Rotational Spectroscopy and Observational Astronomy of Prebiotic Molecules

Thesis by

Susanna Leigh Widicus Weaver

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended May 2, 2005)

© 2005

Susanna Leigh Widicus Weaver

All Rights Reserved

Acknowledgements

I owe my gratitude to so many people for their guidance, assistance, friendship, and moral support during the completion of my graduate work. My time at Caltech has been an incredible experience, and I will always remember the wonderful people that I have met in the last few years.

Thank you to Geoff Blake, my advisor, for showing all of us with his daily example that a person can indeed still have fun while being a scientist. Yet for all of the fun, you have also taught me how to look at all sides of an issue and how to find answers for myself, even when there might not be an answer to find. As a first-year student in your class I would have never guessed just how well I would know those numbers that I am supposed to keep in the back of my head! Also, thank you for teaching me when to be cautious and when to cut my losses, and especially how to make this choice effectively at 3 A.M. at an altitude of 14,000 feet. Thank you for opening the doors to the field of astrochemistry–I knew when I came to Caltech that I wanted to combine the fields of chemistry and astronomy, and with your help I have now carved out my own niche in this exciting, emerging field. Most notably, though, thank you for understanding that there are things that are equally, if not more, important than research, and always encouraging me to lead a balanced life.

I would like to thank my committee members Jack Beauchamp, Pat Collier, and Doug Rees for keeping me on my toes as well as understanding the struggles I faced as I attempted to master two fields.

Thank you to the past and current members of the Blake group. To those who have accompanied me on this incredible journey of the Yellow Submarine–Suzanne Bisschop, Garrett Bittner, Rogier Braakman, Dan Holland, Vadym Kapinus, Matt Kelley, Brian Meehan, and Mike Morton–I am so glad to have had you all as office and lab mates, and I want to thank you for your help and support in getting the Great Yellow Beast up and running. To my SURF students Katie Dyl and Maryam Ali, it was a pleasure to help you get started in your scientific careers; thank you for all of your help and hard work. As for the astronomy side of the group, I would like to thank Adwin Boogert, Suzanne Bisschop, and Rogier Braakman for being great backup observers on those long, long nights atop Mauna Kea, and Karin Oberg for just being a great person. I would especially like to thank Jackie Kessler-Silacci for the many long hours of pouring over equations and observational spectra and her extreme patience as I learned a new field. But I would most notably like to thank Karin, Suzanne, and Jackie for being not only great group members but also true and wonderful friends.

To the JPL Spectroscopy Group, thank you for sharing your wealth of knowledge about rotational spectroscopy. I would especially like to thank Brian Drouin, without whom most of the laboratory portion of this thesis would be nonexistent. Thank you for your patience and understanding as you taught me everything I know about fitting spectra.

I owe extreme thanks to Tryggvi Emilsson for all of his help in transferring the massive collection of everything Flygare into new hands. You have not only taught me how to effectively rebuild and use this amazing instrument, but you have also taught me the finer points of applying everyday things to scientific problems.

I would like to offer a special word of thanks to the Caltech Chemistry and GPS staff.

Dian Buchness, without you we would all be lost. To the guys in the machine shop, especially Mike Roy, I promise that I am done bringing you impossibly difficult things to build! Thank you for being so skilled at taking my ideas and turning them into real, fully-functional pieces of equipment. To Tom Dunn, thank you for working your magic with many pieces of very old equipment and for the scavenger hunts through cabinets, closets, labs, and hallways hunting for just the right components. I owe a special thanks to Catherine May for not only keeping us all running in the BI, but also for many much-needed pep talks along the way. And thank you Leticia Calderon for keeping track of all of us (and all of our equipment) in the Blake Group. I thank all of you for your help throughout the years, as I would not have been able to complete this work without you.

Thank you to the Okumura and Wennberg groups for your advice and encouragement. I have learned quite a lot about infrared spectroscopy and atmospheric chemistry at our group meetings, and I hope that you have likewise learned a bit about rotational spectroscopy and astrochemistry from me. Also, thanks to Chip Kent and Mike Feldmann from the Goddard group for the great collaboration on the two *ab initio* studies that are included in their theses rather than mine.

Thank you to the many astronomers who have offered their help and advice throughout this work. This includes the CSO, OVRO, and GBT staff and the Caltech Submillimeter group. I owe special thanks to Frank Rice and Chip Sumner for the long hours, hard work, and most importantly the incredible receiver for the survey project. I would also like to thank the hot core astronomers Sheng-Yuan Liu, Tony Remijan, Doug Friedel, Lew Snyder, and Mike Hollis for their advice and support.

I owe my neverending gratitude to those teachers from my earlier schooling who inspired me to become the scientist that I am today. There are too many great professors from Illinois

v

Wesleyan University to be able to name them all here, so I will simply say thank you to all of you. I would especially like to thank my undergraduate advisor, Wendy Wolbach, who taught me the skills necessary to be an excellent chemist and supported me in every choice along the way. In addition to the wonderful influence of my college professors, I would like to thank my high school chemistry teacher, Don Wayman, who first introduced me to chemistry, and most importantly to cosmochemistry.

Thank you to my wonderful friends, both at Caltech and afar. To Jill Bose-Deakins, Rebecca Connor, Amanda Sisk, and Rachel Niemer, thanks for being the best bridesmaids a bride could ask for! I would also like to thank Andy Waltman, who worked so hard to leave Jeremy and me alone in so many different places. In addition to Jill, Rebecca, Amanda, and Rachel, I would like to thank Brian Sisk, Andrew Udit, Jolene Fernandes, and Lauren Webb for being such a great bunch of friends. Thank you to the HUMRingers, Gary, Bryan, and the rest of my family-away-from-home at Holliston for always offering loving support. To all of my other close friends at Caltech who are too great in number to name, it has been a great ride, and I cannot think of a better bunch of folks to work and play with. Also, although we were not close friends, I would like to mention our friend and colleague Ben Edelson-you were an inspiration to all of us, and we will miss you greatly.

I would like to especially thank my parents, Paul and Sue Widicus, for all of their love and support. You have always taught me to reach for the highest point possible, no matter how far out of reach that point might seem. You encouraged me to pursue my dreams despite the fact that it took me so far away from my family and friends. Whether it be stargazing with a new telescope on a snowy Christmas evening or memorizing the periodic table, you have always supported me in everything I have done, and I would not be who I am today without that help. Thank you, and I love you. Last, but certainly not least, I would like to thank my husband Jeremy, who promised to love, laugh with, cry with, and grow with me. Thank you for always holding true to your word. I promise to always hold true to mine. This journey would have been so very different without you by my side. I will forever be thankful that they cancelled that lunch on the first day of orientation! I am so excited about beginning the next chapter in our life together. Thank you for putting up with me while we have both been writing our theses. And thank you for being such a wonderful husband. I love you.

Abstract

It is now widely believed that prebiotic molecules were delivered to the early Earth by planetesimals and their associated interplanetary dust particles. Yet the formation pathways for these molecules are not clear. Amino acids and sugars have been found in carbonaceous chondrites, but only much simpler species have been detected in the interstellar medium (ISM). Prebiotic organics could have formed in the ISM and been directly incorporated into planetesimals, or simpler species could have formed in the ISM and then been incorporated into planetesimals, undergone further processing, and been delivered to Earth. Limits on interstellar chemistry must therefore be established through observational astronomy before potential prebiotic formation pathways can be assessed. These observations require laboratory spectroscopic investigation of the species of interest.

This thesis is an interdisciplinary study involving laboratory rotational spectroscopy and astronomical observations of several key prebiotic molecules. The laboratory work has focused on obtaining the rotational spectra of the simplest three-carbon ketose sugar, 1,3dihydroxyacetone, and its structural isomers methyl glycolate and dimethyl carbonate, as well as aminoethanol, the predicted interstellar precursor to alanine. The pure rotational spectral analysis of the low-lying torsional states of the simplest α -hydroxy aldehyde, glycolaldehyde, has also been completed. The original Balle-Flygare Fourier transform microwave spectrometer was used to obtain the microwave spectra, while both the Jet Propulsion Laboratory and Caltech direct absorption flow cell spectrometers were used for additional direct absorption millimeter and submillimeter studies.

The results of these laboratory experiments were used to guide observational searches with the Caltech Submillimeter Observatory, the Owens Valley Millimeter Array, and the Green Bank Telescope toward the hot core sources Sgr B2(N-LMH), Orion Hot Core/Compact Ridge, and W51 e1/e2. Evidence has been found for the presence of dihydroxyacetone and methyl glycolate in Sgr B2(N-LMH).

These results have important implications for interstellar grain surface chemistry, and proposed additions to grain surface chemical models are also discussed. Reactions involving surface radicals and molecules containing carbonyl groups can efficiently compete with the simple grain surface reactions included in previous models. Such aldehyde abstraction reactions should be considered as pathways to complex carbonyl-containing species on interstellar grain surfaces.

Contents

A	cknov	wledgements	iii
\mathbf{A}	bstra	let	viii
1	Intr	oduction	1
	1.1	Prebiotic Interstellar Chemistry	1
	1.2	Grain Surface and Hot Core Chemistry	2
	1.3	Thesis Overview	4
2	Exp	perimental Laboratory Methods	7
	2.1	Introduction	7
	2.2	Spectroscopic Techniques	8
		2.2.1 Pulsed Fourier Transform Microwave Spectroscopy	8
		2.2.2 Direct Absorption Flow Cell Spectroscopy	11
3	Obs	ervational Astronomy	14
	3.1	Observational Requirements for Interstellar Detections	14
	3.2	Observatories	16
	3.3	Column Density Calculations	17
		3.3.1 Rotation Diagrams	17

		3.3.2	Integrated Intensities	18
		3.3.3	Line Strengths	19
		3.3.4	Molecular Partition Functions	20
4	1,3-	Dihyd	roxyacetone	21
	4.1	Introd	uction	21
	4.2	Ab Ini	itio Studies	22
	4.3	Spectr	oscopic Studies	24
		4.3.1	Experimental	24
		4.3.2	FT-Microwave Studies	24
		4.3.3	Direct Absorption Millimeter and Submillimeter Studies	25
		4.3.4	Data Analysis	27
		4.3.5	Discussion	30
	4.4	Observ	vational Studies	31
		4.4.1	CSO Observations	31
			4.4.1.1 Observations	31
			4.4.1.2 Results	33
		4.4.2	OVRO Observations	37
			4.4.2.1 Observations	37
			4.4.2.2 Results	39
		4.4.3	GBT Observations	39
			4.4.3.1 Observations	39
			4.4.3.2 Results	40
		4.4.4	Discussion	42

5	Din	nethyl Carbonate & Methyl Glycolate	46
	5.1	Introduction	46
	5.2	Spectroscopic Studies	48
		5.2.1 Experimental	48
		5.2.2 FT-Microwave Studies	48
		5.2.3 Direct Absorption Millimeter and Submillimeter Studies	51
		5.2.4 Data Analysis	51
		5.2.4.1 Dimethyl Carbonate	54
		5.2.4.2 Methyl Glycolate	56
		5.2.5 Discussion	57
	5.3	Observational Studies	60
6	Gly	zcolaldehyde	66
	6.1	Introduction	66
	6.2	Spectroscopic Studies	68
		6.2.1 Experimental	68
		6.2.2 Data Analysis	69
		6.2.3 Discussion	71
7	Am	linoethanol	75
	7.1	Introduction	75
	7.2	Spectroscopic Studies	77
		7.2.1 Experimental	77
		7.2.2 Data Analysis	77
		7.2.3 Discussion	79

	7.3	Observational Studies
		7.3.1 CSO Observations 82
		7.3.1.1 Observations \ldots 82
		7.3.1.2 Results \ldots 82
		7.3.2 OVRO Observations
		7.3.2.1 Observations $\ldots \ldots $
		7.3.2.2 Results \ldots 88
		7.3.3 Discussion
8	Con	clusions and Implications for Interstellar Chemistry 87
	8.1	Laboratory Rotational Spectroscopy
	8.2	Observational Astronomy
	8.3	Implications for Interstellar Chemistry
		8.3.1 Proposed Grain Surface Chemical Network
		8.3.2 Determination of the Rate Constants
		8.3.3 Discussion
	8.4	Future Work
\mathbf{A}	Fly	gare Operation 108
	A.1	Instrumentation
		A.1.1 Instrument Control System
		A.1.2 Gas Handling and Sample Delivery
		A.1.3 Valve Assemblies
		A.1.4 Heated Sample Holder
	A.2	Spectrometer Startup Procedure

в	Flow Cell Operation	130
	B.1 Instrumentation	130
	B.2 Spectrometer Startup Procedure	130
	B.3 Spectrometer Parameters	132
	B.4 Spectrometer Alignment Procedure	134
	B.5 Spectral Acquisition Procedure	136
	B.6 Sample Pressure and Temperature Regulation	137
	B.7 Spectral File Format	139
С	Spectral Assignment	140
	C 1 The CALPCM Suite	140
		140
	C.2 The Submillimeter Analysis Program	142
D	Geometry Optimizations of the $C_2H_4O_2$ & $C_3H_6O_3$ Structural Isomers	147
D	Geometry Optimizations of the $C_2H_4O_2$ & $C_3H_6O_3$ Structural Isomers D.1 Introduction	147 147
D	Geometry Optimizations of the $C_2H_4O_2$ & $C_3H_6O_3$ Structural IsomersD.1IntroductionD.2Z-Matrices	147147151
D	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1.3-Dihydroxyacetone Spectral Analysis	 147 147 151 157
D	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1,3-Dihydroxyacetone Spectral Analysis	 147 147 151 157 157
D	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1,3-Dihydroxyacetone Spectral Analysis E.1 1,3-Dihydroxyacetone .int File	 147 147 151 157 157
D	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1,3-Dihydroxyacetone Spectral Analysis E.1 1,3-Dihydroxyacetone .int File E.2 1,3-Dihydroxyacetone .par File	 147 147 151 157 157 158
D	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices J.3-Dihydroxyacetone Spectral Analysis E.1 1,3-Dihydroxyacetone .int File E.2 1,3-Dihydroxyacetone .par File E.3 1,3-Dihydroxyacetone .lin File	 147 147 151 157 157 158 159
D E F	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1,3-Dihydroxyacetone Spectral Analysis E.1 1,3-Dihydroxyacetone .int File E.2 1,3-Dihydroxyacetone .par File E.3 1,3-Dihydroxyacetone .lin File Dimethyl Carbonate Spectral Analysis	 147 147 151 157 157 158 159 204
D E F	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1,3-Dihydroxyacetone Spectral Analysis E.1 1,3-Dihydroxyacetone .int File E.2 1,3-Dihydroxyacetone .par File E.3 1,3-Dihydroxyacetone .lin File Dimethyl Carbonate Spectral Analysis	 147 147 151 157 157 158 159 204 204
D E F	Geometry Optimizations of the C2H4O2 & C3H6O3 Structural Isomers D.1 Introduction D.2 Z-Matrices 1,3-Dihydroxyacetone Spectral Analysis E.1 1,3-Dihydroxyacetone .int File E.2 1,3-Dihydroxyacetone .par File E.3 1,3-Dihydroxyacetone .lin File Dimethyl Carbonate Spectral Analysis F.1 Dimethyl Carbonate .int File F.2 Dimethyl Carbonate .int File	 147 147 151 157 157 158 159 204 204 205

G	Met	hyl Glycolate Spectral Analysis	212	
	G.1	Methyl Glycolate .int File	212	
	G.2	Methyl Glycolate .par File	213	
	G.3	Methyl Glycolate .lin File	215	
н	Gly	colaldehyde Spectral Analysis	263	
	H.1	Glycolaldehyde .int File	263	
	H.2	Glycolaldehyde .par File	264	
	H.3	Glycolaldehyde .lin File	265	
Ι	Am	inoethanol Spectral Analysis	325	
	I.1	Aminoethanol .int File	325	
	I.2	Aminoethanol .par File	326	
	I.3	Aminoethanol .lin File	328	
Bi	Bibliography 3			

List of Figures

1.1	Schematic diagram of a hot core, adapted from [1]. The indicated size scale	
	is that appropriate for a hot core surrounding a high mass protostar. 'Hot	
	corinos' have also been detected around low mass protostars and have similar	
	temperature profiles but are much less massive and smaller in size [2]	3
2.1	Schematic diagram of an FTMW instrument	9
2.2	Schematic diagram of the Caltech Direct Absorption Flow Cell Spectrometer.	11
4.1	Structures of the two lowest energy dihydroxyacetone conformers: a. doubly	
	hydrogen bonded conformer (ground state); b. singly hydrogen bonded	
	conformer	24
4.2	Single-shot dihydroxyacetone spectra from the FT-microwave experiments.	25
4.3	The flow cell dihydroxyacetone spectrum from 112 to 120 GHz	26
4.4	Possible dihydroxy acetone transitions observed toward Sgr $\mathrm{B2(N\text{-}LMH)}$ with	
	the least-squares Gaussian fits to each line. Spectra are from the CSO 500 $\rm MHz$	
	AOS, and a linear baseline subtraction of the continuum has been performed.	
	The vertical dotted line indicates $v_{lsr} = 64 \text{ km/s}$. The positions of additional	
	dihydroxy acetone lines relative to 64 km/s are indicated in spectrum (b). $\ .$ $\ .$	34
4.5	The rotation diagram for dihydroxyacetone toward $SgrB2$ (N-LMH). The labels	
	correspond to the panels of Figure 4.4	36

4.6	The simulated spectrum of dihydroxyacetone lines at 220 K compared to an	
	observed Sgr B2(N-LMH) spectrum. The structure of dihydroxyacetone is	
	shown in the inset	37
5.1	Ground state structures for a. dimethyl carbonate and b. methyl glycolate	47
5.2	FTMW Doppler-doublet spectra of the dimethyl carbonate 1 $_{0,0}$ \rightarrow 0 $_{0,0}$	
	quartet. The frequencies are in units of MHz.	49
5.3	A FTMW Doppler-doublet spectrum of dimethyl carbonate for which manual	
	de-Dopplerization was performed for line frequency determination	50
5.4	The room temperature methyl glycolate spectrum from 103 to 111 GHz	52
5.5	The simulated spectrum of methyl glycolate at 200 K (red) compared to a	
	Sgr B2(N-LMH) 3 mm survey spectrum. The vertical lines correspond to	
	line center positions, with red representing methyl glycolate lines and blue	
	representing formic acid lines. Formic acid is the only identified species with	
	lines in this window; all other emission features are unidentified. \ldots .	62
5.6	A map of the possible methyl glycolate emission feature at $89815~\mathrm{MHz}$ in Sgr	
	B2(N-LMH)	65
6.1	The room temperature glycolal dehyde spectrum from 101 to 122.5 GHz	69
7.1	The ground state structure of 2-aminoethanol	76
7.2	The room temperature aminoethanol spectrum from 97 to 120 GHz	78
8.1	The simplest chemical model of grain surface reactions driven by single-atom	
	addition to CO $[3]$	92

8.2	Initial results from a deep broadband line survey of the Orion Compact Ridge.	
	The temperature and frequency calibrations are preliminary, but the RMS	
	level is $\sim 20 \text{ mK}$	107
A.1	A schematic diagram of the FTMW mixing manifold.	114
A.2	A schematic diagram of the FTMW heated nozzle	117
D.1	The relative energies of the $\mathrm{C_2H_4O_2}$ (top panel) and $\mathrm{C_3H_6O_3}$ (bottom panel)	
	structural isomers.	150

List of Tables

3.1	A summary of the observatories used in these studies	17
4.1	Spectral parameters predicted for dihydroxyacetone from quantum mechanical	
	calculations using B3LYP DFT	24
4.2	Spectral parameters determined for dihydroxyacetone	29
4.3	A summary of dihydroxyacetone emission lines from Sgr B2 (N-LMH)	32
4.4	Dihydroxyacetone column density upper limits in Orion and W51 from CSO	
	observations.	38
4.5	Dihydroxy acetone column density upper limits in Sgr $\mathrm{B2}(\mathrm{N\text{-}LMH})$ from OVRO	
	observations.	40
4.6	Dihydroxy acetone column density upper limits in Sgr $\mathrm{B2}(\mathrm{N\text{-}LMH})$ from GBT	
	observations.	41
5.1	The frequencies (in MHz) of dimethyl carbonate lines observed in the FTMW	
	experiments.	50
5.2	Spectral parameters determined for dimethyl carbonate	56
5.3	Spectral parameters determined for methyl glycolate.	58
5.4	Dimethyl carbonate and methyl glycolate molecular partition function values	
	at various temperatures	60

5.5	Methyl glycolate column density in Sgr B2(N-LMH) determined from lines	
	observed in the 3 mm line survey [4]	64
6.1	Spectral parameters determined for the ground and first three excited	
	vibrational states of glycolaldehyde.	72
6.2	Glycolaldehyde molecular partition function values at various temperatures	73
7.1	Spectral parameters determined for the ground and fundamental vibrational	
	states of aminoethanol.	80
7.2	Spectral parameters determined for overtone and combination vibrational	
	states of aminoethanol.	81
7.3	Aminoethanol column density upper limits in Orion, W51, and Sgr B2 from	
	CSO observations.	83
7.4	Aminoethanol column density upper limits in Orion and W51 from OVRO	
	observations.	85
8.1	Photolysis pathways and rates for major grain mantle components in dense	
	interstellar clouds at $A_v = 6. \ldots \ldots$	95
8.2	Reactions of CO with surface radicals	96
8.3	Radical-radical reactions between photolysis products and secondary radicals.	97
8.4	Aldehyde proton abstraction reactions.	98
8.5	Aldehyde radical recombination reactions	99
8.6	Diffusion barriers and rates for reactive surface species	102
8.7	Observed and calculated abundance ratios for the products of HCO+radical	
	combination reactions relative to formal dehyde at 50 K. The observed column	
	densities are those determined for Sgr B2(N-LMH).	104

B.1	Caltech Direct Absorption Flow Cell Spectrometer Instrumentation $\ldots \ldots$	131
B.2	Optimized parameters for flow cell experiments.	137
D.1	The 2C structural isomer parameters determined by Gaussian 98 MP2 6-	
	311G++(d,p) geometry optimizations	148
D.2	The 3C structural isomer parameters determined by Gaussian 98 MP2 6 -	
	311G++(d,p) geometry optimizations	149
D.3	trans-Acetic Acid Z-Matrix	151
D.4	cis-Acetic Acid Z-Matrix.	151
D.5	Methyl Formate Z-Matrix.	152
D.6	Glycolaldehyde Z-Matrix	152
D.7	Methylene Glycol Monoformate Z-Matrix	152
D.8	Lactic Acid Z-Matrix.	153
D.9	Dimethyl Carbonate Z-Matrix.	153
D.10	Methyl Glycolate Z-Matrix.	154
D.11	Methoxy Acetic Acid Z-Matrix	154
D.12	Glycol Monoformate Z-Matrix.	155
D.13	1,3-Dihydroxyacetone Z-Matrix.	155
D.14	Glyceraldehyde Z-Matrix	156
D.15	Trioxane Z-Matrix	156

Chapter 1 Introduction

1.1 Prebiotic Interstellar Chemistry

It is now widely believed that molecules that could have played a central role in the development of biological systems were delivered to the early Earth by planetesimals and their associated interplanetary dust particles [5]. Yet the degree of complexity reached by prebiotic organic chemistry before the formation of planetesimals and its impact on the evolution of planetary surfaces remains a mystery. Nearly 140 molecules, mostly organic, have been discovered in the interstellar medium (ISM), principally toward so-called hot molecular cores where the radiation and/or shocks from newly formed stars evaporates grain mantles and drives a complex gas-grain chemistry [3]. Approximately 50 of these compounds have been seen in the comae of comets, and many biologically-related monomers, including amino acids and sugars, have also been detected in carbonaceous chondrites [6–8].

The chemical processes leading to the formation of these prebiotic molecules are not fully understood. Aqueous alteration of simple organic species within the meteorite parent body is a viable explanation for the existence of the more complex species. The large enrichment of deuterium in the carbonaceous components of chondrites is not explainable by known or plausible solar system processes, however, and suggests an interstellar origin for the species present therein, or at least their immediate precursors [3, 9].

There are two possible mechanisms for the formation of these molecules, the first being that a variety of prebiotic species were formed before our planetary system was assembled, integrated into planetesimals, and introduced to the Earth through interplanetary dust and comet or meteorite impacts. Alternatively, the planetesimals could have formed from interstellar dust grains whose mantles contained much simpler organic species. More complex prebiotic chemistry could then follow in the parent body, with the products ultimately being delivered to the early Earth through impact.

1.2 Grain Surface and Hot Core Chemistry

Interstellar grain surfaces are processed by charged particles, UV radiation, and radiative heating, and laboratory studies have shown that various combinations of these processes produce a highly complex mixture of organic species with molecular weights into the hundreds of atomic mass units (amu, see [10,11]). Early chemical models considered complex molecule formation on grains [12], but current theoretical models of grain surface chemistry concentrate largely on the precursors to the more complex compounds, such as simple alcohols and aminoalcohols [3]. Many potential grain surface reaction pathways are eliminated by the conditions imposed on these models, greatly simplifying the possible products of grain synthesis and eliminating the possibility for much larger organics to form on the grain surfaces. Gas phase theoretical models of the chemistry in hot protostellar cores involving the products of grain surface reactions are therefore required to explain the formation of substantially larger organics under interstellar conditions.

A hot core is a region of dust and gas around a newly formed star where the temperature is sufficient to thermally evaporate grain mantles but low enough that organics remain stable

in the gas phase. The temperature of a hot core is typically $\sim 100-300$ K. A schematic diagram of a hot core is shown in Figure 1.1.

Figure 1.1: Schematic diagram of a hot core, adapted from [1]. The indicated size scale is that appropriate for a hot core surrounding a high mass protostar. 'Hot corinos' have also been detected around low mass protostars and have similar temperature profiles but are much less massive and smaller in size [2].

Current models assume that species such as alcohols and aminoalcohols undergo gas phase reactions in hot cores to form more complex prebiotic species. It has recently been shown, however, that gas phase pathways are insufficient for the production of organics such as ethanol (CH₃CH₂OH) and methyl formate (CH₃OCHO) [13,14]. Recent observations have also reopened the possibility for complex molecule formation on grains. Glycolaldehyde, (CHOCH₂OH), the simplest two-carbon (2C) α -hydroxy aldehyde, has recently been detected toward the galactic center Sagittarius B2(N) molecular cloud complex [15]. The glycolaldehyde emission is spatially extended by $\geq 60''$ around the Sgr B2(N-LMH) hot core [16], a conclusion reinforced by the low excitation temperature of the centimeterwave transitions recently detected with the Green Bank Telescope (GBT, [17]). While the more compact emission gives a rotational temperature of ~50 K, the extended emission lines yield a rotational temperature of ~8 K, indicating that glycolaldehyde is likely subthermally excited after liberation from grain surfaces. Similar properties are exhibited by ethanol and acetaldehyde (CH₃CH₂OH & CH₃CHO, [18, 19]). Glycolaldehyde is closely related to polyhydroxylated aldehydes, or aldoses (sugars), which are produced biologically via glycolysis and used in the production of ATP. The presence of a species so closely related to aldoses could potentially link grain surface pathways to prebiotic interstellar chemistry.

The sugars and other polyhydroxylated organic species observed in meteorites are present in similar concentrations to amino acids, indicating that these species might form from similar processes. The most likely route to amino acids in the ISM is gas phase ion-molecule reactions. This possible link between hot core gas phase chemistry and the formation of α -hydroxy compounds stands in stark contrast to the grain surface production indicated by the glycolaldehyde observations, but it should be stressed that neither the formation of glycolaldehyde nor any other sugar-related species can be explained by existing grain surface or gas phase hot core chemical models. Detailed laboratory and observational investigations of both predicted grain surface precursors and more complex prebiotic species are clearly required before interstellar prebiotic chemistry can be understood.

1.3 Thesis Overview

This thesis is an interdisciplinary study involving laboratory rotational spectroscopy and astronomical observations of several key prebiotic molecules. The laboratory work has focused on obtaining the rotational spectra of the three-carbon (3C) ketose sugar, 1,3-dihydroxyacetone ($CO(CH_2OH)_2$), and its structural isomers methyl glycolate (CH_3OCOCH_2OH) and dimethyl carbonate ($CH_3OCOOCH_3$). The pure rotational spectral analysis of glycolaldehyde's low-lying torsional states has also been completed. Additional laboratory studies involved the simple grain surface species aminoethanol ($NH_2CH_2CH_2OH$), the predicted precursor to the amino acid alanine. The original Fabry-Perot cavity pulsed Fourier transform microwave (FTMW) spectrometer, or Balle-Flygare instrument, was used to obtain the microwave spectra, while both the Jet Propulsion Laboratory (JPL) and Caltech Direct Absorption Flow Cell spectrometers were used for additional direct absorption millimeter and submillimeter studies.

The results of these laboratory experiments were used to guide observational searches with the Caltech Submillimeter Observatory (CSO), the Owens Valley Millimeter Array (OVRO), and the Green Bank Telescope (GBT). A combination of microwave, millimeter, and submillimeter spectral line searches and spatial imaging has been conducted. The Sgr B2(N-LMH) high mass hot core was the primary target for these observations, as it is found to have among the highest column densities of large organics ever detected. Other high mass hot cores targeted in these studies include the Orion Hot Core/Compact Ridge and W51 e1/e2.

These spectroscopic and observational studies have led to a revised theory for the formation of complex molecules on grains. The importance of reactions involving surface radicals and molecules containing carbonyl groups has been demonstrated, and suggestions for the adaptation of grain surface chemical models have been developed.

The techniques used for the laboratory and observational studies are outlined in Chapters 2 and 3, respectively. Detailed information on the FTMW instrument is given in Appendix A, while details on the Caltech Direct Absorption Flow Cell Spectrometer are given in Appendix B. The spectroscopic and observational results for each molecule are presented in Chapters 4–7. An overview of the programs used for spectral fitting is given in Appendix C, while the files used for fitting the spectrum of each molecule are presented in Appendices E–I. The implications of the results of these studies for interstellar grain surface chemistry will be discussed in Chapter 8.

The material in this thesis has been reproduced in part with permission from the following sources:

Widicus S. L., Drouin B. J., Dyl K. A., & Blake G. A. "Millimeter wavelength measurements of the rotational spectrum of 2-aminoethanol," *Journal of Molecular Spectroscopy*, 217, 278-281 (2003). Copyright 2003 Elsevier Inc.

Widicus S. L., Braakman R., Kent D. R., & Blake G. A. "The millimeter and submillimeter rotational spectrum of 1,3-dihydroxyacetone," *Journal of Molecular Spectroscopy*, 224, 101-106 (2004). Copyright 2004 Elsevier Inc.

Widicus Weaver, S. L., Butler, R. A. H., Drouin, B. J., Petkie, D. T., Dyl, K. A., De Lucia, F. C., & Blake, G. A. "Millimeter-wave and vibrational state assignments for the rotational spectrum of glycolaldehyde," *Astrophysical Journal Supplement Series*, in press (2005). Copyright 2005 The American Astronomical Society.

Widicus Weaver, S. L. & Blake, G. A. "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH):
The first interstellar ketose," Astrophysical Journal Letters, 624, L33-L36 (2005). Copyright
2005 The American Astronomical Society.

Chapter 2

Experimental Laboratory Methods

2.1 Introduction

Prebiotic monomers are expected to have strong torsional transitions in the terahertz (THz) frequency range. Due to experimental limitations in this range, however, rotational spectral lines searches are more straightforward at microwave, millimeter, and submillimeter wavelengths. The OVRO and CSO observatories cover spectral ranges of 88–116 GHz / 210–270 GHz and 200–900 GHz, respectively, and so these frequency ranges were the highest priority target ranges for laboratory studies. Predictions from microwave spectral data are often required before millimeter and submillimeter spectra can be assigned. Microwave spectral information was available in the literature for all species but dihydroxyacetone and dimethyl carbonate. A Fabry-Perot cavity pulsed Fourier-Transform MicroWave (FTMW) spectrometer, also known as a Balle-Flygare instrument, was used for the microwave study of a species then served as the basis for further millimeter and submillimeter studies with the JPL and Caltech Direct Absorption Flow Cell Spectrometers. Overviews of the FTMW and direct absorption techniques are presented below.

2.2 Spectroscopic Techniques

2.2.1 Pulsed Fourier Transform Microwave Spectroscopy

Fourier-Transform microwave spectroscopy, developed by Balle and Flygare in 1971 [20], is an extremely sensitive method for high resolution rotational spectroscopy. This technique utilizes a pulsed molecular nozzle for adiabatic expansion of the species of interest into vacuum, which cools the sample to rotational temperatures of 1–4 K, and a Fabry-Perot cavity for polarization of resonant transitions of the species of interest. A pulse of microwave radiation is introduced into the cavity, exciting the molecules. After the pulse dies away, the molecules emit coherent radiation at their resonant frequencies. A superheterodyne detector is used to collect the time-domain free induction decay (FID), and the Fourier transform of this record gives the frequency-domain spectrum.

A schematic diagram of the current configuration of the original FTMW instrument is presented in Figure 2.1 (adapted from [21]). A signal of frequency ν is generated by the master oscillator (MO). The MO signal is upconverted by 30 MHz in a single sideband (SSB) mixer, and this signal is then coupled into the cavity upon the opening of a PIN diode. The radiation is pulsed into the cavity by the opening and shutting of this PIN diode, which is controlled by the timing control circuit. This timing control circuit also controls the molecular pulse valve. The pulse of radiation passes through the coupling iris of the Fabry-Perot cavity. The molecular nozzle pulses a beam of molecules into the cavity at the same time. The incident radiation excites the molecules, and they emit radiation at a transition frequency offset from the microwave pulse by Δ (~ 500 kHz). This emission is longer-lived than the incident radiation trapped in the cavity, but much weaker, and sets up a standing wave in the cavity. When the switch is again opened to the cavity, some

Figure 2.1: Schematic diagram of an FTMW instrument.

of the emitted radiation plus residual incident radiation passes through the same coupling iris, through an isolator, and through a second PIN diode, which is opened only after the majority of the MO radiation pulse has rung down. The radiation, at a frequency ν_m , is amplified and then mixed with the MO signal to yield a frequency $30 \pm \Delta$ MHz. This signal is then mixed with the 30 MHz signal in a quadruture mixer, producing signals near frequency Δ , the widths of which are determined by the finesse of the cavity. The output of this quadruture mixer is two signals, the upper and lower sidebands, which are separated in phase by 90°. These signals are then processed by a computer. The power spectrum is recorded in the time-domain, and the computer then performs the Fourier transform of this spectrum to obtain the final spectrum in the frequency-domain. Cavity pressures on the order of 10^{-6} torr are maintained with a diffusion pump located below the spectral chamber.

This technique is much more sensitive than standard direct absorption experiments due to the superheterodyne detection and the high finesse of the cavity. The detection scheme lowers the 1/f noise considerably, allowing for detection of much weaker lines than those observable in direct absorption experiments. In addition, pressure broadening effects are eliminated, greatly decreasing the linewidths observed and therefore increasing the resolution. Line widths are limited by Doppler broadening and Doppler splitting due to the angular distribution of the molecules as they pass into the cavity. Although each transition is split into two lines that are sometimes tens of kHz apart, spectral linewidths of 1.4 kHz can be achieved for long-lived species.

The original FTMW instrument has recently been moved to the Blake labs at Caltech. Detailed operating procedures as well as a description of the changes made to the spectrometer since its relocation to Caltech are outlined in Appendix A. This instrument has a frequency range of 2–18 GHz, but Balle and Flygare noted in their original paper that these techniques " ... should also be easily applied to far-infrared and higher frequencies [20]." FTMW instruments based on this original design have been extended up to 40 GHz. Coaxial pulsed-jet instruments have been developed for the millimeter and submillimeter ranges, but these are not FT cavity experiments [22]. FT instruments in the millimeter, submillimeter, and terahertz ranges should have only slightly lower cavity finesse and will have wider cavity modes, enabling wider frequency coverage and therefore much faster data acquisition than traditional FTMW techniques, but no millimeter or far-IR FT instruments have yet been developed. The slow progress is in part due to the fact that, until very recently, very few intense tunable far-IR sources were available. Recent advancements in observational astronomy have motivated development of new tunable sources in the far-IR, however, and a prototype FT-FIR instrument is currently being developed in the Blake labs.

2.2.2 Direct Absorption Flow Cell Spectroscopy

Direct absorption flow cell spectrometers were developed as a straightforward means of obtaining broadband spectral coverage for molecules with reasonably strong rotational spectra. A schematic diagram of this type of spectrometer is shown in Figure 2.2.

Figure 2.2: Schematic diagram of the Caltech Direct Absorption Flow Cell Spectrometer.

The general flow design involves a long quartz cell with a sample inlet on one end and a vacuum line on the opposite end. The pump is used to maintain a constant flow of gas phase species. Microwaves are generated by a frequency synthesizer that is controlled by a computer and swept through a given frequency range at a designated frequency interval. This radiation is then frequency modulated and multiplied to the desired frequency range by an active multiplier chain. It is emitted from a waveguide horn and passed through a polarizer and teffon lens to focus the coherent radiation into the flow cell. The cell acts as a dielectric waveguide, propagating the waves to the opposite end of the cell where they reflect off of a rooftop reflector. The rooftop changes the polarization by 90 degrees and transmits the radiation back through the flow cell. The molecules present in the flow cell absorb this radiation as it passes through the cell, and the double-pass nature of the setup increases the amount of absorption and therefore the signal-to-noise ratio. After passing back through the cell, the radiation is then deflected off of the input polarizer and detected by either a Schottky diode detector or an InSb hot electron bolometer at 90 degrees to the source. A lock-in amplifier is used to narrow the detection bandwidth and amplify and rectify the 2f (second-derivative) signal. The resultant DC signal is then sent to a computer that is equipped with a GPIB card for analog to digital conversion. The signal is processed and recorded as a function of frequency.

Two of such spectrometers were used in these studies, one in the Laboratory for Microwave, Millimeter, and Submillimeter Spectroscopy at the Jet Propulsion Laboratory (JPL) and one in the Blake labs at Caltech. The details of the JPL spectrometer are outlined in reference [23]. The Caltech Direct Absorption Flow Cell Spectrometer is comprised of two cells, two detectors, and various combinations of multiplier chain components such that complete spectral coverage is achieved in the 80–120 GHz (3 mm) and 225–360 GHz (1 mm) spectral regions. The specific instrumentation used with this spectrometer as well as detailed operating procedures are outlined in Appendix B.

Two aspects of this design enable extensive spectroscopic studies of the species of interest. First, while most spectra are obtained at room temperature, both low and high temperature experiments are possible with the JPL spectrometer and the 1 mm setup at Caltech due to cooling jackets around the outsides of the cells. This allows for temperature variations, which are quite useful for molecules with large vibrational partition functions when only ground state vibrational spectra are desired or for molecules with very low vapor pressure. Secondly, this apparatus has very wide spectral range capabilities. Broadband, fixed-tuned coverage of >100 GHz is easily achievable with current multiplier chain sources. Addition of frequency multipliers to the existing setup is limited only by the availability of appropriate power amplifiers in the frequency ranges desired.

Despite the straightforward nature of this experiment, it does have some disadvantages for extended spectroscopic studies. Although the signal to noise ratio for highly populated states is good for this setup, low abundance isotopologues and less populated states are not easily observed. Also, difficulties arise in resolution due to the Doppler and pressure broadening of the signal. Typical linewidths are on the order of 0.5–1 MHz. Such spectral features as hyperfine splittings often remain unresolved in the resultant spectra from this type of apparatus. Also, an extended amount of time is required to obtain a spectrum over a wide frequency range, making static cell experiments difficult, and so large quantities of sample are required to maintain a constant flow of a species for study over wide spectral ranges. While this method is straightforward in nature and allows extended spectral coverage, other spectroscopic techniques can be utilized that require fewer chemicals and less time or that have higher sensitivity.

Chapter 3 Observational Astronomy

3.1 Observational Requirements for Interstellar Detections

Many members of the astrochemistry community dedicate a significant portion of their allocated observing time to the search for complex organic molecules in hot cores. While many hot cores have been identified, systematic spectral line surveys have only been conducted toward a handful of sources (see [4, 24, 25]). Perhaps the best known hot core is Sgr B2(N-LMH), which is found to have among the highest column densities of large organics ever detected [14]. Line confusion is very high in this source, however, due to the large number of species present therein. The observed abundances of complex species in the Orion Hot Core and Compact Ridge have therefore been widely used as the basis for existing hot core models [3] since the line confusion is greatly decreased due to the lower temperatures and narrower line profiles of these hot cores relative to Sgr B2(N-LMH). This increased possibility of a definitive detection of complex molecules in Orion combined with the observed molecular richness of Sgr B2(N-LMH) make these sources the primary targets for complex molecule searches in hot cores. Other less widely studied sources that display similar chemical complexity include the W51 e1/e2 hot cores and the low mass hot corino recently discovered toward IRAS 16293-2422. The search for molecules in hot cores is most often limited by the availability of laboratory spectral information. For example, $\sim 55\%$ of the lines observed in the recent 3 mm survey of the Sgr B2(N-LMH) source remain unidentified [4]. Yet searches for many of even the simplest species found in primitive solar system materials have not been undertaken, and quite often the observed lines for these molecules are below the RMS limit for existing surveys. In addition, hot core sources are plagued with line confusion. Indeed, the confusion limit is often reached before the desired RMS level. Added to these factors is the ongoing debate within the field as to how many lines are required before one can claim a complex molecule detection, and this number seems to only be increasing. Complex molecule searches are only feasible if there are spectral windows within which the molecule has several strong lines and that are clear of line confusion.

The recent debate over the reported detection of glycine in the Sgr B2(N-LMH) source [26] has led to the development of a set of "essential criteria for establishing the identification of a new interstellar molecule [27]." These criteria are:

- 1. Rest frequencies for the molecule should be known to high accuracy.
- 2. Detected transitions should be consistently observed at the same source velocity.
- 3. Correction for beam dilution should be handled systematically.
- 4. The relative line intensities should be consistent with a given rotational temperature or quantitative physical source model.
- 5. Confirming transitions between connected states should be detected.

The high resolution laboratory studies discussed in Chapter 2 ensure that the first criterion is met. The most effective way to ensure that the other criteria are met is to conduct observational searches in many different frequency ranges such that a large number of
transitions are observed and a wide range of energies are probed. Aperture synthesis observations are also required such that the spatial scale of the emission can be determined and appropriate beam dilution corrections can be applied.

3.2 Observatories

The criteria outlined above require the use of several observatories for complex molecule searches in hot cores. Typical rotational temperatures in these sources are on the order of 100–300 K [28], and the Boltzmann peak for 2C and 3C species is near 230 GHz at these temperatures. The 1 mm receivers of the CSO and OVRO are therefore ideally suited for hot core observations of prebiotic species such as those studied in this thesis. Observations at lower frequencies are often more straightforward, however, because of the high line density at millimeter wavelengths, and so complimentary microwave GBT studies are also conducted. For example, the Sgr B2(N-LMH) line density is greater than 6 lines per 100 MHz at millimeter wavelengths [4], yet the line density observed in this source with the GBT is less than 3 lines per 100 MHz. GBT observations also allow for a wider range of transition energies to be probed, leading to a more complete understanding of molecular excitation mechanisms. In addition, the larger beams of the CSO and GBT are more sensitive to extended molecular emission, as the OVRO beam often resolves out extended emission. Studies combining single-dish and interferometric observations are therefore required for a complete understanding of the molecular physics in and around a hot core.

The observations conducted for this thesis involved 1 mm spectral line searches with the CSO, 3 mm and 1 mm spectral line searches and imaging with OVRO, and microwave spectral line searches with the GBT. The operating parameters of the observatories used in these studies are summarized in Table 3.1. This summary is not intended to be a complete

Receiver	Frequency	T_{sys}	FWHM	Bandwidth	Aperture		
	(GHz)	(\tilde{K})	(arcsec)	(MHz)	Efficiency		
GBT							
Κ	18.0 - 26.5	30 - 40	37	50, 200	55%		
K_{a}	<i>a</i> 26.0 - 40.0		30	50, 200	55%		
Q	40.0 - 52.0	60 - 130	16	50, 200	40%		
OVRO (combined L $+$	- E configu	rations)				
$3 \mathrm{~mm}$	86 - 116	350	$7{\times}5$	1.8 - 480	65%		
$1 \mathrm{mm}$	1 mm 210 - 270		5×2	1.8 - 480	40%		
CSO							
$1 \mathrm{mm}$	180 - 280	300	30	50,500,1500	70%		
$0.87~\mathrm{mm}$	280 - 400	300	25	50, 500, 1500	75%		

Table 3.1: A summary of the observatories used in these studies.

3.3 Column Density Calculations

3.3.1 Rotation Diagrams

The rotation diagram approach can be used to determine the rotational temperature and column density of a species in the limit of local thermal equilibrium (LTE), optically thin emission, and negligible background radiation brightness. Under these simplest of possible conditions the integrated intensity of a transition, $\int_{-\infty}^{\infty} T_b dv$, is:

$$\int_{-\infty}^{\infty} T_b dv = \frac{hc^3}{8\pi k\nu^2} Ag_u \frac{N_T}{Q(T_{rot})} e^{-E_u/kT_{rot}}$$
(3.1)

where ν is the transition frequency, N_T is the beam averaged total column density, A is the transition Einstein A-coefficient, g_u is the upper state degeneracy, $Q(T_{rot})$ is the partition

function, T_{rot} is the molecular rotational temperature, and E_u is the transition upper state energy [29]. A rotation diagram is then the plot of $ln \left[(8\pi k\nu^2)/(hc^3 Ag_u) \int_{-\infty}^{\infty} T_b dv \right]$ versus E_u , which gives a line with slope inversely proportional to T_{rot} and with intercept equal to $ln(N_T/Q(T_{rot}))$.

The mechanisms for determining the integrated intensity $(\int_{-\infty}^{\infty} T_b dv)$, the Einstein Acoefficients times the upper state degeneracy (Ag_u) , and the molecular partition function $(Q(T_{rot}))$ are outlined below.

3.3.2 Integrated Intensities

The integrated intensity of a transition can be calculated by:

$$\int_{-\infty}^{\infty} T_b dv = 1.064 \, T_b \, \Delta v \tag{3.2}$$

where T_b is the peak brightness temperature of the line and Δv is its full width half maximum (FWHM). T_b can be approximated as T_{MB} , the peak line intensity (T_A^*) corrected to the main beam temperature scale by the relationship $T_{MB} = T_A^*/\eta$, where η is the aperture efficiency.

Beam dilution effects must be considered when the beam and source sizes are unequal. In this case, $T_b = BT_{MB}$, where the beam filling factor, B, can be calculated from the relationship between the source size, θ_s , and the beam size, θ_b , by:

$$B = \frac{\theta_s^2}{\theta_s^2 + \theta_b^2} \tag{3.3}$$

For interferometric observations, T_A^* (in K) can be determined by:

$$T_A^* = \frac{1.22 \times 10^6 Int}{\theta_A \theta_B \nu^2} \tag{3.4}$$

where θ_A and θ_B are the beam FWHMs, *Int* is the peak intensity in Jy/Beam, and ν is in GHz.

3.3.3 Line Strengths

The line strengths in terms of the Einstein A-coefficients times the upper state degeneracy (Ag_u) for a given transition can be calculated from the information given in the .cat files associated with the JPL CALPGM program. These files are generated by SPCAT (see Appendix C), and such files are available for a wide variety of species in the submillimeter and microwave spectral line catalog available at http://spec.jpl.nasa.gov. The line strengths are given here as the *log* of the intensity, I. For a given transition, then:

$$I = \sum_{1}^{j} 10^{\log I_j}$$
(3.5)

which accounts for multiple transitions contributing to the integrated intensity of the line, and the resultant intensity is in units of nm^2MHz . The line strength, Ag_u , can then be calculated by the relationship:

$$Ag_u = \frac{2.7964 \times 10^{-16} I \nu^2 Q(T)}{e^{-E_l/kT} - e^{-E_u/kT}}$$
(3.6)

when ν is in MHz and I is in nm²MHz [30].

3.3.4 Molecular Partition Functions

Neglecting centrifugal distortion, the partition function for an asymmetric rotor is given by:

$$Q(T) = \left[\prod_{i=0}^{3N-6} \left(\frac{e^{-E_i/2kT}}{1-e^{-E_i/kT}}\right)\right] \sqrt{\frac{\pi}{ABC} \left(\frac{kT}{h}\right)^3}$$
(3.7)

where $\prod \left(\frac{e^{-E_i/2kT}}{1-e^{-E_i/kT}}\right)$ is the total vibrational state partition function, the E_i 's are the energies of the normal modes of vibration, $\sqrt{\frac{\pi}{ABC}\left(\frac{kT}{h}\right)^3}$ is the rotational partition function, and A, B, and C are the rotational constants. The rotational constants determined for the ground state and the n vibrational states populated at T are used such that the molecular partition function is approximated as:

$$Q(T) \approx \sum_{i=0}^{n} e^{-E_i/kT} \sqrt{\frac{\pi}{A_i B_i C_i} \left(\frac{kT}{h}\right)^3}$$
(3.8)

Chapter 4

1,3-Dihydroxyacetone

4.1 Introduction

One of the sugars detected in carbonaceous chondrites is 1,3-dihydroxyacetone, or $CO(CH_2OH)_2$. Dihydroxyacetone is a monosaccharide commonly used as the active ingredient in sunless tanning products. Monosaccharides are polyhydroxylated aldehydes (or aldoses, whose chemical formula is H-[CHOH]_k-CHO) and ketones (or ketoses, whose general structure is given by H-[CHOH]_l-CO-[CHOH]_m-H) with the general formula $[C(H_2O)]_n$, where $n \ge 3$. Dihydroxyacetone and glyceraldehyde (CH₂OHCHOHCHO) are thus the simplest ketose and aldose monosaccharides, respectively. Dihydroxyacetone is used in numerous biological pathways, including the production of ATP, and is synthesized via glycolysis.

The 2C species glycolaldehyde is less stable than its structural isomers acetic acid (CH_3COOH) and methyl formate (HCOOCH₃), with methyl formate being the most stable. Similar patterns are observed with the 3C analogs, with sugars being more energetic than esters and acids (hence their biological utility), while ketoses are more stable than aldoses. The relative energies for the 2C and 3C structural isomers were calculated from Gaussian 98 MP2 6-311G++(d,p) geometry optimizations [31], and these results are discussed in Appendix D.

The relative energies of the 3C sugars indicate that dihydroxyacetone would be more likely to survive under hot core conditions than glyceraldehyde. Indeed, in the laboratory glyceraldehyde is seen to isomerize to dihydroxyacetone [32]. Lovas et al. recently characterized the rotational spectrum of dihydroxyacetone to 40 GHz, fitting rotational and quartic centrifugal distortion constants to FTMW data [32]. We simultaneously began our study of dihydroxyacetone in a similar manner, using *ab initio* studies to guide initial FTMW experiments to 18 GHz. We then conducted millimeter and submillimeter direct absorption experiments to provide more accurate spectral predictions for observational searches.

The laboratory studies of glyceraldehyde and dihydroxyacetone provided the necessary basis for deep observational studies [32,33]. The C_{2v} symmetry of dihydroxyacetone leads to somewhat stronger millimeter-wave emission features compared to glyceraldehyde. A glyceraldehyde K-band search with the GBT to an RMS of ~5 mK revealed no transitions [17].

The *ab initio* studies of dihydroxyacetone are presented in Section 4.2, while the laboratory studies of dihydroxyacetone are presented in Section 4.3. The results of observational searches for dihydroxyacetone are given in Section 4.4.

4.2 Ab Initio Studies

Quantum mechanical calculations were utilized to aid in spectral predictions for dihydroxyacetone. These calculations used B3LYP Density Functional Theory (DFT) [34, 35] and were performed in two phases. The first phase used a fairly small basis set and level of theory to delineate geometries with low energies. The second phase performed more precise quantum mechanical calculations with the best geometries from the first phase. Calculations were performed using Jaguar version 4.2, release 77 [36].

During the first phase of the calculations, the 6-31G basis set was used [37]. The four angular degrees of freedom for dihydroxyacetone were constrained to be multiples of 60 degrees while all other degrees of freedom were optimized. From these optimized geometries, the 5% with the lowest energy were used in the second phase. Here, all degrees of freedom were optimized, and the $6-31G^{**}++$ basis set was used [37–39]. Separate conformers were distinguishable by unique values for the dipole moments, and roughly ten possible geometries were optimized for each of the lowest four conformers. The rotational constants determined for each conformer were then averaged across all geometries. Relative energies, dipole moments, and rotational constants determined for the two lowest energy conformers (see Table 4.1) were then used for initial spectral predictions. The structures of these two conformers are shown in Figure 4.1. The ground state conformer optimized geometry is included in the analysis of Lovas et al. [32] and is of C_{2v} symmetry. The nonzero μ_a and μ_c values obtained in our study for this conformer are therefore unexpected and are likely artifacts of the averaging approach used for determination of each structure's parameters. Indeed, Lovas et al. report only a b-type dipole moment [32]. The higher energy conformer structural parameters have not been included because of the rather large inherent uncertainty due to this averaging approach as well as the unlikeliness of this conformer to exist under normal laboratory or interstellar conditions.

Parameter	Conformer 1	Conformer 2
Е	0 kcal/mol	1.9214 kcal/mol
А	$9862.419~\mathrm{MHz}$	$5942.059 \mathrm{~MHz}$
В	$2035.671~\mathrm{MHz}$	$2656.905~\mathrm{MHz}$
\mathbf{C}	$1724.558~\mathrm{MHz}$	$1787.788~\mathrm{MHz}$
μ_a	$0.007 \mathrm{~D}$	2.150 D
μ_b	$1.859 \; {\rm D}$	3.601 D
μ_c	0.019 D	$0.036 \ {\rm D}$

Table 4.1: Spectral parameters predicted for dihydroxyacetone from quantum mechanical calculations using B3LYP DFT.

Figure 4.1: Structures of the two lowest energy dihydroxyacetone conformers: a. doubly hydrogen bonded conformer (ground state); b. singly hydrogen bonded conformer.

4.3 Spectroscopic Studies

4.3.1 Experimental

All experiments were conducted with dihydroxyacetone vapor from a sample of solid 1,3-dihydroxyacetone dimer (97% purity) purchased from Aldrich.

4.3.2 FT-Microwave Studies

The FTMW experiments were conducted with the original Balle-Flygare spectrometer. The details of the setup can be found in Chapter 2, Appendix A, and reference [20]. A sample holder containing solid dihydroxyacetone was placed after the pulsed valve and heated sufficiently to obtain a dihydroxyacetone vapor pressure of ~ 1 Torr. Argon gas was pulsed over the sample, and a molecular beam was formed by a Laval nozzle at the exit of the heated compartment (see reference [21] for further details on the heated nozzle). Predictions based on the theoretical calculations were used to guide spectral line searches. Four ^bR and one ^bQ transition were chosen for these initial searches based on their predicted line strengths. Once the 1 $_{0,0} \rightarrow 0_{0,0}$ transition was observed, the single-shot signal was optimized before additional spectral searches were conducted. The instrument was used in the coaxial valve configuration, resulting in classic Doppler doublets for all transitions. Linewidths were on the order of 8 kHz (see Figure 4.2). Additional searches for the singly Hbonded conformer were conducted, but no lines were observed in the supersonic expansion.

Figure 4.2: Single-shot dihydroxyacetone spectra from the FT-microwave experiments.

4.3.3 Direct Absorption Millimeter and Submillimeter Studies

Studies were conducted with the 3 mm Caltech Direct Absorption Flow Cell Spectrometer. The details of the setup can be found in Chapter 2, Appendix B, and reference [40]. Computer-automated scans of both increasing and decreasing frequency increments were averaged in areas of low power to increase the signal-to-noise ratio. This averaging was not required for all scans as the frequency shifts due to the time constant of the lock-in amplifier were smaller than the spectral resolution. The solid dihydroxyacetone sample was placed directly in the cell, and heating tape was wrapped around this section of the cell and used to gently heat the sample to approximately 50 °C. A pressure of approximately 100 mtorr was maintained for the duration of the experiment.

An example spectrum from 112–120 GHz is shown in Figure 4.3. Strong ${}^{b}R$ branches are seen at a separation of approximately 4 GHz. Linewidths were on the order of 1 MHz.

Figure 4.3: The flow cell dihydroxyacetone spectrum from 112 to 120 GHz.

The higher frequency (sub)millimeter studies were conducted with the JPL flow cell

spectrometer. The basic flow cell design and detection methods for the JPL spectrometer are outlined in reference [23]. The source frequencies were obtained using a directly synthesized beam projected from the output of a multiplier chain [41]. Second and third harmonics of this multiplier were produced on a whisker-contacted Schottky diode and detected with a helium cooled InSb bolometer. Again, averaging was not required as the errors due to the time constant of the lock-in amplifier were smaller than the spectral resolution. Linewidths were of order 1 MHz. No sample heating was required for these experiments because of the strength of the submillimeter lines. A pressure of approximately 10 mtorr was maintained for the duration of the experiment.

4.3.4 Data Analysis

The data were assigned using the SPFIT and SPCAT programs (see Appendix C, [30]). The rotational constants obtained with the *ab initio* studies, the dipole moments from reference [32], and a standard asymmetric-top Hamiltonian with the Watson A-reduction were used to generate a predicted spectrum. The initial microwave data were used to fit the rotational constants and estimate the quartic distortion constants. These constants were then used to predict the millimeter spectrum. As new data were assigned, lines were continuously added to the data set and the spectral fit further modified with the same asymmetric-top Hamiltonian. The quality of the fit to the entire data set was indicated by a microwave root mean square deviation.

A total of 2360 dihydroxyacetone lines were assigned. Significant harmonic contamination was present in the submillimeter scans, but the presence of acetonitrile as a cell contaminant led to accurate determination of the frequencies within spectral regions where acetonitrile lines were observed. However, this contaminant also led to line confusion for weaker dihydroxyacetone lines. Therefore, while approximately 95% of the 2σ lines were assigned in the millimeter spectrum, only the strongest lines (~75% of the total lines) were assigned in the submillimeter spectra. These submillimeter assignments include almost all strong ground state transitions as well as the strongest R and Q type transitions for the other vibrational states.

Only the ground state assignments were made initially, with quartic centrifugal distortion constants determined in addition to the standard rotational constants. A total of 1284 lines have been assigned to the ground state with an RMS of 98 kHz. Additional assignments were made for four vibrational states, with RMS values ranging from 99 to 268 kHz. Although decreasing the pressure during the millimeter and submillimeter experiments could have resulted in narrower lines and therefore a lower RMS, this would have significantly decreased the observed signal and made spectral assignment quite difficult. The files associated with the analysis, including the parameters and rest frequencies, can be found in Appendix E. The output file from the spectral analysis, which includes the observed minus calculated residuals, has been included as supplementary material in the electronic version of this thesis. The assignments and other predicted rotational frequencies are accessible through the submillimeter and microwave spectral line catalog available at http://spec.jpl.nasa.gov [30]. The rotational and centrifugal distortion constants determined for each state are listed in Table 4.2.

As no vibrational spectral studies have been conducted for the torsional states of dihydroxyacetone, assignments of the vibrational state energies were based on the relative intensities of the observed lines to those from the ground state. Approximate relative energies were determined for each vibrational state and are included in Table 4.2. The rotational and quartic centrifugal distortion constants were determined independently for

state	$ u_0 $	ν_1	ν_2	
Е	0	~ 93	~ 147	cm^{-1}
А	9801.294341(269)	9764.48006(113)	9701.67778(178)	MHz
В	2051.525611(76)	2049.846696(274)	2051.55037(42)	MHz
\mathbf{C}	1735.164871(77)	1736.322262(248)	1737.92899(33)	MHz
Δ_J	0.1823699(94)	0.183278(33)	0.185158(62)	kHz
Δ_{JK}	0.657039(88)	0.84847(40)	0.50245(102)	kHz
Δ_K	5.36670(50)	5.4775(57)	3.4799(110)	kHz
δ_J	0.02767300(181)	0.0274086(134)	0.0276239(291)	kHz
δ_K	0.569401(157)	0.64161(96)	0.35886(184)	kHz
# Lines	1284	490	312	
Fit RMS	0.098	0.099	0.142	MHz
state	$ u_3$	$ u_4$		
Е	$\sim \! 150$	~ 183	cm^{-1}	
А	9662.11092(271)	10329.1(106)	MHz	
В	2050.02151(45)	2065.17(41)	MHz	
\mathbf{C}	$1739.41934(\ 37)$	1735.12347(60)	MHz	
Δ_J	0.187123(60)		kHz	
Δ_{JK}	0.60623(79)		kHz	
Δ_K	7.1160(185)		kHz	
δ.	0.0265674(270)		bH_{7}	

Table 4.2: Spectral parameters determined for dihydroxyacetone.

δ_K	0.31951(205)		kHz	
# Lines	241	34		
Fit RMS	0.178	0.268		

Note: One σ errors are listed in parentheses in units of last significant figure. The quartic distortion constants for the ground state were used for the fourth vibrational state.

three vibrational states. Only a partial fit has been completed for the highest energy vibrational state due to its relatively weak line strengths. In this case, the quartic distortion constants were held to the values determined for the ground state. The microwave RMS determined for this state is therefore considerably higher than those determined for the others.

4.3.5 Discussion

The millimeter and submillimeter spectra of dihydroxyacetone have been characterized up to 450 GHz. Spectral assignments include lines from the ground state and four vibrational states, and rotational and quartic centrifugal distortion constants have been determined for each of these states. Excluding the fourth vibrational state, predictions of strong submillimeter lines above 450 GHz are accurate to better than 1 MHz, and interpolations below 450 GHz are accurate to less than 100 kHz for all states based on this analysis.

The spectral parameters determined by quantum mechanical calculations were accurate to less than 1% of the experimentally determined values, indicating the value of density functional theory as a tool for the prediction of pure rotational spectra.

It was found, however, that millimeter and submillimeter predictions based on the initial FTMW work are not sufficiently accurate for observational searches in these ranges. Indeed, at 1.3 mm, near the peak of the Boltzmann distribution for dihydroxyacetone under typical hot core conditions, the microwave-based predictions for the strongest transitions differ by 10-15 MHz from the experimentally measured line positions. This corresponds to a velocity shift of >15 km/sec from the source velocity. Interstellar detection of this molecule would be quite difficult based on these parameters. Because of the relative rigidity of dihydroxyacetone in comparison to most complex organic species predicted to be present in hot cores, this study also indicates that further analysis of the rotational spectra of complex molecules beyond the microwave region is necessary to guide observational searches.

4.4 Observational Studies

The laboratory investigation of dihydroxyacetone provided the necessary information to guide observational searches using microwave through submillimeter wave telescopes. Searches for dihydroxyacetone were therefore conducted with the CSO, OVRO, and GBT observatories, and these observations are outlined below.

4.4.1 CSO Observations

4.4.1.1 Observations

A search for dihydroxyacetone emission in the 1.3 mm atmospheric window was conducted with the CSO. Initial searches were conducted toward the Sgr B2(N-LMH) hot core. The parameters for the dihydroxyacetone lines used in this search, specifically the transition quantum numbers, rest frequencies, Einstein A-coefficients times the upper state degeneracy, and upper state energies, are listed in Table 4.3. All observed lines are transitions within the ground vibrational state. Many of these lines are actually asymmetry doublets or blends of multiple transitions between similar yet distinct quantum states whose energies are nearly degenerate. These will appear in observational spectra as a single blended line because of the ~10 km s⁻¹ linewidths characteristic of Sgr B2. Only one frequency has been listed for asymmetry doublets occurring at the same frequency; for all others, the frequency of each individual component has been listed.

The survey was conducted using the CSO 230 GHz double sideband (DSB) heterodyne receiver on the nights of 2003 July 13–23/September 14–21 and 2004 June 30–July 7. Typical system temperatures ranged from 200–600 K, and the source position selected was $\alpha(1950)=17^{h} 44^{m} 10^{s}.1, \delta(1950)=-28^{\circ} 21' 17''$, which is coincident with the Sgr B2(N-LMH)

$\mathbf{J}'_{K'_a,K'_c} {-} \mathbf{J}''_{K''_a,K''_c}$		$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathrm{K})\end{array}$	$\frac{\Delta v^c}{(\mathrm{km \ s}^{-1})}$	v_{LSR}^c (km s ⁻¹)
$\begin{array}{c} 14_{11,3} \rightarrow 13_{10,4} \\ 14_{11,4} \rightarrow 13_{10,3} \end{array}$	219059.1	$1.23 \\ 1.23$	$64.98 \\ 64.98$	0.14	10.60(16)	62.91(17)
$61_{3,58} \to 60_{4,57}$	222826.4	5.17	344.98	0.48	11.50(250)	64.50(21)
$61_{4,58} \to 60_{3,57}$	222839.4	5.71	344.98	0.39	7.74(224)	65.23(26)
$\begin{array}{c} 15_{11,4} \rightarrow 14_{10,5} \\ 15_{11,5} \rightarrow 14_{10,4} \end{array}$	222847.0	$\begin{array}{c} 1.44 \\ 1.44 \end{array}$	$\begin{array}{c} 67.71 \\ 67.71 \end{array}$	0.35	8.29(252)	60.74(40)
$60_{5,56} \rightarrow 59_{4,55}$	222861.1	4.78	341.68	0.19	10.77(132)	63.24(42)
$\begin{array}{c} 63_{1,62} \rightarrow 62_{2,61} \\ 63_{2,62} \rightarrow 62_{1,61} \end{array}$	223293.9	$6.78 \\ 6.78$	$349.60 \\ 349.60$	0.40	17.36(64)	62.38(9)
$\begin{array}{c} 67_{3,64} \rightarrow 66_{4,63} \\ 67_{4,64} \rightarrow 66_{3,63} \end{array}$	243591.0 243593.0	8.53 8.53	$\begin{array}{c} 412.61\\ 412.61\end{array}$	0.24	13.12(51)	63.78(10)
$\begin{array}{c} 72_{1,71} \rightarrow 71_{2,70} \\ 72_{2,71} \rightarrow 71_{1,70} \end{array}$	254459.9	$11.67 \\ 11.67$	$453.49 \\ 453.49$	0.20	8.95(140)	65.86(19)
$\begin{array}{c} 75_{0,75} \rightarrow 74_{1,74} \\ 75_{1,75} \rightarrow 74_{0,74} \end{array}$	261654.3	$\begin{array}{c} 14.30\\ 14.30\end{array}$	479.97 479.97	0.18	9.22(46)	62.31(12)

Table 4.3: A summary of dihydroxyacetone emission lines from Sgr B2(N-LMH).

 a One σ uncertainties are 0.1 MHz.

^b One σ uncertainties are <10 mK.

 c One σ uncertainties are listed in parentheses in units of last significant figure.

hot core. The chopping secondary with a 70" throw was used along with chopper-wheel calibration and the facility 1.5 GHz, 500 MHz, and 50 MHz acousto-optic spectrometer (AOS) back ends to minimize the spectral baseline fluctuations. The FWHM of the CSO at these frequencies is $\sim 30''$, and all data are placed on the T_{MB} temperature scale using a main beam efficiency of 70% determined using observations of the planets. Line confusion was a perpetual difficulty faced during the observations due to the DSB setup of the CSO and the dense spectral line nature of the Sgr B2(N-LMH) source. Line positions were therefore verified by observing several small frequency offsets at each local oscillator (LO) setting. A v_{LSR} of 62 km/s was used for the July 2003 observations. Potential dihydroxyacetone lines were observed at 64 km/s, so this v_{LSR} was then used for the remaining observations.

Additional observations were conducted towards the Orion Compact Ridge and W51e2 hot core sources on the nights of 2003 September 14–21/December 14–16. The spectral windows centered at 222839 and 243591 MHz were observed in each source (see Table 4.3). Typical system temperatures ranged from 200-600 K, and the source positions and velocities used were $\alpha(2000)=05^h \ 35^m \ 14^s.5$, $\delta(2000)=-05^\circ \ 22' \ 30''.4$ and 9 km/s for the Orion Compact Ridge, and $\alpha(1950)=19^h \ 23^m \ 43^s.5$, $\delta(1950)=14^\circ \ 30' \ 34''$ and 55 km/s for the W51e2 hot core. The observing parameters outlined above for the Sgr B2 search were also used for these observations.

4.4.1.2 Results

A total of nine possible dihydroxyacetone emission lines were detected in Sgr B2(N-LMH) with the CSO. The mean v_{LSR} is 63.4 ± 3.2 km/s. The observational spectra from the 500 MHz AOS in the $v_{LSR} = 0$ - 100 km/s window are shown in Figure 4.4. The v_{LSR} scales have been adjusted such that the LO frequency is centered at 64 km/s. Nine additional lines were either severely blended with other lines or completely obscured by stronger features in the signal or image sideband. No dihydroxyacetone lines were found to be absent in this source from any clean 1.3 mm spectral windows observable at the CSO.

Least-squares Gaussian fits to each observed line are summarized in Table 4.3 and shown in Figure 4.4. The integrated intensity was calculated by Equation 3.2, where T_{MB} = $T_A^*/0.7$ for the CSO at 230 GHz. No beam dilution corrections were applied because the

Figure 4.4: Possible dihydroxyacetone transitions observed toward Sgr B2(N-LMH) with the least-squares Gaussian fits to each line. Spectra are from the CSO 500 MHz AOS, and a linear baseline subtraction of the continuum has been performed. The vertical dotted line indicates $v_{lsr} = 64$ km/s. The positions of additional dihydroxyacetone lines relative to 64 km/s are indicated in spectrum (b).

spatial scale of the emission is unknown. Only single Gaussian fits are reported here since many of the potentially blended lines in Figure 4.4 are unassigned, and hence the relative contributions from individual features are poorly constrained.

A rotation diagram approach was used to determine the rotational temperature and

column density of dihydroxyacetone toward SgrB2(N-LMH) (see Section 3.3). Only the ground and first four dihydroxyacetone vibrational states are populated at $T\sim 250$ K, and a full rotational analysis has been performed for these states (see Section 4.3 and reference [33]). The rotational constants determined for each vibrational state have therefore been used such that the partition function is approximated as:

$$Q(T_{rot}) \approx \sum_{i=0}^{4} e^{-E_i/kT_{rot}} \sqrt{\frac{\pi}{A_i B_i C_i} \left(\frac{kT_{rot}}{h}\right)^3}$$
(4.1)

The rotation diagram for dihydroxyacetone is shown in Figure 4.5. A molecular rotational temperature of 222 \pm 65 K and a column density of (4.9 \pm 2.2) $\times 10^{15}$ cm⁻² were derived, where the errors represent 95% confidence intervals.

Four lines corresponding to dihydroxyacetone transitions were observed in one window at the 222839.40 MHz LO setting (Figure 4.4b); these data are shown in Figure 4.6 along with a T_{rot} =220 K simulated spectrum. The relative intensities, line center frequencies, and linewidths of the dihydroxyacetone lines were fixed and the intensities scaled to best match the observed spectrum. The additional strong line is due to H₂¹³CO in the image sideband, and all parameters for this line were fixed to those determined in reference [24]. The simulation shows that other unidentified spectral features may be present in the DSB spectrum, and that the integrated intensity of the 222826.4 MHz dihydroxyacetone line is most affected by these features. It is therefore not included in the rotation diagram analysis.

A spectral window overlapping in frequency with two strong dihydroxyacetone lines has also been observed in this source with the Kitt Peak 12 meter telescope (J. M. Hollis 2004, private communication). There are emission features at the appropriate frequencies for these dihydroxyacetone transitions but one of the lines appears to be blended with an

Figure 4.5: The rotation diagram for dihydroxyacetone toward SgrB2(N-LMH). The labels correspond to the panels of Figure 4.4.

unidentified line. Their inclusion in the rotation diagram analysis is quite difficult due to the lack of information regarding linewidths for dihydroxyacetone emission features in this frequency range, and therefore these data have not been included in this study.

No transitions were observed toward the Orion or W51 hot cores, and so the column density upper limit was calculated from the observed spectral intensity at the expected line position, which was placed on the T_{MB} temperature scale using a main beam efficiency of 70%. These limits are presented in Table 4.4. A linewidth of 5 km/s and a rotational temperature of 150 K, typical values observed for species in the Compact Ridge, were assumed for the Orion calculations [25]. A line width of 10 km/s and a rotational temperature of 100 K, the values found for methyl cyanide in the W51e2 source, were assumed for the W51e2 calculations [42].

Figure 4.6: The simulated spectrum of dihydroxyacetone lines at 220 K compared to an observed Sgr B2(N-LMH) spectrum. The structure of dihydroxyacetone is shown in the inset.

4.4.2 OVRO Observations

4.4.2.1 Observations

Observations to image potential dihydroxyacetone emission in the Sgr B2(N-LMH) source were conducted with the OVRO Millimeter Array between 2003 October 13–November 18 and 2004 March 14–April 28. A source position of $\alpha(2000)=17^{h} 47^{m} 19^{s}.92$, $\delta(2000)=-28^{\circ}$ 22' 19".5 served as the phase center, and all correlator modules were set up using a v_{LSR} of 64 km/s. These observations were conducted in the L and E configurations, resulting in a synthesized beam of 7".9 × 4".0 using robust weighting. The source was observed for

$\mathbf{J}_{K_a',K_c'}'-\mathbf{J}_{K_a'',K_c''}''$	$ \begin{array}{c} \nu_0^a \\ (\mathrm{MHz}) \end{array} $	$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathrm{K})\end{array}$	N_T upper limit ^c (×10 ⁻¹³ cm ⁻²)
Orion					
$61_{4,58} \to 60_{3,57}$	222839.4	5.71	344.98	0.005(2)	0.98(14)
$\begin{array}{c} 67_{3,64} \rightarrow 66_{4,63} \\ 67_{4,64} \rightarrow 66_{3,63} \end{array}$	243591.0 243593.0	$8.53 \\ 8.53$	$\begin{array}{c} 412.61\\ 412.61\end{array}$	0.24(2)	18.7(28)
W51e2					
$61_{4,58} \to 60_{3,57}$	222839.4	5.71	344.98	0.065(2)	5.25(234)
$\begin{array}{c} 67_{3,64} \rightarrow 66_{4,63} \\ 67_{4,64} \rightarrow 66_{3,63} \end{array}$	243591.0 243593.0	$\begin{array}{c} 8.53\\ 8.53\end{array}$	$\begin{array}{c} 412.61\\ 412.61\end{array}$	0.12(2)	3.87(255)

Table 4.4: Dihydroxyacetone column density upper limits in Orion and W51 from CSO observations.

 a One σ uncertainties are 0.1 MHz.

^b Assumed uncertainties are listed in parentheses in units of last significant figure.

 c One σ uncertainties are listed in parentheses in units of last significant figure.

approximately 5 hours in each full track, and 2.5 tracks were completed in L configuration, while 4 full tracks were completed in E configuration. Four dihydroxyacetone lines were observed simultaneously, and the parameters for these lines, specifically the transition quantum numbers, rest frequencies, Einstein A-coefficients times the upper state degeneracy, and upper state energies, are listed in Table 4.5. All observed lines are transitions within the ground vibrational state.

The quasars 3C345 and 3C454.3 were observed for secondary flux and bandpass calibration, with observations of Neptune and Uranus serving to bootstrap the quasar fluxes. Observations of phase and amplitude calibrators were conducted in approximately half hour integrals throughout the tracks. Baseline-based boxcar fits to an internal noise source modified by a second order polynomial fit to observations of the quasars were used to derive the bandpass calibration. Bandpass, phase, and flux calibrations were applied to the data with the MMA software package [43]. The MIRIAD data reduction software package [44] was used for subsequent spectral analysis.

4.4.2.2 Results

None of the transitions were detected toward Sgr B2(N-LMH), and so the column density upper limit was calculated from the observed spectral intensity at the expected line position. The transition at 112.636609 GHz is near the edge of a strong spectral line from another species. This strong feature also makes spectral baseline determination quite difficult. The combination of these two factors greatly effects the observed intensity for this transition. A linewidth of 10 km/s, roughly the average linewidth observed in the CSO observations, was assumed for the upper limit calculations. The calculated dihydroxyacetone column density upper limits are presented in Table 4.5.

4.4.3 GBT Observations

4.4.3.1 Observations

Additional observations of low energy dihydroxyacetone transitions in the Sgr B2(N-LMH) source were conducted with the GBT on the night of 2005 April 5. A source position of $\alpha(2000)=17^{h} 47^{m} 19^{s}.92$, $\delta(2000)=-28^{\circ} 22' 19''.5$ and a source velocity of 64 km/s were used. These observations were conducted with the Q-band receiver, which operates over the 40–52 GHz range. The GBT spectrometer back end was used in the 4 intermediate frequency (IF), 50 MHz bandwidth, 9 level mode that allows for four 50 MHz spectral windows to be observed simultaneously in dual polarization. The observations were conducted in position

$\mathbf{J}_{K_a',K_c'}'-\mathbf{J}_{K_a'',K_c''}''$		$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathbf{K})\end{array}$	$N_T \text{ upper limit } {}^c_{(\times 10^{-15} \text{ cm}^{-2})}$
$31_{2,30} \to 30_{1,29}$	112558.8289	0.3611	89.27	0.79(10)	14.2(44)
$42_{8,35} \to 42_{7,36}$	112612.4493	0.2095	291.30	0.34(7)	10.4(33)
$32_{0,32} \rightarrow 32_{1,31}$	112630.7384	0.4622	90.28	0.15(6)	2.14(66)
$32_{1,32} \rightarrow 31_{0,31}$	112636.6087	0.4624	90.28	0.12(6)	1.71(53)

Table 4.5: Dihydroxyacetone column density upper limits in Sgr B2(N-LMH) from OVRO observations.

 a One σ uncertainties are 0.1 MHz.

^b Uncertainties are listed in parentheses in units of last significant figure and are based on an assumed flux uncertainty of ± 0.02 Jy/Beam.

 c One σ uncertainties are listed in parentheses in units of last significant figure.

switching mode, and a total of 3 hours of on-source integration was completed. The FWHM of the GBT at these frequencies is ~16", and all data are placed on the T_{MB} temperature scale using a main beam efficiency of 40%. The parameters for the dihydroxyacetone lines in these windows, specifically the transition quantum numbers, rest frequencies, Einstein A-coefficients times the upper state degeneracy, and upper state energies, are listed in Table 4.6. All observed lines are transitions within the ground vibrational state.

4.4.3.2 Results

The data from each polarization of each IF setting were calibrated and co-added independently. The two polarizations in a given IF setting were then averaged to further reduce the RMS. The column density derived from the CSO observations indicates that an RMS level of ~ 5 mK (on the T_A^* scale) is required to ensure >2 σ detections for the dihydroxyacetone emission features in this spectral region. The minimum RMS level reached

$\mathbf{J}'_{K'_a,K'_c} - \mathbf{J}''_{K''_a,K''_c}$	$ \frac{ \nu_0^a}{(\mathrm{MHz})} $	$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathrm{K})\end{array}$	$N_T \text{ upper limit } {}^c_{(\times 10^{-15} \text{ cm}^{-2})}$
$30_{4,26} \rightarrow 30_{3,27}$	42007.7536	0.0071	13.79	0.025(8)	3.12(95)
$11_{1,11} \rightarrow 10_{0,10}$	41953.1665	0.0066	11.80	0.140(35)	19.1(582)
$12_{0,12} \rightarrow 11_{1,11}$	41525.1729	0.0058	20.00	0.033(10)	5.20(158)
$13_{3,11} \to 13_{2,12}$	42619.6200	0.0193	92.24	0.065(17)	3.05(94)

Table 4.6: Dihydroxyacetone column density upper limits in Sgr B2(N-LMH) from GBT observations.

 a One σ uncertainties are 0.1 MHz.

 b Uncertainties are listed in parentheses in units of last significant figure and are based on an assumed flux uncertainty of ± 0.02 Jy/Beam.

 c One σ uncertainties are listed in parentheses in units of last significant figure.

in any of the 4 IF settings was on the order of 10 mK, and so none of the transitions were unambiguously observed. Emission is indeed seen at the dihydroxyacetone line positions, but the limited sensitivity of the observations combined with possible line confusion excludes the possibility for a definitive detection at this time. The column density upper limits were calculated from the observed spectral intensity at the expected line position. A linewidth of 10 km/s, roughly the average linewidth observed in the CSO observations, and the rotational temperature of 220 K determined from the CSO observations were assumed. The calculated dihydroxyacetone column density upper limits are presented in Table 4.6.

4.4.4 Discussion

The CSO Sgr B2 results are the first observational evidence for the presence of the 3C ketose 1,3-dihydroxyacetone in the ISM. The derived dihydroxyacetone excitation and velocity are in excellent agreement with other species detected in the Sgr B2(N-LMH) hot core, for which the most commonly quoted rotational temperature and v_{LSR} are 200 K and 64 km s⁻¹, respectively (see [28] and references therein).

The absence of dihydroxyacetone lines in the OVRO spectra does not further substantiate the CSO observations. The limits derived from these observations, however, are on the same order as or greater than the column density determined from the CSO observations and therefore do not rule out the possibility of dihydroxyacetone being present in this source if the emission is extended. The OVRO observations would be the least affected by beam dilution should the emission be compact, and so these results provide the upper limit to the column density in this case. More sensitive observations are required for determining the spatial scale of dihydroxyacetone emission in this source, and the Combined Array for Millimeter Astronomy (CARMA), which will be commissioned in 2006, will be used for this study.

Other molecules observed in Sgr B2(N-LMH) show two-component behavior in which higher energy transitions give characteristic hot core temperatures, but lower energy transitions yield much colder excitation temperatures. It is thought that these lower energy states are populated in an extended, potentially subthermally excited, source, possibly formed by shock liberated grain mantle ices [17,18]. Dihydroxyacetone should demonstrate such behavior if it is produced by grain surface chemistry. Unfortunately the sensitivity levels reached in the GBT observations remain insufficient for a definitive detection of this type of low-energy emission. The GBT and CSO observations are directly comparable for a source size larger than 30", and the GBT limits lie well within the margin of error for the column density derived from the CSO observations. A source size on the order of 10", such as that observed for ethyl cyanide in this source [45], requires that these results be scaled appropriately to account for beam dilution effects. This results in a column density limit from the GBT observations of $1.09(34) \times 10^{15}$ cm⁻², indicating that the line confusion in the CSO observations may be leading to an overestimation of the column density by approximately a factor of four if the source is on the order of 10" in size.

The dihydroxyacetone lines observed in the Sgr B2(N-LMH) source are not present in the Orion and W51e2 spectra obtained with the CSO. The limits derived from these observations put constraints on the sugar-related chemistry in these sources. The absence of these spectral features also further strengthens the detection of dihydroxyacetone in Sgr B2(N-LMH). It is possible that weak spectral features in hot core sources may be due to unidentified vibrationally excited lines of a simpler, previously detected hot core molecule. It is clear that these emission features are not due to such a transition if they are present only in the Sgr B2(N-LMH) hot core.

The derived dihydroxyacetone column density of $(4.9 \pm 2.2) \times 10^{15}$ cm⁻² leads to interesting questions about the formation of and subsequent behavior of this molecule in the hot core. Emission from the high excitation lines of methyl formate, acetic acid, ethyl cyanide (CH₃CH₂CN), dimethyl ether (CH₃OCH₃), and acetone ((CH₃)₂CO) is known to be compact with respect to the CSO beam (see [46] and references therein). If similar filling factors are used for dihydroxyacetone then it would be more abundant than any of these compounds except dimethyl ether. Even if the column density derived from the CSO observations is overestimated by a factor of four, dihydroxyacetone would still be present at similar abundances to these species. Both the chopping scheme and higher frequencies of CSO observations render them insensitive to spatial distribution for extended, low excitation emission as is seen from molecules such as acetaldehyde, ethanol, and glycolaldehyde. Direct comparisons show that these molecules are also less abundant than dihydroxyacetone.

A further complication is the inconsistent treatment of the partition functions of complex molecules. Typically only the ground vibrational state is included in partition function calculations as laboratory characterizations of excited states are often incomplete. Inclusion of vibrational state terms can greatly effect the derived total column densities of complex species under hot core conditions. For a molecule like glycolaldehyde, the inclusion of torsional states increases the partition function by $\sim 50\%$ at 200 K, but they can be safely ignored below 50 K (see Chapter 6 and reference [47]). Exclusion of excited vibrational state terms in the dihydroxyacetone analysis would lower the column density by $\sim 60\%$.

Nevertheless, dihydroxyacetone would be among the most abundant complex molecules in the Sgr B2(N-LMH) hot core should the present analysis be confirmed by further observations, and so an efficient formation route must exist. No quantitative chemical scheme for the production of species such as glycolaldehyde and dihydroxyacetone has been presented. Observations of complex molecules toward low mass protostars where the dynamical time scales are short [2,48] and careful studies of the potential reactions leading to methyl formate all seem to point toward a grain mantle synthesis [13]. In this regard it is intriguing to note that, with appropriate rearrangements, all of these species can be formed from reactions involving the abundant grain mantle constituents CO, HCOOH, and CH₃OH or their radical precursors. The importance of such reactions in interstellar grain surface chemistry is discussed in Chapter 8.

Survivability in hot cores may be another important aspect of dihydroxyacetone chemistry. As a ketose, it is both thermodynamically more stable and less reactive than either glycolaldehyde or glyceraldehyde in hot gas. Isomerism in 3C and larger compounds is also quite extensive, and both dimethyl carbonate ($(CH_3O)_2CO$) and methyl glycolate (CH_3OCOCH_2OH) are even more stable than dihydroxyacetone. These isomers would likely be created by any surface chemistry leading to sugars. Laboratory and observational studies of these isomers are discussed in Chapter 5.

The spectral characteristics of asymmetric rotors such as dihydroxyacetone make a definitive interstellar detection quite difficult. While some spectral windows contain multiple emission lines, most contain only one strong line due to the relatively large spacing between adjacent K levels within a given J state. It can be argued that many of the isolated features presented here could arise from other unidentified species or from the excited vibrational state lines of previously detected molecules. This argument is countered by the striking similarity between the observed and simulated spectra shown in Figure 4.6. This degree of coincidental overlap with other hot core species in both rest frequency and intensity is unlikely, but additional observations are clearly warranted.

Chapter 5

Dimethyl Carbonate & Methyl Glycolate

5.1 Introduction

Structural isomerism is widespread in the ISM. The abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde and the 3C structural isomers glyceraldehyde and dihydroxyacetone indicate that the relative stability of structural isomers may play a large role in their formation and/or survivability. Isomerism in 3C and larger compounds is quite extensive, and all but one of the nine 3C sugar structural isomers are lower in energy than the sugars (see Appendix D). With appropriate rearrangements, all of these 2C and 3C structural isomers can be formed from reactions involving the abundant grain mantle constituents CO, HCOOH, and CH₃OH or their radical precursors. In the case of the 3C compounds, dihydroxyacetone, dimethyl carbonate ((CH₃O)₂CO), and methyl glycolate (CH₃OCOCH₂OH) can be formed from simple addition of CH₃OH to CO.

Regardless of the formation pathway, dimethyl carbonate and methyl glycolate would likely be created by any chemical pathway leading to the 3C sugars. These species should therefore be present in large abundance in the Sgr B2(N-LMH) hot core. The microwave spectrum of methyl glycolate is known for the ground state [49] and several torsional states [50, 51]. No rotational spectral studies have been conducted for dimethyl carbonate.

Dimethyl carbonate is a symmetric double internal rotor while methyl glycolate is an asymmetric single internal rotor (see Figure 5.1). The internal rotation leads to AA, AE, EA, and EE states for dimethyl carbonate and A and E states for methyl glycolate, and so their spectra are quite complex. The spectrum of methyl glycolate is much more complex than that of dimethyl carbonate due to its asymmetry. The barrier to internal rotation, V_3 , has been previously measured [52], and this information coupled with the microwave spectral information eases spectral assignment at higher frequencies. Dimethyl carbonate is a much more complicated case, however, as it has a very small dipole moment (~ 0.18 D), and so its spectrum is quite weak, greatly limiting spectral assignment.

We began our study of dimethyl carbonate with FTMW studies. The microwave studies were then used to guide millimeter and submillimeter direct absorption flow cell studies. The ground state spectral analyses of these species have been completed, and this information has served as the basis for preliminary observational searches. The *ab initio* studies of dimethyl carbonate and methyl glycolate are presented in Appendix D, and the structures of their ground state conformers are shown in Figure 5.1. The laboratory studies are presented in Section 5.2. The results of the initial observational searches for these molecules are given in Section 5.3.

Figure 5.1: Ground state structures for a. dimethyl carbonate and b. methyl glycolate.

5.2 Spectroscopic Studies

5.2.1 Experimental

All experiments were conducted with dimethyl carbonate and methyl glycolate vapor from liquid samples (99% and 98%, respectively) purchased from Aldrich.

5.2.2 FT-Microwave Studies

The FTMW investigation of dimethyl carbonate was conducted with the original Balle-Flygare spectrometer. The details of the setup can be found in Chapter 2, Appendix A, and reference [20]. The liquid sample was placed in a bubbler and the mixing manifold was used for sample preparation and backing pressure control. First-run neon (74.9% neon in helium) from BOC Gases was used as the carrier gas. The neon flow rate was 363.5 SCCM, while the flow rate of neon through the bubbler was 4.49 SCCM.

The structural parameters from the theoretical calculations and the value of V₃ previously determined for methyl glycolate $(1.177 \pm 30 \text{ kcal/mol} [52])$ were used to generate a spectral prediction with the MOIAM and IAMCALC programs in the CALPGM suite (see Appendix C, [30]). The single-shot signal was optimized once the quadruplet corresponding to the 1 $_{0,0} \rightarrow 0_{0,0}$ transition was observed. The spectra for this quadruplet are shown in Figure 5.2. The optimized experimental parameters included a microwave pulse width of 1.6 μ s and a backing pressure of 2.23 atm.

The spectrometer Auto Search mode was used to conduct a broadband search for all reasonably strong dimethyl carbonate lines between 12 and 18 GHz. Integrations were performed for 500 shots at each frequency setting, and a step interval of 800 kHz was used. The instrument was used in the coaxial valve configuration, resulting in classic Doppler

Figure 5.2: FTMW Doppler-doublet spectra of the dimethyl carbonate 1 $_{0,0} \rightarrow 0_{0,0}$ quartet. The frequencies are in units of MHz.

doublets for all transitions. The de-Dopplerization routine included in the spectrometer control program was used to determine the center frequencies for observed lines. This routine calculates the mean frequency, intensity, and linewidth for the two lines in a given Doppler doublet and produces a de-Dopplerized spectrum with these parameters. Line confusion limited the use of this feature within some spectral windows, and so the line center frequency was manually determined from the observed frequencies for each component of the Doppler doublet in these cases. An example of a spectrum for which this manual de-Dopplerization was performed is shown in Figure 5.3.

A total of 119 dimethyl carbonate lines were observed between 12 and 18 GHz. Linewidths were on the order of 8 kHz. Integrations of 2000 shots were performed to increase the signal-to-noise ratio for weak lines observed in the Auto Search mode spectra. A doubler was added to the frequency input of the spectrometer such that searches above 18 GHz could be conducted for specific target frequencies. The 3 $_{1,3} \rightarrow 2_{0,2}$ quartet near 20120 MHz was observed in this manner. The frequencies of the lines observed in the FTMW experiments are listed in Table 5.1.

Figure 5.3: A FTMW Doppler-doublet spectrum of dimethyl carbonate for which manual de-Dopplerization was performed for line frequency determination.

Table 5.1:	The	frequencies	(in	MHz)	of	dimethyl	$\operatorname{carbonate}$	lines	observed	in	the	FTMW
experiment	ts.											

12225.16475	12401.58400	12897.50840	14960.80860	16600.01230	17059.85390
12225.47980	12539.98330	12898.56845	14963.76060	16600.31770	17190.50490
12225.97930	12540.32550	12898.60835	14967.10450	16601.07185	17190.60390
12226.42100	12540.37520	12899.52590	15029.10815	16601.24150	17191.05190
12226.42580	12540.56180	13066.87380	15029.26730	16613.78840	17192.72300
12340.65780	12656.06790	13067.21560	15032.15730	16798.26395	17192.82220
12349.24290	12656.25750	13070.29680	15034.60680	16798.30235	17251.37665
12350.15670	12656.39475	13073.55080	16347.09385	16798.33080	17251.58490
12350.18480	12656.62445	13092.51300	16347.92830	16798.47395	17254.91870
12355.46590	12716.15900	13094.51305	16349.88510	16798.66445	17258.35800
12381.73840	12716.67520	13094.60735	16350.73410	16842.70750	17315.21330
12382.86000	12716.97260	13095.71070	16352.29530	16872.76290	17317.68420
12389.99250	12717.52660	13121.81990	16353.13680	16874.30070	17317.97210
12391.01000	12723.31050	13121.92760	16353.61685	16875.19140	17318.94180
12392.12610	12723.53020	13122.41060	16354.69460	16984.11430	20120.24480
12395.10300	12723.63760	13526.26600	16355.46405	16984.27505	20121.57220
12396.22500	12777.98230	13526.68320	16356.93520	16984.82920	20124.21900
12397.34125	12786.25030	13739.42890	16356.94820	16985.46460	20127.68080
12401.13560	12789.24960	13741.20800	16356.96770	17058.81870	
12401.25770	12841.43130	14960.29160	16599.55755	17059.42750	
12401.39035	12859.99600	14960.54810	16599.85445	17059.48950	

5.2.3 Direct Absorption Millimeter and Submillimeter Studies

Direct absorption studies of dimethyl carbonate and methyl glycolate were conducted at 3 and 1 mm with the Caltech Direct Absorption Flow Cell Spectrometers. The details of these setups can be found in Chapter 2, Appendix B, and reference [40]. The liquid dimethyl carbonate or methyl glycolate sample was placed in a ball flask that was connected to the cell. These species are reactive with plastics and pump oil, and so a liquid nitrogen cold trap was attached to the output of the cell in order to protect the mechanical pump. Computerautomated scans of both increasing and decreasing frequency increments were averaged for all spectra.

A pressure of ~ 100 mtorr was maintained for the dimethyl carbonate experiments. The dimethyl carbonate lines were particularly weak and the spectrum was very sparse, and so multiple sweeps (> 5) were averaged in small windows around each observed line. The observed lines were fairly broad with linewidths on the order of 1.5 MHz.

A pressure of ~ 40 mtorr was maintained for the methyl glycolate experiments. The methyl glycolate spectrum was much stronger and also much more complex than the dimethyl carbonate spectrum. An example spectrum of methyl glycolate from 103 to 111 GHz is shown in Figure 5.4. As is shown in the inset, the spectrum is quite dense, and no clear branching pattern is observed. Methyl glycolate linewidths were on the order of 0.5 MHz.

5.2.4 Data Analysis

The internal rotation of symmetric tops within larger molecules can be treated with several different Hamiltonians that are based on the axis system chosen to define the parameters. The Principle Axis Method (PAM) utilizes parameters determined in the

Figure 5.4: The room temperature methyl glycolate spectrum from 103 to 111 GHz.

principle axis system of the molecule. The Internal Axis Method (IAM) utilizes parameters determined in a non-diagonal inertial frame that minimizes the angular momentum of the large amplitude motion. The Rotated Axis Method (RAM) utilizes parameters determined in an arbitrary axis system chosen such that only perturbative terms that treat the large amplitude motion are included. The input to the CALPGM program suite is in the internal axis frame, but the input structure can be rotated to the appropriate axis system (i.e., the rotated axis method), and so the principle axis system can be utilized.

Both dimethyl carbonate and methyl glycolate have CH_3 groups undergoing hindered internal rotation, resulting in a threefold barrier component, V_3 , to the torsional barrier potential:

$$V = \frac{V_3(1 - \cos 3\alpha)}{2}$$
(5.1)

where α is the angle of rotation of the group around an internal axis. For a molecule with two internal rotors, the angle of rotation of the second internal rotor group is defined as β . F is the internal rotation dynamical constant that is related to the moment of inertia, I_{α} , of the rotor around its internal rotation axis. The reduced barrier height, s, relates the barrier height and dynamical constant by the relationship:

$$s = \frac{4V_3}{9F} \tag{5.2}$$

The Hamiltonian used by Groner et al. for the analyses of dimethyl ether and acetone can be used for double internal rotors such as dimethyl carbonate (see [53] and references therein). This Hamiltonian contains two Fourier series "... with coefficients that can be interpreted as integrals of torsional operators." Rather than defining F and V_3 for such a molecule, then, the $\epsilon_{qq'}$ coefficients from one of these series can be used to determine the effective energy. A similar parameter, E, is used by the CALPGM programs, and E is related to ϵ by the relationship $E = -4\epsilon$.

The angle between the symmetry axis of the rotor and the *a*-axis of the molecule is defined by Θ . The internal rotation interaction constant, ρ_g , is defined as:

$$\rho_g = \frac{\lambda_g I_\alpha}{I_g} \tag{5.3}$$

where λ_g is the direction cosine between the symmetry axis of the rotor and the principle axis, g, of the molecule (e.g., $\lambda_a = n\cos\Theta$), and I_g is the principle moment of inertia of the molecule on the g-axis. The rotor contributes off-axis angular momentum, and the contribution of this angular momentum to the b-axis is defined as P_b .

The values of V_3 , F, $E \rho$, and P_b can be fit to the spectral data along with the rotational and centrifugal distortion constants using the SPFIT and SPCAT programs (see Appendix C, [30]). The MOIAM and IAMCALC programs are used to generate a set of spectral parameters based on an initial approximation of the barrier height and the molecular structure. The rotational and centrifugal distortion constants, P_b , V_3 , and F (or alternatively E) are expanded as Fourier series with terms of the type:

$$U_m = \cos^m \left(\frac{2\pi\rho K_{av} - \sigma}{n}\right) \tag{5.4}$$

where m is a user-defined number of terms in the expansion, K_{av} is the average value of K'_a and K''_a , n is the order of the internal rotor symmetry axis (n=3 for a CH₃ group), and σ is the torsional state symmetry number ($\sigma = 0$ for A states; $\sigma = 1, 2$ for E states). The number of terms included in the expansion is determined by the magnitude of the terms, and the expansion is truncated when the contribution from additional terms becomes negligible. The ratio between the U_m terms in a given series is set by the MOIAM and IAMCALC programs. The spectroscopic parameters listed in Tables 5.2 and 5.3 are expressed as the Fourier series terms, U_m . Higher order U_m terms fit independently are listed separately, while fixed terms are listed as one value.

5.2.4.1 Dimethyl Carbonate

A simplified version of the Hamiltonian used to analyze the acetone spectrum was translated into the parameters used by the CALPGM Program Suite for the dimethyl carbonate analysis (see Appendix C and references [30] and [53]). The microwave data were used to fit the internal axis system Hamiltonian and estimate the quartic distortion constants. These parameters were then used to predict the millimeter spectrum. As new data were assigned, lines were continuously added to the data set, and the fit was further modified with the same Hamiltonian. The quality of the fit to the entire data set was indicated by the microwave root mean square deviation. The value for ρ was held constant until the assignments were complete, and then this value was optimized to give the lowest RMS.

A total of 279 lines have been assigned to the dimethyl carbonate ground state with an RMS of 85 kHz. No vibrational state lines were observed. The spectral line density was quite low at millimeter and submillimeter frequencies. No assignable transitions were observed in the millimeter data, but ~75% of the observed submillimeter lines were assignable. These assignments only include states with $K_a = 0, 1$.

Weak satellite lines were observed near many of the strongest dimethyl carbonate lines in the FTMW study. The positions of these satellites suggest that they could be isotopic variants observed in natural abundance, but no dedicated search for isotopomers was conducted. No structural information can be derived from these lines because accurate rotational constants cannot be determined with such incomplete data, and so no assignments have been made at this time. Other isotopomeric transitions might be observable with longer integration times, and this experiment should be conducted if detailed structural information is desired.

The files associated with the ground state analysis, including the parameters and rest frequencies, can be found in Appendix F. The output file from the spectral analysis, which includes the observed minus calculated residuals, has been included as supplementary material in the electronic version of this thesis. The spectral parameters determined for the ground state are listed in Table 5.2.

ρ	0.3000	
$E(U_0 + U_1)$	-70.932(68)	MHz
$E(U_2)$	-25.5880(175)	MHz
$E(U_3)$	-7.19(42)	MHz
$E(U_4)$	-0.0236(39)	MHz
$P_b(U_1)$	-30.95(43)	MHz
$P_b(U_2)$	11.09(32)	MHz
A - (B + C)/2	8226.30(55)	MHz
(B+C)/2	2175.93622(132)	MHz
$[(B+C)/2](U_1)$	0.04096(78)	kHz
[(B-C)/4]	97.754285(259)	MHz
$[(B-C)/4](U_1)$	0.015282(109)	kHz
Δ_J	0.122597(129)	kHz
Δ_{JK}	11.337(219)	kHz
# Lines	279	
Fit RMS	85	kHz

Table 5.2: Spectral parameters determined for dimethyl carbonate.

Note: One σ errors are listed in parentheses in units of last significant figure.

5.2.4.2 Methyl Glycolate

The PAM internal axis system was used in the original analysis of methyl glycolate [52] and has been adopted for the methyl glycolate analysis presented here. The default axis system used in the IAM approach was rotated by an angle of 7.15° so that the PAM system could be used. The structural parameters determined in the *ab initio* study (see Appendix D) were used with the MOIAM and IAMCALC programs to generate spectral parameters. The rotational constants and quartic centrifugal distortion constants were set to the previously determined values, and the microwave data from references [49–52] were used to fit the internal axis system Hamiltonian. These parameters were then used to predict the millimeter spectrum. As new data were assigned, lines were continuously added to the data set, and the fit was further modified with the same Hamiltonian. The quality of the fit to the entire data set was indicated by the microwave root mean square deviation. The value for F determined by the MOIAM and IAMCALC programs was held constant. Likewise, the value for ρ was held constant until the assignments were complete, and then this value was optimized to give the lowest RMS. In a generic RAM, P_b has a value on the order of 8000 MHz. None of the data were sensitive to this parameter, however, and so it was not included in this analysis.

A total of 2342 lines have been assigned to the methyl glycolate ground state with an RMS of 185 kHz. This data set represents only ~ 10 - 15% of the strong lines observed in the millimeter and submillimeter data. The nine vibrational states identified in earlier work account for the large number of unassigned lines remaining in the room temperature spectrum. Assignments for the excited torsional states are planned, but these analyses have not been completed at this time. The files associated with the ground state analysis, including the parameters and rest frequencies, can be found in Appendix G. The output file from the spectral analysis, which includes the observed minus calculated residuals, has been included as supplementary material in the electronic version of this thesis. The assignments and other predicted rotational frequencies will be accessible through the submillimeter and microwave spectral line catalog available at http://spec.jpl.nasa.gov [30] once the torsional state assignments have been completed. The spectral parameters determined for the ground state are listed in Table 5.3.

5.2.5 Discussion

The rotational spectra of dimethyl carbonate and methyl glycolate have now been investigated up to 360 GHz. While the RMS of the dimethyl carbonate analysis is quite

ρ	0.05119	
$V_3(U_0 + U_1 + U_2)$	995.72815(28287)	$\rm kcal/mol$
$F(U_0 + U_1 + U_2 + U_3 + U_4 + U_5 + U_6 + U_7)$	168312	MHz
A - (B + C)/2	7974.6449(88)	MHz
$[A - (B + C)/2](U_1 + U_2)$	0.2325(84)	MHz
(B+C)/2	2026.642270(177)	MHz
$[(B+C)/2](U_1+U_2)$	9.131(182)	kHz
[(B-C)/4]	88.680302(78)	MHz
$[(B-C)/4](U_1+U_2)$	4.928(57)	kHz
Δ_J	0.189728(81)	m kHz
$\Delta_J(U_1 + U_2)$	0.0382(222)	Hz
Δ_{JK}	1.04208(119)	kHz
$\Delta_{JK}(U_1 + U_2)$	2.48(38)	Hz
Δ_K	3.255(84)	kHz
$\Delta_K (U_1 + U_2)$	1.947(58)	kHz
δ_J	-0.029984(37)	kHz
δ_K	-0.4520(40)	kHz
$\delta_K(U_1+U_2)$	-0.02759(117)	kHz
Φ_J	0.0289(116)	mHz
Φ_{JJK}	4.87(87)	mHz
Φ_{JKK}	-0.0635(37)	Hz
Φ_K	-7.583(238)	Hz
ϕ_J	1.24(60)	mHz
ϕ_K	0.0349(265)	Hz
ϕ_{JK}	0.0255(57)	mHz
# Lines	2342	
Fit RMS	185	kHz

Table 5.3: Spectral parameters determined for methyl glycolate.

Note: One σ errors are listed in parentheses in units of last significant figure.

low, the observed minus calculated residuals on the assigned microwave spectral data are slightly higher than the experimental resolution. This indicates that the parameters used for this analysis are not fully modeling the effects of the internal rotation on the rotational spectrum of this molecule, which is not uncommon for such analyses. Also, the weak dipole moment of dimethyl carbonate limits this analysis to those states with $K_a = 0, 1$, but predictions of higher frequency lines with these K_a values should be accurate to ~1 MHz at frequencies above 360 GHz. The analysis presented here is therefore sufficient to guide observational studies, as these states will be populated at hot core temperatures. More sensitive millimeter and submillimeter studies are clearly required before a complete spectral analysis of this molecule can be conducted.

The ground state analysis for methyl glycolate is complete and analyses of the low-lying torsional states are planned. This information is not necessary for observational studies, however, because the vibrational contributions to the molecular partition function can be determined from the information reported in the original microwave studies. The RMS determined in the ground state analysis is approximately twice the experimental resolution, indicating that the internal rotation parameters used for this spectral analysis are not fully modeling the behavior of this species. Again, this is not uncommon for spectral analyses of internal rotors. The parameters determined here, however, are in excellent agreement with those determined in the original microwave studies [52] and provide the necessary information to guide observational studies. Based on this ground state analysis, predictions of strong submillimeter lines above 360 GHz are accurate to better than 2 MHz, and interpolations below 360 GHz are accurate to less than 200 kHz.

Partition function calculations for these two molecules must be modified from the standard asymmetric top approximation given in Equation 3.8 to include internal rotation effects. In the case of dimethyl carbonate, the situation is analogous to that of acetone [53], where the partition function can be weighted by the ratio of the total spin weight to the symmetry number. The spin weight is given by $(2I+1)^6$, which is equal to 64 in the case of a methyl top where $I = \frac{1}{2}$, while the symmetry number is 2 for a C_{2v} symmetric molecule. For dimethyl carbonate, then, the standard asymmetric top partition function should be multiplied by a factor of 32. In the case of methyl glycolate, the A and E states are singly and doubly degenerate with nuclear spin weights of 2 and 1, respectively [54]. Their contributions to the partition function are therefore equal, and so the standard asymmetric

top partition function should be multiplied by a factor of two. Rotational constants and vibrational energies have been determined for the nine vibrationally excited states of methyl glycolate reported in reference [51], and so these states can be included in the partition function analysis. For dimethyl carbonate, however, only a ground state partition function can be calculated at this time. This should be a good approximation for the total molecular partition function since no excited state lines were observed in the laboratory spectra. The partition functions for these two molecules have been calculated at a range of temperatures and are presented in Table 5.4.

Table 5.4: Dimethyl carbonate and methyl glycolate molecular partition function values at various temperatures.

Temperature (K)	Dimethyl Carbonate Q_{gs}	Methyl Glycolate Q_{total}
300	4017203	1265051
200	2186688	688606
150	1420296	447263
50	273336	86076
10	24448	7699

5.3 Observational Studies

The primary target for observational searches for dimethyl carbonate and methyl glycolate is the Sgr B2(N-LMH) hot core such that direct abundance comparisons can be made to the other 3C structural isomers. This source is only observable from the CSO during summer months, and the laboratory data had not been obtained before the summer observing season in 2004. Observational searches are scheduled for July 2005. Additional GBT observations of this source have been postponed until fall 2005.

The search for dimethyl carbonate will be greatly limited by the 0.1 D dipole moment,

as the detection limits are inversely proportional to the square of this quantity. The detection limits would therefore be a factor of 400 higher for dimethyl carbonate than dihydroxyacetone from the dipole moment ratios alone. Likewise, the dimethyl carbonate partition function is seven times that of dihydroxyacetone at 200 K. The line strengths are also quite weak for this molecule in comparison to dihydroxyacetone. Dimethyl carbonate would have to be at least five orders of magnitude more abundant than dihydroxyacetone before its emission would be detectable. This would require its abundance to be higher than nearly all organic species in the Sgr B2(N-LMH) source, which is an unlikely scenario given its level of molecular complexity.

Methyl glycolate, on the other hand, has a larger dipole moment than dihydroxyacetone $(\mu_a=2.68 \text{ D}, \mu_b=1.02 \text{ D}; [51])$, and the line strengths are much stronger than those for dihydroxyacetone. The partition function is three times that of dihydroxyacetone at 200 K. Detection of methyl glycolate should therefore be quite straightforward in the Sgr B2(N-LMH) source if it is present at a column density on the order of or higher than that found for dihydroxyacetone.

The first step in the search for any species in this source is to compare the spectral information to the unidentified lines in existing line surveys. A single-dish survey in the 1 mm region [24] and a combined single-dish and interferometric survey in the 3 mm region [4] are available. Unfortunately the RMS level reached in the 1 mm survey is above the level required for complex molecule identification. The 3 mm survey, however, is near the level required for such detections, and $\sim 55\%$ of the lines observed in this survey remain unidentified [4]. No dimethyl carbonate lines match any of the unidentified lines in this survey, but several methyl glycolate line positions are covered in this survey, and emission features are indeed seen at these frequencies. The (x,y) data from this survey as well as maps

of each spectral line have been obtained (D. N. Freidel 2004, private communication). A spectral window containing many possible methyl glycolate lines is shown in Figure 5.5 along with a T_{rot} =200 K simulated spectrum. The relative intensities, line center frequencies, and linewidths of the methyl glycolate lines were fixed and the intensities scaled to best match the observed spectrum.

Figure 5.5: The simulated spectrum of methyl glycolate at 200 K (red) compared to a Sgr B2(N-LMH) 3 mm survey spectrum. The vertical lines correspond to line center positions, with red representing methyl glycolate lines and blue representing formic acid lines. Formic acid is the only identified species with lines in this window; all other emission features are unidentified.

The higher frequency component of the emission feature centered at 89814.7 MHz is clearly affected by the other line in the spectrum. Each of the other possible methyl glycolate lines

are in excellent agreement with the observed spectrum. Another unidentified line observed at 109960 MHz, which is not shown in Figure 5.5, also closely matches the methyl glycolate prediction.

The column density for methyl glycolate in this source can be calculated from the emission features at 89815.3, 89993.6, 90075.0, and 109960.7 MHz, and the results of this analysis are presented in Table 5.5. The parameters for these lines, specifically the transition quantum numbers, rest frequencies, Einstein A-coefficients times the upper state degeneracy, and upper state energies, are listed. All observed lines are transitions within the ground vibrational state. A rotation diagram approach cannot be used in this case because the upper state energies of these transitions are very similar, and so a rotational temperature of 200 K, the most commonly quoted rotational temperature for this source [28], was used for these calculations. These lines are asymmetry doublets and also contain both A and E state components. Only one frequency has been listed for asymmetry doublets occurring at the same frequency; for all others, the frequency of each individual component has been listed. The line strengths were calculated for the blended A/E states in the same manner as is described in Section 3.3 for asymmetry doublets. The vibrational state contributions to the partition function were included in this analysis. An average column density of $1.92(85) \times 10^{16}$ cm⁻² is determined from these data.

Each of these emission features has also been mapped, and these results further strengthen the case for a methyl glycolate detection, as all of these emission features have the same spatial distribution. The map for the emission feature at 89815 MHz is shown in Figure 5.6. The emission is on the same order as the beam size, and so beam dilution corrections are not necessary for these derived column densities.

These results indicate that methyl glycolate could indeed be present in the Sgr B2(N-

$\mathbf{J}'_{K'_a,K'_c}{-}\mathbf{J}''_{K''_a,K''_c}$		$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathrm{K})\end{array}$	N_T upper limit ^b (×10 ⁻¹⁶ cm ⁻²)
A state					
$22_{6,16} \rightarrow 21_{6,15}$	89815.3393	1.5203	63.17	0.76(19)	1.62(43)
$22_{6,17} \rightarrow 21_{6,16}$			63.17		
E state					
$22_{6,17} \rightarrow 21_{6,16}$	89815.3409		63.17		
$22_{6,16} \rightarrow 21_{6,15}$			63.17		
A state					
$22_{4,19} \rightarrow 21_{4,18}$	89993.5702	1.1979	55.64	0.76(19)	1.25(35)
E state					
$22_{4,18} \rightarrow 21_{4,17}$	89993.5702		55.64		
$22_{4,19} \rightarrow 21_{4,18}$			55.64		
A state					
$23_{2,22} \rightarrow 22_{2,21}$	90075.9787	1.2839	54.20	0.76(19)	2.88(76)
E state					
$23_{2,22} \rightarrow 22_{2,21}$	90075.0186		54.20		
$23_{2,21} \rightarrow 22_{2,20}$			54.20		
A state					
$27_{9,19} \rightarrow 26_{9,18}$	109960.6897	4.9341	104.6	2.98(35)	0.21(07)
$27_{9,18} \rightarrow 26_{9,17}$			104.6		
E state					
$27_{9,18} \rightarrow 26_{9,17}$	109960.6897		104.6		
$27_{9,19} \rightarrow 26_{9,18}$			104.6		

Table 5.5: Methyl glycolate column density in Sgr B2(N-LMH) determined from lines observed in the 3 mm line survey [4].

 a One σ uncertainties are 0.1 MHz.

^b Uncertainties are listed in parentheses in units of last significant figure.

LMH) hot core at a column density higher than any other complex organic yet detected. The spatial distribution is also indicative of a hot core molecule. Further observational investigation of methyl glycolate is clearly warranted before a definitive detection can be claimed, and searches with the CSO and GBT are planned. If these results are substantiated, however, the relative abundances of glyceraldehyde, dihydroxyacetone, and methyl glycolate follow similar trends to the 2C structural isomers. Their formation is governed by non-

Figure 5.6: A map of the possible methyl glycolate emission feature at 89815 MHz in Sgr B2(N-LMH).

kinetic processes that are similar to the formation routes for the 2C compounds, which are thought to form on grain surfaces. The implications of these results for interstellar grain surface chemistry are discussed in Chapter 8.

Chapter 6 Glycolaldehyde

6.1 Introduction

The results of the dihydroxyacetone study have made it clear that a detailed determination of the vibrational contribution to the molecular partition function for sugarrelated species is required for accurate column density determinations (see Chapter 4 and reference [55]). While the excited vibrational state partition function contribution is often negligible for small organics, this is not the case for more complex species with low energy torsional modes. Vibrational state excitation can be strongly influenced by the far-infrared radiation field in and near hot cores, and as a result low-lying states can be significantly populated, often by large factors over purely collisional excitation processes (see [56, 57]). The molecular partition function used to determine the column density of dihydroxyacetone included terms from several vibrationally excited states in addition to the ground vibrational state [55], while the glycolaldehyde column density reported by Hollis et al. was calculated using only the ground vibrational state molecular partition function [15]. A direct comparison of these two molecules therefore requires that vibrational state contributions to the glycolaldehyde molecular partition function also be determined.

The original interstellar detection of glycolaldehyde was based on an extrapolation of

earlier microwave rotational studies [58, 59], with subsequent millimeter and submillimeter measurements extending the laboratory database over the 128 - 354 GHz interval [60]. Three excited vibrational states were identified in the original microwave work, and some spectral assignments were included [58]. Gas phase infrared studies of this molecule have only been completed above 500 cm⁻¹ [61], and the original microwave work included energies for only two of the three vibrational states [59]. While a rough estimate of the partition function can be made from *ab initio* predictions of vibrational state energies, the torsional energies determined in such studies often have uncertainties of >20%.

A much more precise determination of these vibrational state energies can be made from comparison of the relative intensities of the excited vibrational state lines to ground vibrational state lines. The rotational and centrifugal distortion constants derived from higher frequency spectral assignments can also be used to determine a more complete partition function. In addition, spectral lines from other low-lying torsional states not identified in the original microwave work (i.e., combination and/or overtone bands) could be present in millimeter and submillimeter spectra. If populated, these states could contribute significantly to the molecular partition function in a hot core environment. To test these possibilities, the millimeter spectrum of glycolaldehyde from 72–122.5 GHz has been obtained. The combined millimeter and submillimeter pure rotational analysis of the vibrationally excited states of glycolaldehyde has also been completed and this information used to determine a more complete molecular partition function.

6.2 Spectroscopic Studies

6.2.1 Experimental

The millimeter and submillimeter spectra of glycolaldehyde from 128–354 GHz were obtained with the Fast Scanning Submillimeter Spectroscopic Technique (FASSST) system at The Ohio State University. The spectra analyzed in this study are those obtained and analyzed in the original ground vibrational state study. Details of the experimental setup as well as a more detailed description of these data can be found in references [62] and [60], respectively.

Additional millimeter studies from 72–122.5 GHz were conducted with the JPL flow cell spectrometer. The basic flow cell design and detection methods for the JPL spectrometer are outlined in reference [23]. The source frequencies were obtained using a directly synthesized beam projected from the output of a multiplier chain [41]. The 3 mm wavelength region was readily detected with a room temperature diode detector, whereas the 1 and 2 mm regions required a helium cooled InSb bolometer. A solid sample of glycolaldehyde dimer (Aldrich 99%) was placed directly in the flow cell to ensure sufficient sample vapor pressure, which was maintained at \sim 20 mtorr for the duration of the experiment. All measurements were conducted at room temperature. Measurements with a directly synthesized millimeterwave source offer wide spectral coverage, particularly in the 100 GHz region where the final multiplier is fix-tuned (see Figure 6.1). Second and third harmonics of this multiplier were produced on a whisker-contacted Schottky diode allowing scans of up to 2 GHz per sweep. Computer-automated scans of both increasing and decreasing frequency increments were averaged to eliminate errors due to the time constant of the lock-in amplifier. The line widths were less than 1 MHz, and the spectrometer resolution is better than 100 kHz.

Figure 6.1: The room temperature glycolaldehyde spectrum from 101 to 122.5 GHz.

The glycolaldehyde spectrum from 101–122.5 GHz is shown in Figure 6.1. The line density is quite high in this spectrum, and strong b R branches are seen at a separation of approximately 13 GHz.

6.2.2 Data Analysis

The data were assigned using the SPFIT and SPCAT programs (see Appendix C, [30]). The rotational constants, centrifugal distortion constants, and dipole moments determined in previous spectral studies [58, 60] and a standard asymmetric-top Hamiltonian in the I^r - representation were used with the Watson A-reduction to generate a predicted spectrum for the ground vibrational state and three vibrational states. These constants were then used to predict the millimeter spectrum. As new data were assigned, they were continuously added to the data set, and the fit was further modified with the same asymmetric-top Hamiltonian. The quality of the fit to the entire data set was indicated by the root mean square deviation of measured minus calculated residuals. All spectral assignments from the earlier studies were included in this fit. A total of 3160 glycolaldehyde lines, nearly all of the lines observed in the spectra, have been assigned. A total of 1657 lines have been assigned to the ground state with a RMS of 110 kHz. Additional assignments were made for three vibrational states, and these analyses have RMS values in the range of 120 to 130 kHz.

Glycolaldehyde has a strong 2.73(3) D *b*-type dipole and a weak 0.12(4) D *a*-type dipole [58]. A total of 67 *a*-type vibrational state transitions were assigned in this study. The relative intensities of the excited vibrational state lines to the ground state lines are dependent on the dipole moment and the vibrational state energy. The ground state dipole moments determined in the microwave study were used for all vibrational state predictions and assignments. Energies for the vibrational states were therefore determined by comparison of the relative intensities of these states to the ground vibrational state, and the values derived are given in Table 6.1.

The files associated with the analysis, including the parameters and rest frequencies, can be found in Appendix H. The output file from the spectral analysis, which includes the observed minus calculated residuals, has been included as supplementary material in the electronic version of this thesis. The assignments and other predicted rotational frequencies are accessible through the submillimeter and microwave spectral line catalog available at http://spec.jpl.nasa.gov [30]. The rotational and centrifugal distortion constants

determined for each state are listed in Table 6.1.

6.2.3 Discussion

The millimeter and submillimeter spectra of glycolaldehyde have now been fully characterized up to 354 GHz. Spectral assignments include lines from the ground state and three vibrational states, and rotational and quartic centrifugal distortion constants as well as vibrational state energies have been determined for each of these states. The RMS of the spectral analysis, ~ 0.1 MHz, agrees with the resolution of both spectrometers used in this study. While the rotational constants determined from this analysis have changed only slightly from those found in the original microwave study, the centrifugal distortion constants have been significantly refined and provide an accurate submillimeter prediction for glycolaldehyde that can be used to guide future observational searches. Predictions of strong submillimeter lines above 354 GHz have similar accuracies for J-values close to the J_{max} in this analysis (see Table 4.2), while interpolations below 354 GHz are accurate to less than 100 kHz for all states based on this analysis. Uncertainties in the prediction are strongly correlated with J, but we estimate the errors are below 1 MHz for $J \sim 80$.

The original microwave study derived energies of $195 \pm 30 \text{ cm}^{-1}$ and $260 \pm 40 \text{ cm}^{-1}$ for the first two excited vibrational states, which agree with those values obtained in this study [59]. A recent *ab initio* study estimates the five lowest glycolaldehyde vibrational state energies to be 213.4, 293.9, 425.7, 738.2, and 751.6 cm⁻¹ [63], which also agree with the experimentally determined values within the typical uncertainties for such calculations. The experimentally determined third excited vibrational state energy, which differs the most from the *ab initio* predictions, provides the necessary information for a more complete glycolaldehyde partition function analysis.

le	
X	
Å.	
ď	
al	
JĘ	
5	
N	
60	
J	
0	
\mathbf{s}	
at.	
Ę.	
<u></u>	
a	
n	
at	
Ë	
÷	
>	
ğ	
te	
.5	
×	
Ð	
e	
ц	
q.	
5	
ŝ	
Ē	
Ξ	
5	
aı	
ŭ	
Ę	
2	
60	
e	
the	
r the	
or the	
l for the	
ed for the	
ned for the	
nined for the	
rmined for the	
ermined for the	
etermined for the	
determined for the	
s determined for the	
ers determined for the	
eters determined for the	
neters determined for the	
ameters determined for the	
arameters determined for the	
parameters determined for the	
I parameters determined for the	
ral parameters determined for the	
tral parameters determined for the	
ectral parameters determined for the	
pectral parameters determined for the	
Spectral parameters determined for the	
I: Spectral parameters determined for the	
1.1: Spectral parameters determined for the	
: 6.1: Spectral parameters determined for the	
le 6.1: Spectral parameters determined for the	
vble 6.1: Spectral parameters determined for the	
Table 6.1: Spectral parameters determined for the	

	e	cm^{-1}) MHz) MHz) MHz	.) kHz) kHz) kHz) kHz) kHz	mHz	$_{\rm Hz}$	$_{\rm Hz}$	H_{z}	mHz	mHz	$_{\rm Hz}$				MHz
3^{rd} Excited	Vibrational Stat	~ 313	18524.85586(140	6445.62399(64	4933.53697(52	6.35860(131	-23.25808(149	53.2488(60)	1.859377(139	8.9558(41)	a	a	a	a	a	a	a	39	15	340	0.120
$2^{nd}\mathrm{Excited}$	Vibrational State	~ 260	18576.57913(104)	6477.99471(42)	4938.51753(40)	6.196436(251)	-21.59964(89)	51.9581(45)	1.849366(67)	10.89546(160)	a	a	a	a	a	a	a	48	15	491	0.129
1^{st} Excited	Vibrational State	~ 195	18463.55355(83)	6482.54460(36)	4965.052866(308)	6.280203(216)	-19.94946(55)	48.27689(292)	1.8342152(305)	7.61421(102)	a	a	a	a	a	a	a	61	14	672	0.130
Ground	Vibrational State	0	18446.26074(43)	6525.996379(161)	4969.235801(149)	6.222339(55)	-20.397978(222)	47.72338(47)	1.8337838(135)	8.87889(41)	-6.465(42)	0.15657(108)	-0.7721(34)	1.05703(292)	2.5042(167)	12.98(82)	0.1909(107)	99	29	1657	0.110
Parameter		E	A	B	C	Δ_J	Δ_{JK}	Δ_K	δ_J	δ_K	Φ_J	Φ_{JK}	Φ_{KJ}	Φ_K	ϕ_J	ϕ_{JK}	ϕ_K	J_{max}	K_{max}	# Lines	Fit RMS

Note: One σ errors are listed in parentheses in units of last significant figure.

 $^a\mathrm{The}$ sextic distortion constants were fit as global constants across all states.

Per the method described in Section 3.3, the rotational constants and vibrational energies determined for each vibrational state have been used such that the partition function is approximated as:

$$Q(T) \approx \sum_{i=0}^{3} e^{-E_i/kT} \sqrt{\frac{\pi}{A_i B_i C_i} \left(\frac{kT}{h}\right)^3}$$
(6.1)

The tabulated values for the glycolaldehyde partition function at a range of temperatures are given in Table 6.2 and compared to those tabulated for the ground vibrational state partition function. The three excited vibrational states have been included in this calculation. The absence of lines from other vibrationally excited states at room temperature indicates that overtone and combination bands of these first three states are not significantly populated at typical hot core temperatures (≤ 300 K). These states have therefore not been included in the partition function calculation, nor have even higher energy vibrational states predicted by the *ab initio* study. Clearly, the glycolaldehyde molecular partition function increases significantly when the excited vibrational state terms are included unless the excitation temperature is very low.

Temperature (K)	Q_{gs}	Q_{total}
300	35876	68405
200	19528	29435
150	12684	16331
50	2441	2452
10	218.3	218.3

Table 6.2: Glycolaldehyde molecular partition function values at various temperatures.

The partition function values in Table 6.2 were calculated assuming that the vibrational and rotational excitation temperatures are the same, which is often the case in hot cores [56, 64]. While the rotational temperature can be derived directly from the rotational diagram analysis, the vibrational temperature cannot. It has been found that the vibrational temperature is equal to or higher than the rotational temperature in this source due to the intense far-infrared radiation field generated by warm dust (see [56, 57]). The use of the rotational temperature in such an analysis therefore yields a lower limit for the partition function and column density and is the most accurate approximation without direct determination of the vibrational temperature.

A rotational temperature of 200 K was initially used to determine the glycolaldehyde column density in the Sgr B2(N-LMH) source [15]. The results presented here demonstrate that there is significant contribution to the molecular partition function from excited vibrational states at this temperature. As the column density is directly proportional to the partition function, the column density of glycolaldehyde in the Sgr B2(N-LMH) source is actually $\sim 2.26 \times 10^{15}$ cm⁻² at 200 K, rather than the reported value of $\sim 1.5 \times 10^{15}$ cm⁻² [15]. However, recent GBT observations have led to a revised theory for the behavior of glycolaldehyde in this source, and much lower rotational temperatures are now derived for beams of $\sim 10{\cdot}20''$ [17]. Nevertheless, the revised partition function values presented here should be used in future column density calculations and may be critical to future observations with arrays that are more sensitive to warm gas in the compact hot cores associated with the galactic center molecular clouds. Indeed, these results show that the excited vibrational state contribution to the partition function should be a principal consideration when determining the column density of a molecule with low lying torsional states.

Chapter 7

Aminoethanol

7.1 Introduction

Aminoalcohols are central to the gas phase formation of glycine in current hot core chemical models. The protonated forms of aminomethanol (NH_2CH_2OH) and aminoethanol ($NH_2CH_2CH_2OH$) are proposed to react with formic acid (HCOOH) to yield the protonated forms of glycine and alanine, respectively [3]. Laboratory and observational data supporting the presence of these aminoalcohols remains incomplete, however. The first step in the evaluation of these models is therefore the complete laboratory spectroscopic characterization of aminomethanol and aminoethanol.

Aminomethanol is not easily isolated under normal laboratory conditions. Aminoethanol, however, is commercially available, and gas phase spectra are easily obtained. Penn and Curl investigated the rotational spectrum of this molecule from 8–40 GHz and assigned transitions through J = 8. Rotational constants were determined in this work, as well as the dipole moment, r_0 structure, and the nuclear quadrupole coupling constants [65]. This data was subsequently used to determine quartic centrifugal distortion constants [66]. An internally hydrogen-bonded gauche conformer, shown in Figure 7.1, was the only conformer observed.

Figure 7.1: The ground state structure of 2-aminoethanol.

Although Penn and Curl made tentative assignments of transitions in excited vibrational states, the vibrational spectrum of aminoethanol had not been characterized at this time. This work was later done by Korolevich *et al.* [67], and all of the fundamental vibrational modes as well as many overtone and combination bands were identified. The work presented here therefore utilizes the nomenclature and vibrational energies determined in this study. Here, the vibrational states of interest are the highest numbered fundamental vibrational modes (i.e., ν_{25} , ν_{26} , and ν_{27}) and their respective overtones and combination bands. The assignments of Penn and Curl can be attributed to the ν_{27} and $2\nu_{27}$ states. These torsionally excited states have vibrational energies below $\sim 350 \text{ cm}^{-1}$ and are significantly populated at room temperature.

The work presented here includes measurements and analysis of the rotational spectrum of aminoethanol in selected regions from 75 to 305 GHz. Ground state transitions have been identified up to J = 51, and additional rotational transitions are assigned for the ν_{25} , ν_{26} , ν_{27} , $\nu_{25} + \nu_{27}$, $2\nu_{27}$, and $\nu_{26} + \nu_{27}$ vibrational states.

7.2 Spectroscopic Studies

7.2.1 Experimental

The experimental apparatus utilized is the JPL flow cell spectrometer. The flow cell and detection methods are outlined in reference [23], and the details of the frequency source and detectors are outlined in Chapter 6.

A sample of liquid aminoethanol (99%) was purchased from Acros for this study. An aminoethanol pressure of approximately 30 mtorr was maintained in the flow cell throughout the duration of the experiment, and all measurements were conducted at room temperature. Computer-automated scans of both increasing and decreasing frequency increments were averaged to eliminate errors due to the time constant of the lock-in amplifier. A sample spectrum is shown in Figure 7.2.1. Linewidths were on the order of 1 MHz. Strong ^{*a*}R branches are seen at a separation of approximately 11 GHz. No nitrogen hyperfine splitting patterns were observed because of the moderate- and high-*J* states accessed.

7.2.2 Data Analysis

The data were assigned using the SPFIT and SPCAT programs (see Appendix C, [30]). The lower frequency data of Penn and Curl [65] and a standard asymmetric-top Hamiltonian with the Watson A-reduction were used to generate a predicted spectrum for the molecule in the experimental range. As the new data were assigned, they were continuously added to the data set and processed with the same asymmetric-top Hamiltonian, further modifying the fit. A microwave root mean square deviation was used to indicate the quality of the fit to the entire data set.

A total of 2047 aminoethanol lines, approximately 85 percent of the total lines in the

Figure 7.2: The room temperature aminoethanol spectrum from 97 to 120 GHz.

spectrum, have been assigned. The global fit microwave RMS was 113 kHz. Narrower lines could be obtained at reduced pressures of sample, resulting in center frequency accuracies of < 50 kHz, but this modest improvement in accuracy could only be obtained with a dramatic decrease in signal. The ground state assignments were made initially, and quartic and sextic centrifugal distortion constants were determined in addition to standard rotational constants. A total of 528 lines have been assigned to the ground state with a microwave RMS of 84 kHz. Assignments were made for a total of six vibrational states with microwave RMS values between 120 and 143 kHz.

Initial assignments of excited vibrational levels for the fundamental torsional modes were made by comparison of the relative intensities of the ground state to the vibrational satellites. Subsequent assignment of overtone and combination bands were made by estimation of the rotational constants from those determined for the fundamental modes. The rotational and quartic centrifugal distortion constants were determined independently for each vibrational state, while the sextic distortion constants were determined in a global fit to all vibrational levels and the ground state. The rotational and centrifugal distortion constants determined for each state are listed in Tables 7.1 and 7.2. A separate fit of the ground state, allowing for adjustment of the sextic distortion constants, was performed and the results compared to those obtained in the global fit. Differences between the two fits were less than 3σ for each parameter, indicating that the global fit parameters are accurate values for the ground state.

The files associated with the analysis, including the parameters and rest frequencies, can be found in Appendix I. The output file from the spectral analysis, which includes the observed minus calculated residuals, has been included as supplementary material in the electronic version of this thesis. The assignments and other predicted rotational frequencies are accessible through the submillimeter and microwave spectral line catalog available at http://spec.jpl.nasa.gov [30].

7.2.3 Discussion

The rotational spectrum of aminoethanol has been characterized up to 305 GHz. We have extended measurements of ground state transitions and assigned transitions for the ν_{25} , ν_{26} , ν_{27} , $\nu_{25} + \nu_{27}$, $2\nu_{27}$, and $\nu_{26} + \nu_{27}$ vibrational states. Improved rotational, quartic, and sextic centrifugal distortion constants have been determined for these states. Predictions of strong spectral features in the sub-millimeter range are accurate to 1 MHz based on the current analysis. Interpolations throughout the mm-wavelength range are good to < 100

state	SS	V27	ν_{26}	ν_{25}	
E	0	104	164	305	cm^{-1}
А	14508.72725(97)	14611.09449(107)	14524.58346(256)	14492.42314(117)	MHz
В	5546.49379(41)	5502.57384(43)	5537.51455(48)	5545.55220(44)	MHz
C	4570.48697(40)	4547.55919(42)	4559.95743(46)	4559.70869(43)	MHz
$-\Delta_J$	-6.18488(67)	-6.10549(63)	-6.29271(66)	-6.29079(66)	kHz
- Δ_{JK}	0.02319299(213)	0.02413757(235)	0.02399144(268)	0.02386650(231)	MHz
$-\Delta_K$	-0.0532367(101)	-0.0596786(112)	-0.056270(42)	-0.0541637(111)	MHz
$-\delta_J$	-1.809587(130)	-1.784947(137)	-1.857728(194)	-1.845020(147)	$\rm kHz$
$-\delta_K$	-0.0106488(40)	-0.0111940(43)	-0.0108574(60)	-0.0104006(46)	MHz
Φ_J	-0.01392(34)				$\mathbf{H}_{\mathbf{Z}}$
Φ_{JJK}	0.21413(78)				$\mathbf{H}_{\mathbf{Z}}$
Φ_{JKK}	-1.1836(32)				$\mathbf{H}_{\mathbf{Z}}$
Φ_K	1.8433(239)				$\mathbf{H}_{\mathbf{Z}}$
ϕ_J	-5.7731(312)				mHz
ϕ_{JK}	-0.10649(140)				$\mathbf{H}\mathbf{z}$
# Lines	573	431	254	362	
Fit RMS	0.084	0.143	0.135	0.132	

Table 7.1: Spectral parameters determined for the ground and fundamental vibrational states of aminoethanol.

Note: One σ errors are listed in parentheses in units of last significant figure. The sextic distortion constants for the ground state were used for all states.

80

state	$2\nu_{27}$	$\nu_{26} + \nu_{27}$	$ u_{25} + u_{27} $	
Е	208	268	409	cm^{-1}
А	14697.53155(166)	14572.0760(128)	14631.2449(263)	MHz
В	5464.38187(50)	5503.29600(91)	5458.88835(144)	MHz
\mathbf{C}	4527.51996(49)	4534.74149(75)	4530.87686(125)	MHz
$-\Delta_J$	-5.83239(65)	-6.29872(152)	-6.31908(179)	kHz
$-\Delta_{JK}$	0.02356607(303)	0.0250314(94)	0.0250497(129)	MHz
$-\Delta_K$	-0.0609136(146)	-0.100906(265)	-0.06804(183)	MHz
$-\delta_J$	-1.703411(210)	-1.87721(66)	-1.85843(89)	kHz
$-\delta_K$	-0.0118742(68)	-0.013395(39)	-0.012183(47)	MHz
# Lines	238	101	88	
Fit RMS	0.120	0.127	0.150	MHz

Table 7.2: Spectral parameters determined for overtone and combination vibrational states of aminoethanol.

Note: One σ errors are listed in parentheses in units of last significant figure. The sextic distortion constants for the ground state were used for all states.

kHz. The remaining unassigned transitions are all significantly weaker than the ground and lower vibrational states. Some partial assignments may be attributed to the combination $\nu_{26} + \nu_{25}$ (369 cm⁻¹) or the $3\nu_{27}$ (312 cm⁻¹) and $2\nu_{26}$ (328 cm⁻¹) overtones. It appears that these states, which lie between 300 and 400 cm⁻¹, are perturbed from the regular asymmetric top energy levels. Analysis of these states is beyond the scope of the present work.

7.3 Observational Studies

The laboratory studies of aminoethanol provided the necessary information to guide observational searches for this species. These searches were conducted with the CSO and OVRO observatories. No lines were detected for this molecule with either observatory, but upper limits for the column density have been calculated from the astronomical data. The observations and results are outlined below.

7.3.1 CSO Observations

7.3.1.1 Observations

Searches for aminoethanol in the Sgr B2(N-LMH), Orion Compact Ridge, and W51e2 sources were conducted with the CSO using the 230 GHz DSB heterodyne receiver on the nights of 2002 October 11–14 and 2004 July 3–5. Spectral windows corresponding to the frequencies of two aminoethanol lines were observed in each source, and the parameters for these lines, specifically the transition quantum numbers, rest frequencies, Einstein Acoefficients times the upper state degeneracy, and upper state energies, are listed in Table 7.3. All observed lines are asymmetry doublets whose transitions occur within the ground vibrational state. Typical system temperatures ranged from 200-600 K, and the source positions and velocities selected were $\alpha(1950)=17^{h} 44^{m} 10^{s}.1$, $\delta(1950)=-28^{\circ} 21' 17''$ and 64 km/s for the Sgr B2(N-LMH) hot core, $\alpha(2000)=05^h 35^m 14^s.5$, $\delta(2000)=-05^\circ 22' 30''.4$ and 9 km/s for the Orion Compact Ridge, and $\alpha(1950)=19^h \ 23^m \ 43^s.5$, $\delta(1950)=14^\circ \ 30'$ 34'' and 55 km/s for the W51e2 hot core. The chopping secondary with a 70'' throw was used along with chopper-wheel calibration and the facility 1.5 GHz, 500 MHz, and 50 MHz AOS back ends to minimize the spectral baseline fluctuations. The FWHM of the CSO at these frequencies is $\sim 30''$, and all data are placed on the T_{MB} temperature scale using a main beam efficiency of 70%.

7.3.1.2 Results

No transitions were detected in any of the sources observed, and so the column density upper limit was calculated from the observed spectral intensity at the expected line position, which was placed on the T_{MB} temperature scale using a main beam efficiency of 70%. These limits are presented in Table 7.3. A linewidth of 5 km/s and a rotational temperature of 150

$\mathbf{J}_{K_a',K_c'}'-\mathbf{J}_{K_a'',K_c''}''$		$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathrm{K})\end{array}$	N_T upper limit ^c (×10 ⁻¹³ cm ⁻²)
Orion					
$\begin{array}{c} 26_{1,25} \rightarrow 25_{1,24} \\ 26_{2,25} \rightarrow 25_{2,24} \end{array}$	246825.322	$3.1364 \\ 3.1364$	$165.04 \\ 165.04$	0.05(2)	3.03(42)
$\begin{array}{c} 27_{0,27} \rightarrow 26_{0,26} \\ 27_{1,27} \rightarrow 26_{1,26} \end{array}$	249709.769	7.5484 7.5484	$169.66 \\ 169.66$	0.20(2)	5.15(71)
W51e2					
$\begin{array}{c} 27_{0,27} \rightarrow 26_{0,26} \\ 27_{1,27} \rightarrow 26_{1,26} \end{array}$	249709.769	7.5484 7.5484	$169.66 \\ 169.66$	0.03(2)	1.33(31)
$\begin{array}{c} 28_{0,28} \rightarrow 27_{0,27} \\ 28_{1,28} \rightarrow 27_{1,27} \end{array}$	258826.376	$8.7195 \\ 8.7195$	182.08 182.08	0.08(2)	7.34(74)
Sgr B2(N-LMH)					
$\begin{array}{c} 27_{0,27} \rightarrow 26_{0,26} \\ 27_{1,27} \rightarrow 26_{1,26} \end{array}$	249709.769	7.5484 7.5484	$169.66 \\ 169.66$	0.063(5)	2.96(30)
$\begin{array}{c} 28_{0,28} \rightarrow 27_{0,27} \\ 28_{1,28} \rightarrow 27_{1,27} \end{array}$	258826.376	$8.7195 \\ 8.7195$	$\begin{array}{c} 182.08\\ 182.08 \end{array}$	0.030(5)	5.90(14)

Table 7.3: Aminoethanol column density upper limits in Orion, W51, and Sgr B2 from CSO observations.

 a One σ uncertainties are 0.1 MHz.

^b Assumed uncertainties are listed in parentheses in units of last significant figure.

 c One σ uncertainties are listed in parentheses in units of last significant figure.

K, typical values observed for species in the Compact Ridge, were assumed for the Orion calculations [25]. A line width of 10 km/s and a rotational temperature of 100 K, the values found for methyl cyanide in the W51e2 source, were assumed for the W51e2 calculations [42]. A line width of 10 km/s, the approximate linewidth observed for dihydroxyacetone in the Sgr B2(N-LMH) source (see Section 4.4), and a rotational temperature of 200 K, the most

commonly quoted temperature for this source [28], were assumed for the Sgr calculations. The vibrational state contributions to the partition function were included in this analysis.

7.3.2 OVRO Observations

7.3.2.1 Observations

Searches for aminoethanol in the Orion and W51e2 sources were conducted with the OVRO Millimeter Array between 2001 October 1–November 4. The source positions used were $\alpha(2000) = 05^{h} 35^{m} 14^{s}.5$, $\delta(2000) = -05^{\circ} 22' 30''.4$ for Orion, which is coincident with the Orion Compact Ridge source, and $\alpha(2000)=19^{h}\ 23^{m}\ 43^{s}.9$, $\delta(2000)=14^{\circ}\ 30'\ 34''.0$ for W51e2. The source velocities used were 9 and 55 km/s, respectively. These observations were conducted in the L and C configurations. Each source was observed for approximately 8 hours in each full track, and one track in each configuration was completed for Orion, while two half tracks in each configuration were completed for W51e2. Two aminoethanol lines were observed simultaneously, and the parameters for these lines, specifically the vibrational ground state transition quantum numbers, rest frequencies, Einstein A-coefficients times the upper state degeneracy, and upper state energies, are listed in Table 7.4. The beam sizes for these observations were $6''.8 \times 4''.8$ and $5.''6 \times 4''.5$ for Orion and W51e2, respectively. The guasars 3C84, 3C345, and 3C454.3 were observed for flux and bandpass calibration, and observations of Uranus were conducted for bootstrapping the quasar fluxes. Observations of phase and amplitude calibrators were conducted in approximately half hour intervals throughout the tracks.

$\mathbf{J}'_{K'_a,K'_c}{-}\mathbf{J}''_{K''_a,K''_c}$		$\begin{array}{c} Ag_u \times 10^2 \\ (\mathrm{s}^{-1}) \end{array}$	E_u (K)	$\begin{array}{c}T^b_{MB}\\(\mathrm{K})\end{array}$	N_T upper limit ^c (×10 ⁻¹³ cm ⁻²)
Orion					
$12_{1,12} \rightarrow 11_{1,11}$	112742.2238	0.1386	35.94	0.27(9)	5.05(68)
$11_{4,7} \rightarrow 10_{4,6}$	112779.8117	0.1118	39.52	0.45(9)	10.4(14)
W51e2					
$12_{1,12} \to 11_{1,11}$	112742.2238	0.1386	35.94	0.59(13)	89.5(185)
$11_{4,7} \rightarrow 10_{4,6}$	112779.8117	0.1118	39.52	0.52(13)	99.8(206)

Table 7.4: Aminoethanol column density upper limits in Orion and W51 from OVRO observations.

 a One σ uncertainties are 0.1 MHz.

^b Uncertainties are listed in parentheses in units of last significant figure and are based on an assumed flux uncertainty of ± 0.02 Jy/Beam.

^c One σ uncertainties are listed in parentheses in units of last significant figure.

7.3.2.2 Results

Boxcar fits to an internal noise source modified by second order polynomial fits to observations of the quasars were used for bandpass calibration. The quasars were also used to establish the flux density scale, with fluxes bootstrapped from observations of Uranus. Bandpass, phase, and flux calibrations were applied to the data with the MMA software package [43]. The MIRIAD data reduction software package [44] was used for subsequent spectral analysis. Neither transition was observed in either source, and so the column density upper limits were calculated as described for the CSO observations. The calculated aminoethanol column density upper limits are presented in Table 7.4.

7.3.3 Discussion

The upper limit for the aminoethanol column density in the Orion Compact Ridge, W51e2, and Sgr B2(N-LMH) hot core sources is on the order of $\sim 3 \times 10^{13}$ cm⁻² for an extended source and $\sim 9 \times 10^{14}$ cm⁻² for a compact source. Aminoethanol is expected to be present in amounts similar to those observed for ethanol if it is formed by the simple grain surface mechanisms proposed in reference [3]. Ethanol column densities in these sources are on the order of $\sim 10^{15}$ cm⁻² [24, 68]. Emission from ethanol is extended in the Orion and Sgr clouds, and similar behavior would be expected for aminoethanol if it was formed by a similar process [18, 68]. Grain surface formation pathways should therefore be reinvestigated, as the aminoethanol upper limits found here are two orders of magnitude below the expected levels. The only mechanism that has been proposed for the interstellar formation of amino acids involves gas phase ion-molecule reactions of aminoalcohols [3], and so these results call into question the viability of amino acid formation in hot cores.

Chapter 8

Conclusions and Implications for Interstellar Chemistry

The studies presented in this thesis involve the rotational spectroscopic characterization of and observational searches for several key prebiotic molecules. A summary of the results of these studies and a discussion of their implications and future applications are presented below.

8.1 Laboratory Rotational Spectroscopy

Combined studies using the original Fourier Transform Microwave Spectrometer and the Caltech and JPL Direct Absorption Flow Dell Spectrometers were conducted to obtain the microwave, millimeter, and submillimeter spectra of several key prebiotic species. The CALPGM program suite and the SMAP spectral analysis program were then used to assign these data and determine the spectroscopic parameters for each species.

The ground and first four vibrational states of the 3C ketose, dihydroxyacetone, are now characterized up to 450 GHz. The spectral analysis of its 3C structural isomer, dimethyl carbonate, was quite limited because of the weak nature of the spectrum, but the $K_a=0, 1$ lines of this species have been assigned up to 360 GHz. In the case of another 3C structural
isomer, methyl glycolate, full characterization of the ground state up to 360 GHz has been completed. The analyses of dimethyl carbonate and methyl glycolate present challenges to current internal rotation models. Additional higher sensitivity laboratory investigation of dimethyl carbonate is required, and the results of such a study might enable a more complete model to be developed. In addition, assignments of the pure rotational lines in the many torsional states of methyl glycolate should be completed.

The pure rotational analysis of the ground and first three vibrational states of the 2C α -hydroxy aldehyde, glycolaldehyde, has also been completed for frequencies up to 354 GHz. A similar analysis to 305 GHz has been completed for the second most complex aminoalcohol, aminoethanol, which is a predicted interstellar grain surface product and the suspected precursor to the amino acid alanine.

The information gained in these studies was used to guide subsequent observational searches, the results of which are discussed in the next section. The vibrational state analyses also provided the necessary information to determine accurate partition functions for these molecules. It is clear from the dihydroxyacetone and glycolaldehyde studies that the vibrational state contribution to the partition functions of such complex molecules is significant, and these results will influence future such calculations in observational astronomy.

The results of the microwave/millimeter-wave studies will be used as a starting point for further characterization of these types of molecules in the THz spectral range as appropriate laboratory techniques are developed. THz laboratory work will provide the necessary information to guide searches with the CASIMIR instrument on the SOFIA observatory and the HIFI instrument on the Herschel Observatory. Species such as those studied here often have much stronger torsional bands than rotational bands, and so observational searches for molecules such as dimethyl carbonate may indeed become possible with these new high frequency instruments if the appropriate spectral information is available.

8.2 Observational Astronomy

The results of the laboratory studies were used to guide observational searches for these species with the CSO, OVRO, and GBT observatories. Glycolaldehyde was previously detected in the Sgr B2(N-LMH) hot core, and so no searches for this species were conducted.

The key result of the CSO searches in particular is the first observational evidence for an interstellar ketose, dihydroxyacetone, which was detected at a higher column density than any other similarly complex species previously observed in the Sgr B2(N-LMH) hot core. The rotational temperature and line center velocities imply that this emission arises from the hot core rather than from the cooler extended envelope. Attempts at imaging this emission were unsuccessful, but more sensitive studies will be conducted after commissioning of the CARMA observatory. The sensitivity level required for confirming GBT observations of low-energy transitions was not reached. The nine lines observed with the CSO make a strong case for the presence of this species, but these results must be confirmed before a definitive detection can be claimed.

The more stable 3C structural isomers are expected to be formed by any process leading to dihydroxyacetone. Searches are planned for dimethyl carbonate and methyl glycolate, but no observations have been completed at this time. Lines that could be attributed to methyl glycolate were observed in a 3 mm survey of the Sgr B2(N-LMH) source, however, and a preliminary analysis places this species at an even higher column density than that determined for dihydroxyacetone. The CSO/BIMA results and earlier studies of 2C compounds make it clear that structural isomerism plays an important role in interstellar chemistry.

Aminoethanol was not detected in any hot core source, and the limits derived for its column density call into question the proposed grain surface pathways leading to its formation. If aminoalcohols are not produced by single-atom addition reactions on grain surfaces, then new interstellar formation pathways for amino acids may be required.

The combined results of the laboratory and observational studies indicate that prebiotic chemistry does indeed achieve high levels of complexity well before incorporation into a parent body. These results raise serious questions about the validity of current interstellar chemical models and imply that complex interstellar chemistry is very poorly understood. The extremely large abundances of the 3C species relative to much simpler species coupled with the lack of observational evidence for one of the simplest predicted grain surface species indicates that current interstellar chemistry models require extensive revision. Chemical pathways that may explain these results do exist, but have not yet been considered for complex interstellar chemistry. These pathways are compared to existing chemical models below, and their implications in light of the conclusions drawn from the work presented here are discussed.

8.3 Implications for Interstellar Chemistry

Early interstellar chemical models considered complex molecule formation on grains [12], but current models for interstellar chemistry rely on both solid and gas phase reactions for the formation of the most complex interstellar organic molecules, which tend to be the simplest examples of various compounds (alcohols, ethers, esters, etc.). There are two main grain surface chemistry mechanisms used in these models, namely radical-radical reactions and single-atom addition reactions. Both classes of models rely on initial singleatom addition reactions to form simple radicals. The subsequent processing of these radicals is treated quite differently, however, in these two classes of models.

In the first approach, the radicals formed from single-atom addition reactions undergo radical-radical combination to form more complex species (see [69–72]). Many of these higher order reactions are those included in the model by Allen and Robinson [12], but only a subset of the complex reactions included in this earlier work are considered in more recent models. These models assume that these species are in constant flux with the gas phase, where they can undergo ion-molecule reactions to form even more complex species. The most recent of these models has also considered photolysis effects on the grain surface chemistry [72], though very little information is provided as to the molecules undergoing photolysis or the branching ratios for the photolysis pathways. Likewise, some of the reactions involving major photolysis products that are included in the earlier grain surface model [12] are not considered in this work.

The second approach for grain surface chemical models involves only single-atom addition reactions. Gas phase reactions in interstellar clouds can efficiently form CO, N₂, O₂, C₂H₂, and C₂H₄, and these species are thought to accrete onto grain surfaces and undergo single-atom addition reactions [3, 73, 74]. Four basic principles developed from the conditions and limitations of grain surface chemistry guide this class of models. Due to the overwhelming abundance of hydrogen in the interstellar medium, it is assumed that the great majority of grain chemistry is driven by the reaction of hydrogen atoms with multiply-bonded molecules and surface radicals. It is also assumed that multiple bonds in any single molecule are broken in order of hydrogen-tunnelling energy barriers, beginning with the lowest barrier. Radical stability is imposed on all intermediates predicted by these reactions, eliminating all reactions with unstable intermediates from appearing in the model. Also, pathways involving migration or reaction between two radicals are not permitted. Many potential grain surface reaction pathways are eliminated by the conditions imposed, greatly simplifying the possible products of grain synthesis. The simplest case for such a reaction network, as is shown in Figure 8.1, predicts that such a system will not extend in molecular complexity beyond alcohols and aminoalcohols without subsequent gas phase ion-molecule reactions.

Figure 8.1: The simplest chemical model of grain surface reactions driven by single-atom addition to CO [3].

Both classes of models predict the formation of more complex species by gas phase ionmolecule reactions. It has been shown, however, that such processes are insufficient for the production of such complex organic species as ethanol (CH_3CH_2OH) and methyl formate (CH_3OCHO) [13]. Organics such as acetaldehyde (CH_3CHO), ethanol, methyl formate, acetic acid (CH₃COOH), and glycolaldehyde (CH₂OHCHO) have also been detected in high abundance in regions of grain mantle disruption and evaporation, suggesting that these species are formed on grain surfaces [15, 18, 19, 75]. The mechanisms for complex molecule production on grains are clearly much more important, and much more complex, than has been recognized.

Recent observational studies, including those presented in Chapters 4 and 5, have offered insight into the mechanisms for grain surface synthesis. The relative hot core abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde (52:2:1, respectively [16]) indicate that if they form on grains it is not from kineticallycontrolled single-atom addition reactions. Likewise, the 3C aldose sugar, glyceraldehyde $(CH_2OHCHOHCHO)$, was not detected in Sgr B2(N-LMH) [76] while the 3C ketose sugar, dihydroxyacetone $(CO(CH_2OH)_2)$, was detected in this source (see Chapter 4). Another 3C structural isomer, methyl glycolate ($HOCH_2COOCH_3$), has also been tentatively detected in the Sgr B2(N-LMH) source at twice the abundance of dihydroxyacetone (see Chapter 5). These observed abundances follow the pattern of the relative thermodynamic stability (see Appendix D), with the more stable structural isomers being more abundant. The notable exception to this trend is acetic acid, which is much less abundant than methyl formate but is the most thermodynamically stable of the 2C isomers. Acids undergo esterification reactions in the presence of alcohols, which comprise a large fraction of ice grain surface material. Relative reactivity should therefore also be considered, as the observed abundance of any highly reactive species should be lower than predicted by any simple reaction network.

These results require that new chemical processes be incorporated into existing grain surface chemical models, and the first step toward more accurate models is to consider complex molecule formation. Reactions of the type originally proposed by Allen and Robinson [12] can lead to the complex organics being sought, but expansion of this original network is required to explain the 3C compounds. Ice grain mantles in dense clouds are known to be comprised primarily of H_2O , CH_3OH , CO, and NH_3 , and varying ratios of these species are used in laboratory studies of grain surface chemistry [10]. All of the 2C and 3C species, as well as many others observed in hot cores, can be formed from reactions involving these species and their radical precursors through addition of radicals to carbonyl functional groups. These types of reactions have not been considered in previous grain surface models. *Ab initio* studies have shown that the barriers to radical abstraction of an aldehyde proton are much lower than the barriers to radical addition to the aldehyde group [77]. The aldehyde radicals produced by these abstractions could then undergo further radical-radical combination reactions with other more mobile surface species. It is possible that these types of abstraction and aldehyde radical reactions could lead to a wide array of organics on grain surfaces. A chemical network involving these reactions and its implications for grain surface chemistry are outlined below.

8.3.1 Proposed Grain Surface Chemical Network

The chemical network presented here is based on the photolysis products of the major grain mantle species H_2O , CH_3OH , CO, and NH_3 . The photolysis pathways and rates for these species in dense clouds are presented in Table 8.1 [78] and [79]. The photolysis rates for each pathway are determined by the product of the branching ratio and this overall rate. Water photolysis is dominated by the OH pathway, which has branching ratios ranging from 0.9 to 0.99 [80]. Investigation of methanol photolysis branching ratios has only been conducted at a few wavelengths, and only gas phase experiments were conducted in the most quantitative study [81]. The branching ratio for the CH_3O pathway was determined to be 0.86, but it is not clear if this is applicable for the solid state. Ab initio studies indicate that the CH_2OH pathway is the most energetically favored, and so it is possible that it is the secondary photolysis product, but there are no laboratory results to support this hypothesis [82]. Clearly these branching ratios will drastically affect the grain surface chemistry, and laboratory experiments should be conducted to examine methanol photolysis in ices.

Table 8.1: Photolysis pathways and rates for major grain mantle components in dense interstellar clouds at $A_v=6$.

							$\Gamma_{total} (\mathrm{s}^{-1})$
NII		h.,		NII	1	TT	2 42 4 10-15
$N\Pi_3$	+	$n\nu$	\rightarrow	$N\Pi_2$	+	П	3.43×10^{-15}
CH_3OH	+	$\mathrm{h} u$	\rightarrow	CH_3	+	OH	3.09×10^{-10}
			\rightarrow	CH_3O	+	Η	
			\rightarrow	CH_2OH	+	Η	
H_2O	+	$h\nu$	\rightarrow	Η	+	OH	1.22×10^{-14}
			\rightarrow	0	+	H_2	
CO	+	$h\nu$	\rightarrow	С	+	Ο	7.61×10^{-20}

While most of the photolysis products listed in Table 8.1 have been included in previous models, reactions involving CH_3O have not been considered in any but the original model by Allen and Robinson [12], and in this case only the simplest reactions were considered. Many higher order reactions involving CH_2OH were also excluded from this and subsequent models. These radicals will play critical roles in grain surface chemistry if they are indeed the primary methanol photolysis products.

Dense clouds are typically at 10 K, and the photolysis products listed in Table 8.1 are mobile on grain surfaces at this temperature. Periodic warm-up events to as high as 50 K are also possible, especially in star forming regions, and the heavier species will become much more mobile at these temperatures. CO reactions are important on grain surfaces, and these are outlined in Table 8.2. The mobile radical species can also form more complex species through activationless radical-radical reactions such as those outlined in Table 8.3. Aldehydes formed by these reactions could then undergo proton abstraction reactions such as those summarized in Table 8.4. The resultant radicals would not be very mobile on grain surfaces, but the more mobile photolysis products could certainly recombine with these species to produce highly complex products through the reactions shown in Table 8.5. The rate constants for these reactions have been determined by the method outlined in the next section.

							E_a	k (cn	$n^3/s)$
							(K)	10 K	$50 \mathrm{K}$
OH	+	CO	\rightarrow	CO_2	+	Η	300	1.07×10^{-12}	$6.33 \times 10^{+00}$
Η	+	CO	\rightarrow	HCO			1000	$6.03 \times 10^{+06}$	$4.30 \times 10^{+07}$
Ο	+	CO	\rightarrow	$\rm CO_2$			0	$1.58 \times 10^{+03}$	$3.75 \times 10^{+11}$

Table 8.2: Reactions of CO with surface radicals.

					k (cr	$n^3/s)$
					10 K	50 K
Н	+	Н	\rightarrow	Ha	$3.83 \times 10^{+12}$	$2.73 \times 10^{+13}$
H	+	NH ₂	\rightarrow	NH ₂	$1.92 \times 10^{+12}$	$1.39 \times 10^{+13}$
Н	+	CH_3	\rightarrow	CH_4	$1.92 \times 10^{+12}$	$1.37 \times 10^{+13}$
Η	+	OH	\rightarrow	H_2O	$1.92 \times 10^{+12}$	$1.37 \times 10^{+13}$
Н	+	CH_3O	\rightarrow	$CH_{3}OH$	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
Н	+	CH_2OH	\rightarrow	CH_3OH	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
Н	+	Ō	\rightarrow	OH	$1.92 \times 10^{+12}$	$1.40 \times 10^{+13}$
\mathbf{C}	+	0	\rightarrow	CO	$3.41 \times 10^{+03}$	$7.48 \times 10^{+11}$
Η	+	\mathbf{C}	\rightarrow	CH	$1.92 \times 10^{+12}$	$1.40 \times 10^{+13}$
NH_2	+	NH_2	\rightarrow	$\rm NH_2 NH_2$	$6.24 \times 10^{+02}$	$5.15 \times 10^{+11}$
NH_2	+	CH_3	\rightarrow	NH_2CH_3	$3.12 \times 10^{+02}$	$3.08 \times 10^{+11}$
NH_2	+	OH	\rightarrow	$\rm NH_2OH$	$3.12 \times 10^{+02}$	$3.08 \times 10^{+11}$
NH_2	+	CH_3O	\rightarrow	$\rm NH_2OCH_3$	$3.12 \times 10^{+02}$	$2.59 \times 10^{+11}$
NH_2	+	CH_2OH	\rightarrow	$\rm NH_2CH_2OH$	$3.12 \times 10^{+02}$	$2.58 \times 10^{+11}$
CH_3	+	CH_3	\rightarrow	CH_3CH_3	8.73×10^{-02}	$1.01 \times 10^{+11}$
CH_3	+	OH	\rightarrow	CH_3OH	4.57×10^{-02}	$7.76 \times 10^{+10}$
CH_3	+	CH_3O	\rightarrow	CH_3OCH_3	4.36×10^{-02}	$5.21 \times 10^{+10}$
CH_3	+	CH_2OH	\rightarrow	CH_3CH_2OH	4.36×10^{-02}	$5.07 \times 10^{+10}$
OH	+	OH	\rightarrow	HOOH	4.18×10^{-03}	$5.42 \times 10^{+10}$
OH	+	CH_3O	\rightarrow	$HOOCH_3$	2.09×10^{-03}	$2.86 \times 10^{+10}$
OH	+	CH_2OH	\rightarrow	$HOCH_2OH$	2.09×10^{-03}	$2.72 \times 10^{+10}$
CH_3O	+	CH_3O	\rightarrow	CH_3OOCH_3	4.53×10^{-09}	$3.09 \times 10^{+09}$
CH_3O	+	CH_2OH	\rightarrow	CH_3OCH_2OH	$2.27{ imes}10^{-09}$	$1.66 \times 10^{+09}$
CH_2OH	+	CH_2OH	\rightarrow	$HOCH_2CH_2OH$	6.41×10^{-15}	$2.29 \times 10^{+08}$
Η	+	HCO	\rightarrow	H_2CO	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
NH_2	+	HCO	\rightarrow	NH_2CHO	$5.14 \times 10^{+05}$	$1.02 \times 10^{+12}$
CH_3	+	HCO	\rightarrow	H_3CCHO	4.36×10^{-02}	$5.56 \times 10^{+10}$
OH	+	HCO	\rightarrow	HOCHO	2.09×10^{-03}	$3.21 \times 10^{+10}$
CH_3O	+	HCO	\rightarrow	CH_3OCHO	9.26×10^{-07}	$6.56 \times 10^{+09}$
CH_2OH	+	HCO	\rightarrow	$HOCH_2CHO$	9.23×10^{-07}	$5.13 \times 10^{+09}$
HCO	+	HCO	\rightarrow	OHCCHO	1.85×10^{-06}	$1.00 \times 10^{+10}$
CH	+	Η	\rightarrow	CH_2	$1.92{ imes}10^{+12}$	$1.45 \times 10^{+13}$
CH_2	+	Η	\rightarrow	CH_3	$1.92 \times 10^{+12}$	$1.38 \times 10^{+13}$

Table 8.3: Radical-radical reactions between photolysis products and secondary radicals.

							- / 9 / \			
							k (cr	$n^{3}/s)$		
							10 K	50 K		
						COOT	-01	× 10 10±00		
Н	+	нсоон	\rightarrow	H_2	+	COOH	7.20×10^{-01}	5.12×10^{-32}		
NH_2	+	нсоон	\rightarrow	NH_3	+	COOH	2.30×10^{-41}	1.90×10^{-32}		
CH_3	+	нсоон	\rightarrow	CH_4	+	COOH	3.33×10^{-44}	3.86×10^{-32}		
OH	+	НСООН	\rightarrow	H_2O	+	COOH	1.70×10^{-47}	2.21×10^{-34}		
CH_3O	+	HCOOH	\rightarrow	CH ₃ OH	+	COOH	3.10×10^{-63}	2.12×10^{-43}		
CH_2OH	+	НСООН	\rightarrow	CH ₃ OH	+	COOH	4.38×10^{-69}	1.69×10^{-46}		
HCO	+	HCOOH	\rightarrow	H_2CO	+	COOH	1.53×10^{-59}	8.33×10^{-44}		
Η	+	H_2CO	\rightarrow	H_2	+	HCO	8.46×10^{-01}	$6.02 \times 10^{+00}$		
$\rm NH_2$	+	H_2CO	\rightarrow	NH_3	+	HCO	1.13×10^{-38}	9.41×10^{-30}		
CH_3	+	H_2CO	\rightarrow	CH_4	+	HCO	1.10×10^{-41}	1.30×10^{-29}		
OH	+	H_2CO	\rightarrow	H_2O	+	HCO	1.24×10^{-44}	1.68×10^{-31}		
CH_3O	+	H_2CO	\rightarrow	CH_3OH	+	HCO	3.71×10^{-58}	3.63×10^{-40}		
CH_2OH	+	H_2CO	\rightarrow	CH_3OH	+	HCO	6.89×10^{-59}	1.72×10^{-40}		
Η	+	NH_2CHO	\rightarrow	H_2	+	$\rm NH_2CO$	7.25×10^{-01}	$5.15 \times 10^{+00}$		
NH_2	+	NH_2CHO	\rightarrow	NH_3	+	$\rm NH_2CO$	3.04×10^{-41}	2.51×10^{-32}		
CH_3	+	$\rm NH_2CHO$	\rightarrow	CH_4	+	$\rm NH_2CO$	$4.32{ imes}10^{-44}$	5.00×10^{-32}		
OH	+	NH_2CHO	\rightarrow	H_2O	+	$\rm NH_2CO$	$2.29{ imes}10^{-47}$	$2.97{ imes}10^{-34}$		
CH_3O	+	NH_2CHO	\rightarrow	CH_3OH	+	$\rm NH_2CO$	5.33×10^{-63}	$3.70{ imes}10^{-45}$		
CH_2OH	+	NH_2CHO	\rightarrow	CH_3OH	+	$\rm NH_2CO$	7.54×10^{-69}	3.39×10^{-46}		
HCO	+	NH_2CHO	\rightarrow	H_2CO	+	$\rm NH_2CO$	2.55×10^{-59}	1.39×10^{-43}		
Η	+	H_3CCHO	\rightarrow	H_2	+	CH_3CO	7.30×10^{-01}	$5.19 \times 10^{+00}$		
NH_2	+	H ₃ CCHO	\rightarrow	NH_3	+	CH_3CO	4.07×10^{-41}	3.36×10^{-32}		
CH_3	+	H ₃ CCHO	\rightarrow	CH_4	+	CH_3CO	5.66×10^{-44}	6.55×10^{-32}		
OH	+	H ₃ CCHO	\rightarrow	H_2O	+	CH_3CO	3.12×10^{-47}	4.05×10^{-34}		
CH_3O	+	H ₃ CCHO	\rightarrow	CH ₃ OH	+	CH_3CO	9.33×10^{-63}	6.37×10^{-45}		
CH_2OH	+	H ₃ CCHO	\rightarrow	CH ₃ OH	+	CH_3CO	1.32×10^{-68}	4.88×10^{-46}		
НĊО	+	H ₃ CCHO	\rightarrow	H_2CO	+	CH_3CO	4.32×10^{-59}	2.35×10^{-43}		
Н	+	CH ₃ OCHO	\rightarrow	\tilde{H}_2	+	CH ₃ OCO	7.30×10^{-01}	$5.19 \times 10^{+00}$		
$\rm NH_2$	+	CH ₃ OCHO	\rightarrow	$\overline{NH_3}$	+	CH ₃ OCO	9.99×10^{-43}	8.24×10^{-34}		
$\tilde{CH_3}$	+	CH ₃ OCHO	\rightarrow	CH_4	+	CH ₃ OCO	1.80×10^{-45}	2.09×10^{-33}		
OH	+	CH ₃ OCHO	\rightarrow	H ₂ O	+	CH ₃ OCO	5.92×10^{-49}	7.67×10^{-36}		
CH ₂ O	+	CH ₃ OCHO	\rightarrow	CH ₃ OH	+	CH ₃ OCO	5.80×10^{-66}	3.95×10^{-48}		
CH ₂ OH	+	CH ₃ OCHO	\rightarrow	CH ₃ OH	+	CH ₃ OCO	8.20×10^{-72}	2.94×10^{-49}		
HCO	+	CH ₃ OCHO	\rightarrow	H ₂ CO	+	CH ₃ OCO	4.23×10^{-62}	2.30×10^{-46}		
Н	+	HOCH ₂ CHO	\rightarrow	H200	+	HOCH	6.73×10^{-01}	$4.78 \times 10^{+00}$		
NH ₂	+	HOCH ₂ CHO	\rightarrow	NH ₂	+	HOCH ₂ CO	1.20×10^{-42}	9.91×10^{-34}		
CH ₂	+	HOCH ₂ CHO	\rightarrow	CH	+	HOCH ₂ CO	2.14×10^{-45}	2.48×10^{-33}		
OH	- -	HOCH	\rightarrow	H _a O	- -	HOCH	7.21×10^{-49}	9.34×10^{-36}		
CHaO	, +	HOCH_CHO		CH_OH	' +	HOCH	8.46×10^{-66}	5.76×10^{-48}		
CH_OH	, +	HOCH_CHO		CH_OH	' +	HOCH	1.20×10^{-71}	4.28×10^{-49}		
HCO	- -	HOCH_CHO	_	HaCO	- -	HOCH	6.02×10^{-62}	3.20×10^{-46}		
1100	Г	11001120110	7	11200	Г	110011200	0.04 \ 10	0.21 \ 10		

Table 8.4: Aldehyde proton abstraction reactions.

					k (cr	$n^3/s)$
					10 K	$50 \mathrm{K}$
Η	+	$\rm NH_2CO$	\rightarrow	$\rm NH_2CHO$	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
NH_2	+	$\rm NH_2CO$	\rightarrow	$\rm NH_2CONH_2$	$3.12 \times 10^{+02}$	$2.58 \times 10^{+11}$
CH_3	+	$\rm NH_2CO$	\rightarrow	$\rm NH_2COCH_3$	4.36×10^{-02}	$5.08 \times 10^{+10}$
OH	+	$\rm NH_2CO$	\rightarrow	NH_2COOH	2.09×10^{-03}	$2.74 \times 10^{+10}$
CH_3O	+	$\rm NH_2CO$	\rightarrow	$\rm NH_2COOCH_3$	2.27×10^{-09}	$1.85 \times 10^{+09}$
CH_2OH	+	$\rm NH_2CO$	\rightarrow	$\rm NH_2COCH_2OH$	1.08×10^{-12}	$4.22 \times 10^{+08}$
HCO	+	$\rm NH_2CO$	\rightarrow	NH_2COCHO	9.23×10^{-07}	$5.33 \times 10^{+09}$
Η	+	CH_3CO	\rightarrow	CH_3CHO	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
$\rm NH_2$	+	CH_3CO	\rightarrow	CH_3CONH_2	$3.12 \times 10^{+02}$	$2.58 \times 10^{+11}$
CH_3	+	CH_3CO	\rightarrow	CH_3COCH_3	4.36×10^{-02}	$5.06 \times 10^{+10}$
OH	+	CH_3CO	\rightarrow	CH_3COOH	2.09×10^{-03}	$2.71 \times 10^{+10}$
CH_3O	+	CH_3CO	\rightarrow	CH_3COOCH_3	2.27×10^{-09}	$1.57 \times 10^{+09}$
CH_2OH	+	CH_3CO	\rightarrow	CH_3COCH_2OH	3.21×10^{-15}	$1.45 \times 10^{+08}$
HCO	+	CH_3CO	\rightarrow	CH_3COCHO	9.23×10^{-07}	$5.05 \times 10^{+09}$
Η	+	CH_3OCO	\rightarrow	CH_3OCHO	$1.92{ imes}10^{+12}$	$1.36{ imes}10^{+13}$
$\rm NH_2$	+	CH_3OCO	\rightarrow	CH_3OCONH_2	$3.12 \times 10^{+02}$	$2.58 \times 10^{+11}$
CH_3	+	CH_3OCO	\rightarrow	CH_3OCOCH_3	4.36×10^{-02}	$5.05 \times 10^{+10}$
OH	+	CH_3OCO	\rightarrow	CH ₃ OCOOH	2.09×10^{-03}	$2.71 \times 10^{+10}$
CH_3O	+	CH_3OCO	\rightarrow	$CH_3OCOOCH_3$	2.27×10^{-09}	$1.54 \times 10^{+09}$
CH_2OH	+	CH_3OCO	\rightarrow	CH ₃ OCOCH ₂ OH	3.20×10^{-15}	$1.15 \times 10^{+08}$
HCO	+	CH_3OCO	\rightarrow	CH ₃ OCOCHO	9.23×10^{-07}	$5.02 \times 10^{+09}$
Η	+	$HOCH_2CO$	\rightarrow	$HOCH_2CHO$	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
$\rm NH_2$	+	$HOCH_2CO$	\rightarrow	$\mathrm{HOCH}_2\mathrm{CONH}_2$	$3.12 \times 10^{+02}$	$2.58{ imes}10^{+11}$
CH_3	+	$HOCH_2CO$	\rightarrow	$HOCH_2COCH_3$	4.36×10^{-02}	$5.05 \times 10^{+10}$
OH	+	$HOCH_2CO$	\rightarrow	HOCH ₂ COOH	2.09×10^{-03}	$2.71 \times 10^{+10}$
CH_3O	+	$HOCH_2CO$	\rightarrow	$HOCH_2COOCH_3$	2.27×10^{-09}	$1.54 \times 10^{+09}$
CH_2OH	+	$HOCH_2CO$	\rightarrow	$HOCH_2COCH_2OH$	3.20×10^{-15}	$1.15 \times 10^{+08}$
HCO	+	$HOCH_2CO$	\rightarrow	$HOCH_2COCHO$	9.23×10^{-07}	$5.02 \times 10^{+09}$
Η	+	COOH	\rightarrow	HCOOH	$1.92 \times 10^{+12}$	$1.36 \times 10^{+13}$
$\rm NH_2$	+	COOH	\rightarrow	$\rm NH_2COOH$	$3.12 \times 10^{+02}$	$2.58 \times 10^{+11}$
CH_3	+	COOH	\rightarrow	CH_3COOH	4.36×10^{-02}	$5.08 \times 10^{+10}$
OH	+	COOH	\rightarrow	HOCOOH	2.09×10^{-03}	$2.73 \times 10^{+10}$
CH_3O	+	COOH	\rightarrow	CH ₃ OCOOH	$2.27{ imes}10^{-09}$	$1.77 \times 10^{+09}$
CH_2OH	+	COOH	\rightarrow	$HOCH_2COOH$	2.41×10^{-13}	$3.42 \times 10^{+08}$
HCO	+	COOH	\rightarrow	OHCCOOH	9.23×10^{-07}	$5.25 \times 10^{+09}$

Table 8.5: Aldehyde radical recombination reactions.

8.3.2 Determination of the Rate Constants

The rate constants for these reactions were derived in the manner outlined in reference [69] and depend on the diffusion rates, R_{diff} , of the two species involved. R_{diff} is the inverse of the diffusion time, t_{diff} , which is equal to the product of the hopping time, t_{hop} , and the density of surface sites on the grain, N_s (~10⁶). The hopping time can be determined by the relationship

$$t_{hop} = \nu_0^{-1} e^{E_b/kT} \tag{8.1}$$

where ν_0 is the characteristic vibrational frequency for the adsorbed species, E_b is the potential energy barrier between adjacent surface potential energy wells, k is the Boltzmann constant, and T is the temperature of the grain. E_b is approximated as $0.3E_D$, the barrier to diffusion, and ν_0 is also related to this quantity by the equation:

$$\nu_0 = (2n_s E_D / \pi^2 m)^{1/2} \tag{8.2}$$

where m is the mass of the species, and n_s is the surface density of sites ($\sim 1.5 \times 10^{15} \text{ cm}^{-2}$). R_{diff} can therefore be determined by the relationship:

$$R_{diff} = \frac{(2n_s E_D / \pi^2 m)^{1/2} e^{-0.3 E_D / kT}}{N_s}$$
(8.3)

The rate coefficient for the reaction between two species, k_{ij} , can be determined by the relationship:

$$k_{ij} = \kappa_{ij} \frac{R_{diff,i} + R_{diff,j}}{n_d} \tag{8.4}$$

where n_d is the number density of grains (~2.66×10⁻⁷ cm⁻³) and κ_{ij} is the probability for the reaction to occur. This probability is unity for a reaction with no activation barrier, such as radical-radical combination reactions. For a reaction with activation energy E_a , κ_{ij} is expressed as:

$$\kappa_{ij} = e^{-2a/\hbar (2\mu E_a)^{1/2}} \tag{8.5}$$

which is the exponential portion of the probability for quantum mechanical tunneling through a barrier of thickness a (1 Å).

Higher temperatures may be required to initiate more complex reactions on the grain surface since the heavier radicals will become more mobile at these temperatures. The diffusion barriers from references [12] and [69] were used to determine the diffusion rates at 10 and 50 K for the photolysis radicals as well as aldehyde radicals, and these values are presented in Table 8.6. All aldehyde proton abstraction barriers are estimated to be 5030 K (10 kcal/mol), which is the upper threshold for the barriers determined in the *ab initio* studies [77].

The reaction rates at 10 and 50 K were calculated from this information and are presented in Tables 8.2–8.5.

8.3.3 Discussion

The diffusion rates shown in Table 8.6 indicate that the simpler photolysis products will dominate grain surface chemistry at low temperatures. H will clearly be the most mobile species on grain surfaces, and so it is likely to immediately react with any radical produced during photolysis at 10 K. This mechanism indicates a buildup of simple species such as CH_3OH , H_2O , CH_4 , NH_3 , and H_2CO on cold grain surfaces, a conclusion

	E_D	E_D	R_{diff}	(s^{-1})
	$(\rm kcal/mol)$	(K)	$10 \mathrm{K}$	$50 \mathrm{K}$
Η	0.7	350	$5.100 \times 10^{+04}$	$3.62 \times 10^{+05}$
\mathbf{C}	1.6	800	4.855×10^{-05}	$1.07 \times 10^{+04}$
Ο	1.6	800	4.207×10^{-05}	$9.24 \times 10^{+03}$
CH	1.3	654	3.377×10^{-03}	$2.22 \times 10^{+04}$
CH_2	1.9	956	4.581×10^{-07}	$4.23 \times 10^{+03}$
CO	2.4	1207	1.920×10^{-10}	$7.44 \times 10^{+02}$
OH	2.5	1258	5.557×10^{-11}	$7.20 \times 10^{+02}$
HCO	3.0	1509	2.456×10^{-14}	$1.34 \times 10^{+02}$
NH_2	1.7	855	8.302×10^{-06}	$6.85 \times 10^{+03}$
CH_3	2.3	1157	1.161×10^{-09}	$1.34 \times 10^{+03}$
CH_3O	3.4	1710	6.030×10^{-17}	$4.11 \times 10^{+01}$
CH_2OH	4.3	2163	8.523×10^{-23}	$3.05 \times 10^{+00}$
COOH	4.0	2012	6.324×10^{-21}	$6.04 \times 10^{+00}$
HCOOH	5.1	2565	4.335×10^{-28}	2.44×10^{-01}
H_2CO	3.5	1761	1.375×10^{-17}	$3.13 \times 10^{+01}$
$\rm NH_2CO$	3.9	1962	2.857×10^{-20}	$8.16 \times 10^{+00}$
CH_3CO	4.7	2364	1.804×10^{-25}	8.10×10^{-01}
CH_3OCO	6.2	3119	2.590×10^{-35}	8.57×10^{-03}
$HOCH_2CO$	6.9	3471	7.032×10^{-40}	1.09×10^{-03}
NH_2CHO	4.7	2364	1.764×10^{-25}	7.91×10^{-01}
CH_3CHO	5.4	2716	4.920×10^{-30}	1.04×10^{-01}
CH_3OCHO	6.5	3270	2.838×10^{-37}	3.52×10^{-03}
$HOCH_2CHO$	7.4	3722	$3.838{ imes}10^{-43}$	$2.50{ imes}10^{-04}$

Table 8.6: Diffusion barriers and rates for reactive surface species.

Note: Quantum tunneling dominates over diffusion for H at 10 K, and so the H tunneling rate is given at this temperature.

reinforced by recent observational studies of interstellar ices, which have abundance ratios of $H_2O:CO_2:H_2CO:CO:CH_3OH:NH_3$ of 100:18:12:10:8:7 [83].

At 50 K, however, the diffusion rates of the other radicals increase significantly, and so more complex species could form in this type of environment if the diffusion rates are comparable to the arrival rate of H from the gas phase. The hydrogen accretion rate from the gas phase can be calculated by the following equation:

$$dn_{H,grain}/dt = \pi r^2 (2kT/m)^{1/2} n_{H,gas} m \zeta n_g$$
(8.6)

The gas phase hydrogen density, $n_{H,gas}$, can be approximated as $2 \times 10^{-4} n_{T,gas}$, and $n_{T,gas}$ is on the order of $\sim 10^4$ cm⁻³. A sticking coefficient, ζ , of unity, an average grain radius, r, of 1×10^{-7} m, and a grain density, n_g , of $10^{-12} n_{T,gas}$ can also be assumed. The flux of H from the gas phase is therefore on the order of 2×10^{-7} s⁻¹ at both 10 and 50 K. The 50 K diffusion rates in Table 8.6 of the more complex radicals are indeed higher than this arrival rate, and so complex chemistry involving these species is certainly possible. Indeed, recent observations of UV-processed interstellar ices with the *Spitzer Space Telescope* reveal that HCOOH is enhanced in such regions [84].

The photolysis products presented in Table 8.1 are clearly important in the formation of compounds such as methyl formate and glycolaldehyde as well as all of the 3C compounds, and so their reactions should certainly be included in grain surface models. The 2C structural isomers methyl formate, acetic acid, and glycolaldehyde could indeed form in significant quantities from these processes. Direct comparisons can be made for these simpler species formed from radical-radical combinations using the information derived above and the observed interstellar ratios for the starting material. An analysis of the relative reaction rates of the HCO + radical combination reactions results in the abundance ratios shown in Table 8.7. The branching ratios discussed above were combined with a CH_3 production pathway branching ratio of 0.1 for the purposes of this calculation. The assumption was made here that the available H on the grain surface would be determined by its production from photolysis processes. H will be in steady flux between the grain surface and gas phase, and so this number is an underestimate of the total amount of H on the grain surface. This estimation, however, provides an upper limit for the amount of more complex species that could form in such environments.

This comparison shows that the calculated reaction rate coefficients may in fact be

		N_T/N	$T_{,formaldehyde}$
Formula	Species	Observed	Predicted at 50 K
H_2CO	formaldehyde	1	1
NH_2CHO	formamide	6	1.6×10^{-03}
CH_3CHO	acetaldehyde	21	8.8×10^{-06}
HCOOH	formic acid	0.3	2.3×10^{-03}
CH ₃ OCHO	methyl formate	4	8.9×10^{-06}
$HOCH_2CHO$	glycolaldehyde	0.1	3.3×10^{-07}

Table 8.7: Observed and calculated abundance ratios for the products of HCO+radical combination reactions relative to formaldehyde at 50 K. The observed column densities are those determined for Sgr B2(N-LMH).

underestimated if the abundance ratios in hot cores are truly linked to grain surface mechanisms. It is likely, however, that the simpler, more reactive species such as formic acid and glycolaldehyde may undergo more complex reactions either on the grain or in the gas phase in the hot core, and so these observed abundances may not truly reflect grain surface composition. Regardless, abstraction pathways are clearly competitive on grain surfaces in warm regions, and these types of reactions should be integrated into current astrochemical models.

It is also likely that the 3C species discussed in this thesis could be formed on grains if abstraction reactions can compete with radical-radical combination reactions and singleatom addition reactions. It is clear from the rates presented in Table 8.4 that hydrogen will dominate both formation and abstraction reactions at both temperatures, so formaldehyde will likely be the dominant product of such channels at 10 K. As is demonstrated by the analysis presented in Table 8.7, however, the other radical reaction channels with HCO are also possible at 50 K, and so other complex aldehydes will likely be present in warmer regions.

The *ab initio* studies of radical-aldehyde interactions indicate that hydrogen abstraction

reactions have much lower barriers than do addition reactions involving the carbonyl group [77]. The hydrogen abstraction routes alone are therefore enough to compete with the single-atom addition reactions considered in other models. Once the aldehyde radicals are formed, these species could recombine with any of the mobile radicals. The products of recombination with hydrogen will be the primary products of these reactions, but the more complex pathways involving heavier radicals are also possible at 50 K. Species such as dihydroxyacetone, dimethyl carbonate, and methyl glycolate may well form from such mechanisms, and an analysis similar to that conducted for the simpler species in Table 8.7 can be used to investigate the predicted relative ratios of these isomers. Such an analysis reveals that the relative ratios of these species should be roughly 1:8300:8000, respectively. These results follow the trend reflected by the observational results, and once again demonstrate the need for aldehyde proton abstraction reactions to be incorporated into grain surface models.

It is clear from these preliminary analyses that grain surface chemistry has the potential to achieve considerable complexity. H addition reactions dominate the grain surface chemistry at low temperature, forming simple species such as water, methanol, and formaldehyde. Photolysis of simple grain mantle constituents leads to the production of surface radicals that can efficiently compete with H addition reactions at warmer temperatures, and so periodic thermal processing of grain mantles will lead to the buildup of more complex species such as formic acid, methyl formate, formamide, acetaldehyde, and glycolaldehyde. Aldehyde proton abstraction reactions can efficiently compete with singleatom addition reactions at both low and high temperatures, and so the mobile radicals can then react with the resultant aldehyde radicals to form more complex species such as those investigated in this thesis. Simpler species will be favored at low temperature, but these radicals may also be stored in the grain mantle at low temperature and undergo more complex reactions upon grain mantle heating in hot core regions.

8.4 Future Work

The chemical network presented above indicates that complex molecule formation on grains should be reincorporated into interstellar chemistry models. Additional observational studies are required to investigate these revised chemical models once predictions for other complex species are obtained. Definitive observational tests of grain surface chemistry are quite limited, however. Observational searches for complex molecules in interstellar ices are difficult because individual spectral features are unresolvable. In addition, accretion disk regions with high gas phase abundances of complex species are smaller than the spatial resolution of current observatories. This limitation will be overcome upon the commissioning of the Combined Array for Millimeter Astronomy (CARMA) and Atacama Large Millimeter Array (ALMA) observatories over the next several years.

In the meantime, more sensitive studies of hot core sources combined with the direct study of grain mantle species in regions of grain mantle disruption are required. The first investigations of hot corinos, where the dynamical timescales are short and gas phase material remains primarily unprocessed, show a similar level of molecular complexity to high mass hot cores (see references [75] and [2]). Likewise, investigation of shocked regions in the Galactic Center also indicates large column densities of grain mantle material (see reference [18]).

Deep, broadband surveys of the Orion Compact Ridge and Sgr B2(N-LMH) sources are underway with a new 4 GHz IF bandwidth 1.3 mm SIS receiver at the CSO, and such studies should provide the spectral information necessary to identify previously undetected complex species. A double sideband spectrum of the Orion Compact Ridge, the first result of this survey, is shown in Figure 8.2. It must be stressed that this spectrum is preliminary, as it has not been fully temperature or frequency calibrated. An RMS level on the order of 20 mK was reached with these observations, however, and the spectral line density at this sensitivity level is clearly quite high.

Figure 8.2: Initial results from a deep broadband line survey of the Orion Compact Ridge. The temperature and frequency calibrations are preliminary, but the RMS level is ~ 20 mK.

Similar, if not more complicated, spectra are expected from the CASIMIR instrument on SOFIA and the HIFI instrument on the Herschel Observatory. Laboratory investigations to support these observations are also extremely important, and so experiments such as those detailed in this work should be continued for other complex molecules of interest. The laboratory spectral information available in the frequency ranges of these instruments is also quite limited, and so further THz studies are required to support these observations.

Appendix A Flygare Operation

A.1 Instrumentation

The original FTMW instrument was moved to the Blake labs at Caltech in September 2000. Most of the instrumentation is that from the most recent upgrade of the spectrometer, which was performed by Dr. Tryggvi Emilsson and colleagues at the University of Illinois [21]. While much of the original instrumentation is still in use, some components have been upgraded, and more upgrades are planned for the near future. While many previous publications have described the specific instrumentation used with this instrument, none have presented the general operating procedures. This appendix is therefore a detailed outline for general use of this specific instrument and assumes a general knowledge of FTMW principles. Reference [21] should be consulted for more detailed information on the instrumentation, and the general FTMW principles are outlined in reference [20].

An FTMW instrument involves a pulsed molecular source and a pulsed microwave source. When an experiment begins, a valve is triggered, expanding a pulse of gas into the cavity. This expansion can occur either transversely or coaxially to the incident radiation (there are gate valves that act as pulsed valve feedthroughs at both the top and side of the instrument). A train of 16 microwave pulses is fired for each gas shot. The sample resides in the cavity for a finite amount of time, and the length of and spacing between the microwave pulses determines the extent to which each sample pulse is probed. The switch to the detector is closed when a microwave pulse is fired, and this switch remains closed until the majority of the radiation in the cavity has rung down. The molecules are excited by the radiation pulse, and the molecules de-excite to the ground state and emit radiation at their resonant frequencies. This emission occurs after the cavity has rung down, and the free induction decay is monitored by the detector.

A.1.1 Instrument Control System

A very precise time base is required for control of each of the experimental aspects. This time base is provided by a rubidium clock that is housed in the metal box shown in the bottom of the picture below. This clock produces a 10 MHz sine wave signal that is then converted to two output signals by the blue filter box that is located on the top of the rubidium clock housing. The signals produced are a 30 MHz sine wave and a 10 MHz TTL pulse.

The 10 MHz TTL pulse is the timing signal for the instrument. This signal is the input to the "Physical Data–IBM Parallel I/O Interface Box," which communicates with

the computer and issues all of the control signals for the valve, mirrors, and microwave switches:

The 'detector' and ' μ wave' output signals from the interface box control the switches for the detector and the microwave input into the cavity, respectively.

The 'scope' output signal from the interface box is identical to the microwave output signal and is the trigger used by the oscilloscope to monitor the cavity tuning. There are two channels displayed on this oscilloscope, the top signal being the trigger, and the bottom signal being the signal from the cavity:

The signal shape shown here is that observed when the cavity is properly tuned to the MO frequency. The first peak is due to the radiation that is backscattered from the waveguide

and the mirror, while the second peak is due to the cavity ringdown. This wide microwave pulse is not one of the segments of the microwave pulse train, but rather is a signal produced by the spectrometer for the purposes of tuning. The train of microwave pulses can be observed on the oscilloscope if the scaling is changed appropriately.

The 'valve' output signal from the interface box drives the voltage supply for the valve. The rep rate of the valve can be controlled by varying the voltage and capacitance:

The 'mirror in' and 'mirror out' output signals from the interface box drive the control for the step motor. One of the mirrors can be moved such that the cavity is tuned to the MO frequency. The step motor can also be controlled manually by the switches on the front of this control box:

Amplifiers are used to amplify the 30 MHz sine wave output of the timing circuit and

the output signal from the cavity:

The MO signal is produced by the frequency synthesizer, which is the bottom instrument in the picture below. The metal box located on top of the frequency synthesizer contains the switches, detectors, and other microwave components. The power supply for this microwave box is the small box at the top of the equipment rack:

The output signal from the detectors is then routed to the "Quadruture Box," which is

the metal box located at the top of the interface box equipment rack. The quadruture box downconverts the detected signal and sends it to the computer:

A.1.2 Gas Handling and Sample Delivery

The gas handling system is based on the design developed in Illinois [21]. A picture of the mixing manifold is shown below, and a schematic diagram is shown in Figure A.1:

This system involves four mass flow controllers, two of which are high-throughput for carrier gas delivery. The low-throughput flow meters can be used for gas samples or to

Figure A.1: A schematic diagram of the FTMW mixing manifold.

control the gas delivery to the bubblers for liquid samples. Experiments are typically conducted with flow rates of a few hundred SCCM of carrier gas and less than 10 SCCM of gas through the bubbler. The mass flow meters are controlled by a flow controller:

The valves (V) used in the mixing manifold are Hamilton HV plug valves. The two valves at the input of the flow controllers are four-port flow valves, while the two valves between the flow meters and bubblers are four-port loop valves. Details of the valve design and operation can be found at http://www.hamiltoncompany.com/product/valve/valves.html.

Teflon tubing connects the output of the mixing block with the valve. A tee-fitting is connected to the end of the metal valve assembly (described in detail below) with an Oring fitting. Another O-ring fitting on this tee couples the tubing into the valve assembly. The tubing is inserted such that it is as close to the valve as possible without forming a complete seal. This allows the gas to flow through the tubing and up to the valve. The valve consumes gas when it is running; the excess gas flows around the end of the tubing and back through the valve assembly. The output goes through the scrubber and into the pressure regulator. This regulator is a diaphragm that has a control valve that can be used to adjust the pressure in the line and thus regulate the valve backing pressure. Turning the control valve on the pressure regulator clockwise will increase the backing pressure, turning it counter-clockwise will decrease the pressure, and turning it to a vertical position will hold the backing pressure at the current value. Backing pressures are typically on the order of 1–10 in. Hg above atmospheric pressure (1 in. Hg = 0.0334 atm).

A.1.3 Valve Assemblies

There are currently two valve assemblies that can be used with the instrument, one with six electrical feedthroughs and one with eight electrical feedthroughs. These valve assemblies utilize pulsed General Valves (see http://www.parker.com/pneutron for more information). The feedthroughs consist of a 1/4 inch metal tube inside of a 1/2 inch metal tube. Electrical leads for the valve and any accessories run through the space between these two tubes and are held in place with heat shrink. These leads are soldered to electrical feedthroughs that are on a circular metal disk that is welded to the inner tube and sealed to the outer tube by an UltraTorr fitting near the base of the valve. A circular piece of plexiglass with an O-ring groove is connected to the outside of the 1/2 inch tube with an

UltraTorr fitting. This component is free to slide over the length of the tube until the UltraTorr fitting is tightened. A plexiglass tube forms an O-ring seal with the chamber on one end and with this circular component on the other. The valve assembly is placed against this plexiglass tube and positioned at one of the gate valves. This forms a vacuum interlock for insertion and removal of the valve.

A.1.4 Heated Sample Holder

Studies of solid samples often require that the sample be heated such that a sufficient vapor pressure can be maintained. A heated sample holder was developed at Illinois for such studies [21], and a similar sample holder has been constructed at Caltech. A schematic diagram of this sample holder is shown in Figure A.2. This sample holder can be attached to the valve face plate. A carrier gas is pulsed over the sample, and a molecular beam is formed by a Laval nozzle at the exit of the heated compartment. Stainless steel poppets have been constructed for use with this sample holder. A valve face plate press-fit with a Kevlar insert should be used with these poppets. Poppet lifetimes are generally on the order of several weeks with this setup.

Figure A.2: A schematic diagram of the FTMW heated nozzle.

A.2 Spectrometer Startup Procedure

1. Insert the correct waveguide and tuner assembly. The instrument has two frequency ranges, 2–8 GHz and 8–18 GHz, and an SMA assembly is used for low frequency applications while a waveguide assembly is used for high frequency applications. The high frequency assembly is simply a waveguide that should be bolted to the instrument at the O-ring seal. The low frequency assembly is an SMA throughput that slides through the waveguide and then seals to the outside of the waveguide at the same O-ring seal:

For low frequency experiments, insert the SMA until the connector passes through the mirror iris. A dipole antenna can be found in the box labelled "dipole," and this antenna

117

should be connected to the SMA connector in the chamber (remove the gate valve flange at the top of the instrument to do this). The entire SMA assembly should then be pushed back through the iris such that the antenna is positioned against the face of the mirror. The low frequency tuner is connected to the SMA at the input of the assembly and has two rods that slide up and down to adjust the tuning:

At high frequency the tuner is a slide tuner directly attached to the waveguide. This tuner has a coarse and fine adjustment:

Cavity coupling is quite bad at frequencies between 8 and 10.5 GHz, and a teflon dielectric waveguide should be inserted into the mirror iris for this frequency range. This waveguide is also located in the "dipole" box.

2. Turn on both water recirculators in the pump room. The diffusion pump flow meter readout next to the chamber should be reading a flow rate of ~ 5 GPM. Close the gate value

between the cold trap and the pump line and turn on the two mechanical pumps. Slowly open the gate valve and pump down the chamber. Turn on the Roots blower once the line pressure reaches ~ 1 Torr. Turn on the diffusion pump once the chamber pressure is <10mtorr. It will take approximately 30 minutes for the chamber to pump down to $\sim 10^{-6}$ Torr. The diffusion pump cooling water output temperature should be ~ 70 degrees when the pump is warmed up completely.

3. Turn on the filter box, the interface box, the oscilloscope, the microwave box power supply, the frequency synthesizer, and the amplifiers. Be sure to do this before starting the operating program. (Note: The rubidium clock should remain plugged in at all times.)

4. Select the desired detector with the switch on the front of the microwave box.

5. Turn on the computer. Change to the directory where data should be saved (normally the C:\MWDATA directory). Type "v15" at the command prompt and press enter to load the operating program. The main control screen for the operating program should appear:

and according to any and according	an dhalan an a	nyand dang na ^{da} ng na taon ing dan na gana taon tao.
y a film to prove part to be a star a star for a star f	ang pang pang pang pang pang pang pang p	ana kaominina dia mampika amin'ny fisitra
M0 frequency: 12667.000	MW pulse(usec):	0.3 Record delay(usec): 11.0
Pulse delay(usec): 0		0 Start delay(usec): 700
Display segment: 8	Timebase(nsec):	300 <mark># points: 512</mark>
Search step: 0.500	# shots:	500 <u>Search length</u> : 130.000
Nozzle OFF	Mirror position: 9	6265 Gas shots: 25
Single-shot mode	89939 99	350 Channel A

6. Confirm that the frequency synthesizer output is equal to the MO frequency minus 30 MHz.

7. The top window in the main control screen displays the signal, while the bottom window displays the noise in single-shot mode and the average of all 16 FIDs in averaging mode. Some noise should appear in both windows. The figure above shows a typical noise level. Check the amplifiers if no noise is observed.

The digitizer board in the computer may also not always work properly. If the signal is completely static, exit the v15 program, change directories to C:\DIGI, type "WAAG2," and press enter. This loads a diagnostic program for the digitizer card. The card should begin working properly again if a command is issued from this program. Exit the program, change directories to C:\MWDATA, and start the v15 program.

8. The experimental parameters are entered in the bottom of the main control window and are defined as follows:

- MO frequency: The experimental frequency
- Pulse delay: The delay in the train of microwave pulses
- Display segment: The segment of the pulse train displayed in the top two windows
- Search step: The increment by which the frequency is changed during an autosearch
- MW pulse: The length of the microwave pulses
- Gas delay add: The delay in the gas pulses
- Timebase: The sampling time (the inverse of the sampling rate)
- \bullet # shots: The number of shots to be averaged in averaging mode
- Record delay: The delay before digitization
- Start delay: The delay between the gas pulse and the beginning of the pulse train
- # points: The number of points recorded
- Search length: The amount of frequency to be covered in autosearch mode
- Nozzle: 'ON' or 'OFF' gives the status of the nozzle
- Mirror position: The current position of the mirror, in steps
- Gas shots: A counter for the number of gas shots
- Mode: The mode of data acquisition: 'single-shot,' 'averaging,' or 'autosearch'
- The numbers below the mirror position are the nearest resonant mirror positions.
- Channel: Channel being viewed ($B = A + 90^{\circ}$)

Enter the desired experimental settings in the main control screen. The timing settings

shown above are those used in standard experiments. The pulse width should be increased

to 1 μ sec for species with small dipole moments (< 0.5 D).

The commands for the main control screen are as follows:

- a: Averaging mode
- b: Toggle between Auto Search display and Single-Shot display during Auto Search mode
- c: Toggle view of channels
- d: Averaging mode (until certain number of shots)
- f: new frequency
- i: search increment (advance frequency by search step, move mirrors)
- k: search decrement (decrease frequency by search step, move mirrors)
- m: New mirror position (used to correct mirror calibration)
- n: Nozzle on/off
- s: Single-shot mode
- t: Stop averaging and go to Pre-FFT screen
- v: Auto Search mode
- x: Exit program and save startup information
- z: Averaging mode (reset on overflow)
- ': Turbo mode toggle
- F1: Microwave power level decrement
- F2: Microwave power level increment
- F3: Mirror in continuously slow
- Shift-F3: Mirror in continuously fast
- F4: Mirror out continuously slow
- Shift-F4: Mirror out continuously fast
- F5: Mirror in 1 step
- F6: Mirror out 1 step
- F7: Mirror in 5 steps
- F8: Mirror out 5 steps
- F9: Mirror in 20 steps
- F10: Mirror out 20 steps
- Home: Large increment of value highlighted by cursor (if applicable)
- End: Large decrement of the value highlighted by the cursor (if applicable)
- Page up: Small increment of value highlighted by cursor
- Page down: Small decrement of the value highlighted by cursor
- Right arrow: Move cursor right
- Left arrow: Move cursor left
- Up arrow: Move cursor up
- Down arrow: Move cursor down

9. Load the sample. Liquid samples should be placed in a bubbler and solid samples should be placed in the heated sample holder. If using the heated sample holder, be sure to secure the lid with the small set screw on the side or the lid could fall off in the chamber. Attach the sample holder to the valve face plate. The sample holder is not C_{2v} symmetric, so confirm that it is aligned appropriately or the valve will not completely insert in the coaxial setup.

10. Optimize the valve, set the tensioning with the set screw, and use electrical tape to secure the leads so that they do not get caught in the chamber.

11. Turn on the carrier gas and set the flow controller rates and the backing pressure.

12. Insert the valve assembly into the chamber by placing it against the plexiglass tube, positioning this tube at one of the gate valves, and opening the gate valve. Warning: Firm O-ring seals should be established before and maintained while the gate valve is open! If the seal is broken, quickly pull the valve assembly out of the chamber and immediately shut the gate valve. Wait at least 10 minutes before reinserting the valve assembly so that the diffusion pump is not overloaded.

13. Slowly insert the feedthrough until it is at the position marked on the outer tube. The valve should be gently resting against the mirror when using the coaxial setup. Some rotation of the assembly may be required for the last few inches of insertion, as the valve face plate is matched to the size of the chamber to ensure alignment with the mirror iris. Warning: There is a plug in the mirror that can be knocked into the chamber when the valve is inserted coaxially! Be gentle! The UltraTorr fitting should be tightened once the valve is inserted completely. The chamber pressure should quickly decrease to a value only slightly higher than that observed with the static system. If a drastic change in pressure occurs, there is likely a leak in the valve assembly.

14. Set the MO frequency to the desired value.

15. The cavity now requires tuning. Begin moving the mirror out in the 'mirror out continuously slow' mode. Watch the oscilloscope signal, as the tuning signal will 'wiggle' when close to a cavity mode. Find the mode farthest **out** in mirror position and stop the mirror by pressing any of the mirror control hot keys. Warning: Caution should be taken to ensure that the mirror is not driven too far to either end of its track, as it will become stuck. The current outer limit for the mirror position is ~110,000. If the mirror does become stuck, loosen the bolts on the step motor and manually move the mirror in the appropriate direction with the step motor control box.

16. Move the mirror (out) just past the cavity mode (where the signal stops wiggling). Move the mirror inward stepwise until it is at the outermost edge of the mode. The signal on the oscilloscope should be similar to that shown below:

17. Iteratively adjust the two settings of the tuner and the mirror position until a tun-
ing signal such as the one shown in Section A.1.1 is achieved. In the low frequency setup the SMA and dipole can also be rotated and adjusted in horizontal position to aid in tuning.

18. It is often the case that, despite the appearance of excellent tuning with the oscilloscope signal, some modes will produce ringing that is observable on the main control screen. This ringing can be mistaken for signal and should be avoided. If slight adjustments in tuning do not eliminate the ringing, move the mirror inward until the next cavity mode is reached and retune.

19. Once the cavity is tuned, set the desired experimental parameters. Turn on the nozzle and ensure that the chamber pressure does not rise above 4×10^{-4} Torr.

20. Select the desired data acquisition mode and begin collecting data. Single-shot mode displays the instantaneous FID. Averaging mode averages the FIDs for all shots. Auto Search can be used with predefined parameters to do fast line searches over a large frequency range. Retuning will be required after each manual change in frequency unless the search increment and decrement options are used. These functions step the frequency by the search step increment and appropriately adjust the mirror position. Slight retuning may be required, but these options do keep the spectrometer very close to optimum tuning.

21. Before selecting Auto Search mode, set the number of shots, search step, and search length to the desired values. Turn on the printer and add paper. Once Auto Search mode begins, the computer will automatically step the frequency, move the mirror, integrate, take a transform internally, and record the information on the printout. Be prepared for on-thefly tuning while in autosearch mode, as the instrument tends to detune slightly with each frequency step. The program will prompt for a threshold when autosearch mode is selected. This is the cutoff intensity for saved files, and so if there is a spectral feature with intensity higher than this threshold the data will be saved. A threshold of 10–20 is generally used.

22. The spectrum can be viewed during single-shot mode and general averaging mode by pressing 't,' which loads the Pre-FFT screen. Another version of averaging mode can be used in which the program automatically goes to the Pre-FFT screen after the defined number of shots. The Pre-FFT screen displays the obtained FIDs and allows the user to choose the parameters for the transform:

The FID is displayed on this screen in the same manner as it is displayed in the main control screen. The data to be included in the analysis can be selected with the parameters at the bottom of this screen, which are defined as follows:

- # zero fills: The number of times to double the length of the FID by adding zeroes
- 1st segment: The first FID segment to be included in the transform
- Last segment: The last FID segment to be included in the transform
- Starting Point: The first point in the FID that is to be transformed
- Display segment: The screen segment shown above

The commands for the Pre-FFT screen are as follows:

b: FFT of channel B c: Toggle view of channels e: Return to main screen without zeroing data array (nondestructive return) n: Complex FFT (power spectrum) r: Return to main screen v: FFT of Channel A F3: 0 order phased real FFT Shift-F3: 0 & 1st order phased real FFT F4: 0 order phased imaginary FFT Shift-F4: 0 & 1st order phased imaginary FFT F5: Real FFT F6: Imaginary FFT Page up: Small increment of value highlighted by cursor Page down: Small decrement of the value highlighted by cursor Right arrow: Move cursor right Left arrow: Move cursor left

23. The FFT of the FID can now be taken. The real FFT of the FID gives a spectrum with the upper and lower sidebands superimposed, and so the frequencies are ambiguous. The complex FFT, however, gives the power spectrum, and so the sidebands are separated:

Int: Point	0.00145 Freq	Date: 3-5-4 # Points: 512 # Gas-Shots: First Seg: 4 Comment:	File:dnc.0557 MiRus): 1.6 5700 Start ICus): 7000 Last Seg:14	MD Freq: 13070.5000 Rec IX us.): 10.4 Gas IX ms.): 0 Starting Pt: 3	19K(ns): 300 Pulse IKus): 0 # Zero-fills: 3 Range(kHz): 415.9 Iplr splt(kHz):
			ł		
			<u>i</u> 1		

It is common for the program to prompt for a scaling factor when averaging mode is in use. Enter any number and press enter. The screen will then slowly go entirely blue. This is due to a program overload, and although it is irritating, it does not have any bearing on the spectral information. Simply press 'r' to enter the complex FFT screen. The position of the MO frequency is indicated in the complex FFT screen by the yellow line.

The commands for the complex FFT screen are as follows:

a: Mark point A: Pseudo amplitude scale [sqrt(power spectrum)] b: FFT of channel B c: Clear marked points d: Mark point + 1/2f: New filename l: Logarithmic scale $y \rightarrow \log(y)$ L: Loglog scale $y \rightarrow \log(\log(y))$ m: Input comment o: Save transform in Auto LISP format for Auto CAD in file called ft.tsp p: Print transform r: Return from current level to next valid level s: Save transform v: FFT of channel A F1: auto peak picking Shift-F1: auto peak picking with user defined threshold F2: De-dopplerize Shift-F2: De-Dopplerize with user defined range in pts F3: 0 order phased real FFT Shift-F3: 0 & 1st order phased real FFT F4: 0 order phased imaginary FFT Shift-F4: 0 & 1st order phased imaginary FFT F5: Real FFT F6: Imaginary FFT Home: Move cursor +8End: Move cursor -8 Page up: Move cursor +1Page down: Move cursor -1 Right arrow: Scroll transform right Left arrow: Scroll transform left Up arrow: Increase magnification on transform Down arrow: Decrease magnification on transforms

The spectrum can be saved at this point. The filename should be changed before saving. Three-digit numerical extensions are required. It is advisable to begin a search for a molecule with the extension .001, and any further spectra will automatically be assigned the subsequent numbered filename (i.e., if the first spectrum is saved as dha.001, the next spectrum will automatically be named dha.002).

The peaks can be chosen by either moving the cursor and manually marking the point or by auto peak picking. The frequencies are displayed to the right of the screen, and only the MHz place and decimal places are shown:

Any additional adjustments to the spectrum can be made at this point, but the raw data (before transform) rather than the FFT will be written to the file when saved. Doppler split lines will be observed in the coaxial setup, and the program can perform de-Dopplerization of the data in the FFT screen.

24. The saved files can be viewed at a later time by running the plot15 program. This program can be loaded similarly to the v15 program, by typing 'plot15' at the command

prompt in the directory where the files are saved. The program will prompt for "Input filename [path]cccccc.nnn>." The filename should be entered here (i.e., 'dha.001'). The program will then prompt "Read file dha.001 to dha." Enter the appropriate numbered extension for the last file to be viewed (i.e., '005' will allow files dha.001 - dha.005 to be viewed). The Pre-FFT screen for each file will load in sequence. All commands for the Pre-FFT screen and the complex FFT screen are the same as those used in v15. To close the first file and move to the next, press 'r' in the Pre-FFT screen. Pressing 'x' will close the program.

25. The best way to transfer the data to another computer is by printing a hardcopy of the spectrum and subsequently scanning this hardcopy to obtain a digital version. The other option is saving the transform in Auto LISP format for Auto CAD in a file called 'ft.tsp.' It has been found, however, that the intensities are often written incorrectly in this format. This is a major programming flaw that should be corrected.

A screen capture program has also been loaded on this computer. Change to the C:\SCRAP directory, type SCRCAP, and press enter to load the program. Load the image to be captured (a change in directory may be required). Press 'ALT' and 'c' at the same time to capture the screen image. This saves the file with the name 'CAP-xxx.SCR', where xxx is a three-digit number. Transfer the file to the SCRAP directory and then type 'SCR2GIF' at the prompt to convert the .SCR file to a .GIF file. The computer's floppy drive (A:\) can be used to transfer the files to another computer.

Appendix B Flow Cell Operation

B.1 Instrumentation

The Caltech Direct Absorption Flow Cell Spectrometer is controlled by the Submillimeter Spectroscopy Scanning Program software developed by the Microwave, Millimeter, and Submillimeter Spectroscopy Laboratory at JPL. A general schematic diagram of the experimental setup and detailed information on the instrumentation are shown below:

B.2 Spectrometer Startup Procedure

- 1. Turn on the frequency synthesizer and the lock-in amplifier.
- 2. Confirm that none of the power supply connections are connected to the multiplier chain

Equipment	Specifications
Frequency Synthesizer	Wiltron 6747A-20 Swept Frequency Synthesizer
Modulation Source	lock-in amplifier internal modulation source
Lock-In Amplifier	Stanford Research Systems SR830 DSP Lock-In Amplifier
Multiplier Chain	Miteq MAX2M2040 Active Frequency Doubler
	Miteq JP2-26004000-110-20SP Power Amplifier
	Virginia Diodes WR-9.3x3 Frequency Tripler
	Spacek SPW-18-14 Power Amplifier
	Virginia Diodes WR-3.4x3 Frequency Tripler (1 mm)
Power Supplies	Harrison dual power supply (± 8 V for Miteq Amplifier)
	HP dual output power supply (\pm 15 V for Miteq Doubler;
	\pm 12 V for Spacek Amplifier)
Source	waveguide horn matched to multiplier chain output flange
Polarizer	wire grid
Lens	teflon
Cell	d = 0.05 m, l = 2.44 m (3 mm)
	d = 0.035 m, l = 2.56 m (1 mm)
Rooftop Reflector	gold coating
Detector	Pacific Millimeter WD GaAs Schottky diode (3 mm)
	4 K InSb hot electron bolometer (1 mm)
Computer	930 MHz Pentium III; National Instruments GPIB card

Table B.1: Caltech Direct Absorption Flow Cell Spectrometer Instrumentation

components. Turn on the power supplies and then connect the leads to the appropriate multiplier chain components, attaching the negative leads first, followed by the positive leads. Care should be taken, as connecting the leads in the opposite order could short the multipliers and amplifiers.

3. Double click on the "JPL Scanning Program" icon on the desktop to start the Submillimeter Spectroscopy Scanning Program. Click 'ok' to select a Direct Synthesis experiment:

The next window is the main control window for the scanning program. The experimental parameters for the spectrometer are entered here:

Welcome to SubMillimeter Spectroscopy	
Synthesizer Wiltron X = \$50.0 + Start Frequency (MHz) # 85000.00 • End Frequency (MHz) # 119999.98 • Frequency Step (MHz) # 0.102000 Offset Frequency (MHz) # 0.000 Source Harmonic # 1 Low 1 Low 14166.67 Synth. Harmonic # 6 High 20000.00 Sweep Mode Power Level (dBm) 5.0 Up Down Down 5.0	Modulation None AM FM Torre Frequency \$ 5.000000 kH Mod. Amplitude \$ 0.075000 v Torre Frequency \$ 0.075000 v Torre Busst Internal Harmon None External Time Constant Units Sensitivity 30 100 uS - 10 -300 S - 10 -200 0V R 5 - 500 ^{mV} 3 1000 X 2
Wait Time (ms) 10 1000 Auto Save ■ Integration Time (ms) 30 Report Frequencies Leveling Data Stream	4

4. One of the lock-in amplifier settings must be changed before beginning an experiment so as to establish communication between the computer and the lock-in.

B.3 Spectrometer Parameters

• The frequency range to be covered by the experiment is set with the start and end frequency options by either typing the desired frequencies in the boxes, or by clicking on the blue '+X' and '-X' buttons to change the start and end frequencies, respectively, by the increment entered in the 'X=' box.

• The frequency step can be changed to the desired experimental resolution.

• The source harmonic setting should always remain as 1, while the synthesizer harmonic should be changed to the harmonic of the multiplier chain in use (in this example, the 3

mm multiplier chain is in use, so the output frequency is the 6th harmonic of the synthesizer frequency; for the 1 mm multiplier chain, the synthesizer harmonic should be set to 18).

• The power level option controls the output power level of the frequency synthesizer and should be optimized experimentally such that the multiplier chain is driven with the optimum input power.

• The scanning program will save the spectrum in a temporary file if the 'Auto Save' option is selected. The number of points to be taken between each auto save should be entered in the box next to this option.

• The wait time is the amount of time that the program waits after the frequency is stepped before beginning to integrate the lock-in signal. The integration time is the amount of time over which the program integrates the lock-in signal before stepping the frequency.

• The modulation settings control the internal modulation of the lock-in amplifier. These parameters should be optimized to give the best signal-to-noise ratio without significantly broadening the linewidths. AM modulation and a harmonic setting of '1' should be used when monitoring the power, while FM modulation and a harmonic setting of '2' should be used when recording spectral data.

• The lock-in amplifier phase setting should be set manually on the front panel of the instrument. This parameter is not included in the control software so that it can be changed during an experiment without stopping the scan.

• The time constant and sensitivity settings for the lock-in can also be controlled from the main window. The optimum time constant for all flow cell experiments is 30 ms. The

sensitivity should be set to the dynamic range of the spectrometer, which is often governed by the strength of the observed lines. The lock-in signal is set to either 'R' (for power scans) or 'X' (for spectral scans).

• The file in which the spectral data is recorded is set by clicking on the 'filename' button and choosing the desired directory and filename.

B.4 Spectrometer Alignment Procedure

1. Set the start frequency to the frequency in the middle of your desired scanning range.

2. Switch to AM modulation and decrease the harmonic number to 1. Switch to R (rather than X) for the lock-in setting. Generally the sensitivity should be set to 1000 mV, but this setting should be adjusted to the appropriate value to give a fluctuating lock-in signal (i.e., such that the spectrometer is sensitive to noise). An attenuator may be required if the power is overloading the lock-in when it is on the least sensitive setting.

3. Note the modulation setting (in volts). Unhook the BNC cable that connects the lock-in to the 'Ext FM' input on the synthesizer. Attach the BNC cable from the 'Ext. AM' input on the synthesizer to the lock-in. Press the 'return to local' button on the Wiltron. Then press the 'measure FM from dev/ measure AM depth' button on the synthesizer until 'measure AM depth' is selected. Set the modulation setting to 0.775 V (or an appropriate voltage resulting in a 'modulation time' readout on the Wiltron close to 99%).

4. Place all optical components in the appropriate positions and roughly align them. At this point some signal should be registering on the 'Channel One' readout on the lock-in. Adjust

the x, y, and z positions of each component to maximize the power by either adjusting the positions of the mounts or by adjusting the micrometers on the translation stages. It is best to begin with the lens and polarizer, followed by the source and detector. Iteratively align each component until all are optimized. If the rooftop is in use, monitor the output of 'Channel One' on the lock-in with a voltmeter and carefully align the rooftop (the tilt stage is the most important adjustment here). The voltmeter will also be required if it is a 1 mm experiment, as only single-pass experiments are possible when the InSb bolometer detector is in use, and so the detector will be on the opposite end of the cell from the instrumentation.

5. Set the scanning increment to a large value (generally between 10 and 50 MHz). Change the filename to the appropriate file. Change the range to the desired frequency range. Click on the 'scan' button to go to the scanning window:

Click the 'start' button to begin a scan. Click the 'Auto' button to auto scale the window. After one scan across the full range, click 'Save,' enter any comments, and click 'save' again. Note the regions in which there was sufficient power. Click 'Setup' to return to the main screen.

B.5 Spectral Acquisition Procedure

1. Change the sensitivity to 5 μ V, the lock-in setting to X (rather than R), the modulation to FM, the harmonic number to 2, and the frequency step to 0.1 MHz. Set the frequency range to that which had sufficient power. Reconnect the FM BNC cable to the frequency synthesizer. Press the "return to local" button on the synthesizer and then change the option to 'measure FM from DEV.' Adjust the modulation amplitude to the previous setting. Regulate the sample pressure (see below).

2. Press 'scan.' Press 'start' on the scanning window to begin the scan. Once the scan reaches the upper frequency limit, the scanning direction will reverse and the scan will continue back to the start frequency. The forward and reverse scans will be averaged. This averaging will continue until the scan is saved or stopped. The current scan is displayed in yellow or magenta, depending on whether the scaling is changed after the scan begins. The averaged scan is offset above the current scan and is displayed in white. Clicking on the 'Boss' option loads the most recently saved scan onto the screen; this scan is displayed in green. There is a 'save and continue' option that allows the current state of the scan to be saved without stopping the scan.

3. Spectral lines are typically ~ 1 MHz FWHM and should have the characteristic second derivative shape. They should be well above noise level and should retrace on the reverse scan. Wide frequency coverage is often required before a line is observed, especially for molecules with weak spectra. Once a line is observed, return to the main screen after saving the scan.

4. Set the start frequency to the exact center frequency of the line. Adjust the phase option on the lock-in until the signal in the 'Channel One' readout is maximized. Once the maximum is found, pressing the +/- 90 degrees buttons should reduce the signal to the noise level. Changing the phase by 180 degrees should result in the negative of the optimized signal.

5. Narrow the scanning range to a 5–10 MHz range around the line. Record a spectrum of the line at these instrument settings, and then adjust the modulation amplitude, modulation frequency, power level, and sample pressure, monitoring the change in the line intensity after each adjustment. Optimized values for the 3 mm and 1 mm experimental setups are shown in Table B.2. Once optimum parameters are found for a given experiment, return to the main screen and begin a large scan.

Table B.2: Optimized parameters for flow cell experiments.

Parameter	$3 \mathrm{mm}$	$1 \mathrm{mm}$
Phase	80 degrees	-80 degrees
Mod. Amplitude (V)	$0.05 \ V$	$0.05 \ V$
Mod. Frequency (kHz)	$6 \mathrm{~kHz}$	$4 \mathrm{~kHz}$
Power level	12 dBm	$5~\mathrm{dBm}$

B.6 Sample Pressure and Temperature Regulation

The sample cell pressure should be optimized to give maximum signal strength without significant line broadening. Pressures on the order of ~ 30 mtorr are typical for such

experiments. The cell pressure is regulated by adjusting the valve between the cell and the pump. A needle valve can also be placed at the sample input port to further regulate the pressure. Gas sample lines should be directly attached to the input of the cell.

Liquid samples should be placed in either a ball flask (high vapor pressure) or a sparger (low vapor pressure). A ball flask can be attached directly to the cell input through use of an UltraTorr fitting, and direct pumping on the sample will set up ample pressure in the cell. For lower vapor pressure samples, however, a carrier gas should be bubbled through the sample to increase the amount of sample vapor in the cell. A sparger is used for this purpose. The carrier gas line should be attached to the sparger input, and the sparger output should be connected to the cell.

Solid samples should be placed directly in the cell by removing the endcap near the source (be cautious of the polarizer while doing this). Use of a sample boat often significantly reduces the transmitted power, and so aluminum foil should be used as a sample holder, as it can be formed to the shape of the cell. Be VERY cautious when first evacuating or venting the cell, as powdered samples are likely to scatter. If this does occur, the "flow cell squeegee" that is located in the lab (next to the vacuum cleaner) can be used to clean the sample from the cell walls.

Reduction of the cell temperature is often used to depopulate higher energy states for molecules with large partition functions. Baking out the cell is also sometimes necessary to remove adsorbed contaminants from the cell walls. The cell used in the 1 mm studies has a jacket around the inner cell that can be filled with liquid and appropriately cooled or heated. Water is most often used for this purpose, and a water recirculator is located under the cell, beneath the optics table. Fill the water reservoir before using the recirculator. Turn on the recirculator and monitor the water level, refilling when necessary until the level does not change. Adjust the temperature to desired value. The heating system will run automatically, but the cooling system must be turned on separately if the desired temperature is below room temperature.

B.7 Spectral File Format

The spectral information saved during scanning is saved in the file designated in the filename box in the main control window. The file extension should be set to the '.lwa' option. The file is a simple ASCII text file, with a format as follows:

DATE MM-DD-YYYY TIME hh:mm:ss comment start frequency step frequency number of points 1 1 1 START Y₁ Y₂ Y₃ Y₄ ... Y_n

The header information is that which is recorded from the scanning program, and the Y_n 's are the signal intensities read from the lock-in amplifier at each frequency step. The information for each scan is appended to the end of a given file upon saving until the filename is changed in the scanning program.

Appendix C Spectral Assignment

C.1 The CALPGM Suite

The CALPGM suite, developed by Pickett et al. (1998) at JPL, was designed to fit spectral information to quantum mechanical models to both obtain information about the structure of the molecule and to enable predictions in other spectral regions. Detailed information for the files associated with the CALPGM programs is available at http://spec.jpl.nasa.gov. The programs included in this suite can process the ground state and up to 99 vibrationally excited states, and can be used in conjunction with the Submillimeter Analysis Program (SMAP, described below) to assign spectral data.

The SPCAT program performs spectral predictions from a set of user-defined parameters that are defined in two input files, namely the .var file and the .int file. These parameters include molecule-specific information such as the dipole moment, rotational constants, distortion constants, and partition function. Other parameters include temperature, frequency range, and quantum number range as well as the type of reduction to be used for the Hamiltonian. Line positions and strengths are then calculated based on these userdefined parameters. Initial predictions are written to a .cat file.

The .cat file can be merged with spectral assignments with the CALMRG program.

This program produces a .mrg file that is formatted similarly to the .cat file, but markers distinguish between transitions that have been assigned and those that are predictions.

The SPFIT program utilizes files containing the frequency, intensity, and quantum numbers (J, K_a, K_c, ν) assigned for transitions to fit such spectroscopic information by a least squares analysis using a user-defined reduction of the Hamiltonian to a user-defined set of rotational and centrifugal distortion constants. The output of the SMAP program is formatted appropriately for a .lin file, which is the input file for SPFIT and contains the quantum numbers and frequencies for each of the assigned spectral lines. The initial spectral parameters are read from a .par file, which is identical to the .var file used by SPCAT. Both of these files are overwritten with the new spectral parameters each time the SPFIT program is run.

The MOIAM and IAMCALC programs can be used to generate spectral parameters for molecules with internal rotation groups. The Z-Matrix for the molecule and an initial estimate of the barrier to internal rotation are entered into a .inp file. An internal rotation group has n equivalent structures, and the MOIAM program generates coordinates for each of the atoms in the molecule for each structure. This information is then used to generate a set of parameters for an internal axis system Hamiltonian with the IAMCALC program. These parameters are written to a .par file, and these parameters can be used as the input to SPCAT in a .var file.

An iterative process is used to analyze spectral data. Literature or *ab initio* information is used to generate a predicted spectrum with the SPCAT program. The SMAP program is then used to compare the experimental spectrum to this prediction and to assign lines accordingly. The SPFIT program is then used to calculate a new set of parameters after spectral assignments are made.

C.2 The Submillimeter Analysis Program

The graphical interface used for spectral analysis is the Submillimeter Analysis Program (SMAP) developed by Brian Drouin from the Microwave, Millimeter, and Submillimeter Spectroscopy Laboratory at JPL. The .lwa files saved during scanning can be loaded into this program, which plots the xy data as either a line or a stick spectrum. Line spectra are most commonly used for line assignment purposes. The buttons in the main window for the SMAP program can be selected to bring up popup control windows for different aspects of the program:

Spectral data files and spectral prediction catalog files can be loaded with the 'Open Data File' and 'Open Catalog' commands at the top of the screen. In the example shown above, the experimental spectrum is shown in black while the prediction is shown in blue. Each saved scan in a given file can be loaded by selecting the appropriate scan number at the top of the screen. The spectral data settings can be selected in the 'Show Data Settings' popup window:

[%] f Settings		
Picker Width Derivative Smoothing	↓ 5 ↓ 3	Valley A Peak Peak/Valley

The fifth derivative of the spectrum with a boxcar smoothing of n=3 is commonly used to remove the sinusoidal background from the spectral data. The 'FFT' and 'IFFT' options to the side of the spectral display window can also be used for this purpose.

The xy scaling for the displayed spectrum can be adjusted in the 'Show Scaling' popup window:

[%] ∫ Scaling			
X Scaling	Endpoint (MHz)	Increment	
	112879.998	\$ 100.000	Grid
Manual X2	112899.990	100.000	Up
Y1,	-3514.000	\$ 100.000	Down
Y2	4613.667	\$ 100.000	<u></u>

The 'Up' and 'Down' buttons will shift to a new frequency window by an increment equal to the width of the current view. One can therefore scroll through the spectrum one window at a time, which is quite useful for line assignment. In addition, left-clicking in the spectral display window and dragging the mouse creates a selection box that can be used for changing the spectral scale. Right-clicking will zoom in on the boxed area of the spectrum once the desired spectral window is selected. Double-clicking will then set the scaling back to the previous setting.

A total of eight different catalogs can be loaded with the current version of the program. The parameters of the predicted spectrum are controlled by the 'Simulation Settings' popup window:

Changes implemented in this window only change the settings for the catalog that is selected at that time, and so different settings can be used for different catalogs. The course and fine adjustments can be used to scale the intensity of the prediction relative to the spectral data. The simulation type can be chosen to match the spectral data line shape (flow cell spectra are second derivative spectra). The linewidth and point spacing can also be adjusted to match the spectral data. The prediction appears as a stick spectrum until the toggle is changed from 'None' to either 'Cutoff' or 'Full.' The cutoff option loads only the predicted spectral features in the window displayed on the screen, while the full option loads the entire prediction. The harmonic option can be used to select a different harmonic of the observed frequency, which is particularly useful when tunable frequency sources are used.

Spectral assignment is performed by comparing the simulated spectrum to the laboratory spectral data. The simulation can be shifted in frequency by using the green control boxes in the lower left corner of the main window. Once the simulation is shifted to match the observed spectral lines, the threshold option to the right of the display window should be adjusted such that the desired spectral line is selected by the peak picker. The 'Show Lines' popup window shows the selected lines from the experimental data in the top window, and the predicted lines and their respective quantum numbers in the bottom window:

Clicking the 'Toggle' button in the bottom window will select all of the lines from the simulation, making them eligible for assignment. Clicking the 'Mark Lines' button will select the experimental lines that match these predictions to within the error value set at the bottom of the window (this value is usually set to the experimental resolution, 0.1 MHz). Clicking the 'Assignments' button at this point will write the quantum numbers from the prediction and the frequency of the observed line to the selected .lin file. The threshold

option in the lower right corner of this window can be used to set a minimum intensity threshold for assigned lines. No lines weaker than this threshold value will be included in the written assignments.

While the initial prediction is a .cat file, subsequent predictions are loaded in .mrg files. The lines that have been experimentally assigned are displayed in red font in the 'Show Lines' popup window and are not eligible for assignment. This ensures that the same set of quantum numbers is not assigned to multiple frequencies in a given spectral line file.

The SMAP program also includes a calculator option that can be accessed in the 'Show Calc' popup window. Mathematical manipulation of spectral data (i.e., the current scan, other scans, simulations, etc.) can be performed, and the results can be loaded over the displayed spectral data:

^{&} f Spectrum Calculator	
Buffer 1 Scan- scan #; 1 Simulation- XY data- ast Result- Stored- Binary Operate	Unary Operator X nonelog X Smoothing 1 Derivative 0
Buffer 2none + + + / scan # 1 Simulation- XY Data- Linear- Stored-	Unary Operator × -1.00 nonelog *× Smoothing 1 Derivative 0

Appendix D

Geometry Optimizations of the $C_2H_4O_2$ & $C_3H_6O_3$ Structural Isomers

D.1 Introduction

Gaussian 98 MP2 6-311G++(d,p) geometry optimizations were performed for each of the 2C and 3C structural isomers [31]. The rotational constants, dipole moments, and absolute energies determined for the 2C and 3C species are given in Tables D.1 and D.2, respectively, and the resultant relative energy diagrams are shown in Figure D.1. The Gaussian Z-Matrices for each species are presented below.

Molecule	Energy (hartree)	A (GHz)	B (GHz)	C (GHz)	μ_a	μ_b	μ_c
trans-Acetic Acid	-227.8804311	11.2468400	9.4827443	5.3147628	1.5425	0.0003	-1.2339
cis-Acetic Acid	-227.8697261	10.9315932	9.5932037	5.2786903	2.7307	0.0000	-4.2473
Methyl Formate	-227.8532323	19.8277665	6.9450273	5.3160885	-1.9831	0.0000	-0.1656
Glycolaldehyde	-227.8355319	18.4048626	6.5032670	4.9540965	-1.6280	-0.0572	2.6078

IS.
tior
niza
ptin
y o
netr
geor
(d
+(q.
+
311(
5-0-0
MP.
$\frac{1}{2}$
ian
auss
Ч С
ja p
nine
terr
s de
eter
ram
. pa:
mer
l iso
ura
ruct
C st
le 20
Ĩ
D.1:
ble .
Ta

Molecule	Energy (hartree)	A (GHz)	B (GHz)	C (GHz)	μ_a	μ_b	μ_c
Methylene Glycol Monoformate	-341.8040962	7.60414370	2.3977662	1.9750716	-0.7189	-1.6788	2.1665
Lactic Acid	-341.8035662	5.13517570	3.3496150	2.2075216	-2.4423	0.1351	0.5798
Dimethyl Carbonate	-341.7934922	10.3609486	2.3813303	1.9849098	0.1465	0.0000	0.1066
Methyl Glycolate	-341.7859758	9.95904630	2.2064690	1.8483288	1.3939	2.2628	-1.7720
Methoxy Acetic Acid	-341.7817050	7.56583090	2.3822053	2.0314708	1.9062	1.3609	-0.3790
Glycol Monoformate	-341.7794099	11.2177614	1.8101431	1.6839068	-0.6154	1.6346	0.7070
1, 3-Dihydroxyacetone	-341.7676901	9.65454720	2.0397462	1.7323502	0.5000	-1.7533	1.0791
Glyceraldehyde	-341.7634662	5.48513980	2.7894964	2.4086035	1.0842	-2.5990	0.3055
Trioxane	-341.7493150	5.29309690	5.2925296	2.9496941	2.4597	-0.0015	-0.8622

Table D.2: The 3C structural isomer parameters determined by Gaussian 98 MP2 6-311G++(d,p) geometry optimizations.

Figure D.1: The relative energies of the $C_2H_4O_2$ (top panel) and $C_3H_6O_3$ (bottom panel) structural isomers.

D.2 Z-Matrices

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.503700				
Ο	2	1.358950	1	111.059625		
Η	1	1.088360	2	109.499963	3	179.954742
Η	1	1.092271	2	109.523526	3	-59.067658
Η	1	1.092264	2	109.529672	3	58.968175
0	2	1.210396	1	126.239110	3	-179.988613
Η	3	0.968019	2	105.880805	1	-179.999002

Table D.3: trans-Acetic Acid Z-Matrix.

Table D.4: cis-Acetic Acid Z-Matrix.

		0				
Atom 1	Atom 2	Bond $(Å)$	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.514811				
0	2	1.365307	1	115.038831		
Η	1	1.088383	2	109.211593	3	-179.999852
Η	1	1.093990	2	110.171725	3	-59.755578
Η	1	1.093990	2	110.171713	3	59.755879
0	2	1.203462	1	124.979429	3	179.999715
Η	3	0.963129	2	109.216503	1	-0.000120

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
С						
Ο	1	1.439039				
С	2	1.342820	1	114.123223		
Ο	3	1.207677	2	125.731253	1	0.000000
Η	3	1.097084	2	109.030435	1	-180.000000
Η	1	1.087577	2	105.347611	3	-180.000000
Η	1	1.091003	2	110.297528	3	60.397010
Η	1	1.091003	2	110.297528	3	-60.397010

Table D.5: Methyl Formate Z-Matrix.

Table D.6: Glycolaldehyde Z-Matrix.

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
0						
\mathbf{C}	1	1.216358				
\mathbf{C}	2	1.509742	1	121.952987		
Ο	3	1.402974	2	112.266930	1	0.000170
Η	4	0.966960	3	105.487287	2	0.011002
Η	2	1.105956	1	121.622223	3	-179.995669
Η	3	1.099382	2	107.637875	1	122.356765
Η	3	1.099397	2	107.631456	1	-122.343986

Table D.7: Methylene Glycol Monoformate Z-Matrix.

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle ($^{\circ}$)	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.525309				
\mathbf{C}	2	1.506987	1	111.672591		
Ο	3	1.215286	2	125.206497	1	8.910305
Η	1	1.097583	2	109.626362	3	59.787453
Η	1	1.091852	2	109.260546	3	178.184188
0	3	1.351351	2	112.059797	1	-171.585792
Η	7	0.968893	3	106.169777	2	-178.343340
Η	2	1.095301	1	111.384635	3	-121.586169
Η	2	1.095538	1	109.954184	3	119.537879
0	1	1.417311	2	112.140281	3	-64.025342
Η	11	0.963865	1	105.429147	2	65.311785

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle (°)	Atom 4	Dihedral Angle (°)
0						
Η	1	0.968758				
\mathbf{C}	1	1.348129	2	106.356517		
Ο	3	1.212801	1	123.875337	2	0.702006
\mathbf{C}	3	1.517941	1	112.346787	2	-177.944873
Η	5	1.100231	3	106.071131	1	65.847372
\mathbf{C}	5	1.523316	3	112.075702	1	-53.644315
Η	7	1.091857	5	110.974153	3	63.282595
Η	7	1.092065	5	108.681597	3	-176.439566
Η	7	1.093130	5	109.916409	3	-57.931883
Ο	5	1.411925	3	109.827967	1	-175.123445
H	11	0.965841	5	106.474398	3	-15.961845

Table D.8: Lactic Acid Z-Matrix.

Table D.9: Dimethyl Carbonate Z-Matrix.

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle (°)	Atom 4	Dihedral Angle (°)
С						
0	1	1.338797				
0	1	1.338797	2	107.820415		
\mathbf{C}	2	1.435114	1	113.502682	3	179.999999
Η	4	1.091117	2	110.509182	1	60.607259
Η	4	1.091117	2	110.509182	1	-60.607259
Η	4	1.087999	2	105.142494	1	180.000000
\mathbf{C}	3	1.435114	1	113.502682	2	-180.000000
Η	8	1.091117	3	110.509182	1	-60.607259
Η	8	1.091117	3	110.509182	1	60.607259
Η	8	1.087999	3	105.142495	1	180.000000
Ο	1	1.210758	2	126.089792	4	0.000000

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.515309				
Η	2	1.095651	1	108.205654		
Η	2	1.095618	1	108.217122	3	116.773821
Ο	1	1.338913	2	111.747328	4	58.316900
Ο	1	1.214318	2	123.352467	5	-179.992768
Ο	2	1.407602	1	111.096393	6	-0.067947
Η	7	0.965986	2	105.821878	1	0.134171
\mathbf{C}	5	1.439953	1	114.560283	2	179.987660
Η	9	1.087693	5	105.250932	1	-179.999743
Η	9	1.090889	5	110.213053	1	-60.468310
H	9	1.090887	5	110.213301	1	60.468843

Table D.10: Methyl Glycolate Z-Matrix.

Table D.11: Methoxy Acetic Acid Z-Matrix.

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle (°)	Atom 4	Dihedral Angle (°)
С						
0	1	1.420513				
\mathbf{C}	2	1.396539	1	112.311695		
\mathbf{C}	3	1.522851	2	113.504856	1	-74.996247
Ο	4	1.206939	3	126.557079	2	-0.069676
Ο	4	1.357945	3	109.623802	2	-179.576155
Η	6	0.968236	4	106.261800	3	178.980760
Η	3	1.093625	2	107.673258	1	166.083302
Η	3	1.100786	2	112.134344	1	47.772178
Η	1	1.098690	2	110.522883	3	-58.480384
Η	1	1.094190	2	111.496974	3	63.843977
H	1	1.089885	2	106.539316	3	-177.024465

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.528415				
Ο	2	1.412307	1	114.347702		
Ο	1	1.453147	2	114.056725	3	97.769306
\mathbf{C}	4	1.333737	1	116.631752	2	-68.334659
Ο	5	1.212591	4	126.243317	1	3.172829
Η	5	1.096436	4	109.414019	1	-176.883010
Η	1	1.093622	2	110.171399	3	-25.408419
Η	1	1.090205	2	110.732082	3	-147.052458
Η	2	1.099672	1	108.445413	4	-28.041192
Η	2	1.093073	1	108.114766	4	-144.662847
H	3	0.965246	2	106.211583	1	-51.688895

Table D.12: Glycol Monoformate Z-Matrix.

Table D.13: 1,3-Dihydroxyacetone Z-Matrix.

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle (°)	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.514665				
Η	2	1.101962	1	106.409456		
Η	2	1.095236	1	109.780776	3	-116.049712
\mathbf{C}	1	1.514675	2	118.405260	4	-42.162081
Η	5	1.095158	1	109.801311	2	-42.045849
Η	5	1.101966	1	106.406408	2	74.025658
Ο	1	1.221370	2	120.796268	5	179.983688
Ο	5	1.404249	1	112.130211	2	-163.446551
Η	9	0.966185	5	105.762029	1	-25.060504
0	2	1.404121	1	112.136696	8	16.399881
Η	11	0.966200	2	105.767937	1	-24.788882

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle $(^{\circ})$	Atom 4	Dihedral Angle (°)
С						
\mathbf{C}	1	1.523478				
Η	2	1.096842	1	108.597282		
Η	2	1.093765	1	110.256321	3	-118.906916
\mathbf{C}	1	1.516183	2	110.674020	4	59.015863
Η	5	1.105654	1	116.435269	2	-53.308715
Ο	1	1.410485	2	108.592495	5	121.450366
Η	7	0.968698	1	105.546873	2	-134.748948
Ο	5	1.215756	1	121.710439	2	127.677466
Ο	2	1.415281	1	110.684405	7	62.245137
Η	10	0.964149	2	105.704544	1	-56.062409
Н	1	1.103124	2	109.028659	10	-176.653874

Table D.14: Glyceraldehyde Z-Matrix.

Table D.15: Trioxane Z-Matrix.

Atom 1	Atom 2	Bond (Å)	Atom 3	Angle (°)	Atom 4	Dihedral Angle (°)
С						
Η	1	1.087341				
Η	1	1.103708	2	111.408314		
Ο	1	1.408253	2	107.615748	3	-119.919101
Ο	1	1.408837	2	107.584294	4	-120.237198
\mathbf{C}	4	1.408777	1	108.644724	2	-176.275190
Η	6	1.087343	4	107.585058	1	176.325387
Η	6	1.103731	4	109.354212	1	-62.538123
\mathbf{C}	5	1.407974	1	108.649293	2	176.311887
Η	9	1.103746	5	109.418694	1	62.517471
Η	9	1.087351	5	107.624267	1	-176.292182
Ο	6	1.408328	4	111.471551	1	58.553254

Appendix E

1,3-Dihydroxyacetone Spectral Analysis

E.1 1,3-Dihydroxyacetone .int File

dihydroxyacetone !! 0001 710xx 149018, 0, 110, -9.9,-9.9, 600. 300 001 0.00 002 1.77 003 0.00 111 0.00 112 1.77 113 0.00 221 0.00 222 1.77 223 0.00 331 0.00 332 1.77 333 0.00 441 0.00 442 1.77 443 0.00

E.2 1,3-Dihydroxyacetone .par File

	dihydroxyacetone		one			20-H		Tue Mar 08	17:38:25 2005	
	45	2360	10	0	0.0000E+000	1.0	0000E+001	1.0	000E+000 1	.000000000
a	1	. 5	0	80	0					
			0	-3	.077843878215719E-0	54	1.0000000	0E-030		
			11	2	.8000000000000000E+0	06	1.0000000	0E-020		
			22	4	.400000000000000E+0	06	1.0000000	0E-020		
			33	4	.500000000000000E+0	06	1.0000000	0E-020		
			44	5	.500000000000000E+0	06	1.0000000	0E-020		
			10000	9	.801294319558918E+0	03	5.5387099	1E+020	/A0	
			20000	2	.051525618181228E+0	03	1.0592378	1E+020	/B0	
			30000	1	.735164875163197E+0	03	1.1520506	6E+020	/C0	
			200	-1	.823673048868642E-0	04	2.5425707	9E+020	/-D_J0	
			1100	-6	.570554374745859E-0	04	3.6423990	3E+020	/-D_JKO	
			2000	-5	.366574855355530E-0	03	2.0518293	3E+020	/-D_KO	
			40100	-2	.767395760072777E-0	05	1.0937771	6E+020	/-d_1 0	
			41000	-5	.692623750760164E-0	04	9.7046052	9E+020	/-d_2 0	
			10011	9	.764480575891592E+0	03	5.5387099	1E+020	/A1	
			20011	2	.049846713320285E+0	03	1.0592378	1E+020	/B1	
			30011	1	.736322273353199E+0	03	1.1520506	6E+020	/C1	
			211	-1	.832943431901232E-0	04	2.5425707	9E+020	/-D_J1	
			1111	-8	.486092640387109E-0	04	3.6423990	3E+020	/-D_JK1	
			2011	-5	.479072811759285E-0	03	2.0518293	3E+020	/-D_K1	
			40111	-2	.741193228166894E-0	05	1.0937771	6E+020	/-d_1 1	
			41011	-6	.416701923482689E-0	04	9.7046052	9E+020	/-d_2 1	
			10022	9	.701677625461267E+0	03	5.5387099	1E+020	/A2	
			20022	2	.051549856707002E+0	03	1.0592378	1E+020	/B2	
			30022	1	.737929258700044E+0	03	1.1520506	6E+020	/C2	
			222	-1	.850708256907718E-0	04	2.5425707	9E+020	/-D_J2	
			1122	-5	.030694682634194E-0	04	3.6423990	3E+020	/-D_JK2	
			2022	-3	.476139815329533E-0	03	2.0518293	3E+020	/-D_K2	
			40122	-2	.755822936763215E-0	05	1.0937771	6E+020	/-d_1 2	
			41022	-3	.586944284235681E-0	04	9.7046052	9E+020	/-d_2 2	
			10033	9	.662111202535310E+0	03	5.5387099	1E+020	/A3	
			20033	2	.050021645635964E+0	03	1.0592378	1E+020	/B3	
			30033	1	.739419282882642E+0	03	1.1520506	6E+020	/C3	
			233	-1	.871573555017875E-0	04	2.5425707	9E+020	/-D_J3	
			1133	-6	.065320805558970E-0	04	3.6423990	3E+020	/-D_JK3	
			2033	-7	.117704538112456E-0	03	2.0518293	3E+020	/-D_K3	
			40133	-2	.659488373510768E-0	05	1.0937771	6E+020	/-d_1 3	
			41033	-3	.173100906087768E-0	04	9.7046052	9E+020	/-d_2 3	
			10044	1	.032831972121139E+0	04	5.5387099	1E+020	/A4	
			20044	2	.065184247922443E+0	03	1.0592378	1E+020	/B4	
			30044	1	.735124047466261E+0	03	1.1520506	6E+020	/C4	
			244	-1	.823705977705431E-0	04	2.5425707	9E-020	/-D_J4	
			1144	-6	.570441988138593E-0	04	3.6423990	3E-020	/-D_JK4	
			2044	-5	.366717861588423E-0	03	2.0518293	3E-020	/-D_K4	
			40144	-2	.767291508665058E-0	05	1.0937771	6E-020	/-d_1 4	
			41044	-5	.694116911197475E-0	04	9.7046052	9E-020	/-d_2 4	

E.3 1,3-Dihydroxyacetone .lin File

3 5	2 1	1 4	0 0	4 5	1 0	4 5	0 0
2	2	1	0	3	1	2	0
1	1	1	0	0	0	0	0
6 5	1	5	0	6 1	0	6	0
5 7	1	5 6	0	4	1	4	0
י א	1 1	7	0	י 8	0	ו א	0
2	1	2	0	1	0	1	0
6	0	6	0	5	1	5	0
3	1	3	0	2	0	2	0
10	1	9	0	10	0	10	0
9	2	7	0	9	1	8	0
8	2	6	0	8	1	7	0
4	3	2	0	5	2	3	0
7	2	5	0	7	1	6	0
7	0	7	0	6	1	6	0
6	2	4	0	6	1	5	0
4	1	4	0	3	0	3	0
5	2	3	0	5	1	4	0
4	2	2 1	0	4	1	ა ე	0
2	2	0	0	2	1 1	2	0
2	2	1	0	2	1	2	0
5	1	5	0	4	0	4	Õ
3	2	2	0	3	1	3	0
26	13	14	0	27	12	15	0
26	13	13	0	27	12	16	0
26	13	14	0	27	12	16	0
26	13	13	0	27	12	15	0
44	6	39	0	44	5	40	0
55	6	49	0	55	5	50	0
27	1	27	2	26	0	26	2
61	0 7	59 54	0	61	6	55	0
27	1	26	0	26	2	25	0
71	10	61	0	71	9	62	õ
50	- 5	45	0	50	4	46	0
32	7	25	0	32	6	26	0
34	7	28	0	34	6	29	0
48	8	40	0	48	7	41	0
31	7	25	0	31	6	26	0
46	7	40	0	46	6	41	0
68	8	60	0	68	7	61	0
29	7	23	0	29	6	24	0
47	8	39	0	47	7	40	0
25	7	18	0	25	6	19	0
25	(7	19 16	U ₁	25	6 6	20	1
∠∠ 29	/ 1	10 01	U T	22 27	о С	11 26	U L
20 18	1 7	∠ı 12	1	∠ı 18	∠ 6	20 12	1
18	7	11	1	18	6	12	1

10230.5000	0.0040
10540.6400	0.0020
11420.6455	0.0040
11536.4474	0.0020
11731 7508	0 0040
10200 5002	0.0040
12302.5023	0.0020
13208.4570	0.0040
14995.2940	0.0040
15006.7695	0.0020
16596.6445	0.0020
18322.5566	0.0040
19546.4736	0.0040
19882.2109	0.0040
20157.6729	0.0040
20329.7578	0.0040
20592 8721	0.0040
20802.0121	0 0040
20037.3033	0.0040
21132.7001	0.0040
21495.9492	0.0040
21720.5107	0.0040
22301.8613	0.0040
22828.0713	0.0040
23258.6963	0.0040
24198.2861	0.0040
24546.4023	0.0040
24678.6514	0.0040
94930.2947	0.0800
94930 2947	0.0800
94930 2947	0 0800
04020 2047	0.0000
94930.2947	0.0000
95063.4624	0.0800
95118.3010	0.0800
95438.5796	0.1000
95462.9407	0.0800
95463.8262	0.0800
97995.6541	0.0800
98007.2266	0.0800
98532.6447	0.0800
98540.2046	0.0800
98954,2080	0.0800
99051 4985	0 0800
00010 /032	0.0000
00042 00E1	0.0000
99943.0951	0.0000
100458.7032	0.0800
100508.3201	0.0800
101408.7858	0.0800
101414.8335	0.0800
101479.2105	0.0800
101522.7244	0.1000
101595.8837	0.1000
101946.7563	0.1000
101946.7563	0.1000
101947.9732	0.1000
-------------	--------
101947.9732	0.1000
101974.0933	0.0800
101975.8019	0.0800
101987.2679	0.0800
101988.6939	0.0800
102378 9548	0 1000
102010.0010	0.0800
102400.0020	0.0000
102415.1596	0.0800
102417.9074	0.0800
102417.9074	0.0800
102419.2240	0.0800
102419.2240	0.0800
102436.6732	0.1000
102439.4472	0.0800
102443.8660	0.1000
102453.3801	0.1000
102463.5445	0.0800
102479.8305	0.1000
102490.8095	0.0800
102490.8095	0.0800
102491.6719	0.0800
102491.6719	0.0800
102497.0673	0.1000
102550.3978	0.1000
102552.2285	0.1000
102552.2285	0.1000
102552.2285	0.1000
102552.2285	0.1000
102969.5556	0.1000
102987.0737	0.0800
102991.2322	0.1000
102995.3407	0.0800
102995.3407	0.0800
102995 3407	0 0800
102000.0107	0.0800
102000.0407	0.0000
103056 7006	0.1000
103250.7900	0.0000
103239.9047	0.1000
103214.0085	0.0800
103311.8037	0.0800
103336.5340	0.1000
103390.4872	0.0800
103403.3863	0.0800
103449.7507	0.1000
103493.6929	0.0800
103506.0791	0.1000
103529.4090	0.0800
103540.6286	0.1000
103544.3024	0.0800
103598.0896	0.1000
103762.2218	0.1000
103776.6834	0.0800

103784.5425	0.0800
103841.5408	0.1000
103870.8442	0.0800
103944.1769	0.1000
103946.5543	0.1000
103947.4843	0.0800
104015.4249	0.1000
104039.1734	0.0800
104070.3964	0.1000
104091.1918	0.0800
104104.2477	0.1000
104194.8618	0.0800
104205.9662	0.0800
104208.5475	0.0800
104255, 2878	0.1000
104319 3707	0 0800
104364 8013	0 1000
104364 8013	0 1000
104366 1663	0.1000
104366 1663	0.1000
104539 8733	0.1000
104661 4230	0.1000
104001.4200	0.0000
104735 5097	0.0800
104765 4990	0.0000
104792 8553	0.0000
104887 2340	0.0800
104914 1060	0 1000
104914 1060	0 1000
104915 5177	0 1000
104915 5177	0 1000
104970 4187	0 1000
105086 8266	0 0800
105129 9498	0 0800
105130 9364	0 1000
105163 7291	0.0800
105193 6027	0.0000
105248 1483	0.0000
105248 1483	0.0000
105240.1400	0.0000
105249 4403	0.0800
105280 8300	0.0000
105200.0000	0.1000
105417 8104	0.1000
105431 2338	0.1000
105451.2550	0.0000
105627 4002	0 1000
105690 6152	0 0800
105702 5003	0.0000
105748 0102	0 0200
105754 1440	0 1000
105760 9618	0 0800
105766 4002	0 0200
100100.4220	0.0000

105767.4664	0.0800
105804.9196	0.1000
105839.2366	0.1000
105850.7508	0.1000
105865.3089	0.1000
105916.0218	0.1000
105920.6938	0.1000
105928.3053	0.1000
106075.1901	0.1000
106111 1739	0.0800
106129, 1949	0.0800
106179 8048	0 1000
106209 5632	0 0800
106312 0284	0 1000
106374 9916	0 1000
106435 2662	0.1000
106435 2662	0.0000
100435.2002	0.0000
106435.2002	0.0000
100435.2002	0.0000
106447.7113	0.0800
106456.4488	0.0800
106456.4488	0.0800
106456.4488	0.0800
106456.4488	0.0800
106543.7657	0.0800
106562.0598	0.0800
106563.9201	0.1000
106641.4085	0.1000
106780.0590	0.1000
106804.2308	0.1000
106834.3939	0.1000
106841.1512	0.1000
106863.5286	0.0800
106914.5244	0.1000
106973.0740	0.0800
106973.0740	0.0800
106973.0740	0.0800
106973.0740	0.0800
106976.0623	0.0800
107019.3214	0.1000
107039.3114	0.1000
107060.3421	0.0800
107093.9807	0.0800
107099.5068	0.1000
107131.7415	0.0800
107152.9421	0.1000
107159.0173	0.0800
107329.5280	0.0800
107541.1450	0.0800
107549.2908	0.0800
107569.1269	0.0800
107575.4722	0.0800
107591.1566	0.1000

107669.4531	0.1000
107835.8356	0.0800
107857.0541	0.0800
107926.2775	0.1000
107933.6251	0.1000
107940.7740	0.1000
107998.7791	0.0800
107998.7791	0.0800
107998 7791	0.0800
107998.7791	0.0800
108119 0679	0 0800
108128 8643	0 1000
108218 0226	0.1000
1082210.3220	0.0000
100221.2007	0.1000
100211.1009	0.1000
100310.4024	0.0000
108337.0681	0.1000
108337.0681	0.1000
108379.0866	0.1000
108432.0406	0.0800
108442.1016	0.0800
108592.3490	0.0800
108601.6167	0.0800
108611.7042	0.1000
108611.7042	0.1000
108611.7042	0.1000
108611.7042	0.1000
108689.5113	0.1000
108689.5113	0.1000
108692.9418	0.1000
108692.9418	0.1000
108706.4295	0.0800
108739.5372	0.0800
108782.6925	0.1000
108803.8851	0.0800
108824.8376	0.1000
108826.9500	0.1000
108830.5319	0.1000
108877.1174	0.1000
108920.8110	0.1000
108938.3413	0.1000
108968.9741	0.0800
108968.9741	0.0800
108968 9741	0.0800
108968.9741	0.0800
109018 8410	0 1000
109010 7644	0 1000
109073 2002	0 0800
100020.0200	0.0000
109021.0413	0.0000
100070 5110	0.1000
100002 0027	0.1000
100101 1000	0.0800
109131.1303	0.0800

109152.5290	0.0800
109161.0061	0.0800
109169.3633	0.0800
109191.4160	0.0800
109221.5402	0.0800
109230.0515	0.0800
109252.6792	0.1000
109257.4160	0.1000
109259.2233	0.1000
109259.2233	0.1000
109282, 4395	0.0800
109299.3320	0.1000
109299 3320	0 1000
109299 3320	0 1000
109299 3320	0 1000
109205.0020	0.1000
109316 6586	0.1000
100303 1360	0.1000
109323.1302	0.1000
109394.7109	0.1000
100452 0020	0.1000
109453.0920	0.0000
109433.0920	0.0000
109473.0390	0.1000
109407.1009	0.1000
109400.4439	0.1000
109493.9373	0.1000
109554.2004	0.0000
109627 1895	0.1000
109628 2380	0.0000
109645 0153	0.0000
109669 8995	0.0000
109608 9648	0.1000
109090.9040	0.0000
109704.0010	0.0000
109704.0010	0.0000
109704.0010	0.0000
109704.0010	0.0000
100750.7450	0.1000
109051.5551	0.1000
109052.0552	0.0800
109819.0081	0.0000
109094.7953	0.0000
109094.7953	0.0000
109094.7953	0.0000
109094.7900	0.0000
109901.0022	0.1000
110065 2002	0.0000
1101/0 /000	0.1000
110180 088/	0.1000
110220 8502	0.0000
110250 /051	0 1000
110261 2000	0.1000
110201.2999	0.0000

110261.2999	0.0800
110261.2999	0.0800
110261.2999	0.0800
110267.6371	0.1000
110290.8251	0.0800
110312.4757	0.0800
110368.9755	0.0800
110371.9050	0.0800
110372.9974	0.0800
110376.2147	0.0800
110388.5693	0.1000
110395.0178	0.0800
110397.7551	0.0800
110445.4930	0.1000
110450.5266	0.0800
110456 2313	0 0800
110485 2888	0 0800
110502 9030	0 0800
110519 6863	0 1000
110526 5014	0.1000
110526 5014	0.0000
110520.0014	0.0000
110538 8776	0.1000
110558 /193	0.1000
110570 7664	0.1000
110612 9178	0.0000
110675 5910	0.1000
110739 0933	0.1000
110752 8/32	0.0000
110750 831/	0.1000
110730 6226	0.0000
110774 8458	0.1000
110780 0562	0.0800
110785 1089	0.0000
110785 1089	0.0000
110785 1089	0.0000
110785 1089	0.0000
110703.1003	0.0000
110807.0471	0.0000
110007.0471	0.0000
110807.0471	0.0800
110007.0471	0.0000
110876 /015	0.0000
110070.4015	0.1000
110091.0095	0.0000
110909.0025	0.0000
110903.4503	0.0000
11000/ 6EE7	0.0000
111010 6720	0.0800
111019.0/30	0.0800
111020./002	0.1000
111020./402	0.0000
111041.0403	0.1000
1110/1.9/09	0.1000

111145.6724	0.1000
111219.3475	0.0800
111219.3475	0.0800
111219.3475	0.0800
111219.3475	0.0800
111230.2445	0.0800
111234.6558	0.0800
111274.8072	0.1000
111291.7046	0.0800
111353 1745	0.0800
111415.6661	0.1000
111427 3088	0 1000
111434 7568	0 1000
111463 2121	0.1000
111405.2121	0.0000
1114/07 0275	0.1000
111497.2373	0.0000
111510.7590	0.0000
111538.1309	0.0800
111548.5476	0.1000
111555.4265	0.1000
111567.5672	0.1000
111616.2954	0.0800
111631.3047	0.1000
111685.5041	0.1000
111725.5225	0.0800
111803.3091	0.1000
111841.7349	0.0800
111846.6377	0.1000
111865.2303	0.1000
111872.7823	0.1000
111927.8880	0.0800
111942.5770	0.0800
111972.1630	0.1000
111993.9235	0.1000
112089.5656	0.1000
112124.2061	0.0800
112165.5318	0.0800
112197.2476	0.1000
112213.3027	0.0800
112229.9812	0.0800
112249.9463	0.1000
112265.4162	0.0800
112266.1883	0.0800
112288, 1782	0.0800
112306, 1263	0.1000
112310 4037	0 0800
112322 1053	0.0800
112354 3004	0 1000
110327 1625	0 1000
110387 /635	0.1000
110200 2200	0.0000
110/00 0010	0.1000
112408.0912	0.1000
112449.5793	0.1000

112456.5332	0.1000
112465.0818	0.1000
112468.2677	0.1000
112514.2450	0.1000
112529.9507	0.0800
112536.9515	0.0800
112537.9499	0.0800
112558.8289	0.0800
112580, 2057	0.0800
112590 8853	0 0800
112600 2144	0 1000
112600.2144	0.1000
112612 5005	0.0000
112012.0090	0.0000
112013.2737	0.1000
112020.5034	0.1000
112030.7384	0.0800
112636.6087	0.0800
112639.3241	0.1000
112672.6882	0.1000
112693.6258	0.0800
112699.6354	0.0800
112708.7000	0.0800
112712.2287	0.0800
112714.7459	0.1000
112721.8748	0.1000
112732.4683	0.1000
112771.2248	0.0800
112790.2753	0.1000
112790.2753	0.1000
112791.2219	0.0800
112794.7279	0.1000
112795.9529	0.1000
112799.8826	0.0800
112799.8826	0.0800
112833.6413	0.0800
112833.6413	0.0800
112833.6413	0.0800
112833.6413	0.0800
112857 9304	0 1000
112870 5585	0.0800
112070.0000	0.0000
112073.7732	0.1000
112070.0709	0.1000
112009.0002	0.0800
112091.5550	0.1000
112925.6808	0.1000
112926.7823	0.0800
112956.1886	0.1000
112957.0893	0.0800
112958.0278	0.1000
112977.8139	0.0800
112991.5300	0.1000
113011.0329	0.1000
113016.2340	0.0800

113027.9092	0.0800
113088.1075	0.0800
113088.1075	0.0800
113088.1075	0.0800
113088.1075	0.0800
113095.5447	0.1000
113145.1115	0.0800
113165.1247	0.1000
113188,2169	0.1000
113224 1284	0 0800
113237 6665	0 0800
113298 6000	0 1000
113307 0443	0.1000
113307 0443	0.0000
112207 0442	0.0000
112207 0442	0.0000
113307.9443	0.0800
113326.7832	0.0800
113362.1272	0.1000
113373.5909	0.0800
113391.6454	0.1000
113393.8739	0.1000
113401.4761	0.0800
113426.1874	0.1000
113449.5383	0.0800
113490.0856	0.0800
113494.1617	0.0800
113494.1617	0.0800
113494.1617	0.0800
113494.1617	0.0800
113509.2268	0.1000
113564.1275	0.1000
113578.3510	0.1000
113630.7860	0.0800
113643.4962	0.1000
113682.7960	0.0800
113691.2067	0.1000
113771.8986	0.0800
113771.8986	0.0800
113771.8986	0.0800
113771.8986	0.0800
113780.7729	0.1000
113790.7150	0.1000
113797.3494	0.0800
113813.2687	0.0800
113854 6292	0.0800
113869 1185	0.0800
113874 4926	0 1000
113010 5685	0 1000
113000 20/5	0.1000
113006 00/0	0.0000
11/06/ 20/5	0.1000
11/100 /206	0.1000
114000.4320	0.0800
114083.5484	0.0800

114083.5484	0.0800
114083.5484	0.0800
114083.5484	0.0800
114102.9565	0.0800
114114.3395	0.1000
114115.6965	0.0800
114161.4071	0.1000
114167.9589	0.0800
114173.7341	0.0800
114181,2702	0.0800
114196 6409	0 0800
114198 0883	0 1000
114100.0000	0.1000
114210.0407	0.0000
114220.7115	0.0000
114220.7115	0.0000
114220.7115	0.0000
114226.7115	0.0800
114252.6501	0.1000
114279.1499	0.1000
114279.9980	0.0800
114341.1185	0.1000
114381.8962	0.1000
114477.0586	0.0800
114485.2441	0.1000
114506.7632	0.1000
114533.1737	0.1000
114534.3383	0.1000
114538.2221	0.1000
114548.4758	0.0800
114562.4142	0.1000
114638.0305	0.0800
114638.0305	0.0800
114638.0305	0.0800
114638.0305	0.0800
114639.1806	0.0800
114643.7548	0.1000
114653.5373	0.0800
114662.0548	0.0800
114676.6808	0.0800
114691.7533	0.0800
114740.5418	0.1000
114764.4041	0.1000
114774 5132	0.1000
114848 5214	0 1000
114882 9413	0 1000
114896 6865	0.1000
114002 /0000	0.0000
11/07/ 0560	0.0000
114314.V000 11/070 0521	0.0000
114313.VD31	0.0000
115054 0012	0.0800
115054.2913	0.0800
115055.3545	0.0800
115106.7099	0.0800

115110.9406	0.1000
115119.7334	0.1000
115141.0997	0.0800
115182.9611	0.1000
115233.7838	0.0800
115282.4255	0.0800
115315.3449	0.1000
115349.4334	0.1000
115350,4675	0.1000
115357 2618	0 1000
115382 8118	0.1000
115/13 2507	0.0000
115413.2307	0.0800
115420.9450	0.0800
115400.1903	0.0800
1154/5.8/05	0.0800
115508.4445	0.1000
115508.4445	0.1000
115513.2928	0.1000
115513.2928	0.1000
115522.8779	0.1000
115522.8779	0.1000
115525.8473	0.0800
115533.9023	0.0800
115541.7394	0.0800
115545.7869	0.1000
115562.7691	0.0800
115567.9798	0.1000
115568.8517	0.1000
115578.4282	0.1000
115582.9847	0.0800
115652.0017	0.1000
115652.0017	0.1000
115738.9829	0.0800
115745.8871	0.0800
115748 4132	0.0800
115750 7212	0.0000
115753 5077	0.1000
115753.5077	0.1000
115764.4739	0.1000
115/64.4/39	0.1000
115/74.2072	0.1000
115/74.2072	0.1000
115775.5825	0.1000
115775.5825	0.1000
115778.0154	0.0800
115825.9005	0.0800
115867.5817	0.1000
115883.6715	0.1000
115883.6715	0.1000
115884.5534	0.1000
115884.5534	0.1000
115924.7242	0.1000
115932.8844	0.1000
115935.0942	0.0800

115940.1390	0.0800
115941.2584	0.1000
115980.5024	0.0800
115980.5024	0.1000
115980.5024	0.1000
115982.4501	0.0800
116023.6046	0.0800
116034 4090	0.0800
116060 0137	0 0800
116063 5763	0 1000
116063 5763	0.1000
116062 5762	0.1000
116062 5762	0.1000
116006 5000	0.1000
110000.5020	0.0800
116094.4980	0.1000
116100.0946	0.0800
116101.1456	0.1000
116104.2457	0.0800
116113.2965	0.1000
116127.2771	0.0800
116136.1797	0.1000
116136.1797	0.1000
116136.1797	0.1000
116136.1797	0.1000
116165.2792	0.0800
116169.5216	0.0800
116188.2625	0.1000
116191.9354	0.0800
116195.2232	0.1000
116195.2232	0.1000
116195.2232	0.1000
116195.2232	0.1000
116198.6810	0.1000
116198 6810	0 1000
116198 6810	0 1000
116108 6810	0.1000
116010.0010	0.1000
116212.3995	0.1000
116212.3995	0.1000
116215.9296	0.0800
116215.9296	0.1000
116230.6324	0.1000
116237.5673	0.1000
116237.5673	0.1000
116240.4555	0.1000
116240.4555	0.1000
116252.2800	0.1000
116252.2800	0.1000
116252.2800	0.1000
116252.2800	0.1000
116264.9621	0.0800
116269.0624	0.1000
116290.9215	0.0800
116297.7943	0.1000

116297.7943	0.1000
116297.7943	0.1000
116297.7943	0.1000
116319.7987	0.0800
116324.5286	0.0800
116336.0800	0.1000
116336.0800	0.1000
116336.0800	0.1000
116336.0800	0.1000
116347 6046	0 0800
116351 0754	0 1000
11635/ 0570	0.1000
116363 8480	0.1000
116363 8480	0.1000
116267 0510	0.1000
116267 0510	0.1000
116367.9519	0.1000
116367.9519	0.1000
116367.9519	0.1000
116383.6280	0.1000
116394.3978	0.1000
116394.3978	0.1000
116394.3978	0.1000
116394.3978	0.1000
116415.8306	0.1000
116415.8306	0.1000
116415.8306	0.1000
116415.8306	0.1000
116433.0014	0.1000
116433.0014	0.1000
116433.0014	0.1000
116433.0014	0.1000
116446.6021	0.1000
116446.6021	0.1000
116446.6021	0.1000
116446.6021	0.1000
116475.0451	0.1000
116475.0451	0.1000
116475.9492	0.1000
116475.9492	0.1000
116519.2790	0.0800
116536.7032	0.1000
116540.3922	0.0800
116541.9243	0.0800
116547,2453	0.0800
116556 6797	0 1000
116557 5986	0.0800
116565 6077	0 0800
116572 3/71	0 1000
116570 2/71	0 1000
116611 6125	0.1000
116650 1500	0.0000
116650 1651	0.0800
116657 2402	0.0800
110657.3492	0.1000

116657.3492	0.1000
116657.3492	0.1000
116657.3492	0.1000
116710.8925	0.0800
116722.4382	0.0800
116730.9422	0.1000
116730.9422	0.1000
116730.9422	0.1000
116730.9422	0.1000
116735 5148	0 0800
116794 3426	0.0000
116794 3426	0.1000
116704 2426	0.1000
116704 2426	0.1000
110194.3420	0.1000
110017.7547	0.0800
116848.6708	0.1000
116848.6708	0.1000
116848.6708	0.1000
116848.6708	0.1000
116852.4018	0.0800
116875.9648	0.0800
116875.9648	0.0800
116875.9648	0.0800
116875.9648	0.0800
116894.7798	0.1000
116894.7798	0.1000
116894.7798	0.1000
116894.7798	0.1000
116903.0184	0.0800
116911.0048	0.0800
116933.6041	0.1000
116933.6041	0.1000
116933.6041	0.1000
116933.6041	0.1000
116933.6041	0.0800
116934.5666	0.0800
116935, 9636	0.0800
116959.5701	0.0800
116965 9581	0 1000
116965 9581	0.1000
116965 9581	0.1000
116065 0581	0.1000
116000 6606	0.1000
116002 6606	0.1000
116992.0090	0.1000
110992.0090	0.1000
112014 0020	0.1000
11/014.33/9	0.1000
11/014.3379	0.1000
11/014.3379	0.1000
11/014.3379	0.1000
117031.6157	0.1000
117031.6157	0.1000
117031.6157	0.1000

117031.6157	0.1000
117045.5473	0.1000
117045.5473	0.1000
117045.5473	0.1000
117045.5473	0.1000
117049.2611	0.0800
117056.3560	0.0800
117056.3560	0.1000
117056.3560	0.1000
117056.3560	0.1000
117056.3560	0.1000
117063 3038	0 0800
117067 9936	0 0800
117070 9995	0.0800
117081 9674	0.0000
11718/ 5101	0.1000
117104.0191	0.0800
117100 2700	0.0800
117189.3728	0.0800
11/205.3/99	0.0800
117208.0623	0.0800
117208.0623	0.0800
11/241.6343	0.0800
11/248.1155	0.0800
117255.0594	0.0800
117268.6608	0.0800
117279.2930	0.0800
117282.6484	0.0800
117282.6484	0.0800
117282.6484	0.0800
117282.6484	0.0800
117330.7175	0.0800
117330.7175	0.0800
117332.2829	0.0800
117332.2829	0.0800
117393.2883	0.1000
117403.5069	0.1000
117429.9021	0.1000
117437.9408	0.0800
117437.9408	0.0800
117440.9892	0.0800
117440.9892	0.0800
117441.9300	0.0800
117441.9300	0.0800
117446.3608	0.0800
117446.3608	0.0800
117446.3608	0.1000
117537.8328	0.0800
117537.8328	0.0800
117540.6595	0.0800
117600.3936	0,0800
117605.3217	0.0800
117622.2392	0.0800
117622 2392	0.0800
	0.0000

117644.5581	0.0800
117644.5581	0.0800
117644.5581	0.0800
117644.5581	0.0800
117684.9510	0.0800
117695.3512	0.0800
117695.3512	0.0800
117695 3512	0 0800
117744 1638	0 0800
117744 1638	0.0000
117747 0452	0.0000
117747 0452	0.0000
117759 4001	0.0000
117759 4001	0.0000
117750.4221	0.0000
11//58.4221	0.0800
117758.4221	0.0800
117812.4697	0.0800
117812.4697	0.0800
117812.4697	0.0800
117812.4697	0.0800
117858.3537	0.0800
117858.3537	0.0800
117858.3537	0.0800
117858.3537	0.0800
117871.1431	0.0800
117871.1431	0.0800
117872.7475	0.0800
117872.7475	0.0800
117897.0318	0.0800
117897.0318	0.0800
117897.0318	0.0800
117897.0318	0.0800
117901.9096	0.0800
117901.9096	0.0800
117901,9096	0.0800
117901 9096	0 0800
117907 2630	0.0000
117020 3133	0.0000
117020 3133	0.0000
117020 2122	0.0000
117020 2122	0.0000
117929.3133	0.0000
117955.8981	0.0800
117955.8981	0.0800
117955.8981	0.0800
117955.8981	0.0800
117977.5334	0.0800
117977.5334	0.0800
117977.5334	0.0800
117977.5334	0.0800
117982.8190	0.0800
117982.8190	0.0800
117983.7559	0.0800
117983.7559	0.0800

117994.8543	0.0800
117994.8543	0.0800
117994.8543	0.0800
117994.8543	0.0800
118008.6506	0.0800
118008.6506	0.0800
118008.6506	0.0800
118008.6506	0.0800
118019.1914	0.0800
118019.1914	0.0800
118019, 1914	0.0800
118019 1914	0 0800
118027 2568	0 0800
118027 2568	0.0800
118027.2000	0.0000
118027.2568	0.0000
110027.2000	0.0000
110034.0004	0.0000
118060.0610	0.1000
118079.2251	0.1000
118081.1948	0.0800
118081.1948	0.0800
118082.1756	0.0800
118166.2023	0.0800
118166.2023	0.0800
118240.2003	0.0800
118240.2003	0.0800
118240.2003	0.0800
118240.2003	0.0800
118291.6195	0.0800
118303.9961	0.0800
118303.9961	0.0800
118303.9961	0.0800
118303.9961	0.0800
118338.4947	0.0800
118358.6416	0.0800
118358.6416	0.0800
118358.6416	0.0800
118358.6416	0.0800
118365.7880	0.1000
118374.5701	0.1000
118404.9895	0.0800
118404.9895	0.0800
118404.9895	0.0800
118404.9895	0.0800
118444.1569	0.0800
118444.1569	0.0800
118444.1569	0.0800
118444.1569	0.0800
118464.2613	0.0800
118464.2613	0.0800
118464.2613	0.0800
118464.2613	0.0800
118476.7264	0.0800

118476.7264	0.0800
118476.7264	0.0800
118476.7264	0.0800
118503.5840	0.0800
118503.5840	0.0800
118503.5840	0.0800
118503.5840	0.0800
118519.3255	0.0800
118525.4360	0.0800
118525.4360	0.0800
118525.4360	0.0800
118525.4360	0.0800
118542,9460	0.0800
118542,9460	0.0800
118542 9460	0 0800
118542 9460	0.0800
118556 8321	0.0000
118556 8321	0.0000
110550.0521	0.0800
110550.0521	0.0800
110000.0021	0.0800
110000.0021	0.0800
110000.0021	0.0800
110000.0021	0.0800
110000.0021	0.0800
110507.5403	0.0800
110507.5403	0.0800
118567.5403	0.0800
118567.5403	0.0800
118575.6106	0.0800
118575.6106	0.0800
118575.6106	0.0800
118575.6106	0.0800
118598.6464	0.0800
118794.2042	0.0800
118796.3356	0.0800
118803.7460	0.0800
118860.8026	0.0800
119018.6894	0.0800
119025.2281	0.1000
119156.8273	0.0800
119237.0126	0.0800
119260.2615	0.0800
119278.7710	0.0800
119311.8013	0.0800
119359.2630	0.1000
119370.1430	0.1000
119374.8132	0.0800
119413.7594	0.0800
119458.6647	0.0800
119540.9452	0.1000
119545.9835	0.1000
119569.0876	0.0800
119572.0390	0.0800

119605.2038	0.1000
119636.6032	0.0800
119639.5472	0.0800
119653.1131	0.1000
119657.0793	0.1000
119665.9505	0.0800
119720 4111	0 0800
110720.1111	0 1000
110740 2727	0.1000
110706 0620	0.1000
119/00.0030	0.1000
119828.3706	0.1000
119831.1168	0.1000
119861.9917	0.0800
119930.2595	0.0800
119952.9388	0.1000
119966.0400	0.1000
119985.3085	0.1000
119985.3085	0.1000
119985.3085	0.1000
119985.3085	0.1000
119985.3085	0.1000
119988.8789	0.1000
201766.9971	0.0800
202508.3540	0.0800
202508.3540	0.0800
202508.3540	0.0800
202508.3540	0.0800
202000.0010	0 1000
202776 3617	0.1000
202776 2617	0.1000
202776 2617	0.1000
202110.3011	0.1000
203251.9707	0.0800
203251.9767	0.0800
203251.9767	0.0800
203251.9767	0.0800
206559.1204	0.0800
215270.8908	0.0800
215270.8908	0.0800
215270.8908	0.0800
215270.8908	0.0800
215565.4756	0.0800
215925.9069	0.0800
216365.9975	0.0800
216365.9975	0.0800
216365.9975	0.0800
216365.9975	0.0800
216634.7011	0.0800
216634.7011	0.0800
216634.7011	0,0800
216634.7011	0.0800
216766 0045	0.0800
216766 0045	0 0800
210700.0040	0.0000
210/00.0045	0.0000

216766.0045	0.0800
217653.5742	0.0800
217653.5742	0.0800
217653.5742	0.0800
217653.5742	0.0800
218387.8448	0.0800
218684.9315	0.0800
219059.0642	0.1000
219059 0642	0 1000
219059 0642	0 1000
219059 0642	0 1000
210005.0042	0.1000
210010.0000	0.0000
219092.1224	0.0000
210004.2400 210382 1310	0.0000
219362.1310	0.0000
219443.1443	0.0000
219458.2949	0.0800
219550.0551	0.1000
219550.0551	0.1000
219550.0551	0.1000
219550.0551	0.1000
219579.4799	0.0800
219579.4799	0.0800
219664.2624	0.1000
219664.2624	0.1000
219766.6641	0.1000
219766.6641	0.1000
219766.6641	0.1000
219766.6641	0.1000
219811.1162	0.1000
219830.1288	0.0800
219830.1288	0.0800
219830.1288	0.0800
219830.1288	0.0800
219939.3897	0.0800
219939.3897	0.0800
219939.3897	0.0800
219939.3897	0.0800
219985.2209	0.0800
220073.8050	0.0800
220073.8050	0.0800
220085.4503	0.1000
220085.4503	0.1000
220085.4503	0.1000
220085.4503	0.1000
2200099 0005	0 0800
220099 0005	0.0800
220000.0000	0 0800
220033.0003	0.0000
220033.0003	0.0000
2201117 0000	0.1000
220117 0000	0.1000
220117.9998	0.1000
220117.9998	0.1000

220180.5332	0.1000
220180.5332	0.1000
220180.5332	0.1000
220180.5332	0.1000
220232.4883	0.0800
220232.4883	0.0800
220232.4883	0.0800
220232.4883	0.0800
220263.8363	0.1000
220263 8363	0.1000
220263.8363	0.1000
220263 8363	0 1000
22020010000	0 0800
220070.1101	0 1000
220427.1077	0.1000
220427.1077	0.1000
220427.1077	0.1000
220427.1077	0.1000
220590.5015	0.1000
220598.5813	0.1000
220598.5813	0.1000
220598.5813	0.1000
220778.1008	0.1000
220778.1008	0.1000
220778.1008	0.1000
220778.1008	0.1000
220807.7646	0.0800
220916.2474	0.0800
221407.4956	0.0800
221413.0336	0.0800
221413.0336	0.0800
221413.0336	0.0800
221413.0336	0.0800
221467.1532	0.1000
221467.1532	0.1000
221467.1532	0.1000
221467.1532	0.1000
221723.7113	0.0800
221725.2190	0.0800
221790.2800	0.0800
221798.7686	0.0800
222069.3606	0.1000
222069.3606	0.1000
222069.3606	0.1000
222069.3606	0.1000
222113.3928	0.1000
222110.0020	0 0800
222173 8489	0.0800
222110.0409	0 0200
222110.0403 222172 8/80	0.0000
222113.0408 222572 0611	0.0000
222010.0014	0.0000
222100.2400	0.0000
222100.2400	0.0800
222799.1508	0.0800

222826.3943	0.0800
222833.8050	0.0800
222839.4007	0.0800
222847.0288	0.0800
222847.0288	0.0800
222847.0288	0.0800
222847.0288	0.0800
222861.1306	0.0800
222902,6686	0.0800
223192 3801	0 1000
222102.0001	0.0800
223293 8964	0.0800
220200.0004	0.0000
223233.0304	0.0000
223233.0304	0.0000
223405.5514	0.0800
223405.3514	0.0800
223405.5514	0.0800
223405.5514	0.0800
223549.3752	0.1000
223549.3752	0.1000
223549.3752	0.1000
223549.3752	0.1000
223563.0883	0.0800
223563.0883	0.0800
223563.0883	0.0800
223563.0883	0.0800
223587.2535	0.1000
223587.2535	0.1000
223587.2535	0.1000
223587.2535	0.1000
223698.7881	0.1000
223698.7881	0.1000
223698.7881	0.1000
223698.7881	0.1000
223718.1740	0.0800
223735.7910	0.1000
223735.7910	0.1000
223735.7910	0.1000
223735.7910	0.1000
223896.4289	0.1000
223896.4289	0.1000
223896.4289	0.1000
223896.4289	0.1000
224047.3992	0.0800
224056.1545	0.0800
224071.1227	0.1000
224071.1227	0.1000
224071.1227	0.1000
224071.1227	0.1000
224097.7112	0.1000
224097.7112	0.1000
224097.7112	0.1000
224097.7112	0.1000

224393.1129	0.0800
224443.0552	0.0800
224443.0552	0.0800
224530.1399	0.0800
224531.5663	0.1000
224531.5663	0.1000
224531.5663	0.1000
224531.5663	0.1000
224642.5077	0.0800
224674, 1493	0.0800
224741 0666	0 0800
224741 0666	0 0800
224741 0666	0.0800
224741.0000	0.0800
224741.0000	0.0000
224030.7003	0.0000
225024.1554	0.0000
225024.1554	0.0000
225024.1354	0.0800
225024.1354	0.0800
225165.4471	0.1000
225165.4471	0.1000
225165.4471	0.1000
225165.4471	0.1000
225166.8551	0.0800
225166.8551	0.0800
225166.8551	0.0800
225166.8551	0.0800
225245.4331	0.1000
225245.4331	0.1000
225245.4331	0.1000
225245.4331	0.1000
225292.8991	0.1000
225292.8991	0.0800
225292.8991	0.1000
225292.8991	0.0800
225547.8224	0.0800
225547.8224	0.0800
225547.8224	0.0800
225547.8224	0.0800
225855.9898	0.1000
225855.9898	0.1000
225855.9898	0.1000
225855.9898	0.1000
225915.7211	0.0800
225952.9598	0.0800
225952.9598	0.0800
225952.9598	0.0800
225952.9598	0.0800
226018 3586	0.0800
226018 3586	0.0800
226018 2586	0 0200
226018 3586	0 0200
220010.3300	0.0000
220039.95/0	0.0800

226235.1717	0.0800
226235.1717	0.0800
226235.1717	0.0800
226235.1717	0.0800
226240.7997	0.1000
226276.1190	0.0800
226288.0223	0.0800
226297 2991	0 0800
226201.2001	0 1000
220020.1410	0.1000
220302.1131	0.1000
220437.0314	0.1000
220437.0314	0.1000
226437.6314	0.1000
226437.6314	0.1000
226505.1056	0.0800
226505.1056	0.0800
226535.7389	0.1000
226535.7389	0.1000
226535.7389	0.1000
226535.7389	0.1000
226594.5208	0.1000
226594.5208	0.0800
226594.5208	0.0800
226594.5208	0.1000
226634.3521	0.0800
226634.3521	0.0800
226634.3521	0.0800
226634.3521	0.0800
226757 6057	0 0800
226757 6057	0 0800
226757 6057	0.0800
220757.0057	0.0000
220101.0001	0.0000
220704.0001	0.1000
220704.0001	0.1000
220704.0801	0.1000
226817.8564	0.0800
226817.8564	0.0800
226817.8564	0.0800
226817.8564	0.0800
226871.3599	0.0800
226871.3599	0.0800
226871.3599	0.0800
226871.3599	0.0800
226990.8408	0.0800
226990.8408	0.0800
226990.8408	0.0800
226990.8408	0.0800
227026.9903	0.0800
227026.9903	0.0800
227026.9903	0.0800
227026.9903	0.0800
227056 3737	0,1000
227056 2727	0 1000
221000.0101	0.1000

227056.3737	0.1000
227056.3737	0.1000
227108.2477	0.1000
227108 2477	0.1000
227108 2477	0 1000
227108.2177	0.1000
227100.2477	0.1000
227154.2096	0.0800
227154.2096	0.0800
227154.2096	0.0800
227154.2096	0.0800
227164.9766	0.0800
227164.9766	0.0800
227164.9766	0.0800
227164.9766	0.0800
227207 6130	0.1000
227207 6130	0 1000
227207.0100	0.1000
227207.0130	0.1000
227207.0130	0.1000
227286.4556	0.0800
227286.4556	0.0800
227286.4556	0.0800
227286.4556	0.0800
227365.8527	0.1000
227365.8527	0.1000
227365.8527	0.1000
227365.8527	0.1000
227453.1676	0.0800
227453.1676	0.0800
227453.1676	0.0800
227453.1676	0.0800
227543,2015	0.1000
227543 2015	0 1000
227618.2016	0.1000
227040.2010	0.1000
227545.2015	0.1000
227560.9986	0.1000
227560.9986	0.1000
227560.9986	0.1000
227560.9986	0.1000
227589.4308	0.0800
227589.4308	0.0800
227589.4308	0.0800
227589.4308	0.0800
227712.9600	0.0800
227717.6393	0.0800
227717.6393	0.0800
227717.6393	0.0800
227717 6393	0.0800
227728 0850	0 0800
221120.0000	0.0000
221100.1092	0.0000
221030.0440	0.0800
221030.0440	0.0800
227838.0440	0.0800
227838.0440	0.0800

227950.8044	0.0800
227950.8044	0.0800
227950.8044	0.0800
227950.8044	0.0800
228056 7729	0 0800
220000.1120	0.0000
220050.7729	0.0800
228056.7729	0.0800
228056.7729	0.0800
228247.9485	0.0800
228247.9485	0.0800
228247.9485	0.0800
228247.9485	0.0800
228414.6505	0.0800
228414 6505	0 0800
220111.0000	0.0800
220414.0505	0.0000
228414.6505	0.0800
228452.2293	0.0800
228489.3196	0.0800
228489.3196	0.0800
228489.3196	0.0800
228489.3196	0.0800
228558.5224	0.0800
228558 5224	0.0800
228558 5224	0 0800
220000.0224	0.0000
220000.0224	0.0800
228623.0823	0.0800
228623.0823	0.0800
228623.0823	0.0800
228623.0823	0.0800
228682.4554	0.0800
228682.4554	0.0800
228682.4554	0.0800
228682 4554	0.0800
22000211001	0 0800
220700.1024	0.0000
228788.1524	0.0800
228788.1524	0.0800
228788.1524	0.0800
228985.2218	0.0800
228985.2218	0.0800
228985.2218	0.0800
228985.2218	0.0800
229020.9669	0.1000
229020.9669	0.1000
220020.0000	0 1000
223020.3003	0.1000
229020.9009	0.1000
229030.000/	0.0800
229557.4766	0.0800
229700.8108	0.0800
229729.4141	0.0800
229729.4141	0.0800
229729.4141	0.0800
229729.4141	0.0800
229755 8372	0.0800
220.00.2	0.0000

229819.3921	0.0800
229823.5232	0.0800
229967.7288	0.0800
229967.7288	0.0800
229967.7288	0.0800
229967.7288	0.0800
230059 4383	0 0800
230050 /383	0.0000
220050.4203	0.1000
230039.4303	0.0000
230039.4303	0.0800
230221.0508	0.0800
230221.0508	0.0800
230221.0508	0.0800
230221.0508	0.0800
230225.7767	0.1000
230225.7767	0.1000
230225.7767	0.1000
230225.7767	0.1000
230231.8343	0.1000
230231.8343	0.1000
230231.8343	0.1000
230231.8343	0.1000
230337.0450	0.0800
230337.0450	0.0800
230337.0450	0.0800
230337.0450	0.0800
230420.6251	0.0800
230420.6251	0.0800
230420.6251	0.0800
230420.6251	0.0800
230490 6689	0 0800
230490 6689	0.0800
230490 6689	0.0800
230490 6689	0.0000
220525 0755	0.0000
230525.0755	0.1000
230525.0755	0.1000
230525.0755	0.1000
230525.0755	0.1000
230630.8379	0.0800
230630.8379	0.0800
230630.8379	0.0800
230630.8379	0.0800
230679.1794	0.1000
230679.1794	0.1000
230679.1794	0.1000
230679.1794	0.1000
230728.2832	0.0800
230834.7528	0.1000
230834.7528	0.1000
230834.7528	0.1000
230834.7528	0.1000
230909.6927	0.0800
230965.2542	0.1000

231015.0384	0.1000
231015.0384	0.1000
231015.0384	0.1000
231015.0384	0.1000
231075.2408	0.0800
231075.2408	0.0800
231075.2408	0.0800
231075.2408	0.0800
231360.3587	0.0800
231384.8057	0.0800
232019.3270	0.1000
232019 3270	0 1000
232010.0270	0.1000
232013.3270	0.1000
222012.0210	0.1000
232139.2122	0.0000
232654.9173	0.0800
232654.9173	0.0800
232654.9173	0.0800
232654.9173	0.0800
232979.0550	0.1000
233214.7671	0.0800
233430.1067	0.0800
233430.1067	0.0800
233430.1067	0.0800
233430.1067	0.0800
233502.9007	0.0800
233502.9007	0.0800
233502.9007	0.0800
233502.9007	0.0800
233524.0473	0.1000
233524.0473	0.1000
233524.0473	0.1000
233524.0473	0.1000
233684.3797	0.0800
233684.3797	0.0800
233684.3797	0.0800
233684.3797	0.0800
233699.5675	0.1000
233699 5675	0 1000
233699 5675	0.1000
233699 5675	0.1000
233099.3073	0.1000
233002.0003	0.0000
233802.6063	0.0800
233802.6063	0.0800
233802.6063	0.0800
233939.4151	0.1000
233939.4151	0.1000
233939.4151	0.1000
233939.4151	0.1000
233954.1095	0.0800
233954.1095	0.0800
233954.1095	0.0800
233954.1095	0.0800

233993.7522	0.1000
233993.7522	0.1000
233993.7522	0.1000
233993.7522	0.1000
234061.6198	0.0800
234096.4702	0.0800
234096.4702	0.0800
234096.4702	0.0800
234096.4702	0.0800
234150 5399	0.1000
234150 5399	0 1000
23/150 5399	0 1000
234150 5399	0.1000
234205 9664	0.1000
234205.0004	0.0000
234203.3004	0.0800
234205.9004	0.0800
234205.9664	0.0800
234303.6465	0.1000
234303.6465	0.1000
234303.6465	0.1000
234303.6465	0.1000
234325.7022	0.0800
234486.5297	0.1000
234486.5297	0.1000
234486.5297	0.1000
234486.5297	0.1000
234822.7807	0.0800
234863.9340	0.0800
234863.9340	0.0800
234863.9340	0.0800
234863.9340	0.0800
234953.5112	0.0800
234986.6193	0.0800
235734.9757	0.0800
235760.3826	0.0800
235760.3826	0.0800
235809.1689	0.0800
236387.6259	0.0800
236387.6259	0.0800
236480.0225	0.0800
236570.3805	0.0800
236670.3810	0.0800
236673 9755	0.0800
236742 1267	0.0000
236802 /813	0.1000
230092.4013	0.0800
200022.4013	0.0000
230692.4813	0.0800
230892.4813	0.0800
236968.5874	0.0800
236988.6568	0.0800
236988.6568	0.0800
236988.6568	0.0800
236988.6568	0.0800

237147.4498	0.0800
237147.4498	0.0800
237147.4498	0.0800
237147.4498	0.0800
237167.1305	0.1000
237167 1305	0 1000
237167.1305	0.1000
237107.1305	0.1000
23/16/.1305	0.1000
237209.6545	0.1000
237209.6545	0.1000
237209.6545	0.1000
237209.6545	0.1000
237267.9629	0.0800
237267.9629	0.0800
237267.9629	0.0800
237267 9629	0.0800
237273 0907	0 0800
201210.0001	0.0000
237273.0907	0.0000
237273.0907	0.0800
237273.0907	0.0800
237276.4990	0.0800
237417.4300	0.0800
237417.4300	0.0800
237417.4300	0.0800
237417.4300	0.0800
237462.2389	0.1000
237462.2389	0.1000
237462.2389	0.1000
237462.2389	0.1000
237562.0770	0.0800
237562.0770	0.0800
237562.0770	0.0800
237562 0770	0 0800
237621 6030	0.0000
237021.0930	0.1000
237021.0930	0.1000
237621.6930	0.1000
237621.6930	0.1000
237772.2469	0.1000
237772.2469	0.1000
237772.2469	0.1000
237772.2469	0.1000
237801.2575	0.1000
237801.2575	0.1000
237801.2575	0.1000
237801.2575	0.1000
237990.0977	0.0800
237990 0977	0.0800
237990 0977	0.0800
237990 0077	0.0000
231330.0311	0.0000
200001.9140	0.0800
230049.8034	0.0800
238652.2858	0.0800
238652.2858	0.0800

238652.2858	0.0800
238652.2858	0.0800
238728.3870	0.0800
238728.3870	0.0800
238728.3870	0.0800
238728.3870	0.0800
239345.8081	0.0800
239414.0319	0.0800
239417.9218	0.0800
239417,9218	0.0800
239417 9218	0 0800
239417 9218	0 0800
230730 2520	0.0000
239739.2320	0.0000
239739.2320	0.0000
239739.2520	0.0000
239739.2520	0.0800
239973.8759	0.0800
240012.3069	0.0800
240045.5086	0.0800
240045.5086	0.0800
240045.5086	0.0800
240045.5086	0.0800
240052.2428	0.0800
240112.1151	0.0800
240112.1151	0.0800
240112.1151	0.0800
240112.1151	0.0800
240130.7686	0.0800
240133.3525	0.0800
240204.7006	0.0800
240205.9558	0.0800
240207.4441	0.0800
240328.6410	0.0800
240329.8746	0.1000
240329.8746	0.1000
240329.8746	0.1000
240329.8746	0.1000
240337.1223	0.0800
240337.1223	0.0800
240337.1223	0.0800
240337.1223	0.0800
240354 6507	0 0800
240354 6507	0 0800
240354 6507	0.0000
240354 6507	0.0000
240334.0307	0.0000
240403.1400	0.0000
240403.1430	0.0000
240453.1430	0.0800
240453.1436	0.0800
240529.7965	0.0800
240610.2995	0.0800
240610.2995	0.0800
240610.2995	0.0800

240610.2995	0.0800
240615.2189	0.0800
240615.2189	0.0800
240615.2189	0.0800
240615.2189	0.0800
240634.7560	0.1000
240634.7560	0.1000
240634.7560	0.1000
240634.7560	0.1000
240733, 1513	0.0800
240733 1513	0 0800
240733 1513	0.0800
240733 1513	0.0000
240733.1313	0.0000
240770.0201	0.1000
240770.0201	0.1000
240770.8261	0.1000
240770.8261	0.1000
240864.9991	0.1000
240864.9991	0.1000
240864.9991	0.1000
240864.9991	0.1000
240880.4158	0.0800
240880.4158	0.0800
240880.4158	0.0800
240880.4158	0.0800
240930.4956	0.1000
240930.4956	0.1000
240930.4956	0.1000
240930.4956	0.1000
241027.3431	0.0800
241027.3431	0.0800
241027.3431	0.0800
241027.3431	0.0800
241039.5674	0.0800
241039.5674	0.0800
241039.5674	0.0800
241039.5674	0.0800
241092.5899	0.1000
241092 5899	0 1000
241092 5899	0 1000
241092.0000	0.1000
241032.0000	0.1000
241132.0923	0.0000
241132.0923	0.0000
241132.0923	0.0000
241132.0923	0.0800
241240.7648	0.1000
241240.7648	0.1000
241240.7648	0.1000
241240.7648	0.1000
241371.7087	0.0800
241371.7087	0.0800
241371.7087	0.0800
241371.7087	0.0800

241380.1600	0.0800
241429.1322	0.1000
241429.1322	0.1000
241429.1322	0.1000
241429.1322	0.1000
241588.4123	0.1000
241588.4123	0.1000
241588.4123	0.1000
241588,4123	0.1000
241599 7578	0 0800
241599 7578	0 0800
241000.7070	0.0000
241000.7578	0.0000
241333.1310	0.0800
241772.0010	0.0000
241772.0010	0.0800
241772.0810	0.0800
241//2.6816	0.0800
241816.3730	0.0800
241816.3730	0.0800
241816.3730	0.0800
241816.3730	0.0800
242022.1793	0.0800
242022.1793	0.0800
242022.1793	0.0800
242022.1793	0.0800
242217.5168	0.0800
242217.5168	0.0800
242217.5168	0.0800
242217.5168	0.0800
242228.7992	0.0800
242228.7992	0.0800
242257.2376	0.0800
242295.6185	0.0800
242402.7659	0.0800
242402.7659	0.0800
242402.7659	0.0800
242402.7659	0.0800
242440.2523	0.0800
242440.2523	0.0800
242440.2523	0.0800
242440.2523	0.0800
242578.4711	0.0800
242578.4711	0.0800
242578.4711	0.0800
242578.4711	0.0800
242744,7601	0.0800
242744 7601	0.0800
242744 7601	0 0800
242744 7601 242744 7601	0 0800
242144.1001	0.0000
272001.1343	0.0000
272302.3000	0.0000
242902.3005	0.0800
242902.3885	0.0800

242902.3885	0.0800
242983.2559	0.0800
243051.2989	0.0800
243051.2989	0.0800
243051.2989	0.0800
243051.2989	0.0800
243325.1716	0.0800
243325.1716	0.0800
243325.1716	0.0800
243325.1716	0.0800
243407.7912	0.0800
243450.4009	0.0800
243450.4009	0.0800
243450.4009	0.0800
243450.4009	0.0800
243457.7615	0.0800
243568.6070	0.0800
243568.6070	0.0800
243568.6070	0.0800
243568.6070	0.0800
243590.9943	0.0800
243592.9935	0.0800
243679.9928	0.0800
243679.9928	0.0800
243679.9928	0.0800
243679.9928	0.0800
243784.7276	0.0800
243784.7276	0.0800
243784.7276	0.0800
243784.7276	0.0800
243816.7327	0.0800
243816.7327	0.0800
243826.9729	0.0800
243847.2691	0.0800
243882.9486	0.0800
243882.9486	0.0800
243882.9486	0.0800
243882.9486	0.0800
243917.2472	0.0800
243917.2472	0.0800
243917.2472	0.0800
243917.2472	0.0800
243975.1729	0.0800
243975.1729	0.0800
243975.1729	0.0800
243975.1729	0.0800
244061.6538	0.0800
244061.6538	0.0800
244061.6538	0.0800
244061.6538	0.0800
244072.9969	0.0800
244072.9969	0.0800
244072.9969	0.0800

244072.9969	0.0800
244091.7515	0.1000
244091.7515	0.1000
244091.7515	0.1000
244091.7515	0.1000
244101.9855	0.1000
244101.9855	0.1000
244101.9855	0.1000
244101,9855	0.1000
244142,7613	0.0800
244142 7613	0 0800
244142 7613	0.0800
244142 7613	0.0800
244142.7010	0.0000
244107.0001 244107 0001	0.0000
244197.9991	0.0800
244197.9991	0.0800
244197.9991	0.0800
244289.0411	0.0800
244289.0411	0.0800
244289.0411	0.0800
244289.0411	0.0800
244343.4571	0.0800
244343.4571	0.0800
244343.4571	0.0800
244343.4571	0.0800
244354.9603	0.0800
244354.9603	0.0800
244354.9603	0.0800
244354.9603	0.0800
244398.5427	0.1000
244398.5427	0.1000
244398.5427	0.1000
244398.5427	0.1000
244416.2251	0.0800
244416.2251	0.0800
244416.2251	0.0800
244416.2251	0.0800
244492.4341	0.0800
244492.4341	0.0800
244492.4341	0.0800
244492.4341	0.0800
244526.1263	0.0800
244526.1263	0.0800
244526.1263	0.0800
244526.1263	0.0800
244575.0725	0.0800
244575.0725	0.0800
244575 0725	0,0800
244575 0725	0 0800
244620 3966	0.0800
244620 3966	0 0800
244620.3300	0 0200
244620.3300	0 0200
211020.0300	0.0000

244661.9822	0.0800
244661.9822	0.0800
244661.9822	0.0800
244661.9822	0.0800
244708.9310	0.1000
244708.9310	0.1000
244708.9310	0.1000
244708.9310	0.1000
244735.7428	0.0800
244735 7428	0 0800
244735 7428	0.0800
244735 7428	0.0000
244758 0183	0.0000
244700.0103	0.0000
244700.0103	0.0000
244/08.0183	0.0800
244768.0183	0.0800
244//1.658/	0.1000
244771.6587	0.1000
244771.6587	0.1000
244771.6587	0.1000
244797.4041	0.0800
244797.4041	0.0800
244797.4041	0.0800
244797.4041	0.0800
244801.8769	0.0800
244801.8769	0.0800
244801.8769	0.0800
244801.8769	0.0800
244824.5161	0.0800
244824.5161	0.0800
244824.5161	0.0800
244824.5161	0.0800
244848.9653	0.0800
244848.9653	0.0800
244848.9653	0.0800
244848,9653	0.0800
244871 1886	0 0800
244871 1886	0.0800
244071.1000	0.0000
244071.1000	0.0000
244071.1000	0.0000
244091.1711	0.0000
244891.1711	0.0800
244891.1711	0.0800
244891.1711	0.0800
244900.0428	0.1000
244900.0428	0.1000
244900.0428	0.1000
244900.0428	0.1000
244940.1285	0.0800
244940.1285	0.0800
244940.1285	0.0800
244940.1285	0.0800
245374.9777	0.1000
245374.9777	0.1000
----------------------------	--------
245374.9777	0.1000
245374.9777	0.1000
245553.4891	0.0800
245553.4891	0.0800
245553.4891	0.0800
245553.4891	0.0800
245955.3012	0.1000
245955.3012	0.1000
245955.3012	0.1000
245955 3012	0 1000
240000.0012	0.1000
240227.7011	0.0000
240227.7011	0.0000
240227.7011	0.0000
240227.7011	0.0000
246524.8018	0.0800
246878.2038	0.0800
246878.2038	0.0800
246878.2038	0.0800
246878.2038	0.0800
247051.0957	0.0800
247052.4484	0.0800
247129.6467	0.0800
247131.0039	0.0800
247184.2832	0.0800
247278.4396	0.0800
247278.4396	0.0800
247278.4396	0.0800
247278.4396	0.0800
247381.3405	0.0800
247381.3405	0.0800
247381.3405	0.0800
247381.3405	0.0800
247535.5636	0.0800
247535.5636	0.0800
247535.5636	0.0800
247535.5636	0.0800
247569.2136	0.1000
247569.2136	0.1000
247569.2136	0.1000
247569.2136	0.1000
247662.7044	0.0800
247662.7044	0.0800
247662 7044	0 0800
247662 7044	0.0800
247806 0358	0.0000
241000.0000 247806 0258	0 0200
241000.0000	0.0000
241000.0000	0.0000
241000.0300	0.0800
241000.2958	0.1000
241000.2958	0.1000
24/866.2958	0.1000
247866.2958	0.1000

247957.2193	0.0800
247957.2193	0.0800
247957.2193	0.0800
247957.2193	0.0800
248034.0348	0.1000
248034.0348	0.1000
248034.0348	0.1000
248034_0348	0.1000
248176 9228	0 1000
248176 9228	0 1000
240170.0220	0.1000
240176 0000	0.1000
240170.9220	0.1000
240370.0077	0.1000
248370.8077	0.1000
248370.8077	0.1000
248370.8077	0.1000
248549.8743	0.1000
248549.8743	0.1000
248549.8743	0.1000
248549.8743	0.1000
248559.5856	0.0800
248559.5856	0.0800
248559.5856	0.0800
248559.5856	0.0800
248580.0250	0.0800
249160.8736	0.1000
249160.8736	0.1000
249160.8736	0.1000
249160.8736	0.1000
249205.6773	0.0800
249422 5084	0.0800
249743.3321	0.1000
249743 3321	0 1000
249743 3321	0.1000
240743.3321	0.1000
249743.3321	0.1000
250014.2170	0.0800
250014.2178	0.0800
250014.2178	0.0800
250014.2178	0.0800
250328.3453	0.0800
250329.7587	0.0800
250344.1283	0.0800
250355.7105	0.0800
250510.9544	0.0800
250512.0836	0.0800
250546.6436	0.0800
250592.8267	0.0800
250666.9249	0.0800
250666.9249	0.0800
250666.9249	0.0800
250666.9249	0.0800
250740.1395	0.0800
250740.1395	0.0800
· · · · ·	

250740.1395	0.0800
250740.1395	0.0800
250845.2454	0.0800
250845.2454	0.0800
250845.2454	0.0800
250845.2454	0.0800
250884.2615	0.1000
250885.3596	0.1000
250969 3375	0 1000
250969 3375	0 1000
250969.3375	0.1000
250969.3375	0.1000
250903.5575	0.1000
250997.6866	0.0000
250997.0000	0.0000
250997.0000	0.0000
250997.0800	0.0800
251036.1204	0.1000
251036.1204	0.1000
251036.1204	0.1000
251036.1204	0.1000
251063.2389	0.1000
251063.2389	0.1000
251063.2389	0.1000
251063.2389	0.1000
251127.3101	0.0800
251127.3101	0.0800
251127.3101	0.0800
251127.3101	0.0800
251180.1207	0.1000
251180.1207	0.1000
251180.1207	0.1000
251180.1207	0.1000
251223.2147	0.0800
251223.2196	0.0800
251224.9276	0.0800
251224.9281	0.0800
251238.4789	0.0800
251268.3537	0.0800
251268.3537	0.0800
251268.3537	0.0800
251268.3537	0.0800
251333 9397	0 1000
251333 9397	0 1000
251333 9397	0.1000
251333.9397	0.1000
201000.9097	0.1000
201421.9/04	0.0800
201421.9/04	0.0800
201421.9/04	0.0800
251421.9704	0.0800
251504.2128	0.1000
251504.2128	0.1000
251504.2128	0.1000
251504.2128	0.1000

251534.4562	0.0800
251601.0161	0.1000
251601.0161	0.1000
251601.0161	0.1000
251601.0161	0.1000
251644.7297	0.1000
251644.7297	0.1000
251644.7297	0.1000
251644.7297	0.1000
251841, 2626	0.1000
251841 2626	0 1000
251841 2626	0 1000
251841 2626	0.1000
252311 9900	0.1000
252311.3300	0.0000
252511.9900	0.0000
252311.9900	0.0000
252311.9900	0.0800
252325.5990	0.1000
252325.5990	0.1000
252325.5990	0.1000
252325.5990	0.1000
252591.6403	0.0800
252591.6403	0.0800
252994.9979	0.0800
253109.0167	0.0800
253109.0167	0.0800
253109.0167	0.0800
253109.0167	0.0800
253531.0174	0.1000
253531.0174	0.1000
253531.0174	0.1000
253531.0174	0.1000
253599.3739	0.0800
253624.6051	0.1000
253624.6051	0.1000
253787.0221	0.0800
253795.5429	0.0800
253798.5299	0.0800
253800.0456	0.0800
253800.0456	0.0800
253800.0456	0.0800
253800.0456	0.0800
253807 1043	0 0800
253844 9498	0 1000
253028 8000	0.1000
253520.0055	0.0000
200911.4990	0.0000
200900.1909	0.0800
204201.0004	0.0800
254201.6504	0.0800
254201.6504	0.0800
254201.6504	0.0800
254308.7700	0.0800
254308.7700	0.0800

254308.7700	0.0800
254308.7700	0.0800
254356.6030	0.1000
254356.6030	0.1000
254356.6030	0.1000
254356.6030	0.1000
254455.4930	0.0800
254455,4930	0.0800
254455,4930	0.0800
254455 4930	0 0800
254459 8908	0.0000
254459.0500	0.0000
254459.0900	0.0000
254459.8908	0.0000
254459.6908	0.0000
254502.9968	0.1000
254502.9968	0.1000
254502.9968	0.1000
254502.9968	0.1000
254591.4224	0.0800
254591.4224	0.0800
254591.4224	0.0800
254591.4224	0.0800
254649.7247	0.1000
254649.7247	0.1000
254649.7247	0.1000
254649.7247	0.1000
254699.3325	0.0800
254699.3325	0.0800
254699.3325	0.0800
254699.3325	0.0800
254714.1914	0.1000
254714.1914	0.1000
254714.1914	0.1000
254714.1914	0.1000
254730.6061	0.0800
254730.6061	0.0800
254730,6061	0.0800
254730 6061	0 0800
254801 2978	0 1000
254801 2978	0.1000
254801.2978	0.1000
254001.2570	0.1000
204001.2970	0.1000
254000.3013	0.0000
254886.3813	0.0800
254886.3813	0.0800
254886.3813	0.0800
254903.0724	0.0800
254906.2056	0.0800
255112.2647	0.1000
255112.2647	0.1000
255112.2647	0.1000
255112.2647	0.1000
255311.6361	0.1000

255311.6361	0.1000
255311.6361	0.1000
255311.6361	0.1000
255340.5080	0.0800
255340.5080	0.0800
255340 5080	0.0800
255340 5080	0 0800
255540.5000	0.0000
255040.5565	0.0000
255640.5383	0.0800
255640.5383	0.0800
255640.5383	0.0800
256058.8655	0.0800
256058.8655	0.0800
256058.8655	0.0800
256058.8655	0.0800
256062.9253	0.0800
256200.5371	0.0800
256200.5371	0.0800
256200.5371	0.0800
256200.5371	0.0800
256461.8724	0.0800
256461 8724	0 0800
256461 8724	0.0800
256461 8724	0.0000
250401.0724	0.0000
200001.0007	0.0000
200042.4010	0.0000
263533.0289	0.0800
263533.0289	0.0800
263533.0289	0.0800
263533.0289	0.0800
264584.8596	0.0800
264584.8596	0.0800
264584.8596	0.0800
264584.8596	0.0800
264983.0614	0.0800
264983.0614	0.0800
264983.0614	0.0800
264983.0614	0.0800
265115.7677	0.0800
265115.7677	0.0800
265115.7677	0.0800
265115 7677	0 0800
265818 9620	0.0000
200010.9020	0.0000
205010.9020	0.0000
265818.9620	0.0800
265818.9620	0.0800
3510/3.5407	0.0800
351073.5407	0.0800
351073.5407	0.0800
351073.5407	0.0800
351088.4234	0.0800
351088.4234	0.0800
050000 4007	0 0800

355135.8243	0.0800
355135.8243	0.0800
355135.8243	0.0800
355135 8243	0 0800
355167 6382	0.0000
355107.0362	0.0800
355167.6382	0.0800
355167.6382	0.0800
355167.6382	0.0800
355226.1745	0.0800
355226.1745	0.0800
355226.1745	0.0800
355226.1745	0.0800
355277.4694	0.0800
355277,4694	0.0800
355277 4694	0 0800
355277 /69/	0.0000
255277.4034	0.0000
355300.9076	0.0800
355300.9076	0.0800
355300.9076	0.0800
355300.9076	0.0800
355322.6123	0.0800
355322.6123	0.0800
355322.6123	0.0800
355322.6123	0.0800
355342.6275	0.0800
355342 6275	0 0800
355342 6275	0.0000
255242.0275	0.0800
355342.0275	0.0800
355361.8081	0.0800
355361.8081	0.0800
355361.8081	0.0800
355361.8081	0.0800
355379.5351	0.0800
355379.5351	0.0800
355379.5351	0.0800
355379.5351	0.0800
355395.9747	0.0800
355395 9747	0 0800
355305 0747	0.0800
255205 0747	0.0000
355395.9747	0.0800
355521.1016	0.0800
355521.1016	0.0800
355521.1016	0.0800
355521.1016	0.0800
356094.1151	0.0800
356111.2908	0.0800
356111.2908	0.0800
356111.2908	0.0800
356111.2908	0.0800
356168.9244	0.0800
356168 9244	0 0800
356168 00//	0 0800
256160 0044	0.0000
320108.9244	0.0800

57	10	48	0	56	9	47	0
38	14	24	0	37	13	24	0
38	14	25	0	37	13	24	0
38	14	25	0	37	13	25	0
38	14	24	0	37	13	25	0
98	6	93	0	97	6	92	0
98	5	93	0	97	6	92	0
98	5	93	0	97	5	92	0
98	6	93	0	97	5	92	0
99	4	95	0	98	4	94	0
99	5	95	0	98	4	94	0
99	4	95	0	98	5	94	0
99	5	95	0	98	5	94	0
22	18	5	0	21	17	5	0
22	18	4	0	21	17	4	0
22	18	5	0	21	17	4	0
22	18	4	0	21	17	5	0
40	19	21	0	39	18	21	0
40	19	22	0	39	18	21	0
40	19	22	0	39	18	22	0
40	19	21	0	39	18	22	0
36	20	17	0	35	19	17	0
36	20	16	0	35	19	16	0
36	20	16	0	35	19	17	0
36	20	17	0	35	19	16	0
33	21	12	0	32	20	13	0
33	21	12	0	32	20	12	0
33	21	13	0	32	20	12	0
33	21	13	0	32	20	13	0

356202.9947	0.0800
357107.8550	0.0800
357107.8550	0.0800
357107.8550	0.0800
357107.8550	0.0800
357235.4764	0.0800
357235.4764	0.0800
357235.4764	0.0800
357235.4764	0.0800
357443.3774	0.0800
357443.3774	0.0800
357443.3774	0.0800
357443.3774	0.0800
359956.1063	0.0800
359956.1063	0.0800
359956.1063	0.0800
359956.1063	0.0800
443815.2812	0.0800
443815.2812	0.0800
443815.2812	0.0800
443815.2812	0.0800
444510.4313	0.0800
444510.4313	0.0800
444510.4313	0.0800
444510.4313	0.0800
448957.1252	0.0800
448957.1252	0.0800
448957.1252	0.0800
448957.1252	0.0800

Appendix F

Dimethyl Carbonate Spectral Analysis

F.1 Dimethyl Carbonate .int File

dmc AA, EE, EA, AE 11 46008 1329911. 0 120 -12.9 -12.9 360 300 2 0.1 112 0.1 332 0.1 552 0.1

F.2 Dimethyl Carbonate .par File

dmc	AA,	ΕE,	EA	١,	AE							S	at Thu	Apr 1	14 11	:47:4	8 2005
41	278	1	0		0		0.0000	E+000	3	.000	0E+010		1.0000	E+000	1.00	00000	0000
'a'	1	6		0	6	30	0	2	6	10		-1	99	3			
	1	1		0	6	30	0	2	8	8		-1	199	0			
	1	2		0	6	30	0	2	8	8		-1	299	0			
	1	3		0	6	30	0	2	2	2		-1	199	0			
	1	4		0	6	30	0	2	2	2		-1	299	0			
	1	5		0	6	30	0	2	2	6		0	99	0			
		910	099)	3.0	000	000000	001011	E-00	1 1.	0000000)0E-	-037				
			99) -	-7.0)93	3249895	311526	SE+00	1 1.	1619503	32E+	-031				
-	-1000	0000	000)	7.1	109	521410	676506	SE+00	1 1.	0000000)0E-	-037				
-	-1000	0000	033	3 -	-3.5	554	760705	338249	E+00	1 1.	0000000)0E-	-037				
-:	1100	0000	033	3	6.1	157	026150	395218	8E+00	1 1.	0000000)0E-	-037				
-	-1000	0000	055	; -	-3.5	554	760705	338249	E+00	1 1.	0000000)0E-	037				
-	-1000	0000	011	-	1.7	777	380352	669114	E+00	1 1.	0000000)0E-	037				
-:	1100	0000	011	-	3.0)78	3513075	197672	2E+00	1 1.	0000000)0E-	-037				
	2000	0000	000) –	-2.5	558	805162	405164	E+00	1 1.	0000000)0E+	-037				
-	-2000	0000	033	3	1.2	279	402581	202599	E+00	1 1.	0000000)0E-	-037				
-:	12000	0000	033	3	2.2	215	990273	977636	SE+00	1 1.	0000000)0E-	-037				
-	-2000	0000	055	5	1.2	279	402581	202599	E+00	1 1.	0000000)0E-	-037				
-	-2000	0000	011		-6.3	397	012906	013114	E+00	0 1.	0000000)0E-	-037				
-:	12000	0000	011	-	1.1	107	995136	988829	E+00	1 1.	0000000)0E-	-037				
	3000	0000	099) -	-7.1	184	739334	028848	8E+00	0 1.	0000000)0E+	-000				
	4000	0000	000) –	-2.3	359	809593	776768	8E-00	2 1.	0000000)0E+	-000				
-	-4000	0000	011	-	1.1	179	904826	039504	E-00	2 1.	0000000)0E-	037				
-:	14000	0000	011		-2.0)43	8654998	849988	8E-00	2 1.	0000000)0E-	037				
	1000	0400	055	5 -	-3.0)95	5160480	846307	'E+00	1 1.	3741191	L3E+	-010				
-	-1000	0400	011	-	1.5	547	580211	838569	E+00	1 1.	0000000)0E-	037				
-:	1100	0400	011	-	2.6	380	487590	951319	E+00	1 1.	0000000)0E-	037				
	2000	0400	055	5	1.1	108	864846	582044	E+00	1 1.	3457291	L6E+	-010				
-	-2000	0400	011		-5.5	548	3431596	630979	E+00	0 1.	0000000)0E-	-037				
-:	12000	0400	011	-	9.6	310	165427	752015	E+00	0 1.	0000000)0E-	-037				
		1	099)	8.2	226	300154	364682	2E+00	3 1.	1956266	52E+	-010				
			199)	2.1	175	5936215	902030)E+00	32.	8665117	75E+	-010				
	1000	0000	100)	4.0)95	810623	842150)E-00	23.	9083072	23E+	-004				
-	-1000	0000	133	3 -	-2.0)47	905311	921122	2E-00	2 1.	0000000)0E-	-037				
-:	11000	0000	133	3	3.5	547	076049	337489	E-00	2 1.	0000000)0E-	-037				
-	-1000	0000	155	5 -	-2.0)47	905311	921122	2E-00	2 1.	0000000)0E-	-037				
-	-1000	0000	111	-	1.0)23	3952655	960575	E-00	2 1.	0000000)0E-	-037				
-:	11000	0000	111	-	1.7	73	3538024	668783	8E-00	2 1.	0000000)0E-	-037				
		40	099)	9.7	75	428855	827747	'E+00	19.	2444838	35E+	-010				
	1000	0040	000)	1.5	528	3206401	950211	E-00	2 1.	3516005	53E+	-004				
-	-1000	0040	033	3 -	-7.6	341	.032009	751253	8E-00	3 1.	0000000)0E-	037				
-:	11000	0040	033	3	1.3	323	8465566	314895	E-00	2 1.	0000000)0E-	-037				
-	-1000	0040	055	5 -	-7.6	341	.032009	751253	8E-00	3 1.	0000000)0E-	-037				
-	-1000	0040	011	-	3.8	320	516004	875662	2E-00	3 1.	0000000)0E-	-037				
-:	11000	0040	011	-	6.6	317	327831	574674	E-00	3 1.	0000000)0E-	037				
			299) –	-1.2	225	971243	000191	E-00	4 1.	0000000)0E+	-037				
		1	199) -	-1.1	133	8613651	949211	E-00	2 1.	0000000)0E+	-037				

F.3 Dimethyl Carbonate .lin File

0	0	0	0					0.00	0.0001
1	1	1	3	0	0	0	4	12381.7384	0.0120
1	1	1	5	0	0	0	5	12389.9925	0.0120
1	1	1	1	0	0	0	2	12391.0100	0.0120
1	1	1	0	0	0	0	0	12396.2250	0.0120
6	1	5	4	6	0	6	4	13066.8738	0.0120
6	1	5	5	6	0	6	5	13067.2156	0.0120
6	1	5	2	6	0	6	2	13070.2968	0.0120
6	1	5	0	6	0	6	0	13073.5508	0.0120
7	1	6	4	7	0	7	4	14960.2916	0.0120
7	1	6	5	7	0	7	5	14960.5481	0.0120
7	1	6	2	7	0	7	2	14963.7606	0.0120
7	1	6	0	7	0	7	0	14967.1045	0.0120
5	0	5	0	4	1	4	0	15029.9267	0.0120
5	0	5	2	4	1	4	1	15032.1573	0.0120
5	0	5	5	4	1	4	5	15034.6068	0.0120
2	1	2	3	1	0	1	4	16347.9283	0.0120
2	1	2	5	1	0	1	5	16350.7341	0.0120
2	1	2	1	1	0	1	2	16353.1368	0.0120
2	1	2	0	1	0	1	0	16356.9482	0.0120
8	1	7	4	8	0	8	4	17251.3767	0.0120
8	1	7	5	8	0	8	5	17251.5849	0.0120
8	1	7	2	8	0	8	2	17254.9187	0.0120
8	1	7	0	8	0	8	0	17258.3580	0.0120
3	1	3	3	2	0	2	4	20120.2448	0.0120
3	1	3	5	2	0	2	5	20121.5722	0.0120
3	1	3	1	2	0	2	2	20124.2190	0.0120
3	1	3	0	2	0	2	0	20127.6808	0.0120
57	0	57	2	56	1	56	1	227481.663	0.0800
57	0	57	4	56	1	56	3	227481.663	0.0800
57	0	57	5	56	1	56	5	227481.663	0.0800
57	0	57	2	56	0	56	2	227481.663	0.0800
57	1	57	5	56	0	56	5	227481.663	0.0800
57	1	57	0	56	0	56	0	227481.663	0.0800
57	0	57	0	56	1	56	0	227481.663	0.0800
57	1	57	1	56	0	56	2	227481.663	0.0800
57	1	57	1	56	1	56	1	227481.663	0.0800
57	1	57	3	56	0	56	4	227481.663	0.0800
58	1	58	3	57	0	57	4	231437.221	0.0800
58	0	58	2	57	0	57	2	231437.221	0.0800
58	0	58	0	57	1	57	0	231437.221	0.0800
58	1	58	1	57	0	57	2	231437.221	0.0800
58	1	58	1	57	1	57	1	231437.221	0.0800
58	1	58	5	57	0	57	5	231437.221	0.0800
58	0	58	5	57	1	57	5	231437.221	0.0800
58	0	58	2	57	1	57	1	231437.221	0.0800
58	1	58	0	57	0	57	0	231437.221	0.0800
58	0	58	4	57	1	57	3	231437.221	0.0800
59	0	59	2	58	1	58	1	235392.586	0.0800
59	1	59	1	58	0	58	2	235392.586	0.0800
59	0	59	2	58	0	58	2	235392.586	0.0800
59	0	59	4	58	1	58	3	235392.586	0.0800

235392.586	0.0800
235392.586	0.0800
235392.586	0.0800
235392 586	0.0800
235392 586	0 0800
220002.000	0.0000
230392.000	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
239347.718	0.0800
255166.699	0.0800
255166.699	0.0800
255166 699	0 0800
255166 699	0.0800
255166 600	0.0000
255100.099	0.0800
255100.099	0.0800
255166.699	0.0800
255166.699	0.0800
255166.699	0.0800
255166.699	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.953	0.0800
259120.000	0 0800
263075 0/9	0.0000
263075.049	0.0800
203075.049	0.0800
263075.049	0.0800
263075.049	0.0800
263075.049	0.0800
263075.049	0.0800
263075.049	0.0800
263075.049	0.0800
263075.049	0.0800
263075.049	0.0800
270982.525	0.0800
270982.525	0.0800
270982.525	0.0800
270982.525	0.0800
270982.525	0.0800
270982 525	0 0800
270982.020	0.0000
210302.020	0.0000

270982.525	0.0800
270982.525	0.0800
270982.525	0.0800
274936.064	0.0800
274936.064	0.0800
274936.064	0.0800
274936.064	0.0800
274936 064	0.0800
274930.004	0.0800
274930.004	0.0800
274936.064	0.0800
274936.064	0.0800
274936.064	0.0800
274936.064	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
278889.280	0.0800
282842.306	0.0800
282842 306	0 0800
282842 306	0.0000
202042.300	0.0000
202042.300	0.0800
202042.300	0.0800
282842.306	0.0800
282842.306	0.0800
282842.306	0.0800
282842.306	0.0800
282842.306	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794.999	0.0800
286794,999	0.0800
200747 599	0 0800
200747 500	0.0000
290747.599	0.0800
290747.599	0.0800
290141.599	0.0800
290747.599	0.0800
290747.599	0.0800
290747.599	0.0800
290747.599	0.0800
290747.599	0.0800
290747.599	0.0800

294700.049	0.0800
294700.049	0.0800
294700 049	0.0800
294700 049	0 0800
294700.049	0.0800
294700.049	0.0800
294700.049	0.0800
294700.049	0.0800
294700.049	0.0800
294700.049	0.0800
294700.049	0.0800
298652.240	0.0800
298652.240	0.0800
298652.240	0.0800
298652.240	0.0800
298652.240	0.0800
298652.240	0.0800
298652 240	0 0800
200002.210	0.0800
290052.240	0.0000
290052.240	0.0800
290052.240	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
302604.130	0.0800
306555.712	0.0800
306555 712	0.0800
306555 712	0.0000
206555.712 206555.712	0.0800
306555.712	0.0800
306555.712	0.0800
306555.712	0.0800
306555.712	0.0800
306555.712	0.0800
306555.712	0.0800
306555.712	0.0800
310507.201	0.0800
310507.201	0.0800
310507.201	0.0800
310507.201	0.0800
310507.201	0.0800
310507 201	0 0800
310507 201	0.0000
210507.201	0.0000
310507.201	0.0800
310507.201	0.0800
310507.201	0.0800
314458.438	0.0800
314458.438	0.0800
314458.438	0.0800

314458.438	0.0800
314458.438	0.0800
314458.438	0.0800
314458.438	0.0800
314458.438	0.0800
314458 438	0 0800
31//58 /38	0.0800
206210 410	0.0000
320310.410	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
326310.418	0.0800
330260.813	0.0800
330260.813	0.0800
330260.813	0.0800
330260.813	0.0800
330260.813	0.0800
330260.813	0.0800
330260 813	0 0800
330260 813	0.0800
330260 813	0.0000
220260 012	0.0000
224210 754	0.0800
224010 754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
334210.754	0.0800
338160.198	0.0800
338160.198	0.0800
338160.198	0.0800
338160.198	0.0800
338160.198	0.0800
338160.198	0.0800
338160.198	0.0800
338160.198	0.0800
338160 198	0.0800
338160 198	0 0800
346059 252	0 0800
316050 050	0.0000
346050 050	0.0000
340039.238	0.0000
340059.258	0.0800
346059.258	0.0800
346059.258	0.0800

87	0	87	2	86	1	86	1
87	1	87	5	86	0	86	5
87	1	87	1	86	1	86	1
87	0	87	4	86	1	86	3
88	1	88	0	87	0	87	0
88	1	88	3	87	0	87	4
88	1	88	1	87	1	87	1
88	1	88	1	87	0	87	2
88	0	88	2	87	1	87	1
88	1	88	5	87	0	87	5
88	0	88	4	87	1	87	3
88	0	88	5	87	1	87	5
88	0	88	2	87	0	87	2
88	0	88	0	87	1	87	0

346059.258	0.0800
346059.258	0.0800
346059.258	0.0800
346059.258	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800
350007.927	0.0800

Appendix G

Methyl Glycolate Spectral Analysis

G.1 Methyl Glycolate .int File

mg A, E					
11 46008	438220.0844	0 100	-9.9 -9.9	360	300
1	2.68				
2	1.02				
111	2.68				
112	1.02				

G.2 Methyl Glycolate .par File

mg A	, E									20	-FTue	Jun	15	16:Sun Apr 10 15:35:58 2005
85	25	19	6	0	0	(0.00	00E+	+000	7.0	0000E+	010		1.0000E+000 1.000000000
'S'	1	3	0	99	0	1 2	2 2	-1	1	3				
	1	1	0	99	0	1 1	l 1	-1	101	0				
	1	2	0	99	0	1 1	l 1	1	201	0				
			910	099	5	. 1190	0000	0100)0022E	-002	1.000	0000)0E-	-030
			1	099	7	.9746	3449	4203	36493E	+003	1.000	0000)0E+	+037
	1	000	0001	000	2	. 3250)512	6302	22959E	-001	1.000	0000)0E+	+037
	-1	000	0001	011	-1	. 1625	5256	3160)5259E	-001	1.000	0000)0E-	-037
	-11	000	0001	011	2	. 0135	5534	5899	92273E	-001	1.000	0000)0E-	-037
	-2	000	0001	000	-2	.0160	0703	5973	36554E	-004	1.000	0000)0E-	-037
	-2	000	0001	011	1	. 0080)350	9677	75923E	-004	1.000	0000)0E-	-037
	-12	000	0001	011	1	.7459	9681	4806	6581E	-004	1.000	0000)0E-	-037
				199	2	. 0266	6422	6962	27913E	+003	1.000	0000)0E+	+037
	1	000	0000	100	9	. 1311	1720	5310)4843E	-003	1.000	0000)0E+	+037
	-1	000	0000	111	-4	. 5655	5860	2692	20719E	-003	1.000	0000)0E-	-037
	-11	000	0000	111	7	. 9078	3269	6476	50239E	-003	1.000	0000)0E-	-037
	-2	000	0000	100	-7	.9177	7115	8713	34859E	-006	1.000	0000)0E-	-037
	-2	000	0000	111	3	. 9588	3554	6723	38899E	-006	1.000	0000)0E-	-037
	-12	000	0000	111	6	. 8569	9393	7711	L6586E	-006	1.000	0000)0E-	-037
			40	099	8	. 8680)301	7585	54460E	+001	1.000	0000)0E+	+037
	1	000	0040	000	4	.9276	5309	2502	22493E	-003	1.000	0000)0E+	+037
	-1	000	040	011	-2	.4638	3154	6270)9997E	-003	1.000	0000)0E-	-037
	-11	000	0040	011	4	.2674	1535	6178	33399E	-003	1.000	0000)0E-	-037
	-2	000	0040	000	-4	. 2727	877	9167	73282E	-006	1.000	0000)0E-	-037
	-2	000	0040	011	2	. 1363	3937	1973	33668E	-006	1.000	0000)0E-	-037
	-12	000	0040	011	3	.7003	3427	7409	90576E	-026	1.000	0000)0E-	-037
				299	-1	. 8972	2757	9483	34111E	-004	1.000	0000)0E+	+037
	1	000	0000	200	-3	. 8240)166	0803	30776E	-008	1.000	0000)0E+	+037
	-1	000	0000	211	1	.9120	083	0416	69626E	-008	1.000	0000)0E-	-037
	-11	000	0000	211	-3	. 3116	6955	2723	34580E	-008	1.000	0000)0E-	-037
	-2	000	0000	200	3	. 3158	3350	7908	30153E	-011	1.000	0000)0E-	-037
	-2	000	0000	211	-1	.6579	9174	0287	7915E	-011	1.000	0000)0E-	-037
	-12	000	0000	211	-2	.8715	5974	1442	23728E	-011	1.000	0000)0E-	-037
			1	199	-1	.0420)818	9885	59759E	-003	1.000	0000)0E+	+037
	1	000	0001	100	-2	.4824	1644	5280)2213E	-006	1.000	0000)0E+	+037
	-1	000	0001	111	1	. 2412	2322	2650)1234E	-006	1.000	0000)0E-	-037
	-11	000	0001	111	-2	. 1498	3772	8023	39513E	-006	1.000	0000)0E-	-037
	-2	000	0001	100	2	. 1525	5645	8297	79150E	-009	1.000	0000)0E-	-037
	-2	000	0001	111	-1	.0762	2822	0277	71612E	-009	1.000	0000)0E-	-037
	-12	000	0001	111	-1	.8641	1756	1291	L3099E	-009	1.000	0000)0E-	-037
			2	099	-3	. 2550)118	4466	61971E	-003	1.000	0000)0E+	+037
	1	000	0002	000	-1	. 9467	752	6585	51885E	-003	1.000	0000)0E+	+037
	-1	000	0002	011	9	.7338	3763	3004	14637E	-004	1.000	0000)0E-	-037
	-11	000	0002	011	-1	. 6859	9568	3578	31795E	-003	1.000	0000)0E-	-037
	-2	000	0002	000	1	. 6880)642	4743	30521E	-006	1.000	0000)0E-	-037
	-2	000	0002	011	-8	. 4403	3205	4141	L6806E	-007	1.000	0000)0E-	-037
	-12	000	0002	011	-1	.4619	9065	2209	96189E	-006	1.000	0000)0E-	-037
			40	199	-2	. 9983	3888	8595	54355E	-005	1.000	0000)0E+	+037
			41	099	-4	.5204	1381	8737	76548E	-004	1.000	0000)0E+	+037
	1	000	0041	000	-2	.7591	157	1830)4764E	-005	1.000	0000)0E+	+037
	-1	000	0041	011	1	. 3795	5578	5926	63670E	-005	1.000	0000)0E-	-037

-11000041011	-2.389464304167315E-005	1.0000000E-037
-2000041000	2.392451085798938E-008	1.0000000E-037
-2000041011	-1.196225444294580E-008	1.0000000E-037
-12000041011	-2.071923418465459E-008	1.0000000E-037
399	2.885640232508159E-011	1.0000000E+037
1299	4.872203850397507E-009	1.0000000E+037
2199	-6.347182648855119E-008	1.0000000E+037
3099	-7.583309817208638E-006	1.0000000E+037
41199	1.238869449022750E-009	1.0000000E+037
42099	3.486343308658321E-008	1.0000000E+037
40299	2.547224028627458E-011	1.0000000E+037
990099	1.164792969543189E+007	1.0000000E+037
-99	-1.437386200423507E+003	1.0000000E-037
-100000000	1.437867104550208E+003	1.0000000E-037
-100000011	-7.189335522751056E+002	1.0000000E-037
-1100000011	1.245229439806381E+003	1.0000000E-037
-2000000000	-4.810042596511831E-001	1.0000000E-037
-200000011	2.405021299113134E-001	1.0000000E-037
-1200000011	4.165619078928177E-001	1.0000000E-037
990099	1.683121921974000E+005	1.0000000E-037
-99	1.748940162663000E+003	1.0000000E-037
-100000000	-1.749472554758000E+003	1.0000000E-037
-100000011	8.747362773786998E+002	1.0000000E-037
-1100000011	-1.515087675644000E+003	1.0000000E-037
-2000000000	5.325142474335005E-001	1.0000000E-037
-200000011	-2.662571237555000E-001	1.0000000E-037
-1200000011	-4.611708661844002E-001	1.0000000E-037
-300000000	-8.208805783874003E-005	1.0000000E-037
-300000011	-8.208818198476000E-005	1.0000000E-037
-400000000	-6.437928615404004E-005	1.0000000E-037
-400000011	3.218969915170000E-005	1.0000000E-037
-1400000011	-5.575401435397000E-005	1.0000000E-037
-500000000	3.996546175109002E-005	1.0000000E-037
-500000011	-1.998274663200000E-005	1.0000000E-037
-1500000011	-3.461113883099000E-005	1.0000000E-037
-600000000	-2.598733962735000E-005	1.0000000E-037
-600000011	-2.598748458348000E-005	1.0000000E-037
-7000000000	1.708464697003000E-005	1.0000000E-037

G.3 Methyl Glycolate .lin File

0	0	0	0					0.00 0.0001	1.00
2	0	2	0	1	0	1	0	8095.0 1.00	1.00
2	1	1	0	1	1	0	0	8461.0 1.00	1.00
5	1	4	0	5	0	5	0	10959.6 0.15	1.00
3	1	3	0	2	1	2	0	11620.2 0.15	1.00
3	0	3	0	2	0	2	0	12113.3 1.00	1.00
17	3	15	0	16	4	12	0	12432.51 0.1000	1.00
3	1	2	0	2	1	1	0	12684.29 0.1000	1.00
20	2	19	0	19	3	16	0	13315.15 0.1000	1.00
19	2	18	0	18	3	15	0	14324.03 0.1000	1.00
17	2	16	0	16	3	13	0	14504.49 0.1000	1.00
18	2	17	0	17	3	14	0	14719.92 0.1000	1.00
4	1	4	0	3	1	3	0	15480.83 0.1000	1.00
18	3	16	0	17	4	13	0	15791.13 0.1000	1.00
4	0	4	0	3	0	3	0	16095.80 0.1000	1.00
4	3	2	0	3	3	1	0	16236.7 0.15	1.00
4	3	1	0	3	3	0	0	16236.7 0.15	1.00
4	2	2	0	3	2	1	0	16321.3 0.15	1.00
4	1	3	0	3	1	2	0	16898.1 0.15	1.00
5	1	5	0	4	1	4	0	19330.1 0.15	1.00
5	0	5	0	4	0	4	0	20033.7 0.15	1.00
5	2	4	0	4	2	3	0	20240.0 0.15	1.00
5	4	1	0	4	4	0	0	20292.8 0.15	1.00
5	4	2	0	4	4	1	0	20292.8 0.15	1.00
5	2	3	0	4	2	2	0	20472.4 0.15	1.00
7	2	5	0	7	1	6	0	20573.77 0.1000	1.00
5	1	4	0	4	1	3	0	21098.9 0.15	1.00
6	2	4	0	6	1	5	0	21113.45 0.1000	1.00
6	1	6	0	5	1	5	0	23167.2 0.15	1.00
6	0	6	0	5	0	5	0	23919 3 0 15	1 00
6	2	5	0	5	2	4	0	24266 7 0 15	1 00
6	5	1	0	5	5	0	0	24348 9 0 15	1 00
6	5	2	0	5	5	1	0	24348 9 0 15	1 00
6	4	2	0	5	4	1	0	24359 5 0 15	1 00
6	4	3	0	5	4	2	0	24359 5 0 15	1 00
6	2	4	0	5	2	3	0	24666 1 0 1500	1 00
6	1	5	0	5	1	4	0	25282.06 0.1000	1 00
41	13	29	0	42	12	30	0	26448 29 0 1000	1 00
24	4	21	0	23	5	18	0	26581 30 0 1000	1 00
27	12	21	0	20	11	27	0	27065 87 0 1000	1 00
14	2	12	0	13	3	27 11	0	27378 81 0 1000	1 00
77	11	73	0	3/	10	24	0	27676.20 0.1000	1 00
25	11	17	0	26	20	24 18	0	28863 23 0 1000	1.00
20	2	т, Т	0 2	20	2 2	10	2 2	28003.25 0.1000	0 612
7	2	6	2	6	2	т Б	2	28901.81 0.1000	0.012
7	2	5	2	6	2	⊿	~	28901.81 0.1000	0.012
1 20	2	0 0/	0	0 97	2	4 01	0	28903.78 0.1000	1 00
∠0 ∧0	0 1 E	24 24	0	∠1 ∧0	0 1 /	2E	0		1 00
40 05	∆ CT	04 00	0	49 01	14 E	10	0	20006 00 0.1000	1 00
∠⊃ 10	4 2	22 16	0	∠4 10	с С	19 17	0		1.00
10	ა ი	10	2	10	2	10	2		0.100
10 10	3	15 1 F	2	10	2	10	2		0.100
18	3	12	0	18	2	тø	0	30391.19 0.1000	0.200

30406.75	0.1000	0.094
30719.68	0.1000	1.00
30774.18	0.1000	0.108
30774.18	0.1000	0.108
30783.32	0.1000	0.108
30800 03	0 1000	0 851
30800.03	0 1000	0.001
30800.03	0.1000	0.001
30077 62	0.1000	0.002
20077 62	0.1000	0.000
20091 70	0.1000	0.000
30901.72	0.1000	0.000
31118.38	0.1000	1.00
31327.88	0.1000	1.00
31416.52	0.1000	0.039
31416.52	0.1000	0.039
31421.57	0.1000	0.079
31526.60	0.1000	1.805
31526.60	0.1000	0.902
31526.60	0.1000	0.902
31615.03	0.1000	0.117
31615.03	0.1000	0.117
31623.17	0.1000	0.234
31849.91	0.1000	0.100
31851.77	0.1000	0.050
31851.77	0.1000	0.050
31926.73	0.1000	1.00
32282.30	0.1000	0.887
32282.30	0.1000	0.887
32282.30	0.1000	0.887
32347.59	0.1000	1.00
32462.08	0.1000	0.212
32462.08	0.1000	0.212
32462.08	0.1000	0.212
32462.08	0.1000	0.212
32462.08	0.1000	0.212
32462.08	0.1000	0.212
32470.17	0.1000	0.805
32470.17	0.1000	0.805
32483 47	0 1000	0 569
32483 47	0 1000	0.569
32483 47	0 1000	0.569
32403.47	0 1000	0.569
32403.47	0.1000	0.505
32403.47	0.1000	0.505
22403.47	0.1000	0.303
32500.14	0.1000	0.709
32300.14	0.1000	0.709
32308.14	0.1000	0.709
32508.14	0.1000	0.709
32508.14	0.1000	0.709
32509.14	0.1000	0.709
32538.30	0.1000	1.642
32555.60	0.1000	0.804
32555.60	0.1000	0.804

0.1000	0.805
0.1000	0.805
0.1000	1.649
0.1000	0.129
0.1000	0.129
0.1000	0.129
0.1000	1.00
0 1000	0 937
0 1000	0 937
0 1000	0 937
0 1000	1 00
0.1000	1 00
0.1000	1 00
0.1000	1 00
0.1000	1 000
0.1000	1.009
0.1000	1.009
0.1000	1.009
0.1000	1.00
0.1000	0.094
0.1000	0.094
0.1000	0.094
0.1000	1.00
0.1000	1.00
0.1000	1.00
0.1000	1.206
0.1000	1.206
0.1000	1.206
0.1000	0.143
0.1000	0.143
0.1000	0.287
0.1000	1.00
0.1000	0.048
0.1000	0.048
0.1000	0.048
0.1000	1.262
0.1000	2 525
0.1000	2.020
0.1000	1.262
0.1000	1.262 1.00
0.1000 0.1000 0.1000	1.262 1.00 1.00
0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00
0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.00
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.00 1.270
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.00 1.270 1.270
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.00 1.270 1.270 1.270
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.00 1.270 1.270 1.270 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.00 1.270 1.270 1.270 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.270 1.270 1.270 0.264 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.270 1.270 1.270 0.264 0.264 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.270 1.270 1.270 0.264 0.264 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.270 1.270 1.270 0.264 0.264 0.264 0.264 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.270 1.270 1.270 0.264 0.264 0.264 0.264 0.264 0.264 0.264
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	1.262 1.00 1.00 1.00 1.270 1.270 1.270 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264
	0.1000 0.1000

36525.70	0.1000	0.506
36525.70	0.1000	0.506
36525.70	0.1000	0.506
36537 21	0.1000	1 447
36537 21	0 1000	0 724
26527 01	0.1000	0.724
30537.21	0.1000	0.724
36537.21	0.1000	0.724
36537.21	0.1000	0.724
36537.21	0.1000	1.447
36556.31	0.1000	0.914
36556.31	0.1000	0.914
36556.31	0.1000	0.914
36556.31	0.1000	0.914
36556.31	0.1000	0.914
36556.31	0.1000	0.914
36591.13	0.1000	1.075
36592 33	0.1000	1 075
36592 33	0 1000	1 075
36502.33	0.1000	1 075
30392.33	0.1000	1.075
30592.33	0.1000	1.075
36594.40	0.1000	1.076
36623.21	0.1000	2.408
36717.62	0.1000	1.176
36717.62	0.1000	1.176
36734.07	0.1000	2.423
37061.18	0.1000	1.00
37290.92	0.1000	1.00
37484.53	0.1000	1.357
37484.53	0.1000	1.357
37485.17	0.1000	1.357
37541.12	0.1000	1.00
37675.77	0.1000	1.426
37675.77	0.1000	1.426
37675.77	0.1000	1.426
37751.76	0.1000	1.00
38017 00	0 1000	1 00
38374 63	0 1000	1 643
20274 62	0.1000	1 640
20274 62	0.1000	1 640
20270 74	0.1000	1.042
383/9./4	0.1000	1.00
38619.67	0.1000	1.00
38623.04	0.1000	1.00
38955.48	0.1000	1.00
39220.22	0.1000	1.00
39795.00	0.1000	1.00
39807.18	0.1000	1.00
39858.54	0.1000	1.00
39890.02	0.1000	1.00
83059.7079	0.1000	
83059.7079	0.1000	
83059.7079	0.1000	
83080.6619	0.1000	
83080.6619	0.1000	

83080.6619	0.1000
83358.4022	0.1000
83358.4022	0.1000
83359.9490	0.1000
84974.7182	0.1000
84974.7182	0.1000
84975.7870	0.1000
85203.6717	0.1000
85203.6717	0.1000
85203.6717	0.1000
85203.6717	0.1000
85213 3887	0 1000
85213 3887	0.1000
85213 3887	0.1000
05213.3007	0.1000
00210.0007 00000 7171	0.1000
85224.7171	0.1000
85224.7171	0.1000
85224.7171	0.1000
85224.7171	0.1000
85238.2522	0.1000
85238.2522	0.1000
85238.2522	0.1000
85238.2522	0.1000
85254.5417	0.1000
85254.5417	0.1000
85254.5417	0.1000
85254.5417	0.1000
85274.7407	0.1000
85274.7407	0.1000
85274.7407	0.1000
85274.7407	0.1000
85274.7407	0.1000
85274,7407	0.1000
85300 3624	0 1000
85300 3624	0.1000
95200 2624	0.1000
85300.3024	0.1000
05300.3024	0.1000
05300.3024	0.1000
85300.3624	0.1000
85333.4748	0.1000
85333.4748	0.1000
85534.4097	0.1000
85534.4097	0.1000
85534.4097	0.1000
85534.4097	0.1000
86338.1325	0.1000
86338.1325	0.1000
86339.0302	0.1000
86759.6506	0.1000
86759.6506	0.1000
86759.6506	0.1000
86771.3206	0.1000
86771.3206	0.1000

22	1	21	0	21	1	20	0
23	0	24	2	22	0	23	2
23	0	23	0	22	0	22	0
23	0	23	° C	22	0	22	ັ ໂ
20	4	17	2	22	4	10	2
21	4	11	2	20	4	10	2
21	4	18	2	20	4	17	2
21	4	17	0	20	4	16	0
21	2	20	2	20	2	19	2
21	2	19	2	20	2	18	2
21	2	19	0	20	2	18	0
21	3	19	2	20	3	18	2
21	3	18	2	20	3	17	2
21	3	18	0	20	3	17	0
21	2	10	1	20	2	10	1
22	3	19	T	21	3	10	1
22	3	20	1	21	3	19	1
22	3	20	0	21	3	19	0
22	21	1	2	21	21	0	2
22	21	2	2	21	21	1	2
22	20	2	2	21	20	1	2
22	20	3	2	21	20	2	2
22	20	2	0	21	20	1	0
22	20	3	0	21	20	2	0
22	19	3	0	21	19	2	Õ
22	10	2	ິ ໂ	21	10	2	ິ ໂ
22	19	3	2	21	19	2	2
22	19	4	0	21	19	3	0
22	19	4	2	21	19	3	2
22	18	5	2	21	18	4	2
22	18	4	2	21	18	3	2
22	18	4	0	21	18	3	0
22	18	5	0	21	18	4	0
22	17	5	0	21	17	4	0
22	17	5	2	21	17	4	2
22	17	6	2	21	17	5	2
22	17	6	~	01	17	5	0
22	10	7	0	21	10	0	0
22	10	1	2	21	10	0	2
22	16	6	0	21	16	5	0
22	16	7	0	21	16	6	0
22	16	6	2	21	16	5	2
22	15	7	0	21	15	6	0
22	15	7	2	21	15	6	2
22	15	8	2	21	15	7	2
22	15	8	0	21	15	7	0
22	14	8	0	21	14	7	0
22	1/	a	ັ ົ	21	14	8	° 2
22	11	0	2	21	11	7	2
22	14	0	2	21	14	~	2
22	14	9	0	21	14	8	0
22	13	10	0	21	13	9	0
22	13	9	1	21	13	8	1
22	13	10	1	21	13	9	1
22	13	9	0	21	13	8	0
22	13	9	2	21	13	8	2
22	13	10	2	21	13	9	2
22	12	11	1	21	12	10	1

86772.5967	0.1000
86774.5894	0.1000
86774.5894	0.1000
86774.5894	0.1000
87010.8423	0.1000
87010.8423	0.1000
87012.2089	0.1000
87200.6286	0.1000
87200.6286	0.1000
87202 3397	0 1000
88518 1027	0 1000
88518 1027	0.1000
00510.1027	0.1000
00010.0943	0.1000
00001 0010	0.1000
88881.8018	0.1000
88882.8023	0.1000
89234.2013	0.1000
89234.2013	0.1000
89240.9532	0.1000
89240.9532	0.1000
89240.9532	0.1000
89240.9532	0.1000
89248.6324	0.1000
89248.6324	0.1000
89248.6324	0.1000
89248.6324	0.1000
89256.9782	0.1000
89256.9782	0.1000
89256.9782	0.1000
89256.9782	0.1000
89266 6635	0.1000
89266,6635	0.1000
89266 6635	0 1000
89266 6635	0.1000
09200.0000 00077 6014	0.1000
09277.0914 00077.6014	0.1000
89277.6914	0.1000
89277.6914	0.1000
89277.6914	0.1000
89290.4494	0.1000
89290.4494	0.1000
89290.4494	0.1000
89290.4494	0.1000
89305.9768	0.1000
89305.9768	0.1000
89305.9768	0.1000
89305.9768	0.1000
89324.7931	0.1000
89324.7931	0.1000
89324.7931	0.1000
89324.7931	0.1000
89324.7931	0.1000
89324.7931	0.1000
89347 9147	0 1000
	0.1000

89347.9147	0.1000
89347.9147	0.1000
89347.9147	0.1000
89347.9147	0.1000
89347.9147	0.1000
89377.2437	0.1000
89377.2437	0.1000
89377 2447	0 1000
89377 2447	0 1000
89377 2447	0 1000
80377 2447	0.1000
09311.2441	0.1000
09410.0190	0.1000
09415.5190	0.1000
89415.5198	0.1000
89415.5198	0.1000
89467.0976	0.1000
89467.0976	0.1000
89467.0976	0.1000
89467.0976	0.1000
89539.5058	0.1000
89539.5058	0.1000
89539.5058	0.1000
89539.5058	0.1000
89646.3875	0.1000
89646.3875	0.1000
89646.3875	0.1000
89646.3875	0.1000
89815.3393	0.1000
89815.3393	0.1000
89815.3409	0.1000
89815.3409	0.1000
89993.5702	0.1000
89993 5702	0 1000
89993 5702	0.1000
00000 2183	0.1000
90040.2183	0.1000
90040.2103	0.1000
90075.0186	0.1000
90075.0186	0.1000
90075.9787	0.1000
90194.0561	0.1000
90194.0561	0.1000
90208.6602	0.1000
90411.9047	0.1000
90411.9047	0.1000
90413.4171	0.1000
90458.9271	0.1000
90458.9271	0.1000
90458.9271	0.1000
90469.4009	0.1000
90469.4009	0.1000
90469.4009	0.1000
90975.4233	0.1000
90975.4233	0.1000

22	2	20	0	21	2	19	0
22	4	18	2	21	4	17	2
22	4	19	2	21	4	18	2
23	2	21	1	22	1	22	2
22	4	18	0	21	4	17	0
23	2	22	1	22	1	21	2
23	2	20	1	22	<u>ר</u>	19	1
20	2	20	1	22	2	20	1
20	2 2	21	1	22	2	20	
23	ა ი	21	0	22	ა ი	20	0
22	3	20	2	21	3	19	2
22	3	19	2	21	3	18	2
22	3	19	0	21	3	18	0
23	21	2	0	22	21	1	0
23	21	3	2	22	21	2	2
23	21	3	0	22	21	2	0
23	21	2	2	22	21	1	2
23	20	3	2	22	20	2	2
23	20	3	0	22	20	2	0
23	20	4	2	22	20	3	2
23	20	4	0	22	20	3	0
23	19	4	0	22	19	3	0
23	19	5	2	22	19	4	2
23	19	5	0	22	19	4	0
23	19	4	2	22	19	3	2
23	18	6	2	22	18	5	2
23	18	6	0	22	18	5	0
20	18	5	о С	22	18	Δ	2 2
20	10	5	0	22	10	-	0
20	17	7	0	22	17	4	0
23	17	r C	0	22	17	0	0
23	17	0	2	22	17	5	2
23	17	6	0	22	17	5	0
23	1/	(2	22	1/	6	2
23	16	8	0	22	16	7	0
23	16	7	0	22	16	6	0
23	16	7	2	22	16	6	2
23	16	8	2	22	16	7	2
23	15	8	2	22	15	7	2
23	15	9	2	22	15	8	2
23	15	8	0	22	15	7	0
23	15	9	0	22	15	8	0
23	14	9	0	22	14	8	0
23	14	10	2	22	14	9	2
23	14	10	0	22	14	9	0
23	14	9	2	22	14	8	2
23	13	10	0	22	13	9	0
23	13	11	0	22	13	10	0
23	13	10	1	22	13	ġ	1
20 22	12	11	່ ບ	22 22	12	10	2 1
20 02	10	10	∠ ^	∠∠ 20	10	10	∠ ೧
∠ວ ງາ	13 19	1U	∠ ₁	22	13 19	9 10	∠ 1
23 00	10	10	T	22	10	11	T
23	12	12	0	22	12	11	0
23	12	11	2	22	12	10	2
23	12	12	2	22	12	11	2

90977.3266	0.1000
91426.1143	0.1000
91426.1143	0.1000
91426.8909	0.1000
91426.8909	0.1000
91426.8909	0.1000
92765 0431	0 1000
02765 0/31	0.1000
92705.0431	0.1000
92705.0905	0.1000
92/8/./038	0.1000
92787.7038	0.1000
92788.6508	0.1000
93294.0501	0.1000
93294.0501	0.1000
93294.0501	0.1000
93294.0501	0.1000
93301.7332	0.1000
93301.7332	0.1000
93301.7332	0.1000
93301.7332	0.1000
93310.2931	0.1000
93310.2931	0.1000
93310, 2931	0.1000
93310 2931	0 1000
03310 7312	0 1000
02210 7210	0.1000
93319.7312	0.1000
93319.7312	0.1000
93319.7312	0.1000
93330.5947	0.1000
93330.5947	0.1000
93330.5947	0.1000
93330.5947	0.1000
93343.0513	0.1000
93343.0513	0.1000
93343.0513	0.1000
93343.0513	0.1000
93357.6339	0.1000
93357.6339	0.1000
93357.6339	0.1000
93357.6339	0.1000
93375.1451	0.1000
93375 1451	0 1000
93375 1451	0 1000
02275 1/51	0.1000
93375.1451	0.1000
93396.4324	0.1000
93396.4324	0.1000
93396.4324	0.1000
93396.4324	0.1000
93396.4324	0.1000
93396.4324	0.1000
93422.4349	0.1000
93422.4349	0.1000
93422.4349	0.1000

93422.4349	0.1000
93456.1033	0.1000
93456.1033	0.1000
93456.1033	0.1000
93456.1033	0.1000
93456.1033	0.1000
93456,1033	0.1000
93499 6677	0 1000
93499 6677	0 1000
93499 6677	0 1000
03/00 6677	0.1000
02550 7015	0.1000
02550.7010	0.1000
93556.7815	0.1000
93558.7815	0.1000
93558.7815	0.1000
93641.6716	0.1000
93641.6716	0.1000
93641.6716	0.1000
93641.6716	0.1000
93764.2604	0.1000
93764.2604	0.1000
93802.8567	0.1000
93802.8567	0.1000
93803.8429	0.1000
93949.4447	0.1000
93958.0607	0.1000
93958.0607	0.1000
93959.3207	0.1000
93959.3207	0.1000
94061.7975	0.1000
94061 7975	0.1000
94063,1121	0.1000
94065 6681	0 1000
94065 6681	0 1000
94065 6681	0.1000
0/157 /502	0.1000
94107.4092	0.1000
94157.4592	0.1000
94157.4592	0.1000
94164.9019	0.1000
94164.9019	0.1000
94164.9019	0.1000
94177.1632	0.1000
94181.8518	0.1000
94181.8518	0.1000
94186.9189	0.1000
94186.9189	0.1000
94432.9222	0.1000
94432.9222	0.1000
94443.4676	0.1000
94689.1505	0.1000
94689.1505	0.1000
94691.2662	0.1000
95872.6932	0.1000

95872.6932	0.1000
95872.6932	0.1000
96624.6647	0.1000
96624.6647	0.1000
96625.9858	0.1000
97000.2716	0.1000
97000.2716	0.1000
98351 8168	0.1000
98351 8168	0 1000
98353 8894	0 1000
100338 2447	0.1000
100330.2447	0.1000
100330.2447	0.1000
100330.2447	0.1000
100462.2759	0.1000
100462.2759	0.1000
100463.4103	0.1000
101149.9426	0.1000
101149.9426	0.1000
101151.2749	0.1000
101238.0664	0.1000
101238.0664	0.1000
101239.0929	0.1000
101386.0921	0.1000
101386.0921	0.1000
101387.3458	0.1000
101416.4734	0.1000
101416.4734	0.1000
101425.0095	0.1000
101425.0095	0.1000
101425.0095	0.1000
101425.0095	0.1000
101435.5823	0.1000
101435 5823	0.1000
101435 5823	0 1000
101/35 5823	0 1000
101400.0020	0.1000
101447.3300	0.1000
101447.3300	0.1000
101447.3360	0.1000
101447.3380	0.1000
101460.8753	0.1000
101460.8753	0.1000
101460.8753	0.1000
101460.8753	0.1000
101476.5483	0.1000
101476.5483	0.1000
101476.5483	0.1000
101476.5483	0.1000
101495.0220	0.1000
101495.0220	0.1000
101517.1230	0.1000
101517.1230	0.1000
101517.1230	0.1000
101517.1230	0.1000

101544.1664	0.1000
101544.1664	0.1000
101553.3574	0.1000
101553.3574	0.1000
101553.3574	0.1000
101557.0146	0.1000
101557 0146	0 1000
101557 0146	0.1000
101557.0140	0.1000
101577.8691	0.1000
1015/7.8691	0.1000
1015/7.8691	0.1000
101577.8691	0.1000
101577.8691	0.1000
101577.8691	0.1000
101620.6076	0.1000
101620.6076	0.1000
101620.6076	0.1000
101620.6076	0.1000
101620.6076	0.1000
101620.6076	0.1000
101676.6217	0.1000
101676 6217	0 1000
101676 6217	0 1000
101676 6217	0.1000
101070.0217	0.1000
101752.3123	0.1000
101752.3123	0.1000
101752.3123	0.1000
101752.3123	0.1000
101859.1190	0.1000
101859.1190	0.1000
101859.1190	0.1000
101859.1190	0.1000
101975.7410	0.1000
101975.7410	0.1000
101978.0516	0.1000
102016.7392	0.1000
102016.7392	0.1000
102017.9761	0.1000
102017.9761	0.1000
102018,9942	0.1000
102153 4239	0 1000
102100.4200	0.1000
102155.4259	0.1000
102134.1103	0.1000
102249.3958	0.1000
102266.0132	0.1000
102266.0132	0.1000
102279.9113	0.1000
102279.9113	0.1000
102297.3848	0.1000
102479.2869	0.1000
102483.2716	0.1000
102483.2716	0.1000
103003.9343	0.1000

25	5	21	2	24	5	20	2
25	5	20	0	24	5	19	0
26	3	24	1	25	3	23	1
26	3	23	1	25	3	22	1
26	3	24	0	25	3	23	0
25	4	22	2	24	4	21	2
20	1	22	2	24	1	21	2
20	4	21	2	24	4	20	2
20	4	21	1	24	4	20	1
27	2	25	1	26	2	24	1
27	2	26	1	26	2	25	1
27	2	26	0	26	2	25	0
27	1	26	2	26	1	25	2
27	1	27	2	26	1	26	2
27	1	26	0	26	1	25	0
25	3	22	2	24	3	21	2
25	3	23	2	24	3	22	2
25	3	22	0	24	3	21	0
28	1	28	1	27	1	27	1
28	1	28	0	27	1	27	0
28	1	27	1	27	1	26	1
28	0	28	2	27	0	27	2
20	0	20	0	27	0	27	0
20	0	20	0 2	27	0	21	0
20	0	29	2	21	0	20	2
26	21	6	0	25	21	5	0
26	21	6	2	25	21	5	2
26	21	5	0	25	21	4	0
26	21	5	2	25	21	4	2
26	20	6	2	25	20	5	2
26	20	7	2	25	20	6	2
26	20	7	0	25	20	6	0
26	20	6	0	25	20	5	0
26	19	8	2	25	19	7	2
26	19	7	0	25	19	6	0
26	19	7	2	25	19	6	2
26	19	8	0	25	19	7	0
26	18	8	0	25	18	7	0
26	18	9	0	25	18	8	0
26	18	8	2	25	18	7	2
20	10	0	2	20	10	° Q	2
20	17	10	2	20	17	0	2
20	17	10	0	20	17	9	0
20	17	9	0	25	17	0	0
26	17	9	2	25	17	8	2
26	17	10	2	25	17	9	2
26	16	11	0	25	16	10	0
26	16	11	2	25	16	10	2
26	16	10	2	25	16	9	2
26	16	10	0	25	16	9	0
26	15	12	2	25	15	11	2
26	15	11	0	25	15	10	0
26	15	12	0	25	15	11	0
26	15	11	2	25	15	10	2
26	14	12	0	25	14	11	0
26	14	12	2	25	14	11	2
-	-	_	_	-	-	-	-

103003.9343	0.1000
103008.4288	0.1000
104278.8727	0.1000
104278.8727	0.1000
104280.1239	0.1000
104808.0966	0.1000
104808.0966	0.1000
104808 0966	0 1000
10/0/8 0028	0 1000
104048 0028	0.1000
104940.0020	0.1000
104949.0102	0.1000
105058.5270	0.1000
105058.5270	0.1000
105059.6277	0.1000
105231.1733	0.1000
105231.1733	0.1000
105232.7095	0.1000
105250.8676	0.1000
105250.8676	0.1000
105250.8676	0.1000
105253.4173	0.1000
105253.4173	0.1000
105253.4173	0.1000
105477.1273	0.1000
105477.1273	0.1000
105477.1273	0.1000
105477.1273	0.1000
105487 5950	0 1000
105487 5950	0 1000
105487 5950	0.1000
105407 5050	0.1000
105407.5350	0.1000
105499.2304	0.1000
105499.2304	0.1000
105499.2384	0.1000
105499.2384	0.1000
105512.2823	0.1000
105512.2823	0.1000
105512.2823	0.1000
105512.2823	0.1000
105527.4455	0.1000
105527.4455	0.1000
105527.4455	0.1000
105527.4455	0.1000
105544.8614	0.1000
105544.8614	0.1000
105544.8614	0.1000
105544.8614	0.1000
105565.5232	0.1000
105565.5232	0.1000
105565.5232	0.1000
105565 5232	0.1000
105590 3276	0 1000
105500 2076	0.1000
100000.0210	0.1000

105590.3276	0.1000
105590.3276	0.1000
105658.3803	0.1000
105658.3803	0.1000
105658.3803	0.1000
105658.3803	0.1000
105706.3538	0.1000
105706.3538	0.1000
105706.3538	0.1000
105706.3538	0.1000
105706.3538	0.1000
105706 3538	0 1000
105769 2743	0 1000
105769 2743	0.1000
105760 07/3	0.1000
105769.2745	0.1000
105769.2743	0.1000
105854.5591	0.1000
105854.5591	0.1000
105854.5591	0.1000
105854.5591	0.1000
105973.8548	0.1000
105973.8548	0.1000
105974.9519	0.1000
105974.9519	0.1000
105974.9519	0.1000
105974.9519	0.1000
106153.3376	0.1000
106153.3376	0.1000
106154.6723	0.1000
106154.6723	0.1000
106156.6296	0.1000
106164.9892	0.1000
106164.9892	0.1000
106165.9434	0.1000
106409.2760	0.1000
106428.7869	0.1000
106428.7869	0.1000
106461.7147	0.1000
106461.7147	0.1000
106482.0192	0.1000
106625.7047	0.1000
106628 0646	0 1000
106628 0646	0.1000
107344 4000	0.1000
107344.4990	0.1000
107344.4990	0.1000
107347.3000	0.1000
108076.0271	0.1000
1080/6.02/1	0.1000
108077.3529	0.1000
108654.2432	0.1000
108654.2432	0.1000
108655.1995	0.1000
108736.0718	0.1000

28	1	28	2	27	1	27	2
28	1	27	0	27	1	26	0
29	1	29	0	28	1	28	0
29	1	29	1	28	1	28	1
29	1	28	1	28	1	27	1
29	0	29	0	28	0	28	0
29	0	30	2	28	0	29	2
29	0	29	2	28	0	28	2
27	2	26	2	26	2	25	2
27	2	25	2	26	2	24	2
27	2	25	0	26	2	24	0
26	3	23	2	25	3	22	2
26	3	20	2	25	२ २	22	2
26	3	27	0	25	२ २	20	0
20	Δ	20	2	20	Δ	22	2
20	7	22	0	20	-	21	0
20	4	22	0	20	4	21	0
20	4	23	2	20	4	22	2
21	22	р С	2	20	22	5	2
27	22	5	2	26	22	4	2
27	22	6	0	26	22	5	0
27	22	5	0	26	22	4	0
27	21	7	0	26	21	6	0
27	21	6	2	26	21	5	2
27	21	7	2	26	21	6	2
27	21	6	0	26	21	5	0
27	20	8	0	26	20	7	0
27	20	7	0	26	20	6	0
27	20	7	2	26	20	6	2
27	20	8	2	26	20	7	2
27	19	9	2	26	19	8	2
27	19	8	2	26	19	7	2
27	19	9	0	26	19	8	0
27	19	8	0	26	19	7	0
27	18	10	0	26	18	9	0
27	18	10	2	26	18	9	2
27	18	9	0	26	18	8	0
27	18	9	2	26	18	8	2
27	17	10	0	26	17	9	0
27	17	10	2	26	17	9	2
27	17	11	2	26	17	10	2
27	17	11	0	26	17	10	0
27	16	12	2	26	16	11	2
27	16	11	2	26	16	10	2
27	16	11	0	26	16	10	0
27	16	12	0	26	16	11	0
27	12	15	0	26	12	14	0
27	12	15	1	26	12	14	1
27	12	16	1	20	12	15	1
21	10	10	1 1	20	10	10	1 1
∠1 27	10	16	∠ ∩	20 26	10	14 15	∠ ∩
21	10	16	0	20 26	10	15	0
21 07	17 11	10 17	2	20 06	11	10	∠ 0
21	11	17	2	20	11	10	∠
21	11	11	1	26	11	тρ	T

108736.0718	0.1000
108737.1654	0.1000
108948.2234	0.1000
108948.2234	0.1000
108948.2234	0.1000
108949.9878	0.1000
108949 9878	0.1000
108949 9878	0 1000
100163 1802	0 1000
100163 1802	0.1000
100165 4062	0.1000
109105.4205	0.1000
109239.6433	0.1000
109239.6433	0.1000
109241.4613	0.1000
109265.7728	0.1000
109265.7728	0.1000
109265.7728	0.1000
109528.9009	0.1000
109528.9009	0.1000
109528.9009	0.1000
109528.9009	0.1000
109539.2185	0.1000
109539.2185	0.1000
109539.2185	0.1000
109539.2185	0.1000
109550 8099	0.1000
109550 8099	0 1000
109550 8099	0.1000
100550 8000	0.1000
109550.0099	0.1000
109505.0011	0.1000
109563.6811	0.1000
109563.6811	0.1000
109563.6811	0.1000
109578.2139	0.1000
109578.2139	0.1000
109578.2139	0.1000
109578.2139	0.1000
109594.8267	0.1000
109594.8267	0.1000
109594.8267	0.1000
109594.8267	0.1000
109614.2211	0.1000
109614.2211	0.1000
109614.2211	0.1000
109614.2211	0.1000
109740.7701	0.1000
109740.7701	0.1000
109740 7701	0.1000
109740 7701	0 1000
109740 7701	0.1000
1007/0 7701	0.1000
100704 4042	0.1000
109/94.4846	0.1000
109794.4846	0.1000

27	11	16	1	26	11	15	1
27	11	16	2	26	11	15	2
27	11	17	0	26	11	16	0
27	11	16	0	26	11	15	0
27	10	17	0	26	10	16	0
27	10	18	1	26	10	17	1
27	10	18	0	26	10	17	0
27	10	17	1	26	10	16	1
27	a	10	0	26		18	0
27	0	10	1	20	0 0	10	1
21	9	10	1	20	9	17	1
21	9	10	1	20	9	17	1
21	9	10	0	20	9	11	0
27	8	20	2	26	8	19	2
27	8	19	2	26	8	18	2
27	8	20	1	26	8	19	1
27	8	19	1	26	8	18	1
27	8	19	0	26	8	18	0
27	8	20	0	26	8	19	0
27	4	23	1	26	4	22	1
27	4	24	1	26	4	23	1
27	4	24	0	26	4	23	0
27	7	21	0	26	7	20	0
27	7	21	2	26	7	20	2
27	7	20	2	26	7	19	2
27	7	21	1	26	7	20	1
27	7	20	1	26	7	19	1
27	7	20	0	26	7	19	0
27	6	22	0	26	6	21	0
27	6	21	1	26	6	20	1
27	6	22	1	26	6	21	1
27	6	22	2	26	6	21	2
27	6	21	2	26	6	20	2
27	6	21	0	26	6	20	0
27	5	23	0	26	5	20	Õ
27	5	20	1	20	5	22	1
27	5	20	1	20	5	22	1
21	5	22	1 1	20	5	21	2 1
21	5	20	2	20	5	22	2
21	5	22	2	20	5	21	2
21	5	22	1	20	5	21	1
28	3	25	1	27	3	24	1
28	3	26	1	27	3	25	1
28	3	26	0	27	3	25	0
29	2	28	1	28	2	27	1
29	2	27	1	28	2	26	1
29	2	28	0	28	2	27	0
29	1	29	2	28	1	28	2
29	1	28	2	28	1	27	2
29	1	28	0	28	1	27	0
30	1	29	1	29	1	28	1
30	1	30	0	29	1	29	0
30	1	30	1	29	1	29	1
30	0	30	0	29	0	29	0
30	0	31	2	29	0	30	2

109794.4846	0.1000
109794.4846	0.1000
109794.4846	0.1000
109794.4846	0.1000
109864.9947	0.1000
109864.9947	0.1000
109864.9947	0.1000
109864 9947	0 1000
109960 6897	0 1000
100060 6807	0.1000
100060 6807	0.1000
109960.6697	0.1000
109960.6897	0.1000
110094.7687	0.1000
110094.7687	0.1000
110095.9708	0.1000
110095.9708	0.1000
110095.9708	0.1000
110095.9708	0.1000
110152.8612	0.1000
110152.8612	0.1000
110153.8536	0.1000
110294.6106	0.1000
110297.2947	0.1000
110297.2947	0.1000
110298.4509	0.1000
110298 4509	0 1000
110301 8560	0 1000
11057/ 020/	0.1000
110574.9294	0.1000
110594.0437	0.1000
110594.6437	0.1000
110662.9106	0.1000
110662.9106	0.1000
110683.3408	0.1000
110765.3906	0.1000
110766.7075	0.1000
110766.7075	0.1000
111726.4658	0.1000
111726.4658	0.1000
111728.2760	0.1000
111855.5762	0.1000
111855.5762	0.1000
111856.9716	0.1000
112357.5778	0.1000
112357.5778	0.1000
112358.5838	0.1000
112417 8562	0 1000
110417 8560	0 1000
110/18 0000	0.1000
1106/E 2500	0.1000
110645 2500	0.1000
112045.3526	0.1000
112645.3526	0.1000
112646.6189	0.1000
112646.6189	0.1000

112646.6189	0.1000
112749.7715	0.1000
112749.7715	0.1000
112752.0676	0.1000
113172.2710	0.1000
113172.2710	0.1000
113174.4054	0.1000
113590.5981	0.1000
113590.5981	0.1000
113590.5981	0.1000
113590.5981	0.1000
113602.0648	0.1000
113602.0648	0.1000
113602.0648	0.1000
113602 0648	0 1000
113614 6782	0 1000
113614 6782	0.1000
11361/ 6782	0.1000
11261/ 6792	0.1000
112600 0/02	0.1000
113020.0400	0.1000
113028.8488	0.1000
113628.8488	0.1000
113028.8488	0.1000
113044.8405	0.1000
113044.8405	0.1000
113044.8405	0.1000
113044.8405	0.1000
113003.3507	0.1000
112662 2567	0.1000
112662 2567	0.1000
11368/ 8/68	0.1000
112604.0400	0.1000
11260/ 0/60	0.1000
11260/ 0/60	0.1000
113710 3200	0.1000
112710 2200	0.1000
112710 2200	0.1000
112710 2200	0.1000
112740 9757	0.1000
113740.0757	0.1000
113740.0757	0.1000
112740.0757	0.1000
112770 / 560	0.1000
112770 / 560	0.1000
112770 / 560	0.1000
113778 /560	0.1000
112025 /220	0.1000
113825 /220	0.1000
113825 /220	0.1000
113825 /220	0 1000
113825 4229	0 1000
113825 /220	0 1000
110020.4229	0.1000

440005 0074	0 1000						
113885.2071	0.1000						
113885.2071	0.1000						
113885.2071	0.1000						
113885.2071	0.1000						
113885.2071	0.1000						
113885.2071	0.1000						
113963.9322	0.1000						
113963.9322	0.1000						
113963.9322	0.1000						
113963 9322	0.1000						
114070 9153	0 1000						
11/070 0153	0.1000						
114070.0152	0.1000						
114070.9155	0.1000						
114070.9103	0.1000						
114115.0327	0.1000						
114115.6327	0.1000						
114116.8379	0.1000						
114221.0605	0.1000						
114221.0605	0.1000						
114222.3545	0.1000						
114222.3545	0.1000						
114222.3545	0.1000						
114443.8148	0.1000						
114448.7412	0.1000						
114448.7412	0.1000						
114449.6492	0.1000						
114449.6492	0.1000						
114455.3964	0.1000						
114745 6761	0 1000						
114762 6476	0.1000						
114762 6476	0.1000						
114702.0470	0.1000						
114000.4709	0.1000						
114000.4709	0.1000						
114895.3163	0.1000						
114896.1390	0.1000						
114896.1390	0.1000						
114904.1334	0.1000						
115619.4704	0.1000						
115619.4704	0.1000						
115620.8804	0.1000						
116058.7502	0.1000						
116058.7502	0.1000						
116059.7239	0.1000						
116102.8899	0.1000						
116102.8899	0.1000						
116103.9686	0.1000						
116150 9112	0.1000						
116150 0112	0 1000						
116150 0600	0.1000						
1163/10 2505	0.1000						
116240 2505	0.1000						
110042.3595	0.1000						
110342.3595	0.1000						
116342.3595	0.1000						
31	1	31	0	30	1	30	0
----	-----	---------	---	----	-----------------	--------	---
31	0	31	0	30	0	30	0
31	0	31	2	30	0	30	2
31	0	32	2	30	0	31	2
31	1	30	1	30	0	31	2
29	2	27	0	28	2	26	0
31	1	31	1	30	0	30	2
28	3	26	2	27	3	25	2
28	3	25	2	27	3	24	2
28	3	25	0	27	3	24	0
20	ວ⊿	20 5	0	21	ວ/	2-1	0
20	24	6	0	20	24	т Б	0
29	24	5	1	20	24	⊿	1
29	24	5 6	1	20	24	4	1
29	24	0	1	20	24	5	1
29	23	6	2	28	23	5	2
29	23	6	0	28	23	5	0
29	23	7	0	28	23	6	0
29	23	7	2	28	23	6	2
29	22	8	0	28	22	7	0
29	22	7	0	28	22	6	0
29	22	8	2	28	22	7	2
29	22	7	2	28	22	6	2
29	21	8	2	28	21	7	2
29	21	9	2	28	21	8	2
29	21	8	0	28	21	7	0
29	21	9	0	28	21	8	0
29	20	9	2	28	20	8	2
29	20	10	2	28	20	9	2
29	20	10	0	28	20	9	0
29	20	9	0	28	20	8	0
29	19	11	0	28	19	10	Õ
29	19	11	2	28	19	10	2
20	10	10	2	20	10	à	2
20	10	10	0	20	10	0	0
29	10	11	0	20	10	10	0
29	10	11	2	20	10	10	2
29	18	11	0	28	18	10	0
29	18	12	0	28	18	11	0
29	18	12	2	28	18	11	2
29	17	12	2	28	17	11	2
29	17	12	0	28	17	11	0
29	17	13	2	28	17	12	2
29	17	13	0	28	17	12	0
29	16	13	0	28	16	12	0
29	16	13	2	28	16	12	2
29	16	14	0	28	16	13	0
29	16	14	2	28	16	13	2
29	15	15	0	28	15	14	0
29	15	15	2	28	15	14	2
29	15	14	2	28	15	13	2
29	15	14	0	28	15	13	0
29	14	15	2	28	14	14	2
29	14	16	2	28	14	15	2
29	14	16	0	28	14	15	0
20	т.т	±0	0	20	т. т	±0	0

116342.3595	0.1000
116343.2846	0.1000
116343.2846	0.1000
116343.2846	0.1000
116344.8036	0.1000
116344.8036	0.1000
116344.8036	0.1000
117027.8028	0.1000
117027 8028	0 1000
117030 1705	0.1000
117631 0/57	0.1000
117621 0457	0.1000
117631.0457	0.1000
117632.1030	0.1000
117632.1030	0.1000
117641.5800	0.1000
117641.5800	0.1000
117641.5800	0.1000
117641.5800	0.1000
117652.9129	0.1000
117652.9129	0.1000
117652.9129	0.1000
117652.9129	0.1000
117665.4232	0.1000
117665.4232	0.1000
117665.4232	0.1000
117665.4232	0.1000
117679, 2620	0.1000
117679 2620	0 1000
117679 2620	0.1000
117670 2620	0.1000
11760/ 0007	0.1000
117604 0007	0.1000
117604 0007	0.1000
11/094.8887	0.1000
11/694.888/	0.1000
117712.4536	0.1000
117712.4536	0.1000
117712.4536	0.1000
117712.4536	0.1000
117732.8474	0.1000
117732.8474	0.1000
117732.8474	0.1000
117732.8474	0.1000
117756.5433	0.1000
117756.5433	0.1000
117756.5433	0.1000
117756.5433	0.1000
117784.7014	0.1000
117784 7014	0 1000
117784 7014	0 1000
117784 7014	0.1000
117010 5702	0.1000
117010 5700	0.1000
117010.5/03	0.1000
11/818.5703	0.1000

117818.5703	0.1000
117912.2879	0.1000
117912.2879	0.1000
117912.2879	0.1000
117912.2879	0.1000
118052.9104	0.1000
118052.9104	0.1000
118054,2021	0.1000
118066 3210	0 1000
118066 3210	0 1000
118066 3210	0.1000
118066 3210	0.1000
110000.3210	0.1000
110002.4240	0.1000
110002.4240	0.1000
110003.1793	0.1000
118608.5736	0.1000
118608.5736	0.1000
118608.5736	0.1000
118608.5736	0.1000
225407.5416	0.1000
225407.5416	0.1000
225768.9591	0.1000
225786.8411	0.1000
226122.7991	0.1000
226122.7991	0.1000
226126.1293	0.1000
226126.1293	0.1000
226126.1293	0.1000
226396.0730	0.1000
226396.0730	0.1000
226397.9670	0.1000
226397.9670	0.1000
226398.3783	0.1000
226400.1430	0.1000
226415.9479	0.1000
226573.5152	0.1000
226573.5152	0.1000
226592.9046	0.1000
226625.7594	0.1000
226625.7594	0.1000
226625.7594	0.1000
226625.7594	0.1000
226627.8617	0.1000
226627 8617	0 1000
226627 8617	0 1000
220027.0017	0.1000
226643 4546	0 1000
220070.4040	0 1000
220040.4040	0.1000
220033.3011	0.1000
220033.30/1 226000 0671	0.1000
220099.90/1	0.1000
220899.90/1	0.1000
226899.9671	0.1000

60	1	60	2	59	1	59	2
60	1	59	2	59	2	58	1
60	2	58	1	59	2	57	1
55	8	48	0	54	8	47	0
55	9	47	0	54	9	46	0
55	9	47	1	54	9	46	1
55	9	46	1	54	9	45	1
61	0	61	2	60	1	60	1
61	1	61	1	60	1	60	1
61	0	62	2	60	1	59	1
61	1	60	1	60	1	59	1
61	0	62	2	60	0	61	2
61	0	61	2	60	0	60	2
61	1	60	1	60	0	61	2
61	1	61	1	60	0	60	2
61	1	61	1	60	0	60	2
61	1	61	0	60	1	60	0
01	1	61	0	60	1	60	0
61	0	61	0	60	1	60	0
61	1	61	0	60 55	0	60	0
56	24	33	0	55	24	32	0
56	24	32	0	55	24	31	0
56	24	33	2	55	24	32	2
56	24	32	2	55	24	31	2
56	22	35	0	55	22	34	0
56	22	34	2	55	22	33	2
56	22	35	2	55	22	34	2
56	22	34	0	55	22	33	0
56	21	36	0	55	21	35	0
56	21	35	0	55	21	34	0
56	21	36	2	55	21	35	2
56	21	35	2	55	21	34	2
56	21	35	1	55	21	34	1
56	21	36	1	55	21	35	1
56	20	37	2	55	20	36	2
56	20	36	2	55	20	35	2
56	20	37	1	55	20	36	1
56	20	36	1	55	20	35	1
56	19	38	0	55	19	37	0
56	19	37	0	55	19	36	0
56	19	38	1	55	19	37	1
56	19	37	1	55	19	36	1
56	18	39	0	55	18	38	0
56	10	38	0	55	10	37	0
56	10	20	1	55	10	20	1
50	10	29	1	55	10	20	1
50	10	30	1	55	10	31	T
50	17	39	2	55	17	38	2
56	17	40	2	55	17	39	2
56	17	40	1	55	17	39	1
56	17	39	1	55	17	38	1
55	9	46	2	54	9	45	2
55	9	47	2	54	9	46	2
55	9	46	0	54	9	45	0
56	16	40	2	55	16	39	2

226899.9671	0.1000
226899.9671	0.1000
226899.9671	0.1000
226994.9057	0.1000
227050.7529	0.1000
227052.8797	0.1000
227052.8797	0.1000
227191.9709	0.1000
227191 9709	0.1000
227191 9709	0 1000
227101.0700	0 1000
227101.0700	0.1000
227101.0700	0.1000
227191.9709	0.1000
227191.9709	0.1000
227191.9709	0.1000
227192.613	0.1500
227192.613	0.1500
227192.613	0.1500
227192.613	0.1500
227494.1036	0.1000
227494.1036	0.1000
227494.7712	0.1000
227494.7712	0.1000
227621.4889	0.1000
227621.4889	0.1000
227621.4889	0.1000
227621.4889	0.1000
227697.0951	0.1000
227697.0951	0.1000
227697.0951	0.1000
227697.0951	0.1000
227699.3642	0.1000
227699 3642	0.1000
227783 5719	0 1000
227783 5710	0 1000
227705.0713	0.1000
007705 7404	0.1000
221100.1434	0.1000
227004.0209	0.1000
227884.0209	0.1000
227885.9561	0.1000
227885.9561	0.1000
228000.2739	0.1000
228000.2739	0.1000
228002.4045	0.1000
228002.4045	0.1000
228137.3141	0.1000
228137.3141	0.1000
228139.4391	0.1000
228139.4391	0.1000
228261.4401	0.1000
228261.4401	0.1000
228262.4988	0.1000
228301.4246	0.1000

56	16	41	2	55	16	40	2
56	16	40	1	55	16	39	1
56	16	41	1	55	16	40	1
55	6	50	2	54	6	49	2
55	6	49	2	54	6	48	2
55	6	49	0	54	6	48	0
54	7	48	2	53	7	47	2
54	7	47	2	53	7	46	2
54	7	47	0	53	7	46	0
56	15	<u>⊥</u> , ∕11	1	55	15	40	1
56	15	10	1	55	15	<u>т</u> 0 // 1	1
50	12	42 11	1	55	12	41	1
50	10	44	1	55	10	40	1
50	13	43	1	55	13	42	1
50	1	49	1	55	1	48	1
56	1	50	1	55	(49	1
56	7	50	0	55	7	49	0
56	12	44	0	55	12	43	0
57	6	52	1	56	6	51	1
57	6	51	1	56	6	50	1
57	6	52	0	56	6	51	0
58	5	54	0	57	5	53	0
58	4	54	0	57	4	53	0
59	3	56	0	58	3	55	0
60	3	57	1	59	3	56	1
60	3	58	1	59	3	57	1
60	2	59	2	59	2	58	2
60	2	58	2	59	2	57	2
60	2	58	2	59	3	57	1
60	2	59	2	59	3	56	1
60	3	58	0	59	3	57	0
60	3	58	0	59	2	57	0
60	2	58	0	59	3	57	0
60	2	58	0	50	2	57	0
61	2	50	1	60	1	60	2
61	2	50	1	60	2 1	Б0	∠ 1
61	2	60	1	60	2 1	50	1 1
01 61	2 1	60	1	60	1 1	59	4
01	1	60	2	60	2	59	1
61	1	61	2	60	2	58	1
61	1	60	2	60	1	59	2
61	2	60	1	60	2	59	1
61	1	61	2	60	1	60	2
62	0	62	2	61	1	61	1
62	0	62	2	61	0	61	2
62	0	63	2	61	0	62	2
62	0	63	2	61	1	60	1
62	1	62	1	61	0	61	2
62	1	61	1	61	1	60	1
62	1	62	1	61	1	61	1
62	1	61	1	61	0	62	2
62	0	62	0	61	0	61	0
62	1	62	0	61	0	61	0
62	1	62	0	61	1	61	0
62	0	62	0	61	1	61	0

228301.4246	0.1000
228303.5508	0.1000
228303.5508	0.1000
228468.246	0.1500
228468.246	0.1500
228474.188	0.1500
228488.766	0.1500
228488 766	0 1500
228491 530	0 1500
220401.000	0.1000
220302.4703	0.1000
220302.4709	0.1000
229057.0333	0.1000
229057.0333	0.1000
229246.1897	0.1000
229246.1897	0.1000
229248.8158	0.1000
229458.0626	0.1000
229825.2130	0.1000
229825.2130	0.1000
229828.6622	0.1000
229932.3261	0.1000
229964.0223	0.1000
230087.8913	0.1000
230316.9915	0.1000
230316.9915	0.1000
230316.9915	0.1000
230316.9915	0.1000
230316.9915	0.1000
230316.9915	0.1000
230319.0338	0.1000
230319 0338	0 1000
230319 0338	0 1000
230319 0338	0.1000
230513.0000	0.1000
230592.3007	0.1000
230592.3067	0.1000
230592.3087	0.1000
230592.3087	0.1000
230592.3087	0.1000
230592.3087	0.1000
230592.3087	0.1000
230592.3087	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.3807	0.1000
230884.966	0.1500
230884.966	0.1500
230884.966	0.1500
230884 966	0,1500
	0.1000

231052.3986	0.1000
231052.3986	0.1000
231054.5391	0.1000
231707.5795	0.1000
231707.5795	0.1000
231707.5795	0.1000
231707.5795	0.1000
231709.7170	0.1000
231709.7170	0.1000
231787,4146	0.1000
231787 4146	0 1000
231787 4146	0 1000
231787 4146	0.1000
231707.4140	0.1000
231709.3027	0.1000
231709.3027	0.1000
231878.3405	0.1000
231878.3465	0.1000
231880.4432	0.1000
231880.4432	0.1000
231911.8902	0.1000
231911.8902	0.1000
231984.0158	0.1000
231984.0158	0.1000
231984.0158	0.1000
231984.0158	0.1000
231985.9745	0.1000
231985.9745	0.1000
232106.8601	0.1000
232106.8601	0.1000
232106.8601	0.1000
232106.8601	0.1000
232109.0156	0.1000
232109.0156	0.1000
232251.7979	0.1000
232251 7979	0.1000
232253 3880	0 1000
232253 3880	0 1000
232424 5747	0.1000
202424.0141	0.1000
232424.3141	0.1000
232420.0420	0.1000
232420.0420	0.1000
232634.6623	0.1000
232634.6623	0.1000
232636.8795	0.1000
232636.8795	0.1000
232803.9738	0.1000
232803.9738	0.1000
232894.3621	0.1000
232894.3621	0.1000
233059.738	0.1500
233059.738	0.1500
233062.7231	0.1000
233224.7279	0.1000

57	13	45	1	56	13	44	1
58	6	53	1	57	6	52	1
58	6	52	1	57	6	51	1
58	6	53	0	57	6	52	0
59	4	55	2	58	4	54	2
59	4	56	2	58	4	55	2
50	1	55	0	Б0	1	БЛ	0
59	4 5	55	0	50	4 5	54	0
50	5	54	2	51	5	53	2
58	5	53	2	57	5	52	2
61	2	60	2	60	2	59	2
61	3	59	1	60	2	58	2
61	3	58	1	60	2	59	2
61	2	59	2	60	2	58	2
61	2	60	2	60	3	57	1
61	3	59	1	60	3	58	1
61	2	59	2	60	3	58	1
61	3	58	1	60	3	57	1
61	3	59	0	60	3	58	0
61	3	59	0	60	2	58	0
61	2	59	0	60	2	58	0
61	2	59	0	60	3	58	0
57	11	Δ7	0	56	11	46	0
57	11	17	1	56	11	16	1
57	11	41	1	50	11	40	1
57	11	40	1	50	11	40	1
57	11	47	2	50	11	40	2
57	11	46	2	56	11	45	2
62	1	62	2	61	1	61	2
62	2	61	1	61	2	60	1
62	1	61	2	61	2	60	1
62	1	61	2	61	1	60	2
62	2	60	1	61	2	59	1
62	1	62	2	61	2	59	1
62	2	60	1	61	1	61	2
62	2	61	1	61	1	60	2
63	0	63	2	62	0	62	2
63	1	62	1	62	0	63	2
63	0	63	2	62	1	62	1
63	1	63	1	62	1	62	1
63	1	62	1	62	1	61	1
63	0	64	2	62	1	61	1
63	1	63	1	62	0	62	2
62	۰ ۲	64	2	62	0	62	2
60	1	62	2	62	1	60	2
63	T	63	0	62	T	02	0
63	0	63	0	62	1	62	0
63	1	63	0	62	0	62	0
63	0	63	0	62	0	62	0
57	10	48	0	56	10	47	0
57	10	48	1	56	10	47	1
57	10	47	1	56	10	46	1
57	6	51	2	56	6	50	2
57	6	52	2	56	6	51	2
57	6	51	0	56	6	50	0
57	9	49	0	56	9	48	0

233224.7279	0.1000
233520.9809	0.1000
233520.9809	0.1000
233524.4512	0.1000
233636.071	0.1500
233636.071	0.1500
233638.7899	0.1000
233839.3441	0.1000
233839 3441	0 1000
234008 0947	0 1000
234008 0947	0.1000
234000.0947	0.1000
234000.0947	0.1000
234000.0947	0.1000
234000.0947	0.1000
234008.0947	0.1000
234008.0947	0.1000
234008.0947	0.1000
234010.1599	0.1000
234010.1599	0.1000
234010.1599	0.1000
234010.1599	0.1000
234210.8311	0.1000
234226.6410	0.1000
234226.6410	0.1000
234231.9501	0.1000
234231.9501	0.1000
234284.4106	0.1000
234284.4106	0.1000
234284.4106	0.1000
234284.4106	0.1000
234284.4106	0.1000
234284.4106	0.1000
234284.4106	0.1000
234284 4106	0 1000
234576 7550	0 1000
234576 7550	0.1000
234576 7550	0.1000
234576.7550	0.1000
234576.7550	0.1000
234576.7550	0.1000
234576.7550	0.1000
234576.7550	0.1000
234576.7550	0.1000
234577.056	0.1500
234577.056	0.1500
234577.056	0.1500
234577.056	0.1500
234912.9541	0.1000
234924.8880	0.1000
234924.8880	0.1000
235345.0956	0.1000
235345.0956	0.1000
235351.3213	0.1000
235476.9367	0.1000

58	21	37	0	57	21	36	0
58	21	38	0	57	21	37	0
58	21	38	2	57	21	37	2
58	21	37	2	57	21	36	2
58	20	38	2	57	20	37	2
58	20	39	2	57	20	38	2
56	8	49	2	55	8	48	2
56	8	48	2	55	8	47	2
58	18	40	2	57	18	39	2
58	18	41	2	57	18	40	2
58	17	42	0	57	17	41	0
58	17	41	0	57	17	40	0
58	17	41	1	57	17	40	1
58	17	42	1	57	17	41	1
56	7	49	0	55	7	48	0
58	15	43	2	57	15	42	2
58	15	44	2	57	15	43	2
58	15	13	1	57	15	40	1
58	15	40 A A	1	57	15	12	1
50	13	44 50	1 1	57	13	40 51	1
58	7	51	1	57	7	50	1
58	7	52	0	57	7	51	0
58	14	ΔΔ	2	57	14	۵1 43	2
58	14	45	2	57	14	40	2
58	14	40 45	0	57	14	44	0
58	14	40	0	57	14	43	0
50	6	53	1	58	6	52	1
50	6	54	1	58	6	53	1
60	1	56	2	50	1	55	2
60	4	57	2	59	4	56	2
57	q	48	0	56	q	Δ7	0
62	2	-10 61	2	61	3	58	1
62	2	59	1	61	२ २	58	1
62	२ २	60	1	61	२ २	59	1
62	2	60	2	61	२ २	50	1
62	2	61	2	61	2	60	2
62	2 2	60	1	61	2	50	2
62	3 3	50	1	61	2	60	2
62	2	60	2	61	2	50	2
62	2	60	0	61	2	50	0
62	3	60	0	61	3	59	0
62	2	60	0	61	2	59	0
62	2	60	0	61	2	59	0
63	1	62	2	62	2	61	1
63	2	61	1	62	2	60	1
63	1	62	2	62	1	61	2
63	2	61	1	62	1	62	2
63	1	63	2	62	1	62	2
63	1	63	2	62	・ ク	60	<u>د</u> 1
63	2	62	2 1	62	2 2	61	1
63	2	62	1	62	1	61	2
64	0	65	2	63	1	62	1
64	0	64	2	63	1	63	1

235879.0392	0.1000
235879.0392	0.1000
235879.0392	0.1000
235879.0392	0.1000
235974.7397	0.1000
235974.7397	0.1000
236121.3289	0.1000
236121 3289	0 1000
236215 1666	0 1000
236215 1666	0.1000
230213.1000	0.1000
230300.4307	0.1000
230300.4307	0.1000
236370.2910	0.1000
236370.2910	0.1000
236553.5422	0.1000
236772.3653	0.1000
236772.3653	0.1000
236774.4878	0.1000
236774.4878	0.1000
236850.7765	0.1000
236850.7765	0.1000
236854.1991	0.1000
237046.9626	0.1000
237046.9626	0.1000
237047.6708	0.1000
237047.6708	0.1000
237211.7478	0.1000
237211.7478	0.1000
237312 6562	0 1000
237312 6562	0 1000
237303 1206	0.1000
237600 0107	0.1000
237699.0107	0.1000
237099.0107	0.1000
237699.0107	0.1000
237699.0107	0.1000
237699.0107	0.1000
237699.0107	0.1000
237699.0107	0.1000
237699.0107	0.1000
237701.0813	0.1000
237701.0813	0.1000
237701.0813	0.1000
237701.0813	0.1000
237976.2038	0.1000
237976.2038	0.1000
237976.2038	0.1000
237976.2038	0.1000
237976.2038	0.1000
237976.2038	0.1000
237976.2038	0.1000
237976 2038	0.1000
238268 8025	0.1000
238268 8025	0 1000
200200.0020	0.1000

64	1	63	1	63	0	64	2
64	1	64	1	63	0	63	2
64	1	63	1	63	1	62	1
64	0	64	2	63	0	63	2
64	0	65	2	63	0	64	2
64	1	64	1	63	1	63	1
64	1	64	0	63	0	63	0
64	0	64	0	63	0	63	0
64	1	64	0	63	1	63	0
64	0	64	0	63	1	63	0
58	11	48	0	57	11	47	0
58	6	52	2	57	6	51	2
50	6	52	2	57	6	50	2
50	0	55	2 1	57	0	52	∠ 1
50	0	51	1	57	0	50 40	1
50	0	50	T	51	0	49	T
58	8	51	0	57	8	50	0
58	10	49	0	57	10	48	0
58	9	50	0	57	9	49	0
58	9	49	1	57	9	48	1
58	9	50	1	57	9	49	1
59	22	37	1	58	22	36	1
59	22	38	1	58	22	37	1
59	21	39	0	58	21	38	0
59	21	39	2	58	21	38	2
59	21	38	0	58	21	37	0
59	21	38	2	58	21	37	2
59	21	38	1	58	21	37	1
59	21	39	1	58	21	38	1
59	20	39	0	58	20	38	0
59	20	40	0	58	20	39	0
59	20	40	2	58	20	39	2
59	20	39	2	58	20	38	2
59	20	40	1	58	20	39	1
50	20	20	1	58	20	38	1
50	10	10	2	58	10	30	2
50	10	40	~	50	10	20	0
59	10	40 // 1	0	50	10	10	0
59	10	41 //1	0	50	10	40	0
59	19	41	2 1	50	19	40	4
59	19	40	1	50	19	39	1
59	19	41	1	58	19	40	1
59	18	41	2	58	18	40	2
59	18	42	2	58	18	41	2
59	18	42	1	58	18	41	1
59	18	41	1	58	18	40	1
57	7	51	2	56	7	50	2
57	7	50	2	56	7	49	2
59	17	42	0	58	17	41	0
59	17	43	0	58	17	42	0
59	17	43	1	58	17	42	1
59	17	42	1	58	17	41	1
59	7	52	1	58	7	51	1
59	7	53	1	58	7	52	1
59	7	53	0	58	7	52	0

238268.8025	0.1000
238268.8025	0.1000
238268.8025	0.1000
238268.8025	0.1000
238268.8025	0.1000
238268.8025	0.1000
238269.389	0.1500
238269.389	0.1500
238269.389	0.1500
238269 389	0 1500
238442 2235	0 1000
238780 6161	0 1000
238780 6161	0.1000
239083 8190	0 1000
239083 8190	0.1000
230086 1121	0.1000
239000.1121	0.1000
239105.9200	0.1000
239670.3910	0.1000
239670.3910	0.1000
239670.3910	0.1000
239885.5512	0.1000
239885.5512	0.1000
239971.6664	0.1000
239971.6664	0.1000
239971.6664	0.1000
239971.6664	0.1000
239974.2531	0.1000
239974.2531	0.1000
240073.0506	0.1000
240073.0506	0.1000
240073.0506	0.1000
240073.0506	0.1000
240074.7937	0.1000
240074.7937	0.1000
240189.6803	0.1000
240189.6803	0.1000
240189.6803	0.1000
240189.6803	0.1000
240191.6498	0.1000
240191.6498	0.1000
240325.7766	0.1000
240325.7766	0.1000
240327.9744	0.1000
240327.9744	0.1000
240421.4210	0.1000
240421.4210	0.1000
240486.9458	0.1000
240486.9458	0.1000
240489.1304	0.1000
240489.1304	0.1000
240621.6791	0,1000
240621.6791	0.1000
240624 8694	0.1000
210021.0004	0.1000

240709.6644	0.1000
240709 6644	0 1000
210700.6611	0.1000
240703.0044	0.1000
240901.0762	0.1000
240913.5364	0.1000
240913.5364	0.1000
240915.6731	0.1000
240915.6731	0.1000
240978.5122	0.1000
240978.5122	0.1000
240981.1823	0.1000
240991 3514	0 1000
240001.0014	0.1000
240991.0014	0.1000
240994.2547	0.1000
241087.8530	0.1000
241087.8530	0.1000
241091.6935	0.1000
241149.0532	0.1000
241149.0532	0.1000
241151.0396	0.1000
241151.3105	0.1000
2/1380 0075	0 1000
241000.0070	0.1000
241309.9075	0.1000
241389.9075	0.1000
241389.9075	0.1000
241389.9075	0.1000
241389.9075	0.1000
241389.9075	0.1000
241389.9075	0.1000
241391.9255	0.1000
241391.9255	0.1000
241391.9255	0.1000
241391 9255	0 1000
241031.3200	0.1000
241574.0509	0.1000
241574.0589	0.1000
241668.1126	0.1000
241668.1126	0.1000
241668.1126	0.1000
241668.1126	0.1000
241668.1126	0.1000
241668.1126	0.1000
241668 1126	0.1000
241668 1126	0 1000
241000.1120	0.1000
241960.9954	0.1000
241960.9934	0.1000
241960.9934	0.1000
241960.9934	0.1000
241960.9934	0.1000
241960.9934	0.1000
241960.9934	0.1000
241960.9934	0.1000
242029 6301	0.1000
242029 6301	0 1000
272023.0301	0.1000

242050.6434	0.1000
242055.8394	0.1000
242055.8394	0.1000
242057.7054	0.1000
242229.0300	0.1000
242229.0300	0.1000
242235.0786	0.1000
242680 1453	0 1000
242752 2202	0 1000
242102.2202	0.1000
243054.3001	0.1000
243054.3001	0.1000
243030.0123	0.1000
243419.8694	0.1000
243846.3484	0.1000
243846.3484	0.1000
243846.3484	0.1000
243973.3689	0.1000
243973.3689	0.1000
243973.3689	0.1000
243973.3689	0.1000
243989.2149	0.1000
244066.1691	0.1000
244066.1691	0.1000
244066.1691	0.1000
244066.1691	0.1000
244068.0906	0.1000
244068.0906	0.1000
244172.1417	0.1000
244172.1417	0.1000
244172,1417	0.1000
244172 1417	0 1000
244172.1417	0 1000
244174.1000	0.1000
244174.1990	0.1000
244190.2337	0.1000
244190.2337	0.1000
244195.0287	0.1000
244294.8649	0.1000
244294.8649	0.1000
244294.8649	0.1000
244294.8649	0.1000
244296.9109	0.1000
244296.9109	0.1000
244373.9473	0.1000
244373.9473	0.1000
244377.4298	0.1000
244438.3210	0.1000
244438.3210	0.1000
244440.5782	0.1000
244440.5782	0.1000
244581.0265	0.1000
244581.0265	0.1000
244664.2496	0.1000
244726 8018	0.1000
	0.1000

61	5	57	2	60	5	56	2
61	5	56	0	60	5	55	0
60	16	45	0	59	16	44	0
60	16	44	0	59	16	43	0
63	4	60	1	62	4	59	1
63	4	59	1	62	4	58	1
63	3	60	2	62	3	59	2
63	3	61	2	62	3	60	2
63	4	60	0	62	4	59	0
63	3	60	0	62	3	59	0
60	15	46	1	59	15	45	1
60	15	45	1	59	15	44	1
64	2	62	2	63	3	61	1
64	2	63	2	63	3	60	1
64	3	62	1	63	3	61	1
64	3	61	1	63	3	60	1
64	2	62	0	63	3	61	0
64	2	62	0	63	2	61	0
64	3	62	0	63	3	61	0
64	3	62	0	63	2	61	0
58	8	50	0	57	8	49	0
65	2	64	1	64	1	63	2
65	1	64	2	64	1	63	2
65	1	65	2	64	2	62	1
65	1	65	2	64	1	64	2
65	2	64	1	64	2	63	1
65	2	63	1	64	2	62	1
65	1	64	2	64	2	63	-
65	2	63	1	64	1	64	2
66	0	67	2	65	0	66	2
66	1	66	1	65	1	65	1
66	0	67	2	65	1	64	1
66	0	66	2	65	1	65	1
66	1	65	1	65	0	66	2
66	1	65	1	65	1	64	1
66	0	66	2	65	0	65	2
66	1	66	1	65	0	65	2
60	6	55	2	59	6	54	2
60	6	54	2	59	6	53	2
60	6	54	0	59	6	53	0
60	8	53	1	59	8	52	1
60	8	52	1	59	8	51	1
60	8	53	0	59	8	52	0
50	7	52	2	58	7	51	2
50	7	53	2	58	7	52	2
61	7	55	1	60	7	57	1
61	7	55	1	60	7	54	1 1
62	6	54	1	61	6	55	1
62	0 E	57	0	60	0 E	50	0
63	5 ∧	60	0 0	62 62	5 Л	50	0 O
62	4 ∧	50	∠ ^	602	4 ∕	59	∠ ೧
60	4 5	50	∠ 2	0Z	4 5	50	∠ ೧
62 62	5 5	50	∠ 2	61	ט ב	56	∠ 0
02	0	51	2	0T	0	00	2

244726.8018	0.1000
244730.4274	0.1000
244810.8582	0.1000
244810.8582	0.1000
244836.8541	0.1000
244836.8541	0.1000
244837.506	0.1500
244837.506	0.1500
244839.0994	0.1000
244839.796	0.1500
245059.6805	0.1000
245059.6805	0.1000
245080.5726	0.1000
245080.5726	0.1000
245080.5726	0.1000
245080.5726	0.1000
245082.5796	0.1000
245082.5796	0.1000
245082 5796	0 1000
245082 5796	0 1000
245230,9670	0.1000
245359 5427	0.1000
245359.5427	0.1000
245359 5427	0.1000
245359.5427	0.1000
245359 5427	0.1000
245359.5427	0.1000
245359 5427	0.1000
245359 5427	0.1000
245652 6683	0.1000
245652.6683	0.1000
245652.6683	0.1000
245652 6683	0 1000
245652.6683	0.1000
245652.6683	0.1000
245652 6683	0 1000
245652 6683	0 1000
245696 8774	0 1000
245696 8774	0 1000
245702 3846	0 1000
246994 1048	0 1000
246994 1048	0 1000
246996 7951	0.1000
240000.1001	0.1000
247861 8821	0 1000
248110 6300	0.1000
248110.6300	0.1000
240110.0000	0.1000
248347 1798	0 1000
248351 5269	0.1000
248351 5269	0.1000
248373 0253	0.1000
248373 0253	0.1000
21001010200	0.1000

62	5	57	0	61	5	56	0
64	3	62	2	63	3	61	2
64	3	61	2	63	3	60	2
64	3	61	0	63	3	60	0
64	4	61	0	63	4	60	0
65	3	63	1	64	3	62	1
65	3	62	1	64	3	61	1
65	2	61	2	61	2	61	1
00 65	2	62	2	64	2	601	1
00	2	03	2	04	ა ი	02	1
00	2	63	0	04	3	62	0
65	3	63	0	64	2	62	0
65	2	63	0	64	2	62	0
65	3	63	0	64	3	62	0
61	6	56	2	60	6	55	2
61	6	55	2	60	6	54	2
67	0	67	0	66	1	66	0
67	1	67	1	66	0	66	2
67	0	67	2	66	1	66	1
67	1	66	1	66	1	65	1
67	1	67	1	66	1	66	1
67	0	68	2	66	1	65	1
67	0	67	2	66	0	66	2
67	1	66	1	66	0	67	2
67	1	67	0	66	0	66	0
67	1	67	0	66	1	66	0
67	1	60	0 0	66	1	67	0
67	0	67	2	66	0	66	2
01	0	01	0	00	0	00	0
61	8	54	0	60 50	8	53	0
60	9	51	0	59	9	50	0
60	9	51	2	59	9	50	2
60	9	52	2	59	9	51	2
60	7	53	0	59	7	52	0
62	7	55	1	61	7	54	1
62	7	56	1	61	7	55	1
63	6	57	1	62	6	56	1
63	6	58	1	62	6	57	1
63	5	59	2	62	5	58	2
63	5	58	2	62	5	57	2
64	5	60	1	63	5	59	1
64	5	59	1	63	5	58	1
64	5	60	0	63	5	59	0
64	4	61	2	63	4	60	2
64	4	60	2	63	4	59	2
64	1	60	0	63	1	50	0
67	- -	00 ⊿1	0	61	1	10	0
02	22	41	0	01	22	40	0
02	22	40	0	01	22	39	0
62	22	40	2	61	22	39	2
62	22	41	2	61	22	40	2
62	22	40	1	61	22	39	1
62	22	41	1	61	22	40	1
65	3	63	2	64	3	62	2
65	4	61	1	64	4	60	1
65	3	62	2	64	3	61	2

248376.7341	0.1000
248525.4424	0.1000
248525.4424	0.1000
248527.5256	0.1000
248527.5256	0.1000
248771.1792	0.1000
248771.1792	0.1000
248771.1792	0.1000
248771.1792	0.1000
248773.2167	0.1000
248773,2167	0.1000
248773 2167	0 1000
248773 2167	0 1000
240176.2107	0 1000
249100.9001	0.1000
249100.9331	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
249344.4794	0.1000
250906.6103	0.1000
251409.0205	0.1000
251410.0779	0.1000
251410.0779	0.1000
251452.5639	0.1000
251833.3974	0.1000
251833.3974	0.1000
251941.0736	0.1000
251941.0736	0.1000
252025.7619	0.1000
252025.7619	0.1000
252027.8638	0.1000
252027,8638	0.1000
252030.0302	0.1000
252032 5674	0 1000
252032.5674	0 1000
252032.3014	0.1000
252055.2700	0.1000
252150.0005	0.1000
252150.0005	0.1000
252156.8883	0.1000
252156.8883	0.1000
252159.2034	0.1000
252159.2034	0.1000
252213.4102	0.1000
252213.4102	0.1000
252213.4102	0.1000

252213.4102	0.1000
252215.6298	0.1000
252215.6298	0.1000
252258.6771	0.1000
252258.6771	0.1000
252258.6771	0.1000
252258.6771	0.1000
252260.8228	0.1000
252260.8228	0.1000
252375.8329	0.1000
252375.8329	0.1000
252375 8329	0.1000
252375 8329	0 1000
252377 9214	0.1000
262377 0214	0.1000
202011.0214	0.1000
252401.5566	0.1000
252401.5388	0.1000
252461.5388	0.1000
252461.5388	0.1000
252461.5388	0.1000
252461.5388	0.1000
252461.5388	0.1000
252461.5388	0.1000
252463.5971	0.1000
252463.5971	0.1000
252463.5971	0.1000
252463.5971	0.1000
252669.4837	0.1000
252669.4837	0.1000
252671.6934	0.1000
252671.6934	0.1000
252700.8773	0.1000
252700.8773	0.1000
252705.9706	0.1000
252742.0601	0.1000
252742 0601	0 1000
252742 0601	0.1000
252742.0001	0.1000
252742.0001	0.1000
252742.0601	0.1000
252742.0601	0.1000
252742.0601	0.1000
252742.0601	0.1000
252856.9064	0.1000
252856.9064	0.1000
252859.2411	0.1000
252859.2411	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000

68	0	68	2	67	1	67	1
68	0	68	0	67	0	67	0
68	0	68	0	67	1	67	0
68	1	68	0	67	1	67	0
68	1	68	0	67	0	67	0
62	16	46	1	61	16	45	1
62	16	47	1	61	16	46	1
60	8	53	2	59	8	52	2
60	8	52	2	59	8	51	2
60	8	52	0	59	8	51	0
62	12	51	0	61	12	50	0
62	12	50	0	61	12	<u>4</u> 9	Õ
62	2	55	1	61	2	54	1
62	8	54	1	61	8	53	1
66	3	64	2	65	3	63	2
66	3	63	2	65	3	60	2
66	⊿	60 60	2 1	65	⊿	61	1
66	4	62	1	00 65	4	60	1
00	4	63	T	05	4	62	1
00	3	63	0	00	3	62	0
60	4	63	0	65	4	62 F1	0
61	9	52	0	60	9	51	0
61	9	52	2	60	9	51	2
61	9	53	2	60	9	52	2
67	3	65	1	66	2	64	2
67	3	64	1	66	3	63	1
67	3	65	1	66	3	64	1
67	3	64	1	66	2	65	2
67	2	65	2	66	3	64	1
67	2	66	2	66	3	63	1
67	2	66	2	66	2	65	2
67	2	65	2	66	2	64	2
67	2	65	0	66	3	64	0
67	3	65	0	66	3	64	0
67	3	65	0	66	2	64	0
67	2	65	0	66	2	64	0
63	23	41	2	62	23	40	2
63	23	40	2	62	23	39	2
62	10	53	1	61	10	52	1
62	10	52	1	61	10	51	1
63	6	58	2	62	6	57	2
63	6	57	2	62	6	56	2
62	9	53	1	61	9	52	1
62	9	54	1	61	9	53	1
63	22	41	2	62	22	40	2
63	22	42	2	62	22	41	2
63	21	43	0	62	21	42	0
63	21	43	2	62	21	42	2
63	21	42	0	62	21	41	0
63	21	42	2	62	21	41	2
63	21	43	1	62	21	42	1
63	21	42	1	62	21	41	1
68	1	68	2	67	2	65	1
68	1	67	2	67	1	66	2

050005 0100	0 1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253035.6128	0.1000
253084.3728	0.1000
253084 3728	0 1000
20004.0720	0.1000
204010.0930	0.1000
254015.8935	0.1000
254017.8217	0.1000
254702.4568	0.1000
254722.3308	0.1000
254784.1974	0.1000
254784.1974	0.1000
255901.6731	0.1000
255901 6731	0 1000
255001.6721	0.1000
255901.0751	0.1000
255901.6731	0.1000
255903.7241	0.1000
255903.7241	0.1000
256129.1140	0.1000
256130.4549	0.1000
256130.4549	0.1000
256151.6367	0.1000
256151 6367	0 1000
256151 6367	0.1000
250151.0507	0.1000
250151.0507	0.1000
256151.6367	0.1000
256151.6367	0.1000
256151.6367	0.1000
256151.6367	0.1000
256153.6242	0.1000
256153.6242	0.1000
256153.6242	0.1000
256153 6242	0.1000
256156 3788	0 1000
200100.0700	0.1000
250150.5700	0.1000
256168.9712	0.1000
256168.9712	0.1000
256237.3855	0.1000
256237.3855	0.1000
256242.0910	0.1000
256242.0910	0.1000
256250.3862	0.1000
256250 3862	0 1000
200200.0002	0.1000
230331.2440	0.1000
200301.2446	0.1000
256357.2446	0.1000
256357.2446	0.1000
256359.5213	0.1000
256359.5213	0.1000
256432.9766	0.1000
256432.9766	0.1000
	=

68	1	68	2	67	1	67	2
68	2	67	1	67	1	66	2
68	2	67	1	67	2	66	1
68	2	66	1	67	2	65	1
68	1	67	2	67	2	66	1
68	2	66	1	67	1	67	2
63	20	43	2	62	20	42	2
63	20	44	0	62	20	43	0
63	20	13	0	62	20	12	0
63	20	10	ິ ໂ	62	20	12	2
62	20	44	2 1	62 62	20	40	1
62	20	44	1	602	20	40	1
63	20	43	1	62	20	42	1
63	19	44	2	62	19	43	2
63	19	45	2	62	19	44	2
63	19	45	0	62	19	44	0
63	19	44	0	62	19	43	0
63	19	44	1	62	19	43	1
63	19	45	1	62	19	44	1
69	0	69	0	68	0	68	0
69	1	68	1	68	1	67	1
69	1	69	0	68	0	68	0
69	0	69	2	68	0	68	2
69	0	70	2	68	0	69	2
69	0	69	0	68	1	68	0
69	0	70	2	68	1	67	1
69	1	69	1	68	0	68	2
69	1	68	1	68	0	69	2
69	0	69	2	68	1	68	1
69	1	69	1	68	1	68	1
69	1	69	0	68	1	68	0
63	18	46	2	62	18	45	2
63	18	45	2	62	18	44	2
63	18	45	0	62	18	44	0
63	18	46	0	62	18	45	0
63	18	46	1	62	18	45	1
63	18	45	1	62	18	44	1
63	17	46	0	62	17	45	0
63	17	47	0	62	17	46	0
63	17	46	1	62	17	45	1
63	17	40 47	1	62	17	46	1
63	16	17 17	0	62	16	46	0
62	16	41 10	0	62 62	16	40	0
62	16	40	1	602	16	41	1
60	10	41	1	62	10	40	1
63	10	40	1	6Z	10	41	T
63	15	48	0	62	15	47	0
63	15	49	0	62	15	48	0
63	14	50	0	62	14	49	0
63	14	49	0	62	14	48	0
63	14	49	1	62	14	48	1
63	14	50	1	62	14	49	1
61	8	54	2	60	8	53	2
61	8	53	2	60	8	52	2
61	8	53	0	60	8	52	0

256432.9766	0.1000
256432.9766	0.1000
256432.9766	0.1000
256432.9766	0.1000
256432.9766	0.1000
256432.9766	0.1000
256480.0697	0.1000
256480.0697	0.1000
256480.0697	0.1000
256480.0697	0.1000
256482.3860	0.1000
256482.3860	0.1000
256621.9523	0.1000
256621.9523	0.1000
256621.9523	0.1000
256621.9523	0.1000
256624.0666	0.1000
256624.0666	0.1000
256726 9293	0 1000
256726 9293	0 1000
256726 9293	0 1000
256726 9293	0 1000
256726 9293	0.1000
256726 9293	0 1000
256726 9293	0 1000
256726 9293	0.1000
256726 9293	0.1000
256726 9293	0.1000
256726 9293	0.1000
256726 9293	0.1000
256788 2877	0 1000
256788 2877	0.1000
256788 2877	0.1000
256788 2877	0.1000
256790 8772	0.1000
256790 8772	0.1000
256985 5451	0.1000
256085 5/51	0.1000
256087 5511	0.1000
256987 5511	0.1000
250907.5511	0.1000
257222.2595	0.1000
257222.2535	0.1000
257224.5512	0.1000
257224.5512	0.1000
257511.0779	0.1000
257511.0779	0.1000
257071.0525	0.1000
201011.0020	0.1000
251013.0002	0.1000
201010.0002	0.1000
200203.3140	0.1000
200209.9143	0.1000
200202.4248	0.1000

63	13	51	1	62	13	50	1
63	13	50	1	62	13	49	1
62	7	55	2	61	7	54	2
62	7	56	2	61	7	55	2
62	7	50	2	61	7	50	2
02	1	55	0	01	~	54	0
63	8	56	1	62	8	55	1
63	8	55	1	62	8	54	1
63	12	52	0	62	12	51	0
63	12	52	1	62	12	51	1
63	12	51	1	62	12	50	1
63	12	51	2	62	12	50	2
63	12	52	2	62	12	51	2
63	12	51	0	62	12	50	0
64	7	57	1	63	7	56	1
61	7	58	1	63	7	57	1
64	7	50	т Т	60	7	57	1
04	1	58	0	03	1	57	0
65	6	59	1	64	6	58	1
65	6	60	1	64	6	59	1
65	6	60	0	64	6	59	0
65	5	61	2	64	5	60	2
65	5	60	2	64	5	59	2
66	5	62	1	65	5	61	1
66	5	61	1	65	5	60	1
66	5	62	0	65	5	61	0
66	Δ	63	ັ ົ	65	1	62	ິ ໂ
66	-	60	2	65	-	61	2
00	4	02	2	05	4	01	2
66	4	62	0	65	4	61	0
67	3	65	2	66	3	64	2
67	3	64	2	66	3	63	2
67	4	63	1	66	3	64	2
67	4	64	1	66	3	63	2
67	4	63	1	66	4	62	1
67	4	64	1	66	4	63	1
67	3	64	0	66	3	63	0
67	4	64	0	66	4	63	0
67	- २	64	0	66	4	63	0
68	2 2	67	° ℃	67	3	61	1
60	2	66	2	67	2	65	1
00	2	00	2	07	3	00	1
68	3	65	1	67	3	64	1
68	2	67	2	67	2	66	2
68	3	66	1	67	3	65	1
68	3	66	1	67	2	65	2
68	2	66	2	67	2	65	2
68	3	65	1	67	2	66	2
68	2	66	0	67	3	65	0
68	3	66	0	67	3	65	0
68	2	66	0 0	67	2	65	0
68	2	66	0	67	າ 2	65	0
60	ں ۱	60	0	60	∠ ○	67	4
69	T	б СО	2	00 CO	2	01	T
69	2	68	1	68	1	6/	2
69	2	67	1	68	1	68	2
69	1	69	2	68	1	68	2
69	1	68	2	68	1	67	2

258334 5933	0.1000
258334 5033	0.1000
200004.0000	0.1000
200414.0104	0.1000
258414.5164	0.1000
258420.9410	0.1000
258636.1391	0.1000
258636.1391	0.1000
258932.6720	0.1000
258946.3770	0.1000
258946.3770	0.1000
258948.3600	0.1000
258948.3600	0.1000
258960.8830	0.1000
259246 1131	0.1000
250246 1131	0 1000
200240.1101	0.1000
259249.0000	0.1000
259297.1315	0.1000
259297.1315	0.1000
259300.1826	0.1000
259345.0559	0.1000
259345.0559	0.1000
259394.5341	0.1000
259394.5341	0.1000
259397.0950	0.1000
259397.0950	0.1000
259397.0950	0.1000
259399.8043	0.1000
259589 8665	0.1000
259589 8665	0.1000
200000.0000	0.1000
209009.0000	0.1000
209009.0000	0.1000
259589.8005	0.1000
259589.8665	0.1000
259591.8870	0.1000
259591.8870	0.1000
259591.8870	0.1000
259841.7273	0.1000
259841.7273	0.1000
259841.7273	0.1000
259841.7273	0.1000
259841.7273	0.1000
259841.7273	0.1000
259841.7273	0.1000
259841 7273	0 1000
250811.7270	0.1000
209040.1922	0.1000
203040.1322	0.1000
209043.1922	0.1000
259843.7922	0.1000
260123.6096	0.1000
260123.6096	0.1000
260123.6096	0.1000
260123.6096	0.1000
260123.6096	0.1000

260123.6096	0.1000
260123.6096	0.1000
260123.6096	0.1000
260322.3121	0.1000
260322.3121	0.1000
260345.3702	0.1000
260345.3702	0.1000
260347.7126	0.1000
260347.7126	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260417.5697	0.1000
260457.2368	0.1000
260457.2368	0.1000
260457.2368	0.1000
260457.2368	0.1000
260459.3610	0.1000
260459.3610	0.1000
260585.8214	0.1000
260585.8214	0.1000
260585.8214	0.1000
260585.8214	0.1000
260587.8557	0.1000
260587.8557	0.1000
260734.7053	0.1000
260734.7053	0.1000
260909.3131	0.1000
260909.3131	0.1000
260911.6829	0.1000
260911.6829	0.1000
261116.1702	0.1000
261116.1702	0.1000
261118.4313	0.1000
261118.4313	0.1000
261367.2606	0.1000
261367.2606	0.1000
261833.2023	0.1000
261833.2023	0.1000
261840.0185	0.1000
261952.8368	0.1000
261952.8368	0.1000
261952.8368	0.1000
262049.4656	0.1000
262051.5073	0.1000

64	14	50	1	63	14	49	1
62	8	55	2	61	8	54	2
62	8	54	2	61	8	53	2
62	8	54	0	61	8	53	0
64	8	57	1	63	8	56	1
64	8	56	1	63	8	55	1
64	8	57	0	63	8	56	0
64	13	52	0	63	13	51	Õ
64	13	51	0	63	13	50	0
64	13	52	1	63	13	51	1
61	12	51	1	62	12	50	1
04 65	13	51	1	61	13	50	1
00	7	50	1	64	7	57	1
00	7	59	T	64	7	50	1
65	1	59	0	64 65	1	58	0
66	6	60	1	65	6	59	1
66	6	61	1	65	6	60	1
66	6	61	0	65	6	60	0
66	5	61	2	65	5	60	2
66	5	62	2	65	5	61	2
66	5	61	0	65	5	60	0
67	4	63	0	66	5	62	0
67	5	62	1	66	5	61	1
67	5	63	1	66	5	62	1
67	4	63	0	66	4	62	0
64	12	52	1	63	12	51	1
64	12	53	1	63	12	52	1
64	12	53	2	63	12	52	2
64	12	52	2	63	12	51	2
64	12	52	0	63	12	51	0
68	4	65	1	67	4	64	1
68	3	66	2	67	3	65	2
68	4	64	1	67	4	63	1
68	3	65	2	67	3	64	2
68	4	65	0	67	4	64	0
68	3	65	0	67	4	64	Õ
65	6	60	2	64	6	59	° 2
65	6	50	2	64	6	58	2
65	6	50	0	61	6	58	0
60	2	67	1	60	2	66	1
60	3 0	60	1	60	ა ი	67	1
60	2	60	2	60	2	65	∠ 1
69	2	00 67	2	00	ა ი	60	1
69	2	67	2	68	2	60	2
69	3	66	1	68	2	67	2
69	3	67	1	68	2	66	2
69	2	67	2	68	3	66	1
69	3	66	1	68	3	65	1
69	3	67	0	68	3	66	0
69	3	67	0	68	2	66	0
69	2	67	0	68	3	66	0
69	2	67	0	68	2	66	0
70	1	70	2	69	2	67	1
70	2	69	1	69	1	68	2
70	2	69	1	69	2	68	1

262051.5073	0.1000
262396.3470	0.1000
262396.3470	0.1000
262399 5058	0.1000
262461 8054	0 1000
262461 8054	0.1000
202401.0004	0.1000
202405.3009	0.1000
202535.2030	0.1000
262539.0247	0.1000
262539.0247	0.1000
262539.0247	0.1000
262939.5568	0.1000
262939.5568	0.1000
262942.9410	0.1000
262973.6308	0.1000
262973.6308	0.1000
262977.0922	0.1000
263010.0308	0.1000
263010.0308	0.1000
263013.1457	0.1000
263075.7152	0.1000
263078 1800	0 1000
263078 1800	0.1000
263082 7532	0.1000
203002.1332	0.1000
203100.1753	0.1000
203100.1753	0.1000
263193.5620	0.1000
263193.5620	0.1000
263209.6624	0.1000
263277.7045	0.1000
263277.7045	0.1000
263277.7045	0.1000
263277.7045	0.1000
263279.7267	0.1000
263279.7267	0.1000
263372.1109	0.1000
263372.1109	0.1000
263376.6278	0.1000
263531.4453	0.1000
263531.4453	0.1000
263531.4453	0.1000
263531 4453	0 1000
263531 4453	0.1000
262521 4452	0.1000
203031.4403	0.1000
203531.4453	0.1000
203531.4453	0.1000
263533.4437	0.1000
263533.4437	0.1000
263533.4437	0.1000
263533.4437	0.1000
263814.0907	0.1000
263814.0907	0.1000
263814.0907	0.1000

70	2	68	1	69	2	67	1
70	1	70	2	69	1	69	2
70	1	69	2	69	2	68	1
70	2	68	1	69	1	69	2
70	1	69	2	69	1	68	2
71	1	70	1	70	0	71	2
71	0	71	0	70	0	70	0
71	0	72	2	70	1	69	1
71	0	72	2	70	0	71	2
71	0	71	2	70	0	70	2
71	1	71	1	70	0	70	2
71	0	71	2	70	1	70	1
71	1	70	1	70	1	69	1
71	0	70	0	70	1	70	0
71	1	71	1	70	1	70	1
71	1	71	1 1	70	1	70	1
11	1	71	0	70	1	70	0
11	T	11	0	10	0	70	0
64	9	56	1	63	9	55	1
64	9	55	1	63	9	54	1
64	9	56	0	63	9	55	0
65	22	43	0	64	22	42	0
65	22	44	0	64	22	43	0
65	22	44	1	64	22	43	1
65	22	43	1	64	22	42	1
65	21	44	0	64	21	43	0
65	21	45	0	64	21	44	0
65	21	45	1	64	21	44	1
65	21	44	1	64	21	43	1
64	10	54	1	63	10	53	1
64	10	55	1	63	10	54	1
65	20	45	2	64	20	44	2
65	20	46	2	64	20	45	2
65	19	47	0	64	19	46	0
65	19	46	0	64	19	45	0
65	19	47	1	64	19	46	1
65	19	46	1	64	19	45	1
65	18	48	2	64	18	47	2
65	18	47	2	64	18	46	2
65	18	47	1	64	18	46	1
65	18	48	1	64	18	47	1
64	-0	58	2	63	-0	57	2
64	7	57	2	63	7	56	2
64	7	57	0	63	7	56	0
65	17	۸Q	0	64	17	18	0
65	17	10	0 0	61	17	10 10	2
65	17	49 10	2	64	17	40	2
CD CE	17	40	2	64 64	17	41	2
00	11	48	1	64	11	41	1
65	10	50	T	64	10	49	1
05	10	49 55	1	ъ4 60	10	48	1
63	9	55	2	62	9	54	2
63	9	54	2	62	9	53	2
65	15	51	0	64	15	50	0
65	15	50	0	64	15	49	0

263814.0907	0.1000
263814.0907	0.1000
263814.0907	0.1000
263814.0907	0.1000
263814.0907	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264108.3282	0.1000
264373.6476	0.1000
264373.6476	0.1000
264375.6719	0.1000
264441.2132	0.1000
264441.2132	0.1000
264443.7849	0.1000
264443.7849	0.1000
264558.7368	0.1000
264558.7368	0.1000
264560.9184	0.1000
264560.9184	0.1000
264629.4964	0.1000
264629.4964	0.1000
264693.2343	0.1000
264693.2343	0.1000
264849.4648	0.1000
264849.4648	0.1000
264851.6608	0.1000
264851.6608	0.1000
265032.3628	0.1000
265032.3628	0.1000
265034.7171	0.1000
265034.7171	0.1000
265232.4724	0.1000
265232.4724	0.1000
265239.2508	0.1000
265249.5444	0.1000
265249.5444	0.1000
265249.5444	0.1000
265249.5444	0.1000
265513.5201	0.1000
265513.5201	0.1000
265540.4859	0.1000
265540.4859	0.1000
265831.5826	0.1000
265831.5826	0.1000

65	15	50	1	64	15	49	1
65	15	51	1	64	15	50	1
65	14	51	0	64	14	50	0
65	14	52	1	64	14	51	1
65	14	51	1	64	14	50	1
65	8	57	1	64	8	56	1
65	8	58	1	64	8	57	1
65	8	58	0	64	8	57	0
62	0	56	0 0	62	0	55	0
60	0	50	2	62	0	55	2
63	0	55	2	62 60	0	54	2
63	8	55	0	62	8	54	0
64	10	55	2	63	10	54	2
64	10	54	2	63	10	53	2
67	6	62	1	66	6	61	1
67	6	61	1	66	6	60	1
67	6	62	0	66	6	61	0
67	5	62	2	66	5	61	2
67	5	63	2	66	5	62	2
69	3	67	2	68	4	64	1
69	4	65	1	68	4	64	1
66	6	60	2	65	6	59	2
66	6	61	2	65	6	60	2
69	4	66	1	68	4	65	1
69	3	67	2	68	3	66	2
69	3	66	2	68	4	65	1
60	3	66	2	68	3	65	2
60	ວ ວ	66	2	60	⊿	65	~
69	3	66	0	00	4	00	0
69	4	00	0	60	4	00	0
69	3	66	0	68	3	65	0
66	6	60	0	65	6	59	0
70	2	69	2	69	2	68	2
70	3	68	1	69	3	67	1
70	3	67	1	69	2	68	2
70	3	67	1	69	3	66	1
70	2	68	2	69	2	67	2
70	2	69	2	69	3	66	1
70	2	68	2	69	3	67	1
70	3	68	1	69	2	67	2
70	2	68	0	69	3	67	0
70	3	68	0	69	2	67	0
70	3	68	0	69	3	67	0
70	2	68	0	69	2	67	0
65	12	54	0	64	12	53	0
71	1	70	2	70	2	69	1
71	2	70	1	70	2	60	1
71	2	60	1	70	2 1	70	2 1
71	2	70	1	70	1	10	2
11	2	70	1	70	T	69	2
1	1	/1	2	10	1	10	2
/1	1	70	2	70	1	69	2
/1	1	71	2	70	2	68	1
71	2	69	1	70	2	68	1
72	1	72	1	71	0	71	2
72	1	71	1	71	1	70	1

265833.6605	0.1000
265833.6605	0.1000
266231.9002	0.1000
266233.8415	0.1000
266233 8415	0 1000
266263 4395	0.1000
200203.4393	0.1000
200203.4395	0.1000
266266.6712	0.1000
266420.9942	0.1000
266420.9942	0.1000
266424.8764	0.1000
266560.9729	0.1000
266560.9729	0.1000
266650.3658	0.1000
266650.3658	0.1000
266653.7420	0.1000
266677 7136	0 1000
266677 7136	0 1000
266065 2977	0.1000
200905.2017	0.1000
200905.2877	0.1000
266965.2877	0.1000
266965.2877	0.1000
266965.2877	0.1000
266965.2877	0.1000
266965.2877	0.1000
266965.2877	0.1000
266967.5121	0.1000
266967.5121	0.1000
266967.5121	0.1000
266969.5326	0.1000
267221 1109	0.1000
267221 1100	0 1000
267221.1100	0 1000
207221.1109	0.1000
207221.1109	0.1000
267221.1109	0.1000
267221.1109	0.1000
267221.1109	0.1000
267221.1109	0.1000
267223.1107	0.1000
267223.1107	0.1000
267223.1107	0.1000
267223.1107	0.1000
267413.6029	0.1000
267504.2480	0.1000
267504.2480	0.1000
267504.2480	0.1000
267504 2480	0,1000
267504 2480	0 1000
201007.2400	0 1000
201004.2400	0.1000
201304.2480	0.1000
20/504.2480	0.1000
267798.6979	0.1000
267798.6979	0.1000

72	1	72	1	71	1	71	1
72	0	72	0	71	1	71	0
72	0	72	2	71	0	71	2
72	0	72	2	71	1	71	1
72	0	73	2	71	1	70	1
72	1	72	0	71	0	71	0
72	1	72	0	71	1	71	0
72	0	72	0	71	0	71	0
72	0	73	2	71	0	72	2
72	1	71	1	71	0	72	2
65	à	56	1	64	a	55	1
65	0	57	1	61	0	56	1
65 65	9	57	1 1	64	9	50	1
60	9	51	0	64 65	9	00 4 2	0
00	22	44	0	00	22	43	0
66	22	45	2	65	22	44	2
66	22	45	0	65	22	44	0
66	22	44	2	65	22	43	2
66	22	45	1	65	22	44	1
66	22	44	1	65	22	43	1
65	7	58	2	64	7	57	2
65	7	59	2	64	7	58	2
65	7	58	0	64	7	57	0
66	21	45	2	65	21	44	2
66	21	45	0	65	21	44	0
66	21	46	2	65	21	45	2
66	21	46	0	65	21	45	0
65	11	54	0	64	11	53	0
66	20	47	2	65	20	46	2
66	20	46	2	65	20	45	2
66	20	46	0	65	20	45	0
66	20	47	0	65	20	46	0
65	10	55	1	64	10	54	1
65	10	56	1	64	10	55	1
65	10	56	0	64	10	55	0
66	19	48	2	65	19	Δ7	2
66	10	40 47	2	65	10	46	2
66	10		0	65	10	16	0
66	10	41 10	0	65	10	40	0
66	10	40	1	65	10	47	1
66	10	40	1	00 65	10	41	1
00	19	41	1	00	19	40	1
00	10	40	2	00	10	41	2
66	18	48	0	65	18	47	0
66	18	49	2	65	18	48	2
66	18	49	0	65	18	48	0
66	18	48	1	65	18	47	1
66	18	49	1	65	18	48	1
66	17	49	2	65	17	48	2
66	17	50	2	65	17	49	2
66	16	50	2	65	16	49	2
66	16	51	2	65	16	50	2
66	16	51	1	65	16	50	1
66	16	50	1	65	16	49	1
66	15	52	0	65	15	51	0

267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798.6979	0.1000
267798 6979	0.1000
268394 3451	0 1000
268394 3451	0.1000
268306 6720	0.1000
200390.0720	0.1000
200559.0400	0.1000
200539.0400	0.1000
268539.0486	0.1000
268539.0486	0.1000
268541.4237	0.1000
268541.4237	0.1000
268628.4299	0.1000
268628.4299	0.1000
268635.1199	0.1000
268661.6776	0.1000
268661.6776	0.1000
268661.6776	0.1000
268661.6776	0.1000
268663.9310	0.1000
268802.6294	0.1000
268802.6294	0.1000
268802.6294	0.1000
268802.6294	0.1000
268840.9410	0.1000
268840.9410	0.1000
268840.9410	0.1000
268966 1135	0 1000
268966 1135	0 1000
268066 1135	0.1000
200900.1135	0.1000
200900.1135	0.1000
200900.3350	0.1000
200900.3350	0.1000
269157.9249	0.1000
269157.9249	0.1000
269157.9249	0.1000
269157.9249	0.1000
269160.2234	0.1000
269160.2234	0.1000
269385.7548	0.1000
269385.7548	0.1000
269660.1606	0.1000
269660.1606	0.1000
269662.5159	0.1000
269662.5159	0.1000
269997.4332	0.1000

66	15	51	0	65	15	50	0
66	8	59	0	65	8	58	0
64	9	55	0	63	9	54	0
64	9	56	2	63	9	55	2
64	9	55	2	63	9	54	2
67	7	61	1	66	7	60	1
67	7	60	1	66	7	59	1
67	7	61	0	66	7	60	0
68	6	62	1	67	6	61	1
68	6	63	1	67	6	62	1
64	8	56	2	63	8	55	2
64	8	57	2	63	8	56	2
68	5	64	2	67	5	63	2
68	5	63	2	67	5	62	2
68	5	63	0	67	5	62	0
68	6	63	0	67	5	62	0
67	6	61	0 2	66	6	60	2
67	6	62	2	66	6	61	2
67	6	61	2	66	6	60	2
70	3	68	0 2	60	3	67	2
70	3 3	67	2	60	3 3	66	2
70	3 2	67	2	60	۲ ۵	66	∠ 1
70	4	67	1	69	ू २	66	2
70	4	66	1	69	4	65	1
70	4	66	1	69	ू २	67	2
70	י ג	68	2	69	4	65	1
70	4	67	1	69	4	66	1
70	4	67	0	69	4	66	0
70	3	67	0	69	4	66	0
70	3	67	0	69	3	66	0
70	4	67	0	69	3	66	0
71	3	68	1	70	3	67	1
71	2	70	2	70	2	69	2
71	2	69	2	70	2	68	2
71	3	68	1	70	2	69	2
71	3	69	1	70	3	68	1
71	3	69	1	70	2	68	2
71	2	70	2	70	3	67	1
71	2	69	2	70	3	68	1
71	2	69	0	70	3	68	0
71	3	69	0	70	2	68	0
71	2	69	0	70	2	68	0
71	3	69	0	70	3	68	0
66	13	54	0	65	13	53	0
66	13	53	2	65	13	52	2
66	13	54	2	65	13	53	2
66	13	53	0	65	13	52	0
72	2	70	1	71	1	71	2
72	2	70	1	71	2	69	1
72	1	72	2	71	2	69	1
72	1	71	2	71	2	70	1
72	1	72	2	71	1	71	2
72	2	71	1	71	1	70	2

269997.4332	0.1000
270045.4985	0.1000
270189.5407	0.1000
270189.5407	0.1000
270189.5407	0.1000
270308.5060	0.1000
270308.5060	0.1000
270312.4990	0.1000
270327.517	0.1500
270327.517	0.1500
270333 2381	0 1000
270333 2381	0.1000
270347 7168	0.1000
270347.7168	0.1000
270347.7100	0.1000
270350.0230	0.1000
270408.9040	0.1000
2/05/1.8/63	0.1000
270571.8763	0.1000
270576.3300	0.1000
270653.3558	0.1000
270653.3558	0.1000
270653.3558	0.1000
270653.3558	0.1000
270653.3558	0.1000
270653.3558	0.1000
270653.3558	0.1000
270653.3558	0.1000
270655.4159	0.1000
270655.4159	0.1000
270655.4159	0.1000
270655.4159	0.1000
270910.5263	0.1000
270910 5263	0.1000
270910.5263	0.1000
270910 5263	0 1000
270910.0200	0.1000
270010 5262	0.1000
270910.5203	0.1000
270910.5203	0.1000
270910.5263	0.1000
270912.5844	0.1000
270912.5844	0.1000
270912.5844	0.1000
270912.5844	0.1000
270960.7555	0.1000
270962.8549	0.1000
270962.8549	0.1000
270968.3022	0.1000
271194.2884	0.1000
271194.2884	0.1000
271194.2884	0.1000
271194.2884	0.1000
271194.2884	0.1000
271194.2884	0.1000

72	1	71	2	71	1	70	2
72	2	71	1	71	2	70	1
73	1	73	0	72	1	72	0
73	1	72	1	72	0	73	2
73	0	73	0	72	1	72	0
73	0	74	2	72	0	73	2
73	1	73	1	72	1	72	1
73	1	73	1	72	0	72	2
73	0	74	2	72	1	71	1
73	0	73	0	72	<u>۲</u>	72	0
72	1	70	1	72	1	71	1
72	1	72	1	72	1	70	0
73	1	73	0	70	1	70	1
13	0	13	2	72	1	72	1
13	10	13 E1	2	12	10	12	2
66	12	54	1	05	12	55	1
00	9	50	1	00	9	57	1
00	9	57	T	00	9	50	1
60	9	58	0	65	9	57	0
67	22	40	0	66	22	45	0
67	22	45	2	66	22	44	2
67	22	45	0	66	22	44	0
67	22	40	2	66	22	45	2
01 67	21	41	0	00	21	40	0
01 67	21	40	0	00	21	45 45	0
01 67	21	40	2	00	21	45	2
01 67	21	41	2 1	00	21	40	∠ 1
01 67	21	41	1	00	21	40	1
66	10	40	1	00		40	1
66	10	50	1	05	10	55	1
00	10	57	1	00	10	50	1
60	11	50	2	00	11	55	2
66	11	55	2	00 65	11	54	2
67	10	20	0	60	10	54 10	0
01 67	10	49	2	00	10	40	2
07	10	50	2	00	10	49	∠ ₁
01 67	10	50 40	1	00	10	49	1
01 67	10	49	1	00	10	40	1
01 67	17	51	2	00	17	50	2
67	17	50	2 1	60	17	49	4
67	17	50	1	60	17	49	1
60	11	51	1	00	11	50	1
69	0	64	1	00	0	62	1
69	6	64 64	1	60	6	63	1
69	р Г	64	0	00	р Г	63	0
09	5	04 65	1	00	5	03	1
70	5	60	1	69	5	64 65	1
70	5	66	1	69	5	65	1
70	4	60	0	69	5	65	0
10	4 1	01 66	2	60	4 1	00	2
10	4	57	2	61	4	00	2
00	0 0	50 20	2	64 61	ō o	50	∠ ೧
67	0 1 F	50	2	66	0 1 F	51 50	∠ ∩
51	тU	50	0	00	τU	<u> </u>	0

271194.2884	0.1000
271194.2884	0.1000
271488.8772	0.1000
271488.8772	0.1000
271488.8772	0.1000
271488.8772	0.1000
271488.8772	0.1000
271488.8772	0.1000
271488.8772	0.1000
271488 8772	0 1000
271488 8772	0 1000
271488 8772	0 1000
271488 8772	0.1000
271400.0772	0.1000
271400.0772	0.1000
271740.1307 070202 GEEE	0.1000
272303.0555	0.1000
272383.0555	0.1000
272386.0048	0.1000
272637.8688	0.1000
272637.8688	0.1000
272637.8688	0.1000
272637.8688	0.1000
272765.9836	0.1000
272765.9836	0.1000
272765.9836	0.1000
272765.9836	0.1000
272768.3413	0.1000
272768.3413	0.1000
273035.7324	0.1000
273035.7324	0.1000
273063.6729	0.1000
273063.6729	0.1000
273069.5316	0.1000
273285.7393	0.1000
273285.7393	0.1000
273288.1166	0.1000
273288.1166	0.1000
273524.7108	0.1000
273524.7108	0.1000
273526.8425	0.1000
273526.8425	0.1000
274004.3493	0.1000
274004.3493	0.1000
274007.5793	0.1000
274022 6420	0 1000
274130 2097	0 1000
274130 2007	0 1000
274120 2097	0 1000
274130 2037	0.1000
21 7130.2031	0.1000
214130.2031 07/12/ 0616	0.1000
214134.2010	0.1000
214134.2010	0.1000
2/416/.2957	0.1000

67	15	52	0	66	15	51	0
67	15	52	1	66	15	51	1
67	15	53	1	66	15	52	1
68	6	62	0	67	6	61	0
72	3	70	1	71	2	69	2
72	3	69	1	71	2	70	2
72	3	70	1	71	3	69	1
72	2	71	2	71	2	70	2
72	2	70	2	71	2	69	2
72	2	71	2	71	3	68	1
72	3	69	1	71	3	68	1
72	2	70	2	71	3	69	1
72	3	70	0	71	3	69	0
72	2	70	0	71	3	69	0
72	3	70	0	71	2	69	0
72	2	70	0	71	2	69	0
65	9	56	2	64	9	55	2
65	9	56	0	64	9	55	0
65	9	57	2	64	9	56	2
73	1	72	2	72	2	71	1
73	2	72	1	72	2	71	1
73	1	73	2	72	1	72	2
73	2	72	1	72	1	71	2
73	2	71	1	72	1	72	2
73	2	71	1	72	2	70	1
73	1	72	2	72	1	71	2
73	1	73	2	72	2	70	1
74	1	74	1	73	0	73	2
74	0	75	2	73	1	72	1
74	1	73	1	73	1	72	1
74	1	74	1	73	1	73	1
74	0	75	2	73	0	74	2
74	0	74	2	73	1	73	1
74	1	73	1	73	0	74	2
74	0	74	2	73	0	73	2
67	13	55	0	66	13	54	0
67	13	54	1	66	13	53	1
67	13	55	1	66	13	54	1
67	13	54	0	66	13	53	0
67	9	59	1	66	9	58	1
67	9	58	1	66	9	57	1
68	23	46	0	67	23	45	0
68	23	45	0	67	23	44	0
68	23	45	1	67	23	44	1
68	23	46	1	67	23	45	1
68	22	47	2	67	22	46	2
68	22	46	2	67	22	45	2
68	22	46	1	67	22	45	1
68	22	47	1	67	22	46	1
68	21	47	2	67	21	46	2
68	21	48	2	67	21	47	2
68	21	48	0	67	21	47	0
68	21	47	0	67	21	46	0

274167.2957	0.1000
274169.3963	0.1000
274169.3963	0.1000
274194.6265	0.1000
274599.8024	0.1000
274599,8024	0.1000
274599 8024	0 1000
274500 8024	0.1000
274500 8024	0.1000
274500 2024	0.1000
274500 2024	0.1000
274599.0024	0.1000
274599.0024	0.1000
274601.8409	0.1000
274601.8409	0.1000
274601.8409	0.1000
274601.8409	0.1000
274774.8358	0.1000
274774.8358	0.1000
274774.8358	0.1000
274884.1102	0.1000
274884.1102	0.1000
274884.1102	0.1000
274884.1102	0.1000
274884.1102	0.1000
274884.1102	0.1000
274884.1102	0.1000
274884.1102	0.1000
275178.7643	0.1000
275178.7643	0.1000
275178.7643	0.1000
275178.7643	0.1000
275178.7643	0.1000
275178.7643	0.1000
275178.7643	0.1000
275178.7643	0.1000
275182.6020	0.1000
275189.9326	0.1000
275189.9326	0.1000
275193.3541	0.1000
276341,9966	0.1000
276341 9966	0 1000
276620 4808	0 1000
276620 4808	0.1000
276623 0880	0.1000
276622.0000	0.1000
270023.0000	0.1000
210131.9194	0.1000
210131.9194	0.1000
210140.3511	0.1000
2/0/40.35/1	0.1000
210012.3610	0.1000
2/68/2.36/0	0.1000
2/68/2.36/0	0.1000
276872.3670	0.1000

68	20	48	2	67	20	47	2
68	20	49	2	67	20	48	2
60	10	50	2	67	10	10	2
00	19	10	2	07	19	49	2
00	19	49	2	01	19	48	2
67	10	58	0	66	10	51	0
68	18	51	2	67	18	50	2
68	18	50	2	67	18	49	2
68	18	51	1	67	18	50	1
68	18	50	1	67	18	49	1
67	11	56	0	66	11	55	0
68	8	61	1	67	8	60	1
68	8	60	1	67	8	59	1
60	7	63	1	68	7	62	1
60	7	60	1	60	7	61	1
60	17	02	- -	67	17	501	1
68	11	51	2	67	17	50	2
68	17	52	2	67	17	51	2
70	6	65	0	69	6	64	0
70	5	65	0	69	5	64	0
71	5	66	1	70	5	65	1
71	5	67	1	70	5	66	1
71	4	68	2	70	4	67	2
71	4	67	2	70	4	66	2
71	4	67	0	70	4	66	0
71	5	67	0	70	5	66	0
60	6	62	ິ ໂ	60	6	60	о О
09	0	03	2	00	0	02	2
69	6	64	2	68	6	63	2
69	6	63	0	68	6	62	0
66	8	58	0	65	8	57	0
68	16	53	2	67	16	52	2
68	16	52	2	67	16	51	2
68	16	53	1	67	16	52	1
68	16	52	1	67	16	51	1
72	4	68	1	71	3	69	2
72	4	68	1	71	4	67	1
72	3	69	2	71	3	68	2
72	3	70	2	71	3	60	2
70	⊿	60	1	71	2	60	2
70	4	09	1	71	3	00	4
72	3	10	2	11	4	67	T
72	4	69	1	/1	4	68	1
72	3	69	2	71	4	68	1
72	4	69	0	71	4	68	0
72	3	69	0	71	4	68	0
72	3	69	0	71	3	68	0
73	3	71	1	72	3	70	1
73	3	70	1	72	3	69	1
73	2	72	2	72	3	69	1
73	2	71	2	72	3	70	1
72	2 0	71	2	70	0 0	70	- -
10	2	/⊥ 74	∠	12	2	10	2
13	კ ე	11	1	12	2	10	2
13	3	70	1	72	2	/1	2
73	2	72	2	72	2	71	2
73	2	71	0	72	3	70	0
73	2	71	0	72	2	70	0

277026.4421	0.1000
277026.4421	0.1000
277205.4247	0.1000
277205.4247	0.1000
277211.3220	0.1000
277415.9605	0.1000
277415.9605	0.1000
277418.4660	0.1000
277418.4660	0.1000
277510.0830	0.1000
277541.2619	0.1000
277541.2619	0.1000
277662.0443	0.1000
277662.0443	0.1000
277666.2043	0.1000
277666.2043	0.1000
277684.7686	0.1000
277695.9893	0.1000
277814.1494	0.1000
277814.1494	0.1000
277814.1494	0.1000
277814.1494	0.1000
277816.8151	0.1000
277816.8151	0.1000
277818.8970	0.1000
277818.8970	0.1000
277823.0078	0.1000
277834 9732	0.1000
277968 5666	0 1000
277968 5666	0 1000
277970 9198	0.1000
277970 9198	0.1000
278028 5043	0.1000
278028 5043	0.1000
278028 5043	0.1000
278028 5043	0 1000
278028 5043	0.1000
210020.0040	0.1000
278020.0040	0.1000
210020.0040	0.1000
210020.0040	0.1000
210030.3400	0.1000
210030.3400	0.1000
210030.5400	0.1000
210200.0010	0.1000
218288.8010	0.1000
218288.8010	0.1000
218288.8070	0.1000
218288.8010	0.1000
218288.8070	0.1000
218288.8070	0.1000
218288.8070	0.1000
278290.8438	0.1000
278290.8438	0.1000

73	3	71	0	72	3	70	0	
73	3	71	0	72	2	70	0	
74	2	72	1	73	1	73	2	
74	2	73	1	73	1	72	2	
74	1	74	2	73	1	73	2	
74	1	74	2	73	2	71	1	
74	1	73	2	73	2	72	1	
74	2	73	1	73	2	72	1	
74	1	73	2	73	1	72	2	
74	2	72	1	73	2	71	1	
75	1	75	1	74	0	74	2	
75	0	75	2	74	1	74	1	
75	0	76	2	7/	<u>۲</u>	75	2	
75	0	70	2	74	0	77	2	
75	1	70	2 1	74	0	75	2	
75	1	75	1	74	1	70	2 1	
10	1	15	1	74	1	74	1	
15	T	74	T	74	T	13	1	
15	0	76	2	14	1	13	1	
66	9	57	0	65	9	56	0	
68	12	57	0	67	12	56	0	
66	8	59	1	65	7	58	2	
66	8	58	1	65	7	59	2	
69	21	49	2	68	21	48	2	
69	21	48	0	68	21	47	0	
69	21	48	2	68	21	47	2	
69	21	49	0	68	21	48	0	
69	20	49	2	68	20	48	2	
69	20	50	2	68	20	49	2	
69	18	51	2	68	18	50	2	
69	18	52	2	68	18	51	2	
74	2	72	2	73	2	71	2	
74	3	72	1	73	3	71	1	
74	3	71	1	73	3	70	1	
74	3	72	1	73	2	71	2	
74	2	73	2	73	3	70	1	
74	2	73	2	73	2	72	2	
74	3	71	1	73	2	72	2	
74	2	72	2	73	3	71	1	
74	3	72	0	73	3	71	0	
74	2	72	0	73	2	71	0	
74	2	72	0	73	3	71	0	
74	3	72	0	73	2	71	0	
75	1	74	2	74	1	73	2	
75	2	74	1	74	1	73	2	
75	2	74	1	74	2	73	1	
75	2	73	1	74	1	74	2	
75	1	75	・ う	74	1	74	2	
75	1 1	7/	∠ ົ	71	с Т	' ± 72	ے۔ 1	
75	с Т	72	∠ 1	7/	∠ ೧	70	1 1	
75	∠ 1	75	ς Τ	74 7/	∠ ົ	י∠ 70	1 1	
60	1 7	60	∠ ೧	14 60	∠ 7	1 Z	1 1	
60	ו ד	62 62	2	60	1 7	60 01	∠ 0	
09	1	03	∠	00	1	0Z	2	
10	1	15	1	15	U	10	2	

278290.8438	0.1000
278290.8438	0.1000
278573 8512	0 1000
278573 8512	0.1000
270573.0512	0.1000
270575.0512	0.1000
2/85/3.8512	0.1000
278573.8512	0.1000
278573.8512	0.1000
278573.8512	0.1000
278573.8512	0.1000
278868.4528	0.1000
278868.4528	0.1000
278868.4528	0.1000
278868.4528	0.1000
278868.4528	0.1000
278868 4528	0 1000
278868 4528	0.1000
270000.4020	0.1000
278868.4528	0.1000
279280.2183	0.1000
280183.7901	0.1000
280327.1530	0.1000
280327.1530	0.1000
280980.0896	0.1000
280980.0896	0.1000
280980.0896	0.1000
280980.0896	0.1000
281140.9108	0.1000
281140.9108	0.1000
281548.6085	0.1000
281548.6085	0.1000
281977.6138	0.1000
281977.6138	0.1000
281977 6138	0 1000
201077.0100	0.1000
201911.0130	0.1000
201977.0130	0.1000
281977.6138	0.1000
281977.6138	0.1000
281977.6138	0.1000
281979.7298	0.1000
281979.7298	0.1000
281979.7298	0.1000
281979.7298	0.1000
282263.0917	0.1000
282263.0917	0.1000
282263.0917	0.1000
282263.0917	0.1000
282263.0917	0.1000
282263.0917	0,1000
282263 0917	0,1000
282263 0917	0.1000
282374 6928	0 1000
202017.0320	0.1000
202014.0920 202557 0005	0.1000
202001.0095	0.1000

76	0	76	2	75	1	75	1
76	1	76	1	75	0	75	2
76	1	76	1	75	1	75	1
76	0	76	2	75	0	75	2
76	0	77	2	75	0	76	2
76	0	77	2	75	1	74	1
76	1	75	1	75	1	74	1
69	9	60	1	68	9	59	1
69	g	61	1	68	q	60	1
60	a	61	0	68	a	60	0
60	10	E0	0	60	10	57	0
60	12	50	1	60	10	57	1
09	12	57	1	00	12	50	1
69 70	12	58	1	68	12	51	T
70	24	41	0	69	24	46	0
70	24	46	0	69	24	45	0
70	23	48	2	69	23	47	2
70	23	47	2	69	23	46	2
70	23	48	1	69	23	47	1
70	23	47	1	69	23	46	1
68	8	61	2	67	8	60	2
68	8	60	2	67	8	59	2
70	8	62	1	69	8	61	1
70	8	63	1	69	8	62	1
70	8	63	0	69	8	62	0
71	7	64	1	70	7	63	1
71	7	65	1	70	7	64	1
72	6	66	1	71	6	65	1
72	6	67	1	71	6	66	1
72	6	67	<u>۲</u>	71	6	66	0
72	5	60	0 0	71	5	67	0
72	5	67	2	71	5	66	2
12	5	07	2	11	5	00	2
72	5	б <i>і</i> ГО	0	11	5	66	0
70	21	50	2	69	21	49	2
70	21	49	2	69	21	48	2
70	21	50	0	69	21	49	0
70	21	49	0	69	21	48	0
70	21	49	1	69	21	48	1
70	21	50	1	69	21	49	1
71	6	66	2	70	6	65	2
71	6	65	2	70	6	64	2
73	5	69	1	72	5	68	1
73	5	68	1	72	5	67	1
73	4	69	0	72	4	68	0
73	5	69	0	72	5	68	0
70	20	50	2	69	20	49	2
70	20	51	2	69	20	50	2
70	20	51	0	69	20	50	0
70	20	50	0	60	20	<u>1</u> 0	ñ
70	20	50	1	60	20 2∩	-19 //0	1
70	20 20	50	1	60	20 20	49 E0	1 1
10	∠∪ 1 1	51	T	60	∠∪ 1 1	50	T
09	11	59	0	б СО	11	50	0
69	11	59	1	68	11	58	1
69	11	58	1	68	11	57	1

282557.8695	0.1000
282557.8695	0.1000
282557.8695	0.1000
282557.8695	0.1000
282557.8695	0.1000
282557.8695	0.1000
282557.8695	0.1000
284164,4074	0.1000
284164 4074	0 1000
284167 1256	0 1000
204107.1200	0.1000
204402.0079	0.1000
204471.1733	0.1000
2044/1.1/33	0.1000
284700.8129	0.1000
284700.8129	0.1000
284814.9104	0.1000
284814.9104	0.1000
284817.1769	0.1000
284817.1769	0.1000
284942.2042	0.1000
284942.2042	0.1000
284978.2471	0.1000
284978.2471	0.1000
284982.0078	0.1000
285007.0684	0.1000
285007.0684	0.1000
285036.5712	0.1000
285036.5712	0.1000
285039.8191	0.1000
285042.5678	0.1000
285042.5678	0.1000
285045,9704	0.1000
285089 3030	0 1000
285089 3030	0 1000
285089 3030	0.1000
205009.5050	0.1000
200009.0000	0.1000
285091.9026	0.1000
285091.9026	0.1000
285099.0529	0.1000
285099.0529	0.1000
285182.0003	0.1000
285182.0003	0.1000
285184.8023	0.1000
285184.8023	0.1000
285257.6859	0.1000
285257.6859	0.1000
285257.6859	0.1000
285257.6859	0.1000
285260.1305	0.1000
285260.1305	0.1000
285285.3116	0.1000
285287.2687	0.1000
285287.2687	0.1000

74	3	72	2	73	3	71	2
74	4	71	1	73	3	70	2
74	4	70	1	73	4	69	1
74	4	71	1	73	4	70	1
74	4	70	1	73	3	71	2
74	3	71	2	73	3	70	2
74	4	71	0	73	3	70	0
74	4	71	0	73	4	70	0
74	3	71	0	73	3	70	0
74	3	71	0	73	4	70	Õ
68	10	58	0	67	10	57	0
70	10	50 51	0	60	10	50	0
70	10	51	0	60	10	50	0
70	19	52	0	60	19	51	0
70	19	5Z	2	09	19	51	2
70	19	51	2	69	19	50	2
70	19	52	1	69	19	51	1
70	19	51	1	69	19	50	1
69	10	59	1	68	10	58	1
69	10	60	1	68	10	59	1
75	3	73	1	74	3	72	1
75	2	74	2	74	3	71	1
75	2	73	2	74	2	72	2
75	2	73	2	74	3	72	1
75	3	73	1	74	2	72	2
75	3	72	1	74	2	73	2
75	2	74	2	74	2	73	2
75	3	72	1	74	3	71	1
75	2	73	0	74	3	72	0
75	2	73	0	74	2	72	0
75	3	73	0	74	3	72	0
75	3	73	0	74	2	72	0
70	18	53	2	69	18	52	2
70	18	52	2	69	18	51	2
70	18	53	1	69	18	52	1
70	18	52	1	69	18	51	1
70	7	63	0	69	7	62	0
76	י ר	75	1	75	1	7/	о 2
76	1	76	2	75	1	75	2
76	1	75	2	75	2 1	70	2 1
76	1	75	2	75	1	74	1
70	1	75	2 1	75	1	74	4
70	2	74	1	10	2	13	1
10	2	74	T	15	1	15	2
76	1	76	2	75	2	73	1
76	2	75	1	75	2	74	1
70	17	53	2	69	17	52	2
70	17	54	2	69	17	53	2
70	17	53	1	69	17	52	1
70	17	54	1	69	17	53	1
77	1	77	0	76	0	76	0
77	1	76	1	76	0	77	2
77	0	78	2	76	1	75	1
77	1	77	0	76	1	76	0
77	0	77	0	76	0	76	0

285403.3840	0.1000
285403.3840	0.1000
285403.3840	0.1000
285403.3840	0.1000
285403.3840	0.1000
285403.3840	0.1000
285405.4859	0.1000
285405 4859	0 1000
285405 4859	0 1000
285405 4859	0 1000
285408 1057	0 1000
200400.1001	0.1000
200400.0091	0.1000
200403.0091	0.1000
200403.0091	0.1000
205455.0091	0.1000
285456.1141	0.1000
285456.1141	0.1000
285491.1396	0.1000
285491.1396	0.1000
285666.2881	0.1000
285666.2881	0.1000
285666.2881	0.1000
285666.2881	0.1000
285666.2881	0.1000
285666.2881	0.1000
285666.2881	0.1000
285666.2881	0.1000
285668.3059	0.1000
285668.3059	0.1000
285668.3059	0.1000
285668.3059	0.1000
285683.8400	0.1000
285683.8400	0.1000
285686.4600	0.1000
285686.4600	0.1000
285877.8051	0.1000
285952.2014	0.1000
285952.2014	0.1000
285952.2014	0.1000
285952.2014	0.1000
285952,2014	0.1000
285952 2014	0 1000
285952 2014	0 1000
285952 2014	0 1000
285958 1362	0 1000
200000.4002	0.1000
200900.4002	0.1000
200301.00//	0.1000
200901.00//	0.1000
200241.3500	0.1000
200241.3500	0.1000
200241.3506	0.1000
286247.3506	0.1000
286247.3506	0.1000

77	0	78	2	76	0	77	2
77	0	77	0	76	1	76	0
77	1	77	1	76	0	76	2
77	1	77	1	76	1	76	1
77	1	76	1	76	1	75	1
77	0	77	2	76	0	76	2
77	0	77	2	76	1	76	1
70	16	54	1	69	16	53	1
70	16	55	1	69	16	54	1
69	11	58	0	68	11	57	0
70	15	55	0	60	15	5/	0
70	15	56	0	60	15	54	0
70	15	50	1	69	15	55	1
70	15	55	1	69	15	54	1
70	15	56	T	69	15	55	1
70	14	57	0	69	14	56	0
70	14	57	2	69	14	56	2
70	14	56	2	69	14	55	2
70	14	56	1	69	14	55	1
70	14	57	1	69	14	56	1
70	13	58	0	69	13	57	0
70	13	57	1	69	13	56	1
70	13	58	1	69	13	57	1
70	13	58	2	69	13	57	2
70	13	57	2	69	13	56	2
70	13	57	0	69	13	56	0
68	9	60	2	67	9	59	2
68	9	59	2	67	9	58	2
68	9	59	0	67	9	58	0
70	9	62	0	69	9	61	Õ
60	8	61	0	68	g	60	0
72	7	66	0	71	7	65	0
71	ı Q	60 61	0	70	ı Q	63	0
72	6	60	1	70	6	67	1
73	0	00 67	1	70	0	66	1
13	0	67	T	12	0	00	T
13	5	68	0	12	5	67	0
70	12	59	0	69	12	58	0
70	12	58	1	69	12	57	1
70	12	59	1	69	12	58	1
72	6	67	2	71	6	66	2
72	6	66	2	71	6	65	2
72	6	66	0	71	6	65	0
74	4	70	2	73	4	69	2
74	5	70	1	73	5	69	1
74	4	71	2	73	4	70	2
74	5	69	1	73	5	68	1
74	5	70	0	73	5	69	0
74	4	70	0	73	4	69	0
71	23	49	2	70	23	48	2
71	23	48	2	70	23	47	2
71	23	48	1	70	23	47	1
71	20 23	10 10	1	70	20 23	19 19	1
70	20 10	7 <i>3</i> 50	- -	60	20 10	-10 57	- L
70	10	00	2	09	10	ບ/ ເດ	2
10	12	59	2	69	12	ъŏ	2

286247.3506	0.1000
286247.3506	0.1000
286247.3506	0.1000
286247.3506	0.1000
286247.3506	0.1000
286247.3506	0.1000
286247.3506	0.1000
286293.5000	0.1000
286293.5000	0.1000
286514.7351	0.1000
286701.8001	0.1000
286701.8001	0.1000
286704 0172	0 1000
286704 0172	0 1000
287219 3382	0 1000
207210.0002	0 1000
207210.3382	0.1000
207219.0002	0.1000
201222.1900	0.1000
201222.1900	0.1000
287887.7943	0.1000
287901.8478	0.1000
287901.8478	0.1000
287904.2402	0.1000
287904.2402	0.1000
287917.9563	0.1000
287996.9765	0.1000
287996.9765	0.1000
287999.1488	0.1000
288033.8731	0.1000
288396.8737	0.1000
288681.1364	0.1000
288683.2114	0.1000
288714.4657	0.1000
288714.4657	0.1000
288722.1767	0.1000
288725.7554	0.1000
288741.0620	0.1000
288741.0620	0.1000
288747.8185	0.1000
288747.8185	0.1000
288751.8292	0.1000
288866.4492	0.1000
288866.4492	0.1000
288866.4492	0.1000
288866.4492	0.1000
288869.1440	0.1000
288869.1440	0.1000
288914.0277	0.1000
288914.0277	0.1000
288916.4791	0.1000
288916.4791	0.1000
288965.6229	0.1000
288965 6229	0.1000

70	12	58	0	69	12	57	0
75	4	72	0	74	3	71	0
71	21	50	0	70	21	49	0
71	21	51	0	70	21	50	0
71	21	50	1	70	21	49	1
71	21	51	1	70	21	50	1
76	3	74	0	75	3	73	0
76	2	74	0	75	3	73	0
76	3	74	0	75	2	73	0
76	2	74	0	75	2	73	0
71	19	53	2	70	19	52	2
71	19	52	2	70	19	51	2
70	10	61	1	69	10	60	1
70	10	60	1	69	10	59	-
70	10	61	0	69	10	60	0
77	1	76	2	76	2	75	1
77	1	77	2	76	2	74	1
77	2	76	1	76	1	75	2
77	1	77	2	76	1	76	2
77	2	75	1	76	1	76	2
77	2	75	1	76	2	74	1
77	1	76	2	76	1	75	2
77	2	76	1	76	2	75	1
71	18	53	2	70	18	52	2
71	18	54	2	70	18	53	2
71	18	54	1	70	18	53	1
71	18	53	1	70	18	52	1
71	15	56	0	70	15	55	0
71	15	57	1	70	15	56	1
71	15	56	1	70	15	55	1
87	7	80	0	86	8	79	0
87	8	80	1	86	8	79	1
87	8	79	1	86	8	78	1
87	8	80	1	86	7	79	2
87	8	79	1	86	7	80	2
88	6	83	2	87	7	80	1
88	6	82	2	87	7	81	1
88	7	82	1	87	7	81	1
88	7	81	1	87	7	80	1
88	6	83	2	87	6	82	2
88	6	82	2	87	6	81	2
88	6	82	0	87	6	81	0
86	9	78	1	85	9	77	1
86	9	77	1	85	9	76	1
86	9	78	0	85	9	77	0
89	5	85	2	88	5	84	2
89	5	84	2	88	5	83	2
89	6	83	1	88	6	82	1
89	6	84	1	88	6	83	1
89	6	84	1	88	5	83	2
89	6	83	1	88	5	84	2
89	6	84	0	88	6	83	0
89	5	84	0	88	6	83	0

288980.4063	0.1000
289092.9006	0.1000
289200.4519	0.1000
289200 4519	0 1000
289202 8370	0 1000
289202.0070	0.1000
209202.0370	0.1000
209350.7773	0.1000
289350.7773	0.1000
289356.7773	0.1000
289356.7773	0.1000
289580.6575	0.1000
289580.6575	0.1000
289591.5305	0.1000
289591.5305	0.1000
289593.4910	0.1000
289641.0609	0.1000
289641.0609	0.1000
289641.0609	0.1000
289641.0609	0.1000
289641.0609	0.1000
289641.0609	0.1000
289641.0609	0.1000
289641.0609	0.1000
289821.5190	0.1000
289821 5190	0 1000
289824 0927	0 1000
289824.0927	0.1000
209024.0921	0.1000
290000.0170	0.1000
290090.0707	0.1000
290890.0707	0.1000
347349.3815	0.1000
347376.2404	0.1000
34/3/6.2404	0.1000
347417.2814	0.1000
347417.2814	0.1000
347426.8502	0.1000
347426.8502	0.1000
347428.9737	0.1000
347428.9737	0.1000
347428.9737	0.1000
347428.9737	0.1000
347432.4982	0.1000
347469.1620	0.1000
347469.1620	0.1000
347473.4957	0.1000
347584.3843	0.1000
347584.3843	0.1000
347584 3843	0.1000
347584 3843	0 1000
347584 3843	0 1000
317581 3213	0 1000
317507 0000	0.1000
341301.0033	0.1000
341581.0833	0.1000

89	5	84	0	88	5	83	0
90	5	86	1	89	4	85	2
90	5	85	1	89	4	86	2
90	4	86	2	89	4	85	2
90	4	87	2	89	4	86	2
90	5	85	1	89	5	84	1
90	4	86	2	89	5	85	1
90	4	87	2	89	5	84	1
90	5	86	1	89	5	85	1
93	1	92	2	92	1	91	2
93	2	91	1	92	2	90	1
93	1	92	2	92	2	91	1
93	1	93	2	92	2	90	1
93	1	93	2	92	1	92	2
93	2	91	1	92	1	92	2
93	2	92	1	92	2	91	1
93	2	92	1	92	1	91	2
94	0	95	2	93	0	94	2
94	0	95	2	93	1	92	1
94	1	93	1	93	0	94	2
94	0	94	2	93	1	93	1
94	1	94	1	93	1	93	1
94	1	94	1	93	0	93	2
94	1	93	1	93	1	92	1
94	1	94	0	93	1	93	0
94	0	94	0	93	1	93	0
94	0	94	0	93	0	93	0
94	1	94	0	93	0	93	0
94	0	94	2	93	0	93	2

347587.0833	0.1000
347802.7889	0.1000
347802.7889	0.1000
347802.7889	0.1000
347802.7889	0.1000
347802.7889	0.1000
347802.7889	0.1000
347802.7889	0.1000
347802.7889	0.1000
348628.3023	0.1000
348628.3023	0.1000
348628.3023	0.1000
348628.3023	0.1000
348628.3023	0.1000
348628.3023	0.1000
348628.3023	0.1000
348628.3023	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000
348925.4715	0.1000

Appendix H

Glycolaldehyde Spectral Analysis

H.1 Glycolaldehyde .int File

glycolaldehyde !! 0001 710xx 62921.0030, 0, 80, -9.9,-9.9, 360. 001 0.12 002 2.73 003 0.00 111 0.12 112 2.73 113 0.00 221 0.12 222 2.73 223 0.00 331 0.12 332 2.73 333 0.00

H.2 Glycolaldehyde .par File

	glvcola	ldehvde	Э		20-	-FEB-Tue Mar 08 16:53:30 2005
	43 3160	20	0	0.0000E+000 8.	0000E+000	1.0000E+000 1.0000000000
a	1 4	0	90			
		0	1	.055623781112654E-052	1.00000000	E-030
		11	5	.850000000000000E+006	1.0000000B	E-020
		22	7	.800000000000000E+006	1.0000000E	E-020
		33	9	.41000000000000E+006	1.00000000	E-020
		10000	1	.844626074448348E+004	8.1000000B	E+020
		20000	6	.525996379120887E+003	3.1600000B	E+020
		30000	4	.969235800589177E+003	2.9700000B	E+020
		1100	2	.039797750931777E-002	1.22000000	E+020
		2000	-4	.772337539696791E-002	1.87000000	E+020
		200	-6	.222339192607588E-003	2.5200000B	E+020
		40100	-1	.833783791154165E-003	9.80000008	E+020
		41000	-8	.878891564129571E-003	2.66000000	E+020
		399	-6	.465478187768077E-009	1.00764150	E+020
		1299	1	.565742184756087E-007	2.50287500	E+020
		2199	-7	.720841178790587E-007	7.15017900E	E+020
		3099	1	.057027541563161E-006	5.55354000B	E+020
		40299	-2	.504187458139837E-009	5.23012700B	E+020
		41199	-1	.297885693365799E-008	2.29641120	E+020
		42099	1	.908733515453502E-007	2.18783450	E+020
		10011	1	.846355355190025E+004	8.1000000E	E+020
		20011	6	.482544600805613E+003	3.1600000E	E+020
		30011	4	.965052865673245E+003	2.9700000B	E+020
		1111	1	.994945899240820E-002	1.22000000	E+020
		2011	-4	.827689303628609E-002	1.87000008	E+020
		211	-6	.280202567628707E-003	2.5200000B	E+020
		40111	-1	.834215249663875E-003	9.8000000E	E+020
		41011	-7	.614211111745850E-003	2.66000000	E+020
		10022	1	.857657913024933E+004	8.1000000B	E+020
		20022	6	.477994714671660E+003	3.1600000B	E+020
		30022	4	.938517530230890E+003	2.9700000H	E+020
		1122	2	.159963648307887E-002	1.2200000B	E+020
		2022	-5	.195805934463164E-002	1.8700000B	E+020
		222	-6	.196435813429423E-003	2.5200000H	E+020
		40122	-1	.849365592830345E-003	9.8000000E	E+020
		41022	-1	.089545573548198E-002	2.6600000B	E+020
		10033	1	.852485586468521E+004	8.1000000E	E+020
		20033	6	.445623992696672E+003	3.1600000B	E+020
		30033	4	.933536970451043E+003	2.9700000B	E+020
		1133	2	.325807581751820E-002	1.22000000	E+020
		2033	-5	.324883990577034E-002	1.87000000	E+020
		233	-6	.358601292949328E-003	2.5200000B	E+020
		40133	-1	.859377387402884E-003	9.8000000E	E+020
		41033	-8	.955798475850508E-003	2.6600000B	E+020

H.3 Glycolaldehyde .lin File

8	3	5	0	7	4	4	0
34	17	17	0	35	16	20	0
34	17	18	0	35	16	19	0
19	8	12	0	18	9	9	0
21	11	10	0	22	10	13	0
21	11	11	0	22	10	12	0
19	8	11	0	18	9	10	0
32	14	19	0	31	15	16	0
8	5	10 4	0	q	4	5	Õ
6	1	6	0	5	2	3	0
8	5	3	0	a	2 /	6	0
7	1	7	0	6	ד 2	1	0
12	10	າ 24	0	/∩	2	- 12	0
40	10	24	0	42	20	20	0
43	19	20	0	42	20	2Z 1 A	0
23	12	10	0	24	11	14	0
23 17	12	12	0	24 10	11	13	0
11	1	11	0	10	8	8	0
30	18	18	0	31	17	21	0
36	18	19	0	37	17	20	0
1/	1	10	0	16	8	9	0
30	13	18	0	29	14	15	0
30	13	17	0	29	14	16	0
10	6	5	0	11	5	6	0
10	6	4	0	11	5	7	0
2	0	2	0	1	1	1	0
1	1	0	0	1	0	1	0
13	5	9	0	12	6	6	0
27	14	13	0	28	13	16	0
27	14	14	0	28	13	15	0
14	8	6	0	15	7	9	0
13	5	8	0	12	6	7	0
2	1	1	0	2	0	2	0
4	1	3	0	3	2	2	0
11	4	8	0	10	5	5	0
9	3	7	0	8	4	4	0
29	15	14	0	30	14	17	0
29	15	15	0	30	14	16	0
16	9	7	0	17	8	10	0
24	10	14	0	23	11	13	0
3	1	2	0	3	0	3	0
31	16	15	0	32	15	18	0
31	16	16	0	32	15	17	0
5	4	2	0	6	3	3	0
35	15	20	0	34	16	19	0
35	15	21	0	34	16	18	0
22	.9	14	Õ	21	10	11	0
22	q	13	0	21	10	10	0
44	22	22	0	45	21	25	0
<u>11</u>	~~ 22	~~ 72	0	70 72	∠⊥ 01	20 24	0
구구 두	22 /	∠J 1	0	0 1	ב∠ 2	24 1	0
0 16	4 ∿	26 T	0	0 / 5	ე 1	4 2⊑	0
40 16	20 20	∠0 ງ7	0	40 / 5	∠⊥ ე1	∠ວ ງ≀	0
+0	2.01	1.1	· · · ·	+0	Z. I	Z.4	U

7805.830	0.0500
8154.390	0.0500
8154.390	0.0500
8176.950	0.0500
8181.510	0.0500
8181 510	0 0500
8188 740	0.0500
0100.740	0.0500
0220.090	0.0500
8254.730	0.0500
8516.690	0.0500
8738.800	0.0500
9742.620	0.0500
9876.970	0.0500
9876.970	0.0500
10184.780	0.0500
10184.780	0.0500
10204.580	0.0500
10230.210	0.0500
10230.210	0.0500
10252.520	0.0500
10305.860	0.0500
10305 880	0 0500
10/31 280	0.0500
10561 110	0.0500
10007 200	0.0500
10927.300	0.0500
13477.170	0.0500
14078.250	0.0500
14209.210	0.0500
14209.210	0.0500
14459.930	0.0500
14759.520	0.0500
15176.620	0.0500
15261.660	0.0500
15495.140	0.0500
15614.970	0.0500
16232.810	0.0500
16232.810	0.0500
16432.220	0.0500
16518.370	0.0500
17980 930	0 0500
18265 330	0.0500
10205.000	0.0500
10203.330	0.0500
10344.220	0.0500
18441.090	0.0500
18441.090	0.0500
18590.690	0.0500
18597.470	0.0500
18658.070	0.0500
18658.070	0.0500
19016.710	0.0500
19886.260	0.0500
19886.260	0.0500

20307.800	0.0500
20307.800	0.0500
20389.010	0.0500
20389.010	0.0500
20560.230	0.0500
20560 230	0 0500
20500.250	0.0500
20584.980	0.0500
20671.400	0.0500
20698.690	0.0500
20774.120	0.0500
20800.100	0.0500
20800.100	0.0500
20907.720	0.0500
22090 920	0 0500
22000.020	0.0500
22090.920	0.0500
22142.600	0.0500
22252.790	0.0500
22361.010	0.0500
22361.010	0.0500
22636.270	0.0500
22674.840	0.0500
22674.840	0.0500
22685.650	0.0500
22750 450	0 0500
22100.400	0.0500
22057.100	0.0500
22957.690	0.0500
22995.920	0.0500
22995.920	0.0500
23415.570	0.0500
23415.570	0.0500
24283.240	0.0500
24283.240	0.0500
24425.600	0.0500
24425,600	0.0500
24639 760	0.0500
24033.100	0.0500
24770.430	0.0500
25131.410	0.0500
25131.410	0.0500
25175.350	0.0500
25298.080	0.0500
25298.080	0.0500
26364.970	0.0500
26364.970	0.0500
26383.710	0.0500
26464 850	0 0500
20404.000	0.0500
20404.030	0.0500
2/8/1.110	0.0500
31727.070	0.0500
31833.030	0.0500
32109.270	0.0500
32109.270	0.0500
32411.070	0.0500
32411.070	0.0500

32513.170	0.0500
32513.170	0.0500
32672.520	0.0500
32813.060	0.0500
32813.060	0.0500
32964.770	0.0500
32964 770	0 0500
33188 680	0.0500
22200 250	0.0500
20209.000 2224E 020	0.0500
22254 010	0.0500
33354.010	0.0500
33300.940	0.0500
34225.470	0.0500
34352.290	0.0500
34352.290	0.0500
34445.940	0.0500
34445.940	0.0500
34489.830	0.0500
34489.830	0.0500
34666.740	0.0500
34683.360	0.0500
34945.410	0.0500
34945.410	0.0500
35103.660	0.0500
35103.660	0.0500
35125.700	0.0500
35125.700	0.0500
35214.810	0.0500
35452.060	0.0500
35677.560	0.0500
35903 320	0 0500
35970 050	0.0500
36307 710	0.0500
36471 610	0.0500
26471 610	0.0500
36401 390	0.0500
36491.380	0.0500
36491.380	0.0500
36532.280	0.0500
36584.220	0.0500
36584.220	0.0500
36659.740	0.0500
36663.850	0.0500
37093.400	0.0500
37093.400	0.0500
37486.350	0.0500
37877.790	0.0500
38295.950	0.0500
38459.400	0.0500
38459.400	0.0500
38548.470	0.0500
38548.470	0.0500
38807.070	0.0500
38807.070	0.0500
· · · ·	•
39067.810	0.0500
-----------	--------
39257.470	0.0500
39291.210	0.0500
39463.760	0.0500
39465.720	0.0500
39770 110	0.0500
39770 110	0.0500
40420 540	0.0500
40450.540	0.0500
40454.080	0.0500
40454.080	0.0500
41023.260	0.0500
41023.260	0.0500
41438.530	0.0500
41438.530	0.0500
41576.880	0.0500
41654.060	0.0500
41662.080	0.0500
41749.640	0.0500
42080.630	0.0500
42080.630	0.0500
42456 500	0 0500
42456 500	0.0500
42430.300	0.0500
42571.150	0.0500
42587.970	0.0500
42587.970	0.0500
42699.830	0.0500
42699.830	0.0500
42851.190	0.0500
43235.510	0.0500
43235.510	0.0500
43867.490	0.0500
43997.950	0.0500
44159.510	0.0500
44377.690	0.0500
44377.690	0.0500
44467.390	0.0500
44467 390	0 0500
44561 410	0.0500
44561 410	0.0500
44501.410	0.0500
44795.390	0.0500
44795.390	0.0500
44999.740	0.0500
45145.320	0.0500
45447.730	0.0500
45447.730	0.0500
45853.190	0.0500
45853.190	0.0500
46102.180	0.0500
46115.780	0.0500
46536.240	0.0500
46536.250	0.0500
46562.760	0.0500
46905.090	0.0500

46905.090	0.0500
47087.860	0.0500
72431.5097	0.1000
72431.5097	0.1000
72457.0934	0.1000
72457.0934	0.1000
72635 3909	0.1000
72660 4126	0 1000
72673 0600	0.1000
72022 2074	0.1000
73032.3974	0.1000
73011.0707	0.1000
73808.5555	0.1000
74416.2998	0.1000
74416.2998	0.1000
74455.8948	0.1000
74472.3433	0.1000
74472.3433	0.1000
74676.4956	0.1000
74953.1331	0.1000
75347.4860	0.1000
75425.2733	0.1000
75515.3079	0.1000
75836.4677	0.1000
76017.2575	0.1000
76084.3824	0.1000
76210.6936	0.1000
76210.6936	0.1000
76279.5778	0.1000
76279.5778	0.1000
76401.8767	0.1000
76401 8767	0 1000
76790 5979	0 1000
77467 7821	0.1000
77700 0059	0.1000
77065 0002	0.1000
77004 5700	0.1000
77884.5792	0.1000
78065.7308	0.1000
78184.0268	0.1000
78304.9511	0.1000
78304.9511	0.1000
78389.3398	0.1000
78389.3398	0.1000
78402.0038	0.1000
78529.7801	0.1000
78529.7801	0.1000
78585.3729	0.1000
78598.9591	0.1000
78598.9591	0.1000
79098.8099	0.1000
79209.7824	0.1000
79388.4359	0.1000
79544.8437	0.1000
79717.0570	0.1000

79800.4243	0.1000
80316.7671	0.1000
80316.7671	0.1000
80366.7040	0.1000
80379.9922	0.1000
80379.9922	0.1000
80437 3729	0 1000
81058 8010	0 1000
01000.0010	0.1000
01303.0012	0.1000
81478.1003	0.1000
81478.1003	0.1000
82207.0188	0.1000
82319.1197	0.1000
82319.1197	0.1000
82374.8901	0.1000
82374.8901	0.1000
82411.6831	0.1000
82470.6118	0.1000
82836.0283	0.1000
82922.0573	0.1000
82923.5975	0.1000
83182 5469	0 1000
83529 9788	0 1000
836/18 3706	0.1000
05040.3790	0.1000
00200.0040	0.1000
85458.8964	0.1000
854/6.6282	0.1000
85782.2074	0.1000
85874.1443	0.1000
85876.4382	0.1000
86306.1685	0.1000
86306.1685	0.1000
86357.2456	0.1000
86366.3404	0.1000
86366.3404	0.1000
86567.7827	0.1000
86600.5692	0.1000
86648.7583	0.1000
86701.0591	0.1000
86862.3880	0.1000
87663.2812	0.1000
87764.5260	0.1000
87812 1534	0 1000
88333 /153	0.1000
00000.4100	0.1000
00374.0400	0.1000
00304.3081	0.1000
00395.14/6	0.1000
88395.14/6	0.1000
88425.7375	0.1000
88463.7004	0.1000
88530.4087	0.1000
88556.5854	0.1000
88591.5911	0.1000

88648.5242	0.1000
88668.8941	0.1000
88691.2622	0.1000
88892.4489	0.1000
89131.5712	0.1000
89616 3967	0.1000
89644 1353	0 1000
00077.1000	0.1000
09032.2440	0.1000
89868.5664	0.1000
90187.0934	0.1000
90284.0665	0.1000
90284.0665	0.1000
90507.2338	0.1000
90569.1003	0.1000
90591.3149	0.1000
90785.4539	0.1000
90922.1788	0.1000
90940.1694	0.1000
90977.1204	0.1000
91485.5015	0.1000
91712 9499	0 1000
97738 9740	0 1000
92130.2140 02853 0250	0.1000
92000.9209	0.1000
93040.4534	0.1000
93052.6650	0.1000
93582.7186	0.1000
93719.4463	0.1000
93760.0946	0.1000
93760.0959	0.1000
94144.9024	0.1000
94144.9024	0.1000
94265.6564	0.1000
94265.6564	0.1000
94487.3629	0.1000
94487.3629	0.1000
95070.0722	0.1000
95175.1398	0.1000
95300.3983	0.1000
95443 0888	0 1000
95544 7316	0 1000
057/1 6500	0.1000
95741.0599	0.1000
95750.2274	0.1000
96078.3820	0.1000
96153.3030	0.1000
96153.3030	0.1000
96261.0732	0.1000
96261.0732	0.1000
96273.6602	0.1000
96274.9514	0.1000
96278.8449	0.1000
96525.8317	0.1000
96763.7499	0.1000
96870.7555	0.1000

97142.8870	0.1000
97919.6993	0.1000
98070.5529	0.1000
98153,8822	0.1000
98153 8822	0 1000
00069 4716	0.1000
99000.4710	0.1000
99109.9912	0.1000
99346.3871	0.1000
101116.3718	0.1000
101232.1850	0.1000
101331.0489	0.1000
101331.0489	0.1000
101459.0124	0.1000
101478.0886	0.1000
101497 1613	0 1000
101407 1612	0.1000
101497.1013	0.1000
101527.8545	0.1000
101833.9008	0.1000
101833.9008	0.1000
102142.1819	0.1000
102142.1819	0.1000
102277.8171	0.1000
102277.8171	0.1000
102549.7763	0.1000
102572 9322	0 1000
102614 3647	0.1000
102014.3047	0.1000
103391.3370	0.1000
103461.3577	0.1000
103667.9627	0.1000
104041.6645	0.1000
104133.2784	0.1000
104133.2784	0.1000
104169.1124	0.1000
104240.3745	0.1000
104587.7362	0.1000
104950.1720	0.1000
105355 7216	0.1000
105728 0477	0 1000
105720.0477	0.1000
105055.0019	0.1000
105927.5322	0.1000
105927.5322	0.1000
106067.4622	0.1000
106265.4624	0.1000
106711.0539	0.1000
106969.7887	0.1000
107226.8239	0.1000
107380.1819	0.1000
107663.7048	0.1000
107874 8613	0.1000
107886 3063	0 1000
10800/ 0010	0 1000
100116 0450	0.1000
100110.8450	0.1000
108116.8450	0.1000

0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0 1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0 1000
0 1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0 1000
0 1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

113861.4213	0.1000
113912.5439	0.1000
113966.0525	0.1000
113966.0525	0.1000
113978 4810	0 1000
112000 0665	0.1000
113962.0005	0.1000
114114.3946	0.1000
114114.3946	0.1000
114257.9596	0.1000
114257.9596	0.1000
114264.5516	0.1000
114529.4651	0.1000
114529.4651	0.1000
114569.5023	0.1000
114594 1032	0.1000
114595 5269	0 1000
114697 0010	0.1000
114007.0912	0.1000
114724.6208	0.1000
114802.1309	0.1000
114881.7659	0.1000
115210.9725	0.1000
115214.6267	0.1000
115476.9275	0.1000
115895.9428	0.1000
115960.4437	0.1000
115960.4437	0.1000
116107.6432	0.1000
116123.4735	0.1000
116123,4735	0.1000
116194 2305	0 1000
116634 5304	0.1000
116676 4020	0.1000
110070.4230	0.1000
116809.9859	0.1000
116895.3067	0.1000
117562.5219	0.1000
117905.9104	0.1000
118197.0329	0.1000
118678.1911	0.1000
119302.6257	0.1000
119325.3452	0.1000
119575.0094	0.1000
119576.4314	0.1000
119711_3615	0.1000
119711 3615	0 1000
110770 5647	0.1000
1100// 0175	0 1000
11004/ 0175	0.1000
119944.01/5	0.1000
120332.6082	0.1000
120423.1771	0.1000
120532.0269	0.1000
120789.3601	0.1000
121002.3399	0.1000
121634.6511	0.1000

121686.6939	0.1000
122062.6897	0.1000
122185.8479	0.1000
122277.4391	0.1000
125046 4239	0.1000
125665 6502	0 1000
125005.0502	0.1000
125856.6817	0.1000
126236.3906	0.1000
126638.6079	0.1000
126725.3994	0.1000
126916.903	0.1000
127293.928	0.1000
127418.244	0.1000
127599.366	0.1000
127708.047	0.1000
128021 497	0.1000
128797 144	0 1000
120120 218	0.1000
129120.210	0.1000
129608.915	0.1000
129902.763	0.1000
129990.984	0.1000
130394.653	0.1000
131008.309	0.1000
131746.089	0.1000
131963.337	0.1000
133281.928	0.1000
133410.634	0.1000
133453.705	0.1000
133572.230	0.1000
133662.112	0.1000
133886.093	0.1000
134339.726	0.1000
134489 420	0 1000
13/5/0 10/	0.1000
124742 002	0.1000
134743.293	0.1000
134883.5702	0.1000
134891.243	0.1000
134892.022	0.1000
135013.789	0.1000
135104.8770	0.1000
135222.100	0.1000
135299.790	0.1000
135767.363	0.1000
135833.2720	0.1000
135872.3960	0.1000
136156.730	0.1000
136487 178	0 1000
136504 366	0 1000
126000 600	0.1000
127102 476	0.1000
13/123.4/0	0.1000
13/148.831	0.1000
137332.9125	0.1000
137390.638	0.1000

137527.609	0.1000
137677.039	0.1000
137684.121	0.1000
137842.9001	0.1000
138037.210	0.1000
138161.724	0.1000
138436 807	0 1000
138504 055	0 1000
138511 0/0	0.1000
120521.940	0.1000
130339.407	0.1000
138830.8409	0.1000
138847.1524	0.1000
139063.260	0.1000
139068.020	0.1000
139069.892	0.1000
139069.892	0.1000
139158.1141	0.1000
139222.843	0.1000
139223.910	0.1000
139327.749	0.1000
139327.749	0.1000
139332.455	0.1000
139526.070	0.1000
139526.070	0.1000
139594.617	0.1000
139623.1219	0.1000
139684 5802	0.1000
139712 113	0 1000
130712.113	0.1000
130818 0108	0.1000
1209/1 200	0.1000
120024 052	0.1000
139924.953	0.1000
139945.999	0.1000
140041.520	0.1000
140280.293	0.1000
141807.9683	0.1000
142784.691	0.1000
143447.497	0.1000
143640.936	0.1000
143672.293	0.1000
143765.650	0.1000
143846.112	0.1000
144131.721	0.1000
144173.634	0.1000
145189.816	0.1000
145451.200	0.1000
145608.187	0.1000
145774.840	0.1000
145884.435	0.1000
146019.311	0.1000
146201 513	0.1000
146384 136	0 1000
146445 050	0.1000
140440.000	0.1000

146861.261	0.1000
146985.738	0.1000
147058.898	0.1000
147081.254	0.1000
147183.452	0.1000
147559 286	0.1000
148156 857	0 1000
1/8555 387	0.1000
140303.307	0.1000
140713.203	0.1000
149067.851	0.1000
149254.892	0.1000
149254.892	0.1000
149487.309	0.1000
149487.309	0.1000
149616.394	0.1000
149751.239	0.1000
149966.847	0.1000
150032.447	0.1000
150034.498	0.1000
150147.805	0.1000
150147.805	0.1000
150558.596	0.1000
150558.596	0.1000
150792.068	0.1000
151243.012	0.1000
151294, 199	0.1000
151856.880	0.1000
152088 7748	0 1000
152230 981	0 1000
152/89 512	0 1000
152405.012	0.1000
152975.220	0.1000
153143.100	0.1000
153109.544	0.1000
153248.853	0.1000
153311.222	0.1000
153597.9863	0.1000
153614.1849	0.1000
153633.4177	0.1000
153666.8886	0.1000
154072.4039	0.1000
154180.693	0.1000
154333.336	0.1000
154393.287	0.1000
154777.560	0.1000
154806.249	0.1000
154847.6520	0.1000
155308.460	0.1000
155546.193	0.1000
156342.0320	0.1000
156471.5582	0.1000
156664.068	0.1000
156775.253	0.1000
156875 049	0 1000
100010.010	0.1000

156875.049	0.1000
157214.171	0.1000
157262.979	0.1000
157262.979	0.1000
157711 929	0.1000
157736 748	0 1000
157700 271	0.1000
157700.371	0.1000
157992.243	0.1000
158024.649	0.1000
158399.319	0.1000
158792.794	0.1000
158886.626	0.1000
158909.896	0.1000
159074.901	0.1000
159404.775	0.1000
159808.489	0.1000
159860.253	0.1000
159951.601	0.1000
159973.507	0.1000
160274 772	0 1000
160368 701	0 1000
160401 742	0.1000
160491.743	0.1000
160493.712	0.1000
160694.022	0.1000
160809.938	0.1000
161131.157	0.1000
161237.000	0.1000
161237.000	0.1000
161347.289	0.1000
161501.910	0.1000
161708.1143	0.1000
161834.480	0.1000
161951.7515	0.1000
162035.7798	0.1000
162173.194	0.1000
162179.914	0.1000
162210.5616	0.1000
162342.311	0.1000
162375,127	0.1000
162405 193	0 1000
162500 988	0.1000
160724 021	0.1000
160910 042	0.1000
162812.043	0.1000
162879.520	0.1000
162889.707	0.1000
163074.671	0.1000
163110.151	0.1000
163150.859	0.1000
163150.859	0.1000
163197.359	0.1000
163277.151	0.1000
163308.805	0.1000
163412.088	0.1000

163542.2809	0.1000
163544.089	0.1000
163580.1354	0.1000
163697.296	0.1000
163709.180	0.1000
163951 644	0.1000
164020 164	0 1000
164024 144	0.1000
104024.144	0.1000
164047.117	0.1000
164209.569	0.1000
164215.046	0.1000
164264.475	0.1000
164265.695	0.1000
164306.6540	0.1000
164432.500	0.1000
164576.672	0.1000
164576.672	0.1000
164650.623	0.1000
164667.414	0.1000
164667.414	0.1000
164829 681	0 1000
165150 121	0 1000
165/18 02/5	0.1000
166752 670	0.1000
166929.062	0.1000
166838.963	0.1000
16/58/.185	0.1000
168524.1167	0.1000
168544.8604	0.1000
168557.2674	0.1000
168949.949	0.1000
169125.240	0.1000
169190.713	0.1000
169682.471	0.1000
169830.007	0.1000
170570.424	0.1000
171459.814	0.1000
171638.8763	0.1000
171693 6063	0 1000
171751 2676	0 1000
171774 607	0.1000
171774.027	0.1000
171774.930	0.1000
171849.301	0.1000
1/1862.410	0.1000
172112.100	0.1000
172174.787	0.1000
172360.736	0.1000
172389.820	0.1000
172589.5349	0.1000
172756.558	0.1000
172791.502	0.1000
173279.0769	0.1000
173279.0769	0.1000
173479.0003	0.1000

173499.5959	0.1000
173507.4751	0.1000
173953.898	0.1000
173992.328	0.1000
174113.8602	0.1000
174156 7795	0 1000
174345 184	0 1000
100750 012	0.1000
100750.915	0.1000
1888/5./15	0.1000
188878.538	0.1000
189198.622	0.1000
189199.647	0.1000
189349.8538	0.1000
189454.432	0.1000
189454.432	0.1000
189546.808	0.1000
189653.726	0.1000
189653.726	0.1000
189795,893	0.1000
189805 447	0 1000
180805 //7	0.1000
100006 662	0.1000
109020.003	0.1000
189884.4812	0.1000
189891.698	0.1000
189918.422	0.1000
189918.422	0.1000
189928.349	0.1000
189992.2265	0.1000
189999.5476	0.1000
189999.5476	0.1000
190055.8893	0.1000
190055.929	0.1000
190073.264	0.1000
190103.755	0.1000
190326,2389	0.1000
190405 786	0 1000
1005/0 18/	0.1000
190049.104	0.1000
190953.517	0.1000
190995.0680	0.1000
191182.169	0.1000
191202.313	0.1000
191313.104	0.1000
191324.111	0.1000
191525.1591	0.1000
191721.145	0.1000
192393.240	0.1000
192424.708	0.1000
192887.326	0.1000
193169.3285	0.1000
193340 112	0.1000
193345 989	0 1000
10338/ 770	0 1000
102705 160	0.1000
193102.108	0.1000

194401.921	0.1000
194460.620	0.1000
194698.589	0.1000
194816.890	0.1000
194835.498	0.1000
196158.042	0.1000
196379.532	0.1000
196674 097	0.1000
196771 795	0 1000
196953 1574	0 1000
197068 808	0 1000
197302 471	0.1000
107550 1/5	0.1000
197570 5001	0.1000
100004 001	0.1000
190094.221	0.1000
198098.741	0.1000
198133.440	0.1000
198261.283	0.1000
198541.218	0.1000
198587.759	0.1000
198666.675	0.1000
198701.970	0.1000
198781.051	0.1000
198912.138	0.1000
198915.532	0.1000
198941.386	0.1000
198949.934	0.1000
199008.3060	0.1000
199247.780	0.1000
199257.4302	0.1000
199257.447	0.1000
199266.903	0.1000
199839.796	0.1000
199946.967	0.1000
199985.150	0.1000
200074.537	0.1000
200082.794	0.1000
200381.915	0.1000
200505.833	0.1000
200565.235	0.1000
200589.167	0.1000
201213.215	0.1000
201234.381	0.1000
201423.012	0.1000
201677.521	0.1000
202012.624	0.1000
202117 087	0.1000
202190 849	0 1000
202100.040	0 1000
202232.001	0 1000
202400.000	0 1000
202000.410	0 1000
202102.032	0.1000
202104.311	0.1000

202761.401	0.1000
202971.961	0.1000
203266.824	0.1000
203270.058	0.1000
203513.717	0.1000
203693.726	0.1000
203936 2596	0 1000
203078 184	0 1000
200070.104	0.1000
204127.700	0.1000
204143.394	0.1000
204242.760	0.1000
204400.170	0.1000
204077.848	0.1000
204873.199	0.1000
205112.563	0.1000
205310.632	0.1000
205352.895	0.1000
205356.320	0.1000
205375.975	0.1000
205568.532	0.1000
205980.745	0.1000
206131.426	0.1000
206139.223	0.1000
206272.009	0.1000
206340.313	0.1000
206396.8954	0.1000
206486.536	0.1000
206487.258	0.1000
206932.580	0.1000
206947.034	0.1000
207016.941	0.1000
207121.417	0.1000
207283.584	0.1000
207754,439	0.1000
207926 434	0 1000
201320.404	0.1000
200100.440	0.1000
200401.027	0.1000
200430.432	0.1000
200037.070	0.1000
200001.010	0.1000
208691.332	0.1000
208958.2059	0.1000
209095.415	0.1000
209178.806	0.1000
209323.191	0.1000
209502.938	0.1000
209637.575	0.1000
209724.930	0.1000
209798.376	0.1000
209846.824	0.1000
210214.827	0.1000
210329.420	0.1000
210844.042	0.1000

211048.1887	0.1000
211155.302	0.1000
211210.671	0.1000
211948.652	0.1000
211974,443	0.1000
211985 4277	0 1000
211000.4277	0.1000
212030.919	0.1000
212153.853	0.1000
212348.031	0.1000
212404.760	0.1000
212558.295	0.1000
212618.053	0.1000
212629.3045	0.1000
212992.263	0.1000
213006.249	0.1000
213181.782	0.1000
213186.359	0.1000
213191.872	0.1000
213193.594	0.1000
213243.147	0.1000
213653.979	0.1000
213655 907	0 1000
213689 912	0.1000
212005.012	0.1000
213900.091	0.1000
214047.100	0.1000
214047.188	0.1000
214053.513	0.1000
214105.5618	0.1000
214371.634	0.1000
214371.634	0.1000
214480.949	0.1000
214544.961	0.1000
214611.815	0.1000
214634.061	0.1000
214636.294	0.1000
214636.294	0.1000
214680.468	0.1000
215150.428	0.1000
215150.428	0.1000
215250.378	0.1000
215250 378	0 1000
215200.070	0.1000
215324.300	0.1000
210024.000	0.1000
215/59.745	0.1000
210990.003	0.1000
216180.179	0.1000
21/053.668	0.1000
217271.523	0.1000
217603.637	0.1000
217607.886	0.1000
217607.886	0.1000
217610.928	0.1000
217610.928	0.1000

217626.061	0.1000
217826.100	0.1000
221009.903	0.1000
221427,108	0.1000
221467 277	0 1000
221101.211	0.1000
222100.071	0.1000
222352.345	0.1000
222372.067	0.1000
222439.736	0.1000
222443.752	0.1000
223080.406	0.1000
223104.460	0.1000
223444.033	0.1000
223738.630	0.1000
224788 393	0.1000
225262 566	0 1000
220202.000	0.1000
225350.039	0.1000
225366.268	0.1000
226264.765	0.1000
226414.055	0.1000
226495.087	0.1000
226506.916	0.1000
226602.289	0.1000
226779.119	0.1000
226779.119	0.1000
226780 643	0.1000
226780 643	0 1000
226816 342	0 1000
220010.042	0.1000
220921.127	0.1000
227023.103	0.1000
227092.274	0.1000
227257.581	0.1000
227463.645	0.1000
227472.309	0.1000
227627.191	0.1000
227648.137	0.1000
228020.2349	0.1000
228173.931	0.1000
228316.696	0.1000
228332.744	0.1000
228355 668	0 1000
228660.887	0.1000
220000.001	0.1000
220001.200	0.1000
228656.864	0.1000
228658.615	0.1000
228801.186	0.1000
228968.327	0.1000
229329.610	0.1000
229746.703	0.1000
229771.787	0.1000
229987.6336	0.1000
230000.070	0.1000
230242.966	0.1000

230337.910	0.1000
230703.694	0.1000
230766.991	0.1000
230829,621	0.1000
230898 473	0 1000
231100 108	0.1000
231109.190	0.1000
231200.378	0.1000
231723.266	0.1000
231724.332	0.1000
231756.098	0.1000
232261.725	0.1000
232286.032	0.1000
232288.413	0.1000
232335,448	0.1000
232522 255	0 1000
222222.200	0.1000
232134.334	0.1000
233037.2824	0.1000
233037.357	0.1000
233037.730	0.1000
233037.8032	0.1000
233345.103	0.1000
233447.816	0.1000
233587.371	0.1000
233709.718	0.1000
233797.250	0.1000
233837 734	0 1000
234554 579	0 1000
234703 932	0 1000
234765 726	0.1000
234703.730	0.1000
234001.2710	0.1000
234939.582	0.1000
235203.895	0.1000
235272.809	0.1000
235311.366	0.1000
235667.765	0.1000
235697.889	0.1000
235825.953	0.1000
235945.215	0.1000
235945.215	0.1000
235946 128	0 1000
235946 128	0 1000
236500 622	0.1000
230500.032	0.1000
236515.024	0.1000
236602.398	0.1000
236677.974	0.1000
236789.630	0.1000
236993.599	0.1000
237108.132	0.1000
237133.525	0.1000
237220.486	0.1000
237226.808	0.1000
237551.380	0.1000
237560 473	0,1000
201000.110	0.1000

237677.299	0.1000
237729.673	0.1000
237840.832	0.1000
237843.626	0.1000
237935.145	0.1000
237999 195	0 1000
238080 773	0.1000
230000.113	0.1000
230202.021	0.1000
238373.542	0.1000
238374.740	0.1000
238635.678	0.1000
238828.548	0.1000
238828.548	0.1000
238829.880	0.1000
238830.616	0.1000
238860.120	0.1000
239127.807	0.1000
239214.752	0.1000
239214.752	0.1000
239218,228	0.1000
239315 497	0 1000
239429 800	0 1000
239429.000	0.1000
239340.197	0.1000
239540.197	0.1000
239674.131	0.1000
239728.721	0.1000
239811.872	0.1000
239811.872	0.1000
240036.289	0.1000
240036.289	0.1000
240153.5838	0.1000
240219.171	0.1000
240219.171	0.1000
240366.513	0.1000
240366.513	0.1000
240402.1624	0.1000
240482.834	0.1000
240482.834	0.1000
240572 910	0 1000
210072.010	0 1000
240372.910	0.1000
240041.301	0.1000
240641.381	0.1000
240890.626	0.1000
240961.350	0.1000
240986.942	0.1000
245139.9353	0.1000
245536.2033	0.1000
245536.2033	0.1000
245604.521	0.1000
245711.1634	0.1000
245964.1087	0.1000
246302.6578	0.1000
246394.7753	0.1000

246431.1615	0.1000
246605.3780	0.1000
246687.0380	0.1000
246734,168	0.1000
246772 8984	0 1000
210772.0001	0.1000
240772.0904	0.1000
246778.0844	0.1000
246852.4810	0.1000
247022.7955	0.1000
247285.0571	0.1000
247322.7509	0.1000
247616.9231	0.1000
248606.8697	0.1000
248796 6747	0.1000
248963 7804	0 1000
240300.7004	0.1000
249400.0019	0.1000
249480.8133	0.1000
250063.9720	0.1000
250283.5561	0.1000
250667.5467	0.1000
250683.6260	0.1000
250963.6262	0.1000
250973.7824	0.1000
251182.1933	0.1000
251655 228	0 1000
251002.220	0.1000
251332.007	0.1000
252137.210	0.1000
252141.047	0.1000
252932.246	0.1000
253111.668	0.1000
253256.656	0.1000
254312.093	0.1000
254722.259	0.1000
254807.211	0.1000
254807.211	0.1000
255603.307	0.1000
255817 786	0.1000
255817 786	0 1000
256220 260	0.1000
250209.209	0.1000
250434.540	0.1000
256438.289	0.1000
256494.761	0.1000
256520.309	0.1000
256710.296	0.1000
256952.516	0.1000
256997.551	0.1000
257315.734	0.1000
257378.805	0.1000
257494 480	0 1000
260582 8666	0 1000
200002.0000	0 1000
200091.1920	0.1000
200/13.885	0.1000
261033.2766	0.1000

261040.8568	0.1000
261042.1365	0.1000
261111.4101	0.1000
261258.0725	0.1000
261655.7083	0.1000
261738.7242	0.1000
261795 5789	0 1000
261700.0100	0 1000
201733.0000	0.1000
201030.0404	0.1000
262048.2953	0.1000
262056.8431	0.1000
262376.4743	0.1000
262446.8227	0.1000
262464.2849	0.1000
262465.8663	0.1000
262545.3171	0.1000
262721.2702	0.1000
262745.269	0.1000
262794.4634	0.1000
262794.4634	0.1000
262794.4634	0.1000
262794.4634	0.1000
263048.8580	0.1000
263049.5726	0.1000
263231.132	0.1000
263378 6997	0.1000
263416.823	0.1000
263416 823	0 1000
263/16 823	0.1000
203410.023	0.1000
203410.023	0.1000
203330.2100	0.1000
203030.2100	0.1000
203/55./453	0.1000
263793.8930	0.1000
263999.2974	0.1000
263999.2974	0.1000
264244.9318	0.1000
264379.4408	0.1000
264379.4408	0.1000
264520.3478	0.1000
264653.9105	0.1000
264704.8131	0.1000
264704.8131	0.1000
264981.3779	0.1000
264981.3779	0.1000
265083.3740	0.1000
265184.8144	0.1000
265184.8144	0.1000
265186.4792	0.1000
265186.4792	0.1000
265214 6435	0.1000
265214 6435	0.1000
265408 7955	0 1000
200400.1300	0.1000

265408.7955	0.1000
265410.3504	0.1000
265487.4332	0.1000
265569.1217	0.1000
265569 1217	0.1000
265600 4278	0 1000
205033.4270	0.1000
205099.4278	0.1000
265700.8217	0.1000
265803.9567	0.1000
265803.9567	0.1000
265812.2739	0.1000
265880.402	0.1000
265886.074	0.1000
265886.074	0.1000
265907.257	0.1000
265920 151	0 1000
2650/0 3352	0 1000
200040.0002	0.1000
200949.0002	0.1000
200101.0201	0.1000
266154.1635	0.1000
266324.3929	0.1000
266696.8351	0.1000
268398.660	0.1000
268416.336	0.1000
268609.979	0.1000
268609.979	0.1000
269135.286	0.1000
269432.542	0.1000
270427.996	0.1000
271230.142	0.1000
271268,989	0.1000
271288.631	0.1000
271463 843	0 1000
2710/1 028	0 1000
271941.920	0.1000
271902.324	0.1000
271967.004	0.1000
272660.785	0.1000
272710.107	0.1000
272710.107	0.1000
272710.107	0.1000
272710.107	0.1000
273050.507	0.1000
273089.274	0.1000
273099.187	0.1000
273742.349	0.1000
273856.386	0.1000
274846.940	0.1000
274893.356	0.1000
275818.070	0.1000
276655 160	0 1000
276811 /00	0 1000
210011.430 077100 0/E	0.1000
211102.040	0.1000
219230.190	0.1000

279841.994	0.1000
279962.141	0.1000
280128.651	0.1000
280128.651	0.1000
280159.811	0.1000
2809/1 32/	0 1000
200941.324	0.1000
281044.450	0.1000
281171.542	0.1000
281261.911	0.1000
281307.699	0.1000
281326.447	0.1000
281836.749	0.1000
281874.605	0.1000
281877.197	0.1000
282409.318	0.1000
282409 318	0 1000
282525 608	0 1000
202020.000	0.1000
202559.550	0.1000
282624.338	0.1000
282624.338	0.1000
282624.338	0.1000
282624.338	0.1000
282739.067	0.1000
282760.626	0.1000
283099.091	0.1000
283561.355	0.1000
283561.355	0.1000
283766.288	0.1000
284450.676	0.1000
284454.987	0.1000
284520.772	0.1000
284666 074	0 1000
285554 234	0 1000
200004.204	0.1000
200000.020	0.1000
285992.950	0.1000
286352.688	0.1000
286354.641	0.1000
286455.360	0.1000
287062.478	0.1000
287063.374	0.1000
287331.284	0.1000
299065.0102	0.1000
299125.687	0.1000
299130.280	0.1000
299297.386	0.1000
299485.9888	0.1000
299546.9147	0.1000
299549 5955	0 1000
200010.0000	0 1000
200042.1413	0.1000
233300.1200	0.1000
299991.923	0.1000
299991.923	0.1000
299991.923	0.1000

299991.923	0.1000
300296.262	0.1000
300400.211	0.1000
300886.0302	0.1000
301006.819	0.1000
301052.275	0.1000
301069.075	0.1000
301272,234	0.1000
301333 3359	0 1000
301693 376	0 1000
301694 185	0 1000
301034.105	0.1000
201007.275	0.1000
201007 500	0.1000
201007 500	0.1000
301907.500	0.1000
301907.588	0.1000
301907.588	0.1000
302051.1189	0.1000
302255.244	0.1000
302447.485	0.1000
302447.485	0.1000
302447.485	0.1000
302447.485	0.1000
302698.695	0.1000
302797.693	0.1000
302911.4377	0.1000
302933.4864	0.1000
302934.6746	0.1000
302962.191	0.1000
302971.9203	0.1000
303846.6360	0.1000
304347.051	0.1000
304409.0241	0.1000
305700.7973	0.1000
305740.6185	0.1000
305773.7531	0.1000
306150.484	0.1000
306625.964	0.1000
306724.707	0.1000
306995.971	0.1000
307013.045	0.1000
307135.039	0.1000
308128.178	0.1000
308137.026	0.1000
309036.685	0.1000
310070.388	0.1000
310072.403	0.1000
310078.941	0.1000
310162.493	0.1000
310431.127	0.1000
310646.724	0.1000
310898.836	0.1000
310899.848	0.1000

310911.580	0.1000
310913.543	0.1000
310937.593	0.1000
311070.396	0.1000
311070.396	0.1000
311070 396	0 1000
211070.336	0.1000
311070.390	0.1000
3111/3.15/5	0.1000
311316.256	0.1000
311348.625	0.1000
311440.737	0.1000
311557.135	0.1000
311600.323	0.1000
311600.323	0.1000
311600.323	0.1000
311600.323	0.1000
311643.777	0.1000
311643.777	0.1000
311707.382	0.1000
312155.092	0.1000
312156 108	0 1000
312311 1/0	0.1000
312311.140	0.1000
312311.14U	0.1000
312355.071	0.1000
312355.871	0.1000
312355.871	0.1000
312355.871	0.1000
312908.326	0.1000
312908.326	0.1000
313006.1085	0.1000
313130.215	0.1000
313440.618	0.1000
313440.618	0.1000
313913.806	0.1000
313913.806	0.1000
314013.886	0.1000
314332.069	0.1000
314510.710	0.1000
314523 880	0 1000
314701 204	0.1000
314701.204 315004 554	0.1000
315024.554	0.1000
315094.774	0.1000
315140.284	0.1000
315306.771	0.1000
315306.771	0.1000
315485.838	0.1000
315516.039	0.1000
315650.196	0.1000
315761.586	0.1000
315761.586	0.1000
315895.541	0.1000
315941.377	0.1000
315941.377	0.1000

316093.614	0.1000
316093.614	0.1000
316221.174	0.1000
316221.174	0.1000
316326.874	0.1000
316326.874	0.1000
316413 132	0 1000
316413 132	0 1000
316/82 386/	0.1000
216/02.2064	0.1000
310402.3004	0.1000
310939.473	0.1000
317013.950	0.1000
317013.950	0.1000
317840.641	0.1000
317850.313	0.1000
319416.7089	0.1000
319511.358	0.1000
319696.105	0.1000
319804.655	0.1000
320052.754	0.1000
320098.586	0.1000
320227.8970	0.1000
320227.8970	0.1000
320227.8970	0.1000
320227.8970	0.1000
320265.794	0.1000
320425.533	0.1000
320603.586	0.1000
320812.762	0.1000
320827.525	0.1000
321366 095	0 1000
321366 095	0 1000
321505 563	0 1000
321505 563	0.1000
321505.503	0.1000
201505 562	0.1000
321505.505	0.1000
321584.052	0.1000
321587.280	0.1000
321794.727	0.1000
322113.649	0.1000
322262.880	0.1000
322262.880	0.1000
322262.880	0.1000
322262.880	0.1000
323838.521	0.1000
324022.847	0.1000
325678.5735	0.1000
325872.259	0.1000
325907.429	0.1000
326777.005	0.1000
327239.0707	0.1000
328309.8159	0.1000
328369.9037	0.1000

328524.225	0.1000
328524.225	0.1000
328854.152	0.1000
328885.370	0.1000
329625.995	0.1000
330060.430	0.1000
330123.7127	0.1000
330168.031	0.1000
330179 6241	0 1000
330226 596	0 1000
3302/3 717	0.1000
220262 526	0.1000
330303.330	0.1000
330500.1088	0.1000
330566.1688	0.1000
330710.918	0.1000
330719.106	0.1000
330800.7757	0.1000
330819.961	0.1000
330819.961	0.1000
330866.1023	0.1000
330868.4956	0.1000
331408.936	0.1000
331408.936	0.1000
331408.936	0.1000
331408.936	0.1000
331475.751	0.1000
332168.230	0.1000
332168.230	0.1000
332168.230	0.1000
332168,230	0.1000
333321 5124	0 1000
333647 0058	0 1000
333649 7148	0 1000
33/588 0721	0.1000
225027 2/10	0.1000
335027.3410	0.1000
335097.8940	0.1000
337150.8583	0.1000
337966.5049	0.1000
338077.6478	0.1000
338116.7959	0.1000
338116.7959	0.1000
338323.1209	0.1000
338524.3704	0.1000
338524.3704	0.1000
338524.3704	0.1000
338524.3704	0.1000
339086.0516	0.1000
339086.0516	0.1000
339756.3692	0.1000
339756.3692	0.1000
339756.3692	0.1000
339756.3692	0.1000
339858.2562	0.1000

339858.2562	0.1000
339987.124	0.1000
340013.209	0.1000
340013,209	0.1000
340167,434	0.1000
3/0170 553	0.1000
340179.555	0.1000
340179.553	0.1000
340462.756	0.1000
340462.756	0.1000
340606.8813	0.1000
340611.6314	0.1000
340691.473	0.1000
340715.5942	0.1000
340926.4916	0.1000
340926,4916	0.1000
341113 326	0 1000
3/1113 326	0.1000
34110.320	0.1000
341309.957	0.1000
341309.957	0.1000
341309.957	0.1000
341309.957	0.1000
341409.8850	0.1000
341409.8850	0.1000
341621.0265	0.1000
341621.0265	0.1000
341700.090	0.1000
341700.090	0.1000
341701.213	0.1000
341985.787	0.1000
342070.7099	0.1000
342070,7099	0.1000
342070 7099	0 1000
3/2070 7000	0.1000
342010.1099 240E46 724	0.1000
342540.734	0.1000
348516.790	0.1000
348567.340	0.1000
348937.0244	0.1000
348937.0244	0.1000
348937.0244	0.1000
348937.0244	0.1000
349715.724	0.1000
349892.677	0.1000
349999.343	0.1000
350277.465	0.1000
350500.279	0.1000
350503 162	0.1000
350556 011	0 1000
351045 037	0 1000
251000 767	0.1000
351203.101	0.1000
351209.101	0.1000
351209.767	0.1000
351473.6415	0.1000
351971.2932	0.1000

351971.2932	0.1000
351971.2932	0.1000
351971.2932	0.1000
353372.087	0.1000
353387.961	0.1000
353889.077	0.1000
353889.077	0.1000
354531.374	0.1000
354727 102	0 1000
354735 725	0 1000
355060 8650	0.1000
25507/ 7091	0.1000
256126 000	0.1000
256126 000	0.1000
350130.000	0.1000
357037.1237	0.1000
12492.76	0.0500
12603.89	0.0500
12603.89	0.0500
12793.56	0.0500
13388.35	0.0500
13498.58	0.0500
13789.07	0.0500
13817.12	0.0500
14103.12	0.0500
14104.38	0.0500
14469.44	0.0500
14773.65	0.0500
14813.70	0.0500
14913.44	0.0500
15151.35	0.0500
15977 35	0 0500
15983 91	0.0500
16375 53	0.0500
16290 66	0.0500
16521 00	0.0500
10001.00	0.0500
17030.45	0.0500
17249.54	0.0500
17249.54	0.0500
17872.68	0.0500
21904.59	0.0500
23170.31	0.0500
23209.60	0.0500
23428.68	0.0500
23508.92	0.0500
23678.38	0.0500
23721.47	0.0500
24704.83	0.0500
24704.83	0.0500
25189.35	0.0500
25723.07	0.0500
25867.99	0.0500
25878.55	0.0500
72461 1908	0.1000
	2.1000

296

97809.3635	0.1000
97848.5935	0.1000
98273.3416	0.1000
98607.8847	0.1000
102409.4269	0.1000
102723 6021	0 1000
102720.0021	0.1000
102/07.11/0	0.1000
102091.0902	0.1000
103204.2802	0.1000
103826.3469	0.1000
104210.8952	0.1000
104499.1435	0.1000
105424.5366	0.1000
106329.4614	0.1000
106469.8794	0.1000
106708.5853	0.1000
107116.4661	0.1000
107664.9100	0.1000
107773.0392	0.1000
108298.0886	0.1000
108320 6105	0 1000
108972 4610	0 1000
1000/1 6733	0.1000
109041.0733	0.1000
109452.0154	0.1000
109493.3965	0.1000
109869.8429	0.1000
109979.9167	0.1000
110103.9244	0.1000
110754.5738	0.1000
110964.1810	0.1000
111459.7538	0.1000
111505.0551	0.1000
111667.0769	0.1000
111800.4117	0.1000
111859.6706	0.1000
112267.9364	0.1000
112542,4035	0.1000
112618 5702	0 1000
112761 1604	0.1000
112701.1004	0.1000
112071.0434	0.1000
113124.9554	0.1000
113202.1966	0.1000
113390.6623	0.1000
113405.6201	0.1000
113540.3180	0.1000
113593.8686	0.1000
113675.8842	0.1000
113790.6312	0.1000
113840.1253	0.1000
114023.3323	0.1000
114079.0722	0.1000
114150.8190	0.1000
114252.7346	0.1000
· · · · ·	

114402.5599	0.1000
114607.3298	0.1000
114809.7483	0.1000
115001.8249	0.1000
115269.6178	0.1000
115413.6710	0.1000
115848 8706	0 1000
115037 0265	0.1000
116036 7640	0.1000
116496 9570	0.1000
110400.2079	0.1000
117050.9952	0.1000
117403.4042	0.1000
118862.7499	0.1000
119140.1891	0.1000
119799.8225	0.1000
120123.1014	0.1000
120165.4904	0.1000
120793.2998	0.1000
121110.7375	0.1000
121380.9230	0.1000
122260.1757	0.1000
124799.1075	0.1000
125057.8046	0.1000
127003.3135	0.1000
127399.0931	0.1000
129037.1653	0.1000
129236,9926	0.1000
130055.6175	0.1000
132077,4390	0.1000
132084 1645	0 1000
133485 6670	0 1000
133735 /018	0.1000
125101 5707	0.1000
125005 0000	0.1000
135205.0909	0.1000
135351.6591	0.1000
135408.1500	0.1000
135423.1890	0.1000
135447.1310	0.1000
135657.9388	0.1000
135880.0426	0.1000
136465.4260	0.1000
137750.5952	0.1000
139281.0836	0.1000
139752.5937	0.1000
142120.5316	0.1000
142120.5898	0.1000
142274.5461	0.1000
142274.5602	0.1000
143460.5859	0.1000
143601.5431	0.1000
145090.4034	0.1000
145709 8771	0.1000
146006 6731	0 1000
110000.0101	0.1000

299

146569.8669	0.1000
146960.7091	0.1000
147512.4213	0.1000
147970.7620	0.1000
148227.6059	0.1000
149144,4459	0.1000
149535 8036	0 1000
150212 0446	0.1000
150313.0440	0.1000
150459.5642	0.1000
150781.4498	0.1000
150869.5284	0.1000
151725.1903	0.1000
152024.8702	0.1000
152095.5888	0.1000
152544.8819	0.1000
153205.6622	0.1000
153300.9025	0.1000
153412.1901	0.1000
153490.8957	0.1000
154182.7503	0.1000
154755 6275	0 1000
15/997 5/16	0 1000
155055 1502	0.1000
15600E 7207	0.1000
150005.7507	0.1000
150104.3053	0.1000
157023.8253	0.1000
15/144.2758	0.1000
157237.2742	0.1000
157341.5663	0.1000
157490.1399	0.1000
157966.3772	0.1000
158217.7282	0.1000
158778.5167	0.1000
159124.2988	0.1000
159228.2023	0.1000
159376.2038	0.1000
159676.5339	0.1000
160282.1443	0.1000
160545, 1331	0.1000
160582 1925	0 1000
160806 8023	0 1000
160960.0601	0.1000
161001 0452	0.1000
101291.0455	0.1000
161410.6174	0.1000
161421.5844	0.1000
161440.1329	0.1000
161900.2770	0.1000
162273.4033	0.1000
162358.1853	0.1000
162743.6666	0.1000
162892.1070	0.1000
162892.1401	0.1000
163349.7399	0.1000

163393.3343	0.1000
163398.5387	0.1000
163464.0148	0.1000
163888.8135	0.1000
163908.4734	0.1000
163935 3138	0.1000
16/31/ /337	0 1000
164470 1520	0.1000
104472.1550	0.1000
164612.4594	0.1000
164705.0482	0.1000
164741.1027	0.1000
164839.9547	0.1000
164841.0100	0.1000
165838.8098	0.1000
168448.7466	0.1000
168981.7627	0.1000
169331.7951	0.1000
169726.6746	0.1000
169831.5365	0.1000
170069.6837	0.1000
171771 8193	0.1000
171794 7093	0 1000
172283 0777	0.1000
172203.0777	0.1000
173279.0709	0.1000
173297.5995	0.1000
173303.0500	0.1000
173343.3586	0.1000
188726.2485	0.1000
188742.2013	0.1000
189131.1623	0.1000
189195.1076	0.1000
189201.4505	0.1000
189575.2806	0.1000
189577.5113	0.1000
189880.2681	0.1000
189881.1215	0.1000
190122.0486	0.1000
190310.2228	0.1000
190453 7036	0 1000
190453 7036	0 1000
190560 2635	0.1000
100560 2625	0.1000
190500.2055	0.1000
190595.4157	0.1000
191221.8098	0.1000
191310.2245	0.1000
192075.2940	0.1000
192608.5848	0.1000
192707.8958	0.1000
193044.1258	0.1000
193123.9139	0.1000
193131.0228	0.1000
193288.3999	0.1000
193440.3969	0.1000

193481.4127	0.1000
193897.9955	0.1000
194815 8712	0 1000
104040 4400	0.1000
194049.4490	0.1000
195778.8491	0.1000
195800.7181	0.1000
195936.2873	0.1000
196045.7898	0.1000
196514.9802	0.1000
196666.2877	0.1000
196876.5172	0.1000
197091,2803	0.1000
197473 0784	0 1000
107662 63/0	0.1000
107602.0040	0.1000
197002.0320	0.1000
198288.4800	0.1000
198808.0541	0.1000
199005.9767	0.1000
199092.0586	0.1000
199190.9401	0.1000
199911.7424	0.1000
200020.5181	0.1000
200590.4108	0.1000
200680 8162	0 1000
200000.0102	0 1000
200330.4311	0.1000
201105.7200	0.1000
201634.7853	0.1000
201847.9028	0.1000
202088.5733	0.1000
202400.6273	0.1000
202506.3803	0.1000
202856.8369	0.1000
203042.1978	0.1000
203046.1492	0.1000
203381.8588	0.1000
203498 2772	0 1000
203/08 2815	0 1000
203490.2013	0.1000
203498.2815	0.1000
203940.4501	0.1000
203940.5065	0.1000
204257.6916	0.1000
205215.9727	0.1000
205386.6146	0.1000
205624.1549	0.1000
205740.3630	0.1000
206017.3350	0.1000
206060 2872	0.1000
206260 /212	0 1000
200200.4210	0.1000
200321.2989	0.1000
200301.0836	0.1000
206728.7215	0.1000
206785.3742	0.1000
206852.6089	0.1000

206912.3592	0.1000
207243.3384	0.1000
2072115 0000	0 1000
207445.0009	0.1000
207580.9052	0.1000
207749.2887	0.1000
207830.7633	0.1000
208096 1784	0 1000
200000.1104	0.1000
208726.9916	0.1000
208822.2940	0.1000
208822.2940	0.1000
208943.7783	0.1000
208986 5571	0 1000
200000.0011	0.1000
209295.5516	0.1000
209445.0494	0.1000
210025.0469	0.1000
210090.4278	0.1000
210189 2877	0 1000
210103.2011	0.1000
210373.0129	0.1000
211234.1928	0.1000
211326.2887	0.1000
212040.5483	0.1000
212058 5811	0 1000
212000.0011	0.1000
212113.3029	0.1000
212160.0245	0.1000
212239.3252	0.1000
212366.8836	0.1000
212860.8927	0.1000
212881 4616	0 1000
212001.1010	0.1000
212950.5047	0.1000
212959.7752	0.1000
212960.7591	0.1000
213455.9257	0.1000
213491.2636	0.1000
213500 3044	0 1000
210000.0011	0.1000
214022.5154	0.1000
214026.3334	0.1000
214177.0183	0.1000
214468.2120	0.1000
214469.5323	0.1000
214555 0433	0 1000
214000.0400	0.1000
225094.9817	0.1000
225152.2902	0.1000
225159.6786	0.1000
225179.9800	0.1000
225230.6012	0.1000
226350 2205	0 1000
220000.2290	0.1000
220483./354	0.1000
227445.4235	0.1000
228030.3947	0.1000
228046.5353	0.1000
228518.6991	0.1000
228560 0702	0 1000
220300.9103	0.1000
228/31.3356	0.1000
228931.6244	0.1000
-------------	--------
228995.4526	0.1000
229203.7999	0.1000
229639.7697	0.1000
230309.6547	0.1000
230528 9634	0.1000
230565 0522	0 1000
220200.0522	0.1000
230800.0502	0.1000
230800.0502	0.1000
231145.4468	0.1000
231788.3179	0.1000
231789.3626	0.1000
231877.8377	0.1000
231930.0797	0.1000
231989.3644	0.1000
232186.5981	0.1000
232441.8516	0.1000
232528.5052	0.1000
232786.4386	0.1000
232787 1318	0.1000
232858 2019	0 1000
232876 0820	0.1000
232010.0023	0.1000
232922.0171	0.1000
232922.8171	0.1000
233292.2805	0.1000
233293.0928	0.1000
233597.6262	0.1000
233781.6455	0.1000
234382.0454	0.1000
234463.3116	0.1000
234808.3442	0.1000
234904.3537	0.1000
235021.7710	0.1000
235853.4849	0.1000
235901.8105	0.1000
236757.8561	0.1000
236781 2492	0 1000
237541 0424	0 1000
227552 2621	0.1000
237332.2001	0.1000
238148.8258	0.1000
238218.8019	0.1000
238223.8263	0.1000
238296.8588	0.1000
238805.3932	0.1000
238878.1640	0.1000
239180.4390	0.1000
239283.1367	0.1000
239305.9976	0.1000
239306.8838	0.1000
240060.1793	0.1000
240100.0726	0.1000
240100.0726	0.1000
240277.1349	0.1000

240407.2861	0.1000
240407.2861	0.1000
240411.5655	0.1000
240582.5575	0.1000
240663.6606	0.1000
240663 6606	0 1000
240003.0000	0.1000
240097.3708	0.1000
240875.3790	0.1000
240875.3790	0.1000
241048.3458	0.1000
241048.3458	0.1000
245734.6298	0.1000
245734.6298	0.1000
245763.9287	0.1000
246566.6370	0.1000
246775.0274	0.1000
248711 4556	0 1000
240111.4000	0.1000
240950.0200	0.1000
249875.3072	0.1000
250042.8262	0.1000
250599.8366	0.1000
250709.7437	0.1000
260744.3700	0.1000
260911.3126	0.1000
260926.6235	0.1000
261221.8567	0.1000
261387.0098	0.1000
261399.3395	0.1000
261668.6042	0.1000
261679.2109	0.1000
262046.4078	0.1000
262063.1716	0.1000
262202 7334	0 1000
262202.1004	0.1000
202200.4000	0.1000
202510.9910	0.1000
262516.9918	0.1000
262516.9918	0.1000
262646.5981	0.1000
262920.7564	0.1000
262923.4566	0.1000
263550.8053	0.1000
264102.2290	0.1000
264102.2290	0.1000
264240.5015	0.1000
264582.3342	0.1000
264998.5642	0.1000
265170.4975	0.1000
265357 3337	0.1000
265664 2461	0 1000
200004.0401	0 1000
200004.0401	0.1000
200901.2490	0.1000
205907.2496	0.1000
265925.4629	0.1000

265925.4629	0.1000
266030.5724	0.1000
266076.8183	0.1000
266145.2960	0.1000
266145, 2960	0.1000
266328 5105	0 1000
200320.3103	0.1000
200328.5105	0.1000
266480.0544	0.1000
266480.0544	0.1000
266602.8601	0.1000
266602.8601	0.1000
266654.5066	0.1000
266701.4013	0.1000
266701.4013	0.1000
266778.6339	0.1000
266778 6339	0.1000
200110100000	0 1000
200220.1104	0.1000
299210.0100	0.1000
300069.9680	0.1000
300486.4723	0.1000
300543.2455	0.1000
300877.5015	0.1000
301277.4326	0.1000
301278.5455	0.1000
301291.8648	0.1000
301552.1696	0.1000
302016.2069	0.1000
302133.9566	0.1000
302133.9566	0.1000
302133.9566	0.1000
302133,9566	0.1000
303045 6096	0 1000
3030/0 3180	0.1000
205620 7166	0.1000
305020.7100	0.1000
305620.7166	0.1000
306179.9607	0.1000
310383.7731	0.1000
311174.4922	0.1000
311175.0951	0.1000
311411.9968	0.1000
311501.4537	0.1000
311503.0799	0.1000
312033.3175	0.1000
312033.3175	0.1000
312033.3175	0.1000
312033.3175	0.1000
312982.2762	0,1000
313611 1830	0 1000
313611 1920	0 1000
31/172 527/	0.1000
21/172 5274	0.1000
3141/3.53/4	0.1000
3140/5.4166	0.1000
314675.4166	0.1000

315121.0272	0.1000
315121.0272	0.1000
315863.4942	0.1000
315863,4942	0.1000
316168, 4390	0.1000
316168 //300	0 1000
310100.4390	0.1000
316434.4144	0.1000
316434.4144	0.1000
317032.5987	0.1000
317032.5987	0.1000
317096.8694	0.1000
317096.8694	0.1000
317175.7384	0.1000
317175.7384	0.1000
317295.7536	0.1000
317295 7536	0 1000
310/15 3252	0 1000
200040 0711	0.1000
320040.0711	0.1000
320276.5181	0.1000
320295.3320	0.1000
321070.7314	0.1000
321070.7314	0.1000
321070.7314	0.1000
321070.7314	0.1000
321931.3765	0.1000
321931.3765	0.1000
321931.3765	0.1000
321931.3765	0.1000
325744.3124	0.1000
325774.5463	0.1000
325942 1441	0.1000
325944 0196	0 1000
328558 4829	0 1000
220000.4020	0.1000
320330.4029	0.1000
328980.0637	0.1000
329763.0367	0.1000
329765.9481	0.1000
330175.9542	0.1000
330964.6030	0.1000
330964.6030	0.1000
330964.6030	0.1000
330964.6030	0.1000
331035.6420	0.1000
331035.6420	0.1000
331826.5995	0.1000
331826.5995	0.1000
331826 5995	0.1000
331826 5005	0 1000
335000 00/1	0.1000
225022.9041	0.1000
333022.9841	0.1000
336948.8441	0.1000
336990.0282	0.1000
337064.2971	0.1000

338340.1554	0.1000
338340.1554	0.1000
338935.0894	0.1000
338935.0894	0.1000
339316.9845	0.1000
339544 5744	0 1000
220052 6097	0.1000
339953.0907	0.1000
339953.6987	0.1000
339999.3971	0.1000
340051.4244	0.1000
340057.6115	0.1000
340385.1063	0.1000
340385.1063	0.1000
340770.1078	0.1000
340770.1078	0.1000
340855 8546	0.1000
340855 8546	0 1000
240055.0540	0.1000
	0.1000
340855.8546	0.1000
341414.9619	0.1000
341414.9619	0.1000
341681.7440	0.1000
341681.7440	0.1000
341720.1858	0.1000
341720.1858	0.1000
341720.1858	0.1000
341720.1858	0.1000
341915.0688	0.1000
341915.0688	0.1000
342118,5428	0.1000
342118 5428	0 1000
342204 3080	0.1000
342234.3300	0.1000
342294.3900	0.1000
342445.2989	0.1000
342445.2989	0.1000
342524.5124	0.1000
342524.5124	0.1000
342573.9395	0.1000
342573.9395	0.1000
342682.0724	0.1000
342682.0724	0.1000
349219.3906	0.1000
349938.9411	0.1000
351611.8270	0.1000
351611.8270	0.1000
351611 8270	0 1000
351611 2070	0 1000
354005 0060	0.1000
354005.2962	0.1000
354005.2962	0.1000
356436.8923	0.1000
356436.8923	0.1000
13266.02	0.1000
13390.35	0.1000

13396.00	0.1000
13638.19	0.1000
13663 91	0 1000
12744 00	0.1000
14266 04	0.1000
14366.04	0.1000
15142.81	0.1000
15315.44	0.1000
15338.92	0.1000
15338.92	0.1000
15803 13	0 1000
15021 00	0.1000
15051.90	0.1000
15978.14	0.1000
16174.31	0.1000
16174.31	0.1000
17954.89	0.1000
17954.89	0.1000
22172.00	0.1000
22806 42	0 1000
22000.42	0.1000
22980.61	0.1000
23008.19	0.1000
23200.05	0.1000
23203.07	0.1000
23275.94	0.1000
23515.25	0.1000
23737.80	0.1000
23737.80	0.1000
24503 23	0.1000
24691 90	0 1000
24001.00	0.1000
24990.50	0.1000
25407.82	0.1000
25839.49	0.1000
25851.92	0.1000
73273.1932	0.1000
74158.8959	0.1000
74564.9499	0.1000
76493,4502	0.1000
77427 1981	0 1000
78005 7163	0.1000
70000.1100	0.1000
78259.2138	0.1000
78422.9843	0.1000
78422.9843	0.1000
78853.2158	0.1000
79296.7367	0.1000
80026.7596	0.1000
80841.0245	0.1000
81239 6751	0.1000
81879 1572	0 1000
01073.1072	0.1000
03101.4084	0.1000
83301.4522	0.1000
84351.0608	0.1000
85393.3457	0.1000
86628.9214	0.1000
88136.5635	0.1000

88194.8723	0.1000
88677.8131	0.1000
88824.8939	0.1000
88930 5975	0 1000
88990 2388	0 1000
80206 8065	0.1000
00000 5000	0.1000
89236.5638	0.1000
89702.1875	0.1000
90031.6445	0.1000
90597.6423	0.1000
91934.1879	0.1000
92245.7077	0.1000
92430.7047	0.1000
93766.7718	0.1000
93819.1274	0.1000
94002.2547	0.1000
94591 5079	0.1000
94897 4572	0 1000
05370 5377	0.1000
95570.5577	0.1000
95450.2714	0.1000
96335.7445	0.1000
97709.3787	0.1000
98207.1636	0.1000
101219.8052	0.1000
102506.1885	0.1000
102601.4102	0.1000
102668.9467	0.1000
102731.6574	0.1000
103175.9943	0.1000
103633.1153	0.1000
103956.6073	0.1000
104024.8704	0.1000
106984.9140	0.1000
107310.0546	0.1000
107811.6323	0.1000
108248.9406	0.1000
108399 6637	0 1000
108627 3245	0 1000
100621.0240	0.1000
100051.0545	0.1000
109053.5322	0.1000
109110.1212	0.1000
109119.2185	0.1000
109345.1581	0.1000
109660.2859	0.1000
110079.3393	0.1000
110341.9347	0.1000
110806.7442	0.1000
111189.1383	0.1000
111610.2924	0.1000
111618.9684	0.1000
111694.0492	0.1000
112043.5412	0.1000
112865.3648	0.1000

113375.6297	0.1000
113499.1790	0.1000
113623.3675	0.1000
113677.3054	0.1000
113685.0764	0.1000
113719,7107	0.1000
1137/7 0733	0.1000
112000 4026	0.1000
113909.4930	0.1000
114000.4422	0.1000
114334.7361	0.1000
114577.5909	0.1000
114677.4648	0.1000
114813.3438	0.1000
114975.3956	0.1000
114981.9209	0.1000
115167.6899	0.1000
115254.3130	0.1000
115293.7626	0.1000
115359,6904	0.1000
115385 6591	0 1000
115401 6744	0.1000
11551/ 0252	0.1000
115514.0252	0.1000
115516.0057	0.1000
115815.2986	0.1000
115884.7893	0.1000
116261.8977	0.1000
116429.0320	0.1000
116445.6682	0.1000
116726.0212	0.1000
116825.4077	0.1000
117180.9848	0.1000
117744.0596	0.1000
118543.3411	0.1000
120462.1181	0.1000
120778.7807	0.1000
121656.1795	0.1000
122200011700	0 1000
124689 9490	0.1000
125011 4270	0.1000
125011.4270	0.1000
125023.2181	0.1000
126142.1643	0.1000
129596.1522	0.1000
130161.7721	0.1000
138725.9589	0.1000
142152.0590	0.1000
142288.5735	0.1000
142776.4464	0.1000
142776.5362	0.1000
142916.2524	0.1000
145482.8001	0.1000
146006.6731	0.1000
146006.6731	0.1000
147528.5621	0.1000

148003.8293	0.1000
148774.0240	0.1000
149297.1421	0.1000
149452.6854	0.1000
149593.0002	0.1000
150218,9419	0.1000
150399 3605	0 1000
151016 5259	0.1000
151910.5250	0.1000
152251.5419	0.1000
152675.2193	0.1000
152753.2013	0.1000
152810.4094	0.1000
153084.7324	0.1000
154177.3975	0.1000
156435.4862	0.1000
156713.4751	0.1000
158746.8617	0.1000
158902.8851	0.1000
158987.7555	0.1000
159396.9244	0.1000
159480.7911	0.1000
159523 8751	0 1000
160340 1510	0.1000
160005 1066	0.1000
160006 6149	0.1000
160926.0146	0.1000
101008.7917	0.1000
162380.5766	0.1000
162399.0269	0.1000
162483.2967	0.1000
162553.4521	0.1000
162560.0741	0.1000
162572.6386	0.1000
162603.1264	0.1000
162621.0518	0.1000
162957.7902	0.1000
163036.0221	0.1000
163249.9873	0.1000
163258.6991	0.1000
164030.5254	0.1000
164358.5627	0.1000
164512 3665	0 1000
165750 0801	0.1000
165004 9601	0.1000
166240 7607	0.1000
100340.7007	0.1000
171124.3981	0.1000
1/2436.6002	0.1000
172460.2933	0.1000
172616.4463	0.1000
188610.0369	0.1000
188773.6252	0.1000
189215.0275	0.1000
189307.0825	0.1000
189738.1140	0.1000

189961.5734	0.1000
189982.2076	0.1000
190023.2321	0.1000
190061.9643	0.1000
190404.7543	0.1000
190608 6374	0 1000
100605 0000	0.1000
190625.2222	0.1000
190680.0395	0.1000
190733.2358	0.1000
190861.9842	0.1000
191086.3583	0.1000
191093.2311	0.1000
191297.4372	0.1000
191473.2915	0.1000
191475.8631	0.1000
191783.9010	0.1000
191784 6675	0 1000
101025 10/0	0.1000
191020.1940	0.1000
192176.3543	0.1000
192183.3900	0.1000
192221.4866	0.1000
192475.9007	0.1000
192475.9007	0.1000
192856.2762	0.1000
194092.4923	0.1000
194326.6429	0.1000
194326.6429	0.1000
194339.8835	0.1000
195534 6485	0.1000
195908 9403	0 1000
196453 6246	0 1000
107651 2507	0.1000
100170 0000	0.1000
198170.0800	0.1000
198513.9015	0.1000
198837.2110	0.1000
199300.0483	0.1000
199585.2657	0.1000
199642.6719	0.1000
200039.9853	0.1000
200133.6937	0.1000
200301.3806	0.1000
200765.0879	0.1000
200802.2487	0.1000
201048 0572	0 1000
201040.0072	0.1000
201104.0040	0.1000
201207.0120	0.1000
201041.0410	0.1000
201565.8585	0.1000
201969.4911	0.1000
202020.4505	0.1000
202042.1118	0.1000
202046.0547	0.1000
202426.6572	0.1000

203112.2107	0.1000
203619.9823	0.1000
202620 0000	0 1000
203020.0090	0.1000
203828.5402	0.1000
203828.5606	0.1000
204377.7154	0.1000
205016.4519	0.1000
200010.1010	0 1000
205200.1099	0.1000
205327.3781	0.1000
205542.7679	0.1000
205908.8812	0.1000
206229.2164	0.1000
206554.5106	0.1000
206710 8491	0 1000
200710.0431	0.1000
207169.1936	0.1000
207231.8502	0.1000
207584.8357	0.1000
207641.1642	0.1000
208290 8167	0 1000
200200.0101	0.1000
200193.4013	0.1000
208956.6070	0.1000
209053.2995	0.1000
209413.6624	0.1000
209448.2706	0.1000
209506.7206	0.1000
2000000.1200	0.1000
209303.2021	0.1000
210049.1724	0.1000
210049.1724	0.1000
210125.6481	0.1000
210246.3472	0.1000
210979.0732	0.1000
211174 6738	0 1000
211174.0730	0.1000
211348.9013	0.1000
211400.2558	0.1000
211708.6438	0.1000
211855.9252	0.1000
211906.1939	0.1000
211008 3800	0 1000
211900.0009	0.1000
212212.9965	0.1000
212250.8206	0.1000
212442.2036	0.1000
213316.5249	0.1000
213412.9677	0.1000
213642 3028	0 1000
213042.3020	0.1000
214215.2871	0.1000
214261.7219	0.1000
214460.8670	0.1000
225134.6559	0.1000
225353.4705	0.1000
226797 2330	0 1000
220101.2000	0.1000
220002.00/0	0.1000
227474.9760	0.1000
227709.0351	0.1000

228066.3178	0.1000
228193.4127	0.1000
228305.5434	0.1000
228392.6881	0.1000
229499.9189	0.1000
229569.1518	0.1000
229929 7167	0 1000
220020.1101	0.1000
230034.0104	0.1000
230220.6010	0.1000
230483.9508	0.1000
230728.6724	0.1000
230941.3123	0.1000
230999.4979	0.1000
231607.9463	0.1000
231610.4093	0.1000
231629.6217	0.1000
231630.2222	0.1000
231855.1543	0.1000
232036.4698	0.1000
232742.2011	0.1000
232955_0612	0.1000
232956 1338	0 1000
232385 8378	0.1000
231/35 06/0	0.1000
234433.3043	0.1000
234021.0370	0.1000
234758.1539	0.1000
234793.2199	0.1000
234984.1653	0.1000
235876.5498	0.1000
235928.3183	0.1000
236068.8441	0.1000
236353.2998	0.1000
237111.9510	0.1000
237776.6776	0.1000
238177.6351	0.1000
238227.9768	0.1000
239099.0132	0.1000
239123.6883	0.1000
239717.0583	0.1000
239897.3573	0.1000
239908.6832	0.1000
239971 4001	0 1000
240176 5602	0.1000
240170.0002	0.1000
240507.5099	0.1000
240392.0740	0.1000
240807.2645	0.1000
240840.4462	0.1000
241010.1293	0.1000
245328.0220	0.1000
245337.6699	0.1000
245572.0491	0.1000
245834.9828	0.1000
245865.3755	0.1000

246520.8249	0.1000
246527.3168	0.1000
246787.7803	0.1000
246835 0453	0 1000
240000.0400	0.1000
248257.3139	0.1000
249113.6594	0.1000
249789.8607	0.1000
250573.3501	0.1000
250667 5467	0 1000
250007.5407	0.1000
250686.1413	0.1000
250781.7790	0.1000
260523.6313	0.1000
260534 1733	0.1000
260740 1074	0 1000
200140.1014	0.1000
261076.4370	0.1000
261204.0130	0.1000
261204.0130	0.1000
261204.0130	0.1000
261956 2550	0 1000
261000.2000	0.1000
202007.0900	0.1000
262687.8361	0.1000
263026.5753	0.1000
263052.8063	0.1000
263161.0941	0.1000
263372 7989	0 1000
262270 7090	0.1000
203372.7909	0.1000
263397.4681	0.1000
263969.9883	0.1000
263982.6568	0.1000
264644.5544	0.1000
264742 7995	0 1000
264800 5625	0.1000
204000.0020	0.1000
264806.6471	0.1000
264945.7922	0.1000
264948.9876	0.1000
264948.9876	0.1000
264951 0483	0 1000
264051 0492	0 1000
204951.0465	0.1000
265027.4497	0.1000
265126.1954	0.1000
265437.2240	0.1000
265453.6940	0.1000
265531 5741	0 1000
200001.0711	0.1000
205554.4214	0.1000
266173.2123	0.1000
266174.5829	0.1000
266574.9150	0.1000
266734.8271	0.1000
299304 2903	0 1000
2000250 0462	0.1000
299309.9403	0.1000
299847.9780	0.1000
299926.4506	0.1000
299927.4743	0.1000

300168.4436	0.1000
300377.0994	0.1000
314584.6993	0.1000
315176.0043	0.1000
316090.2279	0.1000
316090 2279	0 1000
216720 0000	0.1000
310730.0999	0.1000
317812.5531	0.1000
317812.5531	0.1000
318667.1071	0.1000
318667.1071	0.1000
318684.6941	0.1000
318684.6941	0.1000
319617.6239	0.1000
319617.6239	0.1000
320036 1875	0 1000
320036 1875	0 1000
320000.1075	0.1000
320208.0095	0.1000
320208.0095	0.1000
320308.0056	0.1000
320308.0056	0.1000
320308.0056	0.1000
320308.0056	0.1000
321444.6288	0.1000
321444.6288	0.1000
327012.3757	0.1000
328223.4618	0.1000
328593.8467	0.1000
328829.8462	0.1000
328840,6034	0.1000
329460 0079	0 1000
330116 3031	0.1000
220116 2021	0.1000
220150 2271	0.1000
330152.2271	0.1000
330152.2271	0.1000
330152.2271	0.1000
330152.2271	0.1000
331467.8876	0.1000
332908.1691	0.1000
332908.1691	0.1000
338192.3404	0.1000
338323.1209	0.1000
338665.4115	0.1000
338671.3717	0.1000
339994 4858	0.1000
339994 4858	0 1000
33000/ 1050	0 1000
220004 4050	0.1000
339994.4858	0.1000
340601.0367	0.1000
341526.9024	0.1000
342307.4592	0.1000
342307.4592	0.1000
342853.2460	0.1000

342853.2460	0.1000
343342.8947	0.1000
343342.8947	0.1000
343412.0021	0.1000
349139.8673	0.1000
349139 8673	0.1000
3/0130 8673	0 1000
240120 9672	0.1000
349139.0073	0.1000
349834.9028	0.1000
349834.9028	0.1000
349834.9028	0.1000
349834.9028	0.1000
12826.59	0.1000
12951.09	0.1000
12955.84	0.1000
13591.41	0.1000
14192.13	0.1000
14717.63	0.1000
14717.63	0.1000
14818.04	0.1000
15236 81	0 1000
15562 10	0.1000
15505.10	0.1000
15565.56	0.1000
15964.59	0.1000
15990.86	0.1000
16525.68	0.1000
16525.68	0.1000
17361.80	0.1000
17361.80	0.1000
17943.80	0.1000
21952.02	0.1000
22659.32	0.1000
22661.83	0.1000
22866.12	0.1000
22910.15	0.1000
23117 80	0 1000
23458 50	0 1000
23430.30	0.1000
23310.10	0.1000
24174.13	0.1000
24174.13	0.1000
24408.62	0.1000
25441.98	0.1000
25482.97	0.1000
25742.20	0.1000
73509.8481	0.1000
73724.2486	0.1000
75759.3795	0.1000
76235.7166	0.1000
76499.7537	0.1000
77466.7379	0.1000
79213 7174	0.1000
79556 0459	0 1000
91017 E011	0.1000
01041.3844	0.1000

81310.5645	0.1000
86401.9422	0.1000
86527.9768	0.1000
87494.0106	0.1000
87781.6084	0.1000
88125 2096	0 1000
80277 1/80	0.1000
01570 0740	0.1000
91579.8742	0.1000
92256.9252	0.1000
93332.9939	0.1000
93621.5778	0.1000
94424.2247	0.1000
94485.7254	0.1000
94487.3531	0.1000
94620.2939	0.1000
95143.3606	0.1000
95724.6836	0.1000
97172.9371	0.1000
98378 7620	0 1000
98763 1594	0 1000
102014 2026	0.1000
102014.2000	0.1000
103157.1581	0.1000
103821.4766	0.1000
103897.1581	0.1000
103900.7280	0.1000
104940.9272	0.1000
107364.2976	0.1000
107848.5211	0.1000
108098.8262	0.1000
108853.4502	0.1000
109286.2020	0.1000
109857.4315	0.1000
110020.2420	0.1000
111392,1895	0.1000
111899 8262	0 1000
110310 06/5	0.1000
112012.9040	0.1000
112089.7301	0.1000
1131/4.21/6	0.1000
113392.6865	0.1000
113481.1013	0.1000
113483.9821	0.1000
113585.9032	0.1000
113743.6916	0.1000
113856.1296	0.1000
113857.4141	0.1000
113929.1879	0.1000
114012.4528	0.1000
114076.6441	0.1000
114136 7260	0.1000
114192 8302	0 1000
11//13 2771	0 1000
11//02 1056	0.1000
114493.1250	0.1000
114552.0100	0.1000

114710.3919	0.1000
114772.8201	0.1000
114892.5085	0.1000
115048.2938	0.1000
115117.2381	0.1000
115230 0358	0.1000
115344 0305	0 1000
115044.0000	0.1000
115044.1101	0.1000
11/159.6364	0.1000
117178.5395	0.1000
117667.8177	0.1000
117887.9703	0.1000
122267.6488	0.1000
135104.1074	0.1000
142582.2733	0.1000
142730.7191	0.1000
142730.7618	0.1000
142789.8149	0.1000
149220.6188	0.1000
149837.3448	0.1000
152078 1943	0.1000
152472 1937	0 1000
152555 5063	0.1000
152652 00/8	0.1000
152002.0040	0.1000
153304.1490	0.1000
153318.2844	0.1000
153987.3693	0.1000
156495.7889	0.1000
158912.4470	0.1000
158916.3428	0.1000
160539.9021	0.1000
160596.7725	0.1000
161289.9911	0.1000
162347.6589	0.1000
162393.9019	0.1000
162493.7838	0.1000
163029.9105	0.1000
163211.7639	0.1000
164740.1156	0.1000
165191.3067	0.1000
169026.4583	0.1000
169896.6746	0.1000
172214 3843	0 1000
172240 0416	0 1000
188577 7003	0.1000
199762 1001	0.1000
100/03.4201	0.1000
100940.1319	0.1000
189025.3012	0.1000
189636.2070	0.1000
189671.3216	0.1000
189777.4520	0.1000
189941.4020	0.1000
190214.6025	0.1000

190665.3265	0.1000
190709.8560	0.1000
190949.3923	0.1000
191171.6578	0.1000
191515.8622	0.1000
191567 9386	0 1000
101751 0562	0.1000
191751.9563	0.1000
191751.9563	0.1000
191933.6129	0.1000
191941.2286	0.1000
191996.2089	0.1000
191996.2089	0.1000
193457.7367	0.1000
193821.1607	0.1000
194889.1401	0.1000
196385 5194	0 1000
106886 7030	0.1000
107540 4660	0.1000
197540.4000	0.1000
198/10.8/81	0.1000
199088.9781	0.1000
199247.7603	0.1000
200388.7634	0.1000
200468.5383	0.1000
200862.2501	0.1000
200905.6207	0.1000
200942.7850	0.1000
201238.6076	0.1000
201755.9938	0.1000
201788.9704	0.1000
201793 0934	0.1000
202623 3053	0 1000
202020.0000	0 1000
2027 40.0070	0.1000
202703.1009	0.1000
202941.5326	0.1000
204303.2330	0.1000
205142.2005	0.1000
205176.0071	0.1000
205217.7074	0.1000
205320.7964	0.1000
205743.0801	0.1000
206404.4194	0.1000
206552.4711	0.1000
206573.9242	0.1000
206805.2222	0.1000
207184.2488	0.1000
207244 7368	0 1000
201244.1000	0 1000
201423.0000	0.1000
201001.4333	0.1000
2085/1.0221	0.1000
209263.2816	0.1000
209461.1318	0.1000
209461.1318	0.1000
209866.0050	0.1000

210816.3648	0.1000
211010.0226	0.1000
211048.1887	0.1000
211642.1287	0.1000
211644.5082	0.1000
211938 1746	0 1000
211000.1740	0.1000
212043.1930	0.1000
212959.7752	0.1000
213045.1649	0.1000
213382.2293	0.1000
213822.5401	0.1000
213863.5621	0.1000
214552.5163	0.1000
225053.3161	0.1000
225620.0706	0.1000
226716.9874	0.1000
228397 3568	0 1000
228416 5714	0 1000
220410.0714	0.1000
220707.2121	0.1000
228919.9444	0.1000
228963.1330	0.1000
229375.4585	0.1000
230085.6673	0.1000
230565.7816	0.1000
230629.6732	0.1000
231235.1962	0.1000
231343.9250	0.1000
231344.7845	0.1000
232596.8485	0.1000
232812.6853	0.1000
233161.9360	0.1000
233292.2805	0.1000
234209.8973	0.1000
234523.3521	0.1000
236002 6444	0 1000
227701 2506	0.1000
237721.3390	0.1000
237790.4193	0.1000
237834.7097	0.1000
238675.1477	0.1000
238696.8812	0.1000
239195.6867	0.1000
239441.8921	0.1000
239452.1707	0.1000
240105.9599	0.1000
240110.3606	0.1000
240421.6858	0.1000
240458.1902	0.1000
240678.3645	0.1000
240680 0422	0.1000
245187 6412	0.1000
240107.0412	0 1000
240000.1001	0.1000
240033.2908	0.1000
∠40495.545I	0.1000

246495.5451	0.1000
249123.7008	0.1000
249275.3564	0.1000
250130.0251	0.1000
250138,4584	0.1000
2501001 1001	0 1000
250271.5672	0.1000
250291.8654	0.1000
251039.5881	0.1000
251039.5881	0.1000
260885.2178	0.1000
260885.2178	0.1000
261630.3490	0.1000
262612.3257	0.1000
262634.9259	0.1000
263517.9434	0.1000
263528 7953	0 1000
260020.7000	0.1000
204101.0014	0.1000
204315.0088	0.1000
264320.9450	0.1000
264735.3266	0.1000
265017.8997	0.1000
265020.2945	0.1000
265634.2705	0.1000
265635.4059	0.1000
265741.6747	0.1000
266332.2034	0.1000
266642.9579	0.1000
299473.9537	0.1000
299475,2004	0.1000
299872 3038	0 1000
300163 7004	0 1000
200240 2062	0.1000
300249.2003	0.1000
300249.2063	0.1000
300249.2063	0.1000
300249.2063	0.1000
300486.4723	0.1000
306367.1529	0.1000
306367.1529	0.1000
310085.6586	0.1000
310085.6586	0.1000
310085.6586	0.1000
310085.6586	0.1000
310099,6400	0.1000
310144 2260	0 1000
3171/1 0268	0.1000
3171/1 0060	0.1000
31/141.9200 210076 1000	0.1000
319076.1822	0.1000
319076.1822	0.1000
319141.8498	0.1000
319141.8498	0.1000
319141.8498	0.1000
319141.8498	0.1000
319431.2620	0.1000

19	13	7	3	19	12	8	3
32	0	32	3	31	0	31	3
32	0	32	3	31	1	31	3
32	1	32	3	31	0	31	3
32	1	32	3	31	1	31	3
32	1	31	3	31	1	30	3
32	1	31	3	31	2	30	3
32	2	31	3	31	2	30	3
33	0	33	3	32	0	32	3
33	0	33	3	32	1	32	3
33	1	33	3	32	0	32	3
33	1	33	3	32	1	32	3
32	3	30	3	31	2	29	3
33	1	32	3	32	1	31	3
33	1	32	3	32	2	31	3
33	2	32	3	32	1	31	3
33	2	32	3	32	2	31	3
34	0	34	3	33	0	33	3
34	0	34	3	33	1	33	3
34	1	34	3	33	0	33	3
34	1	34	3	33	1	33	3
13	8	5	3	12	7	6	3
29	14	15	3	29	13	16	3
29	14	16	3	29	13	17	3
11	9	2	3	10	8	3	3
11	9	3	3	10	8	2	3
34	1	33	3	33	1	32	3
34	1	33	3	33	2	32	3
34	2	33	3	33	1	32	3
34	2	33	3	33	2	32	3
35	0	35	3	34	0	34	3
35	0	35	3	34	1	34	3
35	1	35	3	34	0	34	3
35	1	35	3	34	1	34	3

0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

Appendix I

663 0.42

Aminoethanol Spectral Analysis

I.1 Aminoethanol .int File

aminoe	ethanol	L !!						
0001	710xx	125936.5942	2, 0,	100,	-7.9,-	-7.9,	720.	300
001	2.65							
002	0.89							
003	0.42							
111	2.65							
112	0.89							
113	0.42							
221	2.65							
222	0.89							
223	0.42							
331	2.65							
332	0.89							
333	0.42							
441	2.65							
442	0.89							
443	0.42							
551	2.65							
552	0.89							
553	0.42							
661	2.65							
662	0.89							

I.2 Aminoethanol .par File

	2-ami	noe	thanol					20-1	FEB-Wed M	lar 09	10:53:49 2005
	68 204	7	65	0	0.0000E+000	7.0	0000E+001		1.0000E+	-000 1	.0000000000
S	1	8	0	90					1.00002		
2	-	•	11	3.	.117841563200000E+C	006	1.000000	00E-	-020		
			22	6.	.235683126400000E+C	006	1.000000	00E-	-020		
			33	9	.143669969000001E+C	006	1.000000	00E-	-020		
			44	4	.916596311200000E+C	006	1.000000	00E-	-020		
			55	8	034437874400000E+0	006	1.000000	00E-	-020		
			66	1	.226151153220000E+0)07	1.000000	00E-	-020		
			10000	1	450872691481113E+0)04	8.970938	26E-	+030		
			10011	1	461109477646003E+0)04	1.088135	23E-	+030		
			10022	1	469753099708661E+0)04	1.529203	52E	+030		
			10033	1	452458317956908E+0)04	2.139803	18E-	+030		
			10044	1	449242303649748E+0)04	1.252995	 18E-	+030		
			10055	1	457207599536213E+0	004	5.899536	95E-	+030		
			10066	1	463125165988415E+0)04	8.879902	68E-	+030		
			20000	5	.546493840167291E+0	0.3	3.829098	87E-	+030		
			20011	5	502573626317491E+0	03	3.876927	10E-	+030		
			20022	5	464381924917447E+0	0.3	5.060448	01E-	+030		
			20033	5	537514504514986E+0	0.3	4.918400	65E-	+030		
			20000	5	545552371740057E+0	0.3	4 252963	45E-	+030		
			20055	5	503295885610964E+0	0.3	3 000839	69E-	+030		
			20066	5	458887750081936E+0	0.3	4 822650	58E-	+030		
			30000	4	570487013274089E+0	0.3	3 900311	59E-	+030		
			30011	4	547558969631417E+0	0.3	3.900207	73E-	+030		
			30022	4	527520009816749E+0	0.3	4.755060	01E-	+030		
			30033	4	559957663792010E+0	0.3	4.702698	64E-	+030		
			30044	4	559708841734267E+0	0.3	4 194080	56E-	+030		
			30055	4	534741537277679E+0	0.3	3.572658	68E-	+030		
			30066	4	530877561043026E+0	03	3 904078	08E-	+030		
			200	-6	184938070916333E-0	0.3	1.089513	13E-	+030		
			211	-6	105444681623311E-0	0.3	1.040326	29E-	+030		
			211	-5	832532506427557E-0	0.3	1 209791	201 84E-	+030		
			233	-6	292826498617173E-0	0.3	1.091237	58E-	+030		
			200	-6	290943192254260E-0	0.3	1.012932	38E-	+030		
			255	-6	298678115934773E-0	0.3	6.020175	45E-	+030		
			266	-6	318982889840100E-0	0.3	1.321515	68E-	+030		
			1100	2	319334580939019E-0	02	2,493984	14E-	+030		
			1111	2	413843793349043E-0)02	2.971348	 64E-	+030		
			1122	2	356738717641051E-0	02	3.565279	17E-	+030		
			1133	2	399237171450826E-0	02	3.210318	01E-	+030		
			1144	2	386679028278053E-0	02	2.768958	38E-	+030		
			1155	2	503137620436886E-0)02	3.904294	89E-	+030		
			1166	2	504923407304352E-0)02	5.858409	92E	+030		
			2000	-5	.323135154076776E-0)02	1.372917	96E-	+030		
			2011	-5	.969222258447504E-0)02	1.716165	75E	+030		
			2022	-6	.091216384407538E-0)02	1.794585	77F	+030		
			2033	-5	.626961339638703E-C)02	3.604047	79E	+030		
			2044	-5	.416104779615454E-C)02	1.885527	82E	+030		
			2055	-1	.009067062636328E-0)01	8.672192	51F	+030		
			2066	-6	.854943841976517E-C)02	1.871324	04E-	+030		
			40100	-1	809584282706530E-0	03	1.338693	74E	+030		

40111 -1.784959605976669E-003 1.46088649E+030 40122 -1.703405993655527E-003 2.63553694E+030 40133 -1.857640583459642E-003 2.24131100E+030 40144 -1.845038477888043E-003 1.59780044E+030 40155 -1.877143962863214E-003 5.50866504E+030 40166 -1.858137106279261E-003 8.69816476E+030 41000 -1.064828968540390E-002 4.53852332E+030 41011 -1.119240772001303E-002 4.67808485E+030 41022 -1.187406203850443E-002 7.12894758E+030 41033 -1.085783812955233E-002 6.29868944E+030 41044 -1.040010100952899E-002 5.19853690E+030 41055 -1.339215560007355E-002 3.84692763E+030 41066 -1.218654275664320E-002 7.34571070E+030 399 -1.373956550037875E-008 1.01331730E+030 1299 2.104542989423229E-007 1.46708010E+030 2199 -1.180318212665764E-006 4.28757562E+030 3099 1.826226300619005E-006 6.58693204E+030 40299 -5.976511788142836E-009 1.0000000E+037 41199 -9.917494427459096E-008 1.0000000E+037

I.3 Aminoethanol .lin File

1	1	0	0	1	0	1	0	9938.39	0.10
1	0	1	0	0	0	0	0	10116.95	0.10
1	1	1	0	0	0	0	0	19079.06	0.10
2	1	1	0	2	0	2	0	10989.52	0.10
2	1	2	0	1	1	1	0	19257.73	0.10
1	1	0	0	0	0	0	0	20054.70	0.10
2	0	2	0	1	0	1	0	20158.29	0.10
2	1	1	0	1	1	0	0	21209.72	0.10
2	1	2	0	1	0	1	0	28220.00	0.10
2	2	0	0	2	1	1	0	26962.24	0.10
3	1	3	0	2	1	2	0	28841.55	0.10
3	0	3	0	2	0	2	0	30051.58	0.10
3	1	2	0	2	1	1	0	31765_35	0 10
3	1	2	0	2	0	2	0	36903 35	0.10
3	2	1	0	2	ິ ໂ	0	0	30649.48	0.10
3	2	2	0	2	2	1	0	30351 24	0.10
3 2	2	2	0	2	2 1	2	0	21222 60	0.10
3 2	2	2	0	3	1	3	0	31323.09	0.10
3	3	0	0	2	2	0	0	77573.0478	0.070
3	3	0	0	2	2	1	0	77649.0787	0.070
3	3	1	0	2	2	0	0	77569.9951	0.070
3	3	1	0	2	2	1	0	77645.4305	0.070
5	2	3	0	4	1	3	0	76529.8069	0.070
7	1	6	0	6	1	5	0	73004.8603	0.070
7	2	5	0	6	2	4	0	73468.0803	0.070
8	0	8	0	7	0	7	0	76607.1016	0.070
8	0	8	0	7	1	7	0	74587.2830	0.070
8	1	8	0	7	0	7	0	77932.4006	0.070
8	1	8	0	7	1	7	0	75912.6193	0.070
9	1	8	0	8	2	7	0	79289.5541	0.070
13	2	12	0	13	0	13	0	73014.9779	0.070
13	2	12	0	13	1	13	0	72900.0468	0.070
13	4	9	0	13	3	11	0	72017.5792	0.070
14	1	13	0	14	0	14	0	77087.3716	0.070
14	1	13	0	14	1	14	0	77019.6888	0.070
14	2	13	0	14	1	14	0	78835.7291	0.070
14	4	10	0	14	3	12	0	75864.2145	0.070
14	5	9	0	14	4	10	0	78886.9330	0.070
15	3	13	0	15	1	14	0	75969.9311	0.070
15	3	13	0	15	2	14	0	74794,1626	0.070
15	4	11	0	14	5	10	0	77954, 9818	0.070
15	4	12	0	15	3	13	0	73030 5853	0 070
15	т Б	10	0	15	1	11	0	76417 2629	0.070
15	5	11	0	15	- 1	11	0	75553 7268	0.070
16	2	1/	0	16	- - 1	15	0	70303 5852	0.070
16	2 1	12	0	16	2	1/	0	72303.3032	0.070
10	4	10	0	10	3	14	0	73400,0001	0.070
10	0	11	0	10	4	12	0	75400.9991	0.070
17	2	15	0	17	1	10	0	79950.6942	0.070
17	2	12	0	17	2	10	0	(9481.9//0	0.070
1/	4	14	0	1/	3	15	0	/9191.1531	0.070
17	5	12	0	16	6	11	0	75674.2856	0.070
17	5	13	0	16	6	10	0	72803.6271	0.070
19	6	13	0	18	7	12	0	75509.1453	0.070

20	3	17	0	20	2	18	0
20	3	17	0	20	3	18	0
21	7	14	0	20	8	13	0
23	4	19	0	23	3	20	0
23	6	17	0	23	5	18	0
23	8	15	0	22	9	14	0
24	6	18	0	24	5	19	0
25	9	16	0	24	10	15	0
26	5	21	0	26	4	22	0
29	6	23	0	29	5	24	0
29	7	23	0	29	6	23	0
30	6	24	0	30	5	25	0
32	6	26	0	32	6	27	0
32	7	25	0	32	6	26	0
35	8	28	0	35	7	28	0
36	7	29	0	36	7	30	0
36	15	21	0	35	16	20	0
38	16	22	0	37	17	21	0
40	17	23	0	39	18	22	0
45	9	36	0	45	9	37	0
4	3	1	0	3	2	2	0
4	3	2	0	3	2	2	0
4	3	2	0	3	2	1	0
5	2	3	0	4	1	4	0
5	5	0	0	5	4	1	0
5	5	1	0	5	4	2	0
6	2	4	0	5	1	4	0
6	2	5	0	5	1	4	0
7	2	6	0	6	1	5	0
7	5	2	0	7	4	3	0
7	5	3	0	7	4	4	0
8	1	7	0	7	1	6	0
8	2	6	0	7	2	5	0
8	2	7	0	7	2	6	0
8	3	5	0	7	3	4	0
8	3	6	0	7	3	5	0
8	4	4	0	7	4	3	0
8	4	5	0	7	4	4	0
8	5	3	0	7	5	2	0
8	5	3	0	8	4	4	0
8	5	4	0	7	5	3	0
8	5	4	0	8	4	5	0
8	5	4	0	8	4	4	0
8	6	2	0	7	6	1	0
8	6	3	0	7	6	2	0
8	7	1	0	7	7	0	0
8	7	2	0	7	7	1	0
9	0	9	0	8	0	8	0
9	0	9	0	8	1	8	0
9	1	9	0	8	0	8	0
9	1	9	0	8	1	8	0
9	2	8	0	8	2	7	0
9	5	4	0	9	4	5	0

79269.8292	0.070
77379.4663	0.070
76313.7967	0.070
75941.0271	0.070
78732.9441	0.070
77468.0802	0.070
7/8/8 5876	0 070
79740 2002	0.070
70749.3093	0.070
72677.0111	0.070
72959.4106	0.070
74598.3001	0.070
77586.9047	0.070
79490.6828	0.070
79553.2722	0.070
74107.9787	0.070
75517.0316	0.070
76402.2044	0.070
77799.2720	0.070
79187.0128	0.070
75597 7393	0 070
87928 5313	0.070
87002 0070	0.070
07502.9970	0.070
01520.0119	0.070
86262.4182	0.070
84882.1133	0.070
84883.4867	0.070
86486.1064	0.070
81748.8646	0.070
89065.3009	0.070
84698.9228	0.070
84722.5374	0.070
82875.7878	0.070
84291.2932	0.070
80022.3886	0.070
82269.8618	0.070
81433.8930	0.070
81486.3522	0.070
81439 2902	0 070
81302 6310	0.070
8/515 /1/2	0.070
04010.4142 01201 /EOE	0.070
01501.4505	0.070
84584.6440	0.070
84513.5375	0.070
81221.1355	0.070
81221.1355	0.070
81175.7084	0.070
81175.7084	0.070
85646.7486	0.070
84321.5048	0.070
86490.6738	0.070
85165.3931	0.070
89725.4251	0.070
84228.7726	0.070
•	

9	5	4	0	9	4	6	0	
9	5	5	0	9	4	6	0	
10	5	5	0	10	4	6	0	
10	5	6	0	10	4	7	0	
10	5	6	0	10	4	6	0	
11	2	9	0	10	3	8	0	
11	5	6	0	11	4	7	0	
11	5	6	0	11	4	8	0	
11	5	7	0	11	4	7	0	
11	5	7	0	11	1	2 2	0	
10	5	7	0	10	7	0	0	
10	5	0	0	10	4	0	0	
10	5	0	0	10	4	9	0	
12	о 2	10	0	12	4	0	0	
10	3	10	0	12	4	9 1 1	0	
13	4	10	0	13	2	11	0	
13	5	8	0	13	4	9	0	
13	5	9	0	13	4	9	0	
13	5	9	0	13	4	10	0	
14	4	11	0	14	2	12	0	
14	5	9	0	14	4	11	0	
14	5	10	0	14	4	11	0	
15	1	14	0	15	0	15	0	
15	2	14	0	15	0	15	0	
15	2	14	0	15	1	15	0	
15	4	12	0	15	2	13	0	
15	5	10	0	15	4	12	0	
15	5	11	0	15	4	12	0	
16	3	14	0	16	1	15	0	
16	3	14	0	16	2	15	0	
16	5	11	0	16	4	13	0	
16	5	12	0	16	4	13	0	
17	3	15	0	17	1	16	0	
17	3	15	0	17	2	16	0	
17	4	14	0	16	5	11	0	
17	4	14	0	17	2	15	0	
17	5	13	0	17	4	14	0	
18	2	16	0	18	1	17	0	
18	2	16	0	18	2	17	0	
18	4	15	0	18	2	16	0	
18	4	15	0	18	3	16	0	
18	5	13	0	17	6	12	0	
18	5	1/	0	17	6	11	0	
18	5	1/	0	18	1	15	0	
10	3	17	0	18	7	1/	0	
10	⊿	16	0	10	2	17	0	
10	- -	10	0	10	⊿	16	0	
19	5	10	0	19	4	17	0	
20	5	10	0	20	4 7	11	0	
20	0	14 15	0	10	1	10	0	
20	6	15	0	19	1	12	0	
20	6	15	0	20	5	10	0	
21	3	18	0	21	2	19	0	
21	3	18	0	21	3	19	0	
21	6	15	0	21	5	16	0	

84410.8307	0.070
84405.5046	0.070
83790.8503	0.070
84191.7666	0.070
83775.2459	0.070
84397.6452	0.070
83132,9093	0.070
84001 8155	0.070
83091 8304	0 070
83960 6839	0 070
82165 220/	0.070
02100.2204	0.070
00140.0420	0.070
02000.9932	0.070
02240.1244	0.070
8/944.60/6	0.070
80783.1923	0.070
80566.6967	0.070
83585.3713	0.070
85752.2889	0.070
83992.4634	0.070
83546.6106	0.070
83748.4875	0.070
84924.4555	0.070
84884.8073	0.070
84484.1677	0.070
84561.5030	0.070
83697.9860	0.070
80754.8232	0.070
80006.9380	0.070
85701.3705	0.070
84117.0496	0.070
85989.4996	0.070
85520 7546	0 070
87801 1464	0 070
85229 7670	0.070
8/882 106/	0.070
04002.1004	0.070
07070 6702	0.070
07000 7015	0.070
87262.7815	0.070
83068.2864	0.070
88257.8124	0.070
83444.0795	0.070
86065.8109	0.070
81593.0479	0.070
87436.9919	0.070
87729.5312	0.070
89918.5108	0.070
87134.5444	0.070
85685.2675	0.070
89352.4899	0.070
87589.8150	0.070
86354.6631	0.070
87030.0457	0.070

84638.1427	0.070
82923.5365	0.070
87509.1300	0.070
87123.0456	0.070
84507.6875	0.070
80591 8276	0 070
88463 6629	0 070
88368 8638	0.070
00500.0050	0.070
09031.3137	0.070
00030.9021	0.070
00003.0737	0.070
88444.0478	0.070
81253.2020	0.070
82833.3004	0.070
86327.2131	0.070
81441.2108	0.070
82733.2515	0.070
83889.3046	0.070
80364.7649	0.070
82811.5116	0.070
80526.8721	0.070
84186.4505	0.070
83401.8716	0.070
88176.5831	0.070
85560.9252	0.070
85560.9252	0.070
89892.2937	0.070
86931.8526	0.070
88296.5497	0.070
82969.9242	0.070
89653 1177	0.070
80811.1102	0.070
98402 6888	0 070
97300 3860	0 070
08301 3803	0.070
90301.3003	0.070
97199.0710	0.070
97038.4796	0.070
96082.7075	0.070
92496.4225	0.070
95002.3981	0.070
93041.6052	0.070
91603.2870	0.070
91830.1065	0.070
91719.2567	0.070
91543.8807	0.070
91540.1417	0.070
91425.1114	0.070
91425.0708	0.070
91359.0330	0.070
91359.0330	0.070
91319.3673	0.070
91319.3673	0.070
94701.0488	0.070

10	0 10	09	19	0
10	1 10	09	09	0
10	1 10	09	19	0
10	29	09	28	0
12	2 10	0 11	38	0
12	2 10	0 11	39	0
12	49	0 12	2 10	0
14	3 11	0 13	4 10	0
16	1 15	0 16	0 16	0
16	1 15	0 16	1 16	0
16	2 15	0 16	1 16	0
16	2 10 4 12	0 15	5 11	0
16	6 10	0 16	5 11	0
16	6 11	0 16	5 11	0
17	1 16	0 10	0 17	0
17	1 10	0 17	0 17	0
17	1 10	0 17		0
17	2 16	0 17	0 17	0
17	2 16	0 17	1 1/	0
17	6 11	0 17	5 12	0
17	6 12	0 17	5 12	0
18	3 16	0 18	1 17	0
18	3 16	0 18	2 17	0
18	4 15	0 17	5 12	0
18	5 13	0 18	4 15	0
18	6 12	0 18	5 13	0
18	6 13	0 18	5 13	0
19	2 17	0 19	1 18	0
19	2 17	0 19	2 18	0
19	3 17	0 19	1 18	0
19	3 17	0 19	2 18	0
19	4 16	0 19	2 17	0
19	5 14	0 19	4 16	0
19	5 15	0 18	6 12	0
19	6 13	0 19	5 14	0
19	6 14	0 19	5 14	0
20	4 17	0 20	2 18	0
20	4 17	0 20	3 18	0
20	6 14	0 20	5 15	0
21	4 18	0 21	2 19	0
21	4 18	0 21	3 19	0
21	5 17	0 21	4 18	0
21	6 15	0 20	7 14	0
21	6 16	0 20	7 13	0
21	3 10	0 20	2 20	0
22	2 10	0 22	2 20	0
22	5 19	0 22	3 20 4 10	0
22	5 10	0 22	4 19	0
23	5 19	0 23	4 20	0
23	16	0 22	8 15 0 00	0
25	4 21	0 25	3 22	0
25	4 21	0 25	4 22	0
25	8 17	0 24	9 16	0
26	7 20	0 26	6 20	0
27	7 20	0 27	6 21	0

93857.1883	0.070
95226.0292	0.070
94382.1793	0.070
99338.8437	0.070
90101.0781	0.070
98610.5312	0.070
90843.0414	0.070
97257,9220	0.070
90287 2583	0 070
90264 2889	0.070
90204.2009	0.070
02076 6702	0.070
92010.0193	0.070
99879.4538	0.070
99772.6167	0.070
96734.9035	0.070
96721.3960	0.070
97203.6500	0.070
97190.3445	0.070
98406.9766	0.070
98188.9945	0.070
91563.3106	0.070
91273.1609	0.070
95785.2783	0.070
90661.4150	0.070
96446.5321	0.070
96023.2106	0.070
94540,6906	0.070
94362.9114	0.070
97385 1273	0 070
97207 3510	0.070
90281 3804	0.070
90201.3004 95025 7378	0.070
02071 5101	0.070
93074.3104	0.070
93907.6491	0.070
93122.0138	0.070
94138.6994	0.070
92248.4367	0.070
90750.8620	0.070
98678.6475	0.070
97443.4767	0.070
92658.5845	0.070
99176.9166	0.070
96681.7897	0.070
95720.6901	0.070
94924.9252	0.070
95954.7632	0.070
99791.8241	0.070
98923.8403	0.070
93357.3396	0.070
90704 3162	0.070
99593 6086	0 070
96999 5899	0.070
00000000000000000000000000000000000000	0.070
<i>5</i> 0010.4088	0.070

27	7	21	0	27	6	21	0
28	7	21	0	28	6	22	0
20	, E	24	0	20	5	25	0
29	0	24	0	29	10	20	0
30	11	19	0	29	12	18	0
32	6	26	0	32	5	27	0
33	8	26	0	33	7	26	0
34	8	26	0	34	7	27	0
34	13	21	0	33	14	20	0
35	8	27	0	35	7	28	0
26	7	20	0	26	Ģ	20	0
30	~	29	0	30	0	30	0
36	8	28	0	36	(29	0
36	14	22	0	35	15	21	0
38	8	30	0	38	7	31	0
39	8	31	0	39	7	32	0
39	9	31	0	39	8	31	0
40	8	32	0	40	7	33	0
42	8	34	0	42	8	35	0
51	10	41	0	51	10	42	0
1	10	0	0	3	3	0	0
4	4	0	0	2	2	1	0
4	4	0	0	3	3	T	0
4	4	1	0	3	3	0	0
6	3	3	0	5	2	3	0
6	3	3	0	5	2	4	0
6	3	4	0	5	2	3	0
6	3	4	0	5	2	4	0
6	6	0	0	6	5	1	0
6	6	1	0	6	5	2	0
7	6	1	0	7	5	3	0
7	6	2	0	7	5	2	0
, ,	0	2	0	· ·	5	3	0
8	6	2	0	8	5	4	0
8	6	2	0	8	5	3	0
8	6	3	0	8	5	4	0
8	6	3	0	8	5	3	0
9	2	8	0	8	1	7	0
9	6	3	0	9	5	4	0
9	6	3	0	9	5	5	0
9	6	4	0	9	5	4	0
a	6	-	0	a	5	5	0
10	1	- 0	0	0	1	0	0
10	1	9	0	9	1	0	0
10	2	8	0	9	2	1	0
10	2	9	0	9	1	8	0
10	3	7	0	9	3	6	0
10	3	8	0	9	3	7	0
10	4	6	0	9	4	5	0
10	4	7	0	9	4	6	0
10	5	5	0	9	5	4	0
10	5	6	0	9	5	5	0
10	6	Λ	n N	a	6	2	0
10	C C	4	0	9 10	U E	5	0
10	b	4	0	10	5	5	0
10	6	5	0	9	6	4	0
10	7	3	0	9	7	2	0
10	7	4	0	9	7	3	0
10	8	2	0	9	8	1	0

90363.6987	0.070
90736.1547	0.070
92476.5817	0.070
92182.7377	0.070
91630.8267	0.070
93041,6052	0.070
97667 7264	0 070
9/829 3791	0.070
036/08 /037	0.070
93040.4037	0.070
94723.2520	0.070
90941.9127	0.070
96162.4103	0.070
90735.2525	0.070
93588.5275	0.070
93126.7961	0.070
98444.6529	0.070
96762.6460	0.070
95680.4954	0.070
106623.3057	0.070
106627.0170	0.070
106623.3041	0.070
106715.4565	0.070
109205.2113	0.070
106415.1501	0.070
108904.8384	0.070
103751.1458	0.070
103751.1408	0.070
103697.8205	0.070
103697 8205	0 070
103617 5559	0 070
103616 1212	0.070
103617 5559	0.070
103616 1010	0.070
100020 4491	0.070
102932.4401	0.070
103497.4425	0.070
103502.5892	0.070
103497.4420	0.070
103502.5889	0.070
101863.9901	0.070
105548.1523	0.070
109774.7972	0.070
103975.9166	0.070
101722.9298	0.070
102252.8632	0.070
102018.3898	0.070
101814.9066	0.070
101804.5864	0.070
101647.4318	0.070
103329.9926	0.070
101647.4318	0.070
101555.3036	0.070
101555.3036	0.070
101499.3270	0.070

10	8	3	0	9	8	2	0
10	9	1	0	9	9	0	0
10	9	2	0	9	9	1	0
11	0	11	0	10	0	10	0
11	0	11	0	10	1	10	0
11	1	11	0	10	0	10	0
11	1	11	0	10	1	10	0
11	2	10	0	10	2	9	0
11	6	5	0	11	5	6	0
11	6	6	0	11	5	6	0
12	6	6	0	12	5	7	0
12	6	6	0	12	5	8	0
12	6	7	0	12	5	7	0
12	6	7	0	12	5	8	0
13	6	7	0	13	5	9	0
13	6	7	0	13	5	8	0
13	6	8	0	13	5	9	0
13	6	8	0	13	5	8	0
14	6	8	0	14	5	9	0
14	6	8	0	14	5	10	0
14	6	9	0	14	5	9	0
14	6	9	0	14	5	10	0
15	6	9	0	15	5	10	0
15	6	9	0	15	5	11	0
15	6	10	0	15	5	11	0
15	6	10	0	15	5	10	0
16	6	11	0	16	5	12	0
17	4	13	0	16	5	12	0
17	6	11	0	17	5	13	0
17	6	12	0	17	5	13	0
18	1	17	0	18	0	18	0
18	1	17	0	18	1	18	0
18	2	17	0	18	0	18	0
18	2	17	0	18	1	18	0
18	6	12	0	18	5	14	0
18	6	13	0	18	5	14	0
19	1	18	0	19	0	19	0
19	1	18	0	19	1	19	0
19	2	18	0	19	0	19	0
19	2	18	0	19	1	19	0
19	5	15	0	19	3	16	0
19	6	13	0	19	5	15	0
19	6	14	0	19	5	15	0
20	2	18	0	20	1	19	0
20	2	18	0	20	2	19	0
20	3	18	0	20	1	19	0
20	3	18	0	20	2	19	0
20	5	15	0	20	4	17	0
20	5	16	0	20	3	17	0
20	6	14	0	20	5	16	0
20	6	15	0	20	5	16	0
21	2	19	0	21	1	20	0
21	2	19	0	21	2	20	0

101499 3270	0 070
101464 0060	0.070
101464.2868	0.070
101464.2868	0.070
103776.2062	0.070
103251.3035	0.070
104096.8534	0.070
103571.8907	0.070
108864 2389	0 070
100004.2003	0.070
103096.7733	0.070
103097.5687	0.070
102782.6432	0.070
102880.7907	0.070
102779.3498	0.070
102877.5350	0.070
102568 8622	0.070
102352 3164	0 070
102352.3104	0.070
102560.0839	0.070
102343.5581	0.070
101766.4565	0.070
102212.2385	0.070
101744.8782	0.070
102190.6004	0.070
100967.7004	0.070
101831 3048	0.070
101781 6635	0 070
100019 1700	0.070
100918.1709	0.070
101356.8246	0.070
107046.2111	0.070
101170.6202	0.070
100952.6196	0.070
103117.9185	0.070
103110.3238	0.070
103408.0127	0.070
103400.5349	0.070
101042 1332	0.070
100618 8196	0 070
100010.0130	0.070
109455.6506	0.070
109451.4688	0.070
109633.3469	0.070
109629.1261	0.070
107055.2133	0.070
101204.0503	0.070
100418.2903	0.070
101491.3766	0.070
101383 5435	0.070
103381 6303	0 070
102072 6126	0.070
100000 0500	0.070
100989.2588	0.070
104787.3764	0.070
101821.6412	0.070
100423.3522	0.070
108262.0403	0.070
108197.1208	0.070

21	3	19	0	21	1	20	0
21	3	19	0	21	2	20	0
21	5	16	0	21	4	18	0
21	5	17	0	21	3	18	0
21	6	16	0	21	5	17	0
22	4	19	0	22	2	20	0
22	4	19	0	22	3	20	0
22	5	18	0	22	3	19	0
22	6	16	0	22	5	18	0
22	6	17	0	22	5	18	0
23	3	20	0	23	2	21	0
23	3	20	0	23	3	21	0
23	4	20	0	23	2	21	0
23	4	20	0	23	3	21	0
23	5	19	0	23	3	20	0
23	6	18	0	20	5	19	0
20	6	10	0	20	5	20	0
27	7	17	0	24	6	10	0
24 25	י ה	11 01	0	24	1	10	0
20	6	21	0	20	+ 5	22	0
20	7	10	0	20	6	10	0
20	л Л	22	0	20	3	73	0
20	4	22	0	20	5	20	0
20	7	10	0	20	6	22	0
20	л Л	73	0	20	1	20	0
21	- 0	18	0	21	10	24 17	0
20	5	10 25	0	20	10	11 26	0
31	2	20	0	31	7	20	0
31	11	24	0	30	12	10	0
30	2 11	20	0	30	12	25	0
33	Q	27	0	33	7	20	0
35	13	20	0	34	1Λ	20	0
37	1/	22	0	36	15	21	0
30	11	20	0	30	20	22	0
30	15	24	0	30	16	23	0
10	10	24	0	10	01	20	0
40 // 1	9	22	0	40 // 1	7	24	0
10	٥ ۵	33	0	10	v Q	3/	0
13	0	3/I	0	12	0 0	35	0
<u>лл</u>	0	35	0	<u>д</u>	0 0	36	0
15	a	36	0	11 15	8	37	0
- 5	1	1	0	-10 -1	२ २	1	0
5	1	1	0	1	२ २	2	0
5	-	2	0	-	3 3	2	0
5	-	2	0	-	3 3	1	0
7	3	<u>л</u>	0	т 6	2 2	1	0
7	3	т Б	0	6	2	-	0
7	3 2	5	0	6	2	+ 5	0
' 11	1	10	0	10	∠ 1	ں ۵	0
11	1 2	т0 Т0	0	10	ュ ク	2 8	0
11	2 2	10	0	10	2 1	q	0
11	2 3	20	0	10	3	7	ñ
11	3	9	0	10	3	8	0
	-	-	-		-	-	-

109497.2904	0.070
109432.3037	0.070
108732.6670	0.070
103747.3645	0.070
100712.2337	0.070
103754.0200	0.070
102958.2954	0.070
103988.0888	0.070
105300.4969	0.070
101362,9947	0.070
103564 2976	0 070
103057 9901	0.070
100035 6620	0.070
109233.0029	0.070
105/62 0671	0.070
100447 7612	0.070
102447.7613	0.070
104027.3449	0.070
108406.1818	0.070
108937.7309	0.070
106146.4712	0.070
104617.5650	0.070
102186.3051	0.070
108830.6131	0.070
100252.9396	0.070
109621.2807	0.070
100610.3128	0.070
106868.1397	0.070
109081.6222	0.070
102987.6456	0.070
107900.3380	0.070
102572.4381	0.070
105518.9366	0.070
106804.2738	0.070
108966.6017	0.070
108093.0216	0.070
104519.0452	0.070
105166.1687	0.070
100119 7604	0 070
100771 7593	0.070
103528 8518	0.070
108384 0963	0.070
1167/7 1510	0.070
116770 6192	0.070
116771 2460	0.070
116745 9601	0.070
116/45.8601	0.070
115//6.9261	0.070
115040./181	0.070
119777.8979	0.070
111016.6375	0.070
115888.6790	0.070
116775.0325	0.070
115021.7812	0.070
111775.7005	0.070

11	4	7	0	10	4	6	0
11	4	8	0	10	4	7	0
11	5	6	0	10	5	5	0
11	5	7	0	10	5	6	0
11	6	5	0	10	6	4	0
11	6	6	0	10	6	5	0
11	7	4	0	10	7	3	0
11	7	5	0	10	7	4	0
11	8	3	0	10	8	2	0
11	8	4	0	10	8	3	0
11	9	2	0	10	9	1	0
11	g	2	0	10	g	2	0
11	10	1	0	10	10	0	0
11	10	2	0	10	10	1	0
10	10	10	0	11	10	⊥ 11	0
10	0	10	0	11	1	11	0
12	0	12	0	11	T	11	0
12	1	11	0	11	2	10	0
12	1	12	0	11	0	11	0
12	1	12	0	11	1	11	0
12	2	11	0	11	2	10	0
13	2	11	0	12	3	10	0
15	2	13	0	14	3	11	0
15	3	12	0	14	4	11	0
16	5	12	0	16	3	13	0
17	5	13	0	17	3	14	0
18	5	14	0	18	3	15	0
18	7	11	0	18	6	12	0
18	7	12	0	18	6	12	0
18	7	12	0	18	6	13	0
19	7	12	0	19	6	13	0
19	7	12	0	19	6	14	0
19	7	13	0	19	6	14	0
19	7	13	0	19	6	13	0
20	1	19	0	20	0	20	0
20	1	19	0	20	1	20	0
20	2	19	0	20	0	20	0
20	2	19	0	20	1	20	0
20	5	15	0	19	6	14	0
20	7	13	0	20	6	15	0
20	7	13	0	20	6	1/	0
20	7	1/	0	20	6	15	0
20	ו כ	14	0	20	4	17	0
21	3	19	0	20	4	11	0
21	4	18	0	20	5	15	0
21	5	17	0	20	6	15	0
21	5	17	0	20	6	14	0
21	7	14	0	21	6	16	0
21	7	14	0	21	6	15	0
21	7	15	0	21	6	16	0
22	2	20	0	22	1	21	0
22	3	20	0	22	1	21	0
22	3	20	0	22	2	21	0
22	4	19	0	21	5	16	0
22	5	17	0	22	4	19	0

112779.8117	0.070
112327.4337	0.070
112121.8332	0.070
112096.3576	0.070
111890.5257	0.070
111889.7856	0.070
111765.7667	0.070
111765.7667	0.070
111689.7293	0.070
111689.7293	0.070
111641.3531	0.070
111641.3531	0.070
111610.2517	0.070
111610.2517	0.070
112869 8247	0 070
112549 2444	0 070
114267 6514	0 070
113062 8036	0.070
1107/0 0038	0.070
112742.2230	0.070
110600 7/62	0.070
112080.7403	0.070
119650 1990	0.070
1103/6 8636	0.070
11/595 9710	0.070
114303.0710	0.070
110597.9033	0.070
119593.2295	0.070
110002 /667	0.070
119690 1035	0.070
110/7/ 7726	0.070
110/03 0171	0.070
119423.9171	0.070
115761 0/72	0.070
115750 2002	0.070
115759.3003	0.070
115009.0910	0.070
115007.2300	0.070
110010 7004	0.070
118919.7884	0.070
11/021.0931	0.070
116616.7302	0.070
1115129.2000	0.070
111583.5120	0.070
114009.0004	0.070
113491.3745	0.070
118399.4565	0.070
110100 0045	0.070
11/00/ 7017	0.070
115600 /126	0.070
115651 5064	0.070
1133/6 7075	0.070
110221 0/06	0.070
110331.0420	0.070

22	7	15	0	22	6	17	0
22	7	15	0	22	6	16	0
22	7	16	0	22	6	17	0
22	7	16	0	22	6	16	0
23	6	18	0	22	7	15	0
23	7	16	0	23	6	17	0
23	7	16	0	23	6	18	Õ
20	7	17	0	20	6	10	0
20	7	17	0	20	6	17	0
20	י ר	11 01	0	20	0	11	0
24	ა ა	21	0	24	2	22	0
24	3	21	0	24	с С	17	0
24	4	20	0	23	0	11	0
24	4		0	24	2	22	0
24	4	21	0	24	3	22	0
24	ю 7	18	0	24	5	20	0
24	1	17	0	24	6	19	0
24	7	18	0	24	6	19	0
25	3	22	0	25	2	23	0
25	3	22	0	25	3	23	0
25	5	21	0	25	3	22	0
25	7	18	0	25	6	20	0
25	7	19	0	25	6	20	0
26	5	22	0	26	3	23	0
26	5	22	0	26	4	23	0
26	7	20	0	26	6	21	0
27	4	23	0	27	3	24	0
27	5	22	0	26	7	19	0
27	5	23	0	27	4	24	0
27	6	22	0	27	5	23	0
27	7	21	0	27	6	22	0
28	4	24	0	28	3	25	0
28	6	23	0	28	5	24	0
28	7	22	0	28	6	23	0
29	7	23	0	29	6	24	0
30	8	22	0	30	7	23	0
30	8	23	0	30	7	23	0
30	10	20	0	29	11	19	0
30	10	21	0	29	11	18	0
31	5	26	0	31	4	27	Õ
31	5	26	0	31	5	27	Õ
31	8	20	0	31	7	21	0
30	11	20	0	31	12	21	0
22	11	21	0	21	10	10	0
3Z 24	11	22	0	24	12	19	0
34	6	20	0	34	5	29	0
35	6	29	0	35	5	30	0
35	6	29	0	35	6	30	0
36	13	23	0	35 07	14	22	0
31	9	29	0	31	8	29	0
38	7	31	0	38	6	32	0
38	9	29	0	38	8	30	0
39	7	32	0	39	7	33	0
42	8	34	0	42	7	35	0
43	8	35	0	43	8	36	0

117986.0230	0.070
114048.5153	0.070
117611.3975	0.070
113673.8518	0.070
118431.4611	0.070
111542.0698	0.070
117782.5896	0.070
117106 7085	0 070
110865 0017	0.070
111100 2054	0.070
1100.3034	0.070
110/81.5093	0.070
112945.1593	0.070
115016.2190	0.070
114697.3014	0.070
113550.1443	0.070
117928.9351	0.070
116749.9906	0.070
118355.9749	0.070
118156.9549	0.070
111591.0073	0.070
118604.6991	0.070
116614.6632	0.070
115908.1033	0.070
114138.8485	0.070
116779 2199	0 070
110785 0564	0.070
115162 781/	0.070
110674 7500	0.070
119074.7502	0.070
112084.7069	0.070
11/321.1691	0.070
119045.8907	0.070
115893.2987	0.070
118312.0077	0.070
119811.6448	0.070
118169.8943	0.070
115557.9984	0.070
112730.5735	0.070
112711.7121	0.070
116182.2430	0.070
113831.8341	0.070
113215.8902	0.070
113861.3831	0.070
113857.2217	0.070
110002 9874	0 070
110828 8850	0.070
115/20.0000	0.070
116050 1007	0.070
110200.109/	0.070
112657.5846	0.070
112007.8312	0.070
114350.9307	0.070
114439.5098	0.070
113486.1729	0.070
110683.3657	0.070

45	10	35	0	45	9	36	0
46	9	37	0	46	8	38	0
47	10	37	0	47	9	38	0
48	10	38	0	48	9	39	0
49	10	39	0	49	9	40	0
50	10	40	0	50	9	41	0
8	7	1	0	7	6	2	0
8	7	1	0	7	6	1	0
8	7	2	0	7	6	1	0
8	7	2	0	7	6	2	0
20	4	17	0	19	4	16	0
20	7	13	0	10	7	12	0
20	7	1/	0	10	7	12	0
20	ı Q	10	0	10	ı Q	11	0
20	0	12	0	10	0	10	0
20	0	10	0	19	0	10	0
20	9	11	0	19	9	10	0
20	9	12	0	19	9	11	0
20	10	10	0	19	10	9	0
20	10	11	0	19	10	10	0
20	11	9	0	19	11	8	0
20	11	10	0	19	11	9	0
20	12	8	0	19	12	7	0
20	12	9	0	19	12	8	0
20	13	7	0	19	13	6	0
20	13	8	0	19	13	7	0
20	15	5	0	19	15	4	0
20	15	6	0	19	15	5	0
20	16	4	0	19	16	3	0
20	16	5	0	19	16	4	0
20	17	3	0	19	17	2	0
20	17	4	0	19	17	3	0
20	18	2	0	19	18	1	0
20	18	3	0	19	18	2	0
22	1	22	0	21	1	21	0
29	5	25	0	28	4	24	0
29	5	24	0	28	5	23	0
29	7	22	0	28	7	21	0
30	4	26	0	29	4	25	0
30	5	26	0	29	5	25	0
32	1	20	0	31	2	30	Õ
33	0	33	0	30	0	30	0
33	0	33	0	32	1	32	0
22	1	22	0	22	1	22	0
33 22	1	33 22	0	32	1	32 20	0
33	1	33	1	32	1	32	1
3	3	0	1	2	2	1	1
3	3	1	1	2	2	0	1
5	2	4	1	4	1	3	1
7	1	6	1	6	1	5	1
7	2	5	1	6	2	4	1
8	0	8	1	7	0	7	1
8	1	8	1	7	0	7	1
8	1	8	1	7	1	7	1
8	2	7	1	7	2	6	1

115424.8451	0.070
115196.4390	0.070
110283.2893	0.070
110665.3553	0.070
113234.0042	0.070
117988.1828	0.070
203788.0109	0.070
203788.0109	0.070
203788.0109	0.070
203788.0109	0.070
202965 8856	0 070
204605 1808	0.070
204000.1000	0.070
204062 1284	0.070
204002.1204	0.070
204039.4304	0.070
203726.3066	0.070
203726.3048	0.070
203497.9919	0.070
203497.9919	0.070
203338.2262	0.070
203338.2262	0.070
203222.9105	0.070
203222.9105	0.070
203140.5347	0.070
203140.5347	0.070
203039.5965	0.070
203039.5965	0.070
203012.1693	0.070
203012.1693	0.070
202995.6822	0.070
202995.6822	0.070
202988.0213	0.070
202988.0213	0.070
204103.1467	0.070
299985.9245	0.070
304017 5097	0 070
302449 3420	0.070
303630 3554	0.070
202060 0191	0.070
201402 4017	0.070
301402.4917	0.070
304301.7900	0.070
304381.7906	0.070
304381.7906	0.070
304381.7906	0.070
78124.3221	0.070
78049.9457	0.070
74218.5848	0.070
72538.9950	0.070
72895.3678	0.070
76238.8374	0.070
77675.4052	0.070
75513.2889	0.070
79537.2896	0.070

9	1	8	1	8	2	7	1	
13	2	12	1	13	1	13	1	
14	1	13	1	14	0	14	1	
14	1	13	1	14	1	14	1	
14	2	13	1	14	0	14	1	
14	2	13	1	14	1	14	1	
14	4	10	1	14	3	12	1	
15	÷ ع	13	1	15	1	14	1	
15	3	13	1	15	1 2	1/	1	
15	1	11	1	1/	5	10	1	
15	4	10	1	15	2	10	1	
15	4	12	1	10	د ∡	11	1	
15	р Г	10	T	15	4	11	1	
15	5	11	T	15	4	11	1	
10	3	14	T	10	2	15	T	
16	4	13	1	16	3	14	1	
16	5	11	1	16	4	12	1	
17	2	15	1	17	1	16	1	
17	2	15	1	17	2	16	1	
17	4	14	1	17	3	15	1	
17	5	12	1	17	4	13	1	
20	3	17	1	20	2	18	1	
20	3	17	1	20	3	18	1	
23	4	19	1	23	3	20	1	
23	6	18	1	23	5	18	1	
24	4	20	1	24	4	21	1	
24	6	18	1	24	5	19	1	
25	6	19	1	25	5	20	1	
27	5	22	1	27	4	23	1	
28	5	23	1	28	5	24	1	
29	6	23	1	29	5	24	1	
30	6	24	1	30	5	25	1	
32	6	26	1	32	6	27	1	
6	2	5	1	5	1		1	
6	5	1	1	6	4	2	1	
6	5	2	1	6	-	2	1	
7	3 2	6	1	6	1	5	1	
7	2	0	1	7	T T	່ ວ	1	
0	0 ₁	2	1	7	4	с С	1	
0	T		T	7	1	о г	T	
8	2	6	T	7	2	5	T	
8	3	5	1	1	3	4	1	
8	3	6	1	(3	5	1	
8	4	4	1	7	4	3	1	
8	4	5	1	7	4	4	1	
8	5	3	1	7	5	2	1	
8	5	3	1	8	4	4	1	
8	5	4	1	7	5	3	1	
8	5	4	1	8	4	5	1	
8	6	2	1	7	6	1	1	
8	6	3	1	7	6	2	1	
8	7	1	1	7	7	0	1	
8	7	2	1	7	7	1	1	
9	0	9	1	8	0	8	1	
9	0	9	1	8	1	8	1	

78148.8071	0.070						
72492.2992	0.070						
76390.0953	0.070						
76311.5052	0.070						
78444.8982	0.070						
78366.0186	0.070						
75841.7938	0.070						
75817.0919	0.070						
74469.0635	0.070						
74891 3846	0 070						
73404 9274	0.070						
78265 2782	0.070						
77507 2002	0.070						
70561 6606	0.070						
79501.0090	0.070						
76049.8271	0.070						
75405.9247	0.070						
78694.5453	0.070						
78143.3432	0.070						
79225.1390	0.070						
72100.7721	0.070						
77326.8426	0.070						
75095.1801	0.070						
73591.7352	0.070						
76378.9297	0.070						
77212.0344	0.070						
77590.5311	0.070						
74076.1658	0.070						
77405.0558	0.070						
76624.7069	0.070						
72297.3529	0.070						
75961.3484	0.070						
73544.6971	0.070						
81909.9710	0.070						
86046 6564	0 070						
86052 1113	0.070						
80011 251/	0.070						
09211.2014	0.070						
00939.2093	0.070						
02310.2001	0.070						
83645.5399	0.070						
81648.4036	0.070						
80881.9993	0.070						
80919.0393	0.070						
80877.5860	0.070						
80747.5858	0.070						
85768.0455	0.070						
80746.5019	0.070						
85829.0385	0.070						
80671.0612	0.070						
80671.0612	0.070						
80628.6742	0.070						
80628.6742	0.070						
85234.0562	0.070						
83797.4822	0.070						
9	1	9	1	8	0	8	1
----	---	----	---	----	---	----	---
9	1	9	1	8	1	8	1
9	2	8	1	8	2	7	1
9	5	4	1	9	4	5	1
9	5	5	1	9	4	6	1
10	5	5	1	10	4	6	1
10	5	6	1	10	4	7	1
11	2	9	1	10	3	8	1
11	5	6	1	11	4	7	1
11	5	7	1	11	4	8	1
12	5	7	1	12	4	8	1
12	5	8	1	12	4	9	1
13	4	10	1	13	2	11	1
13	5	8	1	13	4	9	1
13	5	9	1	13	4	10	1
14	4	11	1	14	2	12	1
14	5	9	1	14	4	10	1
14	5	10	1	14	4	10	1
14	5	10	1	14	4	11	1
15	2	14	1	15	0	15	1
15	4	12	1	15	2	13	1
15	5	11	1	15	4	12	1
16	1	15	1	16	0	16	1
16	1	15	1	16	1	16	1
16	3	14	1	16	1	15	1
16	4	12	1	15	5	11	1
16	4	13	1	16	2	14	1
16	5	12	1	16	4	13	1
17	3	15	1	17	2	16	1
17	4	14	1	17	2	15	1
17	5	13	1	17	4	14	1
18	2	16	1	18	1	17	1
18	2	16	1	18	2	17	1
18	4	15	1	18	2	16	1
18	4	15	1	18	3	16	1
18	5	14	1	18	4	15	1
19	4	16	1	19	3	17	1
19	5	15	1	19	4	16	1
20	6	14	1	19	7	13	1
21	3	18	1	21	2	19	1
21	3	18	1	21	3	19	1
21	6	15	1	21	5	16	1
21	6	16	1	21	5	16	1
22	6	16	1	22	5	17	1
23	6	17	1	23	5	18	1
24	4	20	1	24	3	21	1
24	8	16	1	23	9	15	1
25	4	21	1	25	4	22	1
28	5	23	1	28	4	24	1
29	5	24	1	29	5	25	1
29	7	22	1	29	6	23	1
30	7	23	1	30	6	24	1
31	6	25	1	31	5	26	1

86160.2591	0.070
84723.7352	0.070
89194.9618	0.070
85501.6596	0.070
85657.2793	0.070
85096.4034	0.070
85450.4321	0.070
82413.4600	0.070
84489 8824	0.070
85222,2740	0.070
83599 5530	0 070
85000 7375	0.070
80867 0107	0.070
82326 8056	0.070
02320.0030	0.070
04020.3471	0.070
87486.9052	0.070
80572.3128	0.070
80192.2822	0.070
84753.4805	0.070
84407.5358	0.070
85960.9186	0.070
84848.1721	0.070
89599.7365	0.070
89572.2966	0.070
80430.1789	0.070
88681.5217	0.070
85454.1387	0.070
85183.4841	0.070
84966.5449	0.070
86048.3528	0.070
85835.1839	0.070
86157.2116	0.070
85811.6362	0.070
87732.6788	0.070
82921.1927	0.070
86875.0810	0.070
87110.5759	0.070
88366 1198	0.070
83482 4151	0 070
85636 3252	0.070
84157 7783	0.070
80787 0001	0.070
09707.9091 07705 2000	0.070
01193.3200	0.070
01000 0044	0.070
81638.0841	0.070
01094./220	0.070
84167.6153	0.070
8/401.5296	0.070
85301.5328	0.070
87856.9576	0.070
89867.0197	0.070
85802.7929	0.070
81336.7803	0.070

32	6	26	1	32	5	27	1
32	7	25	1	32	6	26	1
33	6	27	1	33	6	28	1
33	7	26	1	33	6	27	1
34	7	27	1	34	6	28	-
35	7	28	1	35	6	29	-
35	8	28	1	35	7	28	1
37	7	30	1	37	7	20	1
5	י 2	30 20	1	л Л	י ר	3	1
0	ე ე	2	1	+ 7	1	6	1
0	∠ 1	0	1	0	1	7	1
9	л Т	07	1	0	1	r C	1
9	2		1	0	2	р С	1
9	3	ю 7	1	8	3	5	1
9	3	7	1	8	3	6	1
9	4	5	1	8	4	4	1
9	4	6	1	8	4	5	1
9	5	4	1	8	5	3	1
9	5	5	1	8	5	4	1
9	6	3	1	8	6	2	1
9	6	4	1	8	6	3	1
9	7	2	1	8	7	1	1
9	7	3	1	8	7	2	1
9	8	1	1	8	8	0	1
9	8	2	1	8	8	1	1
10	0	10	1	9	0	9	1
10	0	10	1	9	1	9	1
10	1	9	1	9	2	8	1
10	1	10	1	9	0	9	1
10	1	10	1	9	1	9	1
10	2	9	1	9	2	8	1
12	2	10	1	11	3	9	1
16	2	15	1	16	1	16	1
17	1	16	1	17	0	17	1
17	1	16	1	17	1	17	1
18	3	16	1	18	1	17	1
18	3	16	1	18	2	17	1
18	6	12	1	18	5	13	1
10	2	17	1	10	1	18	1
10	2	17	1	10	2	18	1
10	2	17	1	10	2	10	1
19	⊿	16	1	10	2	17	1
10	4	12	1	10	2	1/	1
19	1	17	1	19	0	14	1
20	4	17	1	20	2	10	1
20	4	16	1	20	3	10	1
20	5	10	1	20	4	11	1
20	b	14	Ţ	20	5	10	⊥ ₄
21	4	18	1	21	3	19	1
21	5	17	1	21	4	18	1
22	3	19	1	22	2	20	1
22	3	19	1	22	3	20	1
22	5	18	1	22	4	19	1
23	5	19	1	23	4	20	1
25	4	21	1	25	3	22	1

88262.0740	0.070
81000.4696	0.070
85613.6697	0.070
80903.1659	0.070
82609.4522	0.070
86186.7566	0.070
81483.1566	0.070
80887.7514	0.070
98713 4895	0 070
96209 4693	0.070
01000 0203	0.070
91980.0302	0.070
94290.3994	0.070
92313.1294	0.070
90988.3304	0.070
91180.8191	0.070
91082.9950	0.070
90914.4988	0.070
90911.5898	0.070
90803.2443	0.070
90803.2443	0.070
90741.4349	0.070
90741.4349	0.070
90704.3162	0.070
90704.3162	0.070
94240.9717	0.070
93314.8411	0.070
90289.8119	0.070
94824, 2961	0.070
93898 1272	0.070
98766 5293	0.070
96550 2072	0.070
90330.2012	0.070
90440.9392	0.070
96042.3641	0.070
96026.1220	0.070
90968.7679	0.070
90622.6995	0.070
98551.8275	0.070
93378.5798	0.070
93164.0128	0.070
96475.0116	0.070
90421.3881	0.070
96224.5701	0.070
93981.8947	0.070
91750.2848	0.070
90357.2957	0.070
93298.0700	0.070
96786.7796	0.070
92880.1863	0.070
93821 6643	0,070
92856 5425	0.070
95946 9866	0 070
99550 5546	0 070
00600 6005	0.070
30022.0333	0.070

25	8	18	1	24	9	15	1
26	4	22	1	26	3	23	1
20	1	22	4	20	⊿	20	4
20	4	22	T	20	4	23	T
27	7	20	1	27	6	21	1
28	7	21	1	28	6	22	1
29	5	24	1	29	4	25	1
33	6	27	1	33	5	28	1
55	0	21	1	55	5	20	1
34	8	27	1	34	(27	1
35	8	27	1	35	7	28	1
36	7	29	1	36	6	30	1
36	8	28	1	36	7	29	1
27	7	20	1	27	Ģ	21	1
57	1	30	1	57	0	51	1
37	8	29	1	37	7	30	1
38	8	30	1	38	7	31	1
38	15	23	1	37	16	22	1
38	15	24	1	37	16	21	1
20	-0	21	1	20	-0	20	1
39	0	51	1	39	1	32	1
4	4	0	1	3	3	1	1
4	4	0	1	3	3	0	1
4	4	1	1	3	3	0	1
4	4	1	1	3	3	1	1
Ē	2	2	1	Ē	0	1	1
0	3	3	1	5	2	4	1
6	3	4	1	5	2	4	1
6	3	4	1	5	2	3	1
7	6	1	1	7	5	2	1
7	6	1	1	7	5	3	1
. 7	6	2	1	.7	5	3	1
1	0	2	1	-	5	3	1
(6	2	1	(5	2	1
8	6	2	1	8	5	3	1
8	6	2	1	8	5	4	1
8	6	3	1	8	5	4	1
a	6	3	1	a	5	5	1
0	0	0	1	0	5	0	1
9	6	3	1	9	5	4	1
9	6	4	1	9	5	5	1
9	6	4	1	9	5	4	1
10	2	8	1	9	2	7	1
10	2	Q	1	0	1	Q	1
10	2	7	1	0	-	6	1
10	3	(T	9	3	6	T
10	3	8	1	9	3	7	1
10	4	6	1	9	4	5	1
10	4	7	1	9	4	6	1
10	5	5	1	a	5	Δ	1
10	С Г	с С	-	0	С Г	-	4
10	5	6	T	9	5	5	T
10	6	4	1	9	6	3	1
10	6	4	1	10	5	5	1
10	6	4	1	10	5	6	1
10	6	5	1	Q	6	4	1
10	с С	с г	4	10	С г	- -	4
10	ю	5	1	10	5	5	T
10	6	5	1	10	5	6	1
10	7	3	1	9	7	2	1
10	7	4	1	9	7	3	1
10	8	2	1	9	8	1	1
10	0	2	- 1	0	0	- -	- 1
τU	Ö	3	T	Э	Ö	2	T

95018.8089	0.070
99454.1169	0.070
97275.0985	0.070
99285.3899	0.070
94501.0223	0.070
94038.9397	0.070
96463.5985	0.070
90881.5963	0.070
97491.6934	0.070
91588,9606	0.070
93912 1950	0 070
98649 1913	0.070
91742 8694	0.070
91280 0628	0.070
91200.0020	0.070
90420.0047	0.070
90426.6047	0.070
92/13.8/84	0.070
107308.3147	0.070
107304.9136	0.070
107304.9502	0.070
107308.3457	0.070
109407.4644	0.070
109133.3942	0.070
106774.3885	0.070
105200.7624	0.070
105200.7624	0.070
105200.7624	0.070
105200.7624	0.070
105124.2207	0.070
105125.3555	0.070
105125.3555	0.070
105017.1916	0.070
105012.8360	0.070
105017,2146	0.070
105012 8360	0 070
104795 2879	0.070
109812 50/0	0.070
102120 0207	0.070
101040 5279	0.070
101049.5378	0.070
101514.8385	0.070
101307.9089	0.070
101109.5624	0.070
101100.7944	0.070
100952.6181	0.070
104855.9320	0.070
104869.0343	0.070
100952.6181	0.070
104855.9320	0.070
104869.0140	0.070
100866.2717	0.070
100866.2717	0.070
100814.0858	0.070
100814.0858	0.070

10	9	1	1	9	9	0	1
10	9	2	1	9	9	1	1
11	0	11	1	10	0	10	1
11	0	11	1	10	1	10	1
11	1	10	1	10	2	9	1
11	1	11	1	10	0	10	1
11	1	11	1	10	1	10	1
11	2	10	1	10	2	9	1
11	6	5	1	11	5	7	1
11	6	5	1	11	5	6	1
11	6	6	1	11	5	7	1
11	6	6	1	11	5	6	1
12	6	6	1	12	5	7	1
12	6	7	1	12	5	7	1
12	6	7	1	12	5	8	1
13	6	7	1	13	5	8	1
13	6	8	1	13	5	9	1
14	6	8	1	14	5	9	1
14	6	9	1	14	5	10	1
15	6	9	1	15	5	10	1
15	6	9	1	15	5	11	1
15	6	10	1	15	5	11	1
16	6	10	1	16	5	11	1
16	6	11	1	16	5	12	1
17	6	11	1	17	5	13	1
17	6	11	1	17	5	12	1
17	6	12	1	17	5	13	1
18	1	17	1	18	0	18	1
18	2	17	1	18	0	18	1
18	2	17	1	18	1	18	1
18	6	12	1	18	5	14	1
18	6	13	1	18	5	14	1
19	1	18	1	19	0	19	1
19	2	18	1	19	0	19	1
19	2	18	1	19	1	19	1
19	6	13	1	19	5	15	1
19	6	14	1	19	5	15	1
20	2	18	1	20	1	19	1
20	3	18	1	20	1	19	1
20	5	16	1	20	3	17	1
20	6	15	1	20	5	16	1
21	2	19	1	21	1	20	1
21	2	19	1	21	2	20	1
21	3	19	1	21	1	20	1
21	3	19	1	21	2	20	1
21	5	17	1	21	3	18	1
21	6	16	1	21	5	17	1
22	4	19	1	22	2	20	1
22	4	19	1	22	3	20	1
22	6	17	1	22	5	18	1
23	3	20	1	23	2	21	1
23	4	20	1	23	2	21	1
23	4	20	1	23	3	21	1

100781.7766	0.070
100781.7766	0.070
103267.8143	0.070
102684.4844	0.070
102000.2739	0.070
103628 3820	0 070
103045 1274	0.070
100040.1274	0.070
100252.9070	0.070
104674.6929	0.070
104639.7073	0.070
104673.6981	0.070
104638.5952	0.070
104345.1672	0.070
104342.4499	0.070
104425.9158	0.070
103946.1168	0.070
104123.2251	0.070
103405.7636	0.070
103768,1067	0.070
102673 0957	0 070
103/11 1072	0.070
102270 4200	0.070
103370.4389	0.070
101679.5923	0.070
102949.9467	0.070
102717.4057	0.070
100338.7791	0.070
102537.9501	0.070
102414.2488	0.070
102759.8434	0.070
102750.5004	0.070
102527.6777	0.070
102178.3471	0.070
108736.2977	0.070
108950 4432	0.070
108945 1905	0 070
100545.1505	0.070
102077.7701	0.070
101928.2055	0.070
1003/1.4059	0.070
102603.0254	0.070
107012.2820	0.070
101853.8069	0.070
107173.1207	0.070
107092.8738	0.070
108651.5172	0.070
108571.1802	0.070
105508.8012	0.070
102028.8861	0.070
103124.5506	0.070
102159 4287	0.070
102529 0524	0.070
101753 1710	0 070
108/00 2012	0.070
107007 0004	0.070
10/80/.0321	0.070

23	5	19	1	23	3	20	1
23	6	18	1	23	5	19	1
24	3	21	1	24	2	22	1
24	3	21	1	24	3	22	1
24	5	20	1	24	3	21	1
24	6	19	1	24	5	20	1
24	7	17	1	23	8	16	1
25	5	21	1	25	4	22	1
25	6	20	1	25	5	21	1
25	7	18	1	25	6	19	1
26	6	21	1	26	5	22	1
26	7	19	1	26	6	20	1
26	7	20	1	26	6	20	1
27	4	23	1	27	3	24	1
30	5	25	1	30	4	26	1
33	8	25	1	33	7	26	1
34	6	28	1	34	5	29	-
34	8	26	1	34	7	27	-
38	7	31	1	38	6	32	1
40	9	31	1	40	8	32	1
41	9	32	1	41	8	33	1
43	9	34	1	43	8	35	1
5	4	1	1	4	3	2	1
5	4	2	1	4	3	1	-
7	3	4	1	6	2	4	1
7	3	5	1	6	2	4	1
à	2	7	1	8	1	7	1
11	1	10	1	10	1	à	1
11	2	q	1	10	2	8	1
11	2	10	1	10	1	q	1
11	3	8	1	10	3	7	1
11	3	9	1	10	3	8	1
11	4	7	1	10	4	6	1
11	4	8	1	10	4	7	1
11	5	6	1	10	5	5	1
11	5	7	1	10	5	6	1
11	6	5	1	10	6	4	1
11	6	6	1	10	6	5	1
11	7	4	1	10	7	२ २	1
11	7	5	1	10	7	4	1
11	8	3	1	10	8	2	1
11	8	4	1	10	8	2	1
11	q	2	1	10	q	1	1
11	a	2	1	10	a	2	1
11	10	1	1	10	10	2	1
11	10	1 2	1	10	10	1	1
10	10	10	1	11	10	⊥ 11	1
12	0	12	1	11	1	11	1
10	1	11	1	11 11	1	10	⊥ 1
12 10	1	11	1	11 11	J T	10	1 1
10	1	11 10	1	11 11	2	11	1 1
10	1 1	12 10	1	11 11	1	11 11	⊥ 1
10	υ Τ	11	1 1	11	с Т	10	⊥ 1
	~	т т	±	<u>т</u> т	~	тU	T

106226.7031	0.070
103426.3053	0.070
109384.5726	0.070
108987.6623	0.070
108347.8550	0.070
104784 2173	0.070
106297 5677	0 070
108249 4884	0.070
106652 3621	0.070
107055 0305	0.070
100062 7266	0.070
103056 0573	0.070
103050.9575	0.070
101221.4013	0.070
108143.9568	0.070
103244.5996	0.070
107286.8535	0.070
105582.7457	0.070
102095.4849	0.070
107085.2615	0.070
109236.7955	0.070
105133.1262	0.070
101578.1100	0.070
117385.2998	0.070
117360.9421	0.070
116074.7765	0.070
115402.5350	0.070
119835.9284	0.070
110476.6200	0.070
115103.1900	0.070
116729.3300	0.070
114081.6945	0.070
111049.1967	0.070
111944.4029	0.070
111544.0501	0.070
111337.7729	0.070
111316 1570	0 070
111121 1840	0 070
111121.1040	0.070
111004 5404	0.070
111004.5404	0.070
11004.0404	0.070
110933.4303	0.070
110933.4303	0.070
110888.6128	0.070
110888.6128	0.070
110860.2162	0.070
110860.2162	0.070
112313.0045	0.070
111952.4043	0.070
119464.4892	0.070
113211.8112	0.070
112532.7080	0.070
112172.0864	0.070
117658.8343	0.070

				-		
13	2 11	1	12	3	10	1
15	2 13	1	14	3	11	1
17	5 13	1	17	3	14	1
18	5 14	1	18	3	15	1
20	2 19	1	20	0	20	1
20	2 19	1	20	0	20	1
20	2 10	1	20	1	20	1
20	2 19	1	20	L C	20	1
20	7 13	T	20	0	14	1
20	/ 14	1	20	6	14	1
21	7 14	1	21	6	15	1
21	7 15	1	21	6	15	1
22	2 20	1	22	1	21	1
22	2 20	1	22	2	21	1
22	3 20	1	22	1	21	1
22	3 20	1	22	2	21	1
22	4 19	1	21	5	16	1
22	7 15	1	21	6	16	1
22	7 15	1	22	c	17	1
22	/ 15	1	22	6	11	1
22	7 16	1	22	6	16	1
22	7 16	1	22	6	17	1
23	6 18	1	22	7	15	1
23	7 16	1	23	6	17	1
23	7 17	1	23	6	18	1
23	7 17	1	23	6	17	1
24	4 21	1	24	2	22	1
24	4 21	1	24	3	22	1
21	7 17	1	24	6	10	1
24	7 10	1	24	c	10	1
24	1 10	T	24	0	19	1
25	3 22	1	25	2	23	1
25	3 22	1	25	3	23	1
25	4 22	1	25	3	23	1
25	5 21	1	25	3	22	1
25	7 19	1	24	8	16	1
25	7 19	1	25	6	20	1
26	5 22	1	26	3	23	1
26	5 22	1	26	4	23	1
26	7 20	1	26	6	21	1
20	6 20	1	20	5	21	1
21	7 01	1	21	0	20	1
21	/ 21	1	27	6	22	1
28	4 24	1	28	3	25	1
28	4 24	1	28	4	25	1
28	6 23	1	28	5	24	1
28	7 22	1	28	6	23	1
29	6 24	1	29	5	25	1
31	5 26	1	31	4	27	1
31	8 23	1	31	7	24	1
32	8 24	1	32	.7	25	1
25	6 24	1	25	, E	20	1
20	U 29	T A	30	0	20	1
39	1 32	1	39	6	33	Ţ
39	9 30	1	39	8	31	1
44	8 36	1	44	8	37	1
8	71	1	7	6	2	1
8	7 1	1	7	6	1	1

110500 0/27	0 070
110090.9427	0.070
114220.8697	0.070
117697.5646	0.070
113314.1681	0.070
115154.9414	0.070
115154.9414	0.070
115151.8644	0.070
119686 7330	0 070
110604 7547	0.070
119604.7547	0.070
118318.1188	0.070
118158.6788	0.070
113824.4643	0.070
113775.8949	0.070
114789.4369	0.070
114741.0114	0.070
113724.0537	0.070
116552 3339	0 070
110040 0124	0.070
119049.2134	0.070
116253.5320	0.070
119550.4592	0.070
114886.5074	0.070
114290.3815	0.070
119008.7983	0.070
113749.6375	0.070
114067.3051	0.070
113670.3290	0.070
111441 6626	0 070
11858/ 3202	0.070
116706 0006	0.070
110720.2090	0.070
1164/5.2211	0.070
119696.2887	0.070
111470.4863	0.070
116429.9740	0.070
118344.3831	0.070
115429.8868	0.070
113250.7587	0.070
118362 6820	0 070
112032 1356	0.070
112032.1330	0.070
118/14.4582	0.070
116542.5583	0.070
115584.5301	0.070
115551.9873	0.070
119471.8562	0.070
119599.3219	0.070
112572.7374	0.070
117750.9909	0.070
112630 4384	0.070
115005 7160	0 070
116526 2010	0.070
11/270 7457	0.070
1143/8./15/	0.070
115060.6749	0.070
205010.9580	0.070
205010.9580	0.070

8	7	2	1	7	6	2	1
8	7	2	1	7	6	1	1
20	5	16	1	19	5	15	1
20	6	14	1	19	6	13	1
20	6	15	1	19	6	14	1
20	7	13	1	19	7	12	1
20	7	14	1	19	7	13	1
20	8	12	1	19	8	11	1
20	8	13	1	10	g	12	1
20	7	22	1	28	7	21	1
20	1	21	1	20	1	20	1
22	1 1	21	1	21	1	20	1
11	2	51	1	12	0	30 E	1
14	9	Э Г	1	10	0	5	1
14	9	5	1	13	8	6	1
14	9	6	1	13	8	6	1
14	9	6	1	13	8	5	1
21	4	18	1	20	3	18	1
29	5	24	1	28	5	23	1
29	6	23	1	28	6	22	1
30	4	26	1	29	4	25	1
30	5	26	1	29	5	25	1
30	10	20	1	29	10	19	1
30	10	21	1	29	10	20	1
30	12	18	1	29	12	17	1
30	12	19	1	29	12	18	1
30	13	17	1	29	13	16	1
30	13	18	1	29	13	17	1
30	15	15	1	29	15	14	1
30	15	16	1	29	15	15	1
30	16	14	1	29	16	13	1
30	16	15	1	29	16	14	1
30	17	13	1	29	17	12	1
30	17	14	1	29	17	13	1
30	19	11	1	29	19	10	1
30	19	12	1	29	19	11	1
30	20	10	1	29	20		-
30	20	11	1	29	20	10	1
30	20	q	1	20	20	8	1
30	21	10	1	20	21	a	1
30	21	20	1	20	21	7	1 1
30	22	0 0	1	29	22	v Q	1 1
20	22	7	1	29	22	6	1
20	20	0	1	29	20	7	1
30	23	0	1	29	23	ו ר	1
30	24	ю 7	1	29	24	5	1
30	24	1	1	29	24	6	1
31	3	28	1	30	3	27	1
31	4	28	1	30	4	27	1
33	0	33	1	32	0	32	1
33	0	33	1	32	1	32	1
33	1	33	1	32	0	32	1
33	1	33	1	32	1	32	1
3	3	0	2	2	2	1	2
3	3	1	2	2	2	0	2

205010.9580	0.070
205010 9580	0 070
202010.0000	0.070
203133.3011	0.070
204189.7964	0.070
203679.5350	0.070
203128.8907	0.070
203087.5227	0.070
202624.0818	0.070
202622.0116	0.070
299738.3095	0.070
299978.6863	0.070
299978.6863	0.070
303666 8299	0 070
303666 8200	0.070
202666 2200	0.070
303000.8299	0.070
303666.8299	0.070
303099.7742	0.070
302464.7237	0.070
304372.5062	0.070
302340.7006	0.070
300481.8759	0.070
304618.2171	0.070
304611.4543	0.070
303633.4501	0.070
303633.4501	0.070
303330.0874	0.070
303330 0874	0 070
302020.0074	0.070
202020 0021	0.070
302929.9021	0.070
302799.6876	0.070
302799.6876	0.070
302702.3620	0.070
302702.3620	0.070
302580.2746	0.070
302580.2746	0.070
302547.0198	0.070
302547.0198	0.070
302528.2685	0.070
302528.2685	0.070
302522.0785	0.070
302522 0785	0 070
302526 1709	0.070
202526 1709	0.070
302526.1709	0.070
302539.6284	0.070
302539.6284	0.070
303620.5856	0.070
303475.6223	0.070
302859.5879	0.070
302859.5879	0.070
302859.5879	0.070
302859.5879	0.070
78524.8999	0.070
78454.0417	0.070

7	1	6	2	6	1	5	2
7	2	5	2	6	2	Δ	2
, ,	~	0	2	-	2	-	2
8	0	8	2	1	0	1	2
8	0	8	2	7	1	7	2
8	1	8	2	7	0	7	2
0	-	0	2	-		-	2
8	1	8	2	(1	(2
8	2	7	2	7	2	6	2
9	1	8	2	8	2	7	2
14	2	13	2	14	1	14	2
1 -	2	10	2	1-1	-	11	2
15	3	13	2	15	1	14	2
15	4	12	2	15	3	13	2
15	5	10	2	15	4	11	2
16	3	14	2	16	2	15	2
16	1	10	2	16	2	11	2
10	4	13	2	10	3	14	2
16	5	11	2	16	4	12	2
17	2	15	2	17	1	16	2
17	4	14	2	17	3	15	2
17	5	10	2	17	1	12	2
11	0	12	2	11	4	13	2
20	3	17	2	20	2	18	2
24	4	20	2	24	3	21	2
25	6	19	2	25	5	20	2
26	6	20	2	26	5	21	2
20	С Г	20	~	20	⊿	21	2
27	5	22	2	27	4	23	2
30	6	24	2	30	5	25	2
4	3	1	2	3	2	2	2
6	5	1	2	6	4	2	2
7	0	ċ	2	c	4	5	2
1	2	0	2	0	T	5	2
7	5	3	2	7	4	4	2
8	1	7	2	7	1	6	2
8	2	6	2	7	2	5	2
Q	2	5	2	7	3	1	2
0	5	с С	2	7	5	-	2
8	3	6	2	(3	5	2
8	4	4	2	7	4	3	2
8	4	5	2	7	4	4	2
8	5	3	2	7	5	2	2
0	5	1	2	. 7	5	2	2
0	0	7	2	'	0	5	2
8	6	2	2	(6	1	2
8	6	3	2	7	6	2	2
8	7	1	2	7	7	0	2
8	7	2	2	7	7	1	2
õ	م	0	2	, o		0	2
9	0	9	2	0	0	0	2
9	0	9	2	8	1	8	2
9	1	9	2	8	0	8	2
9	1	9	2	8	1	8	2
a	2	8	2	8	2	7	2
0	2	4	2	0	~	, -	2
9	5	4	2	9	4	5	2
11	5	7	2	11	4	8	2
12	5	7	2	12	4	8	2
13	5	8	2	13	4	9	2
11	1	11	2	11	- -	10	2
14	4	ΤT	2	14	2	12	2
14	5	9	2	14	4	10	2
14	5	10	2	14	4	11	2
15	5	11	2	15	4	12	2
-	-				-		-

72130.1063	0.070
72398.3327	0.070
75915 6360	0 070
73626 2426	0 070
77452 0222	0.070
77452.9225	0.070
/5163.59/1	0.070
79112.9190	0.070
77149.8693	0.070
77940.7037	0.070
75698.6558	0.070
73740.6211	0.070
79817 3298	0.070
70172 3080	0 070
762/6 3035	0.070
70240.3035	0.070
77097.5515	0.070
77561.2955	0.070
79271.4912	0.070
73902.8692	0.070
75624.2603	0.070
79667.9517	0.070
76277.2239	0.070
73289 3937	0 070
75331 0470	0.070
74045 0799	0.070
14945.2766	0.070
88662.2019	0.070
87096.5656	0.070
89330.1721	0.070
87013.6637	0.070
81939.8683	0.070
83083.4939	0.070
81111.9561	0.070
80401.5681	0.070
80426 4573	0 070
80380 5221	0.070
00309.0221	0.070
80264.9034	0.070
80263.8869	0.070
80192.2631	0.070
80192.2631	0.070
80152.0629	0.070
80152.0629	0.070
84872.5439	0.070
83335.3295	0.070
85874.2756	0.070
84336 9437	0 070
04000.0401 00720 0006	0.070
00730.2920	0.070
00003.341/	0.070
86296.9983	0.070
84809.7472	0.070
83625.0103	0.070
89018.2419	0.070
81986.6631	0.070
85787.9602	0.070
85838.5092	0.070

88937.0937	0.070
89921.8412	0.070
86107.7422	0.070
84479.2334	0.070
86668.6474	0.070
88204.1750	0.070
87591.9117	0.070
88941.2519	0.070
83897.9030	0.070
88280.6880	0.070
84154 6655	0.070
80028 9647	0 070
88240 5531	0.070
83796 /1/8	0.070
00790.4140	0.070
00000.9420	0.070
82671.2527	0.070
82479.8654	0.070
91522.8264	0.070
93680.2159	0.070
91685.2019	0.070
90452.4610	0.070
90617.8367	0.070
90530.2673	0.070
90367.7953	0.070
90365.2565	0.070
90262.2173	0.070
90262.2173	0.070
90203.5264	0.070
90203.5264	0.070
90168.6859	0.070
90168.6859	0.070
93838.5893	0.070
92836.7081	0.070
94476.1159	0.070
93474 3768	0 070
98264 8295	0 070
01815 3038	0.070
05200 0450	0.070
90300.0409 06010 000F	0.070
90019.0905	0.070
90448.8942	0.070
90048.6385	0.070
94497.9527	0.070
91333.1630	0.070
90768.6637	0.070
95421.3420	0.070
96227.8247	0.070
93109.3155	0.070
92102.5141	0.070
90403.2135	0.070
92111.0913	0.070
95981.5786	0.070
99384.3890	0.070
97030.6414	0.070

97763.5749	0.070
91109.4031	0.070
93031.0981	0.070
107883.3419	0.070
107880.2449	0.070
106529.0295	0.070
106529 0295	0 070
106408 7412	0.070
106400.0214	0.070
106207 1022	0.070
106202 0220	0.070
106303.2332	0.070
106307.1023	0.070
106303.2332	0.070
104135.9478	0.070
102415.5802	0.070
100462.1315	0.070
100876.3853	0.070
100690.7669	0.070
100497.1211	0.070
100489.4867	0.070
100348.4662	0.070
106165.8690	0.070
106154.6183	0.070
100348.4669	0.070
106165.8690	0.070
106154.6183	0.070
100266.5096	0.070
100266.5096	0.070
100217.0994	0.070
100217 0994	0.070
100186.5489	0.070
100186.5489	0.070
102823 3127	0 070
102020.0127	0.070
103001 50004	0.070
103221.0920	0.070
102304.0374	0.070
10//16.8436	0.070
105979.6965	0.070
105672.9884	0.070
105298.2351	0.070
105452.4492	0.070
105109.5939	0.070
104112.6340	0.070
104722.1237	0.070
103193.2344	0.070
101955.9309	0.070
103891.1479	0.070
108327.5382	0.070
103227.6078	0.070
107963.6134	0.070
107801.0821	0.070
107157.1060	0.070
103180.5875	0.070

106476.7598	0.070
103562.1900	0.070
107006.4363	0.070
107691.5276	0.070
107150.0841	0.070
109384.5720	0.070
109334.2828	0.070
106863.5652	0.070
102478.7144	0.070
115699.2790	0.070
114412 8676	0 070
116693 9190	0.070
113260 3384	0.070
110/1/ 6771	0.070
1110919.0771	0.070
111223.4323	0.070
110803.5120	0.070
110657.6128	0.070
110638.8208	0.070
110342.2205	0.070
110342.2201	0.070
110274.8564	0.070
110274.8564	0.070
110232.4473	0.070
110232.4473	0.070
110205.3768	0.070
110205.3768	0.070
111826.4194	0.070
118967.9575	0.070
112271.5398	0.070
112071.5573	0.070
111673.3245	0.070
117089.7870	0.070
114502.6423	0.070
112848.6078	0.070
112790.2465	0.070
113924.1974	0.070
116559 8505	0.070
112772.7057	0.070
113944 1352	0.070
114934 2581	0.070
110714 7125	0.070
110050 0000	0.070
119032.0022	0.070
112513.7044	0.070
11//10.2028	0.070
119964.8110	0.070
115333.8022	0.070
119135.5478	0.070
202854.5087	0.070
202854.5087	0.070
202854.5087	0.070
202854.5087	0.070
202834.6596	0.070
202398.9807	0.070

304151.1408	0.070
304151.1408	0.070
304151.1408	0.070
304151.1408	0.070
304187.5721	0.070
302629.1584	0.070
301045.2827	0.070
301228.2777	0.070
303399.2242	0.070
304400.8911	0.070
303462.3928	0.070
302716.1828	0.070
302711.0764	0.070
302174.1872	0.070
301785.6480	0.070
301785.6480	0.070
301498.4850	0.070
301498.4850	0.070
301283.0223	0.070
301283.0223	0.070
302337.5217	0.070
302160.0942	0.070
304879.3449	0.070
302549.3102	0.070
77718.3561	0.070
72873.2320	0.070
73334.0627	0.070
76446.4210	0.070
74417.5483	0.070
77778.0868	0.070
75749.3551	0.070
79865.7197	0.070
79070.1256	0.070
77238.7457	0.070
78998.2679	0.070
79119.4686	0.070
76135.4960	0.070
74951.6739	0.070
73206.4621	0.070
76649.9801	0.070
76016.7513	0.070
73632.3370	0.070
79369.5000	0.070
79381.8570	0.070
77476.3193	0.070
76027.0502	0.070
79009.2550	0.070
75110.0918	0.070
72762.2284	0.070
73087.8572	0.070
87978.5096	0.070
88989.0182	0.070
84139.0855	0.070

8	3	5	3	7	3	4	3	
8	3	6	3	7	3	5	3	
8	4	4	3	7	4	3	3	
8	4	5	3	7	4	4	3	
8	5	3	3	7	5	2	3	
8	5	3	3	8	4	4	3	
8	5	4	3	7	5	3	3	
8	6	2	3	7	6	1	3	
8	6	2	ર	7	6	2	3	
8	7	1	3	7	7	0	3	
0	7	2	2	7	7	1	2	
0	0	2	2	0	، ^	0	2	
9	1	9	ა ა	0	0	0	ວ ວ	
9	1	9	ა ა	0	1	0	ა ა	
9	1	9	ა ი	0	1 1	07	ა ი	
9	2	0 F	3	0	2	í C	3	
9	5	5	3	9	4	ю 7	3	
10	5	6	3	10	4	1	3	
11	5	6	3	11	4	7	3	
11	5	7	3	11	4	8	3	
12	5	7	3	12	4	8	3	
12	5	8	3	12	4	9	3	
13	5	8	3	13	4	9	3	
14	5	10	3	14	4	11	3	
15	4	12	3	15	2	13	3	
15	5	11	3	15	4	12	3	
16	3	14	3	16	2	15	3	
16	4	13	3	16	2	14	3	
16	5	12	3	16	4	13	3	
17	2	15	3	17	1	16	3	
17	3	15	3	17	1	16	3	
17	3	15	3	17	2	16	3	
17	5	13	3	17	4	14	3	
18	2	16	3	18	1	17	3	
18	4	15	3	18	2	16	3	
18	5	14	3	18	4	15	3	
19	4	16	3	19	3	17	3	
19	5	15	3	19	4	16	3	
21	3	18	ર	21	2	19	3	
21 01	3	18	3	21	2	10	3	
21 01	6	15	2	21 01	5	16	2	
21 22	6	16	3	21	5	17	3	
22	0	10	3	22	່ ວ	11 01	3	
24	4	20	3	24	3	21	3	
24	4	20	3	24	4	21	3	
27	5	22	3	27	4	23	3	
28	5	23	3	28	4	24	3	
8	2	7	3	7	1	6	3	
9	1	8	3	8	1	7	3	
9	2	7	3	8	2	6	3	
9	3	6	3	8	3	5	3	
9	3	7	3	8	3	6	3	
9	4	5	3	8	4	4	3	
9	4	6	3	8	4	5	3	
9	5	4	3	8	5	3	3	

82113.8047	0.070
81278.2908	0.070
81330.4622	0.070
81283.4869	0.070
81146.8188	0.070
84744 8555	0 070
0114E 6400	0.070
01140.0422	0.070
81065.3993	0.070
81065.3993	0.070
81020.0304	0.070
81020.0304	0.070
85464.9534	0.070
86313.2031	0.070
84981.4215	0.070
89548.9322	0.070
84635.0830	0.070
84420.9755	0.070
83363.3949	0.070
84189.7967	0.070
82396 2529	0 070
83071 0101	0.070
91015 0000	0.070
01015.0029	0.070
03773.2215	0.070
84721.4555	0.070
83923.1900	0.070
80171.9675	0.070
84517.4037	0.070
84340.5377	0.070
80089.4253	0.070
86167.0506	0.070
85694.7392	0.070
85103.5453	0.070
87525.5394	0.070
87473.1531	0.070
86284.9506	0.070
87621.6941	0.070
87946 7090	0 070
87719 8506	0 070
86474 1767	0.070
07210 02/6	0.070
07319.0340	0.070
83209.0173	0.070
84603.6338	0.070
80653.8888	0.070
80116.9385	0.070
88522.5434	0.070
95981.5786	0.070
92326.6641	0.070
94832.0742	0.070
92866.1972	0.070
91428.1552	0.070
91654.6950	0.070
91543.8071	0.070
91368 2546	0,070
	2.010

٥	Б	Б	3	Q	Б	Л	3	
0	0	0	0	0	0	Ţ	0	
9	6	3	3	8	6	2	3	
9	6	4	3	8	6	3	3	
9	7	2	3	8	7	1	3	
9	7	3	3	8	7	2	3	
9	8	1	3	8	8	0	3	
9	8	2	3	8	8	1	3	
10	1	9	3	9	2	8	3	
10	1	10	3	9	0	9	3	
10	1	10	3	9	1	9	3	
10	2	<u>a</u>	3	a	2	8	3	
16	1	15	3	16	0	16	3	
17	6	11	3	17	5	10	3	
10	2	16	2	10	ວ ດ	17	2	
10	6	10	2	10	2	12	2	
10	E E	16	ວ ວ	10	1	17	3 2	
20	5	10	ა ი	20	4	10	3	
21	5	11	3	21	4	10	3	
22	3	19	3	22	2	20	3	
25	4	21	3	25	3	22	3	
25	4	21	3	25	4	22	3	
36	8	28	3	36	7	29	3	
4	4	0	3	3	3	1	3	
4	4	1	3	3	3	0	3	
8	6	2	3	8	5	3	3	
8	6	3	3	8	5	4	3	
10	1	9	3	9	1	8	3	
10	2	8	3	9	2	7	3	
10	2	9	3	9	1	8	3	
10	3	7	3	9	3	6	3	
10	3	8	3	9	3	7	3	
10	4	6	3	9	4	5	3	
10	4	7	3	9	4	6	3	
10	5	5	3	9	5	4	3	
10	5	6	3	9	5	5	3	
10	6	4	3	9	6	3	3	
10	6	5	3	9	6	4	3	
10	6	5	3	10	5	6	3	
10	7	3	3	q	7	2	3	
10	7	4	3	g	7	2	3	
10	8	2	3	g	8	1	3	
10	8	2	3	g	8	2	3	
10	a	1	3	a	a	0	3	
10	9	2 1	2	9	9	1	2	
10	9 1	∠ 11	ວ ວ	10	9	10	3 2	
11	1	11	ა ი	10	1	10	3 2	
11	T	11	3	10	1	10	3	
11	2	т0 Т0	3	10	2	9	3	
11	6	5	3	11	5	6	3	
11	6	6	3	11	5	7	3	
12	6	6	3	12	5	7	3	
12	6	7	3	12	5	8	3	
13	6	7	3	13	5	8	3	
13	6	8	3	13	5	9	3	
14	6	8	3	14	5	9	3	

91364.8251	0.070
91249.9065	0.070
91249.9065	0.070
91184.0051	0.070
91184.0051	0.070
91144.5123	0.070
91144.5123	0.070
91196 0680	0 070
95025 8605	0.070
94177 4615	0.070
001/12 /5/0	0.070
99142.4040	0.070
90400.4305	0.070
98691.9672	0.070
91456.7105	0.070
96733.3510	0.070
90133.7822	0.070
92872.4833	0.070
95870.7009	0.070
93468.6751	0.070
90790.7026	0.070
91247.7790	0.070
106727.7674	0.070
106724.0772	0.070
103896.1183	0.070
103897.5394	0.070
101674.6926	0.070
105359.8737	0.070
109621.2782	0.070
103781 2745	0.070
101528 6454	0 070
102057 7100	0 070
101823 6528	0.070
101610 0030	0.070
101019.9909	0.070
101009.7592	0.070
101452.6569	0.070
101452.6569	0.070
103625.6512	0.070
101360.6718	0.070
101360.6718	0.070
101304.8973	0.070
101304.8973	0.070
101270.0863	0.070
101270.0863	0.070
103874.2033	0.070
103346.3233	0.070
108647.8267	0.070
103379.3158	0.070
103419.0978	0.070
103063.3076	0.070
103157.9510	0.070
102633.3420	0.070
102840.5345	0.070
102047.9578	0.070

15	6	9	3	15	5	10	3
15	6	10	3	15	5	11	3
16	6	10	3	16	5	11	3
16	6	11	3	16	5	12	3
17	4	13	3	16	5	12	3
17	6	12	3	17	5	13	3
18	6	13	3	18	5	14	3
19	6	14	3	19	5	15	3
20	6	15	3	20	5	16	3
21	2	19	3	21	2	20	3
21	6	16	3	21	5	17	3
22	6	17	3	22	5	18	3
23	6	18	3	23	5	19	3
24	5	20	3	24	4	21	3
24	6	19	3	24	5	20	3
24	7	17	3	24	6	18	3
25	5	21	3	25	4	22	3
25	6	20	3	25	5	21	3
26	6	21	3	26	5	22	3
26	7	19	3	26	6	20	3
5	4	2	3	4	3	1	3
11	1	10	3	10	1	9	3
11	2	9	3	10	2	8	3
11	2	10	3	10	1	9	3
11	3	8	3	10	3	7	3
11	3	9	3	10	3	8	3
11	4	7	3	10	4	6	3
11	4	8	3	10	4	7	3
11	5	6	3	10	5	5	3
11	5	7	3	10	5	6	3
11	6	5	3	10	6	4	3
11	6	6	3	10	6	5	3
11	7	4	3	10	7	3	3
11	7	5	3	10	7	4	3
11	8	3	3	10	8	2	3
11	8	4	3	10	8	3	3
11	9	2	3	10	9	1	3
11	9	3	3	10	9	2	3
11	10	1	3	10	10	0	3
11	10	2	3	10	10	1	3
12	0	12	3	11	0	11	3
12	0	12	3	11	1	11	3
12	1	11	3	11	1	10	3
12	1	11	3	11	2	10	3
12	1	12	3	11	0	11	3
12	1	12	3	11	1	11	3
12	2	11	3	11	2	10	3
13	2	11	3	12	3	10	3
19	7	12	3	19	6	13	3
19	7	13	3	19	6	14	3
20	7	13	3	20	6	14	3
20	7	14	3	20	6	15	3
21	7	14	3	21	6	15	3

101249.9160	0.070
102061.5935	0.070
100162.6580	0.070
101636.2000	0.070
106480.2123	0.070
101230.9866	0.070
100895 6960	0 070
100693 2820	0.070
100695 8950	0.070
108/03 0233	0.070
100403.0233	0.070
101608 5240	0.070
101020.5540	0.070
102709.1883	0.070
104350.5222	0.070
104284.3997	0.070
108/56.1661	0.070
109155.1808	0.070
106399.1586	0.070
109079.3494	0.070
100606.7491	0.070
116827.2433	0.070
110807.3826	0.070
115682.4127	0.070
116594.3244	0.070
114808.5080	0.070
111562.1291	0.070
112564.9478	0.070
112113.3112	0.070
111907.3240	0.070
111881.9474	0.070
111676.1716	0.070
111675.4485	0.070
111551.6353	0.070
111551.6353	0.070
111475.7580	0.070
111475 7580	0 070
111477 6743	0.070
111427.0743	0.070
111306 800/	0.070
111390.0224	0.070
111390.0224	0.070
112023.8000	0.070
112301.4243	0.070
119796.1617	0.070
114009.1790	0.070
112818.1989	0.070
112495.6637	0.070
118070.4779	0.070
112344.8568	0.070
119023.5016	0.070
119755.3012	0.070
117857.6179	0.070
119147.6104	0.070
116345.9443	0.070

21	7	15	3	21	6	16	3
22	2	20	3	22	1	21	3
22	2	20	3	22	2	21	3
22	3	20	3	22	2	21	3
22	7	15	3	22	6	16	3
22	7	16	3	22	6	17	3
23	7	17	3	23	6	18	3
20	2	11 01	2	20	0 0	20	2
24	⊿	21	ວ ວ	24	2	22	2
24	4 7	10	ა ი	24	с С	10	3
24	1	10	3	24	0	19	3
25	3	22	3	25	2	23	3
25	3	22	3	25	3	23	3
25	7	19	3	25	6	20	3
26	5	22	3	26	4	23	3
27	6	22	3	27	5	23	3
27	7	21	3	27	6	22	3
28	6	23	3	28	5	24	3
28	7	22	3	28	6	23	3
8	7	1	3	7	6	1	3
8	7	1	3	7	6	2	3
8	7	2	3	7	6	2	3
8	7	2	3	7	6	1	3
20	5	16	3	19	5	15	3
20	6	15	3	19	6	14	3
20	7	13	3	19	7	12	3
20	7	1/	२ २	10	7	12	3
20	v Q	10	3	10	v Q	11	3
20	0	12	ა ა	10	0	10	2
20	10	10	ა ი	19	10	12	3
20	10	10	3	19	10	9	3
20	10	11	3	19	10	10	3
20	11	9	3	19	11	8	3
20	11	10	3	19	11	9	3
20	12	8	3	19	12	7	3
20	12	9	3	19	12	8	3
20	13	7	3	19	13	6	3
20	13	8	3	19	13	7	3
20	14	6	3	19	14	5	3
20	14	7	3	19	14	6	3
20	15	5	3	19	15	4	3
20	15	6	3	19	15	5	3
20	16	4	3	19	16	3	3
20	16	5	3	19	16	4	3
20	17	3	3	19	17	2	3
20	17	4	3	19	17	3	3
22	0	22	3	21	0	21	3
22	5	22	3	21	5	23	3
29	7	24	ວ ວ	20	7	20	2
29	1	22	ა ი	20	1	21	ა ი
30	4	26	3	29	4	25	3
30	5	26	3	29	5	25	3
30	13	17	3	29	13	16	3
30	13	18	3	29	13	17	3
30	15	15	3	29	15	14	3
30	15	16	3	29	15	15	3

118529.1107	0.070
115116.3849	0.070
115077.1405	0.070
115880.0966	0.070
114390.1952	0.070
117939.8891	0.070
117433.1653	0.070
111289 7891	0 070
114917 7288	0 070
117073 5870	0.070
118563 8518	0.070
110262 6772	0.070
11602/ /167	0.070
11/260 /102	0.070
114300.4123	0.070
112329.9000	0.070
11/630.3807	0.070
116136.0664	0.070
118614.7353	0.070
203962.4311	0.070
203962.4311	0.070
203962.4311	0.070
203962.4311	0.070
204766.6485	0.070
204769.2564	0.070
204213.5229	0.070
204161.7173	0.070
203671.2683	0.070
203668.6035	0.070
203108.6272	0.070
203108.6272	0.070
202948.4932	0.070
202948.4932	0.070
202834.6596	0.070
202834.6596	0.070
202752.2151	0.070
202752,2151	0.070
202693 9322	0 070
202000.0022	0.070
202050.5022	0.070
202033.3003	0.070
202003.0000	0.070
202020.0000	0.070
202020.0030	0.070
202611.1522	0.070
202611.1522	0.070
203646.1686	0.070
303481.3770	0.070
301864.7483	0.070
303063.1643	0.070
301478.7775	0.070
304863.0495	0.070
304863.0495	0.070
304432.8290	0.070
304432.8290	0.070

30	16	14	3	29	16	13	3
30	16	15	3	29	16	14	3
30	17	13	3	29	17	12	3
30	17	14	3	29	17	13	3
30	18	12	3	29	18	11	3
30	18	13	3	29	18	12	3
31	3	28	3	30	3	27	3
32	1	31	3	31	1	30	3
33	0	33	3	32	0	32	3
33	0	33	3	32	1	32	3
33	1	33	3	32	0	32	3
33	1	33	3	32	1	32	3
35	8	27	3	35	5	30	3
3	3	0	4	2	2	1	4
3	3	1	4	2	2	0	4
5	2	4	4	4	1	3	4
7	1	6	4	6	1	5	4
7	2	5	4	6	2	4	4
8	0	8	4	7	1	7	4
8	1	8	4	7	0	7	4
8	1	8	4	7	1	7	4
8	2	7	4	7	2	6	4
9	1	8	4	8	2	7	4
14	1	13	4	14	0	14	4
14	2	13	4	14	0	14	4
14	5	9	4	14	4	10	4
15	3	13	4	15	1	14	4
15	3	13	4	15	2	14	4
15	4	11	4	14	5	10	4
15	4	12	4	15	3	13	4
15	5	10	4	15	4	11	4
16	2	14	4	16	1	15	4
16	4	13	4	15	5	10	4
16	4	13	4	16	3	14	4
16	5	11	4	16	4	12	4
17	4	14	4	17	3	15	4
17	5	12	4	16	6	11	4
20	3	17	4	20	3	18	4
21	7	14	4	20	8	13	4
23	4	19	4	23	3	20	4
23	6	17	4	23	5	18	4
23	8	15	4	22	9	14	4
23	8	16	4	22	9	13	4
24	6	18	4	24	5	19	4
25	9	16	4	24	10	15	4
26	5	21	4	26	4	22	4
29	6	23	4	29	5	24	4
30	6	24	4	30	5	25	4
32	7	25	4	32	6	26	4
36	7	29	4	36	7	30	4
6	5	1	4	6	4	2	4
6	5	2	4	6	4	3	4
7	2	6	4	6	1	5	4

304292,4680	0.070
304292 4540	0 070
20/195 0015	0.070
204105.9215	0.070
304105.9215	0.070
304106.6651	0.070
304106.6651	0.070
304493.6862	0.070
300825.9105	0.070
303691.5055	0.070
303691.5055	0.070
303691.5055	0.070
303691.5055	0.070
302184.8369	0.070
77562.7108	0.070
77481.9290	0.070
73901.0965	0.070
72928 5597	0.070
73427 6366	0 070
7//62 8101	0.070
74402.0101	0.070
77750 2021	0.070
75759.3631	0.070
79909.5649	0.070
79308.5599	0.070
77556.0716	0.070
79308.5599	0.070
78623.0349	0.070
76278.8712	0.070
75148.6994	0.070
78180.8241	0.070
73166.6840	0.070
76094.6555	0.070
72934.5975	0.070
78757.9885	0.070
76037, 1200	0.070
73021 7930	0 070
70/5/ /388	0.070
75404.4000	0.070
70004.4007	0.070
78329.1773	0.070
76353.4732	0.070
76936.1391	0.070
78115.4089	0.070
77495.7854	0.070
77442.9474	0.070
74285.7351	0.070
78771.0673	0.070
73588.0574	0.070
73504.3991	0.070
78441.6067	0.070
79499.0583	0.070
77997.1608	0.070
84714 6775	0.070
84721 4555	0.070
88853 5157	0 070
00000.0101	0.010

7	5	3	4	7	4	4	4	
8	1	7	4	7	1	6	4	
8	2	6	4	7	2	5	4	
8	2	5	1	7	2	Δ	1	
Q Q	3	6	7	7	3	т Б	-	
0	3	4	4	7		2	4	
8	4	4	4	-	4	3	4	
8	4	5	4	7	4	4	4	
8	5	3	4	7	5	2	4	
8	5	3	4	8	4	4	4	
8	5	4	4	7	5	3	4	
8	5	4	4	8	4	5	4	
8	6	2	4	7	6	1	4	
8	6	3	4	7	6	2	4	
8	7	1	4	7	7	0	4	
8	7	2	4	.7	.7	1	4	
0	0	0	1	ò	0	Q Q	1	
9	0	9	4	0	1	0	4	
9	0	9	4	0	T	0	4	
9	1	9	4	8	0	8	4	
9	1	9	4	8	1	8	4	
9	2	8	4	8	2	7	4	
9	5	4	4	9	4	5	4	
10	5	5	4	10	4	6	4	
10	5	6	4	10	4	7	4	
11	5	6	4	11	4	7	4	
11	5	7	4	11	4	8	4	
12	5	7	4	12	4	8	4	
12	5	2 2	1	12	1	a	1	
12	5	0	7	12	-	0	-	
10	5	0	4	10	4	10	4	
13	5	9	4	13	4	10	4	
14	5	10	4	14	4	11	4	
15	1	14	4	15	0	15	4	
15	4	12	4	15	2	13	4	
15	5	11	4	15	4	12	4	
16	3	14	4	16	1	15	4	
16	3	14	4	16	2	15	4	
16	4	13	4	16	2	14	4	
16	5	12	4	16	4	13	4	
17	2	15	4	17	1	16	4	
17	3	15	4	17	1	16	4	
17	3	15	4	17	2	16	4	
17	Δ	14	1	16	5	11	1	
17	-	12	7	17	⊿	11	-	
10	5	10	4	10	4	14	4	
18	2	10	4	18	1	17	4	
18	2	16	4	18	2	17	4	
18	4	15	4	18	2	16	4	
18	4	15	4	18	3	16	4	
18	5	14	4	18	4	15	4	
19	5	15	4	19	4	16	4	
20	3	17	4	20	2	18	4	
20	6	15	4	19	7	12	4	
20	6	15	4	20	5	15	4	
21	3	18	4	21	2	19	4	
 21	3	18	4	 21	2	19	4	
<u>- 1</u>	0	10	-1	<u> </u>	0	- 0	-1	

84621.9801	0.070
82775.5692	0.070
84243.1065	0.070
82208.5078	0.070
81347.1639	0.070
81405 1338	0.070
81355 0651	0.070
01016 0062	0.070
01210.0903	0.070
84409.1870	0.070
81215.6664	0.070
84481.5221	0.070
81133.6710	0.070
81133.6710	0.070
81087.3533	0.070
81087.3533	0.070
85463.9799	0.070
84167.6153	0.070
86286.3666	0.070
84989.7493	0.070
89592.5970	0.070
84115, 1642	0.070
83665 5190	0 070
84083 4712	0.070
01000.1112	0.070
02900.0000	0.070
03050.0900	0.070
81992.5199	0.070
83634.64/1	0.070
80570.6916	0.070
83482.4151	0.070
83455.3396	0.070
84237.1505	0.070
84328.1359	0.070
83626.3560	0.070
81131.5479	0.070
80415.4071	0.070
84234.2573	0.070
84074.6805	0.070
80597.8953	0.070
86427.3662	0.070
85980.3950	0.070
87559 7148	0 070
8/870 6252	0.070
04019.0232	0.070
00023.0707	0.070
87750.1776	0.070
87431.0586	0.070
83400.6141	0.070
86113.8496	0.070
87838.7462	0.070
80129.5398	0.070
85698.7601	0.070
88770.5295	0.070
88474.2788	0.070
87302.6720	0.070

86462.2587	0.070
82308.8069	0.070
87152.0318	0.070
85599.6669	0.070
81885.3433	0.070
81161.5754	0.070
80100.8068	0.070
80098.2408	0.070
89907 2206	0 070
85579 4346	0.070
82145 6471	0.070
95020 0404	0.070
000039.0424 00010 100E	0.070
80012.1985	0.070
815/5.8932	0.070
80818.3028	0.070
84066.8888	0.070
89219.7993	0.070
89802.9079	0.070
92367.5141	0.070
94941.8675	0.070
92983.4563	0.070
91503.6635	0.070
91742.8279	0.070
91627.1398	0.070
91448.9522	0.070
91445.2861	0.070
91327.7836	0.070
91327.7964	0.070
91260.4663	0.070
91260 4663	0 070
91219 8406	0.070
91219 8406	0.070
01/106 86/3	0.070
02674 4020	0.070
93074.4939	0.070
91418.8/8/	0.070
95006.5425	0.070
94184.1887	0.070
99184.6850	0.070
90797.2624	0.070
91491.6712	0.070
99651.2428	0.070
98131.0867	0.070
92056.2638	0.070
91780.7798	0.070
95422.9942	0.070
96108.1335	0.070
95206.3509	0.070
95038.0247	0.070
97758.8884	0.070
90559.9209	0.070
93493.8400	0.070
94519.0413	0.070
92718 7441	0 070
02110.17TI	0.010

20	5	16	4	20	4	17	4
20	6	14	4	20	5	15	4
21	4	18	4	21	2	19	4
21	5	17	4	21	4	18	4
22	3	19	4	22	2	20	4
22	3	19	4	22	3	20	4
22	5	18	4	22	4	19	4
25	4	21	4	25	3	22	4
25	4	21	4	25	4	22	4
26	7	19	4	26	6	20	4
27	7	20	4	27	6	21	4
28	10	18	4	27	11	17	4
29	5	24	4	29	4	25	4
32	6	26	4	32	5	27	4
34	8	26	4	34	7	27	4
35	8	27	4	35	7	28	4
36	8	28	4	36	7	29	4
38	8	30	4	38	7	31	4
39	8	31	4	39	7	32	4
4	4	0	4	3	3	0	4
4	4	0	4	3	3	1	4
4	4	1	4	3	3	0	4
4	4	1	4	3	3	1	4
6	3	3	4	5	2	4	4
6	3	4	4	5	2	3	4
6	6	0	4	6	5	1	4
6	6	1	4	6	5	2	4
7	6	1	4	7	5	2	4
8	6	2	4	8	5	3	4
8	6	3	4	8	5	4	4
9	2	8	4	8	1	7	4
9	6	3	4	9	5	4	4
10	2	8	4	9	2	7	4
10	3	7	4	9	3	6	4
10	3	8	4	9	3	7	4
10	4	6	4	9	4	5	4
10	4	7	4	9	4	6	4
10	5	5	4	9	5	4	4
10	5	6	4	9	5	5	4
10	6	4	4	9	6	3	4
10	6	4	4	10	5	5	4
10	6	5	4	9	6	4	4
10	6	5	4	10	5	5	4
10	6	5	4	10	5	6	4
10	7	3	4	9	7	2	4
10	7	4	4	9	7	3	4
10	8	2	4	9	8	1	4
10	8	3	4	9	8	2	4
10	9	1	4	9	9	0	4
10	9	2	4	9	9	1	4
11	0	11	4	10	1	10	4
11	1	11	4	10	0	10	4
11	1	11	4	10	1	10	4

90097.7998	0.070
90255.9981	0.070
99150.4048	0.070
92915.3991	0.070
96611.2660	0.070
95859.5259	0.070
96294 1913	0 070
94503 4019	0 070
01008 1625	0.070
00/67 7000	0.070
99407.7000	0.070
94680.1000	0.070
90908.0841	0.070
98915.7947	0.070
93037.3892	0.070
96714.1681	0.070
92899.4378	0.070
90485.8173	0.070
91065.9254	0.070
94368.5079	0.070
106503.4687	0.070
106507.2322	0.070
106503.4687	0.070
106507.2322	0.070
109111.2094	0.070
106261 3975	0.070
103632 1099	0.070
103632 0000	0.070
102577 6200	0.070
103377.0200	0.070
103494.3860	0.070
103495.9585	0.070
102651.6042	0.070
103373.0631	0.070
105470.4725	0.070
103922.0104	0.070
101608.6435	0.070
102161.8658	0.070
101917.3831	0.070
101711.9269	0.070
101701.0469	0.070
101540.6810	0.070
103201.9035	0.070
101540.6810	0.070
103201.8950	0.070
103218.0567	0.070
101446 6238	0 070
101446 6238	0.070
101320 5063	0.070
101200 5000	0.070
	0.070
101353.8139	0.070
101353.8139	0.070
103041.4502	0.070
103861.0996	0.070
103351.5037	0.070

11	2	10	4	10	2	9	4	
11	6	5	4	11	5	6	4	
11	6	6	4	11	5	7	4	
12	6	6	4	12	5	7	4	
12	6	6	4	12	5	8	4	
12	6	7	4	12	5	8	4	
13	6	7	4	13	5	9	4	
13	6	7	4	13	5	8	4	
13	6	8	4	13	5	9	4	
14	6	9	4	14	5	10	4	
15	6	9	4	15	5	10	4	
15	6	10	4	15	5	11	4	
16	6	10	4	16	5	12	4	
17	4	13	4	16	5	12	4	
17	6	12	4	17	5	13	4	
18	6	13	4	18	5	14	4	
19	6	14	4	19	5	15	4	
20	6	15	4	20	5	16	4	
21	2	19	4	21	1	20	4	
21	2	19	4	21	2	20	4	
21	5	17	4	21	2	18	4	
21	6	16	1	21	5	17	1	
21	4	19	4	21	े २	20	4	
22	י ר	20	4	22	2	20	4	
20 23	1	20	-	20	2	21	1	
20 23	т 5	10	-	20	3	21	1	
20 23	6	18	-	20	5	10	1	
20	5	20	1	20	3	21	1	
24 24	5	20	4	24 24	4	21	4	
24 24	6	19	4	24 24	5	21	4	
24 24	7	17	4	24 24	6	18	4	
25	5	21	4	25	4	22	4	
25	6	20	4	25	5	21	4	
26	6	20	4	26	5	22	4	
30	5	21	1	30	Δ	22	1	
30	0 0	20	-	30	т 7	20	-	
30	0 0	24	4	30	ر م	20	4	
5	1	1	-	1	3	21	-	
7	3	т Б	4	4	3 2	2 1	4	
' 11	1	10	-	10	1	ā	-	
11	2	۵1 ۵	-	10	2	8	1	
11	2	10	-	10	1	0 0	-	
11	2	20	-	10	3	7	-	
11 11	2	0	4	10	2	0	4	
11	⊿	9 7	4	10		6	4	
11	4	0	4	10	4	0	4	
11	4 E	6	4	10	4 5	/ E	4	
11	5	0	4	10	5	5	4	
11 11	с С	l C	4 1	10	С С	D E	4 ∧	
11	0 7	0 A	4 1	10	0 7	ວ ວ	4 ∕I	
11	י 7	4 5	4 1	10	י 7		'± ∕I	
11	ı و	ט ר	4 1	10	ı Q	4 0	'± ∕I	
⊥⊥ 11	0 Q	л Л	4 1	10	Q	∠ ?	+ ∕	
т т	0	- ±	-1	τU	0	J	Ŧ	

108687.4060	0.070
102965.1680	0.070
103007.3790	0.070
102641.2900	0.070
102745.0393	0.070
102741.2986	0.070
102427.6739	0.070
102199 5337	0.070
102418 4803	0 070
102043 6638	0.070
100774 0075	0.070
101620 4520	0.070
101030.4330	0.070
101317.3438	0.070
107443.6380	0.070
100801.8147	0.070
100476.8813	0.070
100293.2017	0.070
100325.7297	0.070
108951.8445	0.070
108890.8270	0.070
103591.6233	0.070
100653.7773	0.070
103554.2357	0.070
104451.8659	0.070
109380.7789	0.070
105621.2274	0.070
102506.2683	0.070
108358.5787	0.070
104644 2005	0.070
104162 6219	0 070
107813 0011	0.070
109527 7664	0.070
106368 6386	0.070
100147 4949	0.070
109147.4040	0.070
108325.6195	0.070
106818.2464	0.070
107785.2356	0.070
116641.9181	0.070
114848.3373	0.070
110823.8972	0.070
115788.6312	0.070
116453.1796	0.070
114969.7515	0.070
111644.9148	0.070
112688.3985	0.070
112217.0838	0.070
112011.5676	0.070
111984.6881	0.070
111774.0075	0.070
111647.4631	0.070
111647.4631	0.070
111569.7849	0.070
111569 7849	0,070
	0.010

111520.4963	0.070
111520.4963	0.070
111488.8503	0.070
111488.8503	0.070
112623.8037	0.070
119804.1643	0.070
114175.1013	0.070
112809.5922	0.070
112499.5653	0.070
118106.8320	0.070
112836.5254	0.070
113001 1481	0 070
114022 6348	0 070
119377 0437	0.070
118/1/ 88/7	0.070
110225 6115	0.070
116272 0017	0.070
116270 7064	0.070
110370.7864	0.070
11/238.4419	0.070
118612.9774	0.070
110123.3093	0.070
115671.6613	0.070
115456.1136	0.070
117993.6765	0.070
115601.4617	0.070
115565.0248	0.070
116353.2828	0.070
116316.7339	0.070
113643.0792	0.070
117410.2903	0.070
117644.4362	0.070
116918.3088	0.070
115697.9281	0.070
115399.0367	0.070
117849.9421	0.070
119237.8031	0.070
119051.9141	0.070
116485.6768	0.070
116468.9321	0.070
114805.6181	0.070
116700.4787	0.070
110853 5336	0 070
112501 1111	0.070
117307 6187	0.070
116/10 9720	0.070
110410.0739	0.070
110378.2410	0.070
119971.0351	0.070
11/245.5485	0.070
11/650.4210	0.070
115459.3631	0.070
112188.1321	0.070
113887.4140	0.070
113882.5867	0.070

34	6	28	4	34	5	29	4
37	9	29	4	37	8	29	4
38	7	31	4	38	6	32	4
38	9	29	4	38	8	30	4
20	4	17	4	19	4	16	4
20	5	16	4	19	5	15	4
20	6	15	4	19	6	14	4
20	7	13	4	19	7	12	4
20	7	14	4	19	7	13	4
20	8	12	4	19	8	11	4
20	8	13	4	19	8	12	4
20	9	12	4	19	9	11	4
20	11	9	4	19	11	8	4
20	11	10	4	19	11	9	4
20	12	8	4	19	12	7	4
20	12	g	4	19	12	8	4
20	12	7	- 1	10	12	6	т Л
20	13	2 Q	-	10	13	7	-
20	1/	6	4	10	1/	י ה	-
20	1/	7	4	10	1/	6	4
20	15	י ה	- 1	10	15	1	т Л
20	15	6	- 1	10	15	т 5	т Л
20	17	े २	4	19	17	2	- -
20	17	4	4	19	17	2	_ Д
20	18	2	4	19	18	1	_ Д
20	18	2	4	19	18	2	_ Д
20	19	1	4	19	19	0	4
20	19	2	4	19	19	1	4
22	1	22	4	21	1	21	4
12	10	2	4	11	9	2	4
12	10	2	4	11	9	3	4
12	10	3	4	11	9	3	4
12	10	3	4	11	9	2	4
29	5	24	4	28	5	23	4
29	7	22	4	28	7	21	4
30	4	26	4	29	4	25	4
30	14	16	4	29	14	15	4
30	14	17	4	29	14	16	4
30	15	15	4	29	15	14	4
30	15	16	4	29	15	15	4
30	17	13	4	29	17	12	4
30	17	14	4	29	17	13	4
30	18	12	4	29	18	11	4
30	18	13	4	29	18	12	4
30	19	11	4	29	19	10	4
30	19	12	4	29	19	11	4
30	20	10	4	29	20	9	4
30	20	11	4	29	20	10	4
30	21	9	4	29	21	8	4
30	21	10	4	29	21	9	4
31	4	28	4	30	4	27	4
32	2	31	4	31	1	30	4
32	2	31	4	31	2	30	4

111735.6275	0.070
110679.8916	0.070
113944.1352	0.070
113031.9452	0.070
202687.5313	0.070
204946.7973	0.070
204979.3273	0.070
204422.7461	0.070
204366 6492	0 070
203866 1166	0 070
203863 1375	0.070
203522 4061	0.070
200022.4001	0.070
203120.3013	0.070
203120.0013	0.070
203009.0543	0.070
203009.0543	0.070
202925.1584	0.070
202925.1584	0.070
202865.2641	0.070
202865.2641	0.070
202823.4683	0.070
202823.4683	0.070
202778.3493	0.070
202778.3493	0.070
202771.0764	0.070
202771.0764	0.070
202771.0764	0.070
202771.0764	0.070
203642.2933	0.070
300565.8626	0.070
300565.8626	0.070
300565.8626	0.070
300565.8626	0.070
303568.5628	0.070
302383.1480	0.070
303055.1564	0.070
304895.6340	0.070
304895.6340	0.070
304704.5464	0.070
304704.5464	0.070
304449.9396	0.070
304449.9396	0.070
304368 8536	0.070
304368 8536	0 070
304308 9800	0.070
304308 9800	0.070
304268 2050	0 070
304200.0300	0.070
304200.0900	0.070
304243.0919	0.070
204243.0919	0.070
200921 6010	0.070
300831.6212	0.070
300831.6212	0.070

33	0	33	4	32	0	32	4	
33	0	33	4	32	1	32	4	
33	1	33	4	32	0	32	4	
33	1	33	4	32	1	32	4	
7	1	6	5	6	1	5	5	
7	2	5	5	6	2	4	5	
8	0	8	5	7	0	7	5	
8	0	8	5	7	1	7	5	
8	1	8	5	7	0	7	5	
8	1	8	5	7	1	7	5	
8	2	7	5	7	2	6	5	
9	1	8	5	8	2	7	5	
17	2	15	5	17	1	16	5	
2	2	6	5	7	2	5	5	
8	2	5	5	7	2	Δ	5	
Q Q	3	6	5	7	3	т Б	5	
0	⊿	0 1	5	7	З Л	2	5	
0	4	4	5	7	4	د ⊿	о г	
0	4	5	5 5	7	4	4	5 Г	
8	5	3	5	7	5	2	5	
8	5	4	5	(5	3	5	
8	6	2	5	(6	1	5	
8	6	3	5	7	67	2	5	
8	1	1	5	((0	5	
8	(2	5	(1	1	5	
9	0	9	5	8	0	8	5	
9	1	9	5	8	0	8	5	
9	1	9	5	8	1	87	5	
9	2	8	5	8	2	1	5	
21	6	15	5	21	5	10	5	
9	1	8	5	8	1	1	5	
9	2		5	8	2	б Г	5	
9	3	07	5 5	0	3	5	5 Г	
9	3	/ _	5 5	0	3	0 4	5 Г	
9	4	5	5 5	0	4	4	5 Г	
9	4	0	5 5	0	4	5	5 Г	
9	5 F	4	5 F	0	р Б	3 ⊿	5	
9	5	с С	5 F	0	5 6	4	5	
9	6	3	5	0	0	2	о г	
9	7	4	5	0	0	3 1	5	
9	7	2	5	0	1 7	2 1	5 5	
9	0	1	5	0	0	2	5	
9	0	2 1	5	0	0	1	5	
9 10	0	10	5	0	0	1	5	
10	0	10	5	9	1	9	5	
10	1	10	5	9	1	9	о г	
10	1	9	5 5	9	2	0	5 Г	
10	2	9	5 5	9 17	2	10	5 Г	
10	1	11	5 F	11	ວ ₁	12	5	
10	- 1	9	5 F	9	- 1	8 7	5 F	
10	2	0 7	D F	9	2	í c	D F	
10	с С	1 0	D E	9	ა ი	0 7	Э Е	
10	3 ⊿	0 C	ວ E	9	ۍ ⊿		ວ ⊑	
τU	4	0	Э	9	4	Э	Э	

303679.7684	0.070
303679 7684	0 070
000070.7004	0.070
303679.7684	0.070
303679.7684	0.070
72461.1541	0.070
70070 0267	0 070
12010.2301	0.070
76046.7676	0.070
73947.3243	0.070
77433 3536	0 070
77100.0000	0.070
15333.8140	0.070
79413.4900	0.070
78261.9315	0.070
79578.3079	0.070
02612 7005	0 070
03013.7003	0.070
81597.4433	0.070
80795.2210	0.070
80839.7202	0.070
90705 0010	0 070
00795.2210	0.070
80661.8610	0.070
80661.3766	0.070
80583.0618	0.070
80583 0618	0 070
00505.0010	0.070
80539.1966	0.070
80539.1966	0.070
85015.2537	0.070
85903 9613	0 070
04517 4027	0.070
84517.4037	0.070
89047.2504	0.070
88742.9311	0.070
91835 7197	0 070
04051 4727	0.070
94251.4737	0.070
92271.4074	0.070
90887.6972	0.070
91097.2440	0.070
00002 0964	0 070
90992.9004	0.070
90820.5978	0.070
90817.3352	0.070
90705.9490	0.070
90705 9490	0 070
0000100.0457	0.070
90641.9157	0.070
90641.9157	0.070
90604.0192	0.070
90604 0192	0 070
00004.0102	0.070
93990.9705	0.070
93108.3620	0.070
90365.1380	0.070
98593.1037	0.070
00705 1601	0 070
JJ120.1021	0.070
101150.5581	0.070
104730.3106	0.070
103107.3722	0.070
100932 8393	0 070
101400 4074	0.070
101430.49/1	0.070

10	4	7	5	9	4	6	5	
10	5	5	5	9	5	4	5	
10	5	6	5	9	5	5	5	
10	6	4	5	9	6	3	5	
10	6	5	5	9	6	4	5	
10	7	3	5	a	7	2	5	
10	7	3	5	9	7	2	5	
10	1	4	5	9	1	3	5	
10	8	2	5	9	8	1	5	
10	8	3	5	9	8	2	5	
10	9	1	5	9	9	0	5	
10	9	2	5	9	9	1	5	
11	0	11	5	10	0	10	5	
11	1	11	5	10	1	10	5	
11	2	10	5	10	2	9	5	
5	4	2	5	4	3	1	5	
11	1	10	5	10	1	9	5	
11	2	ā	5	10	2	8	5	
11	2	10	5	10	1	0	5	
11	2	10	5	10	1	9	5	
11	3	0	5	10	3	1	5	
11	3	9	5	10	3	8	5	
11	4	7	5	10	4	6	5	
11	4	8	5	10	4	7	5	
11	5	6	5	10	5	5	5	
11	5	7	5	10	5	6	5	
11	7	4	5	10	7	3	5	
11	7	5	5	10	7	4	5	
11	8	3	5	10	8	2	5	
11	8	4	5	10	8	3	5	
11	9	2	5	10	9	1	5	
11	9	3	5	10	9	2	5	
11	10	1	5	10	10	0	5	
11	10	2	5	10	10	1	5	
10	10	10	5	11	10	1	5	
12	0	12	5	11	0	11	5	
12	1	11	5	11	1	10	5	
12	1	11	5	11	2	10	5	
12	1	12	5	11	0	11	5	
12	1	12	5	11	1	11	5	
12	2	11	5	11	2	10	5	
20	6	14	5	19	6	13	5	
20	6	15	5	19	6	14	5	
20	7	13	5	19	7	12	5	
20	7	14	5	19	7	13	5	
30	5	26	5	29	5	25	5	
30	1	20	5	20	1	20	5	
22	1 1	21	5	21	1 1	20	5	
32	2	51	5	21	2	30	5	
30	4	26	5	29	4	25	5	
30	13	17	5	29	13	16	5	
30	13	18	5	29	13	17	5	
30	15	15	5	29	15	14	5	
30	15	16	5	29	15	15	5	
30	19	11	5	29	19	10	5	
30	19	12	5	29	19	11	5	
7	1	6	6	6	1	5	6	

101209.8954	0.070
101008.4712	0.070
100998.9434	0.070
100846.2496	0.070
100846.2496	0.070
100757.0329	0.070
100757 0329	0 070
100703 1878	0.070
100703 1878	0.070
100660 6675	0.070
100660 6675	0.070
100009.0075	0.070
102999.2007	0.070
102/04.9224	0.070
108051.8959	0.070
11/062.7244	0.070
110249.0894	0.070
115010.6265	0.070
116279.8872	0.070
114059.2243	0.070
110913.6543	0.070
111863.7632	0.070
111437.4515	0.070
111230.7933	0.070
111207.3392	0.070
110886.0531	0.070
110886.0531	0.070
110812.7111	0.070
110812.7111	0.070
110766.4634	0.070
110766.4634	0.070
110736.9653	0.070
110736.9653	0.070
112020.0027	0.070
119198.9379	0.070
113168.2027	0.070
112227.1187	0.070
111885.1815	0.070
117429.0067	0.070
204073.2454	0.070
203513 5757	0 070
202058 6700	0.070
202000.0100	0.070
202012.4000	0.070
299900.0010	0.070
299211.4097	0.070
299211.4597	0.070
301020.495/	0.070
303027.5148	0.070
303027.5148	0.070
302614.1566	0.070
302614.1566	0.070
302253.6769	0.070
302253.6769	0.070
72097.0617	0.070

7	2	5	6	6	2	4	6	
8	0	8	6	7	0	7	6	
8	1	8	6	7	0	7	6	
8	1	8	6	7	1	7	6	
8	2	7	6	7	2	6	6	
8	1	7	6	7	1	6	6	
0	1 1	6	6	7	2 1	5	6	
0	2	С Б	C C	7	2	2	C C	
0	ა ა	5	C C	7	с С	4 5	C C	
0	3	0	о С	7	3	5	о С	
8	4	4	6	7	4	3	6	
8	5	3	6	7	5	2	6	
8	5	4	6	-	5	3	6	
8	6	2	6	7	6	1	6	
8	6	3	6	7	6	2	6	
8	7	1	6	7	7	0	6	
8	7	2	6	7	7	1	6	
9	0	9	6	8	0	8	6	
9	0	9	6	8	1	8	6	
9	1	9	6	8	0	8	6	
9	1	9	6	8	1	8	6	
9	2	8	6	8	2	7	6	
10	1	9	6	9	2	8	6	
9	1	8	6	8	1	7	6	
9	3	6	6	8	3	5	6	
9	3	7	6	8	3	6	6	
9	4	5	6	8	4	4	6	
9	4	6	6	8	4	5	6	
9	5	4	6	8	5	3	6	
9	5	5	6	8	5	4	6	
9	6	3	6	8	6	2	6	
9	6	4	6	8	6	3	6	
9	7	2	6	8	7	1	6	
9	7	3	6	8	7	2	6	
9	8	1	6	8	8	0	6	
9	8	2	6	8	8	1	6	
10	2	9	6	9	2	8	6	
6	3	4	6	5	2	3	6	
10	2	8	6	9	2	7	6	
10	3	7	6	9	3	6	6	
10	3	8	6	9	3	7	6	
10	4	6	6	9	4	5	6	
10	4	7	6	9	4	6	6	
10	5	5	6	9	5	4	6	
10	5	6	6	9	5	5	6	
10	6	4	6	9	6	3	6	
10	6	5	6	9	6	4	6	
10	7	3	6	9	7	2	6	
10	7	1	6	a	7	2	6	
10	2 Q	- -	6	0	2 Q	1	6	
10	8	∠ ૧	6	<i>9</i> 0	2	⊥ ว	6	
10	٥	1	6	<i>9</i> 0	0	∠ ∩	6	
10	a	1 C	6	a	a	1	6	
11	0	ے 11	6	10	0	10	6	
	0		0		0	-0	0	

72355.4878	0.070
75941.0866	0.070
77476.3193	0.070
75193.0323	0.070
79104.8225	0.070
81908.0483	0.070
83032.0002	0.070
81078.6104	0.070
80378 5639	0.070
80402 6667	0 070
80243 2732	0.070
80242.6584	0.070
80171 9675	0.070
80171.9075	0.070
00171.9073 00122 5646	0.070
80132.5040	0.070
80132.5646	0.070
84905.9220	0.070
83371.2215	0.070
85907.0136	0.070
84372.2705	0.070
88724.1725	0.070
89307.9444	0.070
91495.1727	0.070
91641.6674	0.070
90426.6047	0.070
90588.5814	0.070
90502.6078	0.070
90342.0093	0.070
90339.6849	0.070
90238.3146	0.070
90238.3316	0.070
90180.9655	0.070
90180.9655	0.070
90146.9076	0.070
90146.9076	0.070
98261.4362	0.070
106748.0214	0.070
104072.2634	0.070
102360.0642	0.070
100434 0130	0.070
100840 8128	0 070
100658 4742	0.070
100467 2878	0.070
100407.2070	0.070
100439.0427	0.070
100320.8046	0.070
100320.8046	0.070
100240.3244	0.070
100240.3244	0.070
100192.0380	0.070
100192.0380	0.070
100162.6627	0.070
100162.6627	0.070
102870.5247	0.070

11	1	10	6	10	1	9	6
11	1	11	6	10	1	10	6
11	2	10	6	10	2	9	6
11	2	9	6	10	2	8	6
11	3	8	6	10	3	7	6
11	3	9	6	10	3	8	6
11	4	7	6	10	4	6	6
11	4	8	6	10	4	7	6
11	5	6	6	10	5	5	6
11	5	7	6	10	5	6	6
11	6	5	6	10	6	4	6
11	6	6	6	10	6	5	6
11	7	4	6	10	7	3	6
11	7	5	6	10	7	4	6
11	8	3	6	10	8	2	6
11	8	4	6	10	8	3	6
11	10	1	6	10	10	0	6
11	10	2	6	10	10	1	6
12	0	12	6	11	0	11	6
12	1	11	6	11	1	10	6
12	1	12	6	11	0	11	6
12	1	12	6	11	1	11	6
12	2	11	6	11	2	10	6
30	5	26	6	29	5	25	6
30	12	18	6	29	12	17	6
30	12	19	6	29	12	18	6
30	17	13	6	29	17	12	6
30	17	14	6	29	17	13	6
32	2	30	6	31	2	29	6
32	3	30	6	31	3	29	6
33	0	33	6	32	0	32	6
33	0	33	6	32	1	32	6
33	1	33	6	32	0	32	6
33	1	33	6	32	1	32	6

109984.7254	0.070
102631.6452	0.070
107716.8425	0.070
114346.0850	0.070
113201.0975	0.070
110385.0142	0.070
111179.9662	0.070
110826.4581	0.070
110622.7933	0.070
110604.2613	0.070
110421.1187	0.070
110421.1187	0.070
110312.3094	0.070
110312.3094	0.070
110246.3979	0.070
110246.3979	0.070
110179.5669	0.070
110179.5669	0.070
111880.2237	0.070
118964.2767	0.070
112125.9235	0.070
111727.1433	0.070
117094.4527	0.070
299023.8662	0.070
301646.7721	0.070
301646.7721	0.070
300794.3979	0.070
300794.3979	0.070
304938.7684	0.070
304931.8574	0.070
301708.8690	0.070
301708.8690	0.070
301708.8690	0.070
301708.8690	0.070

Bibliography

- van Dishoeck, E. F. & Blake, G. A., Chemical evolution of star-forming regions, Annual Review of Astronomy and Astrophysics, 36, 317-368 (1998).
- [2] Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., Castets, A., Wakelam, V., Caux, E., Parise, B., & Teyssier, D., The hot core around the low-mass protostar IRAS 16293-2422: Scoundrels rule!, Astrophysical Journal Letters, 593, L51-L55 (2003).
- [3] Charnley, S., Interstellar organic chemistry, In The Bridge Between the Big Bang and Biology: Stars, Planetary Systems, Atmospheres, Volcanoes: Their Link to Life, F.
 Giovanelli, ed., 139. Consiglio Nazionale delle Ricerche; Rome (2001).
- [4] Friedel, D. N., Snyder, L. E., Turner, B. E., & Remijan, A., A spectral line survey of selected 3 millimeter bands toward Sagittarius B2(N-LMH) using the National Radio Astronomy Observatory 12 Meter Radio Telescope and the Berkeley-Illinois-Maryland Association Array. I. The observational data, Astrophysical Journal, 600, 234-253 (2004).
- [5] Oro, J., Comets and the formation of biochemical compounds on the primitive Earth, *Nature*, **190**, 389-390 (1961).
- [6] Sephton, M. A., Organic compounds in carbonaceous meteorites, Natural Product Reports, 19, 292-311 (2002).

- [7] Cronin, J. R. & Chang, S., Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite, In NATO ASI Series, Series C: Mathematical and Physical Sciences, 416 (Chemistry of Life's Origins), J. M. Greenberg, C. X. Mendoza-Gómez, & V. Pirronello, ed., 209. Kluwer; Boston (1993).
- [8] Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., Garrel, L., Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth, *Nature*, **414**, 879-883 (2001).
- [9] Lewis, R. S. & Anders, E., Interstellar matter in meteorites, *Scientific American*, 249, 66-77 (1983).
- [10] Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Chang, S., & Scharberg, M. A., Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol, *Astrophysical Journal*, **454**, 327 (1995).
- [11] Cottin, H., Szopa, C., & Moore, M. H., Production of hexamethylenetetramine in photolyzed and irradiated interstellar cometary ice analogs, Astrophysical Journal Letters, 561, L139-L142 (2001).
- [12] Allen, M. & Robinson, G. W., The molecular composition of dense interstellar clouds, Astrophysical Journal, 212, 396-415 (1977).
- [13] Horn, A., Møllendal, H., Sekiguchi, O., Uggerud, E., Roberts, H., Herbst, E., Viggiano,
 A. A., & Fridgen, T. D., The gas-phase formation of methyl formate in hot molecular cores, Astrophysical Journal, 611, 605-614 (2004).
- [14] Ohishi, M., Observations of hot cores, In IAUSymposium No. 178: Molecules in astrophysics, E. F. van Dishoeck, ed., 61. Kluwer; Dordrecht (1997).

- [15] Hollis, J. M., Lovas, F. J., & Jewell, P. R., Interstellar glycolaldehyde: The first sugar, Astrophysical Journal Letters, 540, L107-L110 (2000).
- [16] Hollis, J. M., Vogel, S. N., Snyder, L. E., Jewell, P. R., & Lovas, F. J., The spatial scale of glycolaldehyde in the Galactic Center, Astrophysical Journal Letters, 554, L81-L85 (2001).
- [17] Hollis, J. M., Jewell, P. R., Lovas, F. J., & Remijan, A., Green Bank Telescope observations of interstellar glycolaldehyde: Low-temperature sugar, Astrophysical Journal Letters, 613, L45-L48 (2004).
- [18] Martín-Pintado, J., Rizzo, J. R., de Vicente, P., Rodríguez-Fernández, N. J., & Fuente,
 A., Large-scale grain mantle disruption in the galactic center, Astrophysical Journal Letters, 548, L65-L68 (2001).
- [19] Chengalur, J. N. & Kanekar, N., Widespread acetaldehyde near the Galactic Centre, Astronomy & Astrophysics, 403, L43-L46 (2003).
- [20] Balle, T. J., & Flygare, W. H., Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source, *Review of Scientific Instruments*, 52, 33-45 (1981).
- [21] Emilsson, T. I., Extensions of the capabilities of a Balle-Flygare microwave spectrometer, Ph.D. thesis, University of Illinois at Urbana-Champaign (1993).
- [22] McElmurry, B. A., Lucchese, R. R., Bevan, J. W., Leonov, I. I., Belov, S. P., & Legon, A. C., Studies of Ar:HBr using fast scan submillimeter-wave and microwave coaxial pulsed jet spectrometers with sub-kHz precision, *Journal of Chemical Physics*, **119**, 10687-10695 (2003).

- [23] Friedl, R. R., Birk, M., Oh, J. J., & Cohen, E. A., The rotational spectrum and molecular structure of chlorine chlorate, *Journal of Molecular Spectroscopy*, **170**, 383-396 (1995).
- [24] Nummelin, A., Bergman, P., Hjalmarson, A., Friberg, P., Irvine, W. M., Millar, T. J., Ohishi, M., and Saito, S., A three-position spectral line survey of Sagittarius B2 between 218 and 263 GHz. I. The observational data, Astrophysical Journal Supplement Series, 117, 427 (1998).
- [25] Sutton, E. C., Blake, G. A., Masson, C. R., & Phillips, T. G., Molecular line survey of Orion A from 215 to 247 GHz, Astrophysical Journal Supplement Series, 58, 341-378 (1985).
- [26] Kuan, Y., Charnley, S. B., Huang, H., Tseng, W., & Kisiel, Z., Interstellar glycine, Astrophysical Journal, 593, 848-867 (2003).
- [27] Snyder, L. E., Lovas, F. J., Hollis, J. M., Friedel, D. N., Jewell, P. R., Remijan, A., Ilyushin, V. V., Alekseev, E. A., & Dyubko, S. F., A rigorous attempt to verify interstellar glycine, Astrophysical Journal, 619, 914-930 (2005).
- [28] Liu, S., Mehringer, D. M., & Snyder, L. E., Observations of formic acid in hot molecular cores, Astrophysical Journal, 552, 654-663 (2001).
- [29] Nummelin, A., Dickens, J. E., Bergman, P., Hjalmarson, A., Irvine, W. M., Ikeda, M., & Ohishi, M., Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores, Astronomy & Astrophysics, 337, 275-286 (1998).

- [30] Pickett, H. M., Poynter R. L., Cohen E. A., Delitsky M. L., Pearson J. C., & Muller
 H. S. P., Submillimeter, millimeter, and microwave spectral line catalog, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 60, 883-890 (1998).
- [31] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, Jr., J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., & Pople, J. A., *GAUSSIAN 98, Revision A.9.* Gaussian, Inc., Pittsburgh, PA (1998).
- [32] Lovas, F. J., Suenram, R. D., Plusquellic, D. F., & Mollendal, H., The microwave spectrum of the C3 sugars: glyceraldehyde and 1,3-dihydroxy-2-propanone and the dehydration product 2-hydroxy-2-propen-1-al, *Journal of Molecular Spectroscopy*, 222, 263-272 (2003).
- [33] Widicus, S. L., Braakman, R., Kent, D. R., IV, & Blake, G. A., The millimeter and submillimeter rotational spectrum of 1,3-dihydroxyacetone, *Journal of Molecular Spectroscopy*, 224, 101-106 (2004).
- [34] Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98, 5648-5652 (1993).

- [35] Lee, C., Yang, W., & Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Physical Review B: Condensed Matter* and Materials Physics, **37**, 785-789 (1988).
- [36] Ringnalda, M. N., Langlois, J.-M., Murphy, R. B., Greeley, B. H., Cortis, C., Russo, T. V., Marten, B., Donnelly, Jr., R. E., Pollard, W. T., Cao, Y., Muller, R. P., Mainz, D. T., Wright, J. R., Miller, G. H., Goddard III, W. A., & Friesner, R. A. Jaguar 4.2 (2001).
- [37] Hehre, W. J., Ditchfield, R., & Pople, J. A., Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, *Journal of Chemical Physics*, 56, 2257-2261 (1972).
- [38] Clark, T., Chandrasekhar, J., Spitznagel, G. W., & Schleyer, P. v. R., Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, lithium to fluorine, *Journal of Computational Chemistry*, 4, 294-301 (1983).
- [39] Hariharan, P. C. & Pople, J. A., Influence of polarization functions on MO hydrogenation energies, *Theoretica Chimica Acta*, 28, 213-222 (1973).
- [40] Widicus, S. L., Drouin, B. J., Dyl, K. A., & Blake, G. A., Millimeter wavelength measurements of the rotational spectrum of 2-aminoethanol, *Journal of Molecular Spectroscopy*, 217, 278-281 (2003).
- [41] Drouin, B. J., Fischer, J., & Gamache, R. R., Temperature-dependent pressure-induced lineshape of O₃ rotational transitions in air, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 83, 63-81 (2004).

- [42] Remijan, A., Sutton, E. C., Snyder, L. E., Friedel, D. N., Liu, S.-Y., & Pei, C.-C., High-resolution observations of methyl cyanide (CH₃CN) toward the hot core regions W51e1/e2, Astrophysical Journal, 606, 917-928 (2004).
- [43] Scoville, N. Z., Carlstrom, J. E., Chandler, C. J., Phillips, J. A., Scott, S. L., Tilanus, R. P. J., & Wang, Z., The relational database and calibration software for the Caltech millimeter array, *Publications of the Astronomical Society of the Pacific*, 105, 1482-1494 (1993).
- [44] Sault, R. J., Teuben, P. J., & Wright, M. C. H., A retrospective view of MIRIAD, In Astronomical Society of the Pacific Conference Series 77: Astronomical Data Analysis Software and Systems IV, R. A. Shaw, H. E. Payne, & J. J. E. Hayes, ed., 433. The University of Chicago Press; Chicago (1995).
- [45] Hollis, J. M., Pedelty, J. A., Boboltz, D. A., Liu, S.-Y., Snyder, L. E., Palmer, P., Lovas, F. J., & Jewell, P. R., Kinematics of the Sagittarius B2(N-LMH) molecular core, Astrophysical Journal Letters, 596, L235-L238 (2003).
- [46] Snyder, L. E., Lovas, F. J., Mehringer, D. M., Miao, N. Y., Kuan, Y., Hollis, J. M., & Jewell, P. R., Confirmation of interstellar acetone, *Astrophysical Journal*, **578**, 245-255 (2002).
- [47] Widicus Weaver, S. L., Butler, R. A. H., Drouin, B. J., Petkie, D. T., Dyl, K. A., De Lucia, F. C., & Blake, G. A., Millimeter-wave and vibrational state assignments for the rotational spectrum of glycolaldehyde, *Astrophysical Journal Supplement Series*, in press (2005).

- [48] Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A., Does IRAS 16293-2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment, Astronomy & Astrophysics, **390**, 1001-1021 (2002).
- [49] Brochu, M. & Buckley, P., Microwave spectrum and molecular conformation of methyl glycolate, *Canadian Journal of Spectroscopy*, 18, 165-169 (1973).
- [50] Caminati, W., Cervellati, R., & Smith, Z., Methyl group internal rotation A-E line splittings in several torsionally excited states of methyl glycolate and 2methoxymethanol, *Journal of Molecular Structure*, 81, 143-145 (1982).
- [51] Meyer, R., Caminati, W., & Hollenstein, H., Torsional motions in methyl glycolate, Journal of Molecular Spectroscopy, 137, 87-103 (1989).
- [52] Caminati, W. & Cervellati, R., Barrier to internal rotation of methyl in methyl glycolate, *Journal of Molecular Structure*, 81, 143-145 (1982).
- [53] Groner, P., Albert, S., Herbst, E., De Lucia, F. C., Lovas, F. J., Drouin, B. J., & Pearson, J. C., Acetone: Laboratory assignments and predictions through 620 GHz for the vibrational-torsional ground state, Astrophysical Journal Supplement Series, 142, 145-151 (2002).
- [54] Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G., Molecular abundances in OMC-1–The chemical composition of interstellar molecular clouds and the influence of massive star formation, *Astrophysical Journal*, **315**, 621-645 (1987).
- [55] Widicus Weaver, S. L. and Blake, G. A., 1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The first interstellar ketose, Astrophysical Journal Letters, 624, L33-L36 (2005).

- [56] Nummelin, A. & Bergman, P., Vibrationally excited vinyl cyanide in SGR B2(N), Astronomy & Astrophysics, 341, L59-L62 (1999).
- [57] Nummelin, A., Bergman, P., Hjalmarson, Å., Friberg, P., Irvine, W. M., Millar, T. J., Ohishi, M., & Saito, S., A three-position spectral line survey of Sagittarius B2 between 218 and 263 GHZ. II. Data analysis, *Astrophysical Journal Supplement Series*, 128, 213-243 (2000).
- [58] Marstokk, K.-M. & Møllendal, H., Microwave spectrum and dipole moment of glycolaldehyde, Journal of Molecular Structure, 5, 205-213 (1970).
- [59] Marstokk, K.-M. & Møllendal, H., Millimeter wavelength measurements of the rotational spectrum of 2-aminoethanol, *Journal of Molecular Structure*, 16, 259-270 (1973).
- [60] Butler, R. A. H., De Lucia, F. C., Petkie, D. T., Møllendal, H., Horn, A., & Herbst,
 E., The millimeter- and submillimeter-wave spectrum of glycolaldehyde (CH₂OHCHO),
 Astrophysical Journal Supplement Series, 134, 319-321 (2001).
- [61] Michelsen, H. & Klaboe, P., Spectroscopic studies of glycolaldehyde, Journal of Molecular Structure, 4, 293-302 (1969).
- [62] Petkie, D. T., Goyette, T. M., Bettens, R. P. A., Belov, S. P., Albert, S., Helminger,
 P., & De Lucia, F. C., A fast scan submillimeter spectroscopic technique, *Review of Scientific Instruments*, 68, 1675-1683 (1997).
- [63] Senent, M. L., Ab initio study of the torsional spectrum of glycolaldehyde, Journal of Physical Chemistry A, 108, 6286-6293 (2004).
- [64] Olmi, L., Cesaroni, R., Hofner, P., Kurtz, S., Churchwell, E., & Walmsley, C. M., High resolution observations of the hot core in G29.96-0.02, Astronomy & Astrophysics, 407, 225-235 (2003).
- [65] Penn, R. E. & Curl, R. F., Microwave spectrum of 2-aminoethanol: Structural effects of the hydrogen bond, *Journal of Chemical Physics*, 53, 651-658 (1971).
- [66] Kaushik, V. K. & Woods, R. C., Centrifugal distortion effects in the rotational spectrum of 2-aminoethanol, Zeitschrift fuer Physikalische Chemie, 132, 117-120 (1982).
- [67] Korolevich, M. V., Sivchik, V. V., Matveeva, N. A., Zhbankov, R. G., Lastochkina, V. A., Frenkel, M. L., Ladut'ko, A. I., Pavlov, A. V., & Petryaev, E. P., Vibrational spectrum of ethanolamine, *Zhurnal Prikladnoi Spektroskopii*, 46, 620-624 (1987).
- [68] Ohishi, M., Ishikawa, S., Yamamoto, S., Saito, S., & Amano, T., The detection and mapping observations of C₂H₅OH in Orion Kleinmann-Low, Astrophysical Journal Letters, 446, L43-L46 (1995).
- [69] Hasegawa, T. I., Herbst, E., & Leung, C. M., Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules, Astrophysical Journal Supplement Series, 82, 167-195 (1992).
- [70] Hasegawa, T. I. & Herbst, E., New gas-grain chemical models of quiescent dense interstellar clouds-The effects of H2 tunnelling reactions and cosmic ray induced desorption, *Monthly Notices of the Royal Astronomical Society*, 261, 83-102 (1993).

- [71] Ruffle, D. P. & Herbst, E., New models of interstellar gas-grain chemistry–I. Surface diffusion rates, Monthly Notices of the Royal Astronomical Society, **319**, 837-850 (2000).
- [72] Ruffle, D. P. & Herbst, E., New models of interstellar gas-grain chemistry–II. Surface photochemistry in quiescent cores, Monthly Notices of the Royal Astronomical Society, 322, 770-778 (2001).
- [73] Charnley, S. B., Kress, M. E., Tielens, A. G. G. M., & Millar, T. J., Interstellar alcohols, Astrophysical Journal, 448, 232 (1995).
- [74] Charnley, S. B., On the nature of interstellar organic chemistry, In IAU Colloq. 161:
 Astronomical and Biochemical Origins and the Search for Life in the Universe, C. B.
 Cosmovici, S. Bowyer & D. Werthimer, ed., 89. Editrice Compositori; Bologna (1997).
- [75] Bottinelli, S., Ceccarelli, C., Neri, R., Williams, J. P., Caux, E., Cazaux, S., Lefloch, B., Maret, S., & Tielens, A. G. G. M., Near-arcsecond resolution observations of the hot corino of the solar-type protostar IRAS 16293-2422, Astrophysical Journal Letters, 617, L69-L72 (2004).
- [76] Hollis, J. M., Jewell, P. R., Lovas, F. J., Remijan, A., & Møllendal, H., Green Bank Telescope detection of new interstellar aldehydes: Propenal and propanal, Astrophysical Journal Letters, 610, L21-L24 (2004).
- [77] Hippler, H. & Viskolcz, B., Competition between alkyl radical addition to carbonyl bonds and H-atom abstraction reactions, *Physical Chemistry Chemical Physics*, 4, 4663-4668 (2002).

- [78] Duley, W. W. & Williams, D. A., Interstellar Chemistry. Academic Press Inc., Orlando, FL (1984).
- [79] Hartquist, T. W., Menten, K. M., Lepp, S., & Dalgarno, A., On the spatial coincidence of hydroxyl and methanol masers, *Monthly Notices of the Royal Astronomical Society*, 272, 184-188 (1995).
- [80] Stief L. J., Payne W. A., & Klemm, R. B., Flash photolysis-resonance fluorescence study of the formation of atomic oxygen (1D) in the photolysis of water and the reaction of atomic oxygen (1D) with molecular hydrogen, argon, and helium, *Journal* of Chemical Physics, 62, 4000 (1975).
- [81] Satyapal, S., Park, J., Bersohn, R., & Katz, B., Dissociation of methanol and ethanol activated by a chemical reaction or by light, *Journal of Chemical Physics*, **91**, 6873-6879 (1989).
- [82] Chang, A. H. H. & Lin, S. H., A theoretical study of the O(¹D) + CH₄ reaction I, *Chemical Physics Letters*, **363**, 175-181 (2002).
- [83] Boogert, A. C. A. & Eherenfreund, P., Interstellar Ices, In ASP Conference Series 309: Astrophysics of Dust, A. N. Witt, G. C. Clayton, & B. T. Drain, ed., 547 (2004).
- [84] Knez, C., Boogert, A. C. A, Pontoppidan, K. M., Lahuis, F., Augereau, J.-C., Kessler-Silacci, J., van Dieshoeck, E. F., Blake, G. A., Brown, J. A., Dullemond, C. P., Evans, N. E., Geers, V., & Jørgensen, J., First detection of ice features at 5–20 μm toward background stars, Astrophysical Journal (2005).