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ABSTRACT

A study is made of generalized translation operators of
the Delsarte-Levitan-Povzner type. After reviewing the method of
associating such operators with linear second order differential
equations, an abstract theory is developed with the aim of constructing
an L1-convolution algebra. The chief novelty is a device of com-
paring one family of translation operators with another "knbwn"
family. The Plancherel theorem and Bochner's theorem on positive
definite functions are derived by the Krein-Godement method of
locally compact group theory, An application to the claésical Sturm-

Liouville problem is discussed,
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CHAPIER 1
INTRODUCTION

If £ is a function defined on the real line, and y is a
real number, then the function whose value at x is f(x+y) can be
thought of as the result of applying a translation operator ™ to
f. Thus

(P8 (x) = £(x + ).

More general translation operators can be obtained in a rather trivial
way by replacing the additive group of the real line by other groups.
In 1938 Delsarte [1], [2]%* formulated an entirely new generalization
of the notion of translation operator.

Delsarte had been interested in finding a formal generalization
of the Taylor expansion formula,

o0 n n
f(x +y) =Z b (_Q_a £)(x).

n
He regarded the functions ﬁn(y) = %,- as being related to the differential

.operator L = a% in a very special way. The solution @(x,A) of

1= Ag

which satisfies @(0,A) = 1, is Blx, N) = e)\x. For each real x

this is an entire function of A and

Blx, A) = =, B.(x) A",

n=o

* Numbers in square brackets refer to the bibliography at the end
of the paper.,



The functions ﬂn satisfy

g, = 0, g,(1) =1,
LB, =B, _1» g,(0) = o, n =152, eee

The expansion formula is
= n
fx+y) =2 B(v) @0)(x).
n=o
Delsarte proposed to replace L by some other operator,
It will be of particular interest to consider the case when

P
d
Lap(x)- 2
dx

p being a suitably smooth function defined on the positive real axis.

let o be a'given (complex) constant and let #(x,A) be the solution

- of

Lﬂ = ‘Aﬁy
ﬁ(os;{) = sin a,
(0, A) = cos a.

Then |
B(x, A) = Z ﬁn(x) ;{ns

n=o

where the functions ﬂﬁ satisfy

Lﬂo = Q, ﬁo(O) = sin a, ﬁ;(o) = cos a,

8, =8, _,» 8,(0) = g (1) = o, D= 1,2, eas s

Delsarte!s generalization of Taylor's formula for this case is
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(P9)(x) = >, 8 () (x).

n=o

The function f@(x, A) considered as a function of x with
A fixed will be denoted by f; . If f is a finite linear

combination of the functions @, , say

£= alﬂf;h e anﬁﬂn

then
(T)(x) = 8,8, (P (x) + wor + 5y (Fx ().
1 1 n n
If u(x,y) = (P£)(x) then u satisfies the hyperbolic equation

| p(;t) u(x,y) = u, (6y) = p(y) ulx,y) = u (x,5),

and the cond itions

u(x,0) = £(x) sin a,

uy(x,o) f(x) cos a,
and is symmetriec

u(y,x) = u(x,y).
Povzner [3] made systematic use of Riemann's method for solving the

~ hyperbolic equation, This method leads to a representatibn of the

solution u in the form

. xty
u(x,y) = Slg = [f(x +y) + £( lx - YI)] + f k(x,y,t) £(t) at,
, [x=y]

where k 1is continuous, and hence makes it possible to define the
translation operators over a very large family of functions f.
Another generalization of the idea of translation operator is

obtained from a system of orthogonal functions SL¢n§ -which have



a multiplication table
B (x) B (x) = Ekl Caunk Ac(X)

For az suitable function f defined on the integers the translated

function T°f with "displacement® m is defined by

(%) (n) = Zk: Ca o £,

Translation operators of this kind were first studied by Levitan [4],
although relsted earlier work had been done by Haar [;].

Ievitan investigated the notions of positive définite function
and almost periodic function in connection with systems of generalized
translation operators [4], [6], [7], [8]. He formulated an axiomatic
description of systems of generalized translation operators (see
especially [8]) which was sufficiently general to include at the seme
time the translation operators of a (not necessarily abelian) locally
compact group, the translation operators arising from a large class
of linear second order differential equations, and translation
operators arising from the multiplication tables of certain types of
‘orthogonal function systems. In this general setting he developed a
Plancherel theory based on the spectral theory of bounded normal
operators on a Hilbert space, ‘

Povzner investigated [3],[9],[10] the translation operators
arising from linear differential‘équations on a half axis g"(x) -

p(x) g(x) = O with the boundary condition g'(0) = 0, when the function
p satisfies conditions such as p(x) = O(x " F) as x -+ x,

n=2,3, ., In these cases he constructed an analogue of the
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L1—algebra of a locally compact abelian group, with convolution defined
by
[v=)
(£%) (x) = f £(y) (Pe)(x) a.

o

He aléo gives a method for constructing a commutative normed ring (of
operators rather than functions) which works, for example, when p
is bounded and absolutely integrable over (0,=),

From the work of levitan it becomes clear that the generalized
translation operators bear the same relation to a hypercomplex system
as do ordinary translation operators to a group.

Iet G be a locally compact group and let 5; denote
the measure consisting of one unit of mass located at the group element

x. For any continuous function f with compact support
d_(£) = ff(t) ad(t) = £(x),

and for any Baire measure « on G

(o) = fﬂx) apx) = f5x<f)  px)s

Thus//z is represented, in a certain sense, by

M= /‘5;: d/(x)

as a linear combination of the base elements {(sx } « The convolution

product of two base elements is
Sex8,= 9
x Y x¥y

where x¥*y 1is the group product. The group translation operators are

defined by
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£(x#y) = (V) (x) = ff(t) a( §,* 8 (v,

A generalized system of translation operators is represented

in the form
(P1)(x) = / £(8) du, (t)

where /At is a measure depending on x and y. Such a repre-
XsY
sentation is provided, for example, by the Riemann solution of a
hyperbolic equation, or by the multiplication constants - 7ot
s
of an orthogonal function system. The underlying space, over which
the variable x ranges, is now to be thought of as the basis of a

hypercomplex system., TFach element of the hypercomplex system is a

measure, that is, a linear combination of the basis elements ‘5;:

V. /SX d/a(x).

" The multiplication table for the basis elements is

dy* dy S/x,y i /‘yz Vg (2):

Thus there emerges the idea of a hypercomplex system with
.a locally compact basis, Berezanskil and S.G. Krein in two papers
[11],[12] discuss abelian hypercomplex systems with compact bases,
in which the measures /“x,y = Sx* gy are all positive, 1In a third
paper [13] Berezanskii studies the abelian discrete basis case.

The present paper contains five chapters. The first chapter
is meant to provide an introduction to the subject. The second chapter
céntains reference material on Riemann's method of solving hyperbolic

equations. In the third chapter the translation operators associated
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with a differential equation Q_% - p(x) g = 0 on the positive axis
x > 0O are constructed, and thgir general properties are derived. The
main results here are not new, but lemme 3.4.2 is new and is used to
provide a new proof for theorems 3.4.1 and 3.4.2. The only previous
proofs of these theorems, due to Povzner [9] (see also Levitan [8])
were based on certein results of the classical Sturm-Liouville theory.
Finally in section 3.5 a simple class of important examples, which
does not appear to have been noted previously, is discussed.

The fourth chapter is by far the largest. The starting point
here is a system of postulates which describe a family of translation
operators. These postulates are satisfied by the translation operators
described in chapter 3, by the translation operators associated with
the classical Sturm-Liouville problem, and, in a large class of examples,
by the family of translation operators generated by the multiplication
- table of a system of orthogonal polynomials. Those postulates which
are purely algebraic are obtained by specializing the postulates of
Leviten [8]. The very restrictive condition (4.1.6) is not postulated
by levitan, but on the other hand he makes assumptions concerning
boundedness of the translation operators on the Lebesgue measure
Llespace which are not made here,

When the pogtulates are satisfied the space of continuous
functions with compact supports can be made into a convolution algebra,
Under additional assumptions this algebra can be enlarged and there is
a meagure whose L1—space becomeé a Banach algebra, In section 4.3
such a Banach algebra is constructed by a method, used by Berezanskii
and S.G. Krein [11] for the compact case, and in section 4./ the scope

of the method is extended by z comparison technique which is new,
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Under still further assumptions a "unitary" representation

of the algebra on the Lebesgue measure L.,-space is constructed, and

2
the Planéherel theorem and Bochner's theorem on positive definite
functions are proved. The proofs of these theorems are adaptations
of classical proofs used in locally compact group theory.

In chapter 5 the theory of chapter 4 is applied to the

classical Sturm-Liouville problem,
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CHAPTER 2
THE EQUATION Veg ~ AV T 0.

In this chapter a few well known results concerning the
hyperbolic equation Vop — AV F 0 have been gathered together for con—
venlent reference. These results are stated in the form of two theorems,

the proofs of which are omitted.

2,1, 8 denotes the plane,
S = {(s,t); -00<s,'t<oo} .

and the set of all functions f which are in 0(1) (S) and for which

the mixed second derivative fS exists and is continuous on S, is

't
denoted by Hf If E is a subget of é then H(E) is defined similarly.
It is assumed throughout that g is a given function in
C(S). For some results additional smoothness properties will be assumed
for q.
Definition: A function v is called a solution of the
differential equation

(2.1.1) Vg = av =0

on a domain E provided v £ H(E) and satisfies (2.1.1) on E.

THEOREM 2.,1,1: For each point (so,to) in S there is a unique solution
R of (2.1.1) on S which assumes the value one everywhere along the
lines s=s  and t =t . The v#lue of R at the point (s,t) is
wriften as R(s,t; so,to). Considered as a function of the four variables,

R is called the Riemann function of (2.1.1).
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The Riemann function is symmetric in (s,t) and (so,to),

that 1is,
(2.102) R(S,t; So,to) = R(soyto; S,t).

The function R, together with its derivatives Rs and Rt’ ié continuous

on Sx 8, and R satisfies the differential equation
(2.1,3) Rs‘b(os’t; S°9to) - q(s,t) R(s,t; Soato) =0
and the boundary conditions

(2.1.4) R(so,t; so,to) =1, R(s,to; so,to) =1,
Furthermore, R satisfies the integral equation

t
8 [»)
(20105) R(s,t; 3°9t°) =] ~ / dd’ﬂ R(o, s 3091"0) q(o, t)de.
8
[+]

The value R(s,t; so,to) is completely determined provided q
is known only in the rectangle with vertices at (s,t),_(so,t), (so,to)

and (s,to). In fact
= X
(241.6) R(syts s ot ) = é;;;(-1) Q, (sst; 85t )

where
Qo(ssti So’to) =1,

(2.1.7)

t
S o]
Qn(sfb; so’to) =L do /; U1 (6% Tiso,to) q(oy, 7) d,

o]
n>1,
The series (2.1.6) converges uniformly on every compact set in S x S,

and so also do the series for RS and Rt obtained by termwise
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differentiation of (2.1.6).

If q¢ cm(s) then R ¢ 0(2)(5 x S) and the functions Ry
and Rt
ty the derivatives being continuous on S xS, If q¢ C(3 )(S) then

are twice differentiable with respect to the variables S,

R e c%)(s x 5).
Finally, R 1is continuously dependent on q. More precisely,
let &_q(n)} s n=0,1, 2, .oo be a sequence of coefficient functions and
{ R(n)} the corresponding sequence of Riemann functions. Suppose that
() (0)

converges to q uniformly on every compasct set as n -+ «, Then

s t

R(n) -> R(O), R(n) - Réa) and R{(_'n) - R(O) as n -» «, the convergence
of each sequence belng uniform on every compact set in S x S,

THEOREM 2.1.,2: Iet I be any interval, open, closed, or partly open,

possibly infinite, on the real line, and let

E={(sst); t2s, seI,tel}.
let Fe 0(1)(1) and G £ C(I)s Then (2.1.1) has a unique solution
v on E such that
v(r,r) = F(r)’ rel,
vt(r,r) - vs(r,r) = G(r), rel.

The solution is given by

(2.1.8)  w(syst,) = 3 [F(t) + F(s )]

to
1
+s fs [R (rsr; s st )- R, (ryrys st,)] F(r) dr

o)

t
1
+% /s ° R(r,r; so.to) G(r) dr,
0



-12 =
CHAPTER 3
TRANSLATION OPERATORS ON A HALF AXIS,

In this chapter the translation operators associated with
2 .
the differential operator -p(x) + -QE on 0 < x < «», and a homogeneous
dx
boundary condition at x = 0, are constructed, and their general

propertiss studied,

3.1, The half line will be denoted by 4L, thus SL.= §x; 0 <x <},
The space C({L) will be denoted simply by C and the set of all
functions f which belong to C and have compact supporté will be
denoted by Co' ‘

D, 1s defined as the set of all functions f in C(z)Q(lJ
which satisfy

£(0) cos a - £'(0) sin a = O,

For the remainder of the chapter it is assumed that a is a given
constant.,

1t £ec® () then Lf is the contimuous function
(3.1.1) (LE)(x) = £7(x} - p(x) £(x).
It is assumed henceforth that p 1s a given contimious complex valued
function on {L , The following well known fact will be referred to
as Green's theorems:

If f and g are in Dﬁ and at least one of these functions
has compact support then

f f(x) (Lg) (x) dx = fw (Lf) (x) g(x) dx.

0 (o]
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3.2. As indicated in Chapter 1, if %;Tyf } is the family of translates

of a suitable function f and u(x,y) = (f)(x) then u will satisfy

(3.2.1) Uy = Wy = [P(x) = p(r)] u =0,

together with

u(x,0) = f(x) sin a,
(3.2.2)
uy(x,O) = f(x) cos a,

and the symmetry condition

(3.2.3) u(y,x) = u(x,y)e.

Introducting the characteristic coordinates
S=TX~Y
t=x+y

and writing u(x,y) = v(s,t), (3.2.1) is transformed to

(3.2.4) Ve — AV = 0
where
(3.2.5) a(s,t) = 7 [p (52) - p 59

The domain Q).x L) is mapped onto the domain

(3.2.6) >, = ﬂ (s,t); t>20, =t<s<t } .

The correspondence between 0(2)(11_x11~) solutions of (3.2.1) and
6(2)(2i) solutions of (3.2.4) is bi-unique. The initial conditions

(3.2.2) become conditions on the line s = t;
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( ) v(r,r) = £{r) sin a,
vt(r,r) - vs(r,r) = £(r) cos a,

and the symmetry condition becomes
(3.2.8) V(-S,t) = V(S,t).

It is convenient to imagine that p has been extended to
be 2 continuocus function on the whole line == < x < =, énd that g
is then defined by (3.2.5) over the whole (s,t)=plane S. If
occasionally it is assumed that p e c(1 )(Q_), then it will be understood
that the extension has been made so that p remains of class 0(1) on
the whole line. It will be seen later that the translation operators
will not be affected by the particular way in which this extension is

made,

‘IEMMA 3,2.1: Assume that p e c(”(ﬂ). Then for each f € D there is

a unique v &£ 0(2)(123), where
=t'={(sst); t20, 0<s<t},

which satisfies (3.2.4) on >' and (3.2.7) for r > 0. This function
is given by
(3.2.9)  v(s,st,) = 52 [£(s) + £(s,)]

t
o .
sin
+ ""'2_9' L [Rs(r,r§ Sotto) - Rt(roriso’to)] f(r) dr
o -

t
o
co
+ —-%—2 J/ﬁ R(r,r;so,to) f£(r) dr,
s
o
where R is the Riemann function of (3.2.4).
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Furthermore when the domain of v 1is extended to Zby means
of relation (3.2.8), the extended function is of class 0(2) (2) end

satisfies '(3.2.4) on >, ,

PROOF ¢ By theorem (2.1.2), for any particular extension of Ps

(3.2.9) defines the unique solution of (3.2.4) on S.! which satisfies

(3.2.7) for r > 0., The values of the Riemann function and its

derivatives involved in (3.2.9) do not depend on the way in which p

has been extended. Since p ¢ 0(1)(9.) and hence q ¢ c(”(s), it follows

from the differentiability properties of the Riemann function that

(3.2.9) defines a function v ¢ 0(2)(2'). Thus v exists and is unique.
Since v is of class C(z) on the closed domain Z", to show

that it becomes of class 0(2)(2 ) vhen extended from ' to S,

by relation (3.2.8), it is sufficient to show that the normal derivative

of v on the boundary line s = 0 of > ' is everywhere zero, This

normal derivative (computed in > ') is vs(0+,t), and is givén by

t

vs(0+,t) = VB(0+,O) + f vst(o-'-,r) dr,
o

Since v satisfies (3.2.4) on >' and since q{O,r) =0 for all
r > 0, the integral vanishes and
VS(O"’,'G) = VS(O"',O).

Computing vs(o+,o) from (3.2.9), using the fact that R(0,0;0,0) = 1,
one has

vs(0+,0) "-13 [£(0) cos a = £'(0) sin a]

- £(0) 2322 (R (0,050,0) - R,(0,030,0)1.
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The first term vanishes because f ¢ D . It follows easily from (241.5)
that RS(O,O;O,O) = Rt(0,0;0,0) = 0, Consequently, the extended function
is of class C(Z)(EZ).

Since q(-s,t) = q(s,t) the extended function satisfies (3.2.4)
on 2>,. With this the lemma is established.

THECOREM 3.2.1: Assume p ¢ c(‘)(ﬂ). let feD and let
(3.2.10) E= § (x);5 x20, O<y<x}.

Then there is a unique function u ¢ 0(2)(E) which satisfies (3.2.1)

on E and satisfies (3.2.2) for x > 0. This function is given by

(3.2.11)  u(x,y) = Sig 2 [f(x +3) + £(x - 3)]

cetna [V . a
> o(2923%=y,x+y) - R, (z,2;x-y,x+y) £ (2)dz

x=y

x+y f
+ 22%-2 R(z,23x-y,x+y) £(z) dz

x=y

where R 1is the Riemann function of (3.2.4).

| Furthermore, when the domain of u is extended to ) x L
by the symmetry relation (3.2.3), the extended function is of class
0(2)([1 x{).) and satisfies (3.2.1) on{r x{)L.

PROOF: In view of the correspondence between C(z) solutions of (3.2.1)
and 0(2) solutions of (3.2.4), the theorem is merely a restatement of

the preceding lemma,
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3.3. Let

(3.3.1) K(5,7,%) =2 (§,555,7) - r($,5535,°)]

"‘2'22_"“’ R(§s§3§97()

where R 1is the Riemann function of (3.2.4). K is defined and con-

- tinuous over the entire 3-dimensional space, If 0< 3 < § < 7Z

then the value K( §' ,TZ ’ 3’ ) 1is completely determined by ﬁhe behavior of

a(s,t) on the rectangle with vertices at (§,%), (3,5), (1‘7‘,3),

( §' »} ), and hence is completely determined by the behavior of p(x)

on the range ngf.’(.
Definition: The family of translation operators f '1‘y f ’

ye -Q’ , is defined on the space G as follows. For each f £ C,

¢ 4s the function

(3.3.2) (V) (x) = 222 [g(x + y) + £(|x - y])]

x+y ,
+ o K(|x -y|, x +y, 2) £(2) daz.
|x-y|
The preceding remarks concerning the function K imply that
the translation operators are completely and uniquely determined when
the funetion p on ). and the constant a are known,.

Certain properties of the operators are immediate consequences

of the definition. For examples

(3.3.3) If feC and u(x,y) = (P£)(x) then ue c(L1xLL).
In particular Tf €C for every ye{L. If feC, say f(x) =0

for x > b, then Pfe Co’ in fact (‘ny)(x) =0 for x>b +y,
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If £,806, D 4 aTe complex numbers and x, y £ SL. then
(3.3.4) () (x) = (T")(¥),
(3.3.5) (1°f)(x) = £(x) sin a,
(3.3.6) (AE +/g) =\7Pr +/aTyg.

(3.3.7) If the functions fs 0 =0, 1, 2, .., all belong to C, and
converge to fo as n - o, uniformly on every compact set in () s and

if un(x,y) = ('nyn)(x), then u_ converges to u, uniformly on

every compact set in Qx0. 1f sina-= 0, and if the functions fn
of C are uniformly bounded on 0 < x <1 and converge to fo uniformly
on every interval ¢ < x < 12, e > 0, then u, converges to u,
uniformly on every compact set in ﬂx—o— .

(3.3.8) 1lLet {pn} sy n=0,1, 2, ,.. be a sequence of coefficient
functions and let i '1‘; } be the corresponding families of translation
operators. Suppose that P, converges to P, 88 n >, uniformly

on every compact set in{)., Iet f £C and let un(x,j) = (TZf)(x).

Then u ~converges to Uy uniformly on every compact set in ﬂxﬂ.

Remarks: Since K 1is continuous, (3.3.7) follows from (3.3.2)
by Lebesgue's bounded convergence theorem. (3.3.8) expresses the fact

that the Riemann function is contimiously dependent on q (theorem 2.1.1).

(3.3.9) A4ssume p e C(n(ﬂ-). Let fe D,» and let u(x,y) = (V) (x).
Then u is of class C(z)(ﬂ. x{l), satisfies (3.2.1) on (lx (L.
and satisfies (3.é.2) for x> 0, Moreover, if E 1is defined by (3.2.10)

then any function of class C(Z) (E) which satisfies (3.2.1) on E
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and satisfies (3.2.2) for x > O, coincides with u on E. The fact

that (Tyf)(x) satisfies (3.2.1) will sometimes be expressed by writing

2
[ Z- | D] = o).
ay .

AR In this section two additional properties of the operators
{ Ty:} are deduced. These properties give rise to the following two

theorems:

THEOREM «d:  (Self adjointness) If f,g € C and at least one of

these functions has compact support then

f () (P ax = [ (D)) 600 ax
[o}

o

for every y efl .

THECREM 023 (Commutativity) For every f £ C and all y,z ¢ L)

™ris = 2P r,

The theorems will be proved by means of several lemmes.

IFMMA 3.4.1: Let g,h € C and suppose at least one of these functions

has compact support. Let

u(x,y) = f“’ (1%2) (2) (1;yh)(z) dz.
o

Then u e C({L x{1).
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If in addition it is assumed that g,h ¢ Du then
ue 0(2) (€L xX)%) and the partial derivatives of u can be computed by

differentiation under the integral sign.

PROOF: There is a positive mumber b such that either g(x) =0 for
x>b or h(x) =0 for x>b., Let a be any positive number. Then

when x<a and y<a

(T*g)(z) ("h)(z) = 0 for z > a + b,
and hence

a+b
u(x,y) = J[ (T'g)(z) (Ph)(z) dz.
[o]

On account of (3.3,3) it follows that u is continuous on the square
{uqh 0<x<a, ogyga}.

Since a 1s arbitary, ue C(QL x L),

The rest of the lemma follows by a similar argument from (3.3.9).

LEMMA 3.4,2¢ If heC and (Th)(y) =0 for all y e L) then h = 0,

PROOF: TFrom (3.302)

813 % [n(2y) + h(0)] + ,fzy K(0,2y, z) h(z) dz = O

)
for all y > O, Putting y = 0 gives sin a h(0) = O, Hence h satisfies

the integral equation

sin a «h(y) -"Z‘fy K(Osy52) h(z) dz = O,
~Jo



If sin a # 0, since X is continuous, this imples that h = 0. If

sin a = 0 then

K(0,y,2) = _(_:_O_g__g R(z,2;0,y)

and 1t follows by differentiating with respect to y and using

R(y,y;0,y) = 1, that h satisfies the integral equation

h(y) + fy R, (2,230,y) h(z) dz = 0O,
) o

Since R is continuous it follows that h = 0 in this case also.

tO

Thus the lemmsa is true.

LEMMA 3,4.33 Assume the p e c(”(ﬂ). Let feD and g s'Dan Coo
Let |
- h(x) = j [(T®) (2) elz) - £(z)(Tg)(z)] dz,
0

u(x,y) = / - [(T"2) (3) (P ) (2) = (PP£)(2) (T7g) (2)] dz.

L]

Then h(x) = 0 and u(x,y) =0 for a1l x and y in ) .

PROOF:  According to lemma (3.4.1), h ¢ Da, ue 0(2)(ﬂxﬂ), and

the partial derivatives of u can be computed by differentiation under

the integral sign, In particular

x >0,

u{x,0) = h(x)_ sin a ‘}

uy(x,o) = h(x) cos a

and, using (3.3.9),
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ne (o) = p(x) ) = [ D@ @) a)

=)

- (1) (2)(1T™e) (2)] dz,

and

uyy(x’Y), - p(y) u(x,y) = f [(T*f) (2) (LD g) (2)

[+]
- (L £)(2)(Tg) (2)] dz.

By Green's theorem, the right-hand sides of the last two équations are
identical. Hence u satisfies (3.2.1) on{) x{) . It follows from
(3.3.9) that

u(x,y) = (Ph)(x) for O <y <X

But it is clear that u(y;y) = O for all y > 0, Hence (Ph)(y) = O
forall y inSland h =0 by the preceding lemma. Therefore,
u(x,y) = 0 for y < x. But from the definition of u it is clear
that |

u(y,x) = - u(x,y).

Hence u = 0 and the proof is complete.

PROCF OF THEOREM 3.4,1: If pe cm(ﬂ.) and fyg £ D , the asserted
‘ equalitj is valid by virtue of lemma 3.4.3. Its validity in the
general case will be established bylapproximation arguments.

First suppose p ¢ 0(1)(9.). If sina #0 ‘then there are
sequences {fn} and %gnz in Da. which converge to £ and g

respectively, uniformly on every compact set in{l. If sina=0
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then every function in Da vanishes at x = 0, but it is true that
there are sequences §£,% and 3 gnz in D which converge to f
" and g reppectively on O < x < w, uniformly on every interval
e<x< 'l-, € > 0, each sequence being uniformly bounded on O 2xs21.
Furthermore, since g has compact support, it can be assumed éhat
all the functions 8, vanish outside of some fixed compact set. It
follows from (3.3.7) and lemma (3.4.3) that

® ©
[0 Pom a- [T @0 e e

o] o

“un [ M@0 - [ @R g0 &)
= 0,

This proves the theorem for the case when p ¢ 6(1)(0.).,
Since each of the integrals is really over a finite range
(for any given y), the result for the case when p is merely continuous

now follows from (3.3.8). This completes the proof.

— e e e g e - . o -

The following lemma, which is easily deduced from theorem 3.4.1,

is recorded here for later use,

IEMMA 3.4.4: If feD and pe ¢"(Q) then
PLf = LV f

for each y €L ,

FROOF: Let g & D~ C . Using (3.3.9) and theorem (3.4.1) one has



-2 -

(=N
N

f (LT £) (x) g(x) dx = [ - p(y)] . f (T£)(x) glx) dx
[+]

o

N

dy

g2 ”
= [——5 —p(}')] f £(x) (Pg)(x) ax

dy o)

= f £(x) (L¥g)(x) ax.

0

By Green's theorem the right-hand side is equal to

f (L) (x) (P e)(x) ax
(o]

which, using theorem 3.4.1 again, is equal to

f (TVLE) (x) glx) dx.
[}

Hence,

f T LD @ - (P1))] gx) dx = o

o

Since g 1is any element of Co o) Da, it follows that

(L¥2)(x) ~ (PLE)(x) = O,

for almost all x, and therefore, by contimuity, for all x. This

proves the lemma.

- PROOF_OF THEOREM 3.4.2: First suppose p ¢ c“)(()_).' Let f &0D, - end

gec Da‘” co. From lemme 3.4.3,

/ (T°6,) (x) (Pg) (x)ax = f "(172,) () (1%) (x)ax.
2] o
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For fixed y and 2z these integrals are both really over a finite
range. Hence by virtue of (3.3.8) the equality is valid even if p
is merely contimuous,

Now let fn -+ f where f 1is any given element of C, the
convergence being either uniform on every compact set in case sin a # O,
or else bounded on 0 < x <1 and uniform on every interval ¢ < x < % ’
€ > 0, in case sin a = O, According to (3.3.7), it is permitted to
pass to the limit under the integral signs in the above equality,

obtaeining

0

f 7 (%) () (M) (x) ax = / (1V5) (x) (T2g) (x) dx.
o]

2pplying theorem 3.,3.1 to each member of this equation gives

f 7 (T1%0) (x) g(x) ax = f T (P (x) glx) ax.
Q

o
Since g 1is an arbitrary element of 0044 Du, it foliows that

(F722) (x) = (TP £)(x)

for almost all %y and by continuity, for all x, Thia proves the

theoremn,

o s Sus e M e e e mm e W e e

3.5. A simple class of important examples will be discussed.

If q(s,t) = % [P(E'%‘g),' p(t 5 )] splits into a product

(3.5.1) a(s,t) = 6(s)¥(t), 0<s<V

then the Riemann function assumes a particularly simple form, The

functions Q  of (2.1,7) are given by
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Qo(sytisosto) =1,
s tO
(305.2) 'Q.‘(S,t;soyto) = / d6 6(6) T(’(v) dT’
-] t
[}

and

(3.5.3)  q (sst58,t ) = -(—:-)'5 [Q, (sst55, 5t )1"

for n= 2, 3, ... s and hence

(3.5.4)  R(sstss_st.) =%\ (-1)"—;::-)-2- [, (sst58 5t )1%,

which can be expressed in terms of Bessel functions. If p 1is monotone
inereasing then q(s,t) is non-negative for O <8 <t and hence
Q1(r,r;s°,t°) is non-negative for 0 < s, §.t° and 8, ST < té. In this

case the series (3.5.4) is conveniently compared with the Bessel function

2 (¥ 32
3.5.5 = .
G55 3g(a) = = k)2 2

Thus

(3'5-6) R(rsri»sovto) = Jo(z'l/Q1 (r’risoyto) )e

Similarly if p is monotone decreasing then Q1(r,r;so,to)

is non-positive for O < 8, ST <t , and in terms of

o0

1 2y 2k -
3.5.7 I = o s
(3.5.7)  1I.(2) % -y 2)

one has

(3.5.8)  R(r,r;s ;) =I(24Qfr,r;s ,t.) ).
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The simplest example of this type arises when p is a
constant function, in which case the Riemann function is identically
equal to oﬁe. Although there are not many other examples of this type,
they are all examples of importance. The next lemma determines the

possible forms of € and ¥ in (3.5.1).

LEMMA 3,5,1: Iet h be a non~constant function defined and contimaous
on ) and suppose there are finite valued functions 8, ¥ defined on _O_

such that

(3.5.9) h(t + s) = h(t - s) = 8(t) ¥(s)

whenever 0 < s < t. Then V¢ C(z)(ﬁ.) and @ ¢ C(z)(t > 0), and

there is a complex number A such that

p(g) + A¥(s) = O, s >0,
e"(t) + N o(t) = 0, t > 0.

PROOF: Since h is continuous and not constant, given £ > O one can

find numbers x,y such that 0 <y < x, x =y < €, and h(x) ¥ h(y). Hence

0 # n(x) - a(y) = o(*5Y) v*5T),

which shows thet neither @ nor ¥ is identically zero and that V¥
assumes non-zero velues in every neighborhood of s = 0. Now if s ° >0
and V(s ) ¥ 0, then (3.5.9) shows that © is contimuous on the interval
t > L Hence it has been proved that @ is continuous on t+ > O,

Next it will be shown that h 1is not constant on any interval
x > b, Suppose there is a finite b > O such that h(x) = h(b) for

all x > b, Choose £ > 0, 0< £ <b so that ¥(e) # 0, Then



28 -

0=h(b+ 2) - h(b) = &(b +¢) v(e),
and hence &(b + £) = 0., Since ¢ can be chosen arbitrarily small, it
follovws by continuity of © that ©O(b) = 0., Now if 0 < s < b then
0= 8(b) ¥(s) = h(b + 8) - h(b - s)
= h(b) - h(b - 8)

showing that h 1is a constant function. This contradicts the hypotheses,
and hence h - is not constant on any interval x > b,
Since

h(2t) = h(0) + &(t) ¥(t)

it follows that ©(t) is different from zero for arbitrarily large
values of t. This, together with (3.5.9) shows that ¥ ¢ C(Q1).

Now there are arbitrarily small positive numbers a such that

a
f v(s) ds # 0.
o]

If t > a, then

e(t) fa ¥(s) ds = fa [h(t + 8) = h(t - 8)] ds
o o

t+a t-a
= f h(x) dx + [ h(x) dx,
t t

and hence & ¢ C(l) (t > 0). Furthermore, if t > a then

o' (¢) f " w(s) ds = [n(t + &) = h(8)] = [h(t) - B(t = a)]
(o]

= o(t +2) w3) - ot - ) w3,

Consequently @ ¢ C(oo) (t > 0).
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Since @ assumes non-zero values on every interval t > b,

for any b > 0 there is a number ¢ > b such that

[
f e(t) dt ¥ o.
b

If 0<s<Db then

c cts c-8
(3.5.10) 9(s) .[ e(t) dt = / h(x) dx - h(x) dx.
b b : .

+8 b-s
Consequently V e 0(1)(.0.). It now follows from

h(2t) = h(0) + &(t) v(t)

that h ¢ 0(1) (t > 0). Hence (3.5.10) shows that v ¢ C(z)(ﬂ).

Now if 0 < s < t, t > O then

e"(t) ¥(s) = h"(t + 8) - hn(t - s) = 8(t) vn(s)

‘and since G(to) # 0 for some t_» the conclusion follows with

a"(t.)

Remarks:s The converse of the lemma is rather trivial., The
function ¥ wvanishes at s = 0 but does not vanish identically. Hence
¥ (0) # 0, and without loss of generality it can be assumed that
vt(0) = 1., Thus ,

sin YA s 4r ago
= _
7(g) =

s ’ if A=0.
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With this choice of ¥, it is an easy matter to verify that if @

is any non=zero solution of
e" + Ae =0

then h(t) = 4 + Q(-g-).\!f(%) defines a non-constant continuous solution

of (3.5.9), A being an arbitrary constant.

The following examples are particularly noted:

p(x) = + x, * xzs + eBx, ¥ cos Bx,

—

+* sin Bx, (+ cosh Bx, * sinh Bx),

where B is any complex number,



CHAPTER 4
THE ABSTRACT THEORY

In this chapter a space €L and an associated family of trang-
lation operators {fy} are described axiomatically. The sp;ce £
of the previous chaptef and its family of translation operators %fy}
form a special instance of the abstract structure so described., Other
applications are discussed later,

The problem of finding a measure on ) such that the L1-space
of this measure can be made into a convolution algebra is fhen con=
sidered and a method depending on the comparison of one system of
translation operators with a "known" system is developed. Once such an
algebra has been constructed it is possible, under certain fairiy
general circumstances, 1o prove various theorems analogous to theorems
in the theory of harmonic analysis on locally compact abeiian groups.
Analogues of Bochner's theorem on positive definite functioﬁs and the
Plancherel theorem are proved, assuming that the operafors -{Iyr}
can be represented in a suitable way as bounded operators on the space
Lz(fl) (Lebesgue measure), N

The reader is assumed to be familiar with the'maferial‘of
chapter X in Halmos' book [14] on measure theory, where functions and
measures on locally compact Hausdorff spaces are‘dichSsed. In particula;

the following result is frequently useful.

PROPOSITION: Iet K be a compact set and F a clqsed'set disjoint

from K, in a locally compact Hausdorff space (L. . Then there is a
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real valued continuous function f on SL such that

£f(x) =0 if xeF,

]
oy

f(x) if x e K,

-t

and 0 < f(x) < for all x,

The reader should also be familiar with the theory of Banach
algebras as set forth, for example, in the book of Loomis [15], chapters

IV and V.

Lels It is assumed that a locally compact separable Hausdorff space
£)  is given and that a non-negative Baire measure on ). is prescribed.
This measure will be called the Lebesgue measure on{l. and the integral

of a function f with respect to it will be denoted by

jﬁf(x) dx.

The assumption that (). is separable implies that every Borel set is a
Baire set and that the space (] is a countable union of compact sets.

It is assumed that

(4.1.1) L) consists of more than one point,

Any non-negative Baire measure on a locally compact Hausdorff

space has the properties that

(4e1.2) every compact Baire set is of finite measure
and
(4e1.3) the measure is regular. That is the measure of any Baire set

E 1is the common value of the inf of the measures of the open Baire sets
containing E and the sup of the measures of the compact Baire sets

contained in E.
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It is assumed that

(4Le144) every non-void open set in {) has non-zero Lebesgue measure.

The set of all continuous complex valued functions on {2 is
denoted by C, the set of all functions in € with compact supports is
denoted by C o° The set of all regular Baire measures on Q) is denoted
vy 7 | |

| Finally it is assumed that a mapping Tif+ Tf of G into

itself is defined with the following properties,
(4e1.5) If £ eC and ulx,y) = (M£)(x) then u e c(LLxlL),

(L1.6) If f e C, and X is any compact set in €L then there is

a compact set X, such that for each y € K
() (x) = 0

whenever x 1s outside K‘1.

(4e1.7)  (PE)(x) = (TE)(y)
for all £ & C and all x,y €L o
(4.1.8) There is a special point in <1 , denoted by. 0, and a constant

a such that

(Tof) (x) = £(x) sin a
for every f cC and all x e ().

(441,9) For all f,g £ C, all complex numbers A ,/‘. and all y e@_,

P\t Vg) = APr * o« Mg,

(4a1.10) Velp = APy
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for all feC and all y, z2 & .

(1) 26 (PR ax = (FE)(x) g(x) ax
for al1 y £ Q1 provided feC, gecC,

(4e1.12) If the functions f in C converge to zero, uniformly on
every compact set, then for each fixed y the functions Tyfn ‘converge

to zero, uniformly on every compact set.

Additional assumptions are made in later sections.

L2, If £ and g are in C and at least one of these functions has

compact support, then by (4.1.6), for each fixed x,

£(y) (Pe)(x) = £(y) (T g) (x)

vanishes when y 1is outside of some compact set, Consequently, the

integral

(4e2.1) (£ * g)(x) = £(y)(P¥g)(x) dy

is finite,

| Definition: If f and g are in C and at least one of

these functions.is in co, the convolution product f * g is the function
given by (4.2.1). '

Because of (Le1,11),
(4e2.2) fxg=g*f,

LEMMA 4,2,1: £ *geC for all f ¢ Co’ g eC,
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PROOF: By (4.1.5) (Tg)(x) is jointly continuous in x and y.

The result follows by a standard compactness argument,

If fand g are bothin C_ it follows from (441.6) and

(4s2.1) that f * g vanishes outside some compact set and hence f * g ¢ Cye

LEMMA 4.2,2¢ Iet f,g € C and suppose one of these functions is in

(£ *g) = £ * Tyg

for 8ll y ¢ N

FROOF:  Let he C_. By (4.1.11)

| f(‘ﬂ’(f *€))(x) h(x) dx = f(f * ) (x)(T'h) (x) ax

= f(r”h)(x)[ff(z)(ng)(x)dz] dx.

Now ™h has a compact support, say K. Either because f has compact
support or because of (4.1.6) together with the fact that g has compact

support, there is a compact set K1 such that for every x ¢ X,

£(z)(T?g)(x) = 0

whenever 3z 1s outside K1. Consequently the iterated integral above
is equal to a double integral over the compact set K. x K1. First

using Fubini's theorem and then (4.1.,11) and (4.1.10), one obtains

f (¥ (£%)) (x)h(x) dx f £(2){ f (1%g) (x) (T'h) (x) dx] dz

Lff(z)[ Jq(TzTyg)(x) h(x) dx]‘dz.
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Using Fubini's theorem again
f(r"(f*g))(x) h(x) dx = / h(x)[ f £(2)(r*Pg)(x) dz] ax

= f h(x) (F¥Y g) (x) dx.

Since h' is an arbitrary element of Co’ it follows that the continuous

function

T (£4g) - £¥P g

vanishes almost everywhere on L) . Because of (4¢1.4) this implies that

the function is zero, and the lemma is established,

LEMMA 4.2.35 Let f,g e Co and h € C. Then
£#(g¥h) = (£+g)*h,

‘each term being defined since g*h £ C and f*g ¢ Co.

PROQF': Using lemma 4.2,2 and (4.2.2),

(£*(g*n))(x) = (£¥(h*g))(x)
f £(y) (T (h*g) ) (x) dy

[ £ ] (Me) (2) (%) (x) dz] dy.

L]

Now f has compact support say K, and there is a compact set X, such

1
that the support of Tyg is contained in K, for every y € K. Hence
the iterated integral is equal to a double integral over the compact set

K x K. Hence by Fubini's theorem

(£%(g*n)) (x) = j(Tzh)(X)[ ff(y)(Tyg)(Z) dy] dz
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- f (T%n) (x)(£%g) (z) dz
= ((£%)%)(x),
and this proves the lemma.

THECREM 4.2,1¢ The linear space Co, provided with the multiplication

f*g, becomes a commutative complex algebra,

PROOF: It has been seen that f¥g is in C, when f and g are
in Co, and that f¥*g = g¥f, The associativity of multiplication
follows from lemma 4.2.3., It is clear that if A is a coﬁplex number
end f, g, h e Co then

f#(g + h) = f%g + £+h

and ' rx A g = A(rxg),

An element of 7h s that is, a reguler Baire measure//4 on,fl.,
besides being regarded as a set function can be regarded as a complex
linear functional on Co. The value of the functional at an element f

of Co is

/u(f) = (i’./u) = ff(X) d/*(x)-

By a compactness argument similar to that used in the proof of lemma
442.1 1t can be shown that for each u« in  and each £ in C_,
(Tyfi/z) is a continuous function of y on (L .

LEMMA 4.2.4: let ¢  be a non-zero element of qﬂ_such that

(4e2.3)  (£%,0) = (£,0)(g,0) for all f,g ¢ C.
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Then ¢ 1is absolutely continuous with respect to the Lebesgue measure
of {1, end the density function g(x) = égﬁzl is (essentially)* continuous
and satisfies

(402.4)  (gs6)8(x) = (T'gy6) = (F%g) (x), a1l xe (),

for every g ¢ Cor Furthermore
(4e2.5) Vg = #(y)b all yel),

Conversely every non-trivial continuous solution @ of (4.2.5) is the

density function of a non-zero measure which satisfies (4.2.3), ¢ being

given by
(4.2.6) (f,0) = ff(x)ﬁi(x) dx.
PROQOF & let £, g¢ Co' Then

((896)-"-‘16) = (f,O')(g,O‘)
(f*g,0)
f [ f £(x) (%) (¥) ax] do(y).

Since f(x)(Txg)(y) vanishes outside a compact set in the (x,y)-plane,

the order of integration can be inverted, giving

((gy0)£,6) = ff(x)(Txg,G) dx.

Since o # o, there is an element g, £ C, such that (go,G) =1,

Putting g = g, in the above formila, it follows from the fact that the

That is, amongst the family of functions any one of which can be
taken as the density function, and any two of which are equal almost
everywhere, there is a continuous function,
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formula is valid for every f ¢ Co that ¢ is absolutely continuous

with respect to the Iebesgue measure of ) and that
B(x) = Qg,%‘l = (Tg,s6).

This function is (essentially) contimuous. It now follows that for

arbitrary £ and g in Co

/(g,o‘) £(x) #(x) ax = [£(x) (T"g,6) dx.

Hence (g,o) #(x) = (Txg,G? for almost all x, and by continuity,

for all x. Moreover

(’l'xg.tf)_= f('l‘xg)(z) #(z) dz = (Fxg)(x).

Consequently, @H(x) = (ﬂ*go)(x) and by lemma 4.2.2

(A (x) = (B¥g ) (x)
= (T'Pg,,0)
= (Pg,6) B(x)
= (g,s6) By) B(x)
= #(y) #(x).

Now suppose f is any contimuous solution of (4.2.5). Then

(4.2.6) defines a measure &, and for any f,g ¢ C,

(£%g,6) = f[ ff(y)(l‘yg)(X) dy] #(x) ax.

First using Fubini's theorem, then (4.1.11), then (4.3.3) one finds
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(£%g,6) ff(y)[ f(Tyg)(X) #(x) dax] dy
[t [e) @0 axd oy

(f,G)(g,G).

This completes the proof.

Definition: Every non=trivial continuous solution of (4.2.5)
will be called an eigenfunction,
The next theorem deals with the special situation of the

previous chapter.,

THEOREM 4.2.2: Let the symbols )., ™, C, and C, have the meanings
assigned to them in chapter 3. Ihen there is a one-one correspondence
between the set of all eigenfunctions and the set of =zll comblex numbers,
~such that if ﬁa is the eigenfunction corregponding to the complex

number A then $, is the unique solution of

(4.2.7) 14, + g =0, ge ¢y,
such that
i g 2 (0) = sin aq,
(4.2.8) {
$'. (0) = cos a.

PROOF:  First suppose ,eS/.\ satisfies (4.2.7) and (4.2.8). Let

u(x,y) = #, (x) £, (v) and v(s,t) = uld =, 12 S2). Then v e ¢ (=

and v satisfies (3.2.4), (3.2.7) with £ =g , for r > 0, and (3.2.8).

From the uniqueness part of theorem (2.1.,2) and from the definition

(3.3.2), it follows that
u(x,y) = (P8, )(x).
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Hence ’d?l satisfies (4.2.5), and therefore is an eigenfunction,
Now suppose f. is any eigenfunction, First assume that
pe 0(1 )(Q). Sinle @ is continuous and not everywhere zero there

is a function g, £Cy D, such that

fﬂ(x) g,(x) dx = 1,

If & is defined in terms of B by (4.2.6) then (go,o-)' =1 and

by (4.3.2)°

(4.2.9)  f(x) = (B )(x) = jﬁ(y)(l‘xgo)(y) dy.

As in the proof of lemma (3.4.1) it follows that g ¢ 0(2) (L) and
the derivatives of @ can be computed by differentiation of (Z,.2.9)
under the integral sign., In particular B(0) = sin « and f£'(0) = cosa.

Using lemma 3.,4.4, one finds that

(18) (x) f #(y)(TLe ) (¥) dy

(T'Lg,,6)

(Lgo ,O')ﬂ(x) .

Hence L@ + A =0 with A= (Lg,»6). This completes the proof
for the case p ¢ 0(1)(.0.).
Next assume that p is any element of C({)). Let {pn}
be a sequence of functions in 0(1)((1) which converge to p uniformly

on every compact set, Defining gé as before one has

B(x) = 1im | F(y)(T)y8,) () &y

n - o

where {T{n)} are the translation operators corresponding to P
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The convergence is uniform on every compact set. let
g,(x) = fﬁ(y)(l"(‘n)go)(y) dy.

Each function ¢n is in 0(2)(£1) and

(18,)(x) = f B (T(4y18,) () ay,

which converges as n - o, to Jrﬂ(y) (Tngo)(y) dy uniformly on every

compact set, Consequently the second derivatives
L]
gn=18 +pd

converge uniformly on every compact set. Since ﬁn(O) = gin a - and
¢£(o) = cos a for every n, it follows that the functions ﬁh converge
uniformly on every compact set to a function of cless C(Z)CKQJ. Thus

ge c(z)(ﬂ). It also follows that @(0) = sin a, @'(0) = cos o and

(L) (x) = lim (16)(x)

n - o

fﬁ(vy) (T'Le,) () dy

= (TxI.go,O‘)

(Lg(,!‘y) ﬁ(x) .

Thus in this case also, If + A g =0 with A== (Lg»6)« This

completes the proof,

— amr e . — v S s e e G e -

Le3. This section is once again concerned with the abstract structure
described in section 4.1.
The hypothesis (4.1.12) implies that for each fixed (x,y) in

Q) x XY the complex linear functional on C defined by the mapping
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£ - (Tr)(x)

is determined by a measure with compact support. That is, for each
(x,y) £ xS$) there is a measure /“x v in?h which has compact
’

support and is such that

(4.3.1)  (P£)(x) = ff(’z) d/x,y(z)

supported by the intervel |x -y| <x< x+y . It has a mass of

sin a
2

interior of the intervel.)}

at each end of the interval and a continuous density on the

For the remainder of this section it is assumed that the
measures /ALx,y are all non-negative. The assumption is dropped in
the next section.

If £ and g are real valued Lebesgue measurable functions
on.fl., the notation

fz<g
will signify that f(x) < g(x), almost everywhere, If f is any

complex velued function on £). the symbol |f| will denote the function

|£1(x) = |£(x)].

From {4.3.1) it follows that

(4.3.2) |¥f] < P

for every £ ¢ C and all y e {).., Using this inequality in (4.2.1)
gives

(4.3.3)  |£xg| < [£]| * |g]
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for all f,g in C when at least one function is in co.
Definition: A function r on )L is called a modulus if
(1) r 1is continuous, non-negative, and r(x) # 0 for all
b 4 f 0, and
(11) (Pr)(x) < r(x) r(y) for all x, y eSL o

In particular any eigenfunction which is positive for x # 0

is a modulus,

Suppose & modulus r exists, For f ¢ Co let

(4.3.4)  |Ig]] = Jflf(X)lr(X) dx.

From (4.3.2), if f ¢ Cor ¥ e {) then

el = f (P2 (0) fe(x) ax
< f(ﬁ'lrl)(x) r(x) dx
= f £} (x) (Fr)(x) ax
and hence
(4.3.5) ||| < x(y) |Ig]].

With the aid of Fubini's theorem one obtains from (4.3.3),

A

Hexell < 1 {elxel
[t [ielo @ 1eh man =) ax
[zl [f(ﬂlgl)(::) r(x) dx] dy

L]

and hence

(4.3.6)  |lexel| < |Ig]l+]lel]

for all £, g € Co.
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Iet A denote the complex Banach space of all functions f

onwfl which are measurable and for which
el = [ 11 =0 ax

is finite, two functions equal almost everywhere with respect to r(x)dx
being identified,

Since functions in C_ = are dense in A, the operators {jTy }
can be extepded uniquely to bounded linear transformations of A into
itself such that (4.3.5) is valid for every fe A and all y € ().
Similarly the multiplication f*z can be extended to A in a unique
way such that (4.3.6) remains valid for all f and g ¢ A; When

this extension is made the rules

f¥g = g*f,
A(£xg) = £*Ag,
f*(g + h) = £%g + £+
f*(g*) = (fg)*%h

remzain valid, and A becomes a commutative complex Banach algebra,

Lele In this section the measures /g:x ¥ are no longer assumed to
y
be non-negative, or even real, The measure which is the total variation

of //Lk,y is denoted by I//ix,yl' Thus for any Baire set E,
14 E) = <
| ey (E) = sup %‘ e,y B9

where the sum is taken over a finite collection E1, ces 9 Ek of

disjoint Baire subsets of E and the sup is taken over all such sums.
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THEOREM 4.4.1:  Suppose there is a second system {Sy } of translation

operators based on the space () and the same Lebesgue measure. The

constant sin o of (4¢1.8) need not be the same for the two systems,

Let §39x y%' denote the measures associated with the operators { §Y}
]

so that
(7E) (x) = jf(t) a7, ().

Assume that

(i) the measures ﬁx g ore all non-negative,
L ]

(ii) the system }s?’% has a modulus s, and

(iii) there is a constant m such that
E) <m? B
fl (B 2 m 7 5 ()

for all x,y and every Baire set E. Let r(x) = ms(x) and let 4

denote the Banach space of all measurable functions f on S)L such that

(4edsl) |I£]] = flf(x)lr(x) dx.

Then A ~ C is dense in A and the operators §'Ty } have unique

extensions to bounded linear transformations of A into itself with norms

(4ehe?) HT¥]] < o).

Moreover the multiplication f¥*g can be extended to A in a unique

way so that

(44.3) lewel | < 1el] 1lgl]

for all f,g £ A, Provided with this multiplication, A becomes a

commutative complex Banach algebra,
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PROQF: For any f e C
(1) (x) < f £t} | maw _(t) = m(sT|e])(x).

From the results of the previous section it follows that f £ A ~AC

implies ™f e AAC and
Hoel] < r(y) 1],
This proves the assertion concerning extension of the operators { v } .

If fyg € A~C and at least one of these functions is in

Co then

A

| (%) (x)] < jlf(y)ll(tt”g)(x)l ay
flfl(y) (s ||} (x) dy

n([f] & |g|)(x)

A

-whe.re @® denotes convolution with respect to the system {Sy }‘ .
Hence, as in the previous section,
lewel ] < n2 [ (el @ fgl) () s(x) ax
<u jlfl(X) s(x) dx jlgl(y) s(y) dy
= [Hel{-Hell.
Consequently the multiplication extends to A in a unique way such

that (4.4.3) remains valid for all f,g ¢ A. The final statement of

the theorem follows,

- e Em e m— e . s G e e e e N
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The particular case of the theorem when m =1 and g =7
for each y gives the results of the previous section.

.The constant m could be set equal to one without any great
loss but is convenient to have aveilable for apolications.

It should be noted that the function r is continucﬁs, non=-
negative, and different from zero except possibly at x = 0. The
phrase "almost everywhere" will always mean "almost everywhere with
respect to lebesgue measure", which may not bte the same as "almost
everywhere with respect to the measure r(x) dx". The discrepancy
arises if and only if r(0) = 0 and at the same time the point x = 0
carries positive Lebesgue measure,

The formula

(4.4.45 o(f) = ff(X) 8(x) dx

establishes a correspondence between the set of all bounded linear
functionals on A, and the set of all measurable functions & on Q.

which satisfy an inequality
le(x) | < ¥r(x)

élmost everywhere, The smallest admissible constant M is the norm

of.the functional 6. Two different meassurable functions correspond

to the same functional if and only if they are equal slmost everywheré,
If the functional 8 of (4.4.4) is a multiplicative functional

of the Bznach algebra A then the’measure dd(x) = o(x) dx satisfies

(4.2.3) for all f,g ¢ Co and hence there is an eigenfunction @ such that

J’f(x) 8(x) dx = ff(x_) B(x) dx
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for all f in Co’ and consequently

8(x) = #(x)

almost everywhere. Therefore # determines a bounded linear functional
on A and @ =6 is an equality for the functionals. Convergely

if # 1is any eigenfunction which satisfies an inequality
|B(x)| < mr(x)
almost everywhere, then

g(£) = ff(X) B(x) dx

defines a multiplicative linear functional on A. For appiications
it is helpful to observe that since any multiplicative linear functional
on & Banach algebra is automatically contimuous and of norm < 1, it

follows that any eigenfunction which satisfies an inequality

|B(x)} | < wr(x)
for all x, satisfies the inequality with M = 1.

According to the Gelfand theory of Basnach algebras, the set
of all non~zero multiplicative linear functionals of A, provided with
its relative w¥*-topology considered as a subset of tﬁe conjugate
space of A, forms a locally compact Hausdorff space called the
spectrum of A. This space will be denoted by /\. . If A is a point
of /\ the corresponding multiplicative functional will be denoted by
ﬁl. and the same symbol ¢2 will be used to denote the corresponding
eigenfunction, For each f £ A the symbol ?> will denote the function

on /\ defined by

(h12) F) = (85 B = [ 200 83 (0 e,
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A
Bach f 1is contimious, vanishes at infinity and

NN
(4eho13) f£x = f g (pointwise product),

The spectral radius of f is

(4otas) [EI], = sup § IRQR)]5 X e A,
and satisfies

A
Hell, < Hells
Furthermore,

(4o415)  |IF]], = 11m [[£9])/7,

n -+
£ denoting the convolution of n copies of f., The elements' f of

the radical of A are characterized by

1n |122]]'/" = .

n -
A is called semi-simple if its radical consists of the zero element
only.

Now consider the special examples mentioned aﬁ the end of

chapter 3, When p(x) is constant the Riemann function is identically

sin a
2

supporting interval and the constant density cog % on the interior

one, Hence in thias case //Lx v has mass at each end of the
14

of the interval, Thus//Lx’y is non-negative if sin g > 0, cos a > 0.
When these conditions are satisfied there are non-negative eigenfunctions
and they do not vanish, except perhaps at x = 0; consequently any one

of them 1s a modulus. In particular the Fourier sine and cosine trans-
forms are of this type.

For the Fourier cosine case,

(F0)(x) = 5 [£(x + ) + £()x - y])]
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and r(x) =1 is a modulus. For any a > 0, cosh ax is a modulus,

~For the Fourier sine case

(T£) (%) =% /l x;y £(z) dz
x=y

and r(x) # x is a modulus., For any a > O, 5322-25 is a modulus.
For the mixed case
sin cos x*ty
(V) (x) = 52 [£(x + y) + £(|x - y|)] + =232 ‘ £(z)dz
x=y

and r(x) = sin a + x cos a 1is a modulus. For any a > O,

R sinh ax
sin a cosh ax + cos q ——

is a modulus.

When p 1is a constant but sin ¢ and cos a are not both
'noﬁ—negative, a comparison can be made with the system {:Sy } which
is obtained when p is constant and the angle is a, where
sin a, = |sin a| and cos a, = |cos al.

Again consider the Fourier sine transform., If r{x) = x
is chosen as a modulus then the multiplicative functioﬁals of A are
the eigenfunctions # such that |¢(x)| < x. Hence in this case
the spectrum./l_can be identified with the positive real axis A > 0

of the complex plane (there is a question of two topologies here),

sinh ax
a °?

then the multiplicative functionals of A are the eigenfunctions g

On the other hand if r(x) = a > 0, 1is chosen as a modulus

which satisfy

M(x)‘s_______sinzax ’ x>0
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and these correspond to the set of complex numbers such that
siny2 x | . sinh ax , x > 0,
va v @

or what is the same thing, to the set of complex numbers A = -t i»

such that
% 5 4a%(@® 1),
Thus in this case A can be identified with the points ixiside and on
a certain parabola in the complex plane,
Finally consider the case when p(x) = x> and sin a = 0,

cos a =1, The translation operators are given by

() (x) =% 7 3, ((If-(x-v)zg[(zw)z-zz ) 1/2) | £(z)dz.
- |-y | |
Although the Bessel function is not positive it is bounded by one and
Vthé operators {Sy } of the Fourier sine transform serve as a com=-
pariéon system, and r(x) = x is a modulus. The asymptotic beﬁavior
of the eigenfunctions is well-known and it can be showri that the only
eigenfunctions which are in modulus < x for all x > 0 are the odd

Hermite functions. Thus A in this case is a discrete spa.cé.

LeSe It is henceforth assumed that the conditions of section 4.4 are

satisfied, and the Banach algebra A has been constructed.

LEMMA L.5.1¢ The mapping y - Y is a strongly continuous mapping

of {1 into bounded operators on A.
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FROOF: Let f e A, let y_ ¢ €), and let &> 0 be given., If

g € C, end y £ L1 then

¥ y y
He =1 %2l < Y (e=e) 1] + [|Tg - T %] + |IT °(e-£) ]
Vo
<lx@ +r )] e -ell + ITg -1 %]l
Now r is continuous and therefore bounded near y_, while He-gl|

can be made small by choice of g. Hence for suitable g

e

] B

[x(y) +r@y )] [I£-gl] <

when y 1is in a certain neighborhood U ofyo. Now with g fixed,

(4L.1.5) assures the existence of a neighborhocod V of Yo such that
y
17 - 7 %[ <3¢

Vs |
when y e V. Hence ||f -7T °f|]| <e if y e U AV, which proves

thé lemma,

IEMMA 4.5.23 Let fed, vy e ) ,» and assuming that Ais not void,

let f\eA. Then

Fat
(4:5.1)  TE(R) = f(y) T(A).

If @ and ¢ are defined by

(T (),
ﬁz(x)

a(x, )
.%(x, A)

then @ and % are contimious on {b.x 4\ .
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PROOF: Choose g € C_ 80 that 2(A) # 0. Then

-\
Pe( 1) B(R)

(1V£) *g,8,)
(£*17g,8,)
-4 [ g @
=T(2) [e(x) (V8 (x) ax

A
= (1) B,(y) (1),
for which (4.5.1) follows,

Now let (x,A) ¢ Qx/\, and let ¢ > 0 be given, If
yel), A el then

N N
le(y, A') = 8(x,A) | < |PE(ar) - TE( )|
178 A1) - T8( )|
lIe - T°¢] |

[T8(21) - TE(A)].

+

I

+

According to the lemma 4.5.1, the first term on the right can be made
less than 15 € by choosing y to be in a suitable neighborhood U
/\ A !
of x, Since T°f is continuous on s the second term is less than
15 e when A' is in some neighborhood V of A , Hence the sum is
less than ¢ when (y,A') € U x V, proving that 6.is continuous,
A
Given any point (x, 7{0), choose f € A so that 'f( 7\0) # 0.
Then £ is non-zero throughout some neighborhood of lo. Since
_ {x\ )
% (X,’}\) = —/\-i-'-(-—)-
£(2)

for any x if A is near 10, it follows that i is continuous at
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every point of (L x /\ , and hence is continuous.

L.6. In this section a new basic assumption is made, namely that

(4.6.1) there is a non-zero constant ¢ such that

ol

1 ATEE - oy

x+0 .
for each g in C, Here, if x = 0 is not an isolated poinﬁ of L)
the 1limit is understood to be uniform with respect to y on each
compact set, while if x = 0 is isolated it is assumed that r(0) # O

and the 1imit is to be interpreted as

As a matter of fact, if sin q # O, then this assumption is
a consequence of (4.1.5), (4.1.7) ard (4.1.8), To see this, first

observe that for any x # 0,

r(x) |sin o] = | (%) (x)| < r(x) r(0)

and r(x) ¥ 0 so

0 < |sin a} < r(0),

Thus r(0) # 0 and the above agsumption follows.

On the other hand if the assumption holds and r(0) # O then
sin a # O.

If r(0) =0 then sin a = 0, and it should be noted that
even though the point x = 0 may carry positive Lebesgue measure, the

contribution from y = 0 to an integral of the form

ff(y) (M) (x) dy
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is zero because (Tog)(x) = g(x) sin a = 0O,

In group theory there is a method (see Krein [16], Godement
" [17], Loomis [15] Chapter V) for developing the theory of positive
definite functions and the Plancherel theorem by studying the ideal
Jy in the L1—algebra of the group, formed by the bcunded,_absélutely
integrable contimious functions. On this ideal, there is defined a
positive continuous functional Tt I'(f) = f(e) where e . is the identity
element of the group. This functional is of central importance in the
theory.

It is proposed to construct a suitable ideal J  in the
algebra A, so that the functional
1 .
I(f) = ° xlimo %g%

can be defined on J. The remainder of this section is devoted to the
‘ideal J and auxiliary objects.

, let g e C. The function % will be called continuous,
on {)_ if either r(0) # 0 so that the function is defined and con-
tinuous in the usual sense, or if r(0) = 0 and

(X

1lim
r(x

x-»0
exists, and is finite, If 'E is continuous on (L then

X

lim r(x

x>0
will be interpreted in the usual wey if x = 0 1is not an isolated point
of {) , and as £(0) otherwise.
r(0)
if % is continuous and also bounded on (L then

|

o0
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%%ﬁ%'; xe S)‘} if r(0) # 0, and to be

§%§%+; x e{) - (0)} if r(0) = 0.

Definitiont J is the set of all g e C such that g ¢ A and

defined to be sup {

w §

5 is continuous and bounded on.fl_ o Jo is the set of zll functions

in J with compact supports.

LEMMA 4.6.1: Jo is dense in A.

PROOF s If r(0) # O then J,=C, and the result is true. Suppose
r(0) = 0. Let feC_ and let &> 0 be given. There is a neighbor-

hood V of x = 0, with compact closure V, such that

J[‘ [ £(x)|r(x) ax < %~c.
v

Since the measure is regular there is a closed subset F of £} -V

~such that

Jf [£(x)]| r(x) dx < €.
) -F
Now theré is a function g in C such that
0<g(x)<1 for all x,

g(x) =0 if xeV

g(x) =1 if x e F.
Iet h(x) = £(x) g(x). Then h e J, and h(x) = £(x) on F, while
Ih(x)] 2 |£(x)| on L - F. Therefore ||h - fll < 2. Thus J

is A-dense in Co and hence dense in A.

LEMMA 4.6,2: J is a dense ideal in A, and if g e J then Tge J

for each y, and
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If feA and ge J then
£ £
(4.6.3) =), = el K

PROOF 2 Let g e J. By (4.6.1), is contimous on{), Further

g
r
(P 0 | < n( g]) () = ’“zf If%)l

s(t) a7, _(t) "

£

2r(x) r(y) |5

.
(o]

Hence Tge J and (4.6,2) holds, If feA and geJ then

A

el < [l @l o
[1£1 =) =) |8

dy

[+

r(x) |lgl] |8

.
«©

If r(0) # 0 then I;g is clearly continuous, and by the above in-
equality is in J and satisfies (4.6.3). Suppose r(0) = 0. For

x#0

(fjg%( ) - | (V) (x)
* xx = f‘(x)r(;) r(y) £(y) dy,

(remember the integral gets no contribution at y = 0) and here

r(y) £(y) is integrable while ﬁ%%%%%%l is bounded as x - 0, uniformly
in y. Hence by dominated convergence

1m (£ )

x>0

exists and is equal to
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fr(y) £(y) f:%%l dy = ¢ /f(y) g(y) dy.

Thus in this case also f*g is in J and satisfies (4.6.3). Since
J is a linear subspace of A it follows that J 1is an ideal, Ry

the preceding lemma J 1is dense in 4, which completes the proof,

Corollary:s If fe A and g e J then

lim .(_:‘%‘g(i_g_:_c_). = ¢ ff(x) g(x) dx.

x=>0

At this point it is convenient to discuss the existence of
identity elements in A.
lLet Un’ n=1,2, ... be a complete system of neighborhoods

of x = 0 which have compact closures, and form a decreasing sequence

Uy DU,D eee 2U_D 4ee &

1 2

n
For each n let un be a continuous function which vanishes outside

-Un and satisfies

[un(x) r{x) dx =Jc; ’

where c is the constant of (4.6.1). Without loss of generality it
can be assumed that u is a multiple of a real non-negative function,
so that

[ |1 =-‘c- for all n.

It can elso be assumed that the functions u, all belong to the

ideal J.
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If the measures /u are all real then the constant c
Xy
is real and the functions u ~can be assumed to be resl,

Now suppose f ¢ Co. Then

f u (y)(T8) (x) dy - £(x)

f a, @) v) [ R oro| a.

(u, %) (x) = £(x)

According to (4.1.6) and (4.1.7) there is a compact set X such that

L—T;%%Zl -cf(x) =0

for every y in U1 whenever x is outside K, and according to

(4.6.1)

cénverges to zero uniformly on K as y - 0. Hence the functions
u ¥ - f
n

all vanish outside K and converge to zero uniformly on X as n = w,
.Hence

un*f-’f in A

as n -+, Since HunH is uniformly bounded, the usual approximation
argument shows that

| lug € = 211 = 0

as n »», for every f ¢ A,
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In order that A have an identity element it is necessary
and sufficient that r(0) be non-zero and at the same time the point
x = 0 have non-zero Lebesgue measure. For on the one hand if these
conditions are satisfied then it is clear that a certain multiple of
the function ‘

1, x =0,
g(x) =
0, x ¥ 0,
is an identity element for A. On the other hand, if A has an
identity element e then e can be represented as a Baire function,
If u and Un have the meanings assigned to them above then

u = un*e - e in 4,

and hence

[le(X)-un(X)ldx+0 as n - «,
E

for every Baire set E. Let Ek = ()_‘- U Then u, vanishes in

k.
Ek for large n and

/ |e(x)|dx=/ le(x) -un(x)ldx-’o' as n - o,
E, By

Therefore e(x) = 0 for almost all x in E, and consequently for

k
almost all x in

2. B =Q)L- (o).
k=1

Hence |le|| = e(0)sr(0)+b where b is the lebesgue measure of
x = 0. By (4.1.1), A contains non-zero elements, so |le|| ¥ 0,

showing thet r(0) # 0 amd b ¥ O,
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4s7. The Hilbert space of all functions defined on ) and measurable
and square integrable with respect to Lebesgue measure will be denoted
by W . | The Hilbert space norm of a function f will be denoted by
|I£] |2, so that

@y el = ¢ [ 160 ? a2

and the scalar product will be denoted by <f,g>, so that

(4.7.2) <f,g> = ff(x) g*(x) dx

where g*(x) is the complex conjugate of g(x).

The functions in J are also in ?{, in fact if f ¢ J then

/lf(x)l dx = f!f(x) r(x)| »

gnd hence

r(x)

f

1/2
T > for f e Je
©0 .

47.3)  1lell, < (ufu

If the measures Mo ¥ are all real then for each f ¢ C
1]

and each y ¢ QL

(4e7o4) ™(£*) = (Vr)*

where the * denotes complex conjugation., Furthermore if f and g

are in J then, Yf and 'Iyg being in J by' lemma 4.5,1, one has

j (V1) (x) g (x) dx
[ 260 )"t ax,

<Me o4
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or

(407.5) <’ny,g> = <f,TYg>'.

Since the operators ik map J into itself, they can be
regarded as linear transformations of ?{ into itself, defined over
the subspace J. It will be important to know when these trans-
formétions are bounded on J in the Hilbert space sense, and also to
know under what circumstances J 1is dense in ?{ o

The latter question is easy to answer. Jo is dense in 35£
except when x = 0 has positive Lebesgue measure and at the same
time r(0) = 0, and when these two conditions hold, J is not dense
in ?{ « To prove this, first suppose the two conditions hold. Since

r(0) = 0, every function in J vanishes at x = 0, and hence the function

1 if x =0,
h(x) =

0 otherwise
which is an element of h of non-zero norm, cannot be approximated in

?{ by functions in J. In fact if f £ J then

e =ulZe [ 120 - o) 2 ax

2 2
2112 + [l

On the other hand suppose one of the two conditions does not hold.

If r(0) # 0 then C, = J, 1is dense in ?¥ . if x =0 has

Lebesgue measure zero then, by méans of theAargument used to prove lemma
44641, it can be shown that functions in ?{ can be appréximated in ?4

by functions in Co which vanish near x = 0O,
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The following lemma provides a sufficient condition in order
that the operators 7 ‘be not merely ?4'-bounded on J but satisfy

an inequality

(4.7.6)  |IPell, 2 () llell,

for every g in J, where k is a constant not depending on g' or
on y. This guarantees that the operation of convolution by an element

f of A is an ?{ =bounded operator on J.
LEMMA 4.7.1: Suppose there is a constant k such that

7.7) (T (x) < ks(y) for all xy £CL ,

where 1 denotes the constant function with value one. Then (4.7.6)

holds for all g £Jde.

~ PROOF: let ge¢ T heC and f(x) = g(x) h(x). By Holder's

inequality

(e (x) |2

| f g(t) n(e) a , ()]

In

n° j lg() [ a», (0) j ) |* av, (®)

= ® (& |n)?)x) (F]el®) ().
Now let h =1 so that f =g, and
() (x) |2 < n* (1) =) (F |l (x)

< w2ks(y)(F |e|®) (%)



- 65 -

Since g ¢ Jo’ Sylglz [ Co and

flu”gnx) I* ax < n’ks(y) f(sy|g|?-)<x) dx

i

ks (y) f|g:2<x)<sy1)(x) ax

2 2 2
Kr(y) |lell5,

A

from which (4.7.6) for g ¢ Jg follows.
Now suppose g £ J. Let {gn} be a sequence of functions
in Jo which converge to g uniformly on every compact set and which,

as elements of 7°/, converge to g in 7“/ . Then
(e, = g) I, < @) le, = g ],

so the sequence Tygn converges in 77/ « bBut the functions 'Iygn
converges to Tyg imiformly on every compact set., Hence Tygn
converges to I‘Yg in ?}1. Consequently

|17l 1, = 1n |[P |1, < 1in sup ke(y) |le, |1,
-0

7 ~»
- we(y) |lell,e

‘This proves the lemma,

Tor each f £ A let B, be the linear transformation of 7‘/

with domain J defined by

th = f*, heJ,

These operators map J into itself. The mapping f - Bp is linear

and is in fact a homomorphism, that is B = BfBg’ for f,g € A.

f*g
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If the measures /LL are all real then the complex
Xoy
conjugation f - f* 1is a *-operation for A, That is, if f and g

are elements of A and A and /.4. are complex numbers then

(Rf.}/‘g)*: -A.f*i-/.&g*,
(f*)* = f,
and

(£xg) ¥ = £,

THEOREM 4.7.1: Assume that

(i) either r(0) # 0, or else x = 0 has Lebesgue measure
zero;
(ii) the measures /‘Lx,y are all real;

(iii) there is a constant % such that (4.7.6) holds for
all g e Je

Then the operators ™ can be extended uniquely to bounded operators
defined everywhere on 7°/ s and the operators Bf, f ¢ A, have unique
extensions to bounded linear operators defined everywhere on %/ .

The extended operators satisfy

(2.7.8) || < 1 (y)
and
(47.9)  |IBI1 < xl|zf]s

The mapoing £ = Bf is a continuous ¥*-isomorphism of A into the

algebra of all bounded operators of 7‘)[ .
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PROOF & let feA, geds If h is any element of Co then

- <f*g,h> = f[ jf(y)(Tyg)(X) dy] h*(x) dx.

Now

£ (TN < lseeta ||8]] wl,

from which it is clear that Fubini's theorem can be applied to the above

integrel. One obtains

<f¥g,h> = ff(y) <Pg,b> dy.

Hence, using hypothesis (iii),

j<egono] < kll£l] + [lell, * [1nll,0

Since- h is an arbitrary element of C, , and since Co is dense in

?/ s this shows that
| IBeell, =llexel |, < xll2]] - {lell,

for f e J.

Hypothesis (i) implies that J is dense in ?f’. It follows
at once that the operators ™ and Bf extend uniquély to bounded
operators on all of ?ﬁ’, and that the extensions satisfy (4.7.8)

and (4¢7.9)e

It hs now been proved that the mapping f - Bf is a con~

tinuous homomorphism. Suppose f £ A, gyh e Jo. Then as above

<f*g,h> = ff(y) <Mg,h> dy

= ff(y) <g,7h> dy

= jf(y)[ fg(X)(Tyh)*(X) dx] dy.
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Using Fubini's theorem,

<f¥g,h> / g(x)[ / £(y)("h)* (x) dy] ax

/g(X)(f*ﬂx)* (x) ax

*
<g,f *h>
or

<Bfg,h> = <g’Bf*h>o

Since Jo is dense in ?# it follows that

Boy = (Bp) "
where the right side denotes the adjoint operator of Bf.' Hence the
mapping is a *homomorphism,
| It remains to show that the mapping is isomorphic.‘ If‘ f
is the zero element of A then f¥g =0 for ged so Bf = 0.

Sﬁppo&aon the other hand that E_ = O, Then for any .g £¢ J the con=-

f
tinuous function f * g 1is the zero element of ?%land hence vanishes
almost everywhere with respect to Lebesgue measure, and hence everywhere,

Therefore

c ff(y) g(y) dy = 1lim (£e)lx) .,

X
x =0 r(x)

and ¢ # 0, This is true if, in particular, g is a continudus
functionwith compact support and vanishes near x = O, Hence f(x) = 0
almost everywhere on (L - (0). This imples that f ¢ M. But ¢

is orthogonal to the dense subspace‘ J of ?% , so f(x) =0 for
almost all x in the sense of Lebesgue measure, By.virtue of hypothesis

(i), f is the zero element of A, Thus the mapping is isomorphic.
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Corollary: Under the conditions of the theorem, A 1is semi-simple,

PROOF: . Recall that for any bounded operator T of a Hilbert space,

* 2
the equality ||T T|| = ||T[|* 4is valid. Suppose f is in the

* * *
radical of A, Iet g=f*, Then g=¢g, Bg = (Bg) ’

= * = 2
18 211 = H1zy(80)"11 = FIzgl 1%,
. *
e 11 =118 .8 )1 = |z, ] 14,
A 2 2 g
g g g
and in general,
21‘1
llen!|='|Bg|| ? n=1,2, see @
g
Hénce
: 2—n 2n 2—n
Bl =1 117 = Celle” 1D
g

which - 0 as n-o« gince g is in the radical of A. FConsequenﬁhy

= 0. B t
Il = 0. B

2
12,11 = 11zl

80 Bf 0 and f = 0, which proves the coroliary.

— e . o e S M e Ee mEe e e o

L.8, For the remainder of the chapter it is assumed‘that the hypotheses
of theorem 4,7.1 are valid,

It should be recalled that the hypothesis that the measures
/‘Lx,y be real implies that the constant ¢ of (4.6.1) is real and
that the approximate identity {unwr can be chosen to be self adjoint,

that is u¥* = n for each n.
n n
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The results of the previous sections will be used to establish
the Plancherel theorem and the Bochner representation theorem for
positive‘definite functions. 'he proofs are adaptations to the present
situation of those given in section 26 of Loomis' book [15]. These
proofs are due to Godement [17] and M.G. Krein [16], |

By a C*~algebra is meant an algebra of bounded operators
of a Hilbert space which contains the identity operator, and contains
with an operator T also its adjoint T%, and which is closed in the
uniform topology of operators. ‘

For an abelian (*-algebra N y the Gelfand transformation,
which maps the elements T of & onto the functions ‘6 defined on
the (compact) spectrum M of CV, is an isometric *aisomorphism of X
onto the algebra C(M) of all complex valued continuous functions
on M ,

The particular abelian C*-glgebra of interest here is con-
structed by first forming (J]' the closure in the uniform operator

topology of the set of all R,, f € A, and then 0l is the set of all

£
operators ‘/aI + B where B ¢ Ot and,/u is 2 complex number., Of
course it may happen that @ = a .

| let M denote the spectrum of ({ and M that of ({'.
If (' contains the identity operator then ({' = ({ and M' = M,
Otherwise ({' # ({ and M 1is the one-point compactification of M',

The mapning f » B, is-'a *homomorphism of A onto a dense

f
subset of (J]'« The adjoint mapping maps each multiplicative functional
g of (' onto the multiplicative functional @(f) = ﬁS(Bf) of A,

This adjoint mapping is a homeomorphism of M' onto a closed subset of

the spectrum 16& of A (see for example Loomis [15], section 24B).
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It will be assumed that M' has been identified in this way with a
closed subset of /\ .

| The algebra & is defined to be A in case A4 has an identity
e and to be the algebraobtained by adjoining an identity e vto A if

A has no identity. The general element of X may be denoted by

h =/)ce +f
where f ¢ A and//u.is a complex number, The norm of this element

is defined as

lInf] = Vl + |zl

when K % A.

LEMMA 4.8,1: 1Iet @ be a linear functional on A which is positive

in the sense that

(4.8.1)  o(£*) > 0 for all f ¢ A.

Then € is continuous if and only if

(Le8.2) O(F%) = 9(f),
" and there is a constant K such that

(4.8.3)  |o(£)|? < ke(exe™),

PROCF s If £f and ge¢ A and Y is any complei number then

0<elle+ Yg)xe + Yg)h)
= o(ex’) + | ¥ |? olgxe’) + Ye(gx™) + ¥ o(fxg).

o*
Hence Yy 8(g*f ) t 5 G(f*g*) is real for every complex number Y .



-T2 -
This implies that
(4L.8.4) . (e ) = o(f%g)) .

Consequently the bilinear form [f,g] = G(f*g*) has all the properties
of a scalar product except that perhaps [f,f] = O may happen when

f # 0. Hence the Schwarz inequality

(4.8.5)  |a(exg™)|? < a(£xe™) o(gxe’)

is valid,

*®
Now suppose that @ is continuous, ILet { un.% be the

self adjoint approximate identity of A, Putting g = u in (4e844)

and letting n + « one obtains (4.8.2)., Putting g =wu_ in (4.8.5)

n

and noting that

x e (12 = Llell
ot %) < [lof| » [l ||? =118

c

one obtains (4.8.3) with X = llgll- .
]
On the other hand suppose the two conditions hold., If i f A

extend & to X by defining
Ggfle +f)= X+ o(f),

The extended functional is positive because

o((pe + £)* ue + £)7) = | /lz'K +p8(2%) + Je(s) + o(ext")

iv

|l = 2] el 626V 200"y + oot

1/2 _ 91/2(f*f*)]2

H/Ll'K

2 0,

If h is a self adjoint element of A with |[h|| <1 then e -h

has a square root k which can be computed by the power series for
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(1 - t')T/ 2. Since the involution is continuous, k' = k. Therefore
0 < 9(e. - h) = 6(k*"), so that 6(h) < 8(e). Similarly &(-h) < 6(e).
Hence
le(n) | < o(e) = x

when h is self adjoint and ||h|| < 1. Now let h be any element of

& with ||h|] < 1. Then hy =5 (h+ h*) and h, = 57 (h - h¥) are

self adjoint and of norm less than one, Hence

lem)| = o(n;) + 16(ny)| < v2™ -k,
which shows that 8 1is continuous. This proves the lemma,

Definition: Iet P denote the set of all contimious positive

functionals on A. An element & of P is called a positive definite

functional and any one of the measurable functions © on ). such

that
e(f) = ff(x) o(x) dx

for all f € A 1s called a positive definite function.

If 91 ’ 92 e P and X is a non-negative number then

Q.] +92 and Y91 are in P, Thus P 4is a cone.

THEOREM 4.8,1: There is a one-one correspondence 8 <——> /tg
between the set P and the set of all finite positive Baire measures

on M', such that for every f c A

(4.8.6) o(f) = /?(A) d/¢ ol A)e
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PROOF: First let /ab be a finite positive Baire measure on M!,

and let @ be the linear functional on A defined by (4.8.6). Since

N\
a is an ebelian (*-algebra, B¥* (1) =13\(7\) for every A £ M,

Bell. Inparticular if AeM' and fe A then THA) = F(A).

Consequently,
o(ex) = /lf'\(}\)l2 d fg 2 0y
e(f*)=f/f‘(n)d/9=3(—ff
and |
le(e) |2 = | J?(R) augl® < f!?(l)lz dig '/d/‘g

= 1l ugll - oteae).

By lemma 4.8,1 it follows that @ € P, Since A 1is dense in (U',
the functions Eﬂ f 4, viéewed as functions on M', are dense in
the space of all contimuous functions vanishing at infinity on M!,
Hence two distinct measures /f‘g give rise to different functionals 8.
It is clear that different functionals 6 arise from different measures.
Now suppose @ € P, Then @ can be viewed as a positive
linear functional on the set of all Bf, end in fact, as in the proof
of lemma 4.8,1, & can be extended to be a positive linear functional
on the set of all operators //41 + Bf where I is the identity
operator, Hence @ can be regarded as a positive linear functional
defined on a dense subalgebra of the algebra C(M) of all continuous
functions on M. There is a unique extension to a positive linear
functional &' defined on all of C(M). By the Riesz~Markoff theorem

there is & unigue finite Baire measure //(b on M such that
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Al
o (8) = [B(R) au'(2)
e
for all B e O{ + In particular if f £ A then

(4.8.7)  o(f) = & (By) =/’f‘(x) axy (1)

A A
(Bf vanishes at infinity). Since all the functions f vanish at
infinity, the measure /ib can be restricted to a Baire measure on

M!', without altering (4.8.7), and (4.8.6) results

THEOREM 4.8.23 Every positive definite function 6 is essentially

continuous and is given by

(4.8.8) o(x) = ]ﬁl(X)d ol 1)

where //‘g is the corresponding Baire measure on M!'. This formula
sets up a bicontinuous isomorphism between the cone of all finite positive

Baire measures on M!' and the cone P.

PROOF ¢ Let & be a positive definite function, For each f ¢ A

ff(x) o(x) dx = f’é(a) gl )
- j i f ) £yx) ax] apg(R),

where /u e is the corresponding Baire measure on M', Since 952( x)
is jointly continuous in x and A and [8,(x)| < r(x) for all

A & M', Fubini's theorem applies and one finds that

/f(x) o(x) dx = /f(x) [/'Q’l(x) d/te(;\)] dx.

Hence (4.8.8) is valid for almost all x.



- 76 -

To show that the integral (4.8.8) is contimuous, let y be
any point in ). | rjI"here is a neighborhood U of y such that
r(x) <1 +r(y) for ell xe U, Given e > 0 there is a compact set

K in M' such that

/ug(M' - K) < Trfm .

Hence for x ¢ U,

lo(x) - e(y)| < /K 18,(x) = 8,(9)| d/ug +2e,

A compactness argument shows that the first term on the right can be
made less than € by restriction of U, Thus the integral is continuous,

The norm of 6 as a functional on A is

e

r

[le|] =

==

where

8
r

for all A e M', (4.8.8) shows that

is defined as in section 4.6, Since MA(x)I < r(x)
0O

o) | < v(x) 1 gl

where €@ now denotes the continuous integral (4.8.8), Hence

-]
- < .
| = 11l
B, (x)
On the other hand 1lim -??;)—- =¢ for each 7} ¢ M'. Therefore,
x~=»0
by dominated convergence lim g(; = ¢ I/ug” and
x>0 ’
o
o~ > c .
Az el
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This shows that the mepping is bicontinuous., If ¢ =1 it is actually

norm preserving,

Let E+ be the set of all positive definite functions which
are also functions in 4 A C, and let E be the set of all finite

cbmplex linear combinations of elements of E+.

LEMMA 4.8.2: If geJ then g% cE .
PROOF: Iet & denote the functional defined on A by
¥,
e(f) = ff(x) (g% ) (x) ax.

Clearly 6 is contimuous. According to the corollary of lemma 4.6.2,

for any f e A

o(£%e) f (%) (x) (g% ) (x) dx

1 ** *,
=1 1im ((£# ) ¥(g*z ))(x)

C L0 r(x)

L LERHEE)) (x)
r(x)

0=

x>0

Since f#g e A and f*¥g* € J the corollary can be used again, giving
.. * ¥ 2
8(fx") = f(f*g)(x)(f *g ) (x) ax = |]£*g]|5.

*
- Hence 8 1s a positive functional., Since g% &€ C the lemma is

established,

- G ot w— emm e e wme . -
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ILEMMA 4,8.3t Let F be any continuous non-negative function on M!
which vanishes at infinity, and let £ > 0 be given, Then there is a

function f e E such that

IF(N) = ()| <e for all A M.

PROOF ¢ As noted in the proof of theorem 4.8.1, the functions %,
g € A, are dense in the space of continuous functions which vanish at
infinity on M'. For any positive Db there is an element g £ A such

that

[VF(RA) - 2(2)] < be for all Ae M,

It can be assumed that g = g* (otherwise replace g by % (g + g%

and the inequality improves), and it can be assumed that

lé‘(’A)l <1+ YF(R) for all Ag M',

Now choose h e J so that h = h*® and

[lg = h|] < be.

Then for 211 A ¢ M!

| VF(R) =B(2)] < |VF(R) - 2(A)] + |l - nl]
< 2 be
and
R(A) ] < 18A)] + [h(2) - B()|
<1 +be+ YF(AJ.
Hence

| VECAY = B(X) [« | /F(A) +B(R)]
< be(l + be + 21/F(R )),

[F(2) - ()]
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and this is less than & for suitable b. But by lemma 4.8.2,

¥*
f =h%h = h*h is in E+, and this proves the result,

THEOREM 4.8.3: There is a unique regular Baire measure m on M

such that %/ is isometric to LZ(M' sm) under a unitary mapping

A
f » Uf which coincides, for elements of E, with the mepping f - f,

PROQF: Let ge E+. ‘hen g € P and there is a unique finite

positive Baire measure /ug on M! such that

/g(x> £(x) dx = f?m dg(3)

for all f e A, If goh ¢ Ii‘.+ and /ug, /(h are the corresponding

measures, then for each f € A, since both g and h are in the

/(f*h)(X) g(x) dx

1 1im ((£%h) *g) (x)

x>0 r(x)

ideal J »

//%(A)%(n) (1)

:1; 14m (h*(f*))(x)

x>0 r(x)

f h(x) (f*g)(x) dx
f 0) 82 4 (),

Consequently,

(4+8.9) /em’ﬁma/gm= 6(2) B7) duy(A)
: /
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for evéry continuous function G on M' which vanishes at infinity.
Suppose F is a continuous function on M' with compact

support, say X. For each At X there is an element g £J such

that B(A) # O. By compactness of X it follows from lemms 4.8,2

that there is an element of E' of the form
* *
g = g% + g e

such that '@? is bounded away from zero on K. Let g,h be any
A
two elements of E+ such that ‘g,h are bounded away from zero on

K. Then

—f-—l ax () /——ﬂll——— BA) 4 (2).
A)y 2(2) () g

Using (4.8.9) with

2(2) n(1)

.F_g_l.).d "'L"')—du (’/1)
2(1) /g

Consequently, the common value I(F) of these two integrals is a

gives

well defined functional, clearly linear and positive,on the space of
continuous functions on M! with compact supports. By the Riesz-
Markoff theorem there is a unique positive Baire measure m on M!

such that
I(F) = /F(?\) dm( A )

for every continucus function F with compact support,



Now let F be a contimuous function on M' with compact
support, let g ¢ E+, and let h be any element of E+ such that

SN
h 1is bounded away from zero on the support of F. Then

/m)@mam(n)= f%‘(—;—%ﬂg(?\)d/hm

- /zf-;%% BN apg(R)

by (4.8.9). Hence

(4.8.10) ]F(R) 2(A) dm(A) = fF(?l) d/(g(’k).

Consequently,

(K)=f"a am( A
Mg Kg()ltn()

for every compact Baire set K. Therefore since @ > 0, it follows

that /g\ £ L, (M' ,m), -

JE0) @) = 1) el

fc(;\)é‘(mamm= /emd/g(ﬂ)

and

for every continuous function G which vanishes at infinity, If

f £ A then

/’f‘("f\)d/«g(;l)

(4.8.11) /f(x) g(x) dx
f?m A an( ).

The scalar product of two functions F and G in LZ(M' o) will be

denoted by <F,G>. Thus

<F,G> = /F()) G(A) am( A).
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If ge E+ then E?c L1(M',m) and @? is also a continuous function
vanishing at infinity, so that & ¢ L,(M',m). Hence % & L,(M',m)

- whenever g £ E. From (4.8.11) it follows easily that
<gyf> = <g’/£‘>

A
whenever f and g are both in E. Hence f -+ f induces a unitary

mapping U' of E into L,(M',m).

2

Next it is shown that E 1s dense in 7¥l. It is sufficient
to show that every self adjoint element f of Jo can be approximated
in ?f by elements of E, because I is dense in & and each element
of Jo is & linear combination of two self adjoint elements,

Let f be a self adjoint element of Jo. Then lemma 4.8,2

shows that if un £ J then
1
un*f = Z [(£ + un)*(f + un) - (f - un)*(f - un)]

is a difference of two elements of E+. Now let {;un}' be the self
adjoint aporoximate identity for A4, with u € J, discussed in section
Le6. ‘then the functions u *f all venish outside a fixed compact set,
and converge uniformly to f as n . Hence u *f - f in % . inis
proves that E 1is dense in qf.
It follows that the unitary transformation U' can be
extended in one and only one way to a unitary transformation U of ?W/
into LZ(M',m). The range of U is a closed linear subspace of
LZ(M',m). It remains to show that the range of U is all of L2(M',m),
ILet ¥ be a continuous non-negative function on M' with
a compact support K. lLet £ and 8 be positive numbers. By lemma

) +
4.8.3 there is an element g in E  such that
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IF'(;k)-/g\s(A)|<e for all Ae M'.

+
. Again by lemma 4.8,3 there is an element h. in E  such that

(2
1</Q€(7l)<1+e if AeX
and
VAN
0<h(R)<1+8 for all Ae M,

A
Let f =g *h. Then f & J and f(’/\)=/g\c(’r\)/h\-g(7\)30, which

8
+
implies that f ¢ E , Hence Uf = /g\t,' /h\e. If AeM =K then

IF(A) = 2,00 By M) = [2L(R) Be(D) ] < dig(R).

£
If A £ K then

IP(1) = 2.(2) By(2)]

IA

F(R) = B,(R) [+[E () =By(2)]]

A

e + olg ()]

A

£ +e0 +OF(1).

Therefore,
1F - vsll, < elfyll, + (e + €0) Va(® + ol [ll,

The last term can be made small by choice of @, and then with & fixed
the first two terms can be made small by choice of e, This proves
that F is in the (closed) range of U. It follows that the range of

U is the entire space LZ(M' ,m), and the theorem is proved.,
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CHAPTER 5
THE CLASSICAL STURM~LIOUVILLE PROBLEM

In this chapter the application of the theory of the pre-
ceding chapter to the classical Sturm~Liouville problem is briefly

described.,

5.1, The space {1 is now the finite interval O < x <b on the real
axis, with its usual Lebesgue measure. Since {) is compact C = Cye

The differential operator I 1is defined on the space
2
c®) Q) vy

(5.1.1) (L) (x) = £"(x) - p(x) £(x)

where p 1is a real valued continuous function onQ. Two boundary
conditions are prescribed, in terms of two real constants o and /5" .

A function f ¢ 0(1)(ﬂ) satisfies the boundary conditions if

£(0) cos a = £'(0) sin a = 0O,
(5.1.2)
£(b) cosﬁ - £1(b) sinﬁ = Q.
The set of all functions f e G(2) (1) which satisfy the boundary
conditions is denoted by Da .
b
L)L x ) is the square ’f(x,y); 0<x,y<b } . It is

convenient to distinguish two triangles

4

i

{(x,y); 0<y<x; x+3'§b} ’
and

{/(XQY)E 0<yx<

A
)
1A
vq‘
ol
1A
N
+
g
et
L

£



The fundamental theorem is the following analogue of theorem 3.2.1.

THEOREM 5.1.1: Assume that p & 0(3) (€l). Assume also that either

sin a = sin/f =0 or else sinﬂ # 0, Then for each f ¢ Da,/y’

there is a unique function u ¢ C(z) (& qu) which satisfies

(5.1.3) u__ - U - [p(x) = p(y)]u=0 on 4 oA,

XX

u(x,0) = f(x) sin a,
(5.1.4) : E for xe (),

uy(x,o) = f(x) cos a

and

(5.1.5) u(b,y) cosﬁ -ux(b,y) sin/ =0 for xefl,

The solution u is given by

(5.1.6)  u(x,y) = Z22 [£(x + y) + £(x - y)]
L, 8ing XW[R (z,2;
5 (292;%7 ,x4y) R, (25 25%-y,x4y) [£(z)dz
X-y

cos a Xy
M R(zs23%x=y,x*y) f(z) dz
X=y

for any (x,y) ¢ By s

(5.1.7)  ulx,y) = -s—i-}é- [g(y+(b-x)) + g(y -(b-x))]

+( b~
+ _3_%1_7& / 7+ (o) [R_(b-z,b+z;x~y,x+y)
y-(b-x) °

+ R, (b-z,b*z;x-y,x*y)] g(z) dz

cos /  y+(b-=x)
- ——AE R(b=z,b+z3x=y,x+y)g(z) dz

y-(b-x)
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for (x,y) ¢ AQ, where g dis the unique continuous solution of the

integrai equation‘

(5.1.8) 228 gy)v sinf / " IR, (b-2,bvasbmy,b) 4R, (b-3,bvasb-y,b) le(a)dz
(o]

- y
- ELZA/ R(b-z,b*z;b=y,b) g(z)dz
o]

sin a
= 288 £(b-y)

b

1

+ 22 nza/b [Ry(2»25b-y,0)-R, (2,25b-y,b) ]£(2) dz
-y

b
+ 99—;—5 / R(zy2;b-y,b) £(z)dz,
b-y

for y cnfl, and where R is the Riemann function constructed from

the function

(5.1.9)  a(s,t) = -}: [p(553)- p(52)]

according to formulas (2.1.6) and (2.1.7)., Furthermore the solution u
may be extended to be a C(z)solution on ) x L) or (5.1.1) by

means of the symmetry relation

(5.1.10) u(y,x) = u(x,y).

Remarks: (1) The proof is long, and only the general method
will be indicated. If the function u is assumed to exist then there

is @ function ge D such that
Qs

g(y) sin /3 ,

g(y) cOS/ .

(5.1011) u(b,Y)

‘} for y af]_.

ux(b9}’)
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(5.1.6) and (5.1.7) give the unique solutions of (5.1.3) on &
and AQ‘ respectiveiy, which sétisfy (50144) and (5.1.11) respectively.
The condition that these solutions coincide along the common boundary
of A and A, is that g satisfy (5.1.8). Now (5.1.8) has a
unique continuous soluﬁion - the assumptions concerning sin a¢ and
sin/ﬁ guarantee that this is still true when f is merely continuocus -
and when g is taken to be this solution it can be verified that the
composite function defined by (5.1.6) on A, and (5.1.7) on A,
satisfies the conditions of the theorem. The verification is extremely
long and tedious.

(2) A case with sin/ﬂ =0 and sin a # O can of course be
transformed to the case sin a = 0, sin//f # 0.

(3) The differentiability restrictions on p are probably

unnecessarily strong, but this point has not been properly investigated.

When sin s the egral equation (5.1.8) can be written
i # 0, the int 1 tion (5.1.8) be writt

in the form

y sin a b
(5.1.12) g(y)==J[ H(y,z)g(z)dz + 5% f(b-y) + K(y,z)f(z) dz,
o /6 b=y

where

(5.1.13) H(y,z) = cot/6 R(b=-z,b+z3b-y,b)

~[R (b-z,b+z5b-y,b) + R, (b=z,b+z3b-y,b)]

and
(5.1.14) K(y,z) = 2%:7% R(zy23b-y,b)
+Bina

[RS(Zsz3b'y’b) - R‘C(z ,z;b—-y,b)].

sin/d
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The so-called resolvent kernel {18] for (5.1.12) is

(5.1.15) h(y,z) =21, H (y52)
n=

where

H,(y»2) = H(y,z),

(5.1.16) y
Hn(y,z) = [z H1 (y’t) Hn_1 (tQZ)dt” n= 293,..-

The solution of (5.1.12) is

= 8in a b
g(y) ?15757 f(b-y) + by K(ysz) £(2z) dz

b
+ fyh(y,z) (ER2 p(poz) + f K(z,t)£(t) dt] az
0 b

sin/6
-7

Qr

. b
(5.1.17) gly) = -:—;2—;5% £(b=y) + /;_y N(y,t) £(t) dt

where

b
(5.1.18) N(y,t) = K(y,t) + S p(y bet) +/ n(y,z) K(z,t)dz.
b=t

In the special case when p(x) = 0 so that

one finds that

2

sin /3

When sin/ﬁ = 0 and hence also sin a = 0, the integral

N(y,t) = EE2A) o [y - (b - t) cot ],

equation for g assumes the form
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b
(5.1.12') g(y) = U/:y H,(y,2) g(z)dz - czs/; £(b~y) *d/:-yK*(YaZ)f(Z)dZ,

" where

(5.1.13') H(y,2) = R_ (b-z,b+z35b-y,b)
o]

and

(5.1.14') K, (y523) = R_ (2,250-y,b) =" e

O 008/6

The resolvent kernel is
0

(51,15 Bylysa) = 2 Hy (7:2)
n:

where

Hy o (752) = By,
(5.1.161) *,1(Y z) ¥s2)

y
H*,n(YsZ> = J/; H*’1(Y’t) H*’n_1(tsz) dt,

n= 2,3,4,-..

The solution of (5.1.,12') is

b
(5.1.17')  gly) = - gg:/; £(b-y) + /b_y N, (y,t) £(t) at

where

(5.1.18') N (¥,t) = K (y,t) = 228 p_(y,bet) + / 7 b, (y,2)K,(z,t)dz.
b-t

008/3

In the special case when p(x) = 0 so that H =0, K, = 0, one finds

that N* =0 ard

g(y) = - 232/3 £(b=y).
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The Riemann function R is well defined even when p is
merely continuous, and in terms of R, the function N (or N,) can

 be defined by (5.1.18), The translation operators are defined by

(Pr)(x) = u(x,y) for each f ¢ C,

whgre u is the function on () x 57; determined by equations (5.1,6),
(501.7), (5.1.10) and (5.1.17). The general properties of the operators
can be derived by methods very similar to those used in chapter 3,

and it is found that the conditions of section 4.1 are fulfilled, The
validity of these conditions will be assumed and the easily verified
fact that a continuous function g on £} is an eigenfunction if

and only if it is in Da’ and satisfies

A
gr(x) - p(x) B(x) + Ag =0

for some complex number A , and the conditions @(0) = sin a,
$"(0) = cos a, will be also assumed.

A comparison can be made with a family of operators' {_Sy }
belonging to the case p(x) = 0 with suitably chosen values a_, /30

(e}
of the constants which determine the boundary conditions, More precisely

(i) when sin a # 0, the values a, = %, /30 = g mey
be used; '
. . - -
(ii) when sin a = 0, the values a, = 0, /60 =3 may

be used.

Suppose sin/6 # 0. Then (Mf)(x) = u(x,y) is given by

(5.1.6) for (x,y) ¢ Ay while if  (x,y) € A, one finds that
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(5.1.19)  (1¥6)(x) = SR [£((by) + (b)) + £((by) = (b=x))]

b
+ %-"72 / N(y - (b-x),t) £(t) dt
(b=y)+(b=x)

. b
+ ﬂgﬁﬂ— / ' N(y + (b=x),t) £(t) dt
(b=y)=(b-x)
(o-y)+{b—x)

. s:!.n a J(x,y,b=t)f(t) dt
sing J (b-y)-(b=x)

b y+(b=x)
+f [ J(X9Y9Z)N(Z’t)dzlf(t)dt9
(b=y)=(b~x) f max[y-(b-x),b=t)]

where

I(xs752) = §i_r21,£ [R (b-2,b*z;5%-y,x+7) 4R, (b=2,b+z;x=y ,x+y) ]

- Q‘ZS_E_ R(b=z,b+z;x~y,x+y).

On the other hand if {Sy } are the operators associated with the
case p(x) = 0, for the values a = a, and /5=1—2r s o, Dbeing for

the moment undetermined, then

sin «a cos a x+y
(5.1.20) (S7£)(x) = —5—=2 [£(x+y) + £(x-y)] + —5=2 / £(t)dt
X-y

for (x,5) ¢ Ay s and

sin a

(5.1.21) (57f)(x) = 5 2 [£((b=y) + (b=x)) + £((b-y) = (b=x))]

. + T b
+ ESQ_‘Z)__%.). / £(t) dt
(b~y )+(b=x)

. sin(ae_ + %) / b £(t) db
2 (b=y)=(b-x)
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for. (x,y) € 4. Consequently, for any (x,y) € Q) x L

(T0)(x) = [r(t) av (%)

‘where the measures 7/ are non-negative if 0 < a_ < E. An

Xy - o0o=-2
inspection of formulas (5.1.6), (5.1.19), (5.1.20) and (5.1.21)
shows that the comparisons can be made as asserted in (i) and (ii)
above when sinl/g # 0. A similar discussion can be carried out
when sinv/ﬂ = 0,

From these comparisons it can be concluded that

(1) & multiple of r(x) =1 4is a modulus when
sin a # 0;

(11) a multiple of r(x) = x is a modulus when
sin a = 0,
When sin a = sinv/3 = 0, it can be shown by a comparison with the
case p(x) = ex, where € is positive and small, a, = 0, /60 =1,
that the function r(x) = x(b - x) can be used in place of a
modulus (since this function vanishes at x = b it cannot be a

modulus in the strict sense),

In these examples, the special circumstance that the eigen-
functions are in the élgebra A makes it quite easy to prove a
Wiener type Tauberian theorem, which states that an element f of

A
A 1is contained in a proper closed ideal if and only if f(A)=0
for some A ¢ ZA\ .
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