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" ABSTRACT

The entrainment and mixing processes in a two-dimensional vertical
turbulent buoyaﬁt (heated) jet in its transition state from a pure jet
to a pure plume have been studied. The ambient fluid is of uniform
density and non-flowing except for the flow induced by the jet. Density
variations are assumed small.

The equations of motion integrated across the jet have been care-
fully examined and it has been found that the kinematic buoyancy flux of
a heated plume and the kinematic momentum flux of a pure jet are not in
general conserved. It has been proven that the flow in a two-dimensional
pure jet is not self-preserving.

A systematic set of experiments was carried out to examine turbulent
buoy;nt jet behavior for a wide range of initial Richardson numbers (or
densimetric Froude numbers). Values of the Richardson number, which
describes the relative importance of buoyancy in a jet, extended from
the value appropriate for a pure jet (zero) to that appropriate for a
plume (approximately 0.6). The buoyant jet temperature and velocity
fields were measured using calibrated fast response thermistors and a
Laser Doppler velocimeter respectively. The velocity and temperature
data obtained were recorded magnetically in digital form and subsequently
processed to extract both mean and fluctuating values of temperature and
velocity.

The structure of the mean flow (including the spreading rate of the
mean velocity and temperature profiles, velocity and temperature distribu-

tion along jet axis, and the heat flux profile), the turbulence structure
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(including the profile of turbulence intensity and turbulent heat
transfer, probability density distribution of temperature and velocity,
skewness and flatness factor of temperature fluctuations) and the large
scale motions (intermittency, profile of maximum and minimum temperature,
frequency of crossing of hot/cold, cold/hot interface) of a buoyant jet
were investigated as a function of the jet Richardson number. It was
determined that the turbulent heat transfer and the turbulent intensity
increase with increasing the Richardson number. The spreading rate of
the transverse mean velocity and temperature profiles were found to be
independent of the Richardson number. The turbulent buoyancy flux in a
fully developed buoyant jet has been found to be a significant fraction

(38%) of the axial buoyancy flux.
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NOMENCLATURE

b (x), half-width of the time averaged mean velocity
profile (see Eq. 1.2.15.a)

bT(x), half-width of the time averaged mean temperature
or concentration profile (see Eq. 1.2.15.Db)

boundary of the jet (see Eq. 2.0.3)

invariant of a buoyant jet (C~ 0.55, see Eq. 2.0.1
and Section 5.1)

coefficients for the distribution of the mean velocity
along the jet axis (see Eq. 1.3.3)

coefficients for the distribution of the mean temperature
along the jet axis (see Eq. 1.3.4)

specific heat of water, 1 cal/gr °C

slot thickness

C/2, experimental comstant (see Eq. 2.1.10)
frequency of the laser beam

frequency (in Hz) of the hot/cold, cold/hot interface
crossings (see Eq. 3.5.3)

gravitational acceleration (981 cm/sec?)

Grashof number, Bx3/v (see Section 2.2)

h(R), buoyancy function (see Eq. 2.3.6)

coefficients (see Eq. 2.3.10)

heat flux at the orifice of the jet, aouoToD
transport of heat by mean flow (see Eq. 6.1.5)
turbulent heat transfer (see Eq. 6.1.6)

see Eq. 6.2.4

characterizes the presence (I = 1) or absence (I = 0)

of the temperature field of the jet at a point (x,y)
at time t (see Section 2.0)
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K = gpreading rate of the mean temperature profile (see
1T
Eq. 4.1.2)
K2T = non-dimensional virtual origin of the mean temperature

profile (see Eq. 4.1.2)

K = gpreading rate of the mean velocity profile (see
iu
Eq. 5.1.2)
KZu = non-dimensional virtual origin of the mean velocity

profile (see Eq. 5.1.2)

L = distance of the closest measurement to the jet orifice
min
(see Figure 5.2.4)

= distance of the most distant (from jet orifice)

max measurement (see Figure 5.2.4)
m = m(x), kinematic momentum flux (see Eq. 2.1.20)
m = kinematic momentum flux at the jet ofifice, ugD
Max T = Max T(x,y,t), maximum temperature excess at a point (x,y)
during the sampling time T (see Section 4.3)
" Max Ty = Max T(x,0,t)
Min T = Min T(x,y,t), minimum temperatu;e excess at a point (x,y)
during the sampling time T (see Section 4.3)
Min TM = Min T(x,0,t)
P = p(x,y,t), instantaneous pressure dev1at10n above the
’ hydrostatic ambient pressure
P = p(x,y), time averaged mean pressure
q = q(R), entrainment function (see Eq. 2.3.7)
9597 = coefficients (see Eq. 2.3.10)
Re = Reynolds number
Ro = Richardson number at the jet orifice (for a pure jet
R0 ~ 0 and for a pure plume Rogu 0.62, see Section 2.3)
R = R(x), local Richardson number (see Eq. 2.3.1)
R = Richardson number of a pure plume'(Rpss 0.62, see

P Section 5.1)



R(Ax,0) = see Eq. 6.2.3

RM = value of R(Ax,0) on the jet axis

Rf = flux Richardson number (see Eq. 2.2.16)

T - = T(x,y,t), instantaneous temperature excess (above the

ambient) at a point (x,y) at time t

T = T(x,y), time averaged mean temperature excess (above
the ambient) at a point (x,y)

Ta = ambient temperature

T;(x) = cross sectional mean excess temperature (see Eq. 2.3.3)

Tﬁ = Tﬁ(x), time averaged mean temperature on the jet axis

T' = T'(x,y,t), turbulent component of the temperature,
T'=T-T

T2 = ETE(x,y), intensity of turbulent fluctuations of

temperature (see Eq. 4.2.2)

Tﬁgt = Tﬁg (x,y), turbulence intensity associated with the
smafl eddies (see Eq. 4.2.12)
Tégld = Tégld(x’Y)’ turbulence intensity associated with the
large eddies (see Eq. 4.2.11)
T; = excess (above the ambient) temperature at the jet orifice
u = u(x,y,t), instantaneous vertical velocity at a point (x,y)
u = u(x,y), time averaged mean vertical velocity at a
point (x,y)
Gﬁ = Gﬁ(x), time averaged mean vertical velocity on the
jet axis.
u' = u'(x,y,t), turbulent component of the vertical velocity,
u' =u -1
u'? = u'?(x,y), turbulence intensity
ﬁ; = velocity at the orifice of the jet
v = v(x,y,t), instantaneous horizontal velocity at a point

(x,y)
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v = v(x,y,t), time averaged mean horizontal velocity
v' = v'(x,y,t), turbulent component of the horizontal
velocity, v' = v - v
x _ = coordinate axis in vertical direction, same direction
as gravitation (see Figure 2.1.1)
X = distance along jet axis (i.e. X = x)
X = virtual origin (see Figure 2.1.3)
b4 = virtual origin of the mean temperature profile (see
oT .
Section 4.1)
X = virtual origin of the mean velocity profile (see
ou
Section 5.1)
x' = distance from the virtual origin along jet axis
X! = game as x'
y "= coordinate axis in horizontal direction (see Figure
2.1.1)
'Y = distance from jet axis (i.e. Y = y)
Greek Notation
o = thermal expansion coefficient at the jet orifice (see
o
Eq. 2.2.5)
o = a(x), thermal expansion coefficient (see Section 2.3,
Eq. 2.3.3)
a, = universal entrainment coefficient
aj = entrainment coefficient for a pure jet
ap = entrainment coefficient for a pure plume
Bo = kinematic buoyancy flux at the jet orifice (see Eq. 2.2.7)
B = B(x), kinematic buoyancy flux (see Eq. 2.3.9)
Y = y(x,y), intermittency (or intermittency factor) of the

temperature signal (see Section 2.0.1 for definition)

§(x) = Dirac delta function
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Gu = EnZIKiu, experimental coefficient-

Ap = Ap(x,y) = p(x,y)-pa, density deficiency

Apo TP TP,

Bpy ) = o

n = non-dimensional distance from the jet axis, n = y/x'

vy = volume flux at the jet orifice, uoD

i ' = u(x), volume flux (see Eq. 2.1.9)

v, = kinematic viscosity at the jet orifice

I} = p(x,y), time averaged mean density

Pa = density of the ambient fluid

IS = density at the orifice of the jet

Bﬁ = Bﬁ(x) = EKX;O), time averaged mean density on the jet
axis

% = experimental constant (see Eq. 2.2.13)

O = experimental constant (see Eq. 2.2.14)

z = normalized turbulence intensity (see Eq. 4.2.7)

T = sampling time (see section 3.1)

¢ = angle between the y-axis and the induced flow
streamlines (see Figure 2.1.2)

v = Y(x,y), stream function of the induced flow (see

Figure 2.1.2)

Subscripts

a = quantities of the ambient fluid
m,M = quantities on the jet axis

o = quantities at the jet orifice



Superscripts

—_— = time averaged mean value

! = fluctuating component

Mathematical Symbols

eA, exponential function

exp A =

2n2 = Naperian logarithm of 2 (v 0.693....)
m = 3.141......

~ = 1is proportional to

E{X} = expectation of variable X



INTRODUCTION

1.1 INTRODUCTORY NOTE

The interest in the mechanics of buoyant jets has been accelerated
by the increased demand for shore-sited power plants which use cold
ocean water for cooling. Such plants discharge warm water back to the
ocean and it has been suggested that a fast dilution of the warm effluent
will minimize the disruption of the ecological balance. Rapid dilution
can be accomplished with a multiport diffuser structure in which jets
from numerous ports spaced along the ocean outfall merge and form a two-
dimensional buoyant jet. Hence the understanding of the entrainment
and mixing process in a two-dimensional buoyant jet is necessary for the
optimal solution of the warm water disposal problem and for an effective
design of the diffuser.

Apart from this particular problem, the mechanics of jets is
important to a wide range of problems, from jet propulsion of airplanes
and submarines, to jet pumps. From a more fundamental point of view,
the investigation of two-dimensional buoyant jets wili contribute to the

understanding of free turbulence phenomena.

1.2 A REVIEW OF PREVIOUS THEORIES

Previous theories of two-dimensional pure jets, pure plumes, and
buoyant jets will be described briefly with a view to examining the
principal assumptions and results of each theory.

The flow configuration and geometry are shown diagrammatically in

Figure (1.2.1). The ambient fluid will be assumed to be of uniform
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density Pa and motionless, except for flows induced by the jets. The
difference between the time averaged local fluid density at any point,

p(x,y), and the ambient density, L will be small, so that
- (G&y) =0 /e, <1,

in the buoyant jet. Thus, there will be little error in using the
ambient density Pa to replace the local density'a(x,y) in the descrip-
tion of the inertia and pressure forces. However, the difference
ka,y) - P, will be important in the description of the gravitational
body forces (Béussinesq approximation).

It is further assumed that the flow is fully turbulent and that
the viscous and molecular transport of momentum and heat respectively

can ‘be neglected relative to the turbulent transports.

A(X’U)'-

Mean Velocity
Distribution

/Uo, Po

i)

777 (Y, V)
/ .

7/////////4

Figufe 1.2.1. Geometry of a buoyant jet
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Under these conditions, the time-averaged Boussinesq equations for the
two-dimensional incompressible motion of a turbulent fluid with density

variations are:

(i) conservation of volume flux

du , ov _
'5';{-'*"'8'_};'— O 'y (10201)

- — — (p-p_) 12 ey
—9%u _, —=3%u_ 1 3p _ a _%u'c 3u'y
u 5= + v 3y > 3" p g . 5y (1.2.2)
a a
—8v =3y _ _1 3p oduv av?
u + v~3; = o 3y = 3y (1.2.3)

where u', and v' are the deviations in velocity from the time-averaged mean

values of u and v respectively, and p the deviation from hydrostatic pressure.

(iii) conservation of tracer

—3c , = dc du'c’ _ av'c’

<«

where ¢ is the time-averaged tracer concentration and c' the deviation
from this mean value. An equation must also be provided for the
relation between the density and the tracer concentration. The linear

form

=a c(x,y) , (1.2.5)

is assumed, where ao is taken to be constant.

The above system of five equations (1.2.1) to (1.2.5) has ten
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unknowns u, v, u'?, c, c'2, v'?

, ;; u'e', v'c', ;; and therefore cannot
be solved even if the appropriate boundary conditions were provided and
this is the fundamental problem of turbulent fluid mechanics.

An extremely large number of methods of dealing with this general
problem has been proposed but the existing work on two-dimensional free
shear flows (jets, plumes, wakes, etc.) can be classified into one of
two schools of thought. The first school tries to derive a constitutive
equation, i.e., a relation (not necessarily linear) between the Reynolds
stress tensor and the deformation tensor of the fluid. The early
workers in this school assumed, in addition, self-preservation for the
mean and flucfuating quantities (see, for example, Tollmien [45], G. I.
Taylor [46], or the textbook by Schlichting [47], pp. 590-613). More
recent workers use more complex constitutive equations and solve
numerically the appropriate system of equations (see, for example,
Saffman [48]). The validity of this approach has been criticized‘by a‘
growing number of investigators, including Laufer [49] and Coles [50].
Batchelor [51] also pointed out the defects of the early models of this
schoél.
| A second group of investigators integrates the equations of motion
across the jet and derives conservation integrals for the mass, momentum
and buoyancy fluxes (see Corrsin and Uberoi [52], Morton et al [20],
Brooks and Koh [53], List gnd Imberger [23]). For a two-dimensional
buoyant jet in uniform and still environment this approach leads to

equations of the form:

(1) conservation of volume flux
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d

& JTuGydy = -2 lin V(x,y) , (1.2.6)

- 00 y—>+oo

(ii) conservation of momentum

&7 @4 wZ 4+ Bydy == POV, pay 4 14m (BT + TV
-00 o] =00 pa y—H—co
(1.2.7)
(1i1) conservation of tracer
g— _Jm [Uc+u'c'ldy = =limn [c v+ c'Vv'] (1.2.8)
x -00 y—HF-oo ’

The following assumptions are then generally made:

(1) The integration is assumed to be extended to infinity, hence it is

_argued that

lim [u v+ u'v'] 0
y-)-+co

lim [c v+ c'v'] =
y-++oo

|
o

(11) It is assumed that the turbulent tracer transfer u'c' is negligible
in comparison with u c.

(1i1) It is assumed that u'? + g << u?. This has been justified by the

. experimental work of Mille‘x)‘ and Cummings [12].

These assumptions then lead to the following set of equations:

(1) conservation of mass

d 0 — —
= ST ux,y)dy = -2 1in ¥ (x,y) , (1.2.9)
. y‘—)-+w

=00
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(11) conservation of kinematic momentum flux

B‘(x,y)-oa

d o o
T J‘ W2 (x,y)dy =-J' — gdy , (1.2.10)
—00 - a

(111) conservation of kinematic buoyancy flux (from Eq. (1.2.8) and

Eq. (1.2.5))

H(X’Y) -p
d © a —
= I — gudy = 0 . (1.2.11)

- 00 a

A more accurate description of the basic jet mechanics than repre-
sented by the above equations and assumptions will be'presented.in
Chapter 2, where the deficiencies of Eq. (1.2.10) and Eq. (1.2.11) will

be discussed in more detail.

* The Eqs. (1.2.9), (1.2.10) and (1.2.11) have provided the basic
framework for almost all the previous investigations of jets, plumes and
buoyant jets. From this point, two further approaches have been used to

obtain the basic jet behavior.

I. Entrainment Coefficient Approach

The entrainment coefficient approach (Brooks and Koh [53], Morton
et al [20], Morton [24], Fan [58], Fan and Brooks [22]) is based on the
hypothesis of G. I. Taylor [20] that the entrainment should be propor-
tional to some characteristic velocity of the jet, i.e.

-lim 2v(x,y) = Zaéﬁﬁ(x) , (1.2.12)

Y4

where the entrainment coefficient a, was assumed bylMorton [24] to be a

universal constant with the same value for jets, plumes, and
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buoyant jets. Similarity of the velocity and temperature profiles has
also been assumed and, on the basis of the experimental evidence, they

have been given by the Gaussian curves

u(x,y) = uy(x) expl-tn2 (y/b )?] , (1.2.13)
(p(x,y)=p,) = (o (x)=p_) exp[-in2 (y/bp)?] (1.2.14)

where bu(x) and bT(x) are the characteristic lengths of the velocity

and temperature profiles respectively, and are defined by the relations
u(x,tb (x)) = u(x,0)/2 , (1.2.15.a)
p(x,tb (%)) = p(x,0)/2 , (1.2.15.b)

and where Gﬁ(x) = u(x,0) and Sﬁ(x) = p(x,0). One further assumption has

been that

=2 (1.2.16)

where XA is supposed a universal constant,

Under these assumptions the system of equations (1.2.9), (1.2.10)

and (1.2.11) becomes

& ap = zaeEM(mz/ml/z (1.2.17)
_ Bp,
£ [W2b ] =-/Z g ._pi‘. by (1.2.18)
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d Boyuydy

o =0 (1.2.19)
pa(1_*_)‘2)1/2

dx
where ESﬁ(x) = Eﬁ(x) e The system of the ordinary differential
Equations (1.2.17), (1.2.18), and (1.2.19) with appropriate initial
conditions can be solved numerically (see Fan and Brooks [22]) to find
the evolution of Gﬁ(x), E;(x), and Zsﬁ(x).

It seems worthy to examine closely the two particular cases of a
pure jet and of a pure plume, where analytical solutions can be obtained
for the equations (1.2.17), (1.2.18) and (1.2.19). For a pure jet

Efx,y) = pa, hence the kinematic momentum flux is conserved, i.e.

a1/ 2en2) L/ 2

uZ ()b (x) = uZ D (1.2.20)
where 3; the exit velocity and D is the width of the jet at the orifice.
Then the system of Equations (1.2.17) and (1.2.20) can be solved

explicitly to give

dbu 1/2
ax = Klu = (16 4n2/M) aj (1.2.21)

where Klu a constant and aj is the entrainment coefficient for a pure

jet.

The equation (1.2.21) can be written

b
u

= X
D Klu(D + K2u)

The decay of the centerline velocity is then given by Eq. (1.2.20) as



-15-

Eﬁ 2 mox
__-u—M- ul T (—D- + KZu)Klu (1.2.22)

and the centerline dilution of a passive tracer 'is given by

T 2
T
0 - il 1 X 2
( %;.) 7 2 Klu(D + Kzu) , (1.2.23)
M I+f "u
bT
where T; and Tﬁ(x) are the excess tracer concentrations above ambient
at the jet exit, and on the jet axis, respectively.
For a plume 1t is easy to verify that the system of Equations

(1.2.17), (1.2.18) and (1.2.19) admits the following solution (see Lee

and Emmons [27])

. 1/3

wy(x) = A8, " ~ constant , (1.2.24)

8o, (x) -

= 1_40 5 = Ax L (1.2.25)
(o] a

and

db
u _ 1/2

i (4an2/m) o (1.2.26)

where AO,Al, are constants which can be easily determined. ap is the

entrainment coefficient for a plume and



pa_OO

B =

the initial kinematic buoyancy flux if P is the density of the jet at
the orifice.
Since the basic agsumption of this approach is that the entrain-

ment coefficient is constant, i.e.

it is concluded from (1.2.21) and (1.2.26) that the jet half-width bu
should be twice the plume half-width. This is indicated also in the

numerical solution of Fan and Brooks ([22], Figure 17(e)). Brooks [67]
adopted the value o, = 0.14 since he believed that the flows of interest

to him are more plume~like than jet-like, hence

dbu

rrals Klu = 0.26 for a jet,
and

dbu

Frniie Klu = 0.13 for a plume.

The experimental results of this investigation for pure jets and

plumes have shown that the coefficient K, 1is approximately the same

1u
for both jets and plumes (see Section 5.1 and Chapters 8 and 9). The
assumption of a universal entrainment coefficient is therefore incorrect

and in reality
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II. Dimensional Analysis

Dimensional analysis can be used to find the basic characteristics
of the jets and plumes. For a pure jet in uniform environment, Eq.

(1.2.10) implies that the kinematic momentum flux is conserved, i.e.

Gﬁ(x)bg(x) = constant.

Dimensional analysis then gives for a pure jet (Landau and Lifshitz [63])
bu~ X

— -1

M~
For a plume dimensional analysis gives (see Batchelor [54])
:M"' 3(1)/3 ~ constant ,
bu(x) ~ X
Bpy(x) ~ xt

List and Imberger [23] used dimensional analysis to write the integrated

equations of motion in the form

du o m |

ax " q(R,C) (1.2.27)
dn _ ug

= Ear,0 (1.2.28)
48 _ o (1.2.29)

dx
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3 |
ueg - B
where R =— C=——"=
3 > 2
m ()
and w= [TUG,y) dy, m= [T W?(x,y) dy »
-—00 -00
w PP _
B= [~ —2gudy .

Their approach was to find the leading terms of the functions q(R,C)
and h(R,C). Their basic idea has been extended in this investigation

(see Chapter 2.3).

1.3 REVIEW OF PREVIOUS EXPERIMENTS

I. Pure jet

Usually an experimenter measures the mean velocity and concentra-
tion profile at different distances from the exit, he plots the growth
of the half-widths of mean velocity and temperature profile, the

centerline'decay of mean velocity and the centerline dilution and

finds that

bu X

D - Klu(ﬁ + K2u) ’ 1.3.1)
b
T X

- 2

Yo X

(5-—) = Clu(-ﬁ- + Czu), (1.3.3)

m

T
0 X
(_—T:- ) = Cp G+ Cpr) (1.3.4)
m
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The coefficients Klu’ KZu”KlT’ KZT’ Clu’ CZu’ ClT’ C2T are then
usually empirically determined. Alternatively some investigators report
the fitting of their mean velocity results in the form

sy S ®’
= e

= » (1.3.5)
um(x,y)

without determining the location of any virtual origin. 1In this case

the coefficient K1u can be calculated by

An2
Klu = TS—.. .
u

Table (1.3.1) summarizes the principal parameters and results for the
mean velocity and mean temperature found by other investigators. The
coefficients Klu’ K2u’ Clu’ C2u for Forthmann's [3] experiments were
calculated from his graphs by the present investigator. The experimental
investigation of Heskestad [5] was good but the mean velocity at the jet
exit, ;;, was not reported. However, it can be estimated from the
reported Reynolds number, so the coefficients Clu and C2u were calculated
by the present investigator using an inferred value for G;, (they were
also calculated by Flora et al [4]). Mih's [11] experiments were carried
out by discharging the jet into a diffusion chamber which was too small
to ensure a "free" jet. To overcome this problem, he pumped water out of
the diffusion chamber which produced a current in the chamber, thereby vio-
lating the assumption that the ambient flow be a jet-induced flow only.
The centerline velocity decay (Figure 7, [11]) is apparently incorrect

because all of his experimental points indicate that he measured more
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momentum than the jet had originally (of the order 257 at x/D = 15).

The opinion of this investigator is that his coefficients Clu’ C2u

should be discounted. He also did not calculate the location of the
virtual origin.
The experiments by Miller et al [12] can be considered of high

quality. They verified experimentally that u'Z and E are of the same
p

order and of opposite sign. Their experimental results are tabulated
in Miller's Ph.D. thesis ([39], Table 18) from where this writer

, C, . The writer also calculated the coefficients K
1u 2u

K2u for the experiments by Vulis et al [14] but these should also

probably be discounted because of the limited accuracy involved in

calculated C 1u’

estimating the half-width from their very small published figures.

. The variation of the coefficients K found by Jenkins et al

1lu’ KlT’
[8] is, in this investigator's opinion, due to minor instrumentation
problems rather than to the argument presented by them that Klu’ KlT

increased with increasing the exit temperature. It seems unlikely that
this is the case when the initial Richardson numbef was of the order
10—5 (~ pure jet), and the measurements were in the same region (10 to
60 diameters from exit). Jenkins et al [8] claim that the centerline
temperature Tﬁ decays like x-z, which is not in agreement with any other
theory or experiments. Hestroni et al [6] did not calculate the loca-
tion of the virtual origin and probably this is the reason why their
K1u is large. Reichardt [13] did not calculate the virtual origin nor

the centerline velocity decay. The writer calculated the coefficients

K K2u from Knystautas' [7] experimental results presented in his

1u’

Figure 6 and the coefficients C C a from his Figure 8. The

lu®* 72
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coefficients C Cou from Flora et al [4] should probably be discounted

lu® 72

because they calculated the exit velocity from the measured momentum of
the jet at a downstream position and assumed comservation of the kine-
matic momentum flux, an assumption that will be shown to be questionable
(see Chapter 2.1). Bradbury [2] investigated a plane jet in a slow
secondary current hence his coefficients Clu’ C2u are not appropriate to

this study. The coefficient Klu for Tailland et al's [42] experiments

was calculated by the present investigator from their Figure 3.

The writer calculated the coefficients K K C C u from

Tu’ "2u’ Tlu® T2
Bicknell's [57] experimental results presented in his Figure 8, and the

coefficients KlT’

Turbulence intensity studies have been reported by Miller [12],

KZT from his Figures 12, 13 and 14.

Heskestad [5], Zijnen [17], Bradbury [2], and Vulis [14]. The turbulence
energy balance was investigated by Heskestad [5] and Bradbury [2].

Intermittency measurements were reported by Heskestad [5] and Hannum [40].

II. Pure plume

Rouse et al [21] considered experimentally the pure two-dimensional
plﬁme, simulated in their investigation by a line gas burner. This kind
of experiment is very delicate because small convection currents in the
ambient air usually exist and the assumption of a motionless environment
is most probably violated. Their experimental measurements of velocity
show substantial scatter either because of inadequate instrumentation or
because of existing ambient air currents. They found

_ -nd? 12

u(x,y) =u_e »  T(x,y) =T e
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which give Klu = 0,147 and KlT = 0.130. They did not know the input

heat flux a priori, but calculated it from the measured mean velocity
and temperature profile assuming implicitly that u'T' << u T. It will
be shown later that this is a questionable assumption (see Chapter 6

on temperature-velocity results). Kotsovinos and List [25] measured
directly the entrainment in a pure plume, simulated by a heater in a
water tank. The input heat flux was known and, although the velocity
and temperature profiles were not measured, the results can be combined

with the results of the present investigation to give K, = 0.1l.

1lu

Ellison et al [26] measured an entrainment coefficient for the half-

plume equal to 0.112, which may be used with (1.2.18), to give K, = 0.105.

lu
Lee's Ph.D. thesis [55] is the basis of the Lee and Emmons [27] publica-

tion. They measured temperature profiles above a line gas burner, from

which the coefficients KlT and K2T

respectively (see [55], Figure 5-2). Velocities were not measured, but

can be calculated as 0.130 and 0.9

they tried to estimate the entrainment coefficient ap and the growth of
the velocity half-width K1u from temperature measurement alone which, in
principle, is not possible without any implicit or explicit assumptionmns.
In their case, they assumed implicitly, that the turbulent heat transfer
.rm W'T' dy was negligible with respect to the mean heat transferj‘co uT dy,
—oo -
which will be shown to be incorrect (see Chapter 6). The conclusion of
their calculations (not measurements) that ap = 0,16 and KlT/Klu = (.88
should therefore be discounted.

The experimental measurements of concentration by Anwar [62] show
substantial scatter. He did not determine the locaﬁion of the virtual

origin. He suggested K,,, = 0.13.

1T
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III. Buoyant jet

To the best of the knowledge of this writer, no experiments have
been reported concerning a two-dimensional buoyant jet in transition

from a jet to a plume.

1.4 SCOPE OF THIS WORK

The scope of this work is the systematic study of the entrainment
and mixing processes in a two-dimensional buoyant jet in its tramsition
from a pure jet to a pure plume. For this purpose an organized set of
experiments over a wide range of initial Richardson number has been
carried out to improve the understanding of the buoyant jet mechanics
and to make possible the development of a theoretical model which is
based on correct physical assumptions. The practical outcome of this
invéstigation is to provide a definite input for the design of two-
dimensional buoyant jet type diffusers. From a S;oader point of view,
the attitude is to study the jet problem in a rigorous way with the hope

that the understanding of the fundamental laws of free turbulence flows

will be improved.
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2. THE MECHANICS OF JETS

2.0 BASIC DEFINITIONS AND ASSUMPTIONS

The two-dimensional turbulent pure jet, pure plume and buoyant jet
problem will be studied. The fluid (in this investigation, water) is
assumed to be incompressible. The ambient fluid is assumed to be motion-
less, except for the movements induced by the jet, and of uniform density
Py The pure jet, plume, or buoyant jet is assumed to be turbulent and
therefore viscosity and molecular diffusivity will be neglected. Density
variations will be assumed small, so that the density difference is
important only in the gravitational body force term in the equations of
motion.

A pure jet is defined as a source of kinematic momentum flux, m
and/or kinematic mass flux U5 a pdre plume is a source of kinematic
buoyancy flux %)only. A buoyant jet is a soﬁrce of kinematic mass flux
Hys kinematic momentum flux m s and kinematic buoyancy flux Bo. Using
dimensional analysis, it can shown that each buoyant jet has effectively

two characteristic length scales. One, ug/mo, defines the importance of

2/3

the initial volume flux (or kinematic mass flux), and the other mO/Bo

defines the importance of the initial momentum flux relative to the

buoyancy. The ratio of these two scales is the non-dimensional number

which expresses the ratio of the distance at which kinematic momentum

flux is important relative to kinematic buoyancy flux, to that at which
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kinematic momentum flux is important relative to kinematic mass flux.
The non-dimensional number, R, is called the Richardson number of the
jet. The Richardson number, calculated at the jet origin, assuming
uniform velocity and temperature profiles, can be written

EE gD

R wPo
° u?
(o]

i.e., the Richardson number is the square of the inverse of the densi-

metric Froude number. For a pure plume, the local Richardson number

_u3(x)8
Rp m3 (x)

will be shown (see Chapters 2.2 and 5.1) to be a constantv0=0.6), while
for a pure jet it is equal to zero. A buoyant jet with an exit Richardson

number R0 << Rp, can be considered to be a pure jet for a distance

2/3

o (where x is the distance from exit). However, since the

x < mo/B

local Richardson number continuously increases, eventually, for

2/3

>>
x mo/Bo

, it will approximate the constant value of the‘plume
Richardson number Rp; The conclusion from this discussion is that a
buoyant jet is always in transition towards a pure plume.

Another important invariant of a buoyant jet is the non-dimensional
ratio C defined by (see Section 5.1)

C = u(x) (2.0.1)
vm(x) (x-xo)

where X, is the location of a virtual origin. The invariant C, which is
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a measure of the angle expansion of the buoyant jet, has been found to be
almost constant at the same value (0.55) for jets, plumes, and buoyant
jets. The virtual origin is then defined by applying Eq. 2.0.1 at the

orifice of the jet, i.e., at x = 0 so that

1"2

[*]
X = -

D
o ;;C_Z. = - C—Z-N -3.3D . (2.0.2)

This definition of the virtual origin is quite different from the virtual

origins x of the mean velocity and temperature profiles respec-

ou’ *oT
tively defined from the relations

Xou = KouD o

Xor = KppD -

The virtual origin defined by Eq. 2.0.2 is alwéys‘upstream of the jet
orifice; the experimentally determined virtual origins X .0 Xop vere
found (see Table 1.3.1) to be upstream or downstream of the jet orifice.
This present study will explain that these variations are due to the non-
self-preserving character of the jet.

In its initial stage of development, (5-6 characteristic lengths
for a pure jet), a plane jet consists of two plane mixing layers. After
the two mixing layers have merged for some distance, the jet becomes
fully developed. Viewed instantaneously an irregular and sharp interface
separates the jet fluid which is turbulent from the ambient fluid which
is irrotational. If the jet or ambient fluid has a tracer, this sharp

interface also divides fluid of different concentration (see Coles [43]).
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The difference that can be seen in a short exposure photograph and time
exposure photograph of a jet is dramatic (see Werlé [36] plates A, B).
In a time exposure of a jet, a fictitious interface (a plane) appears
which separates fluid that is sometimes turbulent from fluid that is
never turbulént. This plane will be called the boundary of the jet.

It seems necessary to clarify the idea of the boundary of a jet.
For this purpose, first the intermittency YA(x,y) of a quantity A

of jet will be defined as
1 t ' '
Y, (x,y) = Lim = I, (x,y,t) dt
A tom © J; AN

where

1 if quantity A is present at

IA(x,y,t) = X,y at time t

0 otherwise
The vorticity of the fluid or the presence of tracer is usually
used to characterize the presence of the jet at any point (x,y) at time

t. The boundaries of the jet can then be defined by the two lines

y =t B(x) , . (2.0.3)

where 2B(x) is the width of the intermittency profile y(x,y) when y =~ O.
The experimental determination of y for values close to zero is difficult
and depends on the chosen threshold level for the quantity A. Although
an estimation of B(x) for practical purposes can be obtained (see Figure
4.,4,1 and 4.4.2), this estimate must necessarily be a function of the

threshold level. The profile of maximum temperature can also be used to

estimate B(x) (see Section 4.3).



-29-

Therefore, given any threshold level by which to determine the inter-
mittency, the boundaries of the jet y = * B(x) describe an inherent

property of the jet, which is quite different from the width y = + b(x),

which is defined by

(2.0.4)

T(x, * b(x)) = f—%ﬂ

N can be any real number larger than one but it usually has the value

two, in which case b(x) i1s called the half-width.

y=-B(x) y(x,y)>0 y=B(x)

)’(X, Y) =0 7’(X, y)‘:(D

I
H

. !
7/////////////4 V7777777777 >

Figure 2.0.1. Definition of jet bohndary
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2.1 THE MECHANICS OF THE TWO-DIMENSIONAL PURE JET

A pure jet is defined here as a steady source which delivers kine-
matic mass flux Mys and kinematic momentum flux m s through a slot of
thickness D to an ambient fluid. The geometry and the axes of coordinates

of Figure 2.1.1, indicating a jet out of a wall, will be considered.

@(x,u)
y =b,(x)

4

TTTT 77777777 ) 777777777777 —& (Y,

u)

Figure 2.1.1. Gedmetry of a jet

The jet will be assumed turbulent, which according to Sato et al [66]

requires a Reynolds number at the exit bigger than 500. The equations

are the
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continuity equation
du |, v

% +-§; =0 , (2.1.1)

and momentum equations,

%;[32 +:'—2-+-%]+-g-; [E;+ u'v'] =0, (2.1.2)
LTIV e L @D -0 @12

The turbulent fluctuations are zero at the boundaries of the jet, so that

u'v' (x, £ B(x)) = —T(x, B(x)) = v'2(x, + B(x)) =0 (2.1.4)

It is not possible to solve the Reynolds equétions with the present
state of the art of free turbulence; the Equations (2.1.1), (2.1.2),
(2.1.3) are therefore integrated across the jet using the boundary

conditions (2.1.4) to give

4
dx

PE Gy ay + 29(x, BGo) =28& 5

-B(x)

u(x,B(x)) (2.1.5)

d B 1m2 , 7 — =B(X)_, dB(x) [ 3

(82 + 02 + B) ay + [@ V1" 2 8B&E) [g2(y.3 2] (2.1.
o J:B(x) wEa D ay @] T 2SE W B0) 2 (2.1.6)
LI @va T ay - 229 50,800) F,800) = 0

-B(x) d



-32-

Now consider.. =~ each of the terms in equation 2.1.6 in turn. The term

%’;IB(X) @ +u'Z + By gy
-B(x%) P

is what Benjamini[68] has termed the flow force of the jet and represents
the rate of change of the total flux of momentum and the pressure force
along the jet. Miller and Comings [12] (Figures 7 and 8), and Bradbury
[2] (Figures 8, 9, 10, and 11) have investigated the contributions from
turbulent momentum flux and the pressure, and have shown that these
contributors are approximately equal in magnitude and opposite in sign.
Their experimental results indicate a weak positive pressure gradient on
the jet axis and this will tend to reduce the momentum flux of the jet.
We will therefore ignore these contributions to thf integral. The second

term

@»HE®
-B(x)
represents the flux of axial momentum into the jet froﬁfthe outer flow
entrained into the jet.
Morton et al [19] and Corrsin and Uberoi [52] ignored this term by
assuming that axial component of velocity u(x) vanished outside the jet.

The term on the right-hand side
298G 200 B(x) + E (x,B(x)
dx ’ o ’

represents the flux of vertical momentum and the component of axial
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pressure force that act on the sloping side of the jet as defined by
y = + B(x). The pressure component is small and, as Miller and Comings
[12] show, represents a decelerating component of force and it will be
ignored in the subsequent analysis because it is difficult to characterize.
However, recognizing that it is a decelerating component, we can recognize
its influence. The momentum flux term is also small but can easily be
incorporated into the analysis later as will be shown.

We believe that an improvement can be achieved by examining the
error involved in neglecting the above terms associated with the induced
flow field, and which have been ignored by previous investigators. The
procedure will be to assume first that the terms usually neglected are
negligible. From this we will obtain an approximate solution, and then
we will determine the correction to this approximation. The equations

(2.1.5), (2.1.6) are now written as

X = -5, BG)
EBan 66,  (2.1.8)

where

m(x) = J,B(x)'ﬁz dy (2.1.9)

and mé is the kinematic momentum flux at the exit of the jet. From
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(2.1.8) m(x) = m 80 that using dimensional analysis

d ' 1/2 -1/2
Elji' £(m,x) = £(m_,x) = ElmO/ <12 (2.1.10)

where E1 is a constant to be determined experimentally, (El = 0.28, as

will be shown in Section 5.1). Hence the kinematic mass flux increases

x+1/ 2

as and a flow in the region where the intermittency is zero must be

induced towards the jet. The ambient fluid therefore sees the jet as a

m1/2 x—l/2
1l ‘

is irrotational (since at y = *» the vorticity is zero and a slip condi-

distribution of planar sinks of strength E The induced flow

tion is assumed). Lippisch [29] has an illustrative picture of such a
flow induced by a jet out of a wall.

-Now, for the ideal case of a series of sinks in a straight line from
x = 0 to infinity (see Figure 2.1.2) of strength given by Eq. 2.1.10,
the streamlines Y(x,y) of the induced flow, which satisfy the Laplace

equation Vzw(x,y) = 0 and the boundary conditions

‘P(O,}’) =0

d 1/2 ~1/2
& W&,0) = Elmo/ 12 (2.1.11)
were calculated by G. I. Taylor [28] to be

vix,y) = Elmi/2 a2+ ytha - L 12 (5119
Vx2+y?

Clearly these streamlines represent parabolas with slope ¢ = 45° at
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y = 0, (see Figure 2,1.2). TFor the case of a real jet out of a wall, the
flow field depicted schematically in Figure 2.1.3 will be assumed.
Specifically it will be assumed that the jet originates as a source of
kinematic momentum flux (only) o at a distance X, = uolczmoss 3.3D
upstream from the jet orifice (see Eq. 2.0.2 and Figure 2.1.3), and that .
sinks of intensity given by Eq. 2.1.10 are distributed on the x'-axis
from the virtual origin 0' to infinity. The angle ¢ (see Figure 2.1.3)
will be assumed constant at a value TT/4. The existence of the potential
core is neglected in this approximation.

The procedure now will be to consider the momentum Eq. 2.1.6 and to

discuss the terms which were previously neglected. From Figure 2.1.3

u(x, B(x)) = tan ¢ v(x, B(x))

Hence fG'V]B(X) = 2 tan ¢ v2(x, B(x)) , (2.1.14)
-B(x) )

and combining (2.1.14) and (2.1.5), it is seen that

[ V]BE"; e L tan ¢ (@%/a - LW o g2 (2.1.15)
-B(x

Physically, Eq. 2.1.15 represents the x-compdnent of the momentum of the

induced flow. The momentum equation (2.1.6) now becomes

dm

2
P ns(x) -3 tan $(3L) /(1 - Kytan 9)2

+ ZKﬁEQ(x,‘B(x)) or
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£ X<

45°

yiX,y)

)/

N

-y

Figure 2.1.2. Flow towards a line distribution of sinks
of strength given by Eq. 2.1.10.

- y=-B(X) : y=B(X)

Virtual __—
Origin o'

Figure 2.1.3. Schematic of the assumed induced flow and
vir;ual origin of a real plane jet.
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2
& o6 -2 tan o ($2)7/Q - K, tan ¢) (2.1.16)

where

Ky = B 0,25 (see section 4.3).
We observe that the momentum of the induced flow (second term of the
R.H.S. of the Eq. 2.1.16) tends to reduce the kinematic momentum flux
defined by Eq. 2.1.9.

A solution which would predict precisely the kinematic momentum
flux m(x) appears to be very difficult.‘ However, a rough estimation of
the reduction of the kinematic momentum flux due to the opposing momentum
of the induced flow can be obtained using the simplified flow shown
schematically in Figure 2.1.3.

Again using dimensional analysis, we write

gﬁ = E m1/2 x_l/z

o 1 , (2.1.17)
and substitution of (2.1.17) in (2.1.16) gives
dm _ R -y ) -1 -

ix mOG(x) > El tan ¢ x m/(1 KB tan ¢)\ (2.1.18)

Considering that induced flow exists only for x' 3 X Eq. 2,1.18

implies, with x replaced by x', that
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EZ
2 - (o) 2y
n x Ky
o] [e]
3.3 \0.0522
= 33 (2.1.19)
<%+3.3)

where E1 = gws 0.28 and x is the distance from the jet orifice.

For example, at x/D = 100, we obtain m(x)/mo = 0.83, i.e., the
opposing momentum of the induced flow reduces the initial kinematic
momentum flux by 17%.

It will be shown in Section 5.2, where the experimental results of
previous investigators are examined, that this estimation of the reduc-
tion of the initial kinematic momentum flux is conservative and that
most investigators of a pure plane jet out of a wall experienced a much
greater reduction of the kinematic momentum flux. This can be explained
if we assume that the decelerating pressure gradiént existing along the
jet axis has a larger negative contribution to the flow force than the
increase resulting from the turbulent momentum flux. Howevér, this

aspect of the problem, although investigated to some extent by Miller

and Comings [12] and Bradbury [2], needs further study.
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2.2 THE MECHANICS OF THE TURBULENT PURE PLUME

The convection flow generated by a steady line source of heat is
called a two-dimensional plume. In the analysis that follows, it is
assumed that the ambient fluid has only the motion induced by the plume
and is of uniform density Pos and that density variations from p, are
small. .According to Forstrom et al [31] a fully turbulent plume is
characterized by a modified Grashof number Gr greater than 5x102 where

agHox3

G =
r 3
pacpv

’

where H is the input heat flux per unit length,
o 1s the thermal expansion coefficient,
x 1is the distance from the heat source,
g 1s the gravitational acceleration (981 cm?/sec),
p_ 1s the density of the ambient fluid,
c_ 1s the specific heat,

v 1s the kinematic viscosity.

The Reynolds equations of motion integrated across the turbulent plume

are

(1) volume conservation

J'B(x) u(x,y) dy = -2v(x, B(x)) + de(x) u(x, B(x)) (2.2.1)

dx -B(x)
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This equation was derived from integrating the incompressibility equation
and assuming that small volume changes arising from the transfer of mass

by diffusion are neglected (see List [32]).

(ii) kinematic momentum flux

‘ - p-p
& PR (@2 4 W+ By gy = B Byoay 4 wvP® , (2.2.2)
~-B(x) P -B(x) Pa -B(x)
(i11) conservation of heat flux
B( e 71 o
f x) (@TT+u'T') dy = 5 e (2.2.3)
-B(x) ap

where T(x,y) is the excess (above the ambient) temperature and p is the
pressure deviation from the hydroétatic ambient pressure.

It will be shown that the experimental results of this investigation
indicate that u'T' cannot be neglected (see Chapter 6). Density varia-

tions are related with the temperature variations by the equation

1 _do(8) _ _
5(8) do a(8) (2.2.4)
where p(6) is the density at temperature 6, (°C),

a(8) is the thermal expansion coefficient (1/°C)

at temperature 6.

For pure water and for 5°C <6< 50°C the following algebraic

expression was obtained using values of a given by Batchelor [33]
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a(8) = (-0.773 + 0.19 6 -0.0027 62

+ 0.000021 63) x 10”4 (2.2.5)

(see also' Figure 2.2.1). The kinematic buoyancy flux B is defined as

8 =._J'B(X) _E_—(—p-———_pa)u dy ,
-B(x) "a

or for small temperature increments,

B(x)
-B(x)

B = ag Tu dy , (2.2.6)
where T is the excess temperature increment above ambient. It is obvious
from (2.2.6) that the kinematic buoyancy flux cannot be conserved since
it dépends, implicitly, through the thermal expansion coefficient, on the
temperature field of the plume. However, in order to derive the basic

features of the two-dimensional plume, the thermal expansion coefficient

will be assumed constant, which leads to

. agH
JPO qF gy = —2 | (2.2.7)

-B(x) pacp

B = og

i.e., the kinematic buoyancy flux is conserved if a is constant.
The basic character of the line pure plume can be found

using dimensional analysis. In particular, it can be shown that

i‘i=e 1/3

T=e87, (2.2.8)
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dm _ e232/3 (2.2.9)

where €,» €, are experimental constants, and

w = B gy ay
-B(x)

n(x) = [BO) q2 4
-B(x)

The conclusion from (2.2.8) is that the ambient fluid sees the two-
dimensional plume as a distribution of sinks of constant strength e181/3.
Hence for a plume on a half horizontal plane the induced flow will have
streamlines orthogonal to the axis of the plume as in Figure (2.2.2) and

¢ gl/3

an entrainment velocity equal to 2t , 1.e., independent of x.

Ak(X,lJ)
D

]

N/
— <¢¥-—-;
— /._d_&
-—
-

33

€,
X 2

Q

—
—_—

it

Figure 2.2.2. 1Induced flow towards a line plume on a horizontal plane
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This observation was used by Kotsovinos and List [25] to measure
the entrainment velocity using a flow visualization technique. The
second term of the right-hand side of Equation (2.2.2) is then zero. It

can then be shown from Equations (2.2.8) and (2.2.9) that

du

I = (e 6_1/2) ml/2 x_1/2, | (2.2.10)

172
which is quite similar to the relation (2.1.17) for a pure jet, except
that here the kinematic momentum flux, m, increases as x. Two

important non-dimensional ratios can be obtained from (2.2.8) and (2.2.9):

. €
C_= u(x) - = L - constant s (2.2.11)
P vm(x) (x-x ) Ve,
o) 2
3 €, 3 -
R = E—% = —19 = constant . (2.2.12)
p m Ez

The non-dimensional ratio Cp is a measure of the plume angle and R.p is
the Richardson number of the plume. Again using dimensional analysis,
two useful relations for the centerline velocity and temperature can be

obtained:

ay =0, 877, (2.2.13)

Ty = —7i0— (2.2.14)
M ag(x xo)oT
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e
wher ou, GT

origin. It will be shown that the experimental results of this investiga-

are experimental constants, and X, locates the virtual
tion give

o w~ 1.66 and 0., ~ 0.42
u T

(see Section 5.3 and 4.1 respectively).

The turbulence-energy equation is in this case

(1) (11) (I11)
g_t_ (qu) = —yu'vy' _g}_{ + ag a'T' —(u'z-—v") __2_:1(_
(v)
3 B .t 12
--3; v'(%— + 35—9 - Dissipation (2.2.15)
where q'2 =u'2 +v'2 4+ y'2

Each term of (2.2.15) represents a rate of change of the turbulent energy

per unit mass, specifically:

The total time derivative of the turbulence kinetic energy (left-
hand side) is equal to production of turbulent energylby shearing stress
(1), plus productibn by buoyancy forces (II), plus production by normal
stress (III), plus diffusion by turbulence (IV), plus the dissipation
per unit of mass by the turbulent motion (see [34]1, [35]). The ratio of
buoyant production of turbulent energy to shearing stress production of

turbulent kinetic energy is called the flux Richardson number R (see [69])



tmt
R =280l (2.2.16)
f — U
u'v' —
oy
1/3 2/3 . 1 ;
From Equation (2.2.13) u~ B and T ~ 87’7, hence u' and T' are very
well correlated, i.e., u'T' > 0. Also u'v' %§-< 0, hence the flux
Richardson number Rf is negative and indicates that the turbulent kinetic

energy is increased. The centerline turbulence intensity of a plume is
expected to be larger than the intensity of a pure jet, because for a
pure jet the main production term, the shearing stress, is zero at the.
center, while for the plume the production by buoyancy should dominate.
It will be shown that this was verified by the experimental results of

this investigation (see Chapter 4).

2.3 THE MECHANICS OF THE TWO-DIMENSIONAL BUOYANT JET

A buoyant jet is defined as a source of kinematic mass flux Moo

kinematic momentum flux m and kinematic buoyancy flux BO. -Using
dimensional analysis, it can be found that each buoyant jet has effec-
tively two characteristic length scales. One, ug/mo, defines the

importance of the initial volume flux (or kinematic mass flux), and the

2/3

other mO/S0

defines the importance of the initial momentum flux. As
noted previously the ratio of these two scales yields the Richardson

number
u3
R = 03 o s (2.3.1)

m
[¢]

which relates the distances at which kinematic momentum flux is important
relative to kinematic buoyancy flux, to the distance at which kinematic

momentum flux is important relative to kinematic mass flux.
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For a pure plume, the local Richardson number

3
R(x) = L 0B&) (2.3.1)
m3 (x)
was shown (see Chapters 2.2 and 5.1) to be a constant (equal ~ 0.6),
while for a pure jet it is equal to zero. A buoyant jet with an exit

Richardson number Ro << Rp can be considered a pure jet for a distance

2/3

o (where x is the distance from jet orifice). But given any

x < mo/B
significant distance to develop, any slightly heated jet will eventually
become a plume, because the initial momentum will be a small fraction of

the momentum which will be gained by the continuous action of the buoyancy

forces. The local Richardson number continuously increases, so that for

2/3

>>.
X mo/B0

it will approximate the constant value of the plume
Richardson number Rp. On the basis of this, transition to a plume is

assured at any point, x, for which

The conclusion from this discussion is that a buoyant jet is always in a
transition towards a pure plume.
Further reiterating, it should be noted that another important

invariant of a buoyant jet is the non-dimensional ratio C defined by

c= —uG (2.3.2)
Vm(X)(x-xo)
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where X, the location of the virtual origin; this invariant C, which is
a measure of the angle expansion of the buoyant jet has been found to
have almost the same value (0.55) for jets, plumes and buoyant jets.

The thermal expansion coefficient o which appears in the buoyancy
flux term (Eq. 2.2.6) is, implicitly, a function of the coordinates x,y,
but for simplicity it will be assumed that o is a function only of x,

and that its value at a given cross section is given by
alx) = a(T, + T_(x))

where Ta is the ambient temperature, and
Tc 1s the cross sectional mean excess

temperature defined by

H

o o]
Tc(x) =Em . (2.3.3)

The time-averaged integral equations of motion are Equations (2.2.1),

(2.2.2), and (2.2.3) with initial conditions

u(0) = Hy
m(0) = mo s
o gH
(o]
B(0) = By = e .
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From (2.1.14)

2
G512 =2 tan o @B /0K, tanp)2  (2.3.4)
2 dx
-B(x)
where ¢, now a function of local Richardson number, ¢(R), is the angle
of the induced flow streamlines with the jet boundaries (or approximately
with the jet axis). Using dimensional analysis we can write according

to List and Imberger [23]

~2v(x, B(x)) = q(R)/(1-K; tan¢)u (2.3.5)
and
IB(x) E:E-gdy - LB h(R) . (2.3.6)
-B (%) P n

The governing equations then become

duy _m .

._d; = H q(R) . (2.3.7)

dm _ u _tang m®2  q2(R)

dx " m PR 2 2 (1-Kj tang) (2.3.8)
ofT + T (x)]gH

B(x) = —2 S 2 (2.3.9)

C
P

The objective 1s to then find the linear part of the functions q(R) and

h(R). An expansion of q(R) h(R), ¢(R) gives
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q(R) =q +q; R+ 0(R?)
h(R) =h_+h R+ 0(R2) (2.3.10)
$(R) = ¢_ + ¢; R+ O(R?)

The coefficients ¢o’ ¢l can be calculated immediately considering that

$(0) = ¢, = M/4 and ¢(Rp) =T/4 + ¢1 Rp =0,

hence

- _R
b =T/ (= )

Using Equations. (2.3.7), (2.3.8) and (2.3.9), it can be shown that

dR _ 3R C _.g2% tand ud dg

— - +-— — = — e Je
dx  xC2Z [q R+ 3 1K, tang’ ] T W3 dax (2.3.11)
dc 1 [ C2 Rh 2 :

g - == - 2L 9% tand .3.12
dx Cx [ 2 2 4(1-KB tan¢)] (2.3.12)

where R and C are given by Eq. 2.3.1 and Eq. 2.3.2 respectively.

For the case of a pure jet R = 0, ¢ = TI/4, and (2.3.12) gives

c2 qg
% -7 *

— =0
4(1—KB

or

a, = VHAKDZ + 22(1K) ~2(1Ky) (2.3.13)
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For a pure plume R = Rp, $ = 0 and (2.3.11) and (2.3.12) give

- ) =
4, * 4R - RA +ORYH =0, (2.3.14)
c2 Rpho
4, + R -5 - tORH =0, (2.3.15)
c?
or ho = 'i— » (2-3.16)
P
2 9
a4 "= - (2.3.17)
P P

Hence the governing equations become

= (q, + qR) = (2.3.18)

H H

%xg" -[0.19 - 0.0054(T_ + —2—) + 0.000063(T_+ — 5%
- To p -, 0 p
2
o 1
\2 }12 dx
(pocp)

with initial conditions
(@ =wu_ ,
m(0) = mo

BO) = B, -
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On the basis of the experimental results of this investigation (see

Sections 4.3 and 5.1)

q, = 0.146, q = 0.252"
ho = 0.48 , Ky = 0.25

2.4 NUMERICAL SOLUTION OF THE BUOYANT JET PROBLEM

The theoretical analysis developed in the previous Section 2.3
results in a system of ordinary differential equations.

The numerical solution and.the stability of such systems is well
established. The solution was obtained by direct step by step integra-
tion using a subroutine '"MODDEQ/Differential equation solver' available
at Caltech's computer center. The subroutine was based on the Runge-
Kutta-Gill method with automatic control of truncation error. The
solution of this model which gives the growth of the kinematic mass,
momentum and buoyancy fluxes will be presented in Chapter 7 with the

experimental results from this investigation.
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3. EXPERIMENTAL PROBLEMS AND OBJECTIVES

3.0 INTRODUCTION

The objective of this investigation was to study the mechanics of
a two-dimensional turbulent buoyant jet for a wide range of initial
Richardson numbers. Values of the Richardson number, which describes
the relative importance of buoyancy in a jet, extended from the value
appropriate for a pure jet (zero) to that appropriate for a pure plume
(approximately 0.6). Jet buoyancy was produced by increasing the
temperature of the jet discharge over the temperature of the ambient
fluid and the buoyant jet temperature and velocity fields were measured
using calibrated fast-response thermistors and a laservdoppler veloci-
meter respectively. The velocity and temperature data obtained were
recorded magnetically in digital form and subsequently processed to
extract both mean and fluctuating values of tempe;ature and velocity.
A variety of other data such as intermittencies, frequencies, minima and

maxima, and so forth, was also obtained. Conditional sampling was a

significant feature of the data processing.

3.1 TEMPERATURE MEASUREMENTS

Thermistors
Six small bead thermistors were used for temperature measurements

and their characteristics are given in Table 3.1.1.

Dissipation
Type Bead Constant-Still| Time Constant | Resistance
Diameter | Water at 25°C |in Moving Water | at 25°C

Small bead
Veco thermistors | 0.35 mm 0.75 mw/°C 27 milli- ~200 kQ
type 52A26 seconds

Table 3.1.1. Thermistor characteristics.
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Each bead thermistor was insulated and mounted on a stainless steel tube
thereby forming a temperature probe as shown in Figure 3.1.1. The
thermistor temperature response was measured with a bridge circuit as
shown in Figure 3.1.2. The resistors used in the bridge were precision
wire wound resistors (1% tolerance) and an integrated circuit operational
amplifier (741) was used to reduce the impedance of the output signal to
a few ohms to match the input characteristics of the analog to digital
converter. The electrical current passing through the thermistor was
approximately leo—6 Amperes, the ohmic dissipation of the thermistor
was approximately 6x10_6 Watts, hence the self-heating of the thermistor
due to the ohmic dissipation can be calculated using the dissipation
constant given in Table 3.1.1 to be less than 0.008 °C. The drift of
the thermistor circuit for an extended period of time (3 hours) was of
the order one millivolt resulting in an absolute accuracy of the tempera-
ture measurement of the order 0.01 °C.

Each thermistor was individually calibrated and a third order poly-
nomial fitted to the set of calibration points in the least squares

sense

= 2 3
T Ao + A1V + A2V + A3V ’
where T is the temperature in °C, V the analog output from the bridge

in volts (see Fig. 3.1.3), and Ao’ Al, Ay, A regression coefficients.

3
Each analog output V was fed into one channel of an eight channel
analog-to-digital data acquisition system (manufactured by Digital Data

Systems) which digitized the information and packed it on magnetic tape
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Figure 3.1.1. Close photograph of the thermistor probe. One

subdivision is one millimeter.
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A/D
Recorder
-%:- 8 Volt
Mercury.
Battery

Ri= 200 KQ , Ry=Ry= 1.2 MQ

Figure 3.1.2. The bridge circuit used for the measurement
of the temperature.
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compatible with the IBM 360/75 high speed digital computer in Booth
Computing Center. The digitizing resolution was one milli?olt, and the
sampling rate could be varied from 0.01 to 1600 samples per second. The
thermistor time constant was determined by moving a thermistor quickly
from air into a hot water tank (simulation of a step function) and re-
cording the response of the thermistor. The time required to obtain 637%
of the final reading was found to be 27 msec for one therﬁistor with

special insulation and 45 msec for the five others.

A/D Sampling Rate

An investigation was carried out to determine the lowest sampling
rate and sampling time for the A/D converter that would give a time-
averaged temperature T with a standard deviation of % 0.02 °C from the
expected exact omne Tﬁ. Ideally, if T(x,y,t) is thg temperature at any

point (x,y) at time t, then

— 1 ,
T, = lim ;-‘L: T(x,y,t) dt ,

T

but what is measured is

1 N

Te= X

where *
T = sampling time (sec),
N = total number of samples during Tt seconds,
%’ = sampling rate (samples/sec),
t,=—1, i =1, 2, N.

i N
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The question is to determine the minimum sampling time T and the minimum

sampling rate, §3 such that

\/E{'(TE - T)2} £ 0.02 °C .

The sampling rate was determined by first forming a temperature file data
at a sampling rate much faster (400 samples/sec) than necessary to deter-
mine a good spectrum, then calculating the mean using every sample,

every second sample and so on, i.e.,

M

T -1 3z
TM(X’Y) M {=1 T(x’}'sjti)

where j = 1, 2,.........100

N = 400 v, the total number of the recorded
samples during the sampling time T.

M = the integer part of the quotient N/j, 1%6 <M<N.

i=

1,2,.........N, the first, second, etc., sample

ti= time in seconds of -the ith recorded sample

T = sampling time for the file in seconds (fixed)
Tﬁ(x,y) as a function of the sampling rate M/t is shown in Figure 3.1.4.
From Figure 3.1.4 it can be seen that a reasonable minimum sampling
rate is of the order of 10 samples/sec, which indicates that the cut-off
frequency is probably about 20 Hz. 1In order to determine the minimum
sampling time (length of record) a 10 minute file was taken at a fixed

sampling rate 10 samples/sec, i.e., an array was generated with elements
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Figure 3.1.4. Mean temperature as a function of sampling
’ cate (length of sample 50 sec).
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2592
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Figure 3.1.5. Mean temperature as a function of sampling
time (sample rate 10 samples/second).
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T(x,y,t,) where
T(x,y,ti) is the temperature at a point (x,y)
in a plume at time ti
i =1,2,..00....6000, the first, second, etc., sample

t, =0

ct
]

time in seconds of the ith recorded sample,

i.e., t, = 1i/10

i

A matrix S was then calculated with elements found by the running mean

SjL as follows

L

SjL = (1/L) 251 T(x,y,tj + tl)

where

L = 50,100,150,200,.c044...,6000. (number of samples),
£ =1,2,3,0000000.L,
j =0,10,20,30,.00c0000,J,
J+L < 6000,
tl = 0,
tj = j/10 seconds (determines the beginning of the file),
tL = L/10, sampling time in seconds, t.
Then the mean TL of all the means SjL
_ M
T, = 1/M j§l st

where M = J/10 is the number of the means with sampling time L/10.
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The variance

M
2 = ™ - 2
a=(L) l/M‘jEl (TL SjL)

and the mean TL have been plotted in Figure 3.1.5 versus the sampling
time . On the basis of Figure 3.1.5 the sampling time was chosen to

be 150 to 200 seconds.

3.2 VELOCITY MEASUREMENTS

I. Description of the Laser Doppler velocimeter

A laser doppler velocimeter, with direction sensitivity and capable
of measuring the velocity of a free turbulent flow of high turbulence
intensity was developed and used in this experiment (Figure 3.2.l.a and
b). 'A Spectra~Physics Model 120, 5 mw Helium-Neon Laser was the source
of the laser beam which had wavelength 0.6328 micron (in air). The
intensity of the light of the laser beam has a Gaussian distribution and
the diameter, where the intensity is 1/e2 (e = 2,718...) of the center-
line intensity of 0.65 mm.

The laser beam was first passed tﬁrough a rotating radial diffraction
grating disk (manufactured by the Dynamics Research Corporation). This
grating disk, which had 2048 lines was mounted directly on the shaft of
a synchronous motor (Hurst Corporation, Model Minibee) rotating at 1800
revolutions per minute (r.p.m.). The zeroth order diffracted laser light
has the frequency of the laser beam fo and the kth order diffracted

order beam has a frequency
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Lens

I

Synchronous

Motor
1800 Rpm

Diftraction
Groting
Disk

Figure 3.2.1l.a,

h

Figure 3.2.1.b.

A/D Recorder

Beomsplitter

Optics of laser doppler velocimeter.

Photomulitiplier

Photodetector

(RCA 8645)
Preomplifier Amplifier
Spectrum
y Anolyser
x
Oscilloscope Filter

Signal prdcessing of laser doppler velocimeter.
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MN, _
fk fo * ) k = fo * 61.440 k (3.2.1)
where N is speed of rotation of the gradial diffraction

grating (1800 rpm)
M is number of lines on the radial diffraction
grating (2048),

k is the diffraction order,
Thus a rotating diffraction grating provides a convenient way for opti-
cally shifting the frequency of the laser light (Stevenson [64]). It was
observed in this investigation that some laser light of, frequency f0 was
also propagated in the direction of the light of frequency fk and this
caused some problems with the frequency demodulation equipment which will
be discussed subsequently. The basic technique for use of the laser
velocimeter is shown diagrammatically in Figures 3a2.i.a and b, The
zeroth fo and first f1 order diffracted light was passed through a beam
splitter in order to increase their separation; all other diffracted
light was masked. A lens focused the two beams of frequencies fo and f1
into the flow field and a photodetector (RCA 8645 photomultiplier tube)
was aligned with the beam fl ("reference beam') after it passed through
the flow. The photomultiplier also collected light of frequency f0 that
was scattered by particles (of the order 1 micron) existing in abundance
in the flow field. The heterodyning of the scattered light with the
reference beam formed the basis of the velocity measurement system as

will be described in more detail subsequently.

II. Derivation of the doppler shift frequency formula

>
Consider a particle which is moving with velocity U and which is
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irradiated with a laser beam of frequency fo in the direction Z;

’

(Figure 3.2.2). Light scattered by the moving particlé will have a

frequency fP given by

>
eo-U ’
fp = fo(l - n— ) (3.2.2)
where n is the index of refraction of the medium,

c 18 velocity of light in a vacuum.

~N
~N
~N
_ . ]
Laser Particle
Light
. f ~
,? o ﬁ:7
B L -
CH e/
& L~-és‘§o=2$in-§ g,
Ié; = leasl=le.l-= .
sl= 18l = 8yl = | >
~ 7
“” \ Observer

Figure 3.2.2. Scattering light from a moving particle.

Light scattered from the same particle in the direction Z; will have the

frequency (when viewed in the laboratory)
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> > > > > >
es'U eo°U eS-U
fg=f,0+n——)=£fA-n—)A+n—1) =
<>
nUf ‘
o > > 1
fo + c (es - eo) + 0(::7) ~
£+ DU sin(8/2) (3.2.3)
o] A
where 6 is the angle between Zg, Z; in the medium of index

of refraction n,
u is component of the vector velocity U in the plane of
3;, g; and perpendicular to their bisectrice,

A is the wave length of laser light in a vacuum.

The cathode of the photomultiplier superimposes the following electrical
fields

(1) As(t) sinZHfSt, the scattered light, _

(ii) AlsinZHflt, the reference beam,

(11ii) AosinZHfot, unwanted scattered light from the rotating disk,
where la;| >> [a(e)] >> IAOI .

Assuming that all the above components have the same polarization
direction, the output current, i, from the photomultiplier (which is a
square law detector) is proportional to the total received intensity so

that

= 1 > 2
i c[AlsinZHflt + As(t) 81n2ﬂfst + A081n2ﬂfot]

= AlAS(t) cosZﬂ’(fS - fl)t + A AOCOSZ‘IT(f1 - fo)t

1

+ AoAs(t) cosZTf(fs - fo)t 4+ D.C. terms +
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+ terms oscillating at a very high frequency (order

f = 1014 Hz) that exceeds the response of photo-

o
multiplier, (3.2.4)

A spectrum analysis of the signal given by (3.2.4) will have the

form of Figure 3.2.3.

A Ag(t)
ASAO 1 RS

N\

Amplitude

fs-fo fo— 1, fg=f, Frequency

Figure 3.2.3. Spectrum analysis of the signal given by Eq. 3.2.4

For this investigation from Equation 3.2.1 it can be seen that for a
first order scattering beam f1 = fo - 61,440 Hz, and this has been

verified experimentally to be correct within * 3 Hz. Then from Equation
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3.2.3 the component u of the vector velocity ] (Figure 3.2.2) can be
calculated using the linear relation
n u sin(6/2)

f8 - fl = 61440 + ) (3.2.5)

The problem then becomes how to measure fs - f. experimentally. It can

1
be done in a time-averaged way by using a standard spectrum analyser.

On such an instrument the spectral peaks can easily be determined. How-
ever, instantaneous demodulation of the photomultiplier output signal is
complicated by the presence of the other spectral peaks.

Apart from the demodulation problem which has been introduced by
these additional spectral peaks it can be seen that the presence of the
rotating radial diffraction grating shifts the zero velocity doppler
frequency away from zero. There are two distinct-advantages to this in

that it becomes possible to measure very low velocities and also to gain

directional sensitivity.

III. Signal processing

There are three basic methods for signal processing, (a) spectrum
analysis, (b) frequency tracking, and (c) period timing (counting).
Period timing is proper for flows with a low particle content where
individual signal "bursts" from a single scattering particle are detected
and the time between zero crossings of the signal can be measured. Fre-
quency tracking or phase-lock-loop techniques are convenient for most
applications but are inadequate for flows with wide or rapid excursions
in vélocity such as in the intermittent flow that occurs at a jet

boundary. Spectrum analysis, which has been used in this investigation,
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is appropriate for flows with a high turbulence intensity or inter-

mittency.

The function of a spectrum analyser (Figure 3.2.4) will be described
briefly. ' A local oscillator (V.C.0.) delivers a signal whose frequency
fvco increases linearly with time between a minimum fL and a maximum fH.

Consider the case wherein the doppler signal is A éosZﬂth where fD

is constant (e.g. laminar flow). As the V.C.0. is swept from fL to fH

the output signal S(t) from the mixer varies
SL(t) g 8(t) < SH(t)
where (see Magrab et al [56])

A
S(t) E{cosZﬂ(fvco + fc - fD)t + cosZIT(fvco + fc + fD)t]

A
SL(t) ‘E[COSZU(fL + fc - fD)t + cosZﬂ(fL + fc + fD)t]

_A 3 '
SH(t) = 2[c092ﬂ(fH + fc fD)t + cosZﬂ(fH + fc + fD)t]

Since the narrow constant bandwidth filter has a center frequency fc and

| <Af .

a bandwidth Afc there is no output from it except when IfD - f c

vco
Thus the amplitude of the spectrum analyser display would be zero until

the swept frequency equaled that of the input doppler signal. In the case
of a random input doppler signal fD(ti
output of the constant bandwidth filter only for those input doppler

) (turbulent flow) there is an

frequencies that are centered in the band [fD(ti) - fvco(ti)’<Afc.
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Figure 3.2.4. Schematic of a spectrum analyser.




-71-

The available adjustments of a spectrum amalyser are:

(1) Bandwidth Afc of Band pass filter (Hz)

df
vco

dt

(11) Sweep rate of V.C.0. frequency (Hz/second),
(i11) Minimum fL and maximum fH of scan (Hz).

Typical settings in the experiments performed were

Af = 100 Hz,
. C

df
veco

T - 200 Hz/sec,

fL = 55 KHz, fH= 75 KHz.
A 8553L-RF section, 8552A-IF section Hewlett-Packard spectrum
analyser was used in the investigation.
The Y-axis output (amplitude) and the X-axis output (frequency) of
the spectrum analyser were fed into the A/D data acquisition system (A/D)
described in Section 3.1. Typical sampling time for data acquisition was
10 minutes with a sample rate of 40 samples per second. This resulted in

a reasonably smooth probability density distribution for the velocity.

3.3 VELOCITY-TEMPERATURE CROSS CORRELATIONS MEASUREMENTS

A technique was developed to measure the product

N

— 1

uT =% Z ulx,y,t)TE',y,t,)
1=1

where
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u(x',y,ti) is the instantaneous velocity at (x',y) at time ty

T(x,y,ti) is the instantaneous temperature at (x,y) at time e
A small diameter (0.35 mm), fast response (time constant 27 msec),

bead thermistor placed near the focal volume of the laser doppler

velocimeter (Figure 3.3.1) so that x - x' ~ 2 mm was used to measure

temperature and the spectrum analyser was used to provide an array of

instantaneous but not necessarily continuous, velocity measurements.

Thermistor

i \ADh/

Figure 3.3.1. Schematic for temperature-velocity measurement
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The A/D was used to record (i) the instantaneous frequency of the
spectrum analyser scan, fvco(ti)(x—axis), (ii) the instantaneous ampli-
tude A(ti)’ (Y-axis), of the spectrum analyser, and (iii) the analog
signal for the temperature T(ti)' Now if fD(ti) is the instantaneous
doppler frequeﬁcy at time ti’ then defining

0 if |£) - £ | > Af,

At i) =
1 if (fD - £ | <af .
vCco Cc

the instantaneous velocity u(ti) is calculated from the instantaneous
doppler frequency fD(ti) only when A(ti) = 1. The scheme is depicted in
Figure 3.3.2. It is obvious that this array u(ti) of the instantaneous
velocities cannot be used for power spectra of velocity fluctuations,

but it can be used to construct the product uT.

3.4 EXPERIMENTAL SET-UP

The two-dimensional buoyant jet was generated by hot water emerging
from a chamber combining flow straightening elements and then discharging
through a slot 13 cm long and D cm wide (D could vary from 0.2 to 2 cm).
The jet discharged into tank 4.0 by 4.0 meters by one meter deep filled
with tap water. The jet was confined by two plexiglas walls 13 cm apart
in order to maintain the two-dimensionality of the jet (Figure 3.4.1l.a
and Figure 3.4.1.b). A constant head tank was used to provide the
necessary pressure to drive the jet flow and a precision bore Flowmeter
(tube No. B6-27-10/27 manufactured by Fisher Corporation) was used to
regulate the flow with an accuracy of 17. The overail experimental set~-up

is shown schematically in Figure 3.4.2. A first series of experiments
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Confining Walls
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Figure-3.4.1.a. Perspective view of the chamber of the

emerging jet.

Flow Straightening

D // Elements

F' ?f Movable
Thermistor 8 cm
I 4y

st 45 cm —I

Figure 3.4.1.b. Cross section of the chamber of the emerging jet.
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were performed in which only temperatures were measured and the instru-
mental set-up for these tests is shown in Figure 3.4.3. Five thermistors
each at a different elevation and located in the middle plane parallel to
the two confining walls were used for temperature measurement. All the
thermistors could be simultaneously traversed across the jet by means of
a single support carriage. The carriage was connected to a potentiometer
and mercury battery so that a voltage was obtained that was proportional
to the position (Y) of the carriage (resolution 0.01 mm). The A/D was
used to record the temperature at the exit of the jet, the temperatures
from the five thermistors, and the Y-position. The jet chamber was placed
on the floor of the 4 m x 4 m tank and adjusted to make the plane of the
exit slot horizontal. For the second series of tests in which both
velogities and temperatures were measured, the instrumental set-up used
is shown in Figure 3.4.4.a and b. A laser doppler. velocimeter was used
to measure the velocities and a small thermistor (0.35 mm) about 2 mm
above the focal volume of the laser was used to measure temperature. The
focal volume was locatea in the jet midway between the two confining.walls.
In these experiments the jet chamber and confining walls were mounted on
the carriage and the thermistor and laser held fixed. The laser doppler
velocimeter was aligned and focused and then the transverse velocity
profile was measured by placing the jet at different Y-positions. The
purpose of the mirror (Figure 3.4.4.a) was to reduce to path of the

laser light into the water tank.

3.5 DATA COLLECTION AND PROCESSING

The analog outputs of the thermistor circuits, spectrum analyser,
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and potentiometer were digitized continuously by the A/D data acquisi-
tion system and packed onto a magnetic tapercompatible with the IBM

360/75 high speed digital computer in Booth Computing Center. Two main
programs were written to process the recorded information. The first
(Program I) was applicable to the first instrumental set-up where only
temperatures were measured across the jet using the five thermistors at
five different elevations. The second program (Program II) was used for
the second instrumental set-up when the laser doppler velocimeter was used
to measure velocities and one thermistor was used to measure temperature

close to the focal volume.

Program I

Each of the six thermistors was characterized by its calibration

»

polynomial

T = A(i) + B(i)V + C(i)V? + D(i)V3,

where i = 1,2,......6 (six thermistors)

V is analog signal from bridge circuit.

T is temperature in °C
The coefficients B(i), C(i), D(i), were practically constant for an
extended period of time (3 months) but the coefficient A(i) did change
slightly with the time (order 1 week) possibly due to the ageing of the
thermistors or the temperature variations of the ambient air (affecting
the precision resistors of the bridge). Thus a caliBration of the co-

efficient A(i) was necessary prior to each run. The first file of the
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magnetic tape (for every run) represented the analog outputs Vi of the
six thermistors at ambient water temperature Ta’ Then A(1i) was calculated
from the relation

A(d) = Ta - B(i)Vi - C(i)Vi - D(1)V i=1,2,......6

i
Measurements of the same temperature from the six thermistors had an
accuracy * 0.0l °C. Each of the next files then contained the condi-
tional sampling of the signal from the six thermistor circuits and the
signal from the potentiometer (transverse position Y). The main steps
of the program were as follows:

1. Read a file from the tape.

2., Calculate the instantaneous temperature

Tk(xk’y’ti) = A(k) + B(k)Vk(Xk,Y,ti) + é(k)vlzc(xk’y’ti)

+ DRV (x5, ty)

for k=1,2,......5, (five thermistors at five elevations)
and k = 6 (thermistor at the exit).

3. Calculate the mean temperature at X sy
N

where k = 1,2,......6 (thermistors at different elevations

and at exit)
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Calculate standard deviation of the temperature fluctuations

\/Tiz = \/(Tk - T2

k=1,2,......5

Calculate I(xk,y,ti) where

1 if T(x, ,y,t.) > T_ + 0.04 °C ,
I(xk,y,ti) =g k i a (3.5.1)
0 if T(xk,y,ti) < Ta + 0.04 °C

where Ta the temperature of the ambient water.

Calculate the intermittency Yk(xk,y) where

N

Y (K 5Y) = = S (3.5.2)

Calculate the intensity of the temperature fluctuations with
respect to the mean'f(xk,y) defined in step 3 but subtracting
the contribution to the signal when the temperature is below

the threshold defined in (5) above.

M=

— 1
Thot N

[T(xk’y’ti) - -'f(xk’}')lz I(xky’ti)
i ' .

1

Calculate the intensity of the temperature fluctuations with
respect to the mean T(xk,y) taking into account only the signal

below the threshold.

N
T('.‘,Cz)ld = %I- igl[T(xk’y!ti) - '_f(xk;}')]z [l - I(xk,y,ti)]
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Calculate the frequency of the conditionally sampled inter-

mittent signal (Figure 3.5.1)

kAmbient Temperature
Temperature Level

TIME

Figure 3.5.1. Typical intermittent signal

In order to count the threshold crossings, a temperature

level T, was chosen such that T, = T + 0.04 °C (where T =
L L a a

ambient temperature). Then the product is formed

and defining F(ti) as
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0 if Z(ti) >0,
F(ti) =
1 if Z(ti) <0,

the frequency of threshold crossings fk is given as

N
zl F(t,)
P o (3.5.3)
R 2(ty - t;)

Another way to find fﬁ is to construct a function
M(xk,y,ti) such that
0 if [I(x,y,t,) + I(x,y,t; ;)] = 0 or 2

M(x ,y,t,) =
xk i 1 1if [I<xk,y,ti) + I(xk’y’ti“"l)] =1

. then N
L M(x, ,y,t,)
i=1 xk i

fr= 2(ty - £))

10. Determine the maximum temperature Max T

Max T= maximum‘{T(xk,y,ti), for 0 < £, < 1} where 1 =

sampling time

11. Determine the minimum temperature Min T

Min T = minimum {Tk(xk’y’ti)’ 0 < ty <t} where 1 =

sampling time
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12. Determine the skewness factor

T3
_(i‘—!_—Z—)§7§ where T1'<3 = [Tk(xk,y,ti) - Tk(xk’y)]s
-k

W

13. Determine the flatness factor

(T /(122

y _ _ T T
where Tk [Tk(xk’y’ti) Tk(xk’y)l
(For a Gaussian distribution the flatness factor is 3.)

14. Plot the transverse mean temperature profile.

Program II

This program had all the features of program I with some additions.

Briefly the steps of this program were

o o NP

as in program 1

14

15. The frequency histogram of temperature was calculated and
plotted.

16. The frequency histogram of the velocity was calculated and
plotted.

17. The mean velocity u(x,y) waé calculated from the velocity
histogram.

18. The standard deviation:;TE was calculated from the velocity
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histogram.

19. The product uT was calculated.
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4. TEMPERATURE MEASUREMENT RESULTS

AND DISCUSSION

4.0 BAS;C EXPERIMENTAL PARAMETERS AND INITIAL DATA

Complete information regarding the basic parameters and the
initial data of the experimental runs are given in Table 4.0.1. An

explanation of the data columns is as follows:

Column 1 gives the name of the run. The series of runs June or
July, corresponds to the experiments in which only temperature
was measured; while the series PLVT corresponds to the experi-
ments in which both temperatures and velocities were measured.

Column 2 gives the width of the jet (in cm) at the orifice.

Column 3 gives the aspect ratio of the jet at the orifice.

Column 4 gives the exit velocity of tﬁe jet. -

Column 5 gives the temperature of the ambient wéter in °C.

Column 6 gives the excess (above ambient) temperature at the jet
orifice in °C.

Column 7 gives the kinematic viscosity (cm?/sec multiplied by 102)
at the jet orifice.

Column 8 gives the thermal expansion coefficient (1/°C multiplied
by 1000), calculated at the jet orifice.

Column 9 gives the Reynolds number at the jet orifice

R =4 D/v
e o (o]

Column 10 gives the Richardson number calculated at the jet orifice
aogToD

R, = ——5—
(o]
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u
. ° —_
Run D Aspect T v a R R
em | Y8t10 | gec °C °c  |x102 |(x103

1 2 3 4 5 6 7 8 9 10
PLVTI2-€ Q.24 54,20 62.93 3,30 21400 0,90 0.25 16d3,38 0. 000V%
PLVY2-1 0.24 S44.20 62.93 5.40 21.H0 0,85 V.27 1177.09 [FRVIVIVIV]]
PLVT2-H Q.24 544,20 64.20 3,380 22420 0.87 V.26 1762478 V. Uu0u>
PLVT2-0 ' 0,24 564,20 62.90 6,85 23425 0.80 UesV 1097.30 0.,00012
JUARF=) ) 0.50 26,00 43,40 11.20 20.00 0.78 0.31 2794,.,23 0.000%0
JUNE=] 0. 50 26,00 43.40 11.20 20.00 0.78 U. 31 271964,28 Je LUVIQ
,‘J’H\E-S 0.50 26,00 43,40 L1.29 20,00 Q.78 Jedi c794.28 v.0005V
JUNF=) 0,50 26,00 43,40 1l.20 20.00 0.78 Je il 2194.28 Q0. LUOSY
[JUNE"l 0.50 26.00 30.58 be0oU 19.45 0.86 v.27 1To7.07 OsvUUIs
JUNE=? 0.50 26,00 30.58 6.6V 1v.85 0.86 V.27 1To7.817 V.0009«
JUNE=-T 0.50 20.00 30.58 6460 19,05 0.86 0.27 1707,.87 V. UUU9s
'IJHN'-’ 0,50 26,00 V.58 6.6V 19.8% 0,86 V.27 LloT.u? [N TVIVET
JUNE=T 0,50 26.00 30.58 646U 19.85 0.86 V.27 1767.867 V. 00U9s
Y9LV71-H 0,24 564,20 19.00 9.2V 22459 0.77 0.31 593.61 v.0ul8Y
PLVTI-A 0.24 34,20 19.00 10,40 23.20 0.74 0.32 6l18.17 0.002¢
JULY-3 1.00 13.00 15.29 5,10 <l %0 0.86 Ve 27 1769.99 U,uub8
Jutvy=-3 1.00 13.00 1529 5,10 21le60 0.86 Vedl 1769.,95 0.0uU58
JuLy-3 1.00 13.00 15.29 5,10 2la40 0.86 V.27 1709.95 0,0058
JuLy-3 1.00 13.00 15.29 5.1V Lles40 0.86 V.27 17169.9% 0.0058
JuLy-3 1.00 13.00 15.29 5.10 21.40 V.86 Jedl 1767.95 J,0U58
JULy-5S 1.00 13.00 15.29 %050 2120 0.88 Ve 206 1736.93 U.0U50
JuLy=s 1.00 13.00 15.29 4450 21.20 0.88 Uedt L736.93 0. 0050
JuLy-5S 1.00 13.00 15.29 4450 2h e 2V 0.88 Jelb 1736.93 0.0U%0
JuLy-S 1.00 13.00 15.29 4050 21.20 .08 V.20 1736.93 0.VU5%9
JuLy=% 1.00 13.00 1529 4.50 2l.20 V.68 Dedt 1736.93 0.0050
JULY=29% 1.00 13.00 15.29 18.30 23.00 0.63 0.38 26407.91 Qeuly?
JuLy=25 1.00 13.00 15.29 18,30 23.00 0,63 Ve38 24UT.91 UeuddT
JuLy=-2% 1.00 13.00 15.29 18430 23,00 0.63 Ues8 2407491 0.0¢97
JuLy=25 1.00 13.00 13.29 18.30 23,00 0.63 Uell 2407.91 U.0297
JULY=25 1.00 13.00 15.29 18.30 300 0,63 [V P9EY ) ¢40T.91 VeULIT
JUNE=# 0.50 26.00 12.23 23.50 19.70 0.61 0439 V92404 U.0308
JUNE=-6 0.50 26,00 12.23 23450 19.70 0.61 Ve 3y 995.64 [VIRVEDT.)
JUyme-4 0.50 2640V 12.23 23.50 19,70 Ueb1 Ved9 995,64 Ve0100
JUNF=-4 0.50 26.00 12.21 23450 ly. 170 Q.61 Ue 3y 995%.04 Q.0308
JUNF=6 0.50 26400 12.23 23.%0 9.0 V.61 Ve 49 Y95.64 JeIUB
JuLy-=10 1.00 13.00 Jelu 15410 22410 0.69 V¢35 1338.75 0,002
JULY-10 1.00 13.00 9.18 15.10 22.10 Ue.69 0. 35 1338.73 V.0062
JuLyY-10 1.00 1J.00 9.18 15.10 e lV 0.069 Je 35 1338473 Ve
JuLy-t0 1.00 13.00 J.18 15.10 dle 10 Ve69 ~ Ve db 133b.73 Us00b2
Juy-in 1.00 13.00 9,18 15.10 2241V V.69 Va35 1338.73 Ueube
PLYT1=-F 1.00 13.00 4.55 115V Z1e50 Ve 75 Vedd 609,05 0.177
PLYVTL-D 1.00 13.00 4,55 1lebdo 21le60 0.74 0.32 6lUe9y UelT78
PLVTL-1 1.00 135.00 4455 11.00 22.00 0.75 0.32 bUY.US 0.167
pLVTLI-C 1.00 1J.00 4055 10.90 22400 0.75 Ve32 ouT.76 O.1067
PLVYTL1~K 1.00 13.00 4+55 11.15 23.00 0.73 0.33 623.93 Ue.l70
PLVT1-R 1.00 ~13.00 4.5% 11.u00 22.00 V.75 Vead 009,05 0el69
PLVTLI-H 1.00 13.00 4,55 1le40 23,00 0.73 0,33 627.17 Velbl
JUNE~28 1.00 13.00 611 20.90 2130 0.62 0. 39 97770 Velio
JUNE=-28 1.00 13.00 6.1l 20490 21430 0.62 Ue3y 977.70 0.210
JUNF=-28 1.00 13.00 6.1l 20.90 2130 0.62 0.39 977.70 0.210
JUNE-28 1.00 13.00 6e11 2Ve90 che30 .62 Qe 39 977.70 Velib
JUNF=2R 1.00 13,00 6411 20490 2l.30 0.62 0639 977.70 0.216
JuLy-1 . 1.00 13.00 6.1l 2l.85 2l.65 0.61 Us U 999,94 0.231
JuLy-1 1.00 13.00 6e11 21.85 21.65% 0.61 Ue40 999,94 Je2il
JuLy-1 1.00° 13.00 6011l 2le05 2le 65 0.61 Je4l 999.94 0.231
JuLy=-1 1.00 13.00 6,11 21.85 21465 Q.61 Je &V 999,94 Ued3l
JuLy-1 1.00 13.00 6,11 21385 2le65 0.61 - Ueoy 999.94 0,231
JIUNF=24 2.00 6.50 7.60 21.90 20.60 0.62 0e39 £445.00 Va9
JUNF=24 2.00 0.50 7460 21.90 £0.60 0.62 Ve 39 4445.006 Qec94
JUNE=26 200 6450 T.60 21.%0 206 6V Q.62 0639 2445,00 Vedys
JUNF=2¢ 2.00 650 T«60 21490 2V b0 0.62 V. 39 Q465,06 Ve294
JULY=~29 1.00 13,00 4459 21.70 che 1V 059 Vel To0e40 Os42s
JuLy=-29 1.00 13.00 459 2le7TV 44410 0.59 0.4l T60.40 Ve#h23-
JULY=-29 1.00 13,00 4059 21.70 24410 0659 Oel 780440 Va4l
JuLyY-29 1.00 13.00 4459 21.70 24410 0.59 Uebl T60.40 0e4es
JuLY=-20 1.00 13.00 ®.59 21.10 261V 059 Uekl TeVe40 Vo423
Table 4.0.1. Basic experimental parameters and initial data of

the temperature measurements.
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4.1 MEAN TEMPERATURE

The mean temperature Tkx,y) in °C for a particular distance from
the exit x, was plotted versus the transverse distance y (in cm), and

-

a Gaussiﬁh curve was fitted of the form

T(x,y) = Ty exp[-in2 (y/b;)2] , (4.1.1)

where bT is the half-width of the temperature profile, as in Figures
4.1.1.a to 4.1.1.d and 4.1.4.a to 4.1.4.d. The temperature half-widths,
bT(x), for a particular run were plotted versus the distance from the

exlt as in Figure 4.1.2 and 4.1.5, and a straight line

o'

T_ox &
5 - Kz §F Kpp) (4.1.2)

was fitted to the data, where D is the width of the jet at the origin
(jet exit). The virtual origin of the mean temperature profile is then

given by

The coefficients K K T from all the runs are tabulated in Table

1T’ 2

4.1.1 from where it can be observed that there is no apparent variation

of K with the initial Richardson number Ro' But it is interesting

11* Xor

to note that the coefficients K K2T for runs PLVT2 and June 7 are

17’
quite different, although they both correspond to jet Richardson
numbers appropriate to a pure jet. The explanation of this appears to

be that the true character of the jet-half-width is non-self-preserving,

i.e., the assumption of linear growth of the half-width although
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o TAANSVERSE MERAN TEMPERATURE PROFILE

Figure 4.1.1.b. Mean temperature profile for a
turbulent jet at x/D = 20.0.
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Figure 4.1.,1.a. Mean temperature profile for a
turbulent jet at x/D = 10.0.
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o TRANSVERSE MERAN TEMPERRTURE PROFILE
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Figure 4.1l.l.c. Mean temperature profile for a
turbulent jet at x/D = 30.4.

TRANSVERSE MEAN TEMPERATURE PROFILE

[w]
Q
o~ | B ] i i { I
RUN JUNE 7
o RICH. NUMB.=0.0009
Al X/0=51.0 -
- EXPERIMENT O
Q
q - -
2
ol =
o a
ol. ]
-12.0 -8.0 -6.0 -3.0 0.0 3.0 6.0 9.0 12.0

Y AXIS IN CM

Figure 4,1.1.d. Mean temperature profile for a
~ turbulent jet at x/D = 51.0.
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TRANSVERSE MEAN TEMPERRTURE PROFILE
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Figure 4'.1.4.a. Mean temperature profile for a
turbulent plume at x/D = 6.0.
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Figure 4.1l.4.b. Mean temperature profile for a
' turbulent plume at x/D = 14.0.
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 Figure 4.1.4.c. Mean temperature profile for a
turbulent plume at x/D = 30.2.
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Figure 4.1.4.d.

Mean temperature profile for a
turbulent plume at x/D = 36.0.
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Run RO X/D | KlT Kop ClT C2T
from to
1 2 3 4 5 6 7 8
2

PLVT2 0.00008 20.80 93.75 | 0.167 -1.56 0.20 -2.44
June 3 | 0.00091 10.0 50.00 | 0.130 3.90 0.27 -1.0
June 7 | 0.00094 10.0. 60.0 0.136 1.82 0.27 -1.0

PLVT3 0.002 33.75 93.75 | 0.141 -2.12 0.31 -4,70
July 3 | 0.0058 6.0 36.0 0.125 4.35 0.35 -0.1
July 5 | 0.0050 6.0 36.2 0.121 4.46 0.35 -0.1
July 25 0.0297 6.0 36.0 0.123 2.3 - -
June 6 | 0.031 10.0 60.0 0.120 3.3 - -
July 10| 0.063 6.0 36.0 0.118 3.3 - -
PLVTL | 0.17 9.0 39.0 | 0.120 2.10 - -
June 28 | 0.216 6.0 36.2 0.122 ;.63 - -
July 1 | 0.231 6.0 36.0 0.121 2,87 - -
June 26 | 0.294 6.0 18.0 0.113. 4.0 - -
July 29 | 0.424 6.0 36.0 0.112 4,42 - -
Table 4.1.1. Linear approximation of the growth of the temperature

half-width and the centerline dilution
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providing a convenient way of plotting and fitting data whiqh is
compatible with the overall accuracy of a particular run is not
strictly valid. This will be clarified in Chapter 8.

The;;ean temperature T normalized by the mean temperature on the
jet axis Tﬁ has been plotted versus the non-dimensional distance y/x'
(where x'= x - xoT) for two representative cases of Richardson number.
Figure 4.1.3 gives TYTM for a jet and Figure 4.1.6 for a plume. The

Gaussian curve which is plotted on these figures is defined by

= exp[-%n2 (y/xlTx')Z] (4.1.3)

21

Similar plots for the other experimental runs are presented in Appendix
Bl
The centerline dilution, defined as T;/Tﬁ has been plotted in

Figure 4.1.7 for the case of a pure jet (Rosu 0.0009) and a line

T 2
0o X
(T ) = CrG * Cop) (4.1.4)
M

fitted to the data. In Figure 4.1.8 it can be seen that for a pure
plume the centerline mean temperature T decays as x-l, and not as x-llz
as occurs for a jet (Figure 4.1.7). The centerline temperature for
many runs with initial Richardson number greater than 0.15 (case of a

plume) has been plotted in Figure 4.1.9 in a fashion suggested by the

non-dimensional number (see Eq. 2.2.14)
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B(x)2/3
a(x)g (x-x_p) T)(x)

o, = (4.1.5)

where t@? thermal expansion coefficient a(x) is calculated from Eq.
(2.2.5) at a temperature Ta + Tﬁ(x) and the kinematic buoyancy flux
B(x) 1is calculated from the relation

a(x)gE2

c
P P

B(x) = ’ (4.1.6)

where Ho the heat flux at the origin of the jet. The mean value for
Op suggested by the results tabulated in Table 4.1.2 is op & 0.42 with a

standard deviation of 0.02. Since

a(x) Ty(x) = (p, = Py (x)) /0,

where Eﬁ(x) is the mean density on the jet axis at a distance x from
the jet origin, then using Eq. 4.1.5 it is apparent that

P
—2— - 02 g (x - x B0 3 (4.1.7)

P, = Py(X)

This value for Op is higher than the value Op ™ 0.38 suggested by Koh
and Brooks (60), or by Lee (55).

The mean centerline temperature Tﬁ(x) and the temperature half-
width bT(x) for each measured temperature profile are given in Table

4.1.2.
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Run R D X T T b g
o o M T T
cm cm °C °C cm
1 2 3 4 5 6 7 8
PLVT2-F 0.0C0051 0,240 £.000 3.300 1.75v 0.720 2.650
PLVT2-1 0.0000R9 0,240 R.900 5.4u0 2.C20 1.400 1.722
PLVT2-H 0.NO0NER 0,260 16.100 3.800 1.160 2.040 1.5C1
PLVT2-A 0.000123 C.240 22.%C0 &.850 1.800 3.300 0.8%8
Jusie -3 v.000309 | 0.509 | 5,000 t1.200 7.100 | 0.900 | 1.157
JUINE=3 0.0nn909 0.500 10.00060 i1.200 5. 150 1.530 0.5¢1
JUNE -3 0.000000 0.5C0 15430C 11.200 4,000 2210 0.887
JUINE -3 0.000909 Q.500 25.000 11.200 3.100 3.50.0 0.734
JUNE=~7 (.C0C940 Ue. %00 5.7000 6.600 %4250 0.800 1.174
JUNEST 0.000940 0.500 10.00C 6.60L0 3.200 1.500 0.911
JUNE=T N.000940 0.500 15,200 A.600 24500 2.200 0.818
JUNE~T7 0.600540 0.5Ca 25.900 6.600 1.800 31.620 0714
JUNE-T 0.9700940 0.500 n,n00 6.600 le 7640 4, 200 0.¢35
PLVT2=-R 9.001RC4 0240 R,100 9.2u0 3,050 1.160 0.800
PLVT3-3 0.002242 C. 240 22.50¢C 10.400 1.780 3.100 0.518
JiLyY=-3 n.0nss21 1.000 6,000 5.100 3, 68C 1.290 0,705
JuLy=-3 UsCNRA21 l1.cv0 14.10N0 5.100 2+430 2.300 0.625%
JIny-3 0.005321 1.000 22.000 5.100 l.760 3,200 0.612
JuLY-3 0.005R21 1.00n | 30.600] 5.100 1.560 | 4.200 | 0.s527
JuLy-13 0.07%821 1.000 3¢.0CC 5.100 l.430 4.800 0.497
Jny-s 0,005001 1. 000 €. 000 4,500 3.000 1.270 0.838
JULY=-S €.005C01 1.000 14,000 4.500 2.150 2.200 0.469
JULY=-S 0.C050C1 1.0G0 22.0C0 4,590 1.560 3.330 0.649
JULY-S 0.005001 1.9200 30,400 4,500 1.370 4,200 0.562
JULY=S 0.0C5%01 1.000 38,200 4,500 1.250 4,900 0.529
JULY=2¢ 0.026741 1. 000 €.000 18,300 12.000 1.132 0.607
JULY =25 0,029741 1.000 14.)00 18. 370 7.250 2.0600 0.522
JULY=25§ C.026741 1.J00 22.900 18.300 5.250 3.000 0.5C2
JULY=25 | 0.02974]1 1.000 20,0006 18.3C0 4.150 4.050 0.483
JULY=-25 C.N29741 1.00L0 34,000 1R.30v 3.550 4,700 D79
JUMF -6 0.03CRS87 N.500C 5.00¢ 23.509 12.700 0.R00 0.467
JUNE -4 N.030997 0500 10. 000 23.500 7. 8CC 1.430 0.455
JUNF=~§ 0.03CR97 0Ua500 15000 23.5u0 5.5CC 2.030 0,483
JUNE =4 0.03€937 0.500 25.0CC 23.500 3.750 3.220 0.434
JUNF =& (.030827 0.500 30. )00 23,500 3.400 3.770 0.405%
JuLy=-10 N.C62657 1.000 5400 15.120 8.300 1.100 0.509
JULY-10 N.062853 1.000 14.000 15.1C0 5.250 _2.070 Q445
JUuLY-10 " 0.052853 1.000 22400 15,100 3.450 3.000 0.473
JuLy-10 0.C62R¢3 1.0C0 30,400 15.1u0 3,000 3.830 0.410
JULY-10 0.0628%3 1.000 2¢.200 15.1¢0 2.500 4e 670 Q422
PLVTI-£ N.1775¢3 1.000 9,000 11.500 3.870 1.700 U.503
oLvr - 04178673 1.C00 14,300 11.550 3,250 24360 0.416
PLVT1=-2 0.165843 1.009 19.000 11.000 2,200 2.550 U.458
PLVTI-C 0.167867 1.000 23.500 10.9L0 2.900 3,250 0.414
PLVT1~-K N.176845 1.000 2R.900 11.150 1530 2,750 048452
PLVTL-R 0.169R413 1.000 33.40C 11.000 1.250 4 .400 0446
PLVT1-H 0.1€184] 1.000 39,10C 1l1.400 le220 4,950 0.4133
J'INF~28 (e?215254 1.C00 £, 000 20.900 9.600 1.070 0047
JUNE=2 0.,216254 1.701 14,900 20.990 S.6U0 1.970 0.413
JUNF =29 0.21€6254 1.000 22.000 20.900 3.500 3.000 0.457
JUNE =28 0.21625%4 1.000 3C.20¢ 20.900 2. 1700 44130 0.449
JUNE=-28 0.21¢6254 1.000 36.2C0 20,900 24300 4,800 0.449
JULY-1 0.2731431 1.CCO 6,000 21.850 19.200 1.070 0.418
JHey -1 0.231431 1.N00 14.1000 21.859Q 5.€%54 1.670 Oetl4
JLy-1 (23163} 1. JOO 22.000 21.850 3.700 2.870 0.638
JuLyY-1 N.231431 1.070 A0, 40C 21.850 2. 800 4,000 0.438
JULy=-1 N.2314131 1.009 36 60N 21.850 24400 4,700 0.435
JUNE=2¢ 0.2¢4518 2.0CC 12.900 21.900 8.500 2. 260 0.419
JUNE =24 0.29451A8 2000 20,900 21.9)0 64250 3.320 UhiT
JUNE=2 ¢~ 0,2645]18 2.000 28.000 21 .900 4,800 4,000 0.429
JUNF =24 0,294% 1R 2.000 | 2s.n06| 21.900 | 4.200 | s.o00 | 0.408
JILY-29 0.423977 1.000 | 6.000| 21.700 | 9.000 | 1.170 | 9.328
JULY-29 0.423977 1,000 | 16,000 | 21.700 | 4.650 | 2.070 | 0.374
JULY-29 0.423977 1,000 | 22.000] 21.700 | 3.120 | 2.950 | 0.394
JULY-29 0.423977 | 1.000 | 30,000 | 21.700 | 2.300 | 3.850 | 0.4l
JULY=29 0.423°77 | 1.000 | 36,000 | 21.700 | 2.060 | #.900 | 0.385

Table 4.1.2. Experimental values for temperature half-
' width and temperature distribution along
jet axis for turbulent jets and plumes.
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4.2 TURBULENCE INTENSITY

The intensity of turbulent temperature fluctuations, defined as

T2 = Lin & [ S [T(x,y,6) - T(x,y)1 2t (4.2.1)

the

or, when conditional sampling is performed, as

™M=

TZ =g E  [Ty.ey) - Touy))2 (4.2.2)

ey

is plotted in Figure 4.2.1 (representative case for a plume) and in
Figure 4.2.2 (representative case for a jet). It is interesting to
notice the dramatic difference in the structure of the turbulence
intensity profile for the above two cases. The reason for this is
probably the production of turbulent energy by the buoyancy forces
(see Eq. 2.2.15). The turbulent energy equation.ksee Eq. 2.2.15) has

the form

dq'?Z —=T
= = agu'T' + production by Reynolds

stresses + diffusion and dissipation terms (4.2.3)

where q'2 = u'? + v'2 4+ w'2 and agu'T' is the production of turbulent
energy by the buoyancy forces. The production of turbulent energy on-
the jet cross section is obtained by integrating Eq. (4.2.3) across

the jet.

B(x)
J a(x)g u'T'dy
-B(x)
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where the thermal expansion coefficient a(x) is calculated from Eq.
(2.2.5) at a temperature Ta + Tﬁ(x). However, the kinematic buoyancy
flux

Z

80 = JB® @ eutnyI T y)dy
-B(x)

= P®at0gitny) Ty + [PPamwerTay  4.2.0)

-B(x) -B(x)

so that the production of turbulent energy by the buoyancy forces is
equal to the turbulent contribution to the buoyancy flux. Assuming
that u(x,y) and T(x,y) are approximated by the Gaussian curves Eq.

4.1.3 and Eq. 5.1.3 respectively, and considering that for a plume

(see Section 2.2) it is found that

RICIIFHEROHER ag (x=%,p) Ty, ()

dy ~ (4.2.5)
~B(x) 8 g2/3

i.e., the non-dimensional number Eq. (4.1.5) can be regarded as the
ratio of the kinematic buoyancy flux of the mean motion to the total

kinematic buoyancy flux.
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Further, assuming that the distribution of the turbulent energy

flux is self-similar, it is possible to write

W g

wT = @Y, £
where (uiT')M the value of u'T' on the jet axis, so that

IB(X)

o (x)gu'T'dy ~ agx(u'T'),
-B(x)

For a plume, u(x,y,t) and T(x,y,t) are well correlated (see Section 6.2)

so that it is possible to write

Using this result, it then becomes possible to write

(4.2.6)

B a@E AT Gy o 2080 T
-B(x) B (x) 8(x)2/3

where B(x) is calculated by Eq. (4.1.6).
We can therefore conclude from Eqs. (4.2.5) and (4.2.6) that Eq.
4,2.4 can be rewritten as

a(x)g(x-x_n) T, (x) + ; o (x) g (x-x_,) /12
2/3

A =1

B B

for some constants A and B. Furthermore, since the first term is
constant in a turbulent plume (see Figure 4.1.9), it is apparent that

the second term should also be constant.
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The centerline turbulence intensity for many runs was scaled
according to Eq. (4.2.6) and the results are plotted in Figure (4.2.3)
versus the non-dimensional distance from exit X/D. Two important
conclusiéns can be drawn. First the right-hand side of Eq. (4.2.6) is
constant for a plume and it is approximately equal to 1.0, i.e.

a(x)g (x-xoT)V T'2
K

773 1.0 (4.2.7)

¥ =

B(x)

Second, the turbulence intensity increases as the initial or local
Richardson number increases, and tends asymptotically to the turbulence
intensity of the plume. Combining (4.2.6) and (4.1.5) it is seen that

for a plume

12

H

~ 0.42 _ (4.2.8)

—

Ty

The effect of the initial Reynolds number on the turbulence intensity
(see for example Heskestad (5)), which should be relevant in the cases
of Ro << Rp’ was of second order in this investigation because the
initial Reynolds number for all the ekperiments remained essentially
constant. The centerline turbulence intensity is plotted again in
Figure 4.2.4 where it is non-dimensionalized using the local centerline
mean temperature Tﬁ(x). Basic parameters and’experimental results
regarding the centerline turbulence intensity are given in Table 4.2.1;
column 3 is the Grashof number, defined as Bx3/v3, and column 10 is the
non-dimensional ratio given by Eq. 4.2.7. The profile of turbulence

intensity, as defined by Eq. (4.2.1) gives the gross picture of the
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Run R G X T T YT'2 | /T'2 | /T2
o r o M T o z
x 1010 | cm °C °C °C T T
M o

1 2 3 4 5 6 7 8 9 10
PLVT2-E 0.0000¢%1 C.1R4 £.000 3.300 1. 750 0.130 0.074 0.039 0.028
PLVT2-2 t.000n809 1.7R7 8200 5.400 2.020 0,269 0.129 O.u%8 0.075
PLVT2-H | .0.0(00%8 t.867 16,100 3,800 1.160 0.200 0.172 0.09) 0.115
pPLVT2-A . 0e000123 41.€70 22.500 6.850 1. ROD 0.340 0.189 0.050 0.220
JUINE =) - (.000799 1,327 5.000 11.200 Te 190 0.56u 0.079 0.05%0 0.068
JUNE =2 0.00000° P, 132 1v0.000 11.200 5.150 U.4RO 0.0 C.063 0.057
JHNF =3 0.000909 26.013 1%.000 11.200 4. 010 0480 0.120 0,063 0.135
JNE -3 0.00070° [ 108.003 | 25,000 | 11.200 3.100 0,490 0.158 V.048 0.215
JUNE =T 0.C(C940 0,606 5.000 6600 4o 250 0.382 0.090 0.058 0.077
JUNF =7 0.000940 ?2.878 10,900 6.600 3.200 0.320 0.100 0.068 0.110
JUNE -7 0.C00940 9.32¢ 15,200 64620 2.509 0.290 0.116 0.064 0.142
JUNE-=T 0.000940 4C.%6N 2%. 500 64600 1.800 0.315 0.175 L.04B 04245
JUNF =7 d.000060 65.576 32.0)0 6600 1.740 0.300 0.172 O.u4e5 0.27
PLVTI-P 9.001764 0,038 8,100 9.2V 3.050 0.0 0.0 0.0 0e206
OLVT3-A 0.0Nn2242 1$.059 22.%00 10.40) 1.780 0.630 0.35¢4 J.061 0.683
Juty-3 0.705021 0.¢e01 6.000 S.100 3.680 G.480 0.130 0.094 0.185
JuLY=-2 0.005921 £.EEC 14,000 5.100 2.4 0.395 0.163 0,077 0.260
JUty-3 0.0C5Rr21 22,674 22.0790 5.100 l. 760 0.450 0.256 v.088 0.418
JuLvy-3 0.005021 &1.835 30.400 5.103 1. 560 0.370 Q2644 U275 0.4e2
JuLyY-13 0.005321 101.177 34,000 5.100 1.430 0.400 0.290 V.0T8 0.563
JULY =S ©0.005001 0,482 64000 4. 50) 3.000 0.480 0.160 0.107 0.191
JULY=-S 0.005r01 £e569 14.000 4,500 2.150 0.390 0.191 v.087 0.2171
JUuLY=-S 0.005001 20,212 22.000 4.500 1«540 U350 0.224 0.078 0.346
JULy-5 0,005001 52.177 30,400 4,500 1.370 0.340 0.248 0.076 Q.601
JLy-5 0.0C5001 8¢.80°0 35,200 4.500 1.250 0.330 0.264 0.uT73 0.6459
JULy-2¢ 0,0297¢1 5.¢99 6.CI0 18.300 12.000 1.920 0.160 0.105 0,264
JULY=25% ).02074]1 45.905 14.000 18,300 7.259 1.450 0.200 V.079 0.376
JULY=-25 0.025741 147.0%2 22.000 18.3)0 5.250 1.260 0,240 U069 Ve%78
JULY =25 0.02°074] 334,140 30.000 18.30) 4,150 1.100 0,265 V.060 0.549
JuLyY=25 (029741 £63,131 36.000 18.300 3.€5) 1.120 0.315 u.061 0.658
JUNE -6 0.030797 1.30¢ £.C20 22.591) 12.700 1.900 0.150 0.081 0.320
JUINE -6 N,03INA97 6,506 10.099 234509 7. P00 1.639 0.209 V.069 04460
JUINE =4 0.030R67 17.519 15.000 23.500 . 5.500 1.€50 0.300 v.070 0.h48
JUNF =6 0.030897 6¢ .SA2 25.C00 23.500 3.750 1.280 N.341 V.U54 0.787
JUNE =5 0.039A837 111.2¢7 30.000 23.590 3.6400 1.200 0.353 0.u51 0.872
JLyY-10 0.Cr29¢3 1.815 6,700 15.100 8.300 2.290 0.275 0.151 0.540
JULy-10 0.062P53 17.1¢¢ 14.C00 15. 100 5.259 l.36V 0.259 0.090 0.582
JuLy-1n C.L628%3 5¢.3313 22.000 15.100 3.450 15230 Q.357 0.081 0.754
JuLy-1u 0.CE2R¢] 139,179 30.400 15. 102 3,000 0.910 0.303 0.060 0.740
JuLy-10 0.062R53 227 .688 36.200 15.109 2. 500 0.910 0.364 U.060 0.862
PLVT]-E 0.1775¢3 1.402 9.000 11.500 3.870 1.500 0.3R8 0.13u 0.771
eLvri-p N,17R073 f.U17 14.C09 11.559 3.250 1.100 0.338 U.095 U.813
PLVTI~Z 0.169943 11.129 19.000 11.909 2. 200 0.890 0.405 v.us8l 0.881
PIVTL-C N, 1687867 | 204612 | 23.500 | 104300 2.000 0.850 0.425 .76 1.027
PLVT1-K 0176045 40739 2R. €00 11.152 1.530 0.680 Q.ltb 0.061 0.984
PLVT]1-R 0.169043 £6.004 33.¢00 11.000 1.350 0.600 Us644 V.05% 0.997
PLVTI-H N.181P41 1€0.740 33,100 11.40) 1.220 0.540 0.443 V047 1.022
JUNE =28 0.,216254 1.752 6.000 2V. 90V 9. 600 2.959 0.307 0.1l 0.6868
JUUNC-2 R 0.,216254 15.110 14,000 20.990 5.600 1.700 0.304 0.081 0.735
JUNF =-2R 0.215254 4T7.054 22.000 20. 300 3.500 1.480 0.423 0.071 0.925
JUNE=2R 0.216256 111.564 310,290 274900 2+ T00 1.139 0.419 (VRN 7213 0.932
JUNF -2 ¢ N.21€2%4 183.772 364200 20.200 24300 1.000 0a.6135 0.G464 0.971
JuLy-1 Ge231221 1.907 A.C00 21.859 10.200 3.050 0,300 Uel40 0,717
JULY=-1 0.231621 18,450 14 .000 21.850 5.650 1.810 €.320 0.u83 0.774
Juty-1 0.23142] £2.175 22,000 2185V 3.700 1.420 0.384 0.065 0.076
JuLy=-1 0231631 124,964 30.400 21.850 2. 800 1.120 0.400 0.051 0.91¢4
JUuLyY-1 0.231421 205,326 36.490 21.850 2.400 1.020 0.£25 0.047 0.578
JUNE =26 0.29451¢ | 30.837 | 12.€00 | 21.900 8. 500 2.890 0.340 0.132 0.811
JUNF =26 0.294518 116,249 20.000 21.900 ¢.250 24250 0.360 0.103 0.8606
JUNE-26 C.265451R 269,627 2R.600 21.990 446800 1.800 0.37% 0.082 0.875
JUNE =26 0,29451R 537.4%51 36.000 21.900 4,200 1.680 0.400 0.077 0.991
JuLy-2e 0.423777 1.6h4 6000 | 214700 9,000 3.200 0.356 0.147 1.082
JuLy-29 0.423977 | 14,165 | 14,000 | 21.700 4,650 1.700 0.366 0.076 0.979
JuLy=-29 0.423977 47,2461 22.000 21.790 3.120 1.300 0.417 0.060. 1.057
JULY-2¢ 0.423977 | 110.170 | 20.000 | 21.700 2.300 0.980 0.426 0.065 1,029
JULY-29 0.423077 | 1£5,7¢3 | 36.000 | 21.700 2,060 0.850 0.413 0,039 1,045
Table 4.2.1. Tabulated experimental values for the intensity of

turbulent fluctuations of temperature along jet axis

for turbulent jets and plumes.
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phenomenon but there is a lot of additional information which is

important and should be considered when intermittent flows are in-

vestigated. Specifically the turbulence intensity T'2 can be analyzed

as the stm of two terms as follows

— 1 ' —
T'Z = Lin T [© [T(x,y,t) - T(x,y)]%dt
the & O

- Lim & [ TGy, 0) - Ty 120 - Iy, 0)lat
tho

' —
+Lim 3 [5 [T0y,10) - T2 Iy, de
the & °°

where
A 1
T(x,y) = Lim %v‘ft T(x,y,t)dt
the °

and

1 1if T(x,y,t) > T+ 0.05°C

I(x,y,t) ={
o otherwise

12 o 2 12
Hence T Tcold + Thot

where

-7 _ 1 rt' =
Teowa = Lim g Jy [Tx,y,0) - T(x,)12[1 - Ix,y,t) ldt

(4.2.9)

(4.2.10)

(4.2.11)
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and

— 1 tl —
T;lcz)t = Ll::z 't_:" IO [T(x,y,t) - T(Xy}')]z I(x)}’st)dt (4'2012)
t

‘?J
Clearly, if I(x,y,t) = 1 for all the time t (which means y(x,y) = 1)

then Tég =0 and T'% = T'2 If I1(x,y,t) = 0 for all the time t

1d hot*

(which means the temperature probe is always in the cold ambient water)

then

12 - m12 = T'2 =
Thot Tcold T 0

Figure 4.2.5 (where an intermittent temperature signal is sketched) can
be used to clarify the physical meaning of each of the two components

12 T2 .
Tcold and Thot’ The turbulence intensity (see Eq. 4.2.1) is the moment

of the whole signal T(x,y,t)(the continuous and the dotted line) with

T!2

respect to the mean temperature T(x,y) (defined by Eq. 4.2.10). hot(x,y)

is the moment of the continuous line with respect to the mean T{x,y) (again

defined by Eq. 4.2.10) and the Ezgld is the moment of the dotted line

with respect the mean T(x,y) (again defined by Eq. 4.2.10). Hence the

term T'Zld can be considered as an apparent turbulence intensity
co

generated by the'intermittency, i.e., by cold bursts or puffs, or eddies.
The presence of the term Tégld does not necessarily imply turbulence
(it can even exist in the case of an unstable laminar jet). An intrinsic
look at.the profile of turbulence intensity can be obtained from

+ ~ '~ 12 12 12
Figures 4.2.6 (~ pure jet) and 4.2.7 (~ plume) where T'%, Tcold’ Thot

are plotted, and from which some interesting conclusions can be drawn.

The two peaks in the profile of the turbulence intensity T'2 of a pure
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T(x,y,1)

e

AN /'\\ /

Ta -

\_(__ A W

Ta, Ambient Temperature

o= Time

Figure 4.2.5. Sketch of an intermittent temperature signal.
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jet (Figure 4.2.6) are mainly generated by the large cold eddies

(which may be irrotational), i.e., by Tégld‘ The Reynolds equations
and the energy equation, where all phase information is lost by

averaginy, cannot be used to predict Tégld‘ It was found previously

(Section 2.2, or Figure 4.2.3) that the normalized turbulent intensity

VT'Z/Tﬁ is greater for a plume than for a jet due to the action of

T'2

buoyancy forces. Since T'2 was analyzed into two components hot

(small eddies) and Tégld (large eddies) the question is which component

in particular the buoyancy forces feed. The answer to this question can

be obtained from Figures 4.2,6 and 4.2.7 from where it can be observed

—

that the non-dimensional profile Tégld/fﬁ (apparent intensity due to

large cold eddies) is almost the same in magnitude and shape for both

jet. and plume. However, the profile Tﬁgt (small scale hot eddies) is

much bigger for the plume. It can be observed also that on the jet

axis

T'2

cold © 0, T'% ~ T2

hot

for both jet and plume and that

T'2 T'2
— . > — |
Tﬁ plume Tﬁ jet

Hence it seems that the buoyancy forces intensify the Tégt term, i.e.,

they feed mainly the small scale eddies of the turbulence.

4.3 CROSS-SECTIONAL PROFILE OF MAXIMUM AND MINIMUM TEMPERATURE

The maximum and minimum temperature occurring at a given point (x,y)



-121-

during a sampling time, and made non-dimensional using the mean center-
line temperature Tﬁ(x), are plotted in Figures 4.3.1 and 4.3.2 for the
two typic?l cases of R.o ~ 0.005 (jet) and Ro ~ 0.4 (plume). The

boundart%s of the jet can be defined as the distance y/x' at which the

profile of maximum recorded temperature drops abruptly to zero, i.e.,

the equation

Yy = #B(x) &~ + 0.25 (x - xoT)

can be considered as defining the boundaries of the jet (Figure 4.3.1).
For the same experiment the equation of half-width of temperature
profile is given by y = #0.121 (x - xoT) and the equation of standard

variation by y = #0.103 (x - x ). Hence the boundary as defined by

oT’
the maximum temperature profile is approximately at 2.4 standard
deviations from the axis. The centerline maximum~and minimum tempera-
tures are plotted in the Figure 4.3.3 for many initial Richardson
numbers. The conclusion from Figure 4.3:3 is that the non-dimensional
centerline maximum temperature Max TM/Tﬁ and the non-dimensional center-
line minimum temperature Min TM/Tﬁ depend on the Richardson number, R.
Specifically Max TM/Tﬁ increases with R and tends to an asymptotic
value equal to 2.5 for R apr while Min TM/Tﬁ decreases with increasing
R and becomes zero for R kpr. This is consistent with the results of
Section 4.2, i.e., that the turbulence intensity increases with R.

The interesting result Min TM/Tﬁ = 0 for a plume implies that the

intermittency of the temperature at the center of the plume is not one,

and cold ambient water can reach the axis of the plume.
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