13

Chapter 2 X-Code: MDS Array Codes with Optimal

Encoding

2.1 Introduction

As stated in Chapter 1, array codes have important applications in storage systems[6] [12]
and have been studied extensively[4][5][7][8][15]. A common property of these codes is that
the encoding and decoding procedures use only simple X OR and cyclic shift operations, and
thus are more efficient than Reed-Solomon codes in terms of computation complexity [6].
In this chapter, we describe the X-Code, a new class of array codes of size n X n over any
Abelian group G(¢) with an addition operation 4, where ¢ is the size of the group. When
q = 2™, the addition operation is just the usual bit-wise XOR operation. Similar to the
codes in [4][7], the error model of the X-Code is that errors or erasures are columns of
the array, i.e., if one symbol of a column is an error or erasure, then the whole column is
considered to be an error or erasure. The same model is also used for the B-Code in the
next chapter. As usual, the dimension of the code is defined to be k = logy» N, where N is
the number of its codewords. The code can also be viewed as an (n, k,d) code over G(q").
Its distance is defined over G(q¢"), i.e., over the columns of the array. The X-Code is an
MDS (Mazimum Distance Separable) code of distance d = 3, i.e., k = n — 2, which meets
the Singleton bound[19]: d =n — k + 1.

Although it was shown[37][8] that for general array codes of distance 3, the lower bound
2 of update complexity is achievable, the code in [37] and later its clearer form [8] are
described by parity check matriz and not directly as array codes. The new family of array
codes, called the X-Codes, has a much simpler and direct geometrical structure and has an
update complexity of exactly 2.

Both the X-Codes and the codes in [37] and [8] combine information and parity symbols
within columns in order to achieve optimal update complexity. The redundancy of the
X-Code is obtained by adding two parity rows rather than two parity columns, which
results in a nice property that updating one information symbol affects only two parity

symbols, i.e., the update complexity is always two. In addition, the number of operations for

14

computing parity symbols is the same for every column, namely, the computational load is
evenly distributed among all the columns, and thus the bottleneck effects of repeated write
operations are naturally overcome.

In summary, the main contribution of this chapter is a construction for the X-Code, a
new class of MDS array codes of distance 3, with the properties of optimal update complexity
and balanced computations. The simple geometrical structure of the the X-Code makes its
decoding very efficient, both for two erasures and for one error.

This chapter is organized as follows. In Section 2.2, the encoding scheme of the X-Code
is described, and a proof of its MDS property is presented. In Section 2.3, an efficient
decoding algorithm for correcting two erasures and an efficient algorithm for correcting one
error are provided. Section 2.4 concludes the chapter and presents some future research

directions.

2.2 X-Code Description

In the X-Code, information symbols are placed in an array of size (n — 2) x n. Like other
array codes [4][5][7][15], parity symbols are constructed by adding (with the group addition
operation +) the information symbols along several parity check lines or diagonals of some
given slopes. But instead of being put in separate columns, the parity symbols of the X-
Code are placed in two additional rows. So the coded array is of size n x n, with the
first n — 2 rows containing information symbols, and the last two rows containing parity
symbols. Notice that each column has information symbols as well as parity symbols, i.e.,
information symbols and parity symbols are mixed in each column. By the structure of
the code, if two columns are erased, the number of remaining symbols is n(n — 2), which is
equal to the number of original information symbols, making it possible to recover the two

column erasures, i.e., missing columns.

2.2.1 Encoding Procedure

Let C;; be the symbol at the ith row and jth column. The parity symbols of the X-Code

are constructed according to the following encoding rules:

n—3

Cn—2i=Y_ Ch(ith+2)
k=0

15

n—3
Cn1i=Y_ Chii—k-2, (2.1)
k=0

where ¢ = 0,1,---,n — 1, and (z), = z mod n. Geometrically speaking, the two parity
rows are just the checksums along diagonals of slopes 1 and —1 respectively. The following

example gives a construction of the X-Code of size 5 x 5.

Example 2.1 X-Code of size 5 X §
The first parity row is calculated along the diagonals of slope 1, with the last row being

an imaginary 0-row, as follows:

AN SIRVERVEN 110]0]1]1
ANA S| OO 0/1(0|1]1
(VAN JVARN NRe 0(0|1]0]|1
1V | & A| & | <1st parity check row— |0 [0 |1[1]0
S OO | M| A| +imaginary O-row — |[0[0[0|0|0

The second parity row is calculated along the diagonals of slope —1, as follows:

VAR JIRCERVEN 1{0f0]|1]1
L JRCERVAR WA 0j1]0]1]1
SO M| A& 0(0]1]0]|1
QI d|A|&| | «2nd parity check row— |11]0 (1|1
cMA S OO +imaginary O-row— 0[0(0]01|0

Then the complete codeword is

110(0(1]1
0O(1j0]1(1
0j0]1]0]|1
010(1]1|0
1]1]0(1]1

From the construction of the X-Code, it is easy to see that the two parity rows are ob-

tained independently; more specifically, each information symbol affects exactly one parity

16

symbol in each parity row. All parity symbols depend only on information symbols, not
on each other. So, updating one information symbol results in updating only two parity
symbols. Thus the X-Code has the optimal encoding (or update) property, i.e., its update
complexity of 2 matches the lower bound for any code of distance 3.

It is also easy to see that the X-Code is a cyclic code in terms of columns, i.e., cyclically
shifting columns of a codeword of the X-Code results in another codeword of the X-Code.

In addition, notice that each column has two parity symbols, each of which is the
checksum of n — 2 information symbols. Thus computing parity symbols at each column
needs 2(n — 3) group additions. This balanced computation property of the X-Code is very

useful in applications that require evenly distributed computations.

2.2.2 The MDS Property

In this section, we state and prove the MDS property of the X-Code.

Theorem 2.1 (MDS Property)

The X-Code has column distance of 3, i.e., it is MDS, if and only if n is a prime number.

Proof: Let us start with the sufficient condition, namely, prove that for any prime number
n, the X-Code is MDS.

First observe that the X-Code is a linear code, thus proving that the code has distance
of 3 is equivalent to proving that the code has minimum column weight wp, of 3, i.e., a
valid codeword of the X-Code has at least 3 nonzero columns. (A column is called a nonzero
column if at least one symbol in the column is nonzero.) We will prove this by contradiction.

From the construction of the X-Code, checksums are obtained along diagonals of slope
1 or slope —1, so it is impossible to have only one nonzero column, thus w,;, > 1.

Now suppose wp,in = 2. Without loss of generality, we can assume the nonzero columns
are the Oth and kth columns where 1 < k < n — 1, because of the column cyclic property of
the X-Code. Denote the ith symbol of the Oth and kth columns a; and b; respectively.

Observe that any one diagonal of slope 1 or —1 only traverses n— 1 columns, then among
the diagonals of slope 1, the diagonal crossing a,, 1 does not cross any symbol of the kth
column, and the diagonal crossing by_; does not cross any symbol of the Oth column, so
an-1- = 0 and b1 = 0. Because the diagonals of slope —1 have the same property, we

can also get a1 =0and b, | =0 (or b1 =0ifk=1).

17
Starting from a1 = 0, we get bog,_1 = 0, since they are in the same diagonal of slope
1; then we get a3r_1 = 0, since it is on the same diagonal of slope 1 with by 1, - -+, and so

on, we have

Ak—1 = 31 = Apk—1 = *** = A(p_g)p—1 = 0

and

bok—1 = bak—1 = beg—1 =+ = bp_1)p—1 =0

where all indices are mod n.

Similarly, starting from a,_1_; = 0, we have

Ap—1—k = Gp—1-3k =" =0y 1 (n-2)k = 0

and

bn—1-2k =bn—1-apk =---=bp 1 (n 1)k =0

again, all indices above are mod n.

We can describe the above 4 sets of entries in the array as follows. Let Ay = {((2m +
Dk—1), :m=0,1,---, 23} and A; = {{n — 2+ 1)k —1), : 1 =0,1,---, 253} let By =
{@mk—1), :m=1,2,---, 21} and By = {(n —2lk—1),, : | =1,2,---, 251} notice that
none of the sets includes n — 1, since n is prime. This can also be seen from the construction
of the X-Code, since the (n — 1)th row is just an imaginary all-0 row and it does not need

to be considered. An illustration of the above sets for n = 5 and k = 2 is as follows:

Ao B,
Ag By
Ay By
Ay By

Since n is prime, for any 1 <k <n—1, ged(n, k) = 1, [|Ag|| = ||A1]| = %5, and if there

were m and [such that

2m+1)k—1=n—(2l+ 1)k —1modn (2.2)

18
then,
2(m+1+ 1)k =0modn (2.3)

but 1 <m+Il+1<n—-2gedim+1+1,n)=1,ged(2k,n) =1, so it is impossible to have
such a pair of m and [, i.e., ||Ag N A1]| = 0. Notice that n — 1 = (2252 + 1)k — 1 mod n, so

AOUA1:{0,1,"',7’L—2}

Similarly,

BOUBlz{O,l,-'-,’rL—Q}

So all the first n — 1 symbols in the Oth and the kth columns are 0’s, obviously the last
symbols in the Oth and the kth columns should be also 0’s. This is a contradiction. Thus,
Wmin > 3, but it is easy to see there is a codeword of column weight 3, so wy,;, = 3. This
concludes the proof for the sufficient condition.

On the other hand, from the equation Eq. (2.3), if n were not a prime number, then
it could be factored into two factors n; and ng. Thus we got a solution (k,l,m) for the
equation Eq. (2.3) or Eq. (2.2), where k = ny, and m+1+1 =mng, and 2 < k <n — 1.
This means there is a codeword of weight 2, or equivalently the distance of the code is no
greater than 2. This contradicts the fact that the code is of distance 3. So n being a prime

number is also a necessary condition to the MDS property of the X-Code. O

Remarks:

1. For the sufficient condition, we can always find a diagonal of one slope which traverses
only one of the two columns. Thus the traversed symbol must be 0. Starting from
this 0-symbol and using the diagonal of the other slope crossing this symbol, we can
determine that the symbol crossed by the diagonal in the other column must be also
0. So this saw-like recursive procedure can proceed until it hits a parity symbol at one
of the two columns, since a parity symbol can only lie in one diagonal. We call this
saw-like recursion a decoding chain. Since there are four parity symbols in the two
columns, there are at most four decoding chains. (A simple calculation can show that
there are two decoding chains when k£ = 1 and four decoding chains otherwise.) If n

is prime, the procedure of getting the decoding chains will stop with all the symbols

19

in the two columns being 0s. Since this procedure is deterministic once the positions

of the two columns are given, it also provides an efficient erasure decoding algorithm.

2. In the code construction above, we use diagonals of slope 1 and —1. This choice of

slopes is not unique. In fact, fors=1,---, "T_l, codes constructed by the pair of slopes
(s,—s) are MDS if and only if n is prime. The proof is similar to the case where the
slope pair is (1,—1). It seems that other slope pairs do not provide advantages over

(1,—1), so in this paper we will focus on the X-Codes generated by the slope (1,—1).

2.3 Efficient Decoding Algorithms

In this section, we present decoding algorithms for correcting two erasures or one error of
the X-Code. Neither the encoding algorithm of the code or decoding algorithms require
any finite field operations. Instead, the only operations needed are additions and cyclic
shifts, both of which can be implemented very efficiently in software and/or hardware. It
is clear how to correct one erasure, since the erasure can be easily recovered along one of

the diagonals. So we will proceed with correcting two erasures.

2.3.1 Correcting Two Erasures

First notice that in an array of size n x n, if two columns are erasures, then the key unknown
symbols of the two erased columns are the information symbols. So the number of unknown
symbols is 2(n — 2). On the other hand, in the remaining array, there are 2(n — 2) parity
symbols that include all the 2(n — 2) unknown symbols. Hence, correcting the two erasures
is only a problem of solving for 2(n — 2) unknowns from 2(n — 2) linear equations. Since the
X-Code is of distance 3, it can correct two erasures; thus the 2(n — 2) linear equations must
be linearly independent, i.e., the linear equations are solvable. Now notice that a parity
symbol can not be affected by more than one information symbol in the same column, so
each equation has at most two unknown symbols, with some having only one unknown
symbol. This drastically reduces the complexity of solving the equations.

Suppose the erasure columns are the ith and jth (0 <7 < 7 <n — 1) columns. Since
each diagonal traverses only n — 1 columns, if a diagonal crosses a column at the last row,
no symbols of that column are included in this diagonal. This determines the position of

the parity symbol that includes only one symbol from the two erasure columns, thus this

20
symbol can be immediately recovered from a simple checksum along this diagonal. From
this symbol, we can get a decoding chain as discussed in Remark 1 in Section 2.2. Using
this decoding chain and the other one (if j —i = 1) or three (if j —¢ > 1), all unknown
symbols can be recovered.

Now let us calculate the starting parity symbols of the decoding chains. First consider
the diagonals of slope 1. Suppose the zth symbol of the ith column is the only unknown
symbol in a diagonal. This diagonal hits the jth column at the (n — 1)th row, and hits the
first parity row at the yth column, i.e., the three points (x,7),(n — 1,7) and (n — 2,y) are

on the same diagonal of slope 1, thus the following equations hold:

(n—1)—xz=j—imodn

m—1)—(n—2)=j—ymodn

Sincel <j—i<n-—1,and 0 <j—1<n—2, the solutions for z and y are

z=(n-1)—-(G-1)ln=m—-1)—(—1)

y=0—-1n=7-1

So from the parity symbol Cj,_2 1, we can immediately get the symbol C,_1)_(;_); in
the sth column. Similarly, the symbol C;_;_y ; in the jth column can be solved directly
from the parity symbol C}, 5 ; 1y, -

Symmetrically with the diagonals of slope —1, the symbol C;_;_; ; in the ith column
can be solved from the parity symbol Cy,_y (j11),, and the symbol C(, _1y_(;_;) ; in the jth
column can be solved from the parity symbol Cp,_1 ;1.

A formal algorithm for correcting the two erasures ith and jth (0 < i < j < n—1)

columns of the X-Code can be described as follows:

Algorithm 2.1 (Correcting Two Erasures)

Use each of the four parity symbols Cn_2j-1, Cp_3 (i—1),» Cne1,(j+1y, 9nd Cla_1)—(j—i),;
as the starting point of a decoding chain; in each decoding chain use the saw-like recursion
method to recover unknown symbols until o parity symbol at one of the two erasure columns
s hit, then start a new decoding chain, as discussed in Section 2.2.

A pseudo-code description of the algorithm is as follows:

1. Init_Slope Set = { 1,1, -1, —1 }

21
Init_Par_Col_Set = {j —1,{(i — 1), (§ + 1)p,i + 1};
Init_Sym_Col_Set = {i, j,i,j};
Init_-Sym_Row_-Set ={(n—1)— (j —14),(j —9) - L, (-4 —1,(n—=1)—(j —4)};
1= —1;
1+
If i == 4 Then
Compute Pyli], Py[j], P1[i], P1[j] according to the encoding rule Eq. (2.1);
Stop;
Else
Slope = Init_Slope_Set[i];
Par_Col = Init_Par_Col_Set[i];
Sym_Col = Init_Sym_Col_Set[il;
Sym_Row = Init_Sym_Row_Set[i];
End If
. If Par_Col ==1i Or Par_Col == j Then
Goto 2;
Else
If Slope == 1 Then
CSym_Row,5ym_col = Po[Par_Col] + Zz;g,k;,gsym_mw Chk,(Par _Col+k+2)n}
Else
CSym_Row,5ym_col = Pi[Par_Col] + ZZ;S’,k?gsym_Row Chk (Par _Col—k—2)n}
End If
End If
. Slope = —Slope;
Par_Col = (Sym_Col — Slope * (Sym_Row + 2)),;
If Sym_Col ==+ Then

Sym_Col = j;
Else

Sym_Col = i;
End If

Sym_Row = (n — 2 — Slope x (Par_Col — Sym_Col))p;
Goto 3;

22

|

Step 1 of the algorithm computes those positions of the four parity symbols that con-
tain only one unknown symbol. Steps 2 through 4 include the saw-like recursive procedure
described above. Step 3 is just the checksum calculation along a diagonal of slope Slope
crossing the parity symbol Py[Par_Col] (or Pi[Par_Col]). This recovers the unknown sym-
bol Csym_Row,sym_cor if the parity symbol is not in one of the erasure columns; otherwise,
it just restarts with another parity symbol obtained in Step 1. Step 4 uses the symbol that
was just found to calculate the position of the next unknown symbol.

The correctness of the algorithm can be deduced from the proof of Theorem 1 and
Remark 1 in Section 2.2. The complexity of the algorithm is easy to analyze. Each iteration
solves one unknown symbol and requires (n—3) additions. So to correct two erasure columns,
the decoding algorithm needs 2n(n — 3) additions, just the same as that of the encoding
algorithm.

The following is a simple example to show how the decoding algorithm works. To be

more general, we use symbols rather than numerical values.

Example 2.2 Correcting Two Erasures of a 5 X 5 X-Code

Without loss of generality, we assume the last (i.e., the 4th) column is one of the erasures,
and because of the symmetry of the code, we only need to examine the cases where the
other erasure is the 3rd or the 2nd column.

Case 1. i = 8,5 =/

Then the remaining array is:

ag ay as ?(as3) | ?(aq)
bo by by ?(b3) | ?(bg)
o c1 o ?(e3) | 7(cq)
do=as+bs+cg|di=a3+by+cy|do=as+by+cy|7(ds) | 7(dy)
ep=ag+betci|er=ar+bs+ca|ea=ap+bs+cs| ?(es) | ?(es)

After omitting the obvious checksum calculations, the decoding chain for the erasures would

be as follows:
a4(d2) — b3(61) — C4(d0)

a3(60) — b4(d1) — 03(62)

23
Each chain above represents a recursion starting from a parity symbol, and in each term
of the chain, z(y) means that the symbol z can be recovered from the parity symbol y.
Obviously, ds, d4, e3 and e4 can be easily computed after all others are known.
Case 2. i = 2,5 = /4

Then the remaining array is follows:

ap ay ?(as as ay
bo b1 7(bo bs 7(by
Cp C1 ? ?

do=as+bs+cs|di=a3+bis+cy|da)|dzs=ap+bi+c2| ?(ds

63:a1+b0+64 ?64

(a2) (a4)
(b2) (b4)
(c2) c3 (ca)
(d2) (d4)
(e2) (€4)

60:a3+b2+61 61:a4+b3+62 ?62

Now the decoding chain becomes:

e2(d3) — aa(er)
ba(ds)

ba(eo)
(e3)

€1
cyles) — ag(do)

Again, do, d4, e5 and e4 are easy to get after all other symbols are obtained.

|

2.3.2 Correcting One Error

To correct one error, the key is to locate the error position. This can be done by computing
two syndrome vectors from the two parity rows. Since the error is a column error, it is
natural to compute the syndromes with respect to columns rather than with respect to
rows as in the encoding procedure. Once the error location is found, the value of the error
can be easily computed along the diagonals of either slope.

Suppose R = [’f‘i,j]ogi,jgn_l is the error-corrupted array. Construct two arrays U =

[t jlo<ij<n—1 and V' = [v; jlo<ij<n—1 from R, where for 0 < j <n —1,

uij = vij ="rij, 0<1<n-—3 (2.4)

Un—2,j = Tn—2,j>Vn—2,j = Tn—1,j (2.5)

Un—1,j = Vn-1,j =0

24

(2.6)

i.e., U and V are constructed by copying the n — 1 information rows and parity rows

accordingly from R, then adding an imaginary O-row at the last row. From U and V,

compute two syndrome vectors Sy and S as follows:

all indices above are mod n.

n—1
Soli] =) wiskp
=0

n—1
Sili] = vickk
k=0

It is easy to see that the two syndrome vectors are the column checksums along the

diagonals of slope 1 and —1 respectively, and that they should be all-zero vectors if there is

no error in the array R. If there is one error column in the array R, then the two syndromes

are just cyclicly-shifted versions of the error vector with respect to the position of the

error column. Thus the location of the error column can be determined simply by a cyclic

equivalence test, which tests if one vector is equal to some cyclic shift of another vector.

The following example shows how a single error column is reflected in two syndromes for

an X-Code of size 5.

Example 2.3 Syndrome Computation for a 5 x 5 X-Code

Suppose the 3rd column is an error column, then the two syndrome vectors (Sy and Sy

respectively) and their corresponding error arrays are as in Fig. 2.1.

So S1
0100 €0 0 €3 0{0]0 €0 0 €9
0/0]0|e |0} O 0[{0{0]|er |0 es
0/0[0|e2| 0| eo 0/0(0]|e2|0] O
0]0]0|es |0 eg 0/0[0]|es|0] eg
0]10]010 |0 ez 0{0{0|0[0]eg

Figure 2.1: Syndrome computation for a 5 x 5 X-Code

The two syndromes are actually just the original error column vector (cyclic-)shifted in

two different directions for the same number of positions. When they are shifted back, they

25

differ in at most one position; the number of the positions shifted gives the location of the

error column. O

The above example almost gives the decoding algorithm for one error correction. A

formal algorithm for correcting one error is

Algorithm 2.2 Correcting One Error
Compute two syndrome vectors Sy and S1 from the possibly-error-corrupted array R
according to the equations Eq. (2.4) through Eq. (2.8). If the two syndromes are both all-
zero vectors, then there is no error in the array R; otherwise if there exists such an i that
after cyclically down-shifting Soby i positions and cyclically up-shifting S1 by i positions,
the first n — 2 components of the two shifted vectors are equal and the last components of
both are zeros then the ith column of the array R is an error column. If no such an i exists,
then there is more than one error column in the array R.
A pseudo-code description of the algorithm is as follows:
1. Compute two syndrome vectors Sy and S from the possibly-error-corrupted array R
according to the equations Eq. (2.4) through Eq. (2.8);
2.1=0;
3. If Sp[0..n — 3] == S1[0..n — 3] And Sp[n — 1] == Si[n — 1] == 0 Then
The error position is the ¢th column, and the error value is
B = (So[0], So[1], -+, So[n — 3], So[n — 2], S1[n — 1]);
Else If : == n Then
Declare decoding failure : more than one error occurred;
Else
Sp=S51,8 = st
i+ +;
Goto 3;
End If

|

In the above algorithm, for a vector V', denote its transpose V''; let

V= (V0L V1], Vn—1))7,

26

then V() (or V(=Y) is the down- (or up-) shifted vector from V/, i.e.,

v = (V[n -1, V[0],- -, Vn —2))7,

and

also VO = (VE=D)(1D) y(=i) = (y=G=1)(=D),

Before proving the correctness of the algorithm, we give a numerical example.

Example 2.4 Correcting One Error of a 5 x 5 X-Code

Suppose the possibly-error-corrupted array R is :

then U and V', the two constructed arrays from R, and their corresponding syndromes Sy

and S; are shown in Fig. 2.2.

U So |4 S1
0j0j0|1(01 0/0]0]1]0|0
0]0]0]0(0|O0O 0/0]0]0]0|0
010]0|0(01 0/0]0]0]0|0
0]0]0]1(0|O0 0]0]0]0 101
0/0]0]0(0|O0 0/0]0]0]0|0

Figure 2.2: Correcting one error of a 5 x 5 X-Code

Repeat Step 3 of the algorithm until 4 = 3, then we get S = (1,0,0,1,0)" and S; =
(1,0,0,0,0)T, so S5[0..2] equals to S1[0..2], and Sp[4] = S1[4] = 0. Thus we declare that
the error occurs at the 3rd column and that the error value is £ = (1,0,0,1,0), i.e., the

uncorrupted array should be an all-zero array. O

Now we give a correctness proof of the algorithm.

27

Proof: If one error occurs at the ith column, and its value is e = (e[0], ¢e[1],-- -, e[n —

2],e[n —1])7, then the two syndromes (Eq. (2.4) through Eq. (2.7)) are:

So = ((e[0],--,e[n —3],e[n—2],0)7) (2.9)
S1 = ((e[0],---,e[n—3],e[n—1],0)7)® (2.10)
thus
S = (e[0],-- -, e[n — 3], e[n — 2],0)" (2.11)
S = (e[0], -, e[n — 3], e[n — 1],0)T (2.12)

Since the X-Code is an MDS code of column distance 3, it can correct one error, which
means the location of a single column error can always be found unambiguously. A unique
1 can be found such that the two shifted syndrome vectors may differ only in the second
last component, and their last components are both 0 (Eq. (2.11) and Eq. (2.12)). Once
the error location 4 is found, the error value is obtained directly from Eq. (2.11) and Eq.
(2.12). O

The above algorithm needs 2n(n — 2) additions to compute the two syndrome vectors,

and on average n cyclic equivalence test operations to get the error location.

2.4 Summary

The X-Code, a new class of n x n MDS array codes of distance 3, is presented in this
chapter. The significant difference of these codes from all other known array codes is that
the parity (redundancy) symbols are placed in two independent rows rather than columns.
Additionally, the X-Code has a very simple geometrical structure. Encoding and decoding
of the code may be accomplished using only additions (XORs). We have proven that the
X-Code is MDS if and only if n is prime. For all prime numbers n, the X-Code achieves the
lower bound of the update complexity. It also has balanced computation at each column,
which might be very helpful in storage systems and distributed computing systems. Finally
decoding algorithms for correcting two erasures or one error are given.

One future research problem is to find new MDS codes with optimal update complexity

1) for each positive integer length rather than only for prime lengths, and 2) for distance

28
greater than 3. Our preliminary research shows that only for a few lengths n can the X-
Code be easily extended to have larger distance by simply using more parity rows and taking
more slopes; in general this is not the case. Extended diagonals, i.e., a set of symbols not
necessarily on a straight line of some fixed slope, might be helpful in extending the X-Code

to both more general lengths and distances.

