.24) holds. Therefore, damage 

analysis performed by Method 1 is based on the binary (step-function) expression (3.25), 

meaning that a flexural member is considered to be in DS = 1, DS = 2 or DS = 3 if the 

maximum curvature attained during the structural analysis falls in the ranges [dy, dm], [dm, 

du] or [du, ∞), respectively. 

The uncertainty in the critical curvatures (dy, dm, du) for each flexural member is 

modeled as follows  

 dy = yd̂ 1x  (5.3) 

 dm = md̂ 2x  

 du = ud̂ 3x  

where yd̂ = yM̂ / 0K , yM̂  is yield strength, 0K  is the pre-yield stiffness as given in 

Section 4.1.5; md̂ , ud̂  are the best estimates of “maximum strength” curvature and 

“ultimate” curvature respectively, which are obtained as described in Section 5.1; 1x , 2x , 

3x  are lognormally distributed random variables with unit expected values (E[ kx ] = 1, k 

= 1..3) and with coefficients of variation equal to 0.08, 0.16, 0.24, respectively. The 

coefficient of variation (COV) of 1x  is assumed to be 0.08 to provide the same COV of dy 

as before (see Section 4.1.5). The COV of md̂  is twice of the COV of yd̂  and the COV of 

ud̂  is three times of the COV of yd̂ . Such an increase in the variability of dm and du is 
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assumed to account for the higher uncertainty in post-yield behavior of reinforced 

concrete members in comparison with pre-yield behavior. 

The other significant difference between the uncoupled damage analysis used in 

Methods 2 and 3 and the coupled damage analysis used in Method 1 is that the former 

ignores correlation between capacities with respect to different damage states. Fragility 

functions used in Methods 2 and 3 are marginal CDFs of capacities with respect to the 

three damage states (“yield,” “maximum strength,” “ultimate”) but the marginal 

probability distributions do not contain any information about the correlation between 

different capacities. Therefore, the uncoupled analysis does not take into account 

correlations between capacities. 

Correlations between the capacities can be incorporated into the coupled 

structural and damage analyses by using correlated random variables 1x , 2x and 3x , while 

generating the structural properties by (5.3). In general, one might expect quite strong 

correlation between some structural properties, such as yield strength and maximum 

strength. Therefore, we have considered two cases: one with relatively low correlation 

where the coefficients of correlation between 1x , 2x and 3x  are all equal to 0.6 and  a case 

of highly correlated capacities where all coefficients of variation between 1x , 2x and 3x  

are equal to 0.9. 

5.3 Repair cost 

Damage analysis is one step in the seismic performance analysis of real estate. It 

provides estimates of damage inflicted on the facility but the final goal of performance 

analysis is estimation of decision variables. Therefore, it is important to compare the 

results obtained by different damage estimation methods when they are expressed in 
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terms of the decision variables rather than in terms of the damage measure. This can be 

done through a relation between damage measure and decision variables. 

One decision variable that can be used by decision makers is repair cost. 

Therefore, we use repair cost as a decision variable for the multiple damage state case 

study presented in this chapter. The relation between damage states and repair cost is 

assumed to be as follows  

 DS = 1 ⇒  Cost = $20,000 (5.4) 

 DS = 2 ⇒  Cost = $30,000 

 DS = 3 ⇒  Cost = $40,000 

The uncertainty of repair cost for each damage state is neglected. The expected 

values of the repair cost of reinforced concrete members are based on the estimates given 

by Beck et al. (2002).  We have obtained repair cost estimates for all four cases under 

consideration: single and multiple ground motion excitations, with low and high 

correlation between the capacities. The results are presented in the next section.  

5.4 Results 

Figures 5.2 – 5.31 presents the results of damage analysis and loss analysis for the 

sample structure with low (0.6) coefficient of correlation between structural properties of 

reinforced concrete members (yield curvature, curvature at maximum strength and 

curvature at 80% of maximum strength). Figures 5.2 – 5.7 compare the expected number 

of members in the three different damage states for a fixed (LA15) excitation. Methods 2 

and 3 provide similar results, slightly underestimating the overall number of damaged 

assemblies and significantly underestimating the severe damage states: “maximum 

strength” and “ultimate.” This shows that the uncoupled damage analysis may be non-
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conservative with respect to severe damage characterized by the post-yield damage states, 

“maximum moment” and “ultimate.” In reality, the presence of these damage states can 

lead to very serious consequences for the whole structure, such as partial or total collapse, 

which is a life safety threat. Even without a collapse, severely damaged members can 

compromise the structural integrity of the whole facility, leading to a high probability of 

it being “red-tagged” and shut down for some period of time. Therefore, underestimation 

of severe damage states may significantly reduce the accuracy of some decision 

variables, such as down time and life safety, and it may lead to making erroneous 

decisions with respect to seismic risk. Finding the exact reason for such difference 

between estimates of severe damage obtained by different damage analysis methods is an 

important subject of future research.  

It is interesting to note that all three methods show a decrease in the total number 

of damaged members for high excitation levels (Sa > 0.6g). This phenomenon can be 

explained by the existence of a weak spot in the structure. For the more intense load, this 

weak spot acts like a fuse, experiencing quick yielding and consecutively more severe 

damage states. As a result the loads transferred through this damaged segment are 

reduced, which reduces the load on other structural members.  

The uncertainty in the damage estimation is illustrated by Figures 5.8 – 5.13. The 

variances differ considerably for Method 1 and Methods 2 and 3, however, the absolute 

values of variance do not reflect the real level of uncertainty because of the significant 

difference in the expectations. For this purpose it is better to use the coefficients of 

variation, which for the “yield” damage state (DS = 1) resembles the picture for the single 

damage state case: Methods 1 and 2 exhibit convergent results while Method 3 greatly 
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underestimates the uncertainty in the damage prediction. For both of the more severe 

damage states, all three methods demonstrate very similar coefficients of variations.  

Results of the repair cost estimation are presented in Figures 5.14 – 5.16. In terms of 

expected cost, there is no significant difference in cost estimates obtained by different 

methods for the low intensity excitation (Sa less than 0.7g). For high levels of spectral 

acceleration, cost estimates obtained by Methods 2 and 3 are lower than Method 1 

estimates due to underestimation of the severe damage states.          

Figures 5.17 – 5.31 show the results of damage analysis for a set of 40 ground 

motion records selected for each Sa level. The expected number of members in three 

different damage states is shown in Figures 5.17 – 5.22. In general, the conclusions 

drawn from the results obtained for LA15 excitation are also valid for the set of ground 

motions. Estimates for DS = 1 are close for all three methods, while for DS = 2 and DS = 

3, they are significantly underestimated by Methods 2 and 3. Uncertainty in the 

estimation is presented in Figures 5.23 – 5.28. The absolute values of variance differ 

significantly for different methods, but the coefficients of variation are quite close for all 

damage states. Figures 5.29 – 5.31 present results of the repair cost estimation for the set 

of ground motions. The results show that, for this case, Methods 2 and 3 underestimate 

the expected repair cost more than in the case of the fixed (LA15) excitation. At the same 

time, the uncertainty in the repair cost estimate (measured by the variance and coefficient 

of variation) is very similar for all three methods. 

These results confirm the result of the single damage state analysis that Method 3 

significantly underestimates the uncertainty in the damage estimates in the case of a 

single ground motion. It is also found for the case of multiple damage states that Methods 
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2 and 3 do not adequately estimate the more severe damage states (2 and 3) in terms of 

expected values. At the same time, the uncertainty estimates, as measured by the 

coefficients of variation, are quite similar regardless of the method used. 

Figures 5.32 – 5.63 present the results of damage analysis for different levels of 

correlation between structural properties. We consider two cases: the correlation 

coefficients between yield curvature, curvature at maximum strength and curvature at 

80% of maximum strength are 0.6 in the first case (low correlation) and 0.9 in the second 

case (high correlation). Figures 5.32 – 5.47 deal with the LA15 ground motion. Figures 

5.32 – 5.37 demonstrate the effect of correlation on the estimated number of damaged 

members. Estimates are obtained by Method 1 and Method 2. Method 3 does not require 

randomization of structural properties and, therefore, is insensitive to correlation changes. 

Method 1 shows that the expected number of members in DS = 1 (yield) is slightly lower 

for the case with high correlation. Method 2 does not show any consistent variation in 

estimates for different correlation levels. Figures 5.38 – 5.43 present the variance of the 

damage estimates for the two levels of correlation. No consistent difference can be 

inferred between the high and low correlation cases. Figures 5.44 – 5.47 compare repair 

cost estimates for the two given correlation levels. Method 1 shows that repair cost tends 

to be lower for the higher correlation case, implying a more robust structure. In contrast, 

Method 2 does not indicate a definite difference between two cases, slightly favoring the 

higher costs for higher correlated curvatures. No significant trends can be observed in the 

uncertainty (variance) of the cost estimates for both methods. 

Figures 5.48 – 5.63 present the results of damage and repair cost estimation for 

the set of ground motion records. In general, conclusions drawn from the results of the 
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LA15 ground motion are also valid for the set of ground motions. For Method 1, we can 

see that the decrease in the average number of members in the “yield” (DS = 1) damage 

state for high correlation is more pronounced in the case of multiple ground motions. The 

same can be noted for repair costs. Method 1 shows that first, repair costs for the high 

correlation case are lower than repair costs for the low correlation case, and second, the 

difference between these two cases is more significant for set of ground motions than for 

the LA15 record. These results show that modeling a structure with high correlation of 

structural properties should predict less damage than a model with low correlation. Note 

that Method 2 does not reveal any significant influence of the correlation of structural 

properties on the seismic performance.             
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Figure 5.2 Expected number of flexural members in three damage states of interest, obtained by 

Method 1, correlation of capacities 0.6, ground motion LA15. 
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Figure 5.3 Expected number of flexural members in three damage states of interest, obtained by 

Method 2, correlation of capacities 0.6, ground motion LA15. 
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Figure 5.4 Expected number of flexural members in three damage states of interest, obtained by 

Method 3, correlation of capacities 0.6, ground motion LA15. 
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Figure 5.5 Expected number of flexural members in DS = 1 for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 
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Figure 5.6 Expected number of flexural members in DS = 2 for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 
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Figure 5.7 Expected number of flexural members in DS = 3 for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 
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Figure 5.8 Variance of number of flexural members in DS = 1 for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 
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Figure 5.9 Variance of number of flexural members in DS = 2 for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 
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Figure 5.10 Variance of number of flexural members in DS = 3 for multiple damage states model 

with correlation of capacities 0.6, ground motion LA15. 
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Figure 5.11 Coefficient of variation of number of flexural members in DS = 1 for multiple damage 

states model with correlation of capacities 0.6, ground motion LA15. 
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Figure 5.12 Coefficient of variation of number of flexural members in DS = 2 for multiple damage 

states model with correlation of capacities 0.6, ground motion LA15. 
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Figure 5.13 Coefficient of variation of number of flexural members in DS = 3 for multiple damage 

states model with correlation of capacities 0.6, ground motion LA15. 
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Figure 5.14 Expected repair cost estimate for multiple damage states model with correlation of 

capacities 0.6, ground motion LA15. 
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Figure 5.15  Variance of repair cost estimate for multiple damage states model with correlation of 

capacities 0.6, ground motion LA15. 
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Figure 5.16 Coefficient of variation of repair cost estimate for multiple damage states model with 

correlation of capacities 0.6, ground motion LA15. 
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Figure 5.17 Expected number of flexural members in three damage states of interest, obtained by 

Method 1, correlation of capacities 0.6, set of ground motion records. 
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Figure 5.18 Expected number of flexural members in three damage states of interest, obtained by 

Method 2, correlation of capacities 0.6, set of ground motion records. 
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Figure 5.19 Expected number of flexural members in three damage states of interest, obtained by 

Method 3, correlation of capacities 0.6, set of ground motion records. 
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Figure 5.20 Expected number of flexural members in DS = 1 for multiple damage states model with 

correlation of capacities 0.6, set of ground motion records. 
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Figure 5.21 Expected number of flexural members in DS = 2 for multiple damage states model with 

correlation of capacities 0.6, set of ground motion records. 
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Figure 5.22 Expected number of flexural members in DS = 3 for multiple damage states model with 

correlation of capacities 0.6, set of ground motion records. 
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Figure 5.23 Variance of number of flexural members in DS = 1 for multiple damage states model 

with correlation of capacities 0.6, set of ground motion records. 
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Figure 5.24 Variance of number of flexural members in DS = 2 for multiple damage states model 

with correlation of capacities 0.6, set of ground motion records. 
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Figure 5.25 Variance of number of flexural members in DS = 3 for multiple damage states model 

with correlation of capacities 0.6, set of ground motion records. 

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 S a

δ [N t
DS1 ]

Method 1
Method 2
Method 3

 

Figure 5.26 Coefficient of variation of number of flexural members in DS = 1 for multiple damage 

states model with correlation of capacities 0.6, set of ground motion records. 
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Figure 5.27 Coefficient of variation of number of flexural members in DS = 2 for multiple damage 

states model with correlation of capacities 0.6, set of ground motion records. 
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Figure 5.28 Coefficient of variation of number of flexural members in DS = 3 for multiple damage 

states model with correlation of capacities 0.6, set of ground motion records. 
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Figure 5.29 Expected repair cost estimate for multiple damage states model with correlation of 

capacities 0.6, set of ground motion records. 
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Figure 5.30 Variance of repair cost estimate for multiple damage states model with correlation of 

capacities 0.6, set of ground motion records. 
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Figure 5.31 Coefficient of variation of repair cost estimate for multiple damage states model with 

correlation of capacities 0.6, set of ground motion records. 
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Figure 5.32 Expected number of flexural members in DS = 1 obtained by Method 1 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.33 Expected number of flexural members in DS = 2 obtained by Method 1 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.34 Expected number of flexural members in DS = 3 obtained by Method 1 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.35 Expected number of flexural members in DS = 1 obtained by Method 2 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.36 Expected number of flexural members in DS = 2 obtained by Method 2 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.37 Expected number of flexural members in DS = 3 obtained by Method 2 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.38 Variance of number of flexural members in DS = 1 obtained by Method 1 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.39 Variance of number of flexural members in DS = 2 obtained by Method 1 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.40 Variance of number of flexural members in DS = 3 obtained by Method 1 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.41 Variance of number of flexural members in DS = 1 obtained by Method 2 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.42 Variance of number of flexural members in DS = 2 obtained by Method 2 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.43 Variance of number of flexural members in DS = 3 obtained by Method 2 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, ground motion LA15. 
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Figure 5.44 Expected repair cost obtained by Method 1 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, ground motion LA15. 



142 

$0

$500

$1,000

$1,500

$2,000

$2,500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ou

sa
nd

s

S a

E [Cost ]

correlation 0.6
correlation 0.9

 

Figure 5.45 Expected repair cost obtained by Method 2 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, ground motion LA15. 
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Figure 5.46 Variance of repair cost obtained by Method 1 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, ground motion LA15. 
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Figure 5.47 Variance of repair cost obtained by Method 2 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, ground motion LA15. 
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Figure 5.48 Expected number of flexural members in DS = 1 obtained by Method 1 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.49 Expected number of flexural members in DS = 2 obtained by Method 1 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.50 Expected number of flexural members in DS = 3 obtained by Method 1 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.51 Expected number of flexural members in DS = 1 obtained by Method 2 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.52 Expected number of flexural members in DS = 2 obtained by Method 2 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.53 Expected number of flexural members in DS = 3 obtained by Method 2 for low (0.6) and 

high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.54 Variance of number of flexural members in DS = 1 obtained by Method 1 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, set of ground motion records. 



147 

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 S a

Var [N t
DS2 ]

correlation 0.6
correlation 0.9

 

Figure 5.55 Variance of number of flexural members in DS = 2 obtained by Method 1 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.56 Variance of number of flexural members in DS = 3 obtained by Method 1 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.57 Variance of number of flexural members in DS = 1 obtained by Method 2 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.58 Variance of number of flexural members in DS = 2 obtained by Method 2 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.59 Variance of number of flexural members in DS = 3 obtained by Method 2 for low (0.6) 

and high (0.9) coefficient of correlation of member capacities, set of ground motion records. 
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Figure 5.60 Expected repair cost obtained by Method 1 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, set of ground motion records. 
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Figure 5.61 Expected repair cost obtained by Method 2 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, set of ground motion records. 
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Figure 5.62 Variance of repair cost obtained by Method 1 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, set of ground motion records.  
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Figure 5.63 Variance of repair cost obtained by Method 2 for low (0.6) and high (0.9) coefficient of 

correlation of member capacities, set of ground motion records. 
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6 Combined methods of damage estimation 

6.1 Example of application 

A coupled approach to damage and structural analyses is proposed in this study as 

an alternative to the existing uncoupled damage and structural analyses. So far, the 

proposed approach is used to estimate damage that is expressed in terms of critical 

changes in structural behavior, such as yielding, achieving maximum strength or 

degrading to 80% of the maximum strength. A more common view of structural damage 

employs damage definitions in terms of visible or otherwise detectable degradation (e.g., 

concrete cracking, concrete spalling, etc.). In Section 4.1.4 we show that visible damage 

may be closely related to the changes in member’s structural behavior. If true, it means 

that, for example, the damage state “first visible crushing of cover concrete” can be 

treated as the “yield” damage state; therefore, it can be analyzed by the coupled damage 

analysis as shown in Chapter 4.  

However, some visible damage may not be directly related to the changes in 

structural behavior. In this case we can use the uncoupled damage analysis for 

investigating the part of visible damage that is related to the structural behavior. For 

example, consider significant cracking of reinforced concrete members that may 

necessitate the member’s repair (see Beck et al. 2002), increasing the overall cost and 

possibly affecting some other decision variables. In general, such cracking (the “cracked” 

damage state) occurs before yielding of longitudinal reinforcement (the “yield” damage 

state). Therefore, knowledge of whether a member is in the “yield” damage state or not 

gives some information about being in the “cracked” damage state. This information can 

be obtained from the coupled damage analysis. The other factors that control onset of the 
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“cracked” damage state are not related to the structural properties and can be studied by 

the uncoupled damage analysis. The combination of the two approaches will provide the 

complete information about the damage state of interest. In this section, we show how 

such damage states (damage states that are not fully connected to the changes in 

structural behavior) can be treated with a combined damage analysis by extending the 

example considered in Chapter 5 to include the “cracked” damage state. 

In the chosen damage model, the “cracked” damage state complements the three 

damage states used in Chapter 5, bringing the total number of damage states up to four: 

“cracked” (DS = 1), “yield” (DS = 2), “maximum strength” (DS = 3) and “ultimate” (DS 

= 4). For the three latter damage states, we use the Method 1 damage estimation 

technique that is applied in Chapter 5. Therefore, for each structural analysis, we know 

from the coupled damage analysis if the member is in damage state 2, 3 or 4; in either 

case the probability of being in the “cracked” damage state is zero. If the coupled damage 

analysis indicates no damage, the member is not yielded. In this case, the probability of 

being in the “cracked” damage state can be estimated by uncoupled damage analysis 

through appropriately defined conditional probability function: P(DS = 1 | EDP = z). 

Since the onset of this damage state does not affect the structural response (implication: 

the damage defining properties do not overlap with structural response defining 

properties, XCS = ∅), the uncoupled damage analysis can be conducted without double 

sampling of structural properties. The key issue here is the choice of EDP and damage 

model. To avoid double sampling of the structural parameters, we need to define the EDP 

and damage model so that it does not depend on the member’s properties that are used in 

the structural model. For this particular damage state, maximum ductility ratio Dr (ratio 
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of the maximum curvature to the yield curvature) can serve as the EDP and we define the 

conditional probability as follows 

 P(DS = 1| Dr = z)  = ( )
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 (6.1) 

where lb
rD  is the lowest ductility value providing a non-zero probability of being in the 

“cracked” damage state; note that for a ductility ratio greater than 1 the member is in the 

“yield” or higher damage state. For the present study, we set the lower threshold 

parameter to lb
rD  = 2/3, assuming that operation at lower values of ductility does not 

cause any damage (the design range). 

The assumption of the constant part of the fragility function in (6.1) is used 

primarily for simplicity of implementation, since the main purpose of this chapter is to 

demonstrate that properly defined fragility functions can be used as part of the proposed 

coupled damage analysis. 

We used the previously-defined four damage states to estimate the repair cost of 

the reinforced concrete moment frame that is described in Chapter 5.1. For this purpose 

the relation between damage and repair cost (5.4) is extended for the four damage states 

   DS = 1 (cracked) ⇒  Cost = $10,000 (6.2) 

 DS = 2 (yield) ⇒  Cost = $20,000 

 DS = 3 (maximum strength) ⇒  Cost = $30,000 

 DS = 4 (ultimate) ⇒  Cost = $40,000 

where we neglect the uncertainty in the cost to repair the members. Figures 6.1-6.3 

present the results of the cost estimation. In Figure 6.1, each cross corresponds to one 
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dynamic structural simulation followed by a damage and loss analysis. The model with 

uncertain critical curvatures is used (see Section 5.2), together with a set of 40 ground 

motion records for each Sa level. Figure 6.2 gives the expected repair cost and one 

standard deviation interval about the expected value for each level of ground motion. The 

resulting function is usually called a seismic vulnerability function and can be 

conveniently used in the decision-making process (Beck et al. 2002).    
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Figure 6.1 Repair cost estimates based on combined method of damage analysis, set of ground motion 

records. 
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Figure 6.2 Expectation of repair cost estimate and one-sigma confidence intervals obtained by 

combined method of damage analysis, set of ground motion records. 
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Figure 6.3 Standard deviation of repair cost estimate obtained by combined method of damage 

analysis, set of ground motion records. 

The results presented in Chapters 5 and 6 demonstrate that a decision variable 

estimation can be performed by the coupled damage analysis through using damage states 

defined both in terms of the structural state of the members (e.g., “yield,” “maximum 
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strength,” “ultimate”) and in terms physical damage (e.g., “cracked,” “first visible 

concrete crushing”). The combination of these damage states can provide a more accurate 

damage measure, improving a decision variable estimate. The proposed set of four 

damage states seems to be a good choice for estimating the cost of repairing the damage 

of reinforced concrete members. The discussion of other possible choices of damage 

states is presented in the next section. 

6.2 Damage states of reinforced concrete members 

From the previous section, we can see that there are at least two ways to defining 

damage measures. One of them is to define damage in terms of critical points on the 

force-deformation diagram like “yield,” “maximum strength,” etc., and another is to 

define damage in terms of physical damage like “concrete crushing,” “concrete spalling,” 

“buckling of longitudinal reinforcement,” etc. Both these approaches to damage 

definition can be handled by either coupled or uncoupled damage analyses. In this study 

we consider in detail the difference between coupled and uncoupled damage analysis as 

applied to damage defined in terms of critical points on the force-deformation diagram 

(see Chapters 3 to 6). Now we briefly discuss the most important problems to be consider 

while choosing between different ways of defining damage. 

First of all, the choice of damage measure should depend on how much 

information the chosen damage states give about the decision variable. For example, 

repair cost of a damaged reinforced concrete member can not be directly derived from the 

fact that “buckling of longitudinal reinforcement” has been detected. However, it can be 

derived from the fact that the member is to be repaired by reinforced concrete jacketing. 

Standard cost estimation techniques can be used to do this. Therefore, we need damage 
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states to be defined in such a way that the damage states can be related to the repair 

techniques that are likely to be used. Defining damage states in terms of visible or 

detectable damage is a viable choice, since in industry practice, the selection of a 

particular repair technique is based primarily on the appearance of a damaged member. 

Therefore, a link between visible damage and repair effort can be established. However, 

the same is true for the damage measure defined in terms of critical changes in structural 

behavior. Appendix A provides a review of existing repair methods and a qualitative 

relation between the four damage states used in this chapter and repair methods. Based on 

these qualitative relations, it is possible to derive a set of actual conditional probabilities 

of applying different repair methods, given one of the four damage states, providing that 

more empirical data from actual construction industry practice is available. We shall 

leave this task for future research. 

The problem with using physical damage definitions is related to the fact that 

such descriptive damage states are not necessarily mutually exclusive. For example, 

breakage of longitudinal reinforcement can happen without buckling (under tensile load), 

and vice versa. Therefore, with uncoupled damage analysis, one would have to deal with 

the general case of multiple damage states, which require 2n – 1 fragility functions for n 

damage states (see Section 3.2), Obtaining that many fragility functions is expensive and 

impractical, rendering this approach impractical too. It is likely that the combined 

damage analysis (Section 6.1) would better deal with such situation. In this case, after the 

coupled damage analysis is performed the amount of information to be transferred 

through fragility functions is reduced, possibly decreasing the number of required 
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fragility functions. This is a mostly intuitive conclusion that is based on the example 

presented in Section 6.1. A rigorous proof of this statement is left for the future research.    

In conclusion, we consider another possible approach to selecting damage states 

and compare it to the previously mentioned ones. The other way is to define damage 

states loosely in terms of qualitative verbal definitions of damage, e.g., “light,” 

“moderate,” “severe,” etc. In this case, mutual exclusiveness of the damage states is 

simply insured by convention: each “heavier” damage state negates the preceding 

“lighter” damage state. Thus, one can use one fragility function for each damage state. 

However, a problem arises from the lack of clarity in the definition of these damage 

states. It is not clear what exactly the terms “light” or “severe” mean. One would need to 

define a set of unambiguously identifiable symptoms corresponding to each damage state 

in question. It is not easy to define such a set that would be applicable in any practical 

application. The most probable outcome is that all generically defined damage states 

(“light” etc.) will be defined either in terms of a structural state (drastic changes in 

structural behavior) or physical damage, reducing the problem to one that we have 

already addressed in this study in detail.   
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7 The use of in-situ information for fragility functions        

In this chapter, we consider the example of an in-situ assembly consisting of a 

reinforced concrete column loaded in shear. We demonstrate the difference between the 

properly evaluated fragility function (3.3) and the case where the CDF of capacity (3.13) 

is used as a fragility function. 

 

Figure 7.1 Column model 

Consider the model of a column presented in Figure 7.1. This type of model is 

often used to imitate the behavior of real structural elements. We assume that the shear 

and flexural springs K1 and K2 have the force-deformation behavior shown in Figure 7.2. 

The damage state for this element is defined by degradation of the shear spring stiffness: 

once the stiffness of the spring has dropped to αK1, the element is considered to be 

damaged (DS = “shear yield”). Note that according to ACI guidelines, this damage state 

is recognized as a failure in shear. The fact that for the flexural spring, an infinite strength 
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is assumed, means that the model is valid for columns with prevalent shear failure mode.  

We want to study the fragility of this column with respect to the “shear failure” damage 

state, in terms of the inter-story drift ratio (IDR). For this model: LIDR ∆=  (see Figure 

7.1). 

7.1 Generic fragility function (no in-situ information included) 

First, we study the column disregarding possible differences in the in-situ 

conditions, since given the column we do not know exactly where it is going to be used. 

We call such a column a “general” column. For the general column, only the properties 

of the column itself can be taken into consideration. Therefore, the force P can 

 

Figure 7.2.  Force-deformation characteristics of the shear spring (left) and flexural spring (right). 

not be included into analysis, since in practice the force depends on external loading and  

the properties of the structure which are assumed to be unknown.  Suppose that the only 

uncertain property of the column is its shear strength (Pm). Suppose further, that this 

parameter is distributed lognormally: Pm ~ LN (µPm, σPm) , where   µPm, σPm  are 

parameters of the corresponding normal probability distribution (log(Pm) ~ N (µPm, σPm)). 

Then for every given value of IDR = z, the state of the column is uncertain. Depending 

on the applied load Pm, the column might be either undamaged (shear stiffness is K1) or 
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damaged (shear stiffness is αK1). This means that for every value of IDR = z, there are 

two regions of values of Pm: the failure region Ω”shear failure,”z, corresponding to the 

damaged state and its complement, the safe region ΩC
”shear failure,”z, corresponding to the 

undamaged state. These regions for the present model can be found as follows. First, 

  ∆=x+γL 
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where this relation is valid for the undamaged states (initial stiffness state). Given that 

IDR = z = ∆ / L, the force is equal to 
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This relation is only true if P < Pm (undamaged state), otherwise the stiffness of the shear 

spring would be αK1 and the whole expression would be different. This means that (7.1) 

is valid if and only if P defined by (7.1) is less than Pm. Therefore, the following is true 
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Note that the failure and safe zones depend only on the properties of the column and IDR 

and do not depend on the force P, as it should be for a generic analysis.   
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Since the failure region is known, we can find the probability of failure for each 

value of IDR. The probability of failure is the integral of the probability density function 

of Pm over the failure region. For the present case, this probability takes the form 

 P(DS = “shear failure” | IDR = z) = FPm(zϕ), (7.2) 

where FPm(.) is the cumulative distribution function of Pm (lognormal) and 

1
2

2

21

KLK
KLK

+
=ϕ . The fragility function (7.2) is what one can obtain by studying the 

fragility of the column in a general way, disregarding differences in real in-situ 

conditions.  

7.2 Fragility function with in-situ information included 

Now we consider the case where some information about the in-situ conditions is 

known that leads to a probability distribution on the shear force P. Clearly, for such a 

column, the probability distribution for the force P will, in general, depend on the 

structure and the site it is located in.  

 

Figure 7.3 Failure region and safe region in the Ω space. 
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Suppose that P is a lognormally distributed random variable: P~ LN (µP, σP). All 

the remaining properties of the column are exactly the same as in the first case.   We want 

to find a fragility function for the column using this information about P: P(DS = “shear 

failure”| IDR = z).  

First, we have to find a failure region corresponding to the event DS = “shear 

failure” (Ωn) in the space of the uncertain parameters: Ω = P×Pm = [0, ∞)×[0, ∞). Since 

“shear failure” is defined as a reduction of the shear spring stiffness to αK1, it is easy to 

see that DS = “shear failure” is equivalent to P ≥ Pm. This failure region is shown as the 

shaded area in the Figure 7.3.  

Second, given that event IDR = z has happened, parameters P and Pm can not take 

arbitrary values in the space Ω, because equality IDR = z imposes restrictions on the 

possible values of the external force P and maximum shear strength Pm. Therefore, we 

have to identify the region Ωz that corresponds to the event IDR = z. For the safe region, 

the external force P is found, as before, by (7.1). It is easy to see that P does not depend 

on Pm in this region. Therefore, within the safe region, Ωz is defined by 
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In the failure region, the forces and deformations are related as follows 
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Therefore, the relation between P and Pm is easily derived as 
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Equations (7.3) and (7.4) define the region Ωz, which is a 1-D surface in the space 

Ω. Equation (7.4) defines the section of surface Ωz that lies within the failure zone.  

 

Figure 7.4 Surface Ωz for different values of IDR 

 

 

Figure 7.5 Surface Ωz for different values  of α 
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Figure 7.4 shows surface Ωz for several values of IDR. Since α ranges within the 

interval [0, 1], the tangent of the line (7.4) also changes within the interval [0, 1]. Figure 

7.5 shows surface Ωz for different values of  α and the same value of IDR. 

If the surface Ωz is a straight line (α = 1), then the fragility function will coincide 

with the CDF of capacity (because P and Pm are independent). Therefore, it should be 

true that the more Ωz deviates from a straight line, the more the site-specific fragility 

function should differ from general fragility function (CDF of capacity).  Thus, for better 

demonstration it is desirable to take α = 0. However, as shown latter, taking α = 0 causes 

mathematical difficulties. Therefore, we pick α by observing the following conditions: α 

≠ 0 and α << 1. 

The procedure for estimating the fragility function is outlined in Equations 3.18 - 

3.20. In order to be able to perform this procedure, we need to know the joint probability 

function of the vector X* that for the present case is equal to [Pm, P]. Since P and Pm are 

taken as independent random variables with lognormal probability distributions, the joint 

probability density function is just the product of their probability density functions  

 ( ) ( ) ( ) ( )pfpfppfyf LN
Pm

LN
PmmPPmY == ,,  (7.5) 

We define a new coordinate system as follows: Y = [Pm, IDR], then 

transformation of variables ψ -1(Y ) takes the form 
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Therefore, the Jacobian (3.20) of the transformation ψ -1(Y ) is equal to 
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Now we can see that in the case α = 0, the Jacobian becomes zero, making the PDF for a 

certain area to be equal to zero too. Although there is nothing non-physical about this 

situation, we choose to avoid such an extreme case in this example.  

The fragility function is given by (3.18). The safe region for the present case is 

expressed in terms of Pm and, given that IDR = z, is defined as before: mPz <ϕ . Then, 

the fragility function is calculated as 

 P( DS = “shear failure” | IDR = z) = ( )∫
ϕz

mmIDRP dpzpf
m

0
| |  (7.8) 

where the conditional PDF of Pm is found as ( ) ( ) ( )zfzpfzpf IDRmIDRPmIDRP mm
,| ,| = . 

The PDF of IDR is obtained according to the second equation of (3.19) that for the 

present case takes the particular form 

  ( ) ( )∫
∞

=
0

, , mmIDRPIDR dpzpfzf
m

 (7.9) 

where the joint PDF of Pm and IDR is found according to (3.19) and in the present case 

takes the form 
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where the joint PDF ( )oo,,PPmf  is given by (7.5). 

Equations 7.8 – 7.10 provide the algorithm for estimating the fragility function of 

the in-situ column. We use this algorithm to calculate the fragility function for a sample 

column. The parameters of the sample column are chosen based on the parameters of the 

columns of a seven-story hotel in Van Nuys, California. The general stiffness parameter 

ϕ = 10000 kips, length of the column L = 100 in, the translational (in shear) stiffness K1 = 

6000 kips/in, the rotational stiffness is derived as K2= ( ) ( )LKLKL ϕϕ −11
2  ≅ 1000000 

kips⋅in, and the expected shear strength E[Pm]  = 60 kips. The coefficient of variation of 

the shear strength is assumed to be δv
Pm = 0.15. The parameters of the probability 

distribution of the force P are chosen to provide a probability of failure (unconditional on 

IDR, given only that a seismic event has happened) to be 2% with coefficient of variation 

δv
P = 0.6. The estimate of the coefficient of variation is based on the assumption that the 

force P is produced by natural hazard and has higher uncertainty than material properties. 

The estimate of the probability of failure is based on the result of two earthquakes that 

happened at the site. The building has 150 columns in the lateral force resisting frame; 

none of them failed during the first earthquake and 6 of them failed in shear during the 

second one, giving an estimate of the probability of failure of 6/(2*150) = 0.02. 

Assuming that the Van Nuys building is a typical example of the structural design of its 

time, we call the assembly with 2% probability of failure the “normal strength” design. 

The stiffness parameter ϕ is not used for estimating parameters of the probability 
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distributions. Using E[Pm], δv
Pm, δv

P, and the probability of failure, the four parameters of 

the probability distributions are estimated as: µPm = 10.991, σPm = 0.1492, µP = 9.8116, 

σP = 0.5545, where the units of both Pm and P are pounds (lb).        

7.3 Results and conclusions 

The results for the two fragility functions are presented in Figures 7.6-7.7. Figure 

7.6 shows the fragility functions for the case of “normal strength” design and α = 0.01. 

The relative difference in the shear failure probability estimate is also shown for the case 

where the CDF of capacity in (7.2) is used instead of the site-specific fragility function in 

(7.8). 

It can be seen that relative difference in the estimates is 100-150% at the lower 

end, where the probability of shear failure is nearly zero, making the discrepancy 

insignificant for practical purposes. For the range of practically meaningful values of 

failure probability, the relative difference is on average 50%. It can also be concluded 

that the CDF of capacity gives a consistently higher probability of failure of the column 

than when the in-situ condition (load probability distribution) is taken into account. 

Note that the same results hold even if a cyclic load is applied. Using the 

maximum applied force instead of P, along with the maximum IDR, and assuming that 

the shear failure does not depend on the load history and there is no strength degradation 

due to dissipated energy, all the results are valid. 

It is also interesting to see how the value of stiffness degradation α affects the 

fragility function. Figure 7.7 shows the CDF of capacity together with site-specific 

fragility functions for several values of α.  
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Figure 7.6 Site-specific fragility function and CDF of capacity for the “normal strength” design. 

First note that our initial guess is correct: as α goes to one, the fragility function 

approaches the CDF. Indeed, the fragility function for α = 0.1 practically coincides with 

the CDF of capacity and for the range of values of α between 0.1 and 1, the fragility 

functions do not noticeably change and stay approximately equal to the CDF of capacity. 

For the values of α in close proximity to 0 (α<0.1), a different behavior can be observed.  

The fragility function turns out to be quite sensitive with respect to the value of α. Figure 

7.7 shows the fragility functions for α= 0.1, 0.01, 0.001, 0.0001. We can see that as α 

goes to 0, the fragility function moves further and further to the right, with fragility 

function for α = 0.0001 positioned at a significant distance from the CDF of capacity.    
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Figure 7.7 Site-specific fragility functions for “normal strength” design for different values of α 

Clearly, for the present example, the difference between the general fragility 

function (CDF of capacity) and the site-specific fragility function for the near zero values 

of α can hardly be ignored. For instance, if the value of α is 0.0001 and a group of 100 

columns is considered, then given that IDR = 0.6%, the probability of shear failure is 

practically zero (as estimated by the site-specific fragility function), while the CDF of 

capacity predicts that more than 60% of the columns will fail, implying a huge difference 

in the corresponding recovery efforts. This shows the importance of using in-situ 

information, if available, in developing fragility functions. 

So far we have dealt only with the case of “normal strength” that is defined as a 

2% probability of failure in the case of a seismic event. In practice, such a design is not 

always implemented. It is conceivable that requirements for safety and reliability are 
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different for different types of structures. Therefore, the probability of failure could be 

different. We consider two more cases of the structural design. One of them represents a 

very strong and reliable member: the probability of failure is taken to be 0.1%. We call 

this case an “over-strength” design.  The other case corresponds to a weak member: the 

probability of failure is assumed to be 10%. We call this case an “under-strength” design.  

Figures 7.8 – 7.11 shows the results of a comparison of the CDF of capacity and various 

site-specific fragility functions for these two cases. 

For all three cases of the column design, we can observe a similar picture; that is, 

for α > 0.1, the site-specific fragility functions practically coincide with the CDF of 

capacity, moving to the right as α goes to zero. However, the strength of the design has 

some effect upon the fragility functions shape; that is, the stronger the column is (the 

lower the probability of failure), the more to the left the fragility functions are located. In 

general, this amounts to less discrepancy between the CDF of capacity and the other 

fragility functions for the stronger columns. We can see that for the case α = 0.01, the 

“over-strength” design has the lowest relative difference and “under-strength” design has 

the highest relative difference. Figure 7.12 shows the fragility functions for α = 0.0001 

for the three design cases. 
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Figure 7.8 Site-specific fragility function and CDF of capacity for the “over-strength” design. 

 
Figure 7.9 Site-specific fragility functions for “over-strength” design for different values of α 
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Figure 7.10 Site-specific fragility function and CDF of capacity for the “under-strength” design. 

 
Figure 7.11 Site-specific fragility functions for “over-strength” design for different values of α 
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Figure 7.12 Site-specific fragility functions for the “normal strength,” “under-strength” and “over-

strength” design ( α= 0.0001). 
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8 Conclusions and future research 

The conventional approach to damage estimation is based on fragility functions 

that relate some chosen parameters of structural response, usually referred to as 

engineering demand parameters (EDP), to incurred damage. In the present study, it is 

shown that for structural damage estimation based on structural analysis, the uncoupled 

approach based on usual fragility functions (3.13) has deficiencies that lead to less 

accurate damage prediction. These shortcomings originate from two sources: first, 

dependence of practically all EDPs on the damage of structural members and second, 

inexact limit-state functions that are used for damage description. 

It is shown that in case of damage analysis uncoupled from structural analysis 

(EDPs are obtained from structural analysis and then are used as input for fragility 

functions), dependence of EDP on structural damage results in using two samples of 

structural properties instead of one during estimation of decision variables. The 

associated error is studied by comparison of the results of damage estimation obtained by 

the uncoupled methods and a new technique that implements coupled damage and 

structural analyses and does not have double sampling. The proposed coupled approach, 

besides using an EDP, uses all information available from structural analysis that is 

relevant to the damage to be assessed. It is shown that the discrepancy can be significant 

in some cases. In particular, for the case of a fixed ground motion and ignoring 

uncertainties in the structural properties during structural analysis, double sampling 

associated with the uncoupled approach leads to significant underestimation of damage 

variability (variance); also, it has been shown for the multiple damage state model that 
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double sampling leads to significant underestimation of the level of more severe damage 

(after-yield damage states). 

The other shortcoming of uncoupled damage and structural analyses: inexact 

mathematical damage description (inexact limit-state functions) has also been studied. In 

practice, the exact limit-state functions are rarely available. It is shown in this study that 

in case of structural damage the inexact damage description may cause significant errors 

in damage estimates. 

Both this weaknesses of the uncoupled damage estimation are the particular 

examples of practically inevitable inconsistencies between structural and damage 

analyses if they are separated (uncoupled) from each other. The proposed approach using 

coupled structural and damage analyses helps to overcome the deficiencies of uncoupled 

damage estimation techniques by eliminating these inconsistencies. Indeed, it eliminates 

the double sampling and corresponding errors altogether. It also helps to alleviate the 

problem of inexact damage description, since it allows utilizing more complicated and 

accurate limit-state functions. The difference between the two approaches is studied by 

comparison of results of damage estimation performed for a 2-D structural model of a 

reinforced-concrete frame. The result show that errors of the fragility function based 

damage estimates could be significant and they depend on specific characteristics of the 

chosen structural model and the damage model in a complex way, preventing the 

possibility of estimating the errors in a general form that is applicable to all practically 

possible cases.  

 There are some problems that have not been fully addressed in this study that 

could be interesting subjects for future research. One of them is sensitivity of the effects 
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of double sampling to the various factors. For example, in this study, the level of 

uncertainty of structural parameters has been set to 0.08 (as measured by the coefficient 

of variation). It is possible that for higher levels of uncertainty, the effects of double 

sampling may be more pronounced. Also, we have assumed a lognormal distribution for 

the parameters, but the shape of distribution can possibly affect the difference in the 

results between the two approaches, which may be worth some future research. The other 

factor that could affect the damage estimation results is redundancy of the structural 

model under consideration. The model used in present study is highly redundant, which is 

typical for buildings. It is possible that for less redundant systems, such as bridges, the 

difference between the two approaches will be more prominent, which is another possible 

subject for future studies. An important observation of the present study is the significant 

underestimation of severe damage in case of uncoupled damage analysis. The causes of 

this discrepancy need to be understood better and are worthy of further investigation.   

A case is also studied where structural damage prediction is not based on an EDP 

obtained from a structural analysis but on an EDP obtained from observation of real 

structure behavior, where a structural model is not employed. It is shown that 

incorporating site-specific information can significantly change the damage estimates 

and, therefore, can be worth doing. 

A close relation between structural states (“yield,” “maximum strength,” etc.) and 

visible or detectable damage (“concrete crushing,” “spalling,” etc.) is assumed in this 

study. A general consensus in the earthquake engineering community and some 

experimental studies support this claim. However, researchers that perform test programs 

rarely record signs of visible damage at various stages during of their testing, which 
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makes it difficult to relate force deformation history to visible damage. Collection of such 

information is recommended in future testing so that the damage analysis can be built in 

into the structural analysis.    

The other interesting problem that has not been fully addressed in this study but 

might be a subject of future research is the problem of defining a proper limit-state 

function for damage description. Currently, damage is usually defined by a “capacity less 

than demand” limit-state function. It is a conventional and intuitively understandable idea 

but it still brings about some questions and doubts that are related to the concept of 

“capacity.” The fragility functions are often defined as cumulative distribution functions 

of capacity, but in many situations the very existence of capacity is questionable due to 

the fact that damage can be caused by several independent factors. In that case, the term 

capacity with respect to just one of the multiple factors is not well-defined. It is believed 

that capacity can be well-defined in cases where the fragility function is an increasing 

function of EDP. The problem of finding sufficient conditions for a fragility function to 

be an increasing function can be an interesting and challenging problem for future 

research.  
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Appendix A. Probabilistic relation between damage states and 
repair methods. 

A.1 Available repair methods  

(1) Epoxy injection. This requires filling the cracks with epoxy grout under 

pressure. According to ACI (1996b) Section 22.6.6.3, this procedure can prevent all 

movement at an opening and restore the full strength of a cracked concrete member. 

Ozaka and Suzuki (ND) support this statement by an experimental study of specimens 

repaired with epoxy injection of specimens with shear cracks less than 1 mm. The 

method is simple and widely used. Jennings (1971) gives examples of its application for 

buildings that were lightly damaged after 1971 San Fernando earthquake. However, some 

researchers report that the method is not always effective. Corazao and Durrandi (1989) 

repaired beam-to-column connections with cracks less than 1/8 in wide, and found that 

epoxy injection by itself might not be adequate for restoring strength and stiffness.  In 

particular, restoring the bond and anchorage of bars can be difficult and unreliable. This 

is likely to restrict the method to light damage states where deterioration of bonds is 

negligible. Otherwise, the method is difficult to implement and its effectiveness depends 

greatly on the quality of the work.   

The Japanese Ministry of Construction Manual (PWRI, 1986) gives a good 

description of damaged concrete members that can be repaired by this method. This 

description agrees well with the light damage state given by Williams et al. (1997) and 

“cracking” damage state used in this study. Recommendations and requirements for 

epoxy material choice, surface preparation, application techniques and equipment are also 

given in American Concrete Institute (1996a and 1996b).  
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(2) Replacement of damaged concrete. This usually involves shoring of the 

structure, removal of the damaged concrete and replacement with new concrete. The 

bond between the old and the new concrete is ensured by applying an epoxy-based 

bonding agent to the old concrete surface.  Corazao and Durrandi (1989) study the 

performance of two beam-to-column joints repaired with this technique. Damage was 

characterized by concrete spalling, penetrating cracks, deterioration of bond between 

longitudinal reinforcement and the concrete, and intact reinforcement. This type of 

damage can be recognized as the “yielding” damage state. The technique is shown to be 

effective for restoring strength, stiffness and energy dissipation characteristics of the 

subassembly. Guidelines for removal of concrete, surface preparation and choosing 

epoxy bondage is given by the American Concrete Institute (1996b). 

(3) Interior reinforcing.  A common method of providing additional 

reinforcement across cracked surfaces is to install new dowels in holes drilled 

perpendicular to the crack surfaces. The entire length of the dowel is fixed to the concrete 

by the use of a bonding matrix. Epoxy injection is commonly used to fill all cracks after 

installation of the dowels and their adhesive. The methodology and examples are 

described by the American Concrete Institute (1996b). The procedure is simple and uses 

commonly available equipment, but its applicability for seismic repair is doubtful. First, 

for severe damage states, the cracks penetrate in various directions and develop in large 

number, so there is no perpendicular direction for all of them.  Second, for light damage, 

space constraints from the outside of the member may not permit drilling holes transverse 

to the crack. This situation would be typical for buildings. Third, the seismic performance 

of members repaired with this technique is not confirmed experimentally. 
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(4) Exterior reinforcing by reinforced-concrete jacketing. This involves 

encasement with a reinforced concrete jacket together with additional reinforcement.  

Stoppenhagen et al. (1995) investigate the behavior of upgraded columns acting in 

moment-resisting frame. Their results show that the method effectively prevents shear 

failure.  Corazio and Durrandi (1989) demonstrate that strength, stiffness and energy 

dissipation capabilities can be effectively restored by jacketing the columns along with 

the beam segments adjacent to the columns, even in case of very severe damage. In 

particular, one test involved a column damaged to the point that its contribution to lateral 

load resistance was considerably reduced.  Stoppenhagen et al. (1995) also show the 

effectiveness of this repair technique. Heavily damaged columns with shear failure, 

extensive spalling, bent longitudinal bars, and ½-in cracks, were encased with new 

columns containing longitudinal and shear reinforcement.  The lateral capacity of the 

repaired frame increased by a factor of five, preserving the original stiffness.  Ersoy et al. 

(1993) obtained similar results. They tested specimens in two damage states: one in 

which initial signs of concrete crushing were observed, and the other where considerable 

crushing and rebar buckling occurred. After repair, the columns had strength about 10% 

less than the corresponding monolithic column but with considerably less deformation 

capacity. The authors also emphasize that members repaired without unloading 

performed significantly worse. Rodriguez and Park (1992) repaired and tested specimens 

that were damaged beyond the failure damage state as classified by Stone and Taylor 

(1993) that is called “ultimate” in this study. The repaired unit demonstrated an increase 

in strength and stiffness about three times those of the original specimen. 
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(5) Exterior reinforcing by steel jacketing.  This involves encasement of a 

member in steel plates, with epoxy resin used to bond the plates to the concrete.  Ersoy 

(1992) points out that merely bonding plates to the concrete provides inadequate 

improvement, but that strengthened beams behaved well when the end of the plate was 

either welded to the main bar or was both clamped and epoxied to the beam. The 

technique is less laborious than concrete jacketing and is commonly used. Aboutaha et al. 

(1993) demonstrated that the method is effective for increasing shear strength of short 

columns. They tested original intact columns that were strengthened with steel jackets. 

They performed no tests involving damaged specimens.  Tests with lightly damaged 

specimens were performed by Corazao and Durrandi (1989), who conclude that the 

method can be quite effective in restoring and improving the structural performance of 

beam-column connections provided that design details properly address the transfer of 

forces through the joint.    

(6) Exterior reinforcing by steel bracing.  This involves supplementing an exiting 

reinforced concrete frame with a steel frame. Goel and Lee (1990) studied a repaired 

reinforced concrete frame that was damaged to the point close to maximum loading 

capacity (2% drift). They find that response of the repaired frame was stable with 

increased stiffness, strength and energy dissipation. 

(7) Combined methods.  Corazao and Durrandi (1989) report a combination of 

several techniques for repairing heavily damaged beams. The damage was in the form of 

severe flexural and diagonal cracks accompanied by the spalling of the cover concrete 

and buckling of the longitudinal reinforcement steel.  Repair efforts included injection of 

resin, splicing the buckled portion of the reinforcement with new bars, and replacement 
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of damaged concrete with epoxy mortar. The repaired specimens exhibited increased 

strength, ductility and energy dissipation capabilities along with reduced stiffness. 

Overall performance proved quite satisfactory, and specimens suffered much less damage 

after the repairs were performed. 

Ozaka and Suzuki (ND) repaired six specimens with epoxy injection accompanied 

by steel plates attached to the beam webs. Damage before repair was characterized by 

shear cracks 2 mm wide. The yield load after repair was 15% higher.  The authors 

conclude that the steel plates increase the shear strength and member deformability. 

(8) FRP jacketing. This involves encasing in fiber-reinforced polymers (FRP), an 

innovative technique that has only recently been an object of experimental studies. 

Mosallam (2000) used specimens damaged to the point beyond yielding and then repaired 

them with epoxy injection, carbon-epoxy and E-glass-epoxy quasi-isotropic laminates. 

The ductility and strength of the repaired specimens were increased up to 42% and 53% 

respectively, as compared to the control specimens. 

(9) Infill walls and wing walls.  Quite a number of researchers studied the 

performance of this type of reinforcement e.g., Bush et al. (1976), Altin et al. (1992), 

Aoyama et al. (1984). For a more complete list, see Moehle et al. (1994). Although these 

methods are widely accepted within the industry and were generally reported as 

satisfactory for retrofitting existing buildings, no tests with previously damaged frames 

have been conducted, which poses a question about the adequacy of this technique for 

repair. 
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A.2 Statistics of application of repair techniques 

Given the variety of repair methods available, the next question to be addressed is 

how frequently each is used. Aguilar et al. (1989) studied 114 buildings that were 

damaged during 1985 Mexico City earthquake. They created a database containing 

descriptions of the buildings, types of damage and the repair techniques used. The level 

of damage for all buildings is described as severe. For the present study, the point of 

particular interest is the frequency of usage of different repair techniques for reinforced 

concrete moment frames.  The relevant statistics are given in Table A.1. 

Table A.1 Frequency of usage of different repair techniques for reinforced concrete frames after 

1985 Mexico City earthquake. 

Repair and strengthening technique Number of times used 

Epoxy resin 3 

RC jacketing 35 

Steel jacketing 9 

Infill walls, wing walls 22 

Steel bracing 7 

Replacement 12 

 

Bonacci and Maalej (2000) present a comparative study of the usage of steel 

jacketing and fiber reinforced polymer (FRP) jacketing. Their paper summarizes the 

results of a comprehensive survey of field applications of both steel plates and FRP 

composites as external reinforcement for the life extension of deteriorating RC flexural 

members. The authors demonstrate a trend toward using FRP jacketing rather than steel 
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jacketing. This trend should be accounted for when evaluating the likelihood of using 

these methods in the future. 

 

A.3 Relating damage states to repair efforts  

There are no universally accepted standards for choosing repair methods for 

damaged reinforced-concrete flexural members.  Even if a damage state is clear, there are 

several techniques that can be used, and it is difficult to predict the repair procedure an 

unknown engineer will specify in any future application.  The engineer’s decision 

depends not only on the damage itself but on a number of uncertain circumstances such 

as availability of materials, equipment, personnel, and company expertise. Table A.2 

relates common repair techniques to damage. 

Because more than one possible repair technique is associated with each damage 

state, a qualitative probabilistic relationship is proposed in Table A.3.  The table gives the 

approximate likelihood that a particular damage state would be repaired in a particular 

way. The estimates are based on statistics of application and modern trends in the 

industry together with considerations addressed by Table A.2: the apparent acceptance by 

the engineering and construction industry, the availability of standards, the labor required 

to perform the repair, and any design difficulties.  Methods employed to address the 

“ultimate” damage state are assumed to be applicable to the “maximum strength” damage 

state as well. The difference between “maximum strength” and “ultimate” damage states 

is reduced to increasing likelihood of replacement for “ultimate” damage state.  

Qualitative probabilities given in the table can form the basis for assigning a set of 

quantitative probabilities to repair events. 
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There is another factor that could affect the choice of repair techniques: overall 

repair objectives. If the owner’s final goal is not merely to restore the structure but to 

improve its strength above its pre-earthquake condition, then methods that are unable to 

provide additional strength can be ruled out, reducing the available choices and altering 

the probabilities for remaining repair techniques.  



197 

Table A.2 Characteristics of repair techniques. 

Technique Damage 

states  

Performance Other remarks 

Epoxy 

injection 

Cracking 

or Yielding  

Good results for light 

damage. For heavier 

damage it is difficult to 

insure proper filling of 

every crack.  

Commonly used (PWRI, 1986). 

Standards available (ACI 

1996a, ACI 1996b). Easily 

implemented for light damage 

states. No design requirements. 

Requires care and high quality 

of the work for moderate 

damage. 

Replacement 

of damaged 

concrete 

Yielding 

 

Provides full restoration of 

all member loading 

characteristics (strength, 

stiffness, energy 

dissipation). Does not 

provide strengthening. 

Requires full unloading of 

the member. 

Every step (removing of 

damaged concrete, surface 

preparation, replacing with new 

concrete) is well documented by 

ACI standards (ACI 1996b). No 

design requirements. Laborious. 

No data on acceptance of the 

method as a whole within the 

industry 

R/C jacketing Yielding to 

Ultimate 

Provides full restoration or 

increasing of strength, 

stiffness and energy 

dissipation up to five times 

of original level, 

depending on repair 

details.  May require 

unloading of the structure. 

Standards available (ACI 

1996b, building codes). 

Requires design. Very 

laborious. Accepted within the 

industry (Corazao and Durrandi, 

1989).  
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Technique Damage 

states  

Performance Other remarks 

Steel 

jacketing 

Cracking 

to Yielding 

Effective for restoring and 

strengthening R/C 

structures providing proper 

design. Usually 

accompanied by epoxy 

injection.   

Standards available (Hipley, 

1997). Requires design.  Less 

laborious than R/C jacketing. 

Well accepted within the 

industry (Bonacci and Maalej 

2000). 

Steel bracing Yielding Could effectively restore 

and strengthen the whole 

structure providing proper 

design. Applied to the 

whole frame. 

Standards available (AISC, 

1997). Qualified designer 

required. Laborious. Accepted 

within the industry.  

Steel bracing Yielding Could effectively restore 

and strengthen the whole 

structure providing proper 

design. Applied to the 

whole frame. 

Standards available (AISC, 

1997). Qualified designer 

required. Laborious. Accepted

within the industry.  

FRP jacketing Yielding Reported to be effective 

for recovery and 

increasing load capacity. 

Standards and guidelines are 

available (Hipley, 1997, 

Saadatmanesh and Malek, 

1998).  Easy to implement. 

Composite-materials designer is 

required.  Method is finding 

increasing popularity in the 

industry. It is usually used as an 

alternative to steel jacketing 

(Bonacci  and Maalej, 2000). 
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Technique Damage 

states  

Performance Other remarks 

Infill walls 

and wing 

walls  

 

No data  Shown to be effective as 

strengthening-retrofitting 

technique. Is applied to the 

whole column (wing 

walls) or to several bays 

(infill walls) 

Some standards and guidelines 

for design are available from 

Caltrans (Hipley, 1997). 

Requires design. Laborious. 

Well accepted within the 

industry. 

 

Table A.3 Proposed relation between damage states and repair techniques. 

Damage state  Possible repair methods Probability of usage* 

Epoxy injection High Cracking 

FRP jacketing Low 

Infill walls or wing walls Low 

Steel bracing Low 

R/C jacketing Average 

FRP jacketing Average 

Yielding 

Steel jacketing  Below average 

Replacement Above average 

R/C jacketing Average 

Maximum 

strength 

Infill walls or wing walls Average 

Replacement High 

R/C jacketing Below average 

Ultimate 

Infill walls or wing walls Below average 

* Scale: low – below average – average – above average – high; applied independently 
to each damage state.  

 

 


