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Abstract

Numerical upscaling of problems with multiple scale structures have attracted increasing

attention in recent years. In particular, problems with non-separable scales pose a great

challenge to mathematical analysis and simulation. Most existing methods are either based

on the assumption of scale separation or heuristic arguments.

In this thesis, we present rigorous results on homogenization of partial differential equa-

tions with L∞ coefficients which allow for a continuum of spatial and temporal scales. We

propose a new type of compensation phenomena for elliptic, parabolic, and hyperbolic

equations. The main idea is the use of the so-called “harmonic coordinates” (“caloric coor-

dinates” in the parabolic case). Under these coordinates, the solutions of these differential

equations have one more degree of differentiability. It has been deduced from this com-

pensation phenomenon that numerical homogenization methods formulated as oscillating

finite elements can converge in the presence of a continuum of scales, if one uses global

caloric coordinates to obtain the test functions instead of using solutions of a local cell

problem.
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Chapter 1

Introduction

In this work, we focus on upscaling problems with non-separable scales, which is both

important for applications and far from understood from a mathematical point of view. The

upscaling method lies on a new type of compensation phenomena for partial differential

equations with L∞ coefficients [108, 106, 107]. We could design numerical homogenization

methods through the use of a coordinate transformation which brings in an extra degree of

regularization. The results are presented in a rigorous mathematical framework.

1.1 Overview

Problems with many scales are ubiquitous in nature. To make them more accessible to

analysis, it is often preferable to make the assumption of scale separation (a small pa-

rameter ε → 0) and periodicity (or quasi-periodicity, ergodicity). Essential progress has

been achieved in the study of such problems, to give a few examples out of a vast litera-

ture, let us refer to [33] (Bensoussan, Lions, and Papanicolaou) and [81] (Jikov, Kozlov,

and Oleinik). However, although an infinite perfectly periodic crystal lattice is elegant

and more amenable to mathematical analysis, nature is often more nasty and disordered.

Even the purest material cannot escape the effect of defects, fractures, and phase bound-

aries [117]. High Reynolds turbulence flow, plasma instability, and earthquakes give us

some outstanding examples where strong scale coupling is present and scale separation no

longer works.

Among all the multi-scale problems, the following divergence form elliptic equation
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with highly oscillatory coefficients a(x) is perhaps the most intensively studied one. It is

also one of the main objects of this thesis.







−∇a(x)∇u(x) = g in Ω

u = 0 on ∂Ω
(1.1.1)

Many methods for other multi-scale problems can find their roots in the elliptic counterpart.

Therefore, in the following, we will use (1.1.1) as a benchmark problem.

If a solution at the fine scale is sought, we often use multilevel or multigrid type meth-

ods 1 which go from fine to coarse scale and back from coarse to fine iteratively. However,

optimal convergence for multigrid method cannot be easily achieved if the coefficients are

non-smooth or highly oscillatory. Diffusion problems with small scale oscillations can be

handled by the so-called “matrix dependent” prolongation/restriction operators [132]. In

recent years, robust and efficient multilevel methods such as algebraic multigrid method

(AMG) [113] and smoothed aggregation (SA) [126] were proposed for general elliptic

problems by mostly heuristic strategies. Domain decomposition methods are used to pro-

vide good preconditioners and facilitate parallel processing.

However, even with modern state-of-the-art supercomputers and algorithms, a direct

simulation of the highly heterogeneous media, which involves a wide range of spatial scales

and time scales, is still difficult, if not impossible. That is why we will pursue multi-

scale methods to solve (1.1.1) on the coarse scale. More precisely, we want to know how

to transfer information from fine scales to coarse scales and how to use the information

obtained to solve the problem on the coarse scale with much fewer degrees of freedom. We

often refer this procedure as numerical homogenization or numerical upscaling.

Homogenization theory (Γ-, G- and H- convergence) answers the question with the

assumption of scale separation. The idea is to average heterogeneous media on the fine

scale in order to derive effective properties. The most general theory in homogenization is

that of H-convergence which was introduced by Spagnolo [121] and further generalized by

Tartar and Murat[125, 98]. With the powerful oscillating test functions method or compen-
1See [39] on systematic upscaling, which is a multi-scale computational methodology developed from

multigrid method.
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sated compactness method, the H-convergence result for elliptic equations can be proved

independent from ergodicity or scale separation assumptions, although the homogenized

problem is not known a priori unless the media is periodic.

The Multi-scale Finite Element Method (MsFEM) of Hou and Wu [78] has been a large

source of inspiration in numerical applications (particularly for reservoir modeling in geo-

physics), we refer to [130], [88], [1], and [131] for recent developments. It leads to a coarse

scale operator while keeping the fine scale structures of the solutions. The construction of

the base functions is decoupled from element to element, leading to a scheme adapted to

parallel computers. A proof of the convergence of the method is given in periodic settings

when the size of the heterogeneities is smaller than the grid size and an “oversampling

technique” is proposed to remove the so-called “cell resonance” error [79] (when the size

of the heterogeneities is comparable to the grid size).

In fact, The issue of numerical homogenization of partial differential equations with

heterogeneous coefficients has received a great deal of attention and many methods have

been proposed. Let us mention a few of them:

• Multi-scale finite element methods [56], [103], [78], [74], [65], [70], [8]

• Multi-scale finite volume methods [89]

• Heterogeneous multi-scale methods [128]

• Wavelet based homogenization [68], [55], [51], [37], [18], [41]

• Residual free bubbles methods [42]

• Discontinuous enrichment methods [61], [60]

• Partition of unity methods [66]

• Energy minimizing multigrid methods [129].

Most multi-scale methods are based on solving local cell problems. Some approaches

use the cell problem to calculate effective media properties, then solve an effective equation

on the coarse scale. A detailed review of this kind of upscaling methods can be found in
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[62]. Other methods, like MsFEM, incorporate the fine scale features of the problems into

basis elements. The coupling of small scales with coarse scales is then performed through a

numerical formulation of the global problem using these multi-scale basis. These methods

can often be justified in dimension one, in the case of periodic or ergodic media with

scale separation, or in the case of partial differential equations with sufficiently smooth

coefficients. However, the separation of scales is not always possible. For example, in

the subsurface modeling, the reservoirs often contain rocks of very different types, and

the permeability usually covers several orders of magnitude, from impermeable barriers to

highly permeable fast channels. It is difficult to make methods based on local cell problems

succeed in solving problems with non-separable scales.

Another perspective to approach multi-scale problems is the compression of operators,

for example, the homogenized equation can be seen as a compressed version of the original

equation in the case of scale separation. This question has received an answer within the

context of the fast multiplication of vectors with fully populated special matrices arising in

various applications [64, 50]. Let us recall the fast multi-pole method and the hierarchical

multi-pole method designed by L. Greengard and V. Rokhlin [71], which are based on the

singular value decomposition of Green’s function. Wavelet based methods for the reduction

of integral and differential operators have been designed by G. Beylkin, R. Coifman and

V. Rokhlin [9, 36, 35]. The concept of Hierarchical matrices has been developed by W.

Hackbusch et al. [73, 31, 30, 29, 27, 28] and is based on approximating a matrix to a

degenerate sum using a hierarchical partitioning procedure. For divergence form elliptic

equations with L∞ coefficients, it has been proven that the inverse of the stiffness matrix

can be represented by H-Matrix, provided the discretization is stable. It has been shown

that the complexity for solving (1.1.1) is O
(
N(lnN)n+3) operations (N is the degree of

freedom of the dicretization, n is the dimension of the space).

Composition Rule Allaire and Brizzi [8] have introduced the composition rule in the

multi-scale finite element formulation, and have observed that a multi-scale finite element

method with higher order Lagrange polynomials has a higher accuracy. In fact, I. Babuška

et al. introduced the so called “change of variable” technique in the general setting of par-



5

tition of unity method (PUM) with p-version of finite elements. Through the change of

variable, the original problem is mapped into a problem which can be better approximated.

In [20], special class of second order elliptic problems with essentially one-dimensional

rough coefficients a(x,y) = a(x) was considered, using change of variables, the divergence

form equation can be converted to a nondivergence form equation, and by Bernstein theo-

rem [34] the approximation property of mapped polynomials can be obtained. For elliptic

problems in 2-d with corners or interfaces, conformal mapping was used to map the rough

solution to a smoother function in [104, 105],

Global Information Numerous efforts have been made to deal with problems with non-

separable scales or global features. There exist some approaches which incorporate large

scale effects in the setting of upscaling. For example, iterating between coarse and fine

scales [48, 49] or solving a minimization problem [75, 101]. The idea to use global fine

scale information to homogenize transport equations for reservoir modeling in geophysics

is currently implemented in the industry and has been shown to be more accurate than local

methods ([131] and [130]). It is applied in practice because the porosity of the medium

is time independent and one can solve an elliptic equation only at t = 0 to upscale the

transport equations. Some recent results using global information by Efendiev et al. [2, 80]

are formulated in a partition of unity finite element framework.

The multi-scale elliptic problems are in some sense the “easiest” multi-scale problems.

The methods mentioned here can be seen as building blocks of a much larger quest aimed

at capturing high dimensional problems with a few coarse parameters [119], [14], [99],

[72]. Many extensions to diverse physical situations have to be developed and justified.

Paraphrasing the outcome of a recent DOE workshop [54], we may understand the physics

of multi-scale structures at each individual scale nevertheless “without the capability to

‘bridge the scales’, a significant number of important scientific and engineering problems

will remain out of reach”.
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1.2 Summary of the Thesis

The thesis is divided into three parts. Chapter 1 is the introduction. Chapter 2, 3 and 4

discuss elliptic equations, parabolic equations and hyperbolic equations respectively. In

each chapter, we will first introduce the corresponding compensation result and formulate

the numerical homogenization method, then give the detailed proof of all the results in the

chapter, and finally show the results of numerical experiments. In Chapter 5, we will make

some concluding remarks.

To make the thesis self-contained, in the Appendices, we will state some results on

regularity of partial differential equations with L∞ coefficients, a-harmonic mapping, and

C1 finite element using B-splines which are needed in the main body.

1.2.1 Metric Based Upscaling for Elliptic Equation

In Chapter 2 we consider the numerical homogenization of divergence form elliptic equa-

tions: 





−∇a(x)∇u(x) = g in Ω

u = 0 on ∂Ω
(1.2.1)

where a(x) is a symmetric n×n matrix with entries in L∞(Ω). We assume a(x) is uniformly

bounded and coercive. p > 2 is some constant depending on a and Ω, g is a function in

Lp(Ω).

The harmonic coordinates F(x) =
(
F1(x), . . . ,Fn(x)

)
associated to (1.2.1) satisfy the

following equations,






diva∇Fi = 0 in Ω

Fi(x) = xi on ∂Ω.

(1.2.2)

It can be shown that F is an automorphism over Ω [6], we refer to Appendix B and

references therein. Recall that the natural distance associated to the Laplace operator on

a fractal space is called resistance metric [83, 122, 26]. It is thus natural to find that a

similar (not equivalent) notion of distance allows the numerical homogenization of PDEs

with arbitrary coefficients. More precisely the analogue of the resistance metric here is the
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harmonic mappings F . The analysis of these mappings allows bypassing of boundary layer

effects in homogenization in periodic media [8].

We discover the following compensation phenomena: Though in Euclidean coordinates

solutions u of (1.2.1) are only W 1,p (by Meyers Theorem) or Hölder continuous (by De

Giorgi-Nash-Moser theory), with respect to the harmonic coordinates they are W 2,p (C1,α

in 2d). Namely, they have one more degree of differentiability. Indeed, u ◦F−1 satisfies

a non-divergence elliptic equation which is known to have W 2,p estimate under a Cordes

type condition [93].

More precisely, write σ := t∇Fa∇F , then there exists p > 2, if σ satisfies the following

Cordes type condition

βσ := esssup(x,t)∈ΩT

(

n−
(

Trace[σ ]
)2

Trace[tσσ ]

)

< 1 (1.2.3)

and
∥
∥Trace(σ)

) n
2p−1∥∥

L∞(Ω)
< ∞, we have the following result 2:

‖u◦F−1‖W 2,p(Ω) ≤C‖g‖Lp(Ω), (1.2.4)

and in 2d, there exists α > 0, the derivative of u with respect to F is Hölder continuous

‖(∇F)−1∇u‖Cα(Ω) ≤C‖g‖Lp(Ω). (1.2.5)

(1.2.4) also holds for p = 2.

This phenomenon can be observed numerically. In figure 1.1(a) a is given by a product

of random functions oscillating over a continuum of scales. The entries of the matrix ∇F

and ∇u are in Lp, while (∇F)−1∇u is Hölder continuous.

It can be deduced from this compensation phenomena that numerical homogenization

methods based on oscillating finite elements can converge in the presence of a continuum

of scales, if one uses global harmonic coordinates to obtain the test functions instead of

solving a local cell problem. Compared with methods which perturb the test functions with
2The results presented in the thesis are slightly different from but essentially the same as those in [108].
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(a) a in log scale (b) ∇u (c) (∇F)−1∇u

Figure 1.1: Gradient of u in Euclidean coordinates and harmonic coordinates

the solution of a local cell problem, the global change of coordinates allows avoidance of

the cell resonance problem and the means to obtain a scheme converging uniformly in h.

We can roughly explain the numerical homogenization method using the following ana-

logue: When we solve the equation Ax = y, we do not compute A−1 directly. Instead, we

solve the equation with n different right hand sides Axi = yi. With the information from

xi, we can construct Ac with much fewer degrees of freedom and compute an approximate

solution using Ac by a prescribed accuracy.

For example, we can use the composition rule to construct the numerical homogeniza-

tion method, write V h the finite dimensional subspace of H1
0 (Ω),

V h := {ϕ ◦F : ϕ ∈ Xh} (1.2.6)

where Xh is a usual C0 or C1 finite element space.

We have the following error estimate:

‖u−uh‖H1
0 (Ω) ≤Ch‖g‖L2(Ω). (1.2.7)

Once one understand that the key idea for the homogenization of (1.2.1) lies in its

higher regularity properties with respect to harmonic coordinates, one can homogenize

(1.2.1) through a different formulation.

Instead of using the finite element ψ = ϕ ◦F , which has a deformed support, we can

figures/adirich.eps
figures/gradueuclidmetdirich.eps
figures/gradunewmetdirich.eps
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construct a finite element space ξ with regular support on the original quasi-uniform mesh,

but the price to pay is the discontinuity of the elements which results in a nonconforming

finite element method. We will prove the convergence of this method. The approximation

error on the coarse mesh would depend on the aspect ratio of the triangles of the coarse

mesh in the metric induced by F , and the approximation error of F by a piecewise linear

map.

Both ψ and ξ contain the whole fine scale structure of F . In fact, it is possible to

compress the elliptic operator by a effective operator associated to the coarse mesh. In fact,

the resulting numerical method can be formulated as a Petrov-Galerkin method, with test

functions piecewise linear on the coarse mesh and trial functions the nonconforming finite

element ξ . To define the effective operator, we only need compressed information, the bulk

quantities 〈a∇F〉 and the non-averaged quantities F(b)−F(a), where a,b are nodes of the

coarse mesh triangles K.

The elliptic operator appearing in (2.0.1) can be seen as the generator of a stochastic

differential equation. This stochastic differential equation can reflect the transport process

of a pollutant in a highly heterogeneous medium such as soil. The following operator

∆ − ∇V∇ whose numerical homogenization is similar to that of (2.0.1) can represent a

physical system evolving in a highly irregular energy landscape V . The simple fact that

this evolution taking place in a continuous domain can be captured by a Markov chain

evolving on a graph is far from being obvious [123]. We propose to accurately simulate

a Markov chain living on a fine graph by an ‘up-scaled’ Markov chain living on a coarse

graph using the information from F . The main question is how to choose the jump rate γi j

of the random walk between the nodes of the coarse graph. The answer to that question is

conveyed by a multi-scale finite volume method.

We have seen that if σ is stable then u ◦F−1 belongs to W 2,p(Ω) with some p > 2. It

is thus natural to expect a better accuracy by C1 finite elements (described in Appendix C

and references therein) rather than piecewise linear elements. This increase of accuracy has

already been observed by Allaire and Brizzi in [8] when F is approximated as the solution

of a local cell problem. When the harmonic coordinates are computed globally, we observe

a sharp increase of the accuracy for the finite elements ψ = ϕ ◦F by using splines as the
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elements ϕ .

1.2.2 Numerical Homogenization for Parabolic Equations with a Con-

tinuum of Space-Time Scales

In Chapter 3 we address the issue of numerical homogenization of linear divergence form

parabolic equations with a continuum of space-time scales, which describe many important

problems such as nuclear waste storage in deep geological formations [12]. Consider the

following equation:







∂tu = ∇
(
a(x, t)∇u(x, t)

)
+g in Ω× (0,T)

u(x, t) = 0 for (x, t) ∈
(
∂Ω× (0,T )

)
∪

(
Ω×{t = 0}

)
(1.2.8)

where Ω is a bounded and convex domain of class C2 of Rn, T > 0 and ΩT := Ω× (0,T ).

g is a function in L2(ΩT ), and a(x, t) is a symmetric positive definite matrix with entries in

L∞(ΩT ) and uniformly elliptic on the closure of ΩT .

Under the assumption of scale separation and time independent coefficients a, numeri-

cal homogenization methods have been proposed and analyzed in [3, 45] in the framework

of MsFEM or HMM method.

If the medium is time independent or the dependence on time is smooth, it is suffi-

cient to solve an associated elliptic equation n times to use the time independent harmonic

coordinates F . Otherwise, we need to solve for the time dependent caloric coordinates

F := (F1, . . . ,Fn) satisfying







∂tFi = ∇
(
a(x, t)∇Fi(x, t)

)
in ΩT

Fi(x, t) = xi for (x, t) ∈
(
∂Ω× (0,T )

)

∇
(
a(x,0)∇Fi(x,0)

)
= 0 in Ω×{t = 0}

(1.2.9)

which is essentially different from the elliptic case.

The compensation phenomena can now be read off from the following estimate, under
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a parabolic Cordes condition we have:

‖u◦F−1‖L2(0,T,W 2,2(Ω)) +‖∂t(u◦F−1)‖L2(ΩT ) ≤C‖g‖L2(ΩT ) (1.2.10)

which implies although u ∈ L2(0,T,H1
0 (Ω)) and ∂tu ∈ L2(0,T,H−1(Ω)), u ◦ F−1 ∈

L2(0,T,W 2,2(Ω)) and ∂t(u◦F−1) ∈ L2(ΩT ).

For t ∈ [0,T ], let us define the time-space finite element space

V h(t) :=
{

ϕ ◦F(x, t) : ϕ ∈ Xh}. (1.2.11)

Define Y h
T the subspace of L2(0,T ;H1

0 (Ω)
)

as

Y h
T := {v ∈ L2(0,T ;H1

0 (Ω)
)

: v(x, t) ∈V h(t)}. (1.2.12)

Write uh the solution in Y h
T of the following system of ordinary differential equations:







(ψ,∂tuh)L2(Ω) +a[ψ,uh](t) = (ψ,g)L2(Ω) for all t ∈ (0,T ) and ψ ∈V h(t)

uh(x,0) = 0.

(1.2.13)

We have the following error estimate,

∥
∥(u−uh)(.,T)

∥
∥

L2(Ω)
+

∥
∥u−uh

∥
∥

L2(0,T ;H1
0 (Ω))

≤Ch‖g‖L2(ΩT ). (1.2.14)

Furthermore, we can introduce the time discrete numerical homogenization method.

Suppose (tn = n T
M )0≤n≤M is a discretization of [0,T ] with M ∈ N. Let (ϕi) be a basis of Xh.

Write Zh
T as the subspace of Y h

T ,

Zh
T := {w ∈ Y h

T : w(x, t) = ∑
i

ci(t)ϕi
(
F(x, t)

)
, ci(t) are constants on (tn, tn+1]} (1.2.15)
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Uh
T is the subspace of Y h

T defined as,

Uh
T = {ψ ∈ Y h

T : ψ(x, t) = ∑
i

diϕi
(
F(x, t)

)
, di are constants (on [0,T ]).} (1.2.16)

define wn ∈Uh
T by

wn(x, t) := ∑
i

ci(tn)ϕi(F(x, t)). (1.2.17)

Let v be the solution in Zh
T which satisfies the following implicit weak formulation,

(suppose that v(x,0) ≡ 0): for n ∈ {0, . . . ,M−1} and ∀ψ ∈U h
T ,

(
ψ(tn+1),vn+1(tn+1)

)

L2(Ω)
=

(
ψ(tn),vn(tn)

)

L2(Ω)
+

∫ tn+1

tn

((
∂tψ(t),vn+1(t)

)

L2(Ω)

−a
[
ψ,vn+1](t)+

(
ψ(t),g(t)

)

L2(Ω)

)
dt.

(1.2.18)

The following theorem gives an error bound for the time discretization scheme

∥
∥(uh − v)(T )

∥
∥

L2(Ω)
+‖uh − v‖L2(0,T,H1

0 (Ω)) ≤C
∆t
h
‖g‖L2(ΩT ) (1.2.19)

When a is independent of t, the error bound can be improved to C∆t.

1.2.3 Numerical Homogenization for the Acoustic Wave Equation

with a Continuum of Space Scales

Based on the upscaling techniques for elliptic equations and extended to parabolic equa-

tions with a continuum of scales, we can numerically homogenize acoustic wave equations

with a continuum of scales.

Waves in heterogeneous media is a field of great mathematical interest and applicable

to many real problems in geophysics, seismology, and electromagnetics [124, 25, 127, 19].

We refer to [124] for a review of the acoustic wave equation in relation to seismic imaging.

For an extensive work on the wave equation in complex or random media we refer to [111],

[24], [23], [87], [110], [109], [47], [86], [116], [84], and [85].
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We consider the homogenization of wave equation in heterogeneous media where the

bulk modulus K(x) and the density of the medium ρ(x) are only bounded,

K(x)−1∂ttu = ∇ρ(x)−1∇u+g(x, t). (1.2.20)

For example, in geophysical and seismic prospecting, K stands for the bulk modulus,

ρ the density and u the unknown pressure. The velocity c and acoustic impedance σ are

given by

c =
√

K/ρ and σ =
√

Kρ. (1.2.21)

The main difference with parabolic equations lies in the fact that with hyperbolic equa-

tions, energy is conserved and after homogenization there is no hope of recovering the

energy (or information) lying in the highest frequencies. However when the medium is

highly heterogeneous the eigenfunctions associated to the highest frequencies are local-

ized, thus energy is mainly transported by the lowest frequencies. That is why, when one is

only interested in the large scale transport of energy, it is natural to approximate the solu-

tions of (1.2.20) by the solutions of a homogenized operator. For localization of waves in

heterogeneous media, we refer to [118, 11, 84, 85, 86].

Different numerical schemes have been developed to solve that equation (with different

assumption on the regularity of the coefficients), we refer to [25], [19], [127], and [22] for

an incomplete list.

We show that under a Cordes type condition, as well as some mild assumptions

for forcing term g(x, t) and initial data u(x,0) (for example, assume that ∂tg ∈ L2(ΩT ),

g ∈ L∞(0,T,L2(Ω)), ∂tu(x,0) ∈ H1(Ω), and ∇a(x)∇u(x,0) ∈ L2(Ω)), the second order

derivatives of the solution with respect to harmonic coordinates F are in L2 (instead of H−1

with respect to Euclidean coordinates) and the solution itself is in L∞(0,T,H2(Ω)) (instead

of L∞(0,T,H1(Ω)) with respect to Euclidean coordinates). Therefore, using the composi-

tion rule, we can construct numerical homogenization methods to solve the acoustic wave

equation.
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Chapter 2

Metric Based Upscaling for Elliptic
Equations

Suppose Ω⊂Rn to be a bounded and convex domain of class C2. We consider the following

benchmark PDE 





−div
(
a(x)∇u(x)

)
= g in Ω

u = 0 in ∂Ω
(2.0.1)

where g is a function in L∞(Ω) (depending on the context, we can make different assump-

tion g ∈ Lp(Ω) with p ≥ 2). a(x) is symmetric, uniformly elliptic with entries in L∞(Ω).

2.1 Compensation Phenomena

We introduce the so called a-harmonic coordinates associated to (2.0.1), i.e., the weak

solution of the following boundary value problem







diva∇F = 0 in Ω

F(x) = x on ∂Ω.

(2.1.1)

By (2.1.1) we mean that F is a n-dimensional vector field F(x) =
(
F1(x), . . . ,Fn(x)

)
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such that each of its entries satisfies






diva∇Fi = 0 in Ω

Fi(x) = xi on ∂Ω.

(2.1.2)

Define σ by,

σ := t∇Fa∇F. (2.1.3)

Define the anisotropic distortion of σ by

µσ := esssupx∈Ω

(λmax
(
σ(x)

)

λmin
(
σ(x)

)

)

. (2.1.4)

where λmax(M(x)) (λmin(M(x))) denote the maximal (minimal) eigenvalue of matrix

M(x), we also use the notation λmax(M) := esssupx∈Ω sup|ξ |=1
tξ aξ and λmin(M) :=

essinfx∈Ω inf|ξ |=1
tξ aξ for the supremum of λmax(M(x)) and infimum of λmin(M(x)) over

Ω.

In dimension n = 2, we say that σ is stable if and only if µσ < ∞ and
(

Trace(σ)
)−1 ∈

L∞(Ω). According to [10], in dimension two if a is smooth then σ is stable. According to

[6], F is always an homeomorphism in dimension two even with ai, j ∈ L∞(Ω). Also see

Appendix B and references therein.

We will use the notation ∇Fu := (∇F)−1∇u. In dimension two, it is known ([10], [15],

[6]) that the determinant of ∇F is strictly positive almost everywhere and the object ∇Fu is

well defined. In dimension three and higher ∇F u is well defined when σ is stable and F is

an automorphism.

Theorem 2.1.1. Assume that σ is stable and n = 2, then there exists constants p > 2, α > 0,

and C > 0 such that (∇F)−1∇u ∈Cα(Ω) and

∥
∥(∇F)−1∇u

∥
∥

Cα (Ω)
≤C‖g‖Lp(Ω). (2.1.5)

The constant α depends on Ω,λmax(a)/λmin(a), and µσ . The constant C depends on the

constants above and
∥
∥Trace(σ)

) n
2p−1∥∥

L∞(Ω)
.
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Remark.

If one considers a sequence aε = a(x/ε) such that µσε and
∥
∥Trace(σε)

) n
2p−1∥∥

L∞(Ω)
are

uniformly bounded away from ∞, λmin(aε) and λmax(aε) are uniformly bounded away from

0 and ∞, then (2.1.5) is uniformly true.

This compensation phenomenon can be observed numerically. In figures 2.1(a) and

2.2(a) a is given by a product of random functions oscillating over a continuum of scales.

The entries of the matrix ∇F are in Lp by Meyers Theorem (figure 2.2(b)), the entries of the

gradient of u in the Euclidean metric are in Lp (figures 2.1(b) and 2.2(c)), yet (∇F)−1∇u is

Hölder continuous (figures 2.1(c) and 2.2(d)).

(a) a in log scale (b) ∇u (c) (∇F)−1∇u

Figure 2.1: Change of metric on the disk.

Moreover, we can introduce the compensation phenomenon in dimension n ≥ 3. As in

Appendix A.1.2, the Cordes parameter βσ associated to σ is defined by

βσ : = esssupx∈Ω

(

n−
(

Trace[σ(x)]
)2

Trace[tσ(x)σ(x)]

)

= esssupx∈Ω

(

n−
(

∑n
i=1 λi(σ(x))

)2

∑n
i=1 λi(σ(x))2

)

.

(2.1.6)

where λi(M) denotes the ith eigenvalue of M.

In dimension n ≥ 3, we say that σ is stable if and only if, βσ < 1 and exists p ≥ 2 such

figures/adirich.eps
figures/gradueuclidmetdirich.eps
figures/gradunewmetdirich.eps
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that ‖
(

Trace(σ)
) n

2p−1‖L∞(Ω) < ∞. In fact, in dimension 2, we have

1
1−βσ

≤ 1
2
(µσ +

1
µσ

) (2.1.7)

therefore µσ < ∞ ⇒ βσ < 1.

Remark. According to [10] and [44] in dimension three and higher σ can be unstable

even if a is smooth. We refer to figure 2.6 for an explicit example.

Let us write

‖v‖
W 2,p

0 (Ω)
:=

(∫

Ω

( n

∑
i, j=1

|∂i∂ jv|2
) p

2 dx
) 1

p
. (2.1.8)

Theorem 2.1.2. For n ≥ 3, assume that σ is stable and F is an automorphism on Ω, then

there exist constants p > 2 and C > 0 such that u◦F−1 ∈W 2,p
0 (Ω) and

∥
∥u◦F−1∥∥

W 2,p
0 (Ω)

≤C‖g‖Lp(Ω). (2.1.9)

The constant p depends on n, Ω, λmax(a), λmin(a), and βσ . The constant C depends on the

constants above and ‖
(

Trace(σ)
) n

2p−1‖L∞(Ω).

In the following theorem we do not need to assume Ω to be convex.

Theorem 2.1.3. Assume n ≥ 2 and (Trace(σ))−1 ∈ L∞(Ω). Let p > 2. There exist a

constant C∗ = C∗(n,∂Ω) > 0 such that if βσ < C∗ then there exists a real number γ > 0

depending only on n,Ω, and p such that

∥
∥(∇F)−1∇u

∥
∥2

Cγ(Ω)
≤C‖g‖2

Lp(Ω). (2.1.10)

The constant C in (2.1.10) depends on n, γ , Ω, C∗, λmin(a), λmax(a), ‖a‖L∞(Ω), µσ and

‖
(

Trace(σ)
) n

2p−1‖L∞(Ω)
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2.2 Dimensionality Reduction

2.2.1 Finite Element Using Composition Rule

According to Theorems 2.1.1 and 2.1.2, whatever the choice of g at small scales, solutions

to (2.0.1) live in the neighborhood of a functional space correlated to F of dimension n. We

will propose a rigorous justification of a variation of the multi-scale finite element method

introduced by Hou and Wu [78] in the refined form by Allaire and Brizzi [8] in situations

where the medium is not assumed to be periodic or ergodic (these methods are already

rigorously justified when the medium is periodic [78], [8]).

Let Th be a conformal simplicial coarse mesh on Ω composed of n-simplices (triangles

in dimension two and tetrahedra in dimension three). Here h is the resolution of the mesh

defined as the maximal length of the edges of the tessellation. By ‘coarse’ mesh we assume

h is much greater than the scale of oscillations of the problem. By ‘conformal’ mesh, we

mean: call γ(Th) the maximum ratio of the n-simplices K over Th of the ratio between the

radius of the smallest ball containing K and the largest ball inscribed in K. Assume γ(Th)

to be uniformly bounded in h.

Write the coarse mesh finite element space X h ⊂ H1
0 (Ω) the set of piecewise linear

functions on the coarse mesh vanishing at the boundary of the tessellation. Nh is the set

of interior nodes of the tessellation and ϕi (i ∈ Nh) is the usual nodal basis function of X h

satisfying

ϕi(y j) = δi j. (2.2.1)

The finite elements (ψi)i∈Nh are defined by

ψi := ϕi ◦F(x). (2.2.2)

Let V h be the space spanned by ψi. Write uh ∈V h the solution of the Galerkin scheme

associated to (2.1.1) based on the shape functions (ψi)i∈Nh
.

a[ψi,uh] = (ψi,g)L2(Ω). (2.2.3)
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Figure 2.3: The Galerkin elements

where a[·, ·] is the bilinear form defined on H1
0 (Ω),

a[v,w] :=
∫

Ω
∇va∇w. (2.2.4)

We have the following Theorem 2.2.1 which implies that solutions to (2.0.1) live in the

H1-norm neighborhood of a low dimensional space.

Theorem 2.2.1. Assume that σ is stable and n = 2, there exist constants α,C > 0 such that

‖u−uh‖H1 ≤Chα‖g‖Lp(Ω). (2.2.5)

The constant α depends only on n,Ω, λmin(a), λmax(a), and µσ . The constant C depends

on the objects mentioned above plus γ(Th) and
∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
.

Remark. Theorem 2.2.1 is also valid with α = 1 as in Theorem 2.2.2. The only difference

between these two theorems lies in the constant C. In the proof of Theorem 2.2.1 we use

the property u ◦ F−1 ∈ C1,α(Ω) and in the proof of Theorem 2.2.2 we use the property

u◦F−1 ∈W 2,2(Ω).

Remark. The proof of Theorems 2.2.1 and 2.2.2 is done for the exact function ψi and not

for its discrete version. In the implementation, we use piecewise linear function on the fine

mesh to approximate ψi. If a is regular at a given small scale h0 then it is easy to check

figures/phi2.eps
figures/psi2.eps
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that Theorem 2.2.1 remains valid as long as the edges of the fine mesh are smaller than h0.

A more intriguing case is when a is discrete and discontinuous on a fine mesh. Numerical

experiments show that Theorems such as 2.2.1 and 2.1.1 remain valid.

Remark. We keep the composition rule used in [8]. The only difference between the el-

ements (2.2.2) and the ones proposed by Hou, Wu, Allaire, and Brizzi lies in the fact that

we use the global solution to (2.1.1) and not a local one computed on each triangle of the

coarse mesh through an over-sampling technique.

For dimension n ≥ 2 we have the following estimate:

Theorem 2.2.2. Assume that σ is stable, n ≥ 2,
∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
< ∞ and

∥
∥Trace(σ)

∥
∥

L∞(Ω)
< ∞. Then there exist constants p > 2, C > 0 such that

‖u−uh‖H1(Ω) ≤Ch‖g‖Lp(Ω). (2.2.6)

Furthermore we have the L2 estimate,

‖u−uh‖L2(Ω) ≤Ch2‖g‖Lp(Ω). (2.2.7)

The constant C depends on n, γ(Th), Ω, βσ , λmax(a), λmin(a),
∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
and

∥
∥Trace(σ)

∥
∥

L∞(Ω)
.

Remark. Compared with the numerical results in section 2.4, we believe that the theoreti-

cal estimates are not optimal. We conjecture that the resulted equation is better conditioned

after the coordinate transformation, although the comparison of µ(σ) and the aspect ratio

of a does not directly quantifies this effect. See the discussion at p.54.

2.2.2 Localized Nonconforming Finite Element Method

For clarity, we will restrict to dimension two from now on, the generalization of the state-

ments to higher dimensions is conditioned on the stability of σ (and the application of

Theorem 2.1.3).
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Figure 2.4: Support of the elements ϕi and ψi

The elements ψ (2.2.2) can be supported on highly distorted and non-local domain

(figure 2.4) since

support(ψi) := F−1(support(ϕi)
)
. (2.2.8)

Is it possible to avoid that difficulty by solving (2.0.1) on a coarse mesh with localized

elements supported on a regular domain? The answer is yes, but the price to pay will be

the discontinuity of the elements, which results in a nonconforming finite element method.

Recall that when the coefficients a(x) of the PDE (2.0.1) are L∞, F is Hölder continuous

by Theorem A.1.2 in Appendix A.1.1, also see [120, 67]). It is meaningful to look at the

point value of F . Now let v be a function defined on the nodes a,b,c of the triangle K ∈Th.

It is natural to look at the so-called ‘coarse gradient’ of v evaluated at the nodes of the

triangle K, i.e., the vector defined by

∇v(K) :=




b−a

c−a





−1 


v(b)− v(a)

v(c)− v(a)



 . (2.2.9)

figures/psisupp2.eps
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Define ηF
min(K) the weak aspect ratio induced by F

ηF
min(K) =

1
sinθ

. (2.2.10)

where θ is the interior angle of the triangle KF = (F(a),F(b),F(c)) which is closest to

π/2. ηF
min(K) is large if the triangle KF is flat. We define

η∗
min = sup

K∈Th

ηF
min(K) (2.2.11)

If the weak aspect ratio of the triangle K ηF
min(K) < ∞ then the following object called

the ‘coarse gradient’ of v with respect to the metric induced by F is well defined.

∇Fv(K) :=




F(b)−F(a)

F(c)−F(a)





−1 


v(b)− v(a)

v(c)− v(a)



 . (2.2.12)

Now consider the nodal elements (ξi)i∈Nh
, defined by







ξi(x j) = δi j

∇Fξ (x) = constant within each K ∈ Th.

(2.2.13)

If the mesh is not unadapted to F then the elements (figure 2.5) (2.2.13) are well defined

and given by







ξi(x) = 1+
(
F(x)−F(xi)

)
∇Fϕi(K) if i ∼ K and x ∈ K

ξi(0) = 0 in other cases
(2.2.14)

where the notation i ∼ K means that i is a node of K. Observe that the elements ξi are

discontinuous at the boundaries of the triangles of the coarse mesh, but continuous at the

vertices, therefore we obtain a nonconforming finite element method. ξi are easier to im-

plement since they are localized in these triangles. Write Zh the vector space spanned by

the functions ξi.
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For K ∈ Th we write aK the bilinear form on H1(K) defined by

aK[v,w] :=
∫

K

t∇va∇wdx. (2.2.15)

Write H1(Th) the space of functions v ∈ L2(Ω) such that the restriction of v to each

triangle K belongs to H1(K). For v,w ∈ H1(Th), define

a∗[v,w] := ∑
K∈Th

aK[v,w]. (2.2.16)

The nonconforming finite element method can be formulated in the following way:

look for u f ∈ Z h such that for all i ∈ Nh,

a∗[ξi,u
f ] = (ξi,g)L2(Ω). (2.2.17)

Let ‖v‖h,K = (
∫

K |∇u|2dx)1/2, ‖v‖h = ∑K ‖v‖h,K , then ‖v‖h is a norm of H1(Th). Write

Z hu the interpolation of u over space Zh:

Z hu(x) = ∑
i∈Nh

u(xi)ξi(x). (2.2.18)

figures/xi2.eps
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It is well known that the numerical error of nonconforming finite element method is

composed of interpolation error and nonconforming error (see e.g. [40, Lemma 8.1.7]),

‖u−u f ‖h ≤C
(
‖u−Z hu‖h + sup

wh∈Zh\{0}

|(wh,g)−a∗(wh,u)|
‖wh‖h

)
. (2.2.19)

The nonconforming error is

en(Z
h) := sup

wh∈Zh\{0}

|(wh,g)−a∗(wh,u)|
‖wh‖h

. (2.2.20)

We will show that the interpolation error ‖u−Z hu‖h depends on η∗
min, which is the weak

aspect ratio induced by F , and the nonconforming error en(Zh) depends on χ∗(h), which is

the error of piecewise linear approximation to F .

χ∗(h) is defined in the following: Let A	B be the symmetric set difference of A and

B. For K ∈ Th, we can quantify the approximation error of piecewise linear approximation

to F by

χF(K) := area(F(K)	KF)

area(KF)
, (2.2.21)

and,

χ∗(h) := sup
K∈Th

χF(K). (2.2.22)

The accuracy of this approximation itself is an interesting problem, see [95, P. 46-51,

‘PL approximations of homeomorphisms’] and [96]. We make the following assumption:

Assumption 2.2.1. χ∗(h) → 0 as h → 0. Furthermore, since F is a Cα homeomorphism,

there exists some β > 0, such that χ∗(h) ≤Chβ .

We say that the tessellation Th is not unadapted to F if and only if the determinant of

∇F(K) is strictly positive for all K ∈ Th and Assumption 2.2.1 holds. Observe that if the

tessellation Th is not unadapted to F then η∗
min(K) < ∞, the requirement det(∇F(K)) > 0

contains additional condition that there is no inversion in the images of the triangles of Th

by F . Now we have the following theorem,

Theorem 2.2.3. Assume that σ is stable and that the mesh is not unadapted to F. Then
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there exists a constant α > 0 such that

(
a∗[u−u f ]

) 1
2 ≤Chα‖g‖Lp(Ω). (2.2.23)

The constant α depends only on n,Ω,ε , µσ , λmax(a), λmin(a), and χ∗. The constant C

depends on the objects mentioned above plus η∗
min and

∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
.

Remark. The bilinear operator a∗[·, ·] on Zh is characterized by a constant matrix within

each triangle K ∈ Th equal to

t(∇F(K)
)−1〈t∇Fa∇F〉K

(
∇F(K)

)
(2.2.24)

where 〈v〉K means the average of v over K with respect to the Lebesgue measure

〈v〉K := 1
Vol(K)

∫

K
v(x)dx (2.2.25)

and Vol(K) is the Lebesgue measure of volume of K.

Observe that u f is discontinuous at the boundaries of the triangles of the coarse mesh;

we have to find an accurate way to interpolate u f in the whole space using its values at the

nodes of the coarse mesh. Let us write F(Nh) the image of the nodes of Th by F , T F the

triangulation of F(Nh). Suppose ϕF
i is the standard piecewise linear nodal basis of T F .

Write Jh the interpolation operator from the space of functions defined on the nodes of

Th into H1(Ω) defined by

Jhv(x) := ∑
i∈Nh

v(xi)ϕF
i ◦F(x). (2.2.26)

Observe that for i ∈ Nh, v(xi) = Jhv(xi). We have the following estimate

Theorem 2.2.4. Assume that σ is stable and that the mesh is not unadapted to F. Then

there exist constants α,C f > 0 such that

‖u−Jhu f ‖H1(Ω) ≤C f hα‖g‖Lp(Ω). (2.2.27)
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The constant α is the same as in Theorem 2.2.3. The constant C f depends on the same

objects as in Theorem 2.2.3 plus ν∗, which is defined by

ν∗ := sup
K∈Th

Vol(KF)

Vol(F(K))
(2.2.28)

where KF is the triangle whose nodes are the images of the nodes of K by F.

2.2.3 Numerical Homogenization from the Information Point of View:

Effective Operator on Coarse Scale

The Galerkin schemes described in subsections 2.2.1 and 2.2.2 are based on elements con-

taining the complete fine scale structure of F , which represents too much information. We

can wonder: What minimal information should be kept from the fine scales in order to

up-scale (2.0.1)? We would like to keep an accurate version of (2.0.1) with minimal com-

puter memory. Otherwise stated, we are considering compression from the point of view

of numerical homogenization. We view the operator (2.0.1) as a bilinear form on H1
0 (Ω)

and we will use Xh as space of test functions to zoom at the operator associated to a at a

given arbitrary resolution.

a :







H1
0 (Ω)×H1

0 (Ω) → R

(v,w) →
∫

Ω
t∇va∇w.

(2.2.29)

The up-scaled or compressed operator, written Uha, will naturally be a bilinear form

on the space of piecewise linear functions on the coarse mesh with Dirichlet boundary

condition.

Uha :







Xh×Xh → R

(v,w) → Uha[v,w].

(2.2.30)

The question is how to choose Uha? To answer that question we can integrate (2.0.1)
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against a test function ϕ in X h, then we obtain that

∫

Ω
∇ϕa∇udx =

∫

Ω
ϕgdx. (2.2.31)

We will use the test function ϕ to ‘look at’ the operator (2.0.1) at the given resolution

h. We can decompose the first term in the integral above as a sum of integrals over the

triangles of the coarse mesh to obtain (we assume that σ is stable),

∫

Ω
∇ϕa∇udx = ∑

K∈Th

∫

K
∇ϕ(x)a(x)∇F(x)

(
∇F(x)

)−1∇u(x)dx. (2.2.32)

Now ∇ϕ is constant within each triangle K ∈ Th.
(
∇F(x)

)−1∇u(x) is Hölder continu-

ous, thus we can approximate it by a constant within each triangle K and equal to the coarse

gradient of u induced by F , i.e.,

∇Fu(K) :=




F(b)−F(a)

F(c)−F(a)





−1 


u(b)−u(a)

u(c)−u(a)



 . (2.2.33)

where a,b,c are the nodes of the triangle K. It follows that the tensor a∇F can be averaged

over each triangle of the coarse mesh and we will write 〈a∇F〉K its average. In conclusion

a good candidate for the up-scaled operator Uha is the bilinear form given by the following

formula: for v,w ∈ Xh

Uha[v,w] := ∑
K∈Th

∫

K

t∇v
〈
a∇F

〉

K

(
∇F(K)

)−1∇w. (2.2.34)

Observe that the only information kept from the small scales in the compressed operator

(2.2.34) is the bulk quantities 〈a∇F〉K and the non averaged quantities F(b)−F(a), where

a and b are nodes of the triangles of the coarse mesh. The latter quantity can be interpreted

as a deformation of the coarse mesh induced by the small scales (or a new distance defining

coarse gradient). In particular, when a = M( x
ε ) and M is ergodic, then as ε ↓ 0 〈a∇F〉K con-

verges to the usual effective conductivity obtained from homogenization theory and ∇F(K)

converges to the identity matrix. It follows that the object (2.2.34) recovers the formulae
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obtained from homogenization theory when the medium is ergodic and characterized by

scale separation.

To estimate the accuracy of compression we have to use the up-scaled operator Uha to

obtain an approximation of the linear interpolation of u on the coarse mesh. We look for

um ∈ Xh such that for all i ∈ Nh,

Uha[ϕi,u
m] = (ϕi,g)L2(Ω). (2.2.35)

The price to pay for the loss of information on the small scales is the loss of ellipticity.

This loss can be caused by two correlated factors:

• The new metric can generate flat triangles.

• The up-scaled operator can become singular.

The first factor is due to the localization of the scheme. The second factor does not appear

with Galerkin schemes. It is not observed in dimension two but it can not be avoided in

dimension greater or equal to three in the sense that the up-scaled operator has no reason

to remain elliptic and local. Indeed, consider a box of dimension three, and set in that box

tubes of high conductivity as shown in figure 2.6. Set the left side of the box to temper-

ature 00c and the right side to temperature 1000c. Then an inversion in the temperature

profile is produced around the critical points shown in figure 2.6 (see [10] and [44], instead

of increasing from left to right in these regions temperature decreases). Now as the op-

erator is up-scaled, the information on the geometry of the tubes is lost but the inversion

phenomenon remains in the loss of ellipticity and locality of the operator.

Figure 2.6: a in dimension three

figures/fercheval2.eps
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Nevertheless it is possible to prove that once stability is achieved then the method is

accurate (if σ is stable). Notice that we can rewrite (2.2.34) into

Uha[v,w] := ∑
K∈Th

∫

K

t∇v
〈
a∇F

〉

K

(
∇F(K)

)−1∇wdx

= ∑
K∈Th

∫

K

t∇va∇Z hwdx

=a∗[v,Z hw].

(2.2.36)

Thus we can rewrite (2.2.35) as

a∗[v,uz] = (v,g)L2(Ω). (2.2.37)

∀v ∈ Xh and uz ∈Z h. For a nodal function v, let us define the homogeneous Dirichlet form

on the graph induced by Th:

Eh[v] := ∑
i∼ j

|vi − v j|2 (2.2.38)

where vi = v(xi).

Remark. Let us recall that for v ∈ X h, Eh[v] can be bounded from below and above by the

L2-norm of the gradient of v. More precisely

1
4ηmax

Eh[v] ≤ ‖∇v‖2
L2(Ω) ≤ ηmaxEh[v]. (2.2.39)

which means that Eh[v] is equivalent to ‖v‖H1
0 (Ω). ηmax = 1/sin(θ) where θ is the closest

interior angle of the triangles of Th to 0 or π .

By (2.2.37), the test function and trial function are in different spaces, this category of

finite element methods is called Petrov-Galerkin method [16, Section 8.2]. We write i ∼ j

when those nodes share an edge on the coarse mesh. Let us define the following stability

parameter

S m := inf
w∈Zh\{0}

sup
v∈Xh\{0}

Uha[v,w]
(
Eh[v]

) 1
2
(
Eh[w]

) 1
2
. (2.2.40)

Remember the inf-sup condition (or Banach-Nečas-Babuška Theorem) [21, p.112][57,
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p.84][16, Section 8.2], if and only if S m > 0, the scheme (2.2.37) is well defined in the

sense that a unique solution uz ∈Z h exists. In [79], Hou et al. proved the inf-sup condition

for the scale separation periodic case and proposed a Petrov-Galerkin MsFEM formulation

with nonconforming multi-scale trial functions and linear test functions in order to elimi-

nate the cell resonance error. Observe that S m depends only on the up-scaled parameters

so we have a control on the stability.

Let us write Ihu the linear interpolation of u over Th:

Ihu := ∑
i∈Nh

u(xi)ϕi(x). (2.2.41)

We have the following estimate,

Theorem 2.2.5. Assume that σ and the scheme are stable and that the mesh is not un-

adapted to F. Then there exist constants α > 0,Cm > 0 such that

‖Ihu−um‖H1(Ω) ≤Cmhα‖g‖L∞(Ω). (2.2.42)

The constant α depends only on n, Ω, λmin(a), λmax(a), and µσ . The constant Cm can be

written

Cm := C
η∗

minηmax
S m . (2.2.43)

where C depends on the objects mentioned above plus and
∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
.

The compressed operator allows us to capture the solution of (2.0.1) on a coarse mesh

(figure 2.7). We can add information to the compressed operator in order to obtain fine

resolution approximation of u (figure 2.8). Indeed let Jh be the interpolation operator

introduced in (2.2.26), we then have the following estimate:

Theorem 2.2.6. Assume that σ and the scheme 2.2.37 are stable and the mesh is not un-

adapted to F. Then there exist constants α > 0,Cm > 0 such that

‖u−Jhum‖H1(Ω) ≤Cmhα‖g‖L∞(Ω). (2.2.44)
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The constant α depends only on n,Ω, λmin(a), λmax(a), and µσ . The constant Cm can be

written as,

Cm := Cηmaxη∗
min

(µσ ν∗

S m

) 1
2 (2.2.45)

where C depends on the objects mentioned above plus
∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
.

2.2.4 Numerical Homogenization from the Transport Point of View: a

Multi-scale Finite Volume Method

Let us write T ∗
h the dual mesh associated to Th. T ∗

h can be obtained by drawing segments

from the midpoints of the edges of the triangles of Th to an interior point in these triangles:

We can choose the interior point to be the circumcenter to obtain a Voronoı̈ tessellation but

one can also choose the barycenter [59].

Let us write Vi the control volume associated to the node i of the primal mesh and χi the

characteristic function of Vi. The finite volume method can be expressed in the following

way: Look for uv ∈ Z h (Z h being the space spanned by the elements ξi introduced in

(2.2.13)) such that for all i ∈ Nh,

a∗[χi,u
v] = (χi,g)L2. (2.2.46)

Again, it follows from equation (2.2.46) that the only information kept from fine scales

are the usual bulk quantities (effective conductivities at the edges of the dual mesh) plus

the metric information F(b)−F(a) where a and b are nodes of the triangles of the primal

mesh. According to (2.2.46) the good choice for the jump rates of the random walk should

be

γi j = a∗[χi,ξ j] if i ∼ j and i 6= j. (2.2.47)

To properly describe the transport process one should look at a parabolic operator instead of

the elliptic one. We will restrict ourselves to the elliptic case characterizing the equilibrium

properties of the random walk.

Notice that the test function and trial function in (2.2.46) are in different spaces. Similar

to (2.2.40), write S v the stability parameter of the up-scaled finite volume operator, which
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is defined by

S v := inf
w∈Z h\{0}

sup
v∈Yh\{0}

a∗[v,w]

(Eh[v])
1
2 (Eh[w])

1
2
. (2.2.48)

Theorem 2.2.7. Assume that σ and the scheme are stable (S v > 0) and that the mesh is

not unadapted to F. Then there exist constants α > 0,Cv > 0 such that

‖Ihu−Ihuv‖H1(Ω) ≤Cv,1hα‖g‖Lp(Ω) (2.2.49)

and

‖u−Jhuv‖H1(Ω) ≤Cv,2hα‖g‖Lp(Ω). (2.2.50)

The constant α depends only on n, Ω, λmin(a), λmax(a), and µσ . The constant Cv,1 can be

written as

Cv,1 := C
η∗

minηmax
S v . (2.2.51)

The constant Cv,2 can be written

Cv,2 := C
(η∗

minηmaxµσ ν∗

S v

) 1
2
. (2.2.52)

C depends on the objects mentioned above plus and
∥
∥
(

Trace(σ)
)−1∥∥

L∞(Ω)
.

Remark. Numerical experiments show that although the finite volume method keeps very

little information from small scales it is more stable and accurate than the method presented

in 2.2.3 (it is also more stable and almost as accurate as Galerkin method in which the

whole fine scale structure of F is used). That is why we believe that the constants (2.2.51)

and (2.2.52) are not optimal.
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2.3 Proofs

2.3.1 Compensation Phenomena

2.3.1.1 Proof of Theorem 2.1.1–2.1.3

To prove Theorem 2.1.1, we need a variation of Campanato’s result [46] on non-divergence

form elliptic operators. The W 2,p solvability Theorem A.1.3 is included in the appendix

A.1.2.

Assume that σ is stable. Write F−1 the inverse of F (which is well defined if σ is

stable). Write Q the symmetric positive matrix given by the following equation

Q(y) :=
(

(
t∇Fa∇F

)

|det
(
∇F

)
|
)

◦F−1(y). (2.3.1)

w is the strong solution of the following non-divergence form elliptic equation:

n

∑
i, j=1

Qi j∂i∂ jw = − g̃

|det
(
∇F

)
| ◦F−1 . (2.3.2)

Let us now prove the following theorem,

Theorem 2.3.1. Assume that σ is stable and that Ω is convex. Then there exists constants

p > 2, C > 0 such that the solution of (2.3.2) belongs to W 2,p
0 (Ω) and satisfies

‖w‖
W 2,p

0 (Ω)
≤ C

1−β
1
2

σ

‖g‖Lp(Ω). (2.3.3)

C depends on λmin(a), n, p, Ω, and ‖
(

Trace(σ)
) n

2p−1‖L∞(Ω) The theorem also holds for

p=2.

Proof. Since

νQ =
∑n

i=1 λi,Q

∑n
i=1 λ 2

i,Q

=
Trace(Q)

Trace(Q2)
◦F−1 (2.3.4)

we have
νQ

det(∇F)◦F−1 =
Trace(σ)

Trace(σ 2)
◦F−1. (2.3.5)
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Using the change of variables y = F(x), we obtain that

‖ νQ

det(∇F)◦F−1 g̃‖Lp(Ω) ≤ ‖g‖Lp(Ω)

∥
∥

Trace(σ)

Trace(σ 2)
(det(∇F))

1
p
∥
∥

L∞(Ω)
. (2.3.6)

Since σ = t∇Fa∇F , we have det(σ) = (det(∇F))2 det(a), use inequalities

|det(M)| ≤C(Trace(M))n, (2.3.7)

and

Trace(M2) ≤C(Trace(M))2. (2.3.8)

It is easy to check that

∥
∥

Trace(σ)

Trace(σ 2)
(det(∇F))

1
p
∥
∥p

L∞(Ω)
≤ Cqp,n

(λmin(a))
n
2
‖
(

Trace(σ)
) n

2p−1‖p
L∞(Ω)

. (2.3.9)

Observe that βQ = βσ , a direct application of Theorem A.1.3 and estimate (2.3.5) to

equation (2.3.2) implies the theorem. The proof also applies to the case p = 2.

Using the well known De Giorgi-Moser-Nash theory ([69], [97], [100]) for divergence

form elliptic operators with discontinuous coefficients (more precisely we refer to [120] for

the Global Hölder regularity), there exists C,α ′ > 0 depending on Ω and λmax(a)/λmin(a)

such that F is α ′ Hölder continuous and

‖F‖Cα ′ ≤C. (2.3.10)

which is stated as Theorem A.1.2 in Appendix A.1.1.

The following lemma is the key observation,

Lemma 2.3.1. For ϕ ∈C∞
0 (Ω), We have

a[ϕ,u] = Q[ϕ̃, ũ] (2.3.11)

and divy Q(y) = 0 in the weak sense.
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Proof. Since F ∈Cα ′ , ϕ̃ ∈ H1
0 (Ω),

∫

Ω
∇ϕa∇udx =

∫

Ω
∇ϕ∇F−1∇Fa∇F∇F−1∇udx

=
∫

Ω
∇ϕ̃Q∇ũdy.

To prove Q(y) is divergence free, it is enough to prove that for all ϕ̃ ∈C∞
0 (Ω),

∫

Ω
Q(y)∇ϕ̃dy = 0. (2.3.12)

In fact,

∫

Ω
σ ◦F−1∇ϕ̃

dy
det(∇F)◦F−1 =

∫

Ω
∇Fa∇F∇F−1∇ϕ dx

=
∫

Ω
∇Fa∇ϕ dx

= −
∫

Ω
ϕ∇a∇F dx

= 0.

Let ϕ ∈C∞
0 (Ω). Write ϕ̃ := ϕ ◦F−1. Using Theorem 2.3.1 we obtain that

(

ϕ̃,
n

∑
i, j=1

Qi j∂i∂ jw
)

L2(Ω)
= −

(

ϕ̃,
g̃

|det
(
∇F

)
| ◦F−1

)

L2(Ω)
. (2.3.13)

By Lemma 2.3.1,

a[ϕ,w◦F] = (ϕ,g)L2(Ω). (2.3.14)

It follows from the uniqueness of the solution of the Dirichlet problem (2.3.14) that

w◦F = u. Theorem 2.1.2 is then a straightforward consequence of Theorem 2.3.1 and the

equality u◦F−1 = w.

Theorem 2.1.1 is a straightforward consequence of the Sobolev embedding inequality

(A.1.13), Theorem 2.3.1, Lemma A.1.3, and the fact that ∇F u = ∇ũ◦F .
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2.3.1.2 Hölder Continuity for Nonconvex Domain

In this subsection we will not assume Ω to be convex. Let N p,λ (Ω) (1 < p < ∞, 0 < λ < n)

be the weighted Morrey space formed by functions v : Ω → R such that ‖v‖Np,λ (Ω) < ∞

with

‖v‖Np,λ (Ω) = sup
x0∈Ω

(∫

Ω
|x− x0|−λ |v(x)|p

) 1
p
. (2.3.15)

To obtain the Hölder continuity of u◦F−1 in dimension n ≥ 3 we will use corollary 4.1

of [90]. We will give the result of S. Leonardi below in a form adapted to our context. Con-

sider the nondivergence elliptic Dirichlet problem (A.1.3). Write W 2,p,λ (Ω) the functions

in W 2,p(Ω) such that their second order derivatives are in N p,λ (ω).

Theorem 2.3.2. There exist a constant C∗ = C∗(n, p,λ ,∂Ω) > 0 such that if βM < C∗ and

f ∈ N p,λ (Ω) then the Dirichlet problem (A.1.3) has a unique solution in W 2,p,λ ∩W 1,p
0 (Ω).

Moreover, if 0 < λ < n < p then ∇v ∈Cα(Ω) with α = 1−n/p and

‖∇v‖Cα(Ω) ≤
C

λmin(M)
‖ f‖Np,λ (Ω) (2.3.16)

where C = C(n, p,λ ,∂Ω).

Theorem 2.1.3 is then a straightforward application of Theorem 2.3.2.

2.3.2 Finite Element Using Composition Rule

2.3.2.1 Proof of Theorem 2.2.1–2.2.2

Let us prove Theorem 2.2.1. We write V h the linear space spanned by the elements ψi. The

solution of the Galerkin scheme satisfies a[u−uh,v] = 0 for all v ∈V h. Thus

a[u−uh] = a[u−uh,u− v]. (2.3.17)

It follows by Cauchy-Schwartz inequality that

a[u−uh] ≤ inf
v∈V h

a[u− v]. (2.3.18)
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Let ṽ := v◦F−1 and using the change of variable y = F(x) we obtain

a[u− v] = Q[ũ− ṽ]. (2.3.19)

In dimension n = 2 it follows that

‖u−uh‖2
H1 ≤

D
λmin(a)

inf
w∈Xh

‖∇ũ−∇w‖2
L∞(Ω). (2.3.20)

with

D := Trace
[∫

Ω
t∇Fa∇F dx

]

. (2.3.21)

Using the following standard approximation properties of the elements ϕi (see for in-

stance [57]),

inf
w∈Xh

‖∇ũ−∇w‖L2(Ω) ≤Cγ(Th)h
α‖ũ‖C1,α

0 (Ω)
. (2.3.22)

we obtain that

‖u−uh‖H1 ≤Cγ(Th)
( D

λmin(a)

) 1
2‖∇ũ‖Cα hα . (2.3.23)

We conclude by observing that for l ∈ Rn

∫

Ω
t lt∇Fa∇Fl = inf

f∈C∞
0 (Ω)

∫

Ω
t(l +∇ f )a(l +∇ f ). (2.3.24)

which means that D is indeed bounded. Theorem 2.2.1 becomes a direct consequence of

(2.3.20) and Theorem 2.3.1.

In dimension n ≥ 3 we obtain from (2.3.19) that

‖u−uh‖2
H1 ≤

λmax(Q)

λmin(a)
inf

w∈Xh
‖∇ũ−∇w‖2

L2(Ω). (2.3.25)
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It is easy to obtain that

λmax(Q) ≤
(

det(a)
) 1

2 µ
n
2

σ
(

Trace(σ)
)1− n

2 . (2.3.26)

We conclude by observing that µσ < C(βσ) and using the following standard approxi-

mation properties of the elements ϕi (see for instance [57]).

inf
w∈Xh

‖∇ũ−∇w‖L2(Ω) ≤Cγ(Th)h‖ũ‖W 2,2(Ω). (2.3.27)

We can use the Aubin-Nitsche technique [17, 102] for L2 estimate, the proof follows

from standard duality techniques (see for instance Theorem 5.7.6 of [40]). Choose v ∈
H1

0 (Ω) to be the solution of the following linear problem: for all w ∈ H1
0 (Ω)),

a[w,v] = (w,u−uh)L2(Ω). (2.3.28)

Choosing w = u−uh in equation (2.3.28), for ∀ϕh ∈ Xh, we have

‖u−uh‖2
L2(Ω) = a[u−uh,v−ϕh]. (2.3.29)

Using Cauchy Schwartz inequality, since ϕh is arbitrary, we deduce that

‖u−uh‖2
L2(ΩT ) ≤

(
a[u−uh]

) 1
2 inf

ϕh∈Xh

(
a[v−ϕh]

) 1
2 (2.3.30)

≤ Ch‖ũ‖W 2,2(Ω)Ch‖ṽ‖W 2,2(Ω) (2.3.31)

≤ Ch2‖ũ‖W 2,2(Ω)‖u−uh‖L2(Ω). (2.3.32)

Therefore,

‖u−uh‖L2(Ω) ≤Ch2‖ũ‖W 2,2(Ω). (2.3.33)
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2.3.3 Localized Nonconforming Finite Element Method

2.3.3.1 Proof of Theorem 2.2.3

Let us prove Theorem 2.2.3. We assume that the coarse mesh is not unadapted to F . Let

K be a triangle of Th and let a be a node of K, such that ηF
min(K) is the weak aspect

ratio induced by F over triangle K. ηF
min(K) = 1

sinθ , where θ is the interior angle between

(F(a),F(b)) and (F(a),F(c)), b and c are the other nodes of K. We can prove the following

lemma,

Lemma 2.3.2.

|∇Fu(K)−∇Fu(a)| ≤ 3ηF
min(K)‖∇ũ‖Cα‖F‖α

Cα ′hαα ′
. (2.3.34)

Proof. It is easy to check that

u(b)−u(a) =
(
F(b)−F(a)

)
∇ũ◦F(a)+(F(b)−F(a)) ·qba. (2.3.35)

where the vector qba is defined by

qba :=
∫ 1

0

[

∇ũ
[
F(a)+ s(F(b)−F(a))

]
−∇ũ

[
F(a)

]]

ds. (2.3.36)

Use the notation fba := (F(b)−F(a))/|F(b)−F(a)| and write f ⊥ba the unit vector ob-

tained by a 90° rotation of fba towards fca. Defining qca as in (2.3.36) we obtain that

∇Fu(K) = ∇Fu(a)+ k, (2.3.37)

with

k = qba −λ f⊥ba, (2.3.38)

and

λ := fca.(qba−qca)

fca. fba⊥
. (2.3.39)
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which leads us to

|∇Fu(K)−∇Fu(a)| ≤ 3
fca. fba⊥

‖∇ũ‖Cα‖F‖α
Cα ′hαα ′

. (2.3.40)

The following lemma is a direct consequence of Lemma 2.3.2,

Lemma 2.3.3. Let K ∈ Th and let x ∈ Ω then

|∇Fu(K)−∇Fu(x)| ≤ 3η∗
min‖∇ũ‖Cα (1+‖F‖α

Cα ′)
(
h+dist(x,K)

)αα ′
. (2.3.41)

Lemma 2.3.4. We have

a∗[u−Z hu] ≤Cη∗
min‖∇ũ‖Cα‖F‖α

Cα ′hαα ′
D. (2.3.42)

Proof. Since

aK[u−Z hu] =
∫

K

t(∇Fu(x)−∇Fu(K)
)
σ(x)

(
∇Fu(x)−∇Fu(K)

)
dx. (2.3.43)

with σ(x) := t∇Fa∇F . Using the change of variables F(x) = y we obtain that

aK[u−Z hu] =
∫

F(K)

t(∇ũ(y)−∇Fu(K)
)
Q(y)

(
∇ũ(y)−∇Fu(K)

)
dy. (2.3.44)

from which we deduce that

aK[u−Z hu] ≤
(
3η∗

min‖∇ũ‖Cα‖F‖α
Cα ′hαα ′)2

∫

F(K)
sup
|e|=1

teQedy. (2.3.45)

Thus

a∗[u−Z hu] ≤C
(
η∗

min‖∇ũ‖Cα‖F‖α
Cα ′hαα ′)2

D. (2.3.46)

where D has been defined by (2.3.21).

We need the following lemma to control the nonconforming error:
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Lemma 2.3.5.

sup
wh∈Z h\{0}

|(wh,g)−a∗(wh,u)|
‖wh‖h

≤Chα . (2.3.47)

Proof. Let Eh be the set of all the edges in Th, E F
h be the set of all the edges in T F

h .

Observe that

a∗[u,wh]− (wh,g) = ∑
K∈Th

∫

K
(∇ua∇wh −whg)dx

= ∑
K∈Th

∫

F(K)
(∇ũQ(y)∇ũ− w̃hQ∇∇ũ)dy

= ∑
K∈Th

∫

F(K)
∇(Q∇ũ · w̃h)dy

= ∑
e∈Eh

∫

F(e)
Q

∂ ũ
∂n

[w̃h]ds

= ∑
e∈Eh

∫

F(e)
Q

∂ ũ
∂n

[w̃h]ds− ∑
e∈E F

h

∫

e
Q

∂ ũ
∂n

[w̃h]ds

= ∑
K∈Th

∫

F(K)	KF
∇(Q∇ũ · [w̃h])dy

= ∑
K∈Th

∫

F(K)	KF
(∇ũQ∇[w̃h]− [w̃h]Q∇∇ũ)dy.

(2.3.48)

where [·] is the jump across ∂F(K). Suppose that K1 and K2 are adjacent triangles in Th.

x1, x2, x3 are vertices of K1. x1, x2, x4 are vertices of K2. W1 = w̃h|F(K1), W2 = w̃h|F(K2), W1

and W2 are piecewise linear on F(K1) and F(K2) respectively. Since w̃h is continuous on

vertices of F(K), let wi = w̃h(F(xi)). Let F(x1x2) be the image of segment x1x2 by F , for

y ∈ F(x1x2), i = 1,2, j = 1,2,

Wi(y)−w j = ∇Wi(y− y j). (2.3.49)

therefore,

W1(y)−W2(y) = (∇W1 −∇W2)(y−λy1 − (1−λ )y2). (2.3.50)

Choose λ such that |y−λy1 − (1−λ )y2| ≤Chα ′ . By (2.3.48) and Assumption (2.2.1),
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it results

|a∗[u,wh]− (wh,g)| ≤ ∑
K∈Th

∣
∣

∫

F(K)	KF
(∇ũQ∇[w̃h]− [w̃h]Q∇∇ũ)

∣
∣dy

≤ ∑
K∈Th

∫

F(K)	KF
|∇ũQ∇[w̃h]|+ |[w̃h]Q∇∇ũ|dy

≤ ∑
K∈Th

∫

F(K)	KF
|∇ũQ∇[w̃h]|dy

+Chα ′ ∑
K∈Th

∫

F(K)	KF
|[∇w̃h]| · |Q∇∇ũ|dy

≤Chβ ( ∑
K∈Th

∫

F(K)
|∇ũQ∇w̃h|dy

︸ ︷︷ ︸

I1

+

Chα ′ ∑
K∈Th

∫

F(K)
|∇w̃h| ·

g̃
det(∇F)◦F−1 dy

︸ ︷︷ ︸

I2

).

(2.3.51)

Using Cauchy-Schwarz inequality, we have the following estimate for I1 and I2,

I1 = ∑
K∈Th

∫

F(K)
|t∇ũQ(y)∇w̃h|dy ≤ ∑

K∈Th

∫

K
|t∇wha(x)∇u|dx

≤(a?[wh])
1/2(a[u])1/2

≤Cλmax(a)‖wh‖h‖g‖L2(Ω).

(2.3.52)

I2 = ∑
K∈Th

∫

F(K)
|∇w̃h| ·

g̃
det(∇F)◦F−1 dy

≤ ∑
K∈Th

∫

K
∇wh(∇F∇F)−1∇whgdx

≤ 1
(λmin(a))1/2 ∑

K∈Th

(

∫

K
∇whσ∇wh)

1/2(
∫

K
g2dx)1/2

≤ 1
(λmin(a))1/2 ( ∑

K∈Th

∫

K
∇whσ∇wh)

1/2(
∫

Ω
g2dx)1/2

≤
( µσ

λmin(a)‖(Traceσ)−1‖L∞(Ω)

)1/2‖wh‖h‖g‖L2(Ω).

(2.3.53)
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Theorem 2.2.3 is implied by Theorem 2.3.1, Theorem A.1.2, Lemma 2.3.4, Lemma

2.3.5, (2.3.51), (2.3.52), (2.3.53), and the inequality (2.2.19) for nonconforming finite ele-

ments.

2.3.3.2 Proof of Theorem 2.2.4

Let us now prove Theorem 2.2.4. We have

a
[
u−Jhu f ] ≤ 2a

[
u−Jhu

]
+2a

[
Jhu−Jhu f ]. (2.3.54)

Write J̃hu := (Jhu) ◦F−1. J̃hu is a linear interpolation of ũ on the tessellation T F .

Using the identity

a[u−Jhu] = Q[ũ−J̃hu], (2.3.55)

we obtain that

a[u−Jhu] ≤ ‖ũ‖Cα h̃αD. (2.3.56)

where h̃ is the maximal length of the edges of T F . Observe that h̃ ≤ hα ′‖F‖Cα ′ .

Lemma 2.3.6. We have

a
[
Jhu−Jhu f ] ≤ µσ ν∗a∗

[
Z hu−u f ]. (2.3.57)

Proof. Let w := Jhu−Jhu f , to obtain (2.3.57), we observe that

a[w] = a∗[Jhw] = Q[w̃]. (2.3.58)

Thus

a[w] = ∑
K∈Th

∫

KF

t∇w̃(KF)Q(y)∇w̃(KF)dy. (2.3.59)

It follows that

a[w] ≤ ν∗ ∑
K∈Th

∫

F(K)

λmax(Q)

λmin(Q)
t∇w̃(KF)Q(y)∇w̃(KF)dy. (2.3.60)
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from equation

Q◦F =
σ

(det(σ))
1
2
(det(a))

1
2 , (2.3.61)

we obtain that
λmax(Q)

λmin(Q)
≤ µσ . (2.3.62)

Next, observing that

∑
K∈Th

∫

F(K)

t∇w̃(KF)Q(y)∇w̃(KF)dy = a∗[Z hw]. (2.3.63)

we obtain (2.3.57).

Theorem 2.2.4 is a consequence of inequalities (2.3.54), (2.3.56), Lemmas 2.3.6 and

2.3.4, Theorem 2.3.1, and the following inequality

a∗
[
Z hu−u f ] ≤ a∗

[
u−u f ]+a∗

[
u−Z hu

]
. (2.3.64)

2.3.4 Numerical Homogenization from the Information Point of View

2.3.4.1 Proof of Theorem 2.2.5

In this subsection we will prove Theorem 2.2.5. The method introduced in subsection 2.2.3

can be formulated in the following way: Look for um ∈ Xh such that for all v ∈ Xh,

a∗[v,Z hum] = (v,g)L2Ω. (2.3.65)

which implies the following finite element orthogonality property for all v ∈ X h,

a∗[v,Z hum −u] = 0. (2.3.66)

Let us write w = u−Z hum. By the inf-sup condition (2.2.40) we obtain that

(
Eh[w]

) 1
2 ≤ 1

S m sup
v∈Xh

a∗[v,Z hw]
(
Eh[v]

) 1
2

. (2.3.67)
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By the orthogonality property (2.3.66) we have

a∗[v,Z hw] = a∗[v,Z hu−u]. (2.3.68)

Thus

a∗[v,Z hw] ≤
(
λmax(a)

) 1
2‖∇v‖L2(Ω)

(
a∗[Z hu−u]

) 1
2 . (2.3.69)

using the inequality (2.2.39)

‖∇v‖2
L2(Ω) ≤ ηmaxEh[v], (2.3.70)

combine (2.3.67), (2.3.69), we deduce that

(
Eh[w]

) 1
2 ≤ 1

S m

(
λmax(a)ηmax

) 1
2
(
a∗[Z hu−u]

) 1
2 . (2.3.71)

It follows from (2.2.39) that

‖∇Ihu−∇um‖L2(Ω) ≤
ηmax
S m

(
λmax(a)

) 1
2
(
a∗[Z hu−u]

) 1
2 . (2.3.72)

And we deduce from Poincaré inequality that

‖Ihu−um‖H1
0 (Ω) ≤CΩ

ηmax
S m

(
λmax(a)

) 1
2
(
a∗[Z hu−u]

) 1
2 . (2.3.73)

We obtain Theorem 2.2.5 from equations (2.3.72), (2.3.73), Lemma 2.3.4, and Theorem

2.3.1.

2.3.4.2 Proof of Theorem 2.2.6

Let us now prove Theorem 2.2.6. Using triangle inequality we obtain

a
[
u−Jhum]

≤ a
[
u−Jhu

]
+a

[
Jhu−Jhum]

. (2.3.74)

The object a
[
u−Jhu

]
has already been bounded from above by (2.3.56). Writing
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w := Jhu−Jhum we have

a[w] =
a[Jhw]

Eh[w]
Eh[w]. (2.3.75)

Eh[w] has already been estimated in equation (2.3.71). It remains to notice that

a[Jhw] = Q[w̃]. (2.3.76)

From this point the arguments are similar to the ones employed in Lemma 2.3.6, indeed

Q[w̃] ≤ µσ ν∗λmax(a)‖∇w‖2
L2(Ω) ≤ µσ ν∗λmax(a)ηmaxEh[w]. (2.3.77)

2.3.5 Numerical Homogenization from a Transport Point of View

2.3.5.1 Proof of Theorem 2.2.7

We assume the mesh to be regular in the following sense: The nodes of the Voronoı̈ diagram

of Th belong to elements of the primal mesh. In dimension 2 this means that each triangle

K ∈ Th is acute. Let us write Yh the vector space spanned by the functions χi. For v ∈ Zh

we define Yhv by

Yhv := ∑
i∈Nh

viχi. (2.3.78)

The metric based numerical homogenization method can be formulated in the following

way: look for uv ∈ Zh (the space spanned by the elements ξi p.23) such that for all i ∈ Nh,

a∗[χi,u
v] = (χi,g). (2.3.79)

Notice that the finite volume solution u is given by

a[χi,u] = (χi,g), (2.3.80)

which implies the following finite volume orthogonality property for all i ∈ Nh,

a∗[χi,u
v−u] = 0. (2.3.81)
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Equation (2.3.79) can be written as

∑
j∼i

uv
j

∫

∂Vi

n.a.∇ξi =
∫

Vi

g. (2.3.82)

Write w := Z hu−uv, by the inf-sup condition (2.2.48) we get

(Eh[w])
1
2 ≤ 1

S v sup
v∈Yh\{0}

a∗[v,w]

(Eh[v])
1
2
. (2.3.83)

Using the orthogonality property of the finite volume method we obtain that for v ∈ Yh,

a∗[v,w] = − ∑
i∈Nh

vi

∫

∂Vi

n.a
(
∇Z hu−∇u

)
. (2.3.84)

Let E ∗
h be the edges of the dual tessellation (edges of the control volumes), we obtain

that

a∗[v,w] = ∑
ei j∈E ∗

h

(v j − vi)

∫

ei j

ni j.a
(
∇Z hu−∇u

)
. (2.3.85)

where ei j is the edge separating the control volume Vi from the control volume V j and ni j

is the unit vector orthogonal to ei j pointing outside of Vi. It follows that

a∗[v,w] ≤
(
Eh[v]

) 1
2‖∇FZ hu−∇Fu‖L∞(E ∗

h )

(

∑
ei j∈E ∗

h

|ei j|2λmax(a)λmax(σ)
) 1

2
. (2.3.86)

Note that

λmax(σ) ≤ µσ
2‖(Trace(σ))−1‖L∞

, (2.3.87)

and

∑
ei j∈E ∗

h

|ei j|2 ≤ 4ηmax Vol(Ω). (2.3.88)

It follows from equation (2.3.83),

(
Eh[w]

) 1
2 ≤ 4

S v ‖∇FZ hu−∇Fu‖L∞(E ∗
h )ηmax Vol(Ω)

(
λmax(a)λmax(σ)

) 1
2 . (2.3.89)

Equation (2.2.49) of Theorem 2.2.7 is then a straightforward consequence of (2.2.39)
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and Lemma 2.3.3.

Let us now proceed to prove (2.2.50) of Theorem 2.2.7. By triangle inequality

a
[
u−Jhuv] ≤ a

[
u−Jhu

]
+a

[
Jhu−Jhuv]. (2.3.90)

a
[
u−Jhu

]
has already been estimated in equation (2.3.56). Writing w := Jhu−Jhuv

we have

a[w] =
a∗[Jhw]

Eh[w]
Eh[w]. (2.3.91)

But Eh[w] has already been estimated in equation (2.3.89). It remains to estimate
a∗[Jhw]

Eh[w] . Similar to the argument in Lemma 2.3.6, we have

a∗[Jhw] ≤ µσ ν∗λmax(a)ηmaxEh[w]. (2.3.92)

which concludes the proof of Theorem 2.2.7.

2.4 Numerical Experiments

Let us now illustrate the implementation of the numerical method. The computational do-

main is the unit disk in dimension two. Equation (2.0.1) is solved on a fine tessellation

characterized by 66049 nodes and 131072 triangles. The coarse tessellation has 289 nodes

and 512 triangles (figure 2.9). Since our methods involve the computation of global har-

monic coordinates, the memory and CPU time requirements are not improved if one needs

to solve (2.0.1) only one time, whereas localized methods such as the one of Hou and Wu

or E. and Engquist do improve the memory requirement or the CPU time. We will show,

as a trade-off, the accuracy of the numerical homogenization will be sharply improved.

The elliptic operator associated to equation (2.0.1) has been up-scaled to an operator

defined on the coarse mesh (compression by a factor of ∼ 300 ) using 5 different methods:

• FEM ψ: The Galerkin scheme described in subsection 2.2.1 using the multi-scale

finite element shape function ψi.
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Figure 2.9: Coarse grid

• FEM ξ : The Galerkin scheme described in subsection 2.2.2 using the nonconform-

ing elements ξi.

• MBFEM: The metric based compression scheme described in subsection 2.2.3.

• FVM: The finite volume method described in subsection 2.2.4.

• LFEM: A multi-scale finite element where F is computed locally 1 on each triangle K

of the coarse mesh as the solution of a cell problem with boundary condition F(x) = x

on ∂K. This method has been implemented in order to understand the effect of the

removal of global information in the structure of the metric induced by F .

(a) a (b) T F

Figure 2.10: Example 2.4.1, Trigonometric multi-scale

1instead of globally

figures/cmesh2.eps
figures/fvm_circleg_3_a.eps
figures/circleg_3_fmap_cmesh.eps
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Figure 2.11: Example 2.4.1, Trigonometric multi-scale

Example 2.4.1. Trigonometric multi-scale

The following example is extracted from [94] as a problem without scale separation:

a(x) =
1
6(

1.1+ sin(2πx/ε1)

1.1+ sin(2πy/ε1)
+

1.1+ sin(2πy/ε2)

1.1+ cos(2πx/ε2)
+

1.1+ cos(2πx/ε3)

1.1+ sin(2πy/ε3)
+

1.1+ sin(2πy/ε4)

1.1+ cos(2πx/ε4)
+

1.1+ cos(2πx/ε5)

1.1+ sin(2πy/ε5)
+ sin(4x2y2)+1)

(2.4.1)

where ε1 = 1
5 ,ε2 = 1

13 ,ε3 = 1
17 ,ε4 = 1

31 ,ε5 = 1
65 .

Figure 2.10 demonstrates the deformation of T F (figure 2.9) induced by F . The defor-

mation is small since the medium is quasi-periodic and F is close to x. The weak aspect

ratio induced by F is η∗
min = 1.1252. Table 2.1 gives the relative error estimated on the

nodes of the coarse mesh between the solution u of the PDE (2.0.1) and the solutions ob-

tained using the up-scaled operators. Table 2.2 gives the relative error estimated on the

nodes of the fine mesh between u and the fine mesh approximation of the coarse mesh so-

lutions. Figure 2.11(a) gives the condition number of the stiffness matrix associated to the

up-scaled operator versus − log2 h (logarithm of the resolution). Figure 2.11(b) gives the

relative L1-distance between u and its approximation on the coarse mesh in log scale versus

− log2 h. Obviously FEM ψ has the best performance. For the method LFEM, numerical

error increases with the resolution, this is an effect of the cell resonance observed in [79]

and [8]. This cell resonance does not occur with the methods proposed in this paper. The

figures/cond_circleg_3.eps
figures/circleg_3_errL1c.eps
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Coarse Mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0042
0.0039
0.0059
0.0060

0.0022
0.0024
0.0090
0.0262

0.0075
0.0074
0.0154
0.0568

0.0032
0.0040
0.0117
0.0203

0.0411
0.0441
0.0496
0.0763

Table 2.1: Example 2.4.1, Trigonometric multi-scale

Fine mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0042
0.0043
0.0063
0.0581

0.0085
0.0082
0.0112
0.0540

0.0053
0.0061
0.0154
0.0778

0.0080
0.0078
0.0141
0.0601

0.0593
0.0591
0.0597
0.0943

Table 2.2: Example 2.4.1, Trigonometric multi-scale

finite volume method is characterized by the the best stability and one of the best accura-

cies at a coarse resolution. The increase in the error observed for FVM as the resolution

is increased is a numerical artifact created by the fine mesh: one has to divide the coarse

tessellation into coarse control volumes. These coarse control volumes are unions of the

control volumes defined on a fine mesh, and when the ratio between the coarse resolution

and the fine mesh resolution is small and the triangulation is irregular, it is not possible

to divide the coarse tessellation into control volumes intersecting the edges of the primal

mesh at positions close to the midpoints of those edges.
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(a) a. (b) T F

Figure 2.12: Example 2.4.2, High conductivity channel

Example 2.4.2. High conductivity channel

In this example a is characterized by a fine and long-ranged high conductivity channel.

We choose a(x) = 100, if x is in the channel, and a(x) = O(1), if x is not in the channel. The

weak aspect ratio induced by F is η?
min = 2.2630. µσ is 1.03×106, and the aspect ratio of

a is 103. The condition number of the linear system associated with linear elements on the

fine mesh is 3.29×108. The condition number of the linear system associated with LFEM

(dof 225) is 1.48× 104, but the condition number of the linear system associated with

FEM ψ is merely 621. We can see that the equation is better conditioned in the harmonic

coordinates, and the theoretical error estimate is in fact not optimal.

Table 2.3 gives the relative error estimated on the nodes of the coarse mesh between the

solution u of the PDE (2.0.1) and an approximation obtained from the up-scaled operators.

Table 2.4 gives the relative error estimated on the nodes of the fine mesh between u and

the fine mesh interpolation of the coarse mesh solutions. Figure 2.13(a) gives the condition

number of the stiffness matrix associated to the up-scaled operator versus − log2 h (loga-

rithm of the resolution). Figure 2.13(b) gives the relative L1-distance between u and its

approximation on the coarse mesh in log scale versus − log2 h.

Observe in figure 2.12 that the effect of the new metric on the mesh is to bring close

together nodes linked by a path of low electrical resistance.

figures/fvm_circleg_6_a.eps
figures/circleg_6_fmap_cmesh.eps
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Figure 2.13: Example 2.4.2, High conductivity channel

Coarse Mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0022
0.0025
0.0120
0.0120

0.0081
0.0096
0.0227
0.0384

0.0127
0.0179
0.0549
0.0919

0.0062
0.0081
0.0174
0.0265

0.0519
0.0606
0.1223
0.1514

Table 2.3: Example 2.4.2, High conductivity channel

Fine mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0070
0.0069
0.0133
0.0760

0.0155
0.0153
0.0227
0.1032

0.0164
0.0202
0.0573
0.1838

0.0121
0.0123
0.0214
0.0820

0.0612
0.0743
0.1226
0.2142

Table 2.4: Example 2.4.2, High conductivity channel

figures/cond_circleg_6.eps
figures/circleg_6_errL1c.eps
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Figure 2.14: Example 2.4.3, Random Fourier modes

Example 2.4.3. Random Fourier modes.

In this case, a(x) = eh(x), with

h(x) = ∑
|k|≤R

(ak sin(2πk · x)+bk cos(2πk · x)) (2.4.2)

where ak and bk are independent identically distributed random variables on [−0.3,0.3]

and R = 6. This is another example where scales are not separated. The weak aspect ratio

induced by F is η?
min = 3.4997. The deformation induced by F is given in figure 2.14.

Errors between u and the fine mesh interpolation of the coarse mesh solutions are larger

(tables 2.5 and 2.6), which is due to the fact that those errors depend on the aspect ratio

η∗
max. Of course one could improve the compression by adapting the mesh to the new metric

but this has not been our point of view here. We have preferred to show raw data obtained

with a given coarse mesh. The figures 2.16 and 2.17 give the log plot of L1, L2, L∞ and H1

relative error. The x-axis corresponds to the refinement of coarse mesh, the y-axis is the

error. The tables 2.7 and 2.8 show the convergence rate in different norms (the parameter

α in the error of the order of hα ).

figures/fvm_circleg_4_a.eps
figures/circleg_4_fmap_cmesh.eps
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Coarse Mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0027
0.0028
0.0066
0.0133

0.0075
0.0087
0.0278
0.0648

0.0117
0.0130
0.0320
0.0805

0.0106
0.0125
0.0376
0.0597

0.1197
0.1169
0.1358
0.1514

Table 2.5: Example 2.4.3, Random Fourier Modes

Fine mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0112
0.0177
0.0773
0.0972

0.0148
0.0223
0.0824
0.1152

0.0148
0.0184
0.0614
0.1307

0.0188
0.0202
0.0680
0.1659

0.1304
0.1265
0.1669
0.1725

Table 2.6: Example 2.4.3, Random Fourier Modes

Method L1 L2 L∞ H1

FEM ψ 1.62 1.66 1.56 1.44
FEM ξ 1.38 1.27 1.23 1.18

MBFEM 1.38 1.40 1.27 1.08
FVM 0.53 1.14 1.26 1.03

LFEM 1.51 1.53 1.62 1.46

Table 2.7: Coarse mesh approximation convergence rate

Method L1 L2 L∞ H1

FEM ψ 1.74 1.61 1.23 0.89
FEM ξ 1.57 1.47 1.23 0.91

MBFEM 1.54 1.52 1.21 0.96
FVM 0.75 1.16 1.22 0.58

LFEM 1.52 1.54 1.42 1.10

Table 2.8: Fine mesh approximation convergence rate
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Figure 2.15: Example 2.4.3, Random Fourier modes
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(c) L∞ error
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(d) H1 error

Figure 2.16: Coarse mesh error (log2) L1, L2, L∞ and H1 errors vs. coarse mesh refinement,
Example 2.4.3, Random Fourier modes
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Figure 2.17: Fine mesh approximation error (log2) L1, L2, L∞ and H1 errors vs. coarse
mesh refinement, Example 2.4.3, Random Fourier modes
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Figure 2.18: Example 2.4.4, Random fractal

Coarse Mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0024
0.0025
0.0094
0.0161

0.0075
0.0085
0.0399
0.0718

0.0231
0.0241
0.0920
0.1553

0.0073
0.0100
0.0398
0.0493

0.0519
0.0606
0.1694
0.3107

Table 2.9: Example 2.4.4, Random fractal

Example 2.4.4. Random fractal

In this case, a is given by a product of discontinuous functions oscillating randomly at

different scales, a(x) = a1(x)a2(x) · · ·an(x), and ai(x) = cpq for x ∈ [ p
2i ,

p+1
2i )× [ q

2i ,
q+1
2i ),

cpq is uniformly random in [1
γ ,γ], n = 5 and γ = 2. The weak aspect ratio induced by F

is η?
min = 2.4796. Table 2.9 gives the relative error estimated on the nodes of the coarse

mesh between the solution u of the PDE (2.0.1) and an approximation obtained from the

up-scaled operator. Table 2.10 gives the relative error of the fine mesh approximation of

the coarse mesh solutions. Figure 2.19(a) illustrates the condition number of the stiffness

matrix associated to the up-scaled operator versus − log2 h (logarithm of the resolution).

Figure 2.19(b) gives the relative L1-distance between u and its approximation on the coarse

mesh in log scale versus − log2 h.

figures/fvm_circleg_5_a.eps
figures/circleg_5_fmap_cmesh.eps


61

2 2.5 3 3.5 4 4.5 5
8

10

12

14

16

18

20

22
condition number of upscaling operator, problem 5

FEM−ψ−lin
FEM−ξ
MBFEM
FVM
LFEM

(a) Condition number

2 2.5 3 3.5 4 4.5 5
−14

−12

−10

−8

−6

−4

−2

0

coarse mesh L
1
 error, problem 5

FEM−ψ−lin
FEM−ξ
MBFEM
FVM
LFEM

(b) Coarse mesh L1 error

Figure 2.19: Example 2.4.4, Random fractal

Fine mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0108
0.0155
0.0662
0.1015

0.0147
0.0198
0.0802
0.1231

0.0245
0.0280
0.0919
0.1838

0.0142
0.0173
0.0720
0.1433

0.0765
0.0812
0.1694
0.2642

Table 2.10: Example 2.4.4, Random fractal

figures/cond_circleg_5.eps
figures/circleg_5_errL1c.eps
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Figure 2.20: Example 2.4.5, Percolation.

Coarse Mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0034
0.0041
0.0163
0.0343

0.0253
0.0265
0.0813
0.0843

0.0485
0.0523
0.0643
0.1070

0.0167
0.0189
0.0499
0.0713

0.2848
0.2851
0.3018
0.3740

Table 2.11: Example 2.4.5, Percolation.

Example 2.4.5. Site percolation

In this case, the conductivity of each site is equal to γ or 1/γ with probability 1/2. We

have chosen γ = 4 in this example. Observe that some errors are larger for this challenging

case because a percolating medium generates flat triangles in the new metric — indeed

η?
min = 22.3395 which is much larger than previous examples. Table 2.11 gives the relative

error of the coarse mesh approximations of the PDE (2.0.1). Table 2.12 gives the rela-

tive error of the fine mesh Jh interpolation of the coarse mesh solutions. Figure 2.21(a)

demonstrates the condition number of the stiffness matrix associated to the up-scaled oper-

ator versus − log2 h. Figure 2.21(b) gives the relative L1-error of the coarse mesh solution

in log scale versus − log2 h.

figures/fvm_circleg_7_a2d.eps
figures/circleg_7_fmap_cmesh.eps
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Figure 2.21: Example 2.4.5, Percolation

Fine mesh Error FEM ψ FEM ξ MBFEM FVM LFEM
L1

L2

L∞

H1

0.0115
0.0152
0.0500
0.1000

0.0265
0.0268
0.0527
0.1712

0.0585
0.0628
0.0940
0.1954

0.0216
0.0229
0.0497
0.1343

0.3024
0.3015
0.3135
0.3964

Table 2.12: Example 2.4.5, Percolation

figures/cond_circleg_7.eps
figures/circleg_7_errL1c.eps
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2.4.1 Numerical Experiments with Splines

We have seen that if σ is stable then u ◦F−1 belongs to W 2,p(Ω) with some p > 2. It is

thus natural to expect a better accuracy by using C1 elements as ϕ in the method ψ = ϕ ◦F

instead of C0 elements. In [8], the use of higher order Lagrangian polynomials as coarse

mesh shape functions was suggested and the increase of accuracy has been observed when

F is obtained as the solution of a local cell problem. In our case, when the harmonic

coordinates are computed globally, we would alter the finite element method ψ = ϕ ◦F by

using C1 elements for the ϕ .

We refer to Appendix C and references therein for C1 finite element methods. One

possibility is to use weighted extended B-splines (WEB) method developed by K. Höllig

in [76, 77], these elements are in general C1-continuous. They are obtained from tensor

products of one dimensional elements. The Dirichlet boundary condition is satisfied using

a smooth weight function ω , such that ω = 0 at the boundary. The condition number of the

stiffness matrix is bounded from above by O(h−2) (we have the same optimal bound on a

Galerkin system with piecewise linear elements).

We have considered two challenging multi-scale medium for our numerical experi-

ments: random Fourier modes and percolation. For the simplicity of the implementation

a square domain has been considered, and weighted spline basis are used instead of the

WEB spline basis. For a square domain [−1,1]× [−1,1], the weight function is chosen as

ω = (1− x2)(1− y2). Two methods have been compared,

• FEM ψlin: The Galerkin scheme using the finite elements ψi = ϕi ◦F , where ϕi are

the piecewise linear nodal basis elements.

• FEM ψsp: The Galerkin scheme using the finite element ψi = ϕi ◦F , where ϕi are

weighted cubic B-spline elements.

As shown in table 2.13–2.16 and figures 2.22–2.23, a sharp increase in accuracy is

observed for the method FEM ψsp.
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Coarse Mesh Error FEM ψlin FEM ψsp

L1

L2

L∞

H1

0.0437
0.0426
0.0614
0.0746

0.0046
0.0052
0.0096
0.0227

Table 2.13: Example 2.4.3, Random Fourier modes

Fine mesh Error FEM ψlin FEM ψsp

L1

L2

L∞

H1

0.0546
0.0529
0.0920
0.2109

0.0077
0.0096
0.0289
0.0547

Table 2.14: Example 2.4.3, Random Fourier modes

Coarse Mesh Error FEM ψlin FEM ψsp

L1

L2

L∞

H1

0.0393
0.0379
0.0622
0.0731

0.0080
0.0098
0.0309
0.0404

Table 2.15: Example 2.4.5, Percolation

Fine mesh Error FEM ψlin FEM ψsp

L1

L2

L∞

H1

0.0470
0.0464
0.1174
0.2030

0.0099
0.0130
0.0554
0.0838

Table 2.16: Example 2.4.5, Percolation
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Figure 2.22: Example 2.4.3. Random Fourier modes.
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Figure 2.23: Example 2.4.5. Percolation

figures/squareg_cond_4.eps
figures/squareg_4_errL1c.eps
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Chapter 3

Numerical Homogenization for
Parabolic Equations with Continuum
Time and Space Scales

In this chapter, we address the issue of the homogenization of divergence form parabolic

equations in space and time in situations where scale separation and ergodicity at small

scales are not available. In section 3.1 we give the main results, i.e., the compensation

result and error estimate of numerical homogenization scheme. In subsection 3.1.1 we will

establish the increase of regularity of solutions of (3.1.1), show that under a (parabolic)

Cordes type condition the first order time derivatives and second order space derivatives of

the solution with respect to caloric coordinates are in L2 instead of H−1 in Euclidean co-

ordinates. In subsection 3.1.2 we will formulate the corresponding semidiscrete numerical

homogenization method. In section 3.1.3 we will state the formulation and error estimate

of the corresponding full discrete numerical homogenization method. In section 3.2 we

give the detailed proof of the regularity result and error estimate. In section 3.3 we show

the results of numerical experiments.
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3.1 Main Results

Let Ω be a bounded and convex domain of class C2 of Rn. Let T > 0. Consider the

following parabolic PDE







∂tu = div
(
a(x, t)∇u(x, t)

)
+g in Ω× (0,T )

u(x, t) = 0 for (x, t) ∈
(
∂Ω× (0,T )

)
∪

(
Ω∪{t = 0}

)
.

(3.1.1)

Write ΩT := Ω× (0,T ). g is a function in L2(ΩT ). a(x, t) is a symmetric positive

definite n× n matrix with entries in L∞(ΩT ). We assume a to be uniformly elliptic on the

closure of ΩT .

3.1.1 Compensation Phenomena

Let F be the solution of the following parabolic equation







∂tF = div
(
a(x, t)∇F(x, t)

)
in ΩT

F(x, t) = x for (x, t) ∈
(
∂Ω× (0,T )

)

div
(
a(x,0)∇F(x,0)

)
= 0 in Ω.

(3.1.2)

By (3.1.2) we mean that F := (F1, . . . ,Fn) is a n-dimensional vector field such that each

of its entries satisfies






∂tFi = div
(
a(x, t)∇Fi(x, t)

)
in ΩT

Fi(x, t) = xi for (x, t) ∈
(
∂Ω× (0,T )

)

div
(
a(x,0)∇Fi(x,0)

)
= 0 in Ω.

(3.1.3)

We call F the caloric coordinates associated with a. In the case of time independent

medium, F is the harmonic coordinates defined in (2.1.1). Similar as in Chapter 2, we write

σ := t∇Fa∇F. (3.1.4)
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3.1.1.1 Time independent medium

In this subsection we assume that a does not depend on time t. Recall that βσ , the Cordes

parameter associated to σ is defined by

βσ := esssupx∈Ω

(

n−
(

Trace[σ ]
)2

Trace[tσσ ]

)

, (3.1.5)

and

µσ := esssupΩT

λmax(σ)

λmin(σ)
. (3.1.6)

Write for p≥ 2, W 2,p
D (D for Dirichlet boundary condition) the Banach space W 2,p(Ω)∩

W 1,p
0 (Ω). Equip W 2,p

D (Ω) with the norm

‖v‖p

W 2,p
D (Ω)

:=
∫

Ω

(

∑
i, j

(∂i∂ jv)
2) p

2 dx. (3.1.7)

Equip the space Lp(0,T,W2,p
D (Ω)) with the norm

‖v‖p

Lp(0,T,W 2,p
D (Ω))

=
∫ T

0

∫

Ω

(

∑
i, j

(∂i∂ jv)
2) p

2 dxdt. (3.1.8)

Theorem 3.1.1. Assume that ∂ta ≡ 0, g ∈ L2(ΩT ), Ω is convex, βσ < 1, and

(Trace[σ ])
n
4−1 ∈ L∞(Ω) then u◦F−1 ∈ L2(0,T,W 2,2

D (Ω)) and

‖u◦F−1‖
L2(0,T,W 2,2

D (Ω))
≤ C

1−β
1
2

σ

‖g‖L2(ΩT ). (3.1.9)

The constant C can be written as

C =
Cn

(λmin(a))
n
4

∥
∥(Trace[σ ])

n
4−1∥∥

L∞(Ω)
. (3.1.10)

Remark. According to theorem 3.1.1, although the second order derivatives of u with

respect to Euclidean coordinates are only in L2(0,T,H−1(Ω)), they are in L2(ΩT ) with

respect to harmonic coordinates.



70

The compensation phenomena presented in this subsection can be observed numeri-

cally. In figure 3.1, the value of a is set to be equal to 1 or 100 with probability 1/2 on each

triangle of a fine mesh with 16641 nodes and 32768 triangles.

Figure 3.1: Site percolation

(3.1.1) has been solved numerically on that mesh with g ≡ 1. u, u ◦F−1, ∂xu and

∂x(u◦F−1) have been plotted at time t = 1 in figure 3.2.

figures/a7.eps
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(a) u (b) u◦F−1

(c) ∂xu (d) ∂x(u◦F−1)

Figure 3.2: u, u ◦F−1, ∂xu, and ∂x(u ◦F−1) at time t = 1 for the time independent site
percolating medium

figures/ut100tip7.eps
figures/utt100tip7.eps
figures/uxt100tip7.eps
figures/utxt100tip7.eps
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In situations where g ∈ L∞(0,T,L2(Ω)), ∂tg ∈ L2(0,T,H−1(Ω)), or g ∈ Lp(ΩT ) with

p > 2, one can obtain a higher regularity for u ◦F−1. This is the object of the following

theorems.

Theorem 3.1.2. Assume that Ω is convex, g ∈ L∞(0,T,L2(Ω)), ∂tg ∈ L2(0,T,H−1(Ω)),

∂ta≡ 0, βσ < 1 and (Trace[σ ])
n
4−1 ∈ L∞(ΩT ), then for all t ∈ [0,T ], u◦F−1(., t)∈W 2,2

D (Ω)

and

‖u◦F−1(., t)‖W2,2
D (Ω)

≤ C

1−β
1
2

σ

(∥
∥g

∥
∥

L∞(0,T,L2(Ω))
+‖∂tg‖L2(0,T,H−1(Ω))

)

. (3.1.11)

Theorem 3.1.3. Assume that Ω is convex, g(.,0) ∈ L2(Ω), ∂tg ∈ L2(0,T,H−1(Ω)),

g∈ Lp(ΩT ), ∂ta ≡ 0, βσ < 1, and (Trace[σ ])
n
4−1 ∈ L∞(ΩT ), then there exists a real number

p0 > 2 depending only on n,Ω and βσ such that for each p, 2 ≤ p < p0, one has

‖u◦F−1‖
Lp(0,T,W 2,p

D (Ω))
≤ C

1−β
1
2

σ

(
‖g‖Lp(ΩT )

+
∥
∥g(.,0)

∥
∥

L2(Ω)
+‖∂tg‖L2(0,T,H−1(Ω))

)
.

(3.1.12)

The constant C in Theorem 3.1.2 and 3.1.3 can be written as

C =
Cn,Ω,p

(λmin(a))
n
4

∥
∥(Trace[σ ])

n
4−1∥∥

L∞(ΩT )

(
1+

1
λmin(a)

) 1
2 .

Write

‖v‖Cγ(Ω) := sup
x,y∈Ω,x6=y

|v(x)− v(y)|
|x− y|γ (3.1.13)

Theorem 3.1.4. Assume that n ≤ 2, Ω is convex, g(.,0) ∈ L2(Ω), ∂tg ∈ L2(0,T,H−1(Ω)),

g∈ Lp(ΩT ), ∂ta≡ 0, βσ < 1, (Trace[σ ])−1 ∈ L∞(ΩT ), and g∈ L2[0,T ;Lp∗(Ω)] with 2 < p∗.

Then there exists p ∈ (2, p∗] and γ(p) > 0 such that

(
∫ T

0

∥
∥∇(u◦F−1)(., t)

∥
∥2

Cγ (Ω)
dt

) 1
2 ≤ C

1−β
1
2

σ

(
‖g‖Lp(ΩT )

+
∥
∥g(.,0)

∥
∥

L2(Ω)
+‖∂tg‖L2(0,T,H−1(Ω))

)
.

(3.1.14)
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The constant C in (3.1.14) depends on n, p, Ω, λmin(a), λmax(a) and
∥
∥(Trace(σ))−1∥∥

L∞(ΩT )
.

Remark. It easy to check that if n = 1 then the theorem is valid with γ = 1/2.

3.1.1.2 Medium with a continuum of time scales

In this subsection the entries of a are merely in L∞(ΩT ). We need to introduce the following

parabolic Cordes type condition.

Condition 3.1.1 (Cordes Type Condition). We say that condition 3.1.1 is satisfied if and

only if there exists δ ∈ (0,∞) and ε ∈ (0,1) such that

esssupΩT

δ 2 Trace[tσσ ]+1
(
δ Trace[σ ]+1

)2 ≤ 1
n+ ε

. (3.1.15)

Write

zσ := esssupΩT
n

Trace[tσσ ]

(Trace[σ ])2 . (3.1.16)

Observe that zσ is a measure of anisotropy of σ , in particular 1 ≤ zσ ≤ n and zσ = 1 if σ is

isotropic.

Write

yσ := ‖Trace[σ ]‖L∞(ΩT )

∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. (3.1.17)

Proposition 3.1.1. If ‖Trace[σ ]‖L∞(ΩT ) < ∞ and
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
< ∞ then condition

3.1.1 is satisfied with

δ := n
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. (3.1.18)

and with ε := (2yσ −1)/(2y2
σ ) provided that zσ ≤ 1+ ε/n.

Remark. Notice that in dimension one zσ = 1, thus for n = 1 condition 3.1.1 is satisfied if

Trace[σ ] ∈ L∞(ΩT ) and (Trace[σ ])−1 ∈ L∞(ΩT ).

We have the following theorems:
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Theorem 3.1.5. Assume that Ω is convex, and condition 3.1.1 is satisfied then u ◦F−1 ∈
L2(0,T,W 2,2

D (Ω)
)
, ∂t(u◦F−1) ∈ L2(ΩT ), and

‖u◦F−1‖L2(0,T,W 2,2
D (Ω))

+‖∂t(u◦F−1)‖L2(ΩT ) ≤C‖g‖L2(ΩT ) (3.1.19)

where C depends on Ω, n, δ , and ε .

Remark. According to theorem 3.1.5 although the second order space derivatives and

first order time derivatives of u with respect to Euclidean coordinates are only in

L2(0,T,H−1(Ω)), they are in L2(ΩT ) with respect to caloric coordinates.

Similarly we can obtain the following theorems in situations where g ∈ Lp(ΩT ) with

some p > 2.

Theorem 3.1.6. Assume that Ω is convex, and condition 3.1.1 is satisfied then there exists a

number p0 > 2 depending on n,Ω,ε such that for p ∈ (2, p0), u◦F−1 ∈ Lp
(
0,T,W 2,p

D (Ω)
)
,

∂t(u◦F−1) ∈ Lp(ΩT ) and

‖u◦F−1‖
Lp(0,T,W 2,p

D (Ω))
+‖∂t(u◦F−1)‖Lp(ΩT ) ≤C‖g‖Lp(ΩT ) (3.1.20)

where C depends on Ω, n, δ , and ε .

Theorem 3.1.7. Assume that Ω is convex, and condition 3.1.1 is satisfied, then there exists a

number α0 > 2 depending on n,Ω,ε such that for α ∈ (0,α0), ∇(u◦F−1)∈ L2(0,T,Cα(Ω))

and

‖∇(u◦F−1)(., t)‖L2(0,T,Cα(Ω)) ≤C‖g‖Lp(ΩT ) (3.1.21)

where C depends on Ω, δ , n, and ε .

These compensation phenomena can also be observed numerically. Choose

a(x,y, t) =
1
6
( 5
∑
i=1

1.1+ sin(2πx′/εi)

1.1+ sin(2πy′/εi)
+ sin(4x′2y′2)+1

)
(3.1.22)

with x′ = x +
√

2t, y′ = y−
√

2t, ε1 = 1
5 , ε2 = 1

13 , ε3 = 1
17 , ε4 = 1

31 , and ε5 = 1
65 . This

medium has been shown in figure 3.3 at time 0 (note that λmax(a)/λmin(a) ∼ 100).
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Figure 3.3: a at time 0

(3.1.1) has been solved numerically with g ≡ 1 on the fine mesh with 16641 nodes and

32768 triangles. Figure 3.4 illustrates ∂xu and ∂x(u◦F−1) at time 0.3.

(a) ∂xu (b) ∂x(u◦F−1)

Figure 3.4: ∂xu and ∂x(u ◦ F−1) at time t = 0.3 for the multi-scale trigonometric time
dependent medium.

In figure 3.5 and 3.6, x0 = (0.75,−0.25) and the curves t → u(x0, t),u ◦
F−1(x0, t),∇u(x0, t),∇u◦F−1(x0, t) are plotted from t = 0 to t = 0.3.

figures/ap4.eps
figures/uxt03p4.eps
figures/utxt03p4.eps
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Figure 3.5: t → u(x0, t),u◦F−1(x0, t) from t = 0 to t = 0.3 with x0 = (0.75,−0.25)
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Figure 3.6: t → ∇u(x0, t),∇u◦F−1(x0, t) from t = 0 to t = 0.3 with x0 = (0.75,−0.25)
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3.1.2 Numerical Homogenization in Space

Suppose we have a quasi-uniform coarse mesh with its aspect ratio uniformly bounded.

Let Xh be a finite dimensional subspace of H1
0 (Ω)∩W1,∞(Ω) 1 defined on the coarse mesh

with the following approximation property: There exists a constant CX such that for all

f ∈W 2,2
D (Ω)

inf
v∈Xh

‖ f − v‖H1
0 (Ω) ≤CXh‖ f‖

W 2,2
D (Ω)

. (3.1.23)

It is known that the set of piecewise linear functions on a triangulation of Ω satisfies

condition (3.1.23) provided that the length of the edges of the triangles are bounded by h

(CX in (3.1.23) is given by the aspect ratio of the triangles).

For media characterized by a continuum of time scales we will use C1 differentiable

elements which satisfy the following inverse inequalities (see [57, Section 1.7]): for v ∈ Xh,

‖v‖
W 2,2

D (Ω)
≤CX h−1‖v‖H1

0 (Ω). (3.1.24)

and

‖v‖H1
0 (Ω) ≤CX h−1‖v‖L2(Ω). (3.1.25)

As in Chapter 2, we use WEB spline based finite element to ensure that the conditions

(3.1.24) and (3.1.25) are satisfied.

For t ∈ [0,T ] let us define the time-space finite element space

V h(t) :=
{

ϕ ◦F(x, t) : ϕ ∈ Xh
}
. (3.1.26)

Write

a[v,w](t) :=
∫

Ω
t∇v(x, t)a(x, t)∇w(x, t)dx. (3.1.27)

Define Y h
T the subspace of L2(0,T ;H1

0 (Ω)
)

as

Y h
T := {v ∈ L2(0,T ;H1

0 (Ω)
)

: v(x, t) ∈V h(t)}. (3.1.28)
1W 1,∞ is the usual space of uniformly Lipschitz continuous functions.
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Write uh the solution in Y h
T of the following system of ordinary differential equations:







(ψ,∂tuh)L2(Ω) +a[ψ,uh](t) = (ψ,g)L2(Ω) for all t ∈ (0,T ) and ψ ∈V h(t)

uh(x,0) = 0.

(3.1.29)

We have the following theorem for time independent medium:

Theorem 3.1.8. Assume that ∂ta ≡ 0, Ω is convex, βσ < 1 and (Trace[σ ])−1 ∈ L∞(ΩT ),

then
∥
∥(u−uh)(.,T)

∥
∥

L2(Ω)
+

∥
∥u−uh

∥
∥

L2(0,T ;H1
0 (Ω))

≤Ch‖g‖L2(ΩT ). (3.1.30)

The constant C depends on CX , n, Ω, λmin(a), λmax(a), and
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. If n ≥ 3

it also depends on
∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
.

We have the following theorem for medium with a continuum of time scales:

Theorem 3.1.9. Assume that Ω is convex, and condition 3.1.1 is satisfied then

∥
∥(u−uh)(.,T)

∥
∥

L2(Ω)
+

∥
∥u−uh

∥
∥

L2(0,T,H1
0 (Ω))

≤Ch‖g‖L2(ΩT ). (3.1.31)

The constant C depends on CX , n, Ω, δ , ε , λmin(a), and λmax(a).

3.1.3 Numerical Homogenization in Space and Time

The ordinary differential equations system (3.1.29) is still characterized by a continuum of

time scales in situations where the entries of a merely belong to L∞(ΩT ). They need to

be discretized (homogenized) in time in order to be solved numerically. This will be the

object of the this subsection. Loosely speaking, although the parabolic operator (3.1.1) is

associated to a fine tessellation and fine time steps, it is possible to approximate it on a

coarse tessellation with coarse time steps.

Let M ∈ N, (tn = n T
M )0≤n≤M is a discretization of [0,T ]. (ϕi) is a basis of Xh. Write Zh

T

the subspace of Y h
T such that

Zh
T = {w ∈ Y h

T : w(x, t) = ∑
i

ci(t)ϕi
(
F(x, t)

)
, ci(t) are constants on (tn, tn+1]}. (3.1.32)
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Write Uh
T the subspace of Y h

T such that

Uh
T = {ψ ∈ Y h

T : ψ(x, t) = ∑
i

diϕi
(
F(x, t)

)
, di are constants (on [0,T ]).}. (3.1.33)

For w ∈ Y h
T , define wn ∈Uh

T by

wn(x, t) := ∑
i

ci(tn)ϕi(F(x, t)). (3.1.34)

Let v ∈ Zh
T be the solution of the following implicit weak formulation (suppose that

v(x,0) ≡ 0): for n ∈ {0, . . . ,M−1} and ∀ψ ∈U h
T ,

(
ψ(tn+1),vn+1(tn+1)

)

L2(Ω)
=

(
ψ(tn),vn(tn)

)

L2(Ω)
+

∫ tn+1

tn

((
∂tψ(t),vn+1(t)

)

L2(Ω)

−a
[
ψ,vn+1](t)+

(
ψ(t),g(t)

)

L2(Ω)

)
dt.

(3.1.35)

The following Theorem 3.1.10 shows the stability of the implicit scheme (3.1.35):

Theorem 3.1.10. Let v ∈ Zh
T be the solution of (3.1.35). We have

∥
∥v(T )

∥
∥

L2(Ω)
+‖v‖L2(0,T,H1

0 (Ω)) ≤C‖g‖L2(ΩT ). (3.1.36)

The constant C depends on n, Ω, and λmin(a).

The following Theorem 3.1.11 gives an error bound for the time discretization scheme

(3.1.35) when a does not depend on time:

Theorem 3.1.11. Let v ∈ Zh
T be the solution of (3.1.35) and uh be the solution of (3.1.29).

Assume that ∂ta ≡ 0. We have

∥
∥(uh − v)(T )

∥
∥

L2(Ω)
+‖uh − v‖L2(0,T,H1

0 (Ω)) ≤C∆t
(

‖∂tg‖L2(0,T,H−1(Ω)) +
∥
∥g(.,0)

∥
∥

L2(Ω)

)

.

(3.1.37)

The constant C depends on n, Ω, λmin(a), and λmax(a).



80

The following Theorem 3.1.12 gives an error bound for the time discretization scheme

(3.1.35) when a is time dependent:

Theorem 3.1.12. Assume that Ω is convex, and condition 3.1.1 is satisfied. Let v ∈ Zh
T be

the solution of (3.1.35) and uh be the solution of (3.1.29), we have

∥
∥(uh − v)(T )

∥
∥

L2(Ω)
+‖uh − v‖L2(0,T,H1

0 (Ω)) ≤C
|∆t|
h

‖g‖L2(ΩT ). (3.1.38)

where C depends on Ω, n, δ , ε , λmin(a), and λmax(a).

Remark. Observe that the accuracy of the time discretization scheme (3.1.35) requires

that |∆t|<< h when a has no bounded time derivatives.

3.2 Proofs

3.2.1 Compensation Phenomena

3.2.1.1 Time independent medium: Proof of Theorem 3.1.1–3.1.4

Suppose that ∂ta ≡ 0. We will need the following lemmas. Let AT be the bilinear form on

L2(0,T ;H1
0 (Ω)

)
defined by

AT [v,w] :=
∫ T

0
a[v,w](t)dt. (3.2.1)

where

a[v,w](t) :=
∫

Ω
t∇v(x, t)a(x, t)∇w(x, t)dx. (3.2.2)

Let AT [u] := AT [u,u].

The following Lemmas 3.2.1–3.2.3 are the standard energy estimates. We show them

by assuming a smooth. When a is nonsmooth, we can use Galerkin approximations of u

and then pass to the limit. We refer to [58, Section 7.1.2] for a reminder.



81

Lemma 3.2.1. We have

∥
∥u(.,T )

∥
∥2

L2(Ω)
+AT [u] ≤ Cn,Ω

λmin(a)
‖g‖L2(ΩT ). (3.2.3)

Proof. Multiplying (3.1.1) by u and integrating over ΩT we obtain that

1
2
∥
∥u(.,T)

∥
∥2

L2(Ω)
+AT [u] = (u,g)L2(ΩT ). (3.2.4)

(3.2.3) is established by using Poincaré and Cauchy-Schwarz inequalities.

Lemma 3.2.2. Assume ∂ta ≡ 0. We have

∥
∥∂tu

∥
∥2

L2(ΩT )
+a

[
u(.,T )

]
≤

∥
∥g

∥
∥2

L2(ΩT )
. (3.2.5)

Proof. Multiplying (3.1.1) by ∂tu and integrating by parts we obtain that

∥
∥∂tu(., t)

∥
∥2

L2(Ω)
+a[∂tu,u] = (∂tu,g)L2(Ω). (3.2.6)

Noticing that

a[∂tu,u] =
1
2∂t

(
a[u]

)
. (3.2.7)

we conclude by integration with respect to time and using Cauchy-Schwarz inequality.

Lemma 3.2.3. Assume ∂ta ≡ 0. We have

∥
∥∂tu(.,T )

∥
∥2

L2(Ω)
+AT [∂tu] ≤ 1

λmin(a)
‖∂tg‖2

L2(0,T,H−1(Ω)) +
∥
∥g(.,0)

∥
∥2

L2(Ω)
. (3.2.8)

Proof. We obtain from (3.1.1) that

∂ 2
t u = div

(
a(x)∇∂tu(x, t)

)
+∂tg. (3.2.9)

Multiplying (3.2.9) by ∂tu and integrating over ΩT we obtain that

1
2
∥
∥∂tu(.,T )

∥
∥2

L2(Ω)
+AT [∂tu] =

∫ T

0
(∂tu,∂tg)L2(Ω) dt +

1
2
∥
∥∂tu(.,0)

∥
∥2

L2(Ω)
. (3.2.10)
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We conclude by the H−1-duality inequality and Cauchy-Schwarz inequality.

Let us now prove the compensation theorems. Choose

M := σ
|det(∇F)| 1

2
◦F−1. (3.2.11)

It easy to see that βM = βσ
2. Observe that

‖νM‖2
L∞(ΩT ) ≤

Cn

(λmin(a))
n
2

∥
∥(Trace[σ ])

n
4−1∥∥2

L∞(ΩT )
. (3.2.12)

Fix t ∈ [0,T ], choose

f := (∂tu−g)

|det(∇F)| 1
2
◦F−1. (3.2.13)

Observe that by the change of variable y = F(x) one obtains that if ∂ta ≡ 0 (which implies

that F is time independent), ∂tu ∈ L2(Ω), and g(., t) ∈ L2(Ω) then f ∈ L2(Ω) and

‖ f‖L2(Ω) ≤ ‖∂tu‖L2(Ω) +‖g‖L2(Ω). (3.2.14)

It follows from Theorem A.1.3 that there exists a unique v ∈W 2,2
D (Ω) satisfying

‖v‖2
W 2,2

D (Ω)
≤

C‖νM‖2
L∞(ΩT )

(1−β
1
2

σ )2

(
‖∂tu‖2

L2(Ω) +‖g‖2
L2(Ω)

)
. (3.2.15)

and the following equation

∂t ũ(y, t) = ∑
i, j

(
σ(F−1(y, t), t)

)

i, j∂i∂ jv(y, t)+ g̃(y, t). (3.2.16)

We use the notation g̃ := g◦F−1 and ũ := u◦F−1. Using the change of variable y = F(x)

2see p.139 for the definition of Cordes parameter βM
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and using the property diva∇F = 0 when ∂ta ≡ 0 we obtain that (3.2.16) can be written

∂tu = div
(
a∇(v◦F)

)
+g. (3.2.17)

If ∂tu ∈ L2(Ω) and g(., t) ∈ L2(Ω) we can use the uniqueness property of the solution

of the divergence form elliptic Dirichlet problem

div
(
a∇w

)
= ∂tu−g (3.2.18)

to obtain that v◦F = u. Thus using Lemma 3.2.3 we have proven Theorem 3.1.2. Moreover

assume that g ∈ L2(ΩT ) and ∂tu ∈ L2(ΩT ). It follows that for t ∈ [0,T ]−B, g(., t)∈ L2(Ω)

and ∂tu(., t) ∈ L2(Ω) where B is a subset of [0,T ] of 0-Lebesgue measure. It results from

the previous arguments that on [0,T ]−B, u◦F−1(., t)∈W 2,2
D (Ω) and

‖u◦F−1(., t)‖2
W2,2

D (Ω)
≤

C‖νM‖2
L∞(ΩT )

(1−β
1
2

σ )2

(
‖∂tu(., t)‖2

L2(Ω) +‖g(., t)‖2
L2(Ω)

)
. (3.2.19)

Integrating (3.2.19) with respect to time we obtain that u◦F−1 ∈ L2(0,T,W2,2
D (Ω)) and

‖u◦F−1‖2
L2(0,T,W 2,2

D (Ω))
≤

C‖νM‖2
L∞(ΩT )

(1−β
1
2

σ )2

(
‖∂tu‖2

L2(ΩT ) +‖g‖2
L2(ΩT )

)
. (3.2.20)

thus by Lemma 3.2.2 we obtain Theorem 3.1.1.

Let us now prove Theorem 3.1.3. Assume that there exists q0 > 2 such that for 2 ≤ p <

q0, ∂tu ∈ Lp(ΩT ), and g ∈ Lp(ΩT ). Let us now apply Theorem A.1.3 with p < min(p0,q0),

M given by (3.2.11), and f given by (3.2.13). It follows that for t ∈ [0,T ]−B (where B is a

subset of [0,T ] of 0-Lebesgue measure), g(., t) ∈ Lp(Ω) and ∂tu(., t) ∈ Lp(Ω). We deduce

from Theorem A.1.3 and the argumentation related to equation (3.2.18) that on [0,T ]−B,

u◦F−1(., t) ∈W 2,p
D (Ω) and

‖u◦F−1(., t)‖p

W2,p
D (Ω)

≤
Cn,p,Ω‖νM‖p

L∞(ΩT )

(1−β
1
2

σ )p

(
‖∂tu(., t)‖p

Lp(Ω) +‖g(., t)‖p
Lp(Ω)

)
. (3.2.21)
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Integrating (3.2.21) with respect to time we obtain that u◦F−1 ∈ Lp(0,T,W 2,p
D (Ω)) and

‖u◦F−1‖
Lp(0,T,W 2,p

D (Ω))
≤

Cn,p,Ω‖νM‖L∞(ΩT )

1−β
1
2

σ

(
‖∂tu‖Lp(ΩT ) +‖g‖Lp(ΩT )

)
. (3.2.22)

It remains to show that under the assumptions of theorem 3.1.3, ∂tu ∈ Lp(ΩT ).

In order to bound
∥
∥∂tu(., t)

∥
∥

Lp(Ω)
we use general Sobolev inequalities [58, Section 5.6].

• If n ≥ 3, write p∗ = 2n/(n−2). We have for 2 < p ≤ p∗,

(
∫

Ω
(∂tu)p dx

) 2
p ≤Cn,Ω

(
∫

Ω
(∂tu)p∗ dx

) 2
p∗ (3.2.23)

thus, using Gagliardo-Nirenberg-Sobolev inequality

(
∫

Ω
(∂tu)p dx

) 2
p ≤Cn,p,Ω

1
λmin(a)

a[∂tu]. (3.2.24)

• If n = 2, we write for (x1,x2,x3) ∈ Ω × (0,1), v(x1,x2,x3) := ∂tu(x1,x2). Using

Gagliardo-Nirenberg-Sobolev inequality in dimension three we obtain that for 2 <

p ≤ 6
(
∫

Ω
(∂tu)p dx

) 2
p ≤Cn,p,Ω

∫

Ω
(∇∂tu)2 dx. (3.2.25)

which leads us to (3.2.24).

• If n = 1 then using Morrey’s inequality we obtain that with γ := 1/2,

‖∂tu‖2
C0,γ(Ω) ≤CΩ

1
λmin(a)

a[∂tu]. (3.2.26)

We conclude the proof of Theorem 3.1.3 using Lemma 3.2.3.

Theorem 3.1.4 follows from Morrey’s inequality and theorem 3.1.3.

3.2.1.2 Medium with a continuum of time scales: Proof of Theorem 3.1.5–3.1.7

We will need the adapted version of Theorems 1.6.2 and 1.6.3 of [93], which are adapted as

Theorems A.2.1 and A.2.2 in the Appendix. These theorems show that under a parabolic
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Cordes type condition, nondivergence form parabolic equation has a unique solution in

Lp
(
0,T,W 2,p

D (Ω)
)
. Consider the following parabolic problem:

∂tv =
n

∑
i, j=1

Mi j(x)∂i∂ jv+ f (3.2.27)

assume M to be symmetric, uniformly bounded, and elliptic, v = 0 at t = 0 and on the

boundary ∂Ω. Write

ηM := esssupx∈ΩT

Trace[tMM]+1
(

Trace[M]+1
)2 , (3.2.28)

and

αM := esssupx∈ΩT

Trace[M]+1
Trace[tMM]+1 . (3.2.29)

Write for p ≥ 2

Sp(ΩT ) :=
{

v ∈ Lp(0,T,W 2,p
D (Ω)

)
;∂tv ∈ Lp(ΩT );v(.,0)≡ 0

}

, (3.2.30)

and

‖v‖p
Sp(ΩT ) :=

∫

ΩT

(

∑
i, j

(∂i∂ jv)
2 +(∂tv)

2) p
2 dydt. (3.2.31)

Parabolic Cordes condition can be given by: there exists ε ∈ (0,1), such that

ηM ≤ 1
n+ ε

. (3.2.32)

Let δ > 0. Let us now apply Theorem A.2.1 on [0,T/δ ] with

M := δσ ◦F−1(y,δ t), (3.2.33)

and

f := δ (g◦F−1)(y,δ t). (3.2.34)
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Notice that ηM < ∞ and αM < ∞ since

esssupΩ T
δ

Trace[tMM]+1
(

Trace[M]+1
)2 = esssupΩT

δ 2 Trace[tσσ ]+1
(
δ Trace[σ ]+1

)2 . (3.2.35)

Let us now prove proposition 3.1.1. Recall that x = Trace[σ ] and z = n Trace[tσσ ]
(Trace[σ ])2 (ob-

serve that 1 ≤ z ≤ n). It is easy to check that condition 3.1.1 can be written as,

−δ 2x2(
ε +n

n
z−1)+2xδ − (n+ ε −1) ≥ 0. (3.2.36)

Choose δ = n
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. Observing that δx ≥ n and δx = nyσ it is easy

to conclude the proof of proposition 3.1.1. Similarly we obtain the following lemma by

straightforward computation from equation (3.2.36):

Lemma 3.2.4. Assume that condition 3.1.1 is satisfied then

∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
≤C(n,ε,δ ), (3.2.37)

and
∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
≤C(n,ε,δ ). (3.2.38)

If condition 3.1.1 is satisfied and F is an homeomorphism, It follows that the following

equation admits a unique solution in S2(Ω T
δ
) by Theorem A.2.1.

∂tw(y, t) = ∑
i, j

Mi, j(y, t)∂i∂ jw(y, t)+ k(y, t) (3.2.39)

with k(y, t) = δ g̃(y,δ t). And we have

∫ T
δ

0

∫

Ω

(
(∂tw)2 +∑

i, j
(∂i∂ jw)2)dydt ≤ C

(1−
√

1− ε)2‖ f‖L2(Ω T
δ

). (3.2.40)

Using the change of variables t → δ t and writing

w(y, t) := v(y,δ t). (3.2.41)
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we obtain that v satisfies the following equation on ΩT

∂tv(y, t) = ∑
i, j

(
σ(F−1(y, t), t)

)

i, j∂i∂ jv(y, t)+ g̃(y, t). (3.2.42)

Using the change of variable y = F(x) and observing that ∂tF = diva∇F we obtain that

v◦F satisfies

∂t(v◦F) = div
(
a∇(v◦F)

)
+g. (3.2.43)

It follows from the uniqueness of the solution of (3.2.43) that u = v ◦F . In resume

we have obtained Theorem 3.1.5 (use Lemma 3.2.4 to control the constants). The proof of

Theorem 3.1.6 is similar and based on Theorem A.2.2. The proof of Theorem 3.1.7 follows

from Theorem 3.1.6 and Morrey’s inequality.

3.2.2 Analysis of Numerical Homogenization

Write Rh the projection operator mapping L2(0,T ;H1
0 (Ω)

)
onto Y h

T , Rh is defined by:

∀v ∈ Y h
T

AT [v,u−Rhu] = 0. (3.2.44)

Write ρ := u−Rhu and θ := Rhu−uh.

Lemma 3.2.5.

1
2
∥
∥(u−uh)(T )

∥
∥2

L2(Ω)
+AT [u−uh] =

∫

ΩT

ρ∂t(u−uh)dxdt +AT [ρ,u−uh]. (3.2.45)

Proof. Multiply (3.1.1) using test function ψ ∈V h(t) and integrate over Ω, by subtracting

(3.1.29) we obtain that

(
ψ,∂t(u−uh)

)
+a[ψ,u−uh] = 0 for all ψ ∈V h(t). (3.2.46)
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Integrating by parts with respect to time leads us to,

(
ψ,(u−uh)(.,T )

)

L2(Ω)
+AT [ψ,u−uh] =

∫

ΩT

∂tψ(u−uh)dxdt. (3.2.47)

Taking ψ = θ in (3.2.47) we deduce that

∥
∥(u−uh)(.,T )

∥
∥2

L2(Ω)
+AT [u−uh] =

∫

ΩT

∂tθ(u−uh)dxdt +
(
ρ,u−uh

)

L2(Ω)
(T )

+AT [ρ,u−uh].

(3.2.48)

Integrating by parts again, it results

∫

ΩT

∂tθ(u−uh)dxdt +
(
ρ,u−uh

)

L2(Ω)
(T ) =

1
2
∥
∥(u−uh)(.,T )

∥
∥2

L2(Ω)

+
∫

ΩT

ρ∂t(u−uh))dxdt
(3.2.49)

which completes the proof of the lemma.

3.2.2.1 Time Independent Medium. Proof of Theorem 3.1.8

Lemma 3.2.6.

∥
∥(u−uh)(T )

∥
∥2

L2(Ω)
+AT [u−uh] ≤ 2‖ρ‖L2(ΩT )‖∂t(u−uh)‖L2(ΩT ) +AT [ρ]. (3.2.50)

Proof. Lemma 3.2.6 is a straightforward consequence of Lemma 3.2.5 and Cauchy-

Schwartz inequality.

Similar to Lemmas 3.2.1 and 3.2.2, we have the energy estimates for uh in the following

Lemmas 3.2.7 and 3.2.8.

Lemma 3.2.7. We have

∥
∥uh(.,T )

∥
∥2

L2(Ω)
+AT [uh] ≤

Cn,Ω

λmin(a)
‖g‖L2(ΩT ). (3.2.51)
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Proof. Taking ψ = uh in (3.1.29) and integrating over ΩT we obtain that

1
2
∥
∥uh(.,T )

∥
∥2

L2(Ω)
+AT [uh] = (uh,g)L2(ΩT ). (3.2.52)

Using Poincaré and Minkowski inequalities leads us to (3.2.51).

Lemma 3.2.8. Assume ∂ta ≡ 0. We have

∥
∥∂tuh

∥
∥2

L2(ΩT )
+a

[
uh(.,T )

]
≤

∥
∥g

∥
∥2

L2(ΩT )
. (3.2.53)

Proof. The proof is similar to Lemma 3.2.2. We need to take ψ = ∂tuh in (3.1.29).

Let t ∈ [0,T ] and v ∈ H1
0 (Ω), we will write Rh,tv(., t) the solution of:

∫

Ω
t∇ψa(x, t)(ψ,v−Rh,tv)dx = 0 ∀ψ ∈V h(t). (3.2.54)

We need the following lemma:

Lemma 3.2.9. Assume the mapping x → F(x, t) to be invertible for fixed t, then for v ∈
H1

0 (Ω) we have

• For n = 1,

(
a[v−Rh,tv]

) 1
2 ≤CX h‖v◦F−1(., t)‖W2,2

D
‖a∇F‖

1
2
L∞(ΩT )

, (3.2.55)

• For n ≥ 2,

(
a[v−Rh,tv]

) 1
2 ≤CXh‖v◦F−1(., t)‖W2,2

D

×Cnµ
n−1

4
σ

∥
∥(Trace[σ ])−1∥∥

n−2
4

L∞(ΩT )
.

(3.2.56)

Proof. Using the change of coordinates y = F(x, t) we obtain that (write ṽ := v◦F−1)

a[v] = Q[ṽ] (3.2.57)
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with

Q[w] :=
∫

Ω
t∇w(y, t)Q(y, t)∇w(y, t)dy (3.2.58)

and

Q(y, t) := σ
det(∇F)

◦F−1. (3.2.59)

Using the definition of Rh,tv we derive that

Q[ṽ− R̂h,tv] = inf
ϕ∈Xh

Q[ṽ−ϕ]. (3.2.60)

Using property (3.1.23) it follows,

Q[ṽ− R̂h,tv] ≤ λmax(Q)C2
Xh2‖ṽ‖2

W 2,2
D (Ω)

. (3.2.61)

It is easy to obtain that

• For n = 1,

λmax(Q) ≤ ‖a∇F‖L∞(ΩT ), (3.2.62)

• For n ≥ 2,

λmax(Q) ≤Cnµ
n−1

2
σ

∥
∥(Trace[σ ])−1∥∥

n
2−1
L∞(ΩT )

. (3.2.63)

Lemma 3.2.10. Assume that ∂ta ≡ 0, Ω is convex, βσ < 1, and (Trace[σ ])−1 ∈ L∞(ΩT )

then

AT [ρ] ≤Ch2‖g‖2
L2(ΩT ). (3.2.64)

The constant C depends on CX , n, Ω, λmin(a), λmax(a), and
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. If n ≥ 3

it may also depend on
∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
.

Proof. The proof is a straightforward application of Lemma 3.2.9 and theorem 3.1.1. Ob-

serve that in dimension one a∇F = (
∫

Ω a−1)−1.
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Lemma 3.2.11. Assume that ∂ta ≡ 0, Ω is convex, βσ < 1, and (Trace[σ ])−1 ∈ L∞(ΩT )

then

‖ρ‖L2(ΩT ) ≤Ch2‖g‖L2(ΩT ) (3.2.65)

The constant C depends on CX , n, Ω, λmin(a), λmax(a), and
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. If n ≥ 3

it also depends on
∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
.

Proof. The proof follows from standard duality techniques (see for instance [40, Theorem

5.7.6]). We choose v ∈ L2(0,T,H1
0(Ω)) to be the solution of the following linear problem:

for all w ∈ L2(0,T,H1
0 (Ω))

AT [w,v] = (w,ρ)L2(ΩT ). (3.2.66)

Choosing w = ρ in equation (3.2.66) we deduce that

‖ρ‖2
L2(ΩT )) = AT [ρ,v−Rhv]. (3.2.67)

By Cauchy Schwartz inequality,

‖ρ‖2
L2(ΩT ) ≤

(
AT [ρ]

) 1
2
(
AT [v−Rhv]

) 1
2 . (3.2.68)

By Theorem 3.1.1 we have

‖ṽ‖
L2(0,T,W 2,2

D (Ω))
≤C‖ρ‖L2(ΩT ). (3.2.69)

Using Lemma 3.2.9 it results

(
AT [v−Rhv]

) 1
2 ≤Ch‖ρ‖L2(ΩT ). (3.2.70)

It follows that

‖ρ‖L2(ΩT ) ≤Ch
(
AT [ρ]

) 1
2 . (3.2.71)

We deduce the lemma by applying Lemma 3.2.10 to bound AT [ρ].

Theorem 3.1.8 is a straightforward application of Lemmas 3.2.2, 3.2.6, 3.2.8, 3.2.10,
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and 3.2.11.

3.2.2.2 Medium with a Continuum of Time Scales: Proof of Theorem 3.1.9

In this subsection we will assume that the finite elements space Xh satisfies the inverse

inequality (3.1.24).

Lemma 3.2.12.

1
2
∥
∥(u−uh)(T )

∥
∥2

L2(Ω)
+AT [u−uh] =

∫

ΩT

ρ̃
|det∇F| ◦F−1

(
g̃+

n

∑
i, j=1

σi, j ◦F−1∂i∂ jũh −∂t ũh
)

dxdt
(3.2.72)

Proof. Using change of variable x = F−1(y) in equation (3.2.45), we have

∫

ΩT

ρ∂t(u−uh)dxdt =

∫

ΩT

ρ̃
|det∇F| ◦F−1 ∂t(ũ− ũh)dydt

+
∫

ΩT

ρ∂tF(∇F)−1∇(u−uh)dxdt.
(3.2.73)

Using equation (3.1.2) we obtain that

∫

ΩT

ρ∂tF(∇F)−1∇(u−uh)dxdt = −AT [ρ,u−uh]−
n

∑
i, j=1

∫

ΩT

ρ̃Qi, j∂i∂ j(ũ− ũh)dydt.

(3.2.74)

Lemma 3.2.13.

∥
∥

∂t ũh

|det(∇F)| 1
2 ◦F−1

∥
∥2

L2(ΩT )
≤ 2‖g‖2

L2(ΩT ) +C‖ũh‖2
L2(0,T,W 2,2

D (Ω))
(3.2.75)

where the constant C depends on n, λmax(a), ‖Trace[σ ]‖L∞(ΩT ), and µσ .
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Proof. Using the change of variable y = F(x, t) in (3.1.29) we obtain that for all ϕ ∈ Xh







(ϕ, ∂t ũh
|det(∇F)|◦F−1 )L2(Ω) = ∑n

i, j=1
∫

Ω(ϕ,Qi, j∂i∂ jũh)L2(Ω)

+(ϕ, g̃
|det(∇F)|◦F−1 )L2(Ω)

ũh(x,0) = 0.

(3.2.76)

Recall that Q is given by (3.2.59). We choose ϕ = ∂t ũh and observe that

σ
|det∇F| 1

2
=

σ
|detσ | 1

4
|deta| 1

4 (3.2.77)

thus

∥
∥

σ
|det∇F| 1

2

∥
∥

L∞(ΩT )
≤C

(
n,λmax(a),‖Trace[σ ]‖L∞(ΩT ),µσ

)
. (3.2.78)

We deduce the lemma by Minkowski inequality.

Combining Lemma 3.2.12 and Lemma 3.2.13 we obtain the following lemma:

Lemma 3.2.14.

1
2
∥
∥(u−uh)(T )

∥
∥2

L2(Ω)
+AT [u−uh] ≤C‖ρ‖L2(ΩT )

(

‖g‖L2(ΩT )

+‖ũh‖L2(0,T,W 2,2
D (Ω))

) (3.2.79)

where the constant C depends on n, λmax(a), ‖Trace[σ ]‖L∞(ΩT ), µσ .

Lemma 3.2.15. Assume that Ω is convex, and condition 3.1.1 is satisfied, then

‖ρ‖L2(ΩT ) ≤Ch2‖g‖L2(ΩT ). (3.2.80)

The constant C depends on CX , n, Ω, δ , ε , λmin(a), and λmax(a).

Proof. The proof is similar to that for Lemma 3.2.11.



94

Lemma 3.2.16. Assume Ω is convex and Trace[σ ] ∈ L∞(ΩT ), we have

‖ũh‖L2(0,T,W 2,2
D (Ω))

≤ C
h
‖g‖L2(ΩT ). (3.2.81)

The constant C depends on CX , n, Ω, λmin(a), λmax(a), and ‖Trace[σ ]‖L∞(ΩT ).

Proof. Using the inverse inequality (3.1.24) we obtain that

‖ũh‖L2(0,T,W 2,2
D (Ω))

≤ CX

h
‖∇ũh‖L2(0,T,W 2,2

D (Ω))
. (3.2.82)

Using the change of variables y = F(x) it follows that,

‖∇ũh‖2
L2(0,T,W 2,2

D (Ω))
≤CAT [uh] (3.2.83)

where C depends on n, λmin(a) and ‖Trace[σ ]‖L∞(ΩT ). We deduce the lemma by using

Lemma 3.2.7.

Now Theorem 3.1.9 is a straightforward application of Lemma 3.2.14, Lemma 3.2.15

and Lemma 3.2.16.

3.2.2.3 Numerical homogenization in time and space: Proof of Theorem 3.1.10–

3.1.12

We use the notation of subsection 3.1.3. First let us show that the numerical scheme (3.1.35)

is stable. Indeed, choosing ψ = vn+1(t) one gets

∣
∣vn+1(tn+1)

∣
∣2
L2(Ω)

=
(
vn+1(tn),vn(tn)

)

L2(Ω)
+

1
2
(∣
∣vn+1(tn+1)

∣
∣2
L2(Ω)

−
∣
∣vn+1(tn)

∣
∣2
L2(Ω)

)

−
∫ tn+1

tn

(

a
[
vn+1(t)]+

(
vn+1(t),g(t)

)

L2(Ω)

)

dt.

(3.2.84)
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It follows by Cauchy-Schwartz inequality that

1
2
∣
∣vn+1(tn+1)

∣
∣2
L2(Ω)

≤1
2
∣
∣vn(tn)

∣
∣2
L2(Ω)

−
∫ tn+1

tn

(

a
[
vn+1(t)]

+
(
vn+1(t),g(t)

)

L2(Ω)

)

dt.
(3.2.85)

Hence using Poincaré and Minkowski inequalities one obtains that

∣
∣vn+1(tn+1)

∣
∣2
L2(Ω)

+
∫ tn+1

tn
a
[
vn+1(t)]dt ≤

∣
∣vn(tn)

∣
∣2
L2(Ω)

+
Cn,Ω

λmin(a)

∫ tn+1

tn

∣
∣g(t)

∣
∣2
L2(Ω)

dt
(3.2.86)

which implies Theorem 3.1.10 and the stability of the scheme.

Integrating (3.1.29) with respect to time over [tn, tn+1] we obtain that for ψ ∈U h
T ,

(
ψ(tn+1),uh(tn+1)

)

L2(Ω)
=

(
ψ(tn),uh(tn)

)

L2(Ω)
+

∫ tn+1

tn

((
∂tψ(t),uh(t)

)

L2(Ω)

−a
[
ψ(t),uh(t)]+

(
ψ(t),g(t)

)

L2(Ω)

)

dt.
(3.2.87)

Let us write (ui) the coordinates of uh associated to the basis ϕi ◦F , i.e.,

uh(x, t) := ∑
i

ui(t)ϕi(F(x, t)). (3.2.88)

Define

un(x, t) := ∑
i

ui(tn)ϕi(F(x, t)). (3.2.89)

Subtracting (3.2.87) and (3.1.35) we obtain that for ψ ∈ Zh
T ,

(
ψ(tn+1),(un+1− vn+1)(tn+1)

)

L2(Ω)
=

(
ψ(tn),(un− vn)(tn)

)

L2(Ω)

+
∫ tn+1

tn

((
∂tψ(t),(uh− vn+1)(t)

)

L2(Ω)

−a
[
ψ(t),(uh− vn+1)(t)]

)
dt.

(3.2.90)
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Choosing ψ = un+1 − vn+1, by Cauchy-Schwartz inequality we deduce

1
2
∥
∥(un+1 − vn+1)(tn+1)

∥
∥2

L2(Ω)
+

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

1
2
∥
∥(un − vn)(tn)

∥
∥2

L2(Ω)
+

∫ tn+1

tn

((
∂t(un+1 − vn+1)(t),(uh−un+1)(t)

)

L2(Ω)

−a
[
(un+1 − vn+1)(t),(uh−un+1)(t)]

)

dt.

(3.2.91)

In the following, we will discuss two different situations where a is time independent

or time dependent.

Time independent medium. If the medium is time independent then (3.2.91) can be

written as

1
2
∥
∥(un+1 − vn+1)(tn+1)

∥
∥2

L2(Ω)
+

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

1
2
∥
∥(un− vn)(tn)

∥
∥2

L2(Ω)
−

∫ tn+1

tn
a
[
(un+1 − vn+1)(t),(uh−un+1)(t)]dt

(3.2.92)

which leads us to

1
2
∥
∥(un+1 − vn+1)(tn+1)

∥
∥2

L2(Ω)
+

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

1
2
∥
∥(un − vn)(tn)

∥
∥2

L2(Ω)
+

∫ tn+1

tn

∫ tn+1

tn
1(t < s)a

[
(un+1 − vn+1)(t),∂suh(s)]dsdt.

(3.2.93)

Write ∆t := tn+1 − tn. Using Minkowski inequality we obtain that

a
[
(un+1 − vn+1)(t),∂suh(s)] ≤

1
2∆t

a
[
(un+1 − vn+1)(t)]

+
∆t
2 a

[
∂suh(s)].

(3.2.94)

It follows from (3.2.93) that

∣
∣(un+1 − vn+1)(tn+1)

∣
∣2
L2(Ω)

+
∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

∣
∣(un − vn)(tn)

∣
∣2
L2(Ω)

+ |∆t|2
∫ tn+1

tn
a
[
∂suh(s)]ds.

(3.2.95)
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Observing that

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≥0.5

∫ tn+1

tn
a
[
(uh − vn+1)(t)]dt

−
∫ tn+1

tn
a
[
(uh −un+1)(t)]dt,

(3.2.96)

and

∫ tn+1

tn
a
[
(uh −un+1)(t)]dt ≤ ∆t2

2

∫ tn+1

tn
a
[
∂suh(s)]ds. (3.2.97)

We obtain that

∥
∥(un+1 − vn+1)(tn+1)

∥
∥2

L2(Ω)
+

1
2

∫ tn+1

tn
a
[
(uh − vn+1)(t)]dt ≤

∥
∥(un − vn)(tn)

∥
∥2

L2(Ω)
+

3
2∆t2

∫ tn+1

tn
a
[
∂suh(s)]ds.

(3.2.98)

In conclusion we have obtained the following lemma:

Lemma 3.2.17. Let v ∈ Zh
T be the solution of (3.1.35). We have

∥
∥(uh − v)(T )

∥
∥2

L2(Ω)
+

1
2

∫ T

0
a
[
(uh − v)(t)]dt ≤ 3

2
∆t2

∫ T

0
a
[
∂suh(s)]ds. (3.2.99)

Combining Lemma 3.2.3 with Lemma 3.2.17 we obtain Theorem 3.1.11.

Time dependent medium. Observe that

∂t(un+1 − vn+1) = ∂tF(∇F)−1∇(un+1 − vn+1). (3.2.100)

It follows after writing ∂tF = diva∇F , integration by parts, and using the change of
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variables y = F(x, t) in (3.2.91) that

1
2
∥
∥(un+1 − vn+1)(tn+1)

∥
∥2

L2(Ω)
+

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

1
2
∥
∥(un − vn)(tn)

∥
∥2

L2(Ω)
−2

∫ tn+1

tn
a
[
(un+1 − vn+1)(t),(uh−un+1)(t)

]
dt

−∑
i, j

∫ tn+1

tn

∫

Ω
(ũh − ũn+1)Qi, j∂i∂ j(ũn+1 − ṽn+1)dt dy.

(3.2.101)

Hence using Minkowski inequality we obtain that

∥
∥(un+1 − vn+1)(tn+1)

∥
∥2

L2(Ω)
+

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

∥
∥(un − vn)(tn)

∥
∥2

L2(Ω)
+4

∫ tn+1

tn
a
[
(uh −un+1)(t)

]
dt

−2∑
i, j

∫ tn+1

tn

∫

Ω
(ũh − ũn+1)Qi, j∂i∂ j(ũn+1 − ṽn+1)dt dy.

(3.2.102)

Again using Minkowski inequality it follows that

∣
∣
∣∑

i, j

∫ tn+1

tn

∫

Ω
(ũh − ũn+1)Qi, j∂i∂ j(ũn+1 − ṽn+1)dt dy

∣
∣
∣ ≤

1
2CAN2

∫ tn+1

tn

∫

Ω
|ũh − ũn+1|2 dt dy+

λmax(Q)

2CA

∫ tn+1

tn
∑
i, j

∫

Ω
|∂i∂ j(ũn+1 − ṽn+1)|2 dt dy.

(3.2.103)

Using the inverse inequality (3.1.24) and the change of variable y = F(x, t) we obtain

that
∫ tn+1

tn
∑
i, j

∫

Ω
|∂i∂ j(ũn+1 − ṽn+1)|2 dt dy ≤ CX

h2λmin(Q)

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt.

(3.2.104)
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Choosing CA = CX λmax(Q)
h2λmin(Q)

, we have

∣
∣(un+1 − vn+1)(tn+1)

∣
∣2
L2(Ω)

+
1
2

∫ tn+1

tn
a
[
(un+1 − vn+1)(t)]dt ≤

∣
∣(un − vn)(tn)

∣
∣2
L2(Ω)

+4
∫ tn+1

tn
a
[
(uh −un+1)(t)

]
dt

+
CX λmax(Q)

2h2λmin(Q)
N2

∫ tn+1

tn

∫

Ω
|ũh − ũn+1|2 dt dy.

(3.2.105)

Using (3.2.96) gives us

∣
∣(un+1 − vn+1)(tn+1)

∣
∣2
L2(Ω)

+
1
4

∫ tn+1

tn
a
[
(uh − vn+1)(t)]dt ≤

∣
∣(un− vn)(tn)

∣
∣2
L2(Ω)

+
9
2

∫ tn+1

tn
a
[
(uh −un+1)(t)

]
dt

+
CX λmax(Q)

2h2λmin(Q)
N2

∫ tn+1

tn

∫

Ω
|ũh − ũn+1|2 dt dy.

(3.2.106)

Moreover using the change of variables F(x, t) = y and the inverse inequality (3.1.25)

we deduce that

∫ tn+1

tn
a
[
(uh −un+1)(t)

]
dt ≤ CX λmax(Q)

h2

∫ tn+1

tn

∫

Ω
|ũh − ũn+1|2 dt dy. (3.2.107)

Let us observe that

∫ tn+1

tn

∫

Ω
|ũh − ũn+1|2 dt dy ≤ 1

2∆t2
∫ tn+1

tn

∫

Ω
|∂t ũh|2 dt dy. (3.2.108)

It follows

∣
∣(un+1 − vn+1)(tn+1)

∣
∣2
L2(Ω)

+
1
4

∫ tn+1

tn
a
[
(uh − vn+1)(t)]dt ≤

∣
∣(un− vn)(tn)

∣
∣2
L2(Ω)

+CB
|∆t|2

h2

∫ tn+1

tn

∫

Ω
|∂t ũh|2 dydt

(3.2.109)

with

CB = CX λmax(Q)(
9
2 +

N2

4λmin(Q)
). (3.2.110)
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We deduce,

∥
∥(uh − v)(T )

∥
∥2

L2(Ω)
+

1
4

∫ T

0
a
[
(uh − v)(t)]dt ≤CB

|∆t|2
h2

∫ T

0

∫

Ω
|∂t ũh|2 dt dy. (3.2.111)

Using Lemma 3.2.4 to control CB and combining (3.2.111) with Theorem 3.1.5 we

obtain Theorem 3.1.12.

3.3 Numerical Experiments

The purpose of this section is to give several illustrations of the implementation and per-

formance of the numerical homogenization method. The computational domain is the unit

square in dimension two. Equation (3.1.1) is solved on a fine tessellation characterized by

16129 interior nodes (degrees of freedom).

In the time independent case, for instance, a is a constant matrix in each triangle of

a given fine mesh of Ω. In the time dependent case, on each fine mesh triangle a is step

function from [0,T ] into the set of positive definite symmetric matrices. The caloric coor-

dinates F have been computed on the same fine triangulation of Ω associated to a through

a standard finite element method.

Three different coarse tessellations with 9, 49, and 225 degrees of freedom (dof ) are

considered. The parabolic operator associated to equation (3.1.1) has been homogenized

over these coarse meshes using the method introduced in subsection 3.1.3.. We have chosen

splines to be the space X h introduced in subsection 3.1.2.

3.3.1 Time Independent Medium.

Example 3.3.1. Time independent site percolation.

In this example we consider the site percolating medium associated to figure 3.1. (3.1.1)

has been solved with g = 1 and g = sin(2.4x−1.8y+2πt). The fine mesh and coarse mesh

errors are given in tables 3.1, 3.2, 3.3, and 3.4.
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Table 3.1: Coarse mesh error: Time independent site percolation with g ≡ 1
dof L1 L∞ L2 H1

9 0.0142 0.0389 0.0168 0.0366
49 0.0077 0.0450 0.0101 0.0482

225 0.0035 0.0228 0.0060 0.0293

Table 3.2: Fine mesh error: Time independent site percolation with g ≡ 1
dof L1 L∞ L2 H1

9 0.0196 0.0843 0.0251 0.1193
49 0.0136 0.0698 0.0184 0.1028

225 0.0040 0.0243 0.0070 0.0485

Table 3.3: Coarse mesh error: Time independent site percolation with g = sin(2.4x−1.8y+
2πt)

dof L1 L∞ L2 H1

9 0.0278 0.0400 0.0274 0.0377
49 0.0336 0.0612 0.0324 0.0619

225 0.0321 0.0492 0.0289 0.0710

Table 3.4: Fine mesh error: Time independent site percolation with g = sin(2.4x− 1.8y +
2πt).

dof L1 L∞ L2 H1

9 0.0418 0.1099 0.0428 0.1287
49 0.0390 0.0907 0.0383 0.1177

225 0.0174 0.0544 0.0318 0.0977



102

3.3.2 Time Dependent Medium

In the following examples we consider media characterized by a continuum of time scales.

The solution is obtained by the numerical homogenization method described in subsection

3.1.3.

Example 3.3.2. Time dependent multi-scale trigonometric

In this example a is given by equation (3.1.22). Although the number of fine time

steps to solve (3.1.1) is 2663, only 134 coarse time steps have been used to solve the

homogenized formulation. If one also takes into account homogenization in space, the

compression factor is of the order of 35000 for the coarse mesh with 9 interior nodes.

Figure 3.7 shows the curves of t → a(x0, t) and t → F(x0, t) for a given x0 ∈ Ω.
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Figure 3.7: Multi-scale time dependent trigonometric medium

The coarse and fine mesh relative L1, L2, L∞, and H1 errors with respect to time have

been plotted in figures 3.8, 3.9, 3.10, and 3.11. The initial boost of the relative error is due

to the initial value u(x,0) ≡ 0.

The coarse and fine mesh errors at t = 0.1 are given in tables 3.5 and 3.6 for g ≡ 1, for

g = sin(2.4x−1.8y+2πt) the errors are given in tables 3.7 and 3.8.

figures/pap4.eps
figures/pFtopp4.eps


103

Table 3.5: Coarse mesh error: Multi-scale trigonometric time dependent medium, g = 1
dof L1 L∞ L2 H1

9 0.0018 0.0045 0.0019 0.0039
49 0.0012 0.0054 0.0015 0.0060

Table 3.6: Fine mesh error: Multi-scale trigonometric time dependent medium, g = 1
dof L1 L∞ L2 H1

9 0.0031 0.0096 0.0034 0.0242
49 0.0014 0.0059 0.0016 0.0166

Table 3.7: Coarse mesh error: Multi-scale trigonometric time dependent medium, g =
sin(2.4x−1.8y+2πt)

dof L1 L∞ L2 H1

9 0.0043 0.0087 0.0044 0.0085
49 0.0033 0.0079 0.0035 0.0084

Table 3.8: Fine mesh error: Multi-scale trigonometric time dependent medium, g =
sin(2.4x−1.8y+2πt)

dof L1 L∞ L2 H1

9 0.0082 0.0199 0.0087 0.0379
49 0.0038 0.0104 0.0040 0.0244
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(a) Coarse mesh L1 error
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(b) Fine mesh L1 error

Figure 3.8: L1 error: Multi-scale trigonometric time dependent medium
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(a) Coarse mesh L2 error

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

fine mesh L
2
 error

 

 
dof 9
dof 49

(b) Fine Mesh L2 error

Figure 3.9: L2 error: Multi-scale trigonometric time dependent medium
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(a) Coarse mesh L∞ error
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(b) Fine mesh L∞ error

Figure 3.10: L∞ error: Multi-scale trigonometric time dependent medium
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(a) Coarse Mesh H1 error
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(b) Fine Mesh H1 error

Figure 3.11: H1 error: Multi-scale trigonometric time dependent medium
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Example 3.3.3. Time dependent random fractal

In this case, a is given by a product of discontinuous functions oscillating randomly

at different scales, a(x, t) = a1(x, t)a2(x, t) · · ·an(x, t), and ai(x, t) = cpq for x ∈ [ p
2i ,

p+1
2i )×

[ q
2i ,

q+1
2i ) in the time interval 0.1× [ k

4i ,
k+1
4i ). cpq is uniformly random in [1

γ ,γ], n = 6 and

γ = 0.7. In this example, we have λmax(a)
λmin(a) = 160.3295. The number of fine time steps are

3482, and the number of coarse time steps are 175.

The time-dependent media and (F1,F2) is drawn in the following figure 3.12.

(a) a at t = 0
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(b) (F1,F2) at t = 0

(c) a at t = 0.1
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(d) (F1,F2) at t = 0.1

Figure 3.12: a and (F1,F2) at time t = 0, t = 0.1 for time dependent random fractal medium

Figures 3.13 is the plot of u, ũ, ux and ũx at time t = 0.1.

We illustrate L1, L2, L∞, and H1 errors with respect to time in figure 3.14-3.17.

In the following tables, we show the coarse mesh error (table 3.9) and fine mesh error

(table 3.10) at time t = 0.1.
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(a) u (b) ũ

(c) ux (d) ũx

Figure 3.13: u, ũ, ux, and ũx at time t = 0.1 for time dependent random fractal medium

Table 3.9: Coarse mesh error of random fractal case with spline elements
dof L1 L∞ L2 H1

9 0.0046 0.0074 0.0052 0.0065
49 0.0036 0.0046 0.0036 0.0059

Table 3.10: Fine mesh error of random fractal case with spline elements
dof L1 L∞ L2 H1

9 0.0039 0.0082 0.0043 0.0222
49 0.0033 0.0054 0.0034 0.0168
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(a) coarse mesh L1 error
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(b) fine mesh L1 error

Figure 3.14: L1 error for time dependent random fractal medium at t = .1
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(a) coarse mesh L2 error
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(b) Fine Mesh L2 error

Figure 3.15: L2 error for time dependent random fractal medium t = .1
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(a) coarse mesh L∞ error
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(b) fine mesh L∞ error

Figure 3.16: L∞ error for time dependent random fractal medium t = .1.
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(a) coarse Mesh H1 error
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(b) fine Mesh H1 error

Figure 3.17: H1 error for time dependent random fractal medium t = .1
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Chapter 4

Numerical Homogenization for Acoustic
Wave Equation with Continuum Space
Scales

In this chapter, we apply the metric based upscaling method to acoustic wave equation in

dimension n in situations where the bulk modulus and the density of the medium are only

bounded. In section 4.1, we show that under a Cordes type condition the second order

derivatives of the solution with respect to harmonic coordinates are in L2 (instead of H−1

with respect to Euclidean coordinates). It follows that it is possible to homogenize the

wave equation numerically without assumptions of scale separation or ergodicity by pre-

computing n solutions of the associated elliptic equation. In section 4.2, we give proofs of

compensation phenomena and convergence of the numerical upscaling method. In section

4.3, we show the numerical experiment results.
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4.1 Main Results

Let Ω ⊂ Rn be a bounded and convex domain of class C2. Let T > 0. Consider the follow-

ing hyperbolic partial differential equation







K−1(x)∂ 2
t u = div(ρ−1(x)∇u(x, t))+g in Ω× (0,T),

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0,T ),

u(x, t) = u(x,0) for (x, t) ∈ Ω×{t = 0},

∂tu(x, t) = ut(x,0) for (x, t) ∈ Ω×{t = 0}.

(4.1.1)

Write ΩT := Ω×(0,T ) and a := ρ−1. We assume that a is a n×n symmetric, uniformly

elliptic matrix on the closure of Ω whose entries are in L∞(Ω). K is assumed to be scalar

such that K and K−1 belong to L∞(Ω). We assume that g belongs to L2(ΩT ).

4.1.1 Compensation phenomena

Since the media is time independent, we use the same notation as in Chapter 2 and focus on

space dimension n = 2. The extension to higher dimension is straightforward conditioned

on the stability of σ . Let F := (F1,F2) be the harmonic coordinates satisfying







diva∇F = 0 in Ω,

F(x) = x on ∂Ω.

(4.1.2)

Let σ := t∇Fa∇F and

µσ := esssupx∈Ω

(λmax
(
σ(x)

)

λmin
(
σ(x)

)

)

. (4.1.3)

We assume that σ satisfies Cordes type condition µσ < ∞ and (Trace[σ ])−1 ∈ L∞(Ω).

We also write

‖v‖L∞(0,T,H2(Ω)) = esssup0≤t≤T

(∫

Ω
∑
i, j

(
∂i∂ jv(x, t)

)2
dx

) 1
2
. (4.1.4)
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Throughout the chapter, we made the following assumptions

Assumption A. Assume that the g satisfies ∂tg∈ L2(ΩT ), g∈ L∞(0,T,L2(Ω)), initial data

u(x,0) and ∂tu(x,0) satisfy ∂tu(x,0) ∈ H1(Ω) and ∇a(x)∇u(x,0) ∈ L2(Ω) or equivalently

∂ 2
t u(x,0) ∈ L2(Ω).

Theorem 4.1.1. Suppose that Assumption A holds, then u◦F−1 ∈ L∞(0,T,H2(Ω)) and

‖u◦F−1‖L∞(0,T,H2(Ω)) ≤C
(
‖g‖L∞(0,T,L2(Ω)) +‖∂tg‖L2(ΩT ) +‖∂tu(x,0)‖H1(Ω)

+‖∂ 2
t u(x,0)‖L2(Ω)

)
.

(4.1.5)

The constant C can be written

C =
C(n,Ω,Kmin,Kmax,λmin(a),λmax(a))

(1−β
1
2

σ )

∥
∥(Trace[σ ])

n
4−1∥∥

L∞(ΩT )
. (4.1.6)

We use the notation

Kmax := ‖K‖L∞(Ω) and Kmin := (‖K−1‖L∞(Ω))
−1. (4.1.7)

Remark. The condition g ∈ L2(ΩT ) is sufficient to obtain Theorem 4.1.1 and the fol-

lowing theorems. For the sake of clarity we have preferred to restrict ourselves to

g ∈ L∞(0,T,L2(Ω)).

4.1.2 Numerical homogenization in space

We will largely use the notation similar to parabolic equation in Section 3.1.2. Suppose we

have a quasi-uniform mesh. Let X h be a finite dimensional subspace of H1
0 (Ω)∩W 1,∞(Ω)

with the following approximation properties: There exists a constant CX such that

• Interpolation property, i.e., for all f ∈ H2(Ω)∩H1
0 (Ω)

inf
v∈Xh

‖ f − v‖H1
0 (Ω) ≤CX h‖ f‖H2(Ω). (4.1.8)
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• Inverse Sobolev inequality, i.e., for all v ∈ X h,

‖v‖H2(Ω) ≤CX h−1‖v‖H1
0 (Ω), (4.1.9)

and

‖v‖H1
0 (Ω) ≤CX h−1‖v‖L2(Ω). (4.1.10)

These properties are known to be satisfied when X h is a space of WEB (Weighted Extended

B-splines) finite element of resolution h.

Write

V h :=
{

ϕ ◦F(x) : ϕ ∈ Xh}. (4.1.11)

For v ∈ H1
0 (Ω) write Rhv the projection of v on Vh with respect to the bilinear operator

a[·, ·], i.e., the unique element of Vh such that for all w ∈Vh,

a[w,v−Rhv] = 0. (4.1.12)

Define Y h
T the subspace of L2(0,T ;H1

0 (Ω)
)

as

Y h
T := {v ∈ L2(0,T ;H1

0 (Ω)
)

: v(x, t) ∈Vh,∀t ∈ [0,T ]}. (4.1.13)

We use the following notation

a[v,w] :=
∫

Ω
t∇v(x, t)a(x)∇w(x, t)dx. (4.1.14)

Write uh the solution in Y h
T of the following system of ordinary differential equations:







(K−1ψ,∂ 2
t uh)L2(Ω) +a[ψ,uh] = (ψ,g)L2(Ω) for all t ∈ (0,T ) and ψ ∈V h,

uh(x,0) = Rhu(x,0),

∂tuh(x,0) = Rh∂tu(x,0).

(4.1.15)
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The following theorem shows the accuracy of the semidiscrete solution. We need an

improved assumption on the regularity of the forcing term g and the initial data, which

guarantees O(h) convergence of the scheme (4.1.15). On the other hand, we can see that

even g and all the initial data are smooth, under the assumption a(x) ∈ L∞, we can at

best expect u ∈ L∞(0,T,H1(Ω)) instead of the improved regularity L∞(0,T,H2(Ω)) in the

harmonic coordinate.

Assumption B. Assume that the forcing term g satisfies ∂ 2
t g ∈ L2(ΩT ), ∂tg ∈

L∞(0,T,L2(Ω)), initial value u(x,0) and ∂tu(x,0) satisfy ∂ 2
t u(x,0) ∈ H1(Ω) and

∇a(x)∇∂tu(x,0) ∈ L2(Ω) or equivalently ∂ 3
t u(x,0) ∈ L2(Ω).

From now on we will always suppose without explicitly mentioning that Assumption

B is satisfied in the discussion of numerical homogenization method.

Theorem 4.1.2.

∥
∥∂t(u−uh)(.,T)

∥
∥

L2(Ω)
+

∥
∥(u−uh)(.,T)

∥
∥

H1
0 (Ω)

≤Ch
(
‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2

t g‖L2(ΩT )

+‖∂ 2
t u(x,0)‖H1(Ω) +‖∂ 3

t u(x,0)‖L2(Ω)

)
.

(4.1.16)

The constant C depends on CX , n, Ω, βσ , Kmin, Kmax, λmin(a), λmax(a), and
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
.

4.1.3 Numerical homogenization in time and space

Let M ∈ N, (tn = n T
M )0≤n≤M is a discretization of [0,T ]. (ϕi) is a basis of Xh. Write trial

space Zh
T the subspace of Y h

T such that

Zh
T = {w ∈ Y h

T : w(x, t) = ∑
i

ci(t)ϕi
(
F(x, t)

)
, ci(t) are linear on (tn, tn+1]}. (4.1.17)

Write test space Uh
T the subspace of Y h

T such that

Uh
T = {ψ ∈ Y h

T : ψ(x, t) = ∑
i

diϕi
(
F(x, t)

)
, di are linear (on [0,T ]).}. (4.1.18)



115

Write vh the solution in Zh
T of the following system of implicit weak formulation: for

n ∈ {0, . . . ,M−1} and ψ ∈U h
T ,

(K−1ψ,∂tvh)(tn+1)− (K−1ψ,∂tvh)(tn) =

∫ tn+1

tn
(K−1∂tψ,∂tvh)dt

−
∫ tn+1

tn
a[ψ,vh]dt +

∫ tn+1

tn
(ψ,g)dt.

(4.1.19)

In equation (4.1.19), ∂tvh(t) stands for limε↓0(vh(t)− vh(t − ε))/ε . The unknowns are

∂tvh(t), once we know the values of them at tn, we can use the following relation to obtain

vh(tn+1),

∂tvh(tn+1) =
vh(tn+1)− vh(tn)

tn+1 − tn
. (4.1.20)

The trial function space Zh
T and test function space U h

T introduced in this section are of

different degrees of freedom, therefore we are solving a least square problem at each time

step.

Denote mass matrix M by Mi j =
(
ϕi(F(x)),ϕ j(F(x)

)
and stiffness matrix K by Ki j =

a[ϕi(F(x)),ϕ j(F(x))], we can show that (4.1.19) is equivalent to a linear equation

Ce = f , (4.1.21)

with the matrix C

C =




M + ∆t2

2 K

tnM +
∆t2(2tn+1+tn)

6 K



 . (4.1.22)

Since M and K are positive definite, the least square problem has a unique solution,

which also gives the existence and uniqueness of vh. The computational cost of solving the

least square problem only depends the degrees of freedom of the coarse mesh.

The following Theorem 4.1.3 shows the stability of the implicit scheme (4.1.19):

Theorem 4.1.3.

‖∂tvh(.,T )‖L2(Ω)+‖vh(.,T )‖H1
0 (Ω) ≤C

(
‖g‖L2(ΩT ) +‖∂tu(x,0)‖L2(Ω)

+‖u(x,0)‖H1(Ω)

)
+Ch

(
‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2

t g‖L2(ΩT )

+‖∂ 2
t u(x,0)‖H1(Ω) +‖∂ 3

t u(x,0)‖L2(Ω)

)
.

(4.1.23)
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The constant C depends on λmin(a), λmax(a), Kmin, Kmax, and T .

The following Theorems 4.1.4 and 4.1.5 give us the accuracy of the implicit scheme

(4.1.19).

Theorem 4.1.4.

∥
∥(∂tuh −∂tvh)(.,T )‖L2(Ω) +

∥
∥(uh − vh)(.,T )

∥
∥

H1(Ω)
≤C∆t(1+h−1)

(
‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2

t g‖L2(ΩT ) +‖∂ 2
t u(x,0)‖H1(Ω) +‖∂ 3

t u(x,0)‖L2(Ω)

)
.

(4.1.24)

The constant C depends on CX , T , λmin(a), λmax(a), Kmin, Kmax, βσ ,
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
,

and
∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
.

Theorem 4.1.5.

∥
∥(uh − vh)(.,T )

∥
∥

L2(Ω)
+

∥
∥

∫ T

0
(uh − vh)(., t)dt

∥
∥

H1
0 (Ω)

≤C
∆t
h

(∆t)
1
2

(
‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2

t g‖L2(ΩT ) +‖∂ 2
t u(x,0)‖H1(Ω) +‖∂ 3

t u(x,0)‖L2(Ω)

)
.

(4.1.25)

The constant C depends on CX , T , λmin(a), λmax(a), Kmin, Kmax, βσ ,
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
,

∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
, and ‖∂tvh‖L∞(0,T,L2(Ω)) (which is bounded by Theorem 4.1.3) .

4.2 Proofs

The proofs are organized into three subsections corresponding to the three subsections of

section 4.1.

4.2.1 Compensation phenomena: Proof of Theorem 4.1.1

Lemma 4.2.1. We have

‖∂ 2
t u‖2

L2(Ω)(T )+a[∂tu](T ) ≤C(T,
Kmax
Kmin

,Kmax)
(

a[∂tu](0)

+‖∂ 2
t u(x,0)‖2

L2(Ω) +‖∂tg‖2
L2(ΩT )

)

.

(4.2.1)
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Proof. In case a is smooth, differentiating (4.1.1) with respect to t, we have

K−1∂ 3
t u−diva∇∂tu = ∂tg. (4.2.2)

multiplying by ∂ 2
t u, and integrating over Ω, we obtain that

1
2

d
dt
‖K− 1

2 ∂ 2
t u‖2

L2(Ω) +
1
2

d
dt

a[∂tu] = (∂tg,∂ 2
t u)L2(Ω). (4.2.3)

Integrating the latter equation with respect to t and using Cauchy-Schwartz inequality

we obtain that

‖K− 1
2 ∂ 2

t u‖2
L2(Ω)(T )+a[∂tu](T ) ≤‖K− 1

2 ∂ 2
t u‖2

L2(Ω)(0)+a[∂tu](0)

+‖∂tg‖L2(ΩT )‖∂ 2
t u‖L2(ΩT ).

(4.2.4)

Consider the following differential inequality,

X(t)≤ A(t)+B(t)
(
∫ t

0
X(s)ds

)1
2 . (4.2.5)

Write Y (t) = sups∈[0,t] X(s), one has

X(t)≤ A(t)+B(t)t
1
2
(
Y (t)

)1
2 . (4.2.6)

Let t be a time such that Y (t) = X(t), then

Y (t) ≤ 2A(t)+ t
(
B(t)

)2
. (4.2.7)

It follows that

‖∂ 2
t u‖2

L2(Ω)(T )+a[∂tu](T ) ≤C(T,
Kmax
Kmin

,Kmax)
(

a[∂tu](0)

+‖∂ 2
t u‖2

L2(Ω)(0)+‖∂tg‖2
L2(ΩT )

)

.

(4.2.8)

In the case where a is nonsmooth we use Galerkin approximations of u in (4.1.1) and

then pass to limit. This technique is standard and we refer to [58, Section 7.3.2.c] for a
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reminder.

Lemma 4.2.2.

‖∂tu‖2
L2(Ω)(T )+a[u](T) ≤C(T,

Kmax
Kmin

,Kmax)
(

a[u](0)

+‖∂tu‖2
L2(Ω)(0)+‖g‖2

L2(ΩT )

)

.

(4.2.9)

Proof. Multiplying 4.1.1 by ∂tu, and integrating over Ω, we obtain that

1
2

d
dt
‖K− 1

2 ∂tu‖2
L2(Ω) +

1
2

d
dt

a[u] = (g,∂tu)L2(Ω). (4.2.10)

The remaining part of the proof is similar to the proof of Lemma 4.2.1.

Let us now prove the compensation theorem Theorem 4.1.1, this is similar to the proof

of Theorem 3.1.1 in Chapter 3. Choose

M := σ
|det(∇F)| 1

2
◦F−1. (4.2.11)

It is easy to check that (4.2.11) is well defined. Moreover observe that βM = βσ and

‖νM‖2
L∞(ΩT ) ≤

Cn

(λmin(a))
n
2

∥
∥(Trace[σ ])

n
4−1∥∥2

L∞(ΩT )
. (4.2.12)

Fix t ∈ [0,T ]. Choose

f := (K−1∂ 2
t u−g)

|det(∇F)| 1
2

◦F−1. (4.2.13)

Observe that by the change of variable y = F(x) one obtains that

‖ f‖2
L2(Ω) ≤ K−1

min‖∂ 2
t u‖L2(Ω) +‖g‖2

L2(Ω). (4.2.14)

It follows from Theorem A.1.3 that there exists a unique v ∈ W 2,2(Ω) satisfying the
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equation

∑
i, j

(
σ(F−1(y))

)

i, j∂i∂ jv(y, t) = K̃−1(y)∂ 2
t ũ(y, t)− g̃(y, t), (4.2.15)

and

‖v‖2
H2(Ω) ≤

C‖νM‖2
L∞(ΩT )

(1−β
1
2

σ )2

(
K−1

min‖∂ 2
t u‖L2(Ω) +‖g‖2

L2(Ω)

)
. (4.2.16)

Use the notation K̃ := K ◦F−1, g̃ := g ◦F−1, and ũ := u ◦F−1. By change of variable

y = F(x) and the identity diva∇F = 0 we deduce that (4.2.15) can be written as

div
(
a∇(v◦F)

)
= K−1∂ 2

t u−g. (4.2.17)

If ∂ 2
t u ∈ L2(Ω) and g(., t) ∈ L2(Ω) we can use the uniqueness property of the solution

of the divergence form elliptic equation with homogeneous Dirichlet boundary condition.

div
(
a∇w

)
= K−1∂ 2

t u−g. (4.2.18)

to obtain that v◦F = u. Thus we have proven Theorem 4.1.1. In the following sections we

will prove the convergence of semidiscrete and fully discrete numerical homogenization

formulation (4.1.15) and (4.1.19).

4.2.2 Numerical homogenization in space: Proof of Theorem 4.1.2.

Lemma 4.2.3. We have

‖∂ 2
t uh‖2

L2(Ω)(T )+a[∂tuh](T ) ≤C(T,
Kmax
Kmin

,Kmax)
(

a[∂tuh](0)

+‖∂ 2
t uh(x,0)‖2

L2(Ω) +‖∂tg‖2
L2(ΩT )

)

.

(4.2.19)

Proof. The proof is similar to the proof of Lemma 4.2.1.
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Lemma 4.2.4.

‖∂tuh‖2
L2(Ω)(T )+a[uh](T ) ≤C(T,

Kmax
Kmin

,Kmax)
(

a[uh](0)

+‖∂tuh‖2
L2(Ω)(0)+‖g‖2

L2(Ω)T

)

.

(4.2.20)

Proof. The proof is similar to the proof of Lemma 4.2.2.

Write Rh the projection operator mapping L2(0,T ;H1
0 (Ω)) onto Y h

T , for all v ∈ Y h
T :

AT [v,u−Rhu] = 0 (4.2.21)

let ρ := u−Rhu and θ := Rhu−uh.

For t ∈ [0,T ] and v ∈ H1
0 (Ω), we write Rh,tv(., t) the solution of:

∫

Ω
t∇ψa(x)∇(v−Rh,tv(x, t))dx = 0 for all ψ ∈V h (4.2.22)

It is obvious that Rhu(., t) = Rh,tu(., t). For example, we can choose a series of test

functions which is separable in space and time, v(x, t) = T (t)X(x), T (t) is smooth in t and

has δ (t) function as its weak limit.

We will need the Lemma 3.2.9 of Chapter 3 which gives the bound

a[v−Rh,tv]
) 1

2 ≤Ch (4.2.23)

We will use the Lemmas 3.2.9, 4.2.5, 4.2.6, 4.2.7 and 4.2.8 to obtain the approximation

property of the projection operator Rh.

Lemma 4.2.5. ∂t(u◦F−1) ∈ L∞(0,T,H2(Ω)) and

‖∂t(u◦F−1)‖L∞(0,T,H2(Ω)) ≤C
(
‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2

t g‖L2(ΩT )

+‖∂ 3
t u(x,0)‖L2(Ω) +‖∂ 2

t u(x,0)‖H1(Ω)

)
.

(4.2.24)

Remark. The constant C is the one given in Theorem 4.1.1.
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Proof. The proof follows from the differentiation of (4.1.1) and is similar to the proof of

Theorem 4.1.1.

Lemma 4.2.6. We have

(
AT [∂tρ]

) 1
2 ≤Ch

(
‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2

t g‖L2(ΩT )

+‖∂ 3
t u(x,0)‖L2(Ω) +‖∂ 2

t u(x,0)‖H1(Ω)

)
.

(4.2.25)

Proof. The proof is a straightforward application of Lemma 4.2.5 and Lemma 3.2.9.

Lemma 4.2.7. We have

‖∂tρ‖L2(ΩT ) ≤Ch2(‖∂tg‖L∞(0,T,L2(Ω)) +‖∂ 2
t g‖L2(ΩT )

+‖∂ 3
t u(x,0)‖L2(Ω) +‖∂ 2

t u(x,0)‖H1(Ω)

)
.

(4.2.26)

The constant C in Lemma 4.2.6 and 4.2.7 depends on CX , n, Ω, βσ , λmin(a), λmax(a), Kmin,

Kmax, and
∥
∥(Trace[σ ])−1∥∥

L∞(ΩT )
. If n ≥ 3 it also depends on

∥
∥Trace[σ ]

∥
∥

L∞(ΩT )
.

Proof. The proof follows from standard duality techniques and similar to that of Lemma

3.2.11. We can deduce that,

(
AT [v−Rh,tv]

) 1
2 ≤Ch‖∂tρ‖L2(ΩT ). (4.2.27)

Since

‖∂tρ‖L2(ΩT ) ≤Ch
(
AT [∂tρ]

) 1
2 . (4.2.28)

We deduce the lemma by applying Lemma 4.2.6 to bound AT [∂tρ].

Lemma 4.2.8. We have the following estimates for initial data,

‖∂t(uh(x,0)−u(x,0))‖L2(Ω) ≤Ch2(‖∂tg(x,0)‖L2(Ω) +‖∂ 2
t u(x,0)‖H1(Ω) +‖∂ 3

t u(x,0)‖L2(Ω)

)

‖uh(x,0)−u(x,0)‖H1
0 (Ω) ≤Ch

(
‖∂tg(x,0)‖L2(Ω) +‖∂ 2

t u(x,0)‖H1(Ω) +‖∂ 3
t u(x,0)‖L2(Ω)

)

(4.2.29)

Proof. We can estimate ‖∂tρ‖L2(Ω) similar to Lemma 4.2.7 and apply Lemma 3.2.9 to get

the second inequality.
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Lemma 4.2.9. We have

‖∂t(u−uh)‖2
L2(Ω)(T )+a[u−uh](T ) ≤C(Kmin,Kmax,T )

(

‖∂t(u−uh)‖2
L2(Ω)(0)

+a[u−uh](0)+‖∂tρ‖L2(ΩT )‖∂ 2
t (u−uh)‖L2(ΩT ) +AT [∂tρ]

)

.
(4.2.30)

Proof. We have

(K−1ψ,∂ 2
t (u−uh))+a[ψ,u−uh] = 0. (4.2.31)

Let ψ = ∂tθ = ∂t(u−uh)−∂tρ , it results

1
2

d
dt
‖K− 1

2 ∂t(u−uh)‖2
L2(Ω) +

1
2

d
dt

a[u−uh] = (K−1∂tρ,∂ 2
t (u−uh))+a[∂tρ,u−uh].

(4.2.32)

Integrate with respect to t, using Cauchy-Schwartz inequality, we have

1
2
‖K− 1

2 ∂t(u−uh)‖2
L2(Ω)(T )− 1

2
‖K− 1

2 ∂t(u−uh)‖2
L2(Ω)(0)+

1
2

a[u−uh](T )

− 1
2a[u−uh](0) ≤

∫ T

0
K−1

min‖∂tρ‖L2(Ω)‖∂ 2
t (u−uh)‖L2(Ω)dt +

(
AT [∂tρ]AT [u−uh]

) 1
2 .

(4.2.33)

The remaining part of the proof is similar to the proof of Lemma 4.2.1.

Theorem 4.1.2 is a straightforward application of Lemma 4.2.1, Lemma 4.2.3, Lemma

4.2.6, Lemma 4.2.7, Lemma 4.2.8, and Lemma 4.2.9.

4.2.3 Numerical homogenization in space and time: Proof of Theorem

4.1.3–4.1.5

Stability Choose ψ ∈ Uh
T in equation (4.1.19) such that ψ(x, t) = ∂tvh(x, t) for t ∈

(tn, tn+1]. We obtain that

‖K− 1
2 ∂tvh‖2

L2(Ω)(tn+1)− (K−1∂tvh(tn+1),∂tvh(tn))L2(Ω) = −
∫ tn+1

tn
a[∂tvh,vh]dt

+
∫ tn+1

tn
(∂tvh,g)L2(Ω)dt.

(4.2.34)
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Observing that

∫ tn+1

tn
a[∂tvh,vh]dt =

1
2

a[vh](tn+1)−
1
2

a[vh](tn). (4.2.35)

using Cauchy-Schwartz inequality we obtain

‖K− 1
2 ∂tvh‖2(tn+1)+a[vh](tn+1) ≤ ‖K− 1

2 ∂tvh‖2(tn)+a[vh](tn)

+2
∫ tn+1

tn
(∂tvh,g)L2(Ω)(t)dt.

(4.2.36)

Summing from 0 to M,

‖K− 1
2 ∂tvh‖2(T )+a[vh](T ) ≤ ‖K− 1

2 ∂tvh‖2(0)+a[vh](0)+2
∫ T

0
(∂tvh,g)L2(Ω) dt. (4.2.37)

We conclude the proof of Theorem 4.1.3 in a way similar to the proof of Lemma 4.2.1.

H1 Error Estimate We derive from equations (4.1.19) and (4.1.15) that

(K−1ψ,∂tuh −∂tvh)(tn+1)− (K−1ψ,∂tuh −∂tvh)(tn)

−
∫ tn+1

tn
(K−1∂tψ,∂tuh −∂tvh)dt +

∫ tn+1

tn
a[ψ,uh − vh]dt = 0.

(4.2.38)

Let ψ = ∂t ûh−∂tvh where ûh is the linear interpolation of uh over Zh
T . Write yh = uh−vh

and wh = ûh −uh, it follows that

(K−1∂tyh,∂tyh)(tn+1)+(K−1∂twh,∂tyh)(tn+1)− (K−1∂tyh,∂tyh)(tn)

−(K−1∂twh,∂tyh)(tn)+

∫ tn+1

tn
a[∂tyh,yh]dt +

∫ tn+1

tn
a[∂twh,yh]dt = 0.

(4.2.39)

Observing
∫ tn+1

tn ∂twh(x, t)dt = 0 we need the following lemma:

Lemma 4.2.10. If
∫ tn+1

tn u(s)ds = 0, then

u2 ≤ 1
4∆t

∫ tn+1

tn
u′(s)2 ds. (4.2.40)
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Proof. We have

u(t)2 = (u(t)− 1
∆t

∫ tn+1

tn
u(s)ds)2

=
1

∆t2 (

∫ tn+1

tn
(

∫ t

s
u′(ξ )dξ )ds)2

≤ 1
∆t2 (

∫ tn+1

tn
12ds)(

∫ tn+1

tn
(

∫ t

s
(u′(ξ ))dξ )2ds)

=
1
∆t

∫ tn+1

tn
(
∫ t

s
(u′(ξ ))dξ )2ds

≤ 1
∆t

∫ tn+1

tn
|
∫ t

s
12dξ | · |

∫ t

s
(u′(ξ ))2dξ |ds

=
∆t
4

∫ tn+1

tn
(u′(s))2ds.

Since ∂ 2
t wh(x, t) = −∂ 2

t uh(x, t) in (tn, tn+1], by Lemma 4.2.10 we have

∫

Ω
|∂twh(x, t)|2 dxdt ≤ 1

4∆t
∫ tn+1

tn

∫

Ω
|∂ 2

t uh(x, t)|2 dxdt, (4.2.41)

and
∫ tn+1

tn

∫

Ω
|∂twh(x, t)|2 dxdt ≤ 1

4
∆t2

∫ tn+1

tn

∫

Ω
|∂ 2

t uh(x, t)|2 dxdt. (4.2.42)

Using the inverse Sobolev inequality (4.1.10) we obtain from equation (4.2.42) that

∫ tn+1

tn

∫

Ω
a[∂twh]dxdt ≤C

∆t2

h2

∫ tn+1

tn

∫

Ω
|∂ 2

t uh(x, t)|2 dxdt. (4.2.43)

Summing (4.2.39) over n, notice yh(0) = 0, ∂tyh(0) = 0 we obtain that

(K−1∂tyh,∂tyh)L2(Ω)(T )+
1
2

a[yh(.,T )] = −
∫ T

0
a[∂twh,yh]dt − (K−1(∂twh,∂tyh)L2(Ω)(T ).

(4.2.44)

Theorem 4.1.4 is a straightforward consequence of (4.2.44), the estimates (4.2.41),

(4.2.43), Lemma 4.2.3 and Lemma 4.2.8.
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L2 Error Estimate Following [22], write y(t) :=
∫ T

t (uh−vh)ds and ψ(t) the linear inter-

polation of y(t) on Zh
T . Write z(t) = y(t)−ψ(t). Using the test function ψ in (4.2.38) we

obtain that

(K−1(y− z),∂t(uh − vh))(tn+1)− (K−1(y− z),∂t(uh − vh))(tn)

+
∫ tn+1

tn
(K−1(uh − vh +∂tz),∂t(uh − vh))dt +

∫ tn+1

tn
a[y− z,uh − vh)]dt = 0

(4.2.45)

Observe that

∫ tn+1

tn
(K−1(uh − vh),∂t(uh − vh))dt =

1
2
‖K− 1

2 (uh − vh)‖2(tn+1)−
1
2
‖K− 1

2 (uh − vh)‖2(tn).

(4.2.46)

Moreover
∫ tn+1

tn
a[y,uh− vh]dt = −

∫ tn+1

tn

1
2

d
dt

a[y]dt

= −1
2

a[y](tn+1)+
1
2

a[y](tn).

(4.2.47)

Write

In+1 := (K−1(y− z),∂t(uh − vh))(tn+1)+
1
2
‖K− 1

2 (uh − vh)‖2(tn+1)−
1
2

a[
∫ T

tn+1
(uh − vh)ds].

(4.2.48)

We have

In+1 = In −
∫ tn+1

tn
(K−1∂tz,∂t(uh − vh))dt +

∫ tn+1

tn
a[z,uh− vh)]dt.

It follows by induction that

In+1 = I0 −
∫ tn+1

0
(K−1∂tz,∂t(uh − vh))dt

︸ ︷︷ ︸

J1

+
∫ tn+1

0
a[z,uh− vh)]dt

︸ ︷︷ ︸

J2

. (4.2.49)

Choose T = tn+1. Observe that vh(0) = uh(0), ∂tvh(0) = ∂tuh(0), I0 = −1
2 a[

∫ T
0 (uh −

vh)ds], and In+1 = 1
2‖K− 1

2 (uh − vh)‖2(T ). Moreover using Theorems 4.1.3, 4.1.4 and

Lemma 4.2.4, it follows that ‖∂tz‖L2(Ω) is bounded by ∆t2(1+h−1) and ‖∂t(uh−vh)‖L2(Ω)
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is bounded by ∆t(1+h−1), hence we can deduce that J1 ≤C∆t3/h2.

Similarly we obtain that

J2 ≤
∫ T

0
a[z]

1
2 a[uh − vh]

1
2 dt

≤C∆t
h

sup
t∈[0,T ]

‖uh − vh‖H1(Ω)

∫ T

0
‖uh − vh‖H1(Ω)dt

≤ C
h2 ∆t3.

(4.2.50)

This concludes the proof of Theorem 4.1.5.

4.3 Numerical Experiments

In this section, we will first give the numerical algorithm. Several examples will be pre-

sented. The computational domain is the unit square in dimension two. Equation (4.1.1)

is solved on a fine tessellation characterized by 16129 interior nodes (degrees of freedom).

Three different coarse tessellations with 9, 49, and 225 degrees of freedom (dof ) are con-

sidered.

The hyperbolic equation (4.1.1) has been homogenized on these coarse meshes. We use

web extended B-spline based finite element [76] to be the space Xh introduced in subsection

4.1.2. For all the numerical examples, we compute the solutions up to time T = 1. The

initial condition is u(x,0) = 0 and ut(x,0) = 0.

The fine mesh solver for the wave equation is Matlab routine hyperbolic, which uses

linear finite element basis in space and adaptive integrator in time. The fine mesh solver

for F is Matlab routine assempde.

Algorithm 4.3.1 (Algorithm for Homogenization).

1. Compute F on fine mesh.

2. Construct multi-scale finite element basis ψ = ϕ ◦F, compute stiffness matrix K and

mass matrix M (ψ is piecewise linear on the fine mesh).

3. Time march (4.1.19) and (4.1.20) on coarse mesh.
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Table 4.1: Coarse mesh error (dof 49): Time independent site percolation with g = 1 with
different methods

Method L1 L∞ L2 H1

LFEM 0.1446 0.2159 0.1615 0.3431
FEM ψlin 0.0157 0.0690 0.0443 0.1504
FEM ψsp 0.0064 0.0233 0.0070 0.0522

Example 4.3.1. Time independent site percolation

In this example we consider the site percolating medium associated to figure 4.1. Equa-

tion (4.1.1) has been solved with g = 1, g = sin(2.4x−1.8y+2πt).

and a Gaussian source function given by

g(x,y) =
1√

2πσ 2
exp

(
− x2 +(y−0.15)2

2σ 2
)

(4.3.1)

with σ = 0.05. Notice that as σ → 0, the source function will become more singular.

Figure 4.2 shows u computed on 16129 interior nodes and uh computed on 9 interior nodes

in the case g = 1 at time 1. Numerical errors are given in tables 4.1 –4.6.

Figure 4.1: Site percolation

Tables 4.1 and 4.2 show the comparison between different numerical homogenization

methods; here we use the notation in Chapter 2. LFEM is a multi-scale finite element

method where F is computed locally (instead of globally) on each triangle K of the coarse

figures/a7.eps
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(a) u. (b) uh.

Figure 4.2: u computed on 16129 interior nodes and uh computed on 9 interior nodes at
time 1

Table 4.2: Fine mesh error (dof 49): Time independent site percolation with g = 1 with
different methods

Method L1 L∞ L2 H1

LFEM 0.1582 0.2557 0.2231 0.3304
FEM ψlin 0.0439 0.0518 0.0791 0.1236
FEM ψsp 0.0097 0.0493 0.0126 0.0767

mesh as the solution of a cell problem with boundary condition F(x) = x on ∂K. FEM ψlin

is the Galerkin scheme using the finite elements ψi = ϕi ◦F, where ϕi are the piecewise

linear nodal basis elements. FEM ψsp is the Galerkin scheme using the finite elements

ψi = ϕi ◦F , where ϕi are the weighted cubic B-spline basis elements. We observe that

the methods using global F have much better performance, and FEM ψsp is better than

FEM ψlin.

Tables 4.3, 4.4, 4.5, and 4.6 show that we have reasonable error with different forcing

term using FEM ψsp.

figures/ut100tip7b.eps
figures/uappt100tip7.eps
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Table 4.3: Coarse mesh error: Time independent site percolation with g = sin(2.4x−1.8y+
2πt)

dof L1 L∞ L2 H1

9 0.0696 0.0920 0.0701 0.1014
49 0.0337 0.0431 0.0305 0.0648

225 0.0318 0.0653 0.0292 0.0921

Table 4.4: Fine mesh error: Time independent site percolation with g = sin(2.4x− 1.8y +
2πt)

dof L1 L∞ L2 H1

9 0.0998 0.1232 0.0887 0.2428
49 0.0592 0.1150 0.0536 0.1778

225 0.0404 0.1031 0.0380 0.1398

Table 4.5: Coarse mesh error: Time independent site percolation with Gaussian source
dof L1 L∞ L2 H1

9 0.0748 0.1235 0.0799 0.3767
49 0.0546 0.1092 0.0580 0.2602

225 0.0368 0.0601 0.0406 0.0974

Table 4.6: Fine mesh error: Time independent site percolation with Gaussian source
dof L1 L∞ L2 H1

9 0.0977 0.4595 0.1192 0.4857
49 0.0927 0.4144 0.1102 0.3857

225 0.0866 0.2030 0.1098 0.3802
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Table 4.7: Coarse mesh error (dof 49): High conductivity channel with different strength
A L1 L∞ L2 H1

10 0.0041 0.0197 0.0083 0.0208
100 0.0080 0.0459 0.0126 0.0492

1000 0.0349 0.0934 0.0484 0.1051

Table 4.8: Fine mesh error (dof 49): High conductivity channel with different strength
A L1 L∞ L2 H1

10 0.0053 0.0246 0.0120 0.0375
100 0.0117 0.0501 0.0179 0.0958

1000 0.0454 0.01253 0.0611 0.1491

Example 4.3.2. Time independent high conductivity channel

In this example a is characterized by a narrow and long ranged high conductivity chan-

nel. We choose a(x) = A � 1, if x is in the channel, and a(x) = O(1) and random, if x is

not in the channel. The media is illustrated in figure 4.3.

Figure 4.3: High conductivity channel superposed on a random medium

Tables 4.7 and 4.8 give the coarse and fine meshes errors for g = 1 with fixed coarse

mesh (dof 49) and A = 10,100,1000 respectively. From the table we can see that the errors

grow with A increasing, but the growth is moderate. The fine mesh and coarse mesh errors

for g = sin(2.4x−1.8y+2πt) are given in tables 4.9 and 4.10.

figures/a6.eps
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Table 4.9: Coarse mesh error: High conductivity channel case with g = sin(2.4x− 1.8y +
2πt)

dof L1 L∞ L2 H1

9 0.0364 0.0338 0.0335 0.0541
49 0.0193 0.0282 0.0196 0.0447

225 0.0081 0.0092 0.0078 0.0204

Table 4.10: Fine mesh error: High conductivity channel case with g = sin(2.4x− 1.8y +
2πt)

dof L1 L∞ L2 H1

9 0.0748 0.0790 0.0729 0.1514
49 0.0295 0.0339 0.0291 0.0760

225 0.0095 0.0119 0.0091 0.0315
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Table 4.11: Coarse mesh error: Neumann boundary condition, fine mesh dof 16129
dof L1 L∞ L2 H1

9 0.0468 0.893 0.0506 0.1320
49 0.0138 0.0713 0.0166 0.1353

225 0.0094 0.0436 0.0115 0.1778

Example 4.3.3. Time dependent source with Neumann boundary condition

In this example we consider the site percolating medium. (4.1.1) has been solved with

Neumann boundary condition. The source term is given by g(x, t) = T (t)X(x,y), X(x,y) is

the Gaussian source function described by

X(x,y) =
1√

2πσ 2
exp

(
− x2 + y2

2σ 2
)
, (4.3.2)

with σ = 0.05, T (t) = T1(t)T2(t)

T1(t) =
10
∑
1

21− (−1)k

kπ
sin(2kπt), (4.3.3)

and T2(t) = erfc(8(t − 0.5)), erfc is the complementary error function. See figure 4.4 for

T (t) in (0,1).
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Figure 4.4: t → g(0, t)

Errors are given in tables 4.11 and 4.12 for fine mesh with dof 16129, in tables 4.13 and

4.14 for fine mesh with dof 65025. Figure 4.5 shows u computed on 16129 interior nodes

and uh computed on 9 interior nodes at time 1.

figures/tds.eps
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(a) u (b) uh

Figure 4.5: u computed on 16129 interior nodes and uh computed on 9 interior nodes at
time 1

Table 4.12: Fine mesh error: Neumann boundary condition, fine mesh dof 16129
dof L1 L∞ L2 H1

9 0.0484 0.1240 0.0571 0.4334
49 0.0261 0.0803 0.0316 0.3025

225 0.0183 0.0520 0.0216 0.2575

Table 4.13: Coarse mesh error: Neumann boundary condition, fine mesh dof 65025
dof L1 L∞ L2 H1

9 0.0477 0.1217 0.0593 0.1381
49 0.0140 0.1184 0.0178 0.1761

Table 4.14: Fine mesh error: Neumann boundary condition, fine mesh dof 65025
dof L1 L∞ L2 H1

9 0.0523 0.1209 0.0550 0.3914
49 0.0263 0.1176 0.0314 0.2444

figures/uexa3.eps
figures/uappexa3.eps
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Chapter 5

Conclusion and Discussions

Global information As we have stated in the previous chapters, if one has solved the

initial equation at least n times and those solutions are (locally) linearly independent it is

also possible to use them as new coordinates for numerical homogenization. The idea to

use global fine scale information to homogenize transport equations for reservoir modeling

in geophysics is currently implemented in the industry and has been shown to be more

accurate than local methods ([131] and [130]). It is applied in practice because the porosity

of the medium is time independent and one has to solve an elliptic equation only at t = 0 to

upscale the transport equations. We notice that some recent results using global information

[2, 80] are formulated in a partition of unity framework. In this case, {1,F1, · · · ,Fn} can be

used to construct the local approximation space.

Higher dimension In dimension three and higher it has been known since the work of

Fenchenko and Khruslov [63], [82] that the homogenization of divergence form elliptic

operators −divaε∇uε = g can lead to a non-local homogenized operator if the sequence

of matrices aε is uniformly elliptic but with entries uniformly bounded only in L1(Ω).

From a numerical point of view this non-local effect implies that a non-local numerical

homogenization method cannot be avoided to obtain accuracy. Recently Briane has shown

[43] that this non-local effect is absent in dimension two in the H-convergence setting. In

Chapter 2, it is shown that the accuracy of local methods depend on the aspect ratio of

the triangles of the tessellation with respect to caloric coordinates and the invertibility of

F on both continuous and discrete level (which is not the case if one uses non-local finite
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elements). In fact, observe that in dimensions higher than three the harmonic coordinates

are not always invertible, an idea to bypass this difficulty could be either to choose the

change of coordinates locally and adaptively or to enrich the coordinates by writing down

the initial equations as degenerate equations in a space of higher dimension. These points

have not been explored.

Optimality condition Moreover, it could be conjectured that one could use any set of

n linearly independent solutions of (4.1.1) instead of the harmonic coordinates. The key

property allowing the homogenization of (4.1.1) lies in the fact that if g has enough integra-

bility then the space of solutions is at small scales close in H1 norm to a space of dimension

n. Once one has observed at least n linearly independent solutions of (4.1.1), one has seen

all of them at small scales. Let us further explain this in the following sense:

Write L := −∇a∇. L−1 maps H−1(Ω) into H1
0 (Ω), it also maps L2(Ω) into V a sub-

vector space of H1
0 (Ω). The elements of V is close in H1 norm to a space of dimension n (n

is the dimension of the physical space Ω). Introduce the Kolmogorov n-width optimality

condition [112],

d(n,‖ · ‖,S) = inf
En

sup
f∈S

inf
g∈En

‖ f −g‖ (5.0.1)

which is the error per degree of freedom for a whole class of functions. En denotes an n-

dimensional space, and S is the class of functions that we wish to approximate, S is chosen

as the unit ball of some appropriate Banach space. A minimizing space En is called an

optimal space. Therefore, Let Th be a triangulation of Ω ⊂ Rn of resolution h (where

0 < h < diam(Ω)), in terms of H1 norm or Cα norm, {Fi} is the optimal space for V

uniformly in h.

We have the following conjecture, let Λ be set of mappings from Th into the unit sphere

of Rn+1 (if λ ∈ Λ then λ is constant on each triangle K ∈ Th and ‖λ (K)‖ = 1), then

sup
v1,v2,...,vn+1∈V

inf
λ∈Λ

‖∑n+1
i=1 λivi‖H1

0 (Ω)

∑n+1
i=1 ‖∇a∇vi‖L2(Ω)

≤Ch. (5.0.2)

Equation (5.0.2) is saying that any n + 1 elements of V are (at an h approximation in
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H1 norm) linearly dependent. Recall that n + 1 vectors are linearly dependent in a linear

combination (with non-zero coefficients) of these vectors in the null vector. In (5.0.2) the

linear combination of the n + 1 vectors is at relative distance of order h (resolution of the

triangulation) from 0.

Further plans Some possible extensions of this work may include:

• Homogenization of partial differential equations

– Homogenization of linear elasticity equation: Numerical experiments suggest

that similar compensation phenomenon still exists. Although the generalization

from the scalar case to vectorial case is highly nontrivial, one could still find a

change of coordinates in the space of elastic deformations. The difficulty is the

injectivity of the mapping.

– Homogenization of convection-diffusion-reaction equation and Navier-Stokes

equation: The idea is to rewrite the equation into a parabolic equation or the per-

turbation of a parabolic equation, and apply the upscaling method for parabolic

equations. Petrov-Galerkin like methods (for example ELLAM) will be inves-

tigated. It is of its own theoretical interest to investigate whether or in what

assumption we can find similar compensation phenomena for nonlinear equa-

tions (such as Navier-Stokes).

• Numerical Analysis and Scientific Computing

– Implementing and developing a fast, scalable method to solve the fine scale

problem. It is interesting to compare numerical methods such as AMG and

H-Matrix method, which are able to solve problems with non-separable scales,

to find the connection between algebraic approaches and upscaling approaches,

and to benefit from such a connection [38]. This would also include attempts to

compare several categories of methods: locally adaptive finite element method,

multi-scale finite element method with overlapping or non-overlapping local
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problems, and our method 1 The goal is to obtain an optimal trade-off which

keeps the essential fine scale information and reduces the cost of precomputa-

tion.

• Applications

– It is possible to apply our method to a wide variety of practical problems:

composite material, reservoir modeling, inverse problem, and seismic imag-

ing, just to name a few. For instance, in a joint project with Professor Haibin

Su of Nanyang Technological University of Singapore, we intend to optimize

the charge distribution of composite ferroelectric material in order to lower the

voltage needed to actuate the composite. In this case, the equation has to be

solved with multiple right hand sides, which is an ideal case on which to apply

our method.

1In terms of a global mesh generation method, my method is closely related to the harmonic map based
moving mesh method [91].
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Appendix A

Regularity Theory of PDEs

A.1 Elliptic Equations

This section introduces regularity results for divergence form and nondivergence form el-

liptic equations.

A.1.1 Divergence Form

Consider the following divergence form elliptic equation,







−div
(
a(x)∇u(x)

)
= g in Ω

u = 0 in ∂Ω.

(A.1.1)

where a(x) is symmetric, uniformly bounded, and elliptic.

Theorem A.1.1 (Meyers Theorem [7]). There exists a number p > 2 and a positive con-

stant C > 0, which both depend only on α , β , and Ω, such that, if g ∈ W−1,p(Ω), then the

solution u of (A.1.1) belongs to W 1,p
0 (Ω) and satisfies

‖u‖
W 1,p

0 (Ω)
≤C‖g‖W−1,p(Ω). (A.1.2)

De Giorgi-Moser-Nash theory ([69], [97], [100]) gives Hölder estimate of divergence

form elliptic operators with discontinuous coefficients; more precisely we refer to [120] for

the global Hölder regularity. For example, we have the following theorem [67, Theorem
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8.29]:

Theorem A.1.2 (Hölder Continuity). If u is a W 1,2 solution of equation (A.1.1), it fol-

lows that u is locally Hölder continuous in Ω. A uniform Hölder estimate may also be

obtained if the domain is further restricted, for example, if Ω satisfies a uniform exterior

cone condition.

A.1.2 Nondivergence Form

In this case, we consider strong solutions of the linear second order elliptic Dirichlet prob-

lem 





∑n
i, j=1 Mi j(x)Di jv = f in Ω,

u = 0 in ∂Ω.

(A.1.3)

We assume M to be symmetric, uniformly elliptic and bounded. Strong solution of

(A.1.3) is a twice weakly differentiable function satisfying the equation (A.1.3) a.e. in Ω

and assuming boundary values on ∂Ω in classical or in generalized sense.

The strong solution of (A.1.3) may not be unique. In fact, we need the following Cordes

condition to ensure the unique solvability of (A.1.3).

Let λi(·) be the ith eigenvalue. Write for the symmetric matrix M,

νM : =
∑n

i=1 λi(M(x))

∑n
i=1 λi(tM(x)M(x))

=
Trace[M(x)]

Trace[tM(x)M(x)]
,

(A.1.4)

and the Cordes parameter βM associated to M

βM : = esssupx∈Ω
(
n−

(

∑n
i=1 λi(M(x))

)2

∑n
i=1 λi(tM(x)M(x))

)

= esssupx∈Ω

(

n−
(

Trace[M(x)]
)2

Trace[tM(x)M(x)]

)

.

(A.1.5)

Theorem A.1.3. Assume that βM < 1. If Ω is convex, then there exists a real number

p0 > 2 depending only on n,Ω, and βM such that for 2 ≤ p < p0, if f ∈ Lp(Ω) the Dirichlet
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problem (A.1.3) has a unique solution satisfying

‖v‖
W 2,p

0 (Ω)
≤ C

1−β
1
2

M

‖νM f‖Lp(Ω). (A.1.6)

The constant C only depends on Ω, M, and p.

Theorem A.1.3 is a slight modification of theorem 1.2.3 of [93], for the sake of com-

pleteness we will give the main ideas leading to estimate (A.1.6). Let us recall the Miranda-

Talenti estimate [93, Section 1.4].

Lemma A.1.1. Let Ω ⊂ Rn be a bounded and convex domain of class C2. Then for each

v ∈W 2,2
0 (Ω) it results

∫

Ω

n

∑
i, j=1

(∂i∂ jv)
2 dx ≤

∫

Ω
(∆v)2 dx. (A.1.7)

Remark. The only place where we use the convexity of Ω is for the validity of Lemma A.1.1

(we refer to [93]).

The Laplacian ∆ : W 2,p
0 (Ω) → Lp(Ω) is an isomorphism for each p > 1. Let ∆−1(p) be

the inverse operator ∆−1 : Lp(Ω) → W 2,p
0 . It is clear from (A.1.7) that ‖∆−1(2)‖ ≤ 1. We

also know that ‖∆−1(p)‖ is monotone increasing. Fix a number r ∈ (2,∞), by interpolation

inequality we have,

‖∆−1(p)‖ ≤C(p) = ‖∆−1(r)‖
r(p−2)
p(r−2) . (A.1.8)

Let v be a solution of (A.1.3) (the existence of v can be obtained from a fix point theorem

by [93, p. 21]), we have

‖v‖
W 2,p

0 (Ω)
≤ ‖∆−1(p)‖‖∆v‖Lp(Ω). (A.1.9)

Observing that ∆v = νM f +∆v−νMLMv, one can obtain

‖∆v‖Lp(Ω) ≤ ‖νM f‖Lp(Ω) +‖∆v−νMLMv‖Lp(Ω). (A.1.10)
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Then following the proof of Theorem 1.2.1 and Theorem 1.2.3 of [93] we have

‖∆v−νMLMv‖p
Lp(Ω)

≤
∫

Ω
β p/2

M

( n

∑
i, j=1

(∂i∂ jv)
p)dx. (A.1.11)

Since C(p) ≥ 1, there exists some p > 2 such that 1−C(p)β 1/2
M ≥ (1−β 1/2

M )/2. Com-

bining (A.1.9), (A.1.10), and (A.1.11) we obtain that

(∫

Ω

( n

∑
i, j=1

(∂i∂ jv)
p)dx

) 1
p ≤ 2C(p)

1−β 1/2
M

‖νM f‖Lp(Ω). (A.1.12)

which leads to estimate (A.1.6).

By Sobolev embedding inequality

‖∇v‖
C1− n

p (Ω̄)
≤C‖v‖

W 2,p
0 (Ω)

. (A.1.13)

Theorem A.1.3 implies the Hölder continuity of v in dimension n = 2.

A.2 Parabolic Equations

A.2.1 Divergence Form

Consider the following parabolic equation,







∂tu = div
(
a(x, t)∇u(x, t)

)
+g in Ω× (0,T )

u(x, t) = 0 for (x, t) ∈
(
∂Ω× (0,T )

)
∪

(
Ω∪{t = 0}

)
.

(A.2.1)

By energy estimate and Galerkin approximation, there exists unique weak solution of di-

vergence form parabolic equation u ∈ L2(0,T ;H1
0 (Ω), with u′ ∈ L2(0,T ;H−1(Ω)). For

example, see [58, Section 7.1].

Similar to divergence form elliptic equation, we have Hölder continuity of u [92, Chap-

ter IV].
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A.2.2 Nondivergence Form

Consider the following non-divergence form parabolic problem:

∂tv =
n

∑
i, j=1

Mi j(x, t)∂i∂ jv+ f . (A.2.2)

We assume M to be symmetric, uniformly bounded, and elliptic. v = 0 at t = 0 and on

the boundary ∂Ω. Write

ηM := esssupx∈ΩT

Trace[tMM]+1
(

Trace[M]+1
)2 , (A.2.3)

and

αM := esssupx∈ΩT

Trace[M]+1
Trace[tMM]+1

. (A.2.4)

Write for p ≥ 2

Sp(ΩT ) :=
{

v ∈ Lp(0,T,W 2,p
D (Ω)

)
;∂tv ∈ Lp(ΩT );v(.,0)≡ 0

}

. (A.2.5)

and

‖v‖p
Sp(ΩT )

:=
∫

ΩT

(

∑
i, j

(∂i∂ jv)
2 +(∂tv)

2) p
2 dydt (A.2.6)

We will restate Theorems 1.6.2 and 1.6.3 of [93] below in a version adapted to our

framework:

Theorem A.2.1. Assume Ω to be convex and that there exists ε ∈ (0,1) such that ηM ≤
1/(n+ε), then for each f ∈ L2(ΩT ) the Cauchy-Dirichlet problem (A.2.2) admits a unique

solution in S2(ΩT ) which satisfies the bound

‖v‖S2(ΩT ) ≤
αM

1−
√

1− ε
‖ f‖L2(ΩT ). (A.2.7)

Theorem A.2.2. Assume Ω to be convex and that there exists ε ∈ (0,1) such that ηM ≤
1/(n + ε), then there exists a number p0 > 2 depending on Ω,n,ε such that for each f ∈
Lp(ΩT ) the Cauchy-Dirichlet problem (A.2.2) admits a unique solution in Sp(ΩT ) which
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satisfies the bound

‖v‖Sp(ΩT ) ≤Cp
αM

1−
√

1− ε
‖ f‖Lp(ΩT ). (A.2.8)

Remark. In fact theorem 1.6.3 of [93] is written with 1−C(p)
√

1− ε in the denominator

of (A.2.8) but it is easy to modify it to obtain (A.2.8) by lowering the value of p0 and

changing the value of Cp.
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Appendix B

a-Harmonic Mapping

Consider the weak solutions to the divergence form elliptic equation

div(a∇F) = 0 in Ω (B.0.1)

where a is a two by two symmetric matrix and satisfies the uniform ellipticity condition

with entries in L∞(Ω). Let Ω be an open set in R2. F will be said to be a-harmonic if it

satisfies (B.0.1).

B.1 Periodic Media

Let Ω = R2. Suppose a is 1-periodic with respect to each of its variables x1 and x2. Let

W 1,2
] (R2,R2) ≡ {U ∈W 1,2

loc(R2,R2)|U(x1 +m,x2 +n) = U(x1,x2),

for a.e. (x1,x2) ∈ R2,∀m,n ∈ Z },
(B.1.1)

and

W 1,2
],A (R2,R2) ≡ {U ∈W 1,2

loc(R2,R2)|U −Ax ∈W 1,2
] (R2,R2)}. (B.1.2)

The following is the a-harmonic result in periodic setting (Theorem 2.1 of [4]).

Theorem B.1.1. Let a ∈ L∞
] (R2,Ms

K) and let A be strict positive definite matrix. If U A ∈
W 1,2

],A (R2,R2) is a a−harmonic mapping, then U A is a homeomorphism of R2 onto itself
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and

detDUA > 0 a.e. in R2. (B.1.3)

B.2 For Bounded Domain

Let Ω ⊂ R2 be a bounded simply connected open set, whose boundary is a simple closed

curve. According to [10], in dimension two if a is smooth then F is a homeomorphism.

According to [6], F is always a homeomorphism in dimension two even with ai, j ∈ L∞(Ω).

For example, we have the following result (Theorem 4 of [5]):

Theorem B.2.1. Let Ω⊂R2 be a bounded simply connected open set, whose boundary ∂Ω

is a simple closed curve. Let Φ = (φ1,φ2) be a homeomorphism of ∂Ω onto a convex closed

curve Γ and let D be the bounded convex domain bounded by Γ. Let U ∈ W 1,2
loc(Ω,R2)∩

C(Ω,R2) be the a-harmonic mapping whose components are the solutions of the Dirichlet

problems

div(a∇ui) = 0 in Ω, (B.2.1)

ui = φi on ∂Ω i = 1,2. (B.2.2)

Then U is a homeomorphism of Ω onto D.
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Appendix C

C1 Finite Element Method

As the shape functions on the coarse mesh, we find that C1 finite elements sharply increase

the accuracy compared with C0 finite elements. C1 finite elements were developed to sat-

isfy the regularity requirement of higher order partial differential equations, for example,

in linear elasticity. The construction of C1 element is more cumbersome compared to C0

ones. Traditional C1 methods use higher order polynomials, for example, Argyris element

etc. [13, 32, 53]. However they are generally hard to implement and the solutions using

these shape functions may have spurious oscillations. Recently, subdivision schemes using

B-splines were introduced to construct C1 finite elements [77, 52]. In our numerical ex-

periments, we use weighted extended B-splines (WEB) method developed by K. Höllig in

[76, 77].

C.1 Multivariate B-splines

In one dimension, the uniform B-spline bn of degree n is defined by the recursion relation,

bn(x) =

∫ x

x−1
bn−1(s)ds. (C.1.1)

b0 is defined as the characteristic function of the unit interval [0,1). bn(0) = 0.

Though there is no unique way to construct multivariate B-splines, the simplest one is

to use tensor products of uniform B-splines. For a bounded domain Ω, let bn
k,h be m variate
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nth order B-splines with grid width h and index k = (k1, · · · ,km). We define,

Bn
h(Ω) = spank∈Kbn

k,h. (C.1.2)

which the set K of relevant indices contains all k such that bn
k,h 6= 0 for some x ∈ Ω.

C.2 Weight Functions

To make B-splines based finite element approximations comply with a specific boundary

condition, we can use a weight function w [114, 115]. For example, for Dirichlet boundary

condition, we can choose w such that it is positive and vanishes at the boundary.

Therefore, we define the weighted spline space by

wBn
h(Ω) = spank∈Kwbk. (C.2.1)

where K is the set of relevant indices.

C.3 Web-Splines

Although the spaces B and wB provide optimal approximation order, the B-spline basis

is not uniformly stable with respect to the grid width h. Since some B-splines close to the

boundary of the computational domain, Ω may have very little support. Thus, the Galerkin

system may be ill-conditioned. The remedy of this problem is to use the Lagrangian inter-

polation of the ‘inside’ B-splines to approximate those ‘boundary’ B-splines. We introduce

the following notation: Inner and Outer B-splines. Partition the grid cells Q = lh+[0,1]mh

into interior, boundary, and exterior cells, depending on whether Q ⊆ Ω̄, the interior of

Q intersects ∂Ω, or Q∩Ω = /0. Among the relevant B-splines bk, k ∈ K, we distinguish

between inner B-splines

bi, i ∈ I, (C.3.1)
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which have at least one interior cell Qi in their support, and outer B-splines

b j, j ∈ J = K\I, (C.3.2)

for which suppb j consists entirely of boundary and exterior cells.

For an outer index j ∈ J, let I(i)= l +{0, ...,n}m ⊂ I be an m-dimensional array of inner

indices closed to j, assuming that h is small enough so that such an array exists. Moreover,

denote by

ei, j =
m

∏
ν=1

n

∏
µ=0,lν+µ 6=iν

jν − lν −µ
iν − lν −µ

(C.3.3)

the values of the Lagrange polynomials associated with I( j) and by J(i) the set of all j with

i ∈ I( j). Then the web-splines

Bi =
ω

ω(xi)
[bi + ∑

j∈J(i)

ei, jb j], i ∈ I (C.3.4)

form a basis for the web-space ωeBn
h(Ω).
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