Highly Available Distributed Storage Systems

Thesis by
Lihao Xu

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1999
(Submitted Nov. 30, 1998)

ii

© 1999
Lihao Xu
All Rights Reserved

iii

To Lan

for her love

v

Acknowledgements

I am deeply grateful to my advisor, Prof. Jehoshua Bruck, for his continuous support,
guidance and encouragement during my study at Caltech. Working with him has always
been fun, not only because of his high creativity, broad knowledge and insightful vision,
but more importantly because of his amiable personality. Discussions with him are not just
enjoyable, they are always a good source of inspiration. I hope I will continue to have the
privilege and pleasure of working with him in the rest of my career.

I am also indebted to my master’s thesis advisor, Dr. Juing Fang, for his guidance
during my master’s degree study at Shanghai Jiao Tong University, China, and for his
continuing support and encouragement during my stay at Caltech. I should also express
my sincere thanks to Dr. Mario Blaum of the IBM Almaden Research Center. He gave me
many valuable comments when I was working on array codes for this thesis. It is really fun
to have discussions with him.

[also thank my officemates at the Parallel and Distributed Computing Lab at Caltech for
making the lab a real Paradise, an excellent environment to work and to live. In particular,
many thanks go to Michael Gibson. He carefully proofread this thesis, which improved its
presentation quality significantly.

I would also like to thank Profs. K. Mani Chandy, Robert J. McEliece, P. P. Vaidyanathan,
and Henk C.A. van Tilborg for serving on my thesis defense committee.

This thesis work was supported in part by the NSF Young Investigator Award CCR-
9457811, by the Sloan Research Fellowship, and by DARPA through an agreement with
NASA/OSAT.

I should express my deep gratitude to my parents. They have always supported me
with love, care and pride. I also thank my parents-in-law for their care, particularly for
their sacrifice to allow their only daughter leaving them and accompanying me during my
study at Caltech. Finally, my heartfelt gratitude goes to my dear wife, Lan. Her endless
love and care are the driving forces of my study, research, and life. Without her sacrifice

and patience, this work would not exist. I dedicate this thesis to her.

Abstract

As the need for data explodes with the passage of time and the increase of computing
power, data storage becomes more and more important. Distributed storage, as distributed
computing before it, is coming of age as a good solution to make systems highly available,
i.e., highly scalable, reliable and efficient. The focus of this thesis is how to achieve data
reliability and efficiency in distributed storage systems.

This thesis consists of two parts. The first part deals with the reliability of distributed
storage systems. Reliability is achieved by computationally efficient MDS array codes that
eliminate single points of failure in the systems, thus providing more reliability and flexibility
to the systems. Such codes can be used as general MDS error-correcting codes. They
are particularly suitable for use in distributed storage systems. The second part deals
with the efficiency of distributed storage systems. Methods are proposed to improve the
performance of data server and storage systems significantly through the proper use of data
redundancy. These methods are based on error-correcting codes, particularly the MDS
array codes developed in the first part.

Two new classes of MDS array codes are presented: the X-Code and the B-Code. The
encoding operations of both codes are optimal, i.e., their update complexity achieves the
theoretical lower bound. They distribute parity bits over all columns rather than concen-
trating them on some parity columns. As with other array codes, the error model for both
codes is that errors or erasures are columns of the array, i.e., if at least one bit of a column
is an error or erasure, then the whole column is considered to be an error or erasure. Both
codes are of distance 3, i.e., they can either: correct two erasures, detect two errors or
correct one error. In addition to encoding algorithms, efficient decoding algorithms are pro-
posed, both for erasure-correcting and for error-correcting. In fact, the erasure-correcting
algorithms are also optimal in terms of computation complexity.

The X-Code has a very simple geometrical structure: the parity bits are constructed
along two groups of parallel parity lines of slopes 1 and —1. This is the origin of the name X-
Code. This simple geometrical structure allows simple erasure-decoding and error-decoding

algorithms, using only XORs and vector cyclic-shift operations.

vi

The significance of the B-Code not only includes all its optimality properties: MDS,
optimal encoding and optimal decoding, but also its relation with a 3-decade old graph
theory problem. It is proven in this thesis that constructing a B-Code of odd length is
exactly equivalent to constructing a perfect one-factorization (or P1F) of a complete graph.
Constructing a P1F of an arbitrary complete graph has remained a conjecture since the
early 1960’s. Though the P1F conjecture remains unsolved, the B-Code as the first real
application of the P1F problem will hopefully spur more research on it. It is also conjectured
in this thesis that constructing a B-Code of any length, even or odd, is equivalent to
constructing a P1F of a complete graph. An efficient error-correcting algorithm for the
B-Code is also presented, which is based on the relations between the B-Code and its dual.
The algorithm might give a hint of how to develop efficient decoding algorithms for other
codes.

While it is intuitive that redundancy can bring reliability to a system, this thesis gives
another direction: using redundancy actively to improve performance (efficiency) of dis-
tributed data systems. The results in this direction are both theoretical and experimental.
System models are extracted from experiments in real practical systems; analytical results
are derived using these and are then fed back to experiments for verification.

In this thesis, a novel deterministic voting scheme that uses error-correcting codes is
proposed. The voting scheme generalizes all known simple deterministic voting algorithms.
It can be tuned to various application environments with different error rates to drastically
reduce average communication complezity, i.e., the amount of information that must be
transmitted in order to get correct voting results.

Two problems are identified to improve the performance of general data server systems,
namely the data distribution problem and the data acquisition problem. Solutions to these
are proposed, as are general analytical results on performance of (n, k) systems. A simple
service time model of a practical disk-based distributed server system is given. This model,
which is based on experimental results, is a starting point for data distribution and data
acquisition schemes. These results, both experimental and analytical, can be further used
for more sophisticated scheduling schemes to optimize or improve the performance of data
server systems that serve multiple clients simultaneously.

Finally, some research problems related to storage systems are proposed as future di-

rections.

vii

Contents

Acknowledgements

Abstract

1 Introduction

1.1 MDS Array Codes
1.2 Efficiency through Redundancy
1.3 Main Contributions of the Thesis
1.4 Organization e e

X-Code: MDS Array Codes with Optimal Encoding

2.1 Introduction. e
2.2 X-Code Description e
2.2.1 Encoding Procedure oo
2.2.2 The MDS Property
2.3 Efficient Decoding Algorithms
2.3.1 Correcting Two Erasures
2.3.2 Correcting One Exror
2.4 SUMMATY . . . o o e e e e e e e e e e e

Low Density MDS Codes and Factors of Complete Graphs

3.1 Introduction e
3.2 B-CodeanditsDual
3.2.1 Structure of the B-Code
3.2.2 Dual Array Codes
3.2.3 A New Graph Description of the B-Code
3.3 B-Codeand P1F e
3.3.1 Perfect One-Factorization of Complete Graphs

3.3.2 Equivalence between the B-Code and P1F

iv

viii

3.3.3 Erasure Decoding of the B-Code
3.3.4 Error Decoding of the B-Code
3.4 Further Equivalence Discussion
3.5 Summary ... e e e

Efficient Deterministic Voting in Distributed Systems

4.1 Introduction.
4.2 The Problem Definition L.
4.2.1 NMR System Model L
4.2.2 Communication Complexity
4.2.3 The Voting Problem
4.3 The Solution Based on Error-Correcting Codes
4.3.1 A Voting Algorithm with ECC
4.3.2 Correctness of the Algorithm
4.3.3 Proper Code Design
4.4 Communication Complexity Analysis
441 Main Results o
4.4.2 More Observations
4.5 Experimental Results.o o
4.6 SumMmary e e e e e e e

Improving the Performance of Data Servers

5.1 Introduction.
5.2 Preliminary Analysis
5.2.1 System Model
5.2.2 AnalysisResults
5.2.3 Properties of Mean Service Time
5.3 Server Performance Model o oo
5.3.1 Abstraction from Experiments
5.3.2 Verification with T(n,1)
5.4 Design An Efficient System o
5.4.1 Data Distribution Scheme oo

5.4.2 Data Acquisition Scheme

ix

5.0 Summary ... e e e e 85

6 Conclusions and Future Directions 86
6.1 Conclusions 86
6.2 Future Directions L 87
6.2.1 Reed-Solomon Codes as Array Codes 88

6.2.2 Strong MDS Codes 91

Bibliography 93

List of Figures

2.1
2.2

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10

4.1
4.2
4.3
4.4
4.5

Syndrome computation for a 5 x 5 X-Code

Correcting one error of a5 x5 X-Code

Bg, the dual B-Code of length 6, is a 3 x 6 MDS array code or a (6,2,5)
MDS code over G(23). The a;’s are the information bits. (a) the graph
representation of B, (b) a decoding path for the erasure of columns 3, 4, 5
and 6 (i.e., only columns 1 and 2 are available).
Structures of (a) B, and (b) Bopi1. « v v v v v o v e
Structures of (a) Bop and (b) Bopgl « « v v v oo e
A codeword of 2 x 4 code in (a) array form and (b) vector form
(a) graph and (b) array representations of By
(a) graph and (b) array representations of Bs

(a)(b)(c) are 3 one-factors, that together form a perfect one-factorization of

Constructing (a) Bs from (b) Ps oo i
Erasure decoding of Bs: recovering from its 1st and (a) 2nd (b) 3rd and (c)
5th columns. The decoding chains for each case are also listed. 1 through 4
are the information bits in the corresponding columns.
Erasure decoding of Bs: recovering its 1st and (a) 2nd (b) 3rd and (c) 5th
columns. The decoding chains for each case are also listed. 1 through 6 are
the information bits in the corresponding columns, except that 6 is also in

the 5th column. e

Flow chart of Algorithm 4.8
Relations between o and (¢,p, N)
Average reduction factorso
Experimental voting performance of 5-node NMR system

Detailed communication time pattern of voting

29
31
31
32
35
36

36
37

40

5.1
5.2
5.3

5.4

9.5

5.6
0.7

xi
An (n,k) server system
Empirical pdfs of service time for data of different sizes
Probability distributions of data service time of (a) single packet, (b) the
whole data, (¢) the approximation with T'r[a,b]
pdfs of T'(n,1): (a) analytical result, where the pdf of T is Tr[l,2], and
experimental service time for data of size 3200 Kbytes, where (b) no other
loads on the servers, and (c) other random loads on the servers
E[T(n,k)] vs. k for different n, wherea =landb=5..
Three read schemes using the B-Code
PDFs of different data read scheme, where a = 1, b = 10; 1, 2 and 3 represent
scheme (1), (2) and (3) respectively.

77

78
81
82

xii

List of Tables

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

5.1

6.1

6.2

6.3

Encoding of a (7,5,3) EVENODD code, where s = a5 + by + c3 + do

Numerical example of a (7,5,3) EVENODD code
Encoding of a (7,5,3) X-Code
Numerical example of a (7,5,3) X-Code
Encoding of a (7,5,3) B-Code,
Numerical example of a (7,5,3) B-Code
X-Code, B-Code vs. Reed-Solomon and EVENODD.
Encoding of a (6,4,3) B-Code,

Mean service time of different data read schemes, where ¢ = 1, and b = 10

An array representation of a (7,2,6) Reed-Solomon code. Total number of
additions: 39.
A simplified array representation of a (7,2,6) Reed-Solomon code. Total
number of additions: 27.o
A further simplified array representation of a (7,2,6) Reed-Solomon code,
where s1 = a1 + b3, so = as + b1, s3 = a3+ by, s4 = a3+ by, s5 = as + b3, and

s¢ = a1 + by. Total number of additions: 17.

O o Ot Ot Ot s W W

83

90

90

Chapter 1 Introduction

This is a time of information. This is a world of information. Information is generated,
processed, transmitted and stored in various forms: text, voice, image, video and multimedia
types. In this thesis, all these forms will be treated as general data. As the need for data
increases exponentially with the passage of time and the increase of computing power,
data storage becomes more and more important. From scientific computing to business
transactions, data is the most precious part. How to store the data reliably and efficiently
is the essential issue, that is the focus of this thesis.

As with distributed computing, distributed storage is coming of age as a good solution
to achieve scalability, fault tolerance and efficiency. Historically, since the speed of storage
devices, such as tapes and disks, is much slower than the speed of computing devices,
e.g., CPUs, I/0 is a bottleneck in computing systems. To improve the data throughput
of storage devices, RAID (Redundant Array of Independent Disks) was proposed[22][25]
to store data over multiple storage devices in a distributed way, so that the total I/O
bandwidth is sum of the bandwidths of the individual storage devices. That was the start
of distributed (networked) storage. Since then, storage technologies have been advancing
rapidly; the capacity of magnetic devices continuously increases and access speed constantly
improves. But as with CPUs, there are physical limits to the density of disks, seek time and
rotational speed of the disk drives. These limits mean that the capacity and access speed
of a single storage device can not be improved infinitely. The need for storage capacity and
access speed can be met by improving storage systems at the architectural level, i.e., using
multiple distributed storage devices connected via a fast network, such as the Fiber Channel,
which reduces data latency incurred over the network to much less than the latency time
of a single storage device. A distributed structure not only can increase the capacity and
speed of storage systems, but also can bring fault tolerance and scalability.

As with computing, fault tolerance (or reliability) is increasingly important in storage
systems. Some critical data should be available and some services should be provided even
when faults occur in storage units. Besides, a storage system that allows some faulty units

and can be replaced on-the-fly would have great value for business transactions, such as air-

2

port management, banking systems, internet portals and internet service provider systems.
Naturally, reliability of storage systems can be achieved more easily using distributed struc-
ture. Scalability is another natural feature of distributed systems: addition or replacement
of components is much more flexible in a distributed system than in a central system. Thus
distributed storage systems can adapt better to dynamic and growing data demands.

In this thesis, the reliability, efficiency and scalability of distributed storage systems are
all considered aspects of availability. A highly available storage system has high reliability
(or can tolerate more faults), high efficiency (or performance) and scalability. Achieving

high availability in distributed storage systems is the main topic of this thesis.

1.1 MDS Array Codes

Reliability of storage systems is often achieved by storing redundant data in the systems
using error-control codes. Usually in storage systems, the failure of a single storage unit
can be detected by the storage controllers and then can be masked. Thus erasure-correcting
codes are often used, since the device failures can be marked as erasures. To make redundant
data most effective, i.e., to tolerate as many single storage unit failures as possible, the codes
should have the MDS (Mazimum Distance Separable) property. Additionally, the codes
should have simple encoding and decoding operations so that the computation overhead
can be reduced to a minimum. The well-known Reed-Solomon codes[19] are a class of
powerful MDS codes, but their encoding and decoding need rather complicated finite field
operations. It is useful and important to design codes that have both the MDS property and
simple encoding and decoding operations. MDS array codes are a class of error-correcting
codes with the both properties.

Array codes have been studied extensively [4][5][6][7][12][15]. A common property of
these codes is that the encoding and decoding procedures use only simple XOR (exclusive
OR) operations, which can be implemented easily in either hardware or software or both;
thus these codes are more efficient than Reed-Solomon codes in terms of computation com-
plexity. Array codes are defined over an Abelian group G(¢q) with the addition operation
+. For simplicity, we will assume that ¢ = 2, i.e., the code is binary and the addition is just
a simple bitwise XOR. In an array code, the information and parity bits are placed in an

array of size n x [. In a distributed storage system, the bits in a same column are stored in

3

a same disk. If a disk fails, then the corresponding column of the code is considered to be
an erasure. Thus the code can also be viewed as an (I, &, d) code over G(q"), where k is the
dimension of the code, defined as k = log,» N with N being the number of its codewords;
and d is the distance of the code, also defined over G(q"), i.e., the columns of the array. We
will use this (I, k£, d) notation in the following examples, where the G(¢") is omitted, when
it is clear from contexts.

Current RAID systems can tolerate at most one disk failure at a time, i.e., the cor-
responding codes are just one-parity codes of distance 2. In more and more applications,
fault-tolerance of only one single disk is not enough. A system that can tolerate more than
one failure at the same time would be more robust and flexible. For example, when one disk
fails, the system can still have some non-stop fault-tolerance capability while the bad disk
is being replaced by a good one. This level of fault tolerance requires codes with distance
more than 2. The recently designed EVENODD codes are a class of MDS array codes
with distance 3 [4][5]. The following example shows a (7,5,3) EVENODD code, which can

tolerate 2 simultaneous disk failures.

Example 1.1 A (7,5,3) EVENODD code
Table 1.1 shows an encoding rule of a (7,5,3) EVENODD code, and Table 1.2 is a

numerical example of Table 1.1.

a1 | ag |az |ag|as|ar+as+as+ag+as|s+a;+bs+cg+ds
b1 bg b3 b4 b5 b1+b2+b3+b4+b5 8+(12+b1+05+d4
cilealeg|eales| cir+ecotegtces+ces | s+ag+bs+ e +ds
di|doy|dg|dsy|ds|di+do+ds+ds+ds|s+as+bs+co+dp

Table 1.1: Encoding of a (7,5,3) EVENODD code, where s = a5 + by + ¢3 + do

Ol = O =
===
OO ==
— OO =
- olo|lo
= oo
[=IN Revl Nen]

Table 1.2: Numerical example of a (7,5,3) EVENODD code

4
As shown in the above example, EVENODD code is a (n,n — 2,3) MDS code. The

information bits are placed in the first n — 2 columns, and the parity bits are placed in
the last 2 columns. Notice that the parity columns can be computed independently. One
important parameter of array codes is the average number of parity bits affected by a change
of a single information bit; this parameter is called the update complezity in this thesis. The
update complexity is particularly crucial when the codes are used in storage applications
that update information frequently. It also measures the encoding complexity of the code.
The lower this parameter is, the simpler the encoding operations are. If a code is described
by a parity check matriz, then this parameter is the average row density — the number of
nonzero entries in a row — of the parity check matrix. Research has been done to reduce
this parameter or to make the density of parity check matrix of codes as low as possible
[13][28]. The update complexity of EVENODD codes approaches 2 as the length (number
of the columns) of the codes increases. But it was proven in [5] that for any linear array
code with separate information and parity columns, the update complexity is always strictly
larger than 2 (the obvious lower bound). Then a natural question is whether the update
complexity of 2 is achievable for general array codes. The answer is, fortunately, yes. The
following two examples show two classes of array codes whose update complexity achieves
the lower bound 2. The codes are called the X-code and the B-Code, and will be discussed
in detail later in Chapter 2 and Chapter 3.

Example 1.2 A (7,5,3) X-Code
Table 1.3 shows an encoding rule of a (7,5,3) X-Code, and Table 1.4 is a numerical

example of Table 1.3.

ay az as a4 as Qg arz
by ba bs by bs be br
C1 C2 C3 C4 Cs Cé Cr
di do d3 dy ds ds dr
€1 €2 €3 €4 €5 €6 er
a3 +bs+ces |ag+bs+cg|as+bg+er|ag+br+c |ar+b+cx|a+bs+ce3|as+bz+cy
+dg + e +d7 + e1 +di + e +ds + e3 +d3 + ey +d4 + e5 +ds + eg
ag+bs+cy | ar+bg+cs | ar+br+cg | as+by+cr|az+by+cy | ag+bs+co | as + by +c3
+d3 + e +dy + e3 +ds + ey +dg + e5 +d7 + eg +dy + ey +ds + e

Table 1.3: Encoding of a (7,5,3) X-Code

170(111{0]1(0
0/1(1{0(0]0|0
1{1]10(0(0|0|1
ojrjoj1rj1r|1j)o
1/0(0(170]1]0
0joj1{1rjoj1|1
1j1}1/0{0]1(0

Table 1.4: Numerical example of a (7,5,3) X-Code

As shown in the example, the X-Code is an MDS array code of size n x n, an (n,n—2, 3)

code.

Example 1.3 A (7,5,3) B-Code
Table 1.5 shows an encoding rule of a (7,5,3) B-Code, and Table 1.6 is a numerical
example of Table 1.5.

a1 a9 as a4 as Qg ay

bl b2 bg b4 b5 b6 b?
as+ag+ar|ag+ay;+b7|ay+ay+cer|ay+taz+ar|azt+as+br|ag+as+cr|cr
+bo + by +b3 + b5 +b4 + b +bs5 + by +bs + bo +b1 + b3

Table 1.5: Encoding of a (7,5,3) B-Code

1/0(1}170]1]0
0[{1]1|0|0(0}0

[oft]ofu]t]u[1]

Table 1.6: Numerical example of a (7,5,3) B-Code

The B-Code is an array code of size n x (2n + 1), an MDS (I, — 2,3) code. A common
structure of the X-Code and the B-Code is that parity bits are no longer placed in separate
columns but mixed in with information bits. This is the key to achieving the lower bound

of the update complexity. While the construction of the X-Code is fairly easy using a

6

geometrical representation — the two parity rows are constructed using two groups of
diagonals of slope 1 and —1 — the construction of the B-Code is not so obvious. Indeed the
construction of the B-Code given here comes from a 3-decade old graph theory problem,
the perfect one-factorizations of complete graphs [29]. Also, as shown in the two examples
above, the column size of a B-Code is only half of that of an X-Code with the same length.
In fact, the B-Code achieves the mazimum length possible for MDS codes with the optimal
update, thus the B-Code has optimal length, twice that of the X-Code with the same column
size. In addition, the parity bits are evenly distributed over all columns, and each parity bit
requires the same number of XOR operations. Consequently, the computational complexity
for computing parity bits is balanced, i.e., the X-Code and the B-Code feature balanced
computation as well. This property is quite useful in distributed storage systems, since
the computational loads are naturally distributed to all disks evenly, eliminating another
bottleneck. The properties of the X-Code and the B-Code are summarized in Table 1.7,
together with a comparison with Reed-Solomon and EVENODD codes.

Codes \ Properties | MDS | XOR | Optimal Update | Optimal Length | Balanced Computation
Reed Solomon Yes No No Yes No
EVENODD Yes Yes No No No
X-Code Yes Yes Yes No Yes
B-Code Yes Yes Yes Yes Yes

Table 1.7: X-Code, B-Code vs. Reed-Solomon and EVENODD.

1.2 Efficiency through Redundancy

While it is conventional wisdom that redundancy is necessary for fault tolerance, redundancy
is in general regarded as a passive cost (overhead) to achieve reliability. However, in this
thesis, it will be shown that in a distributed storage system, redundancy is an active part of
the system in the sense that proper data redundancy can help to improve the performance
(data throughput) of storage systems. Thus data redundancy will improve not only the
reliability of a system, but also the efficiency of a system. A similar idea was first shown
in [11], namely that redundant data can make packet routing more efficient by reducing
the mean and variance of the routing delay. Recently, more scalable and efficient reliable

multicast schemes have been proposed, based on data redundancy in the messages to be

7

multicast[14]. We will show here a more systematic way of using proper redundancy, based
on error-correcting codes (particularly MDS array codes), to improve the performance of
storage systems.

As an example, the efficiency of majority voting can be improved by introducing redun-
dancy to the data to be voted on. Distributed majority voting is a useful tool to maintain
data consistency in storage systems, including memory-based fast storage systems [17], in
addition to creation of fault-tolerant computing systems [38]. One important issue in voting
is to reduce the communication complexity, the total number of bits that are transmitted
via communication medium, thus to improve the efficiency of voting. A typical solution is
to vote on a signature or hash function of the data instead of on the data itself, since the
signature is a compressed form of the data that is much shorter than the data itself. But
this gives a probabilistic voting result, because there is a nonzero probability of different
data having the same signature. For many applications [38], deterministic voting schemes
are needed to provide accurate voting results. Now instead of naively sending the whole
data, error-correcting codes (particularly MDS array codes) can be used to significantly re-
duce the amount of data that needs to be sent in order to get a deterministic voting result.

The following example shows the role that codes can play.

Example 1.4 Voting using codes

A fault-tolerant system consists of 7 nodes, each of which generates 15 bits of data.
Before being written to memory (or other storage unit), the data needs to be voted on.
Suppose each node generates 10,01,11,10,00,10,001. Instead of sending all these 15 bits,
each node encodes these 15 bits into 21 bits, using the (7,5,3) B-Code, as in Table 1.6:
100,011,110,101,001,101,001. Then the ith (i = 1,---,7) node just broadcasts the 3 bits
in the ith column; after receiving the total 21-bits of coded data, each node can decode
the data to retrieve the 15-bits information data, then compare these decoded 15 bits of
information data to its own local 15-bits of data. The result of comparison can then be sent
to all other nodes using a 1-bit flag. In this example, every node broadcasts a positive flag
and agrees upon the decoded data, which is the correct voting result.

Now if the 7th node’s local data changes to 10,01,11,10,00,10,000 while all the other
nodes’ data does not change, the 7th node broadcasts its coded 3-bit part as 000 in-
stead of 001, so each node now has the 21 coded bits as 100,011,110,101,001,101,000.

8
But the (7,5,3) B-Code can correct 1 column error, so the decoded 15-bits of data is still
10,01,11,10,00,10,001. All the 6 nodes except the 7th node agree with this result. Now, the
voting result is still a correct one: 10,01,11,10,00,10,001.
So the correct deterministic voting result can be achieved with each node sending only

4 bits instead of 15 bits, and the communication complexity is reduced drastically. O

The above example is only a special case where data redundancy helps improve effi-
ciency. This is even true for more general distributed storage or data server systems. A
distributed data server system consists of multiple server nodes that are connected by reli-
able communication networks. Each server has its own local storage unit. The whole system
provides data to clients. So a data server system can be regarded as a superset of a storage
system. For a data server system, since the I/O speed of the local disks is much slower
than the CPU speed of the servers, the whole performance of the system is dominated by
the bottleneck of the disks. Distributing data over multiple servers can help to overcome
this bottleneck and improve the data throughput of the whole system, since the data can
be accessed in parallel from multiple servers at the same time.

The data a client needs is distributed over all the servers in such a way that the client
can reconstruct the complete requested data after it gets data from at least k of the all n
servers in the system. (Here we assume that the client can receive data from multiple servers
at the same time, by buffering incoming data at its communication devices.) Such a data
server system is called an (n, k) data system. The performance of a data server system can
be further improved by implementing it with an (n, k) rather than a naive (n,n) system,
which, of course, is only a special case of a general (n,k) system. Again, implementation
of (n, k) systems can be achieved using (n, k) error-correcting codes, especially (n, k) MDS

array codes. Let’s demonstrate a few examples of such implementations.

Example 1.5 Performance improvement using an (n,k) system

Suppose n = 6 and the total amount of the data that a client requests is 12 Kbytes.
Then in a (6, k) system, the data stored on each server is % Kbytes using MDS array codes,
where k£ can range from 1 to 6. The delivery time model is as follows: the time required for
each server to deliver m Kbytes of data to the client is b + 0.8 msecs, where for simplicity,
b is a random variable uniformly distributed over [0.3,0.5] msecs/Kbyte. The following

examples show the performance for different k.

9

For k = 6, each server stores 2 Kbytes of data, and there is no redundant data in
the whole system. Suppose the delivery time of the 2 Kbytes of data from each server is
1.50,1.45,1.65,1.75,1.55 and 1.70 msecs respectively, then the client has to wait for 1.75
msecs until it can obtain the whole 12 Kbytes of data it requested.

Now let £ = 5, the 12 Kbytes of data is evenly distributed over 5 servers, and the
remaining server stores the parity of the data stored on the first 5 servers. In this case,
each server has 2.4 Kbytes of data, and the total amount of redundant data in the system
is 2.4 Kbytes. Now suppose the delivery time of the 2.4 Kbytes of data from each server
is 1.55,1.65,1.60,1.72,1.70 and 1.90 msecs respectively. Since now it can retrieve the 12
Kbytes of data from any 5 servers, the client only needs to wait for 1.72 msecs, which is

shorter than the £k = 6 case. O

This shows that data redundancy can improve the system’s performance, as is already
known to the database community [26]. But the following has not been studied: can
more redundancy provide a greater performance improvement when the total data resource

(number of the servers) of a system is fixed?

Example 1.6 Proper redundancy in an (n,k) system
Now let £ = 4. This (6,4) system can use a (6,4,3) B-Code, which can be obtained simply
by setting all the bits in last column of Table 1.5 to zero, changing all the other columns

accordingly and deleting the last column, as shown in Table 1.8. Each server stores 3 Kbytes

a1 az as aq as ae

bl bQ bg b4 b5 b6
as + ag as + a1 ai + ag as + as az + a4 a4 + as
+by + by | +b3+ b5 | +bg +bg | +b5 + b1 | +bg + by | +b1 + b3

Table 1.8: Encoding of a (6,4,3) B-Code

of data, and the total amount of redundant data in the system is now 6 Kbytes. Suppose
now the delivery time of the 3 Kbytes data from each server is 1.72,1.78,2.20,1.82,2.10
and 1.85 msecs respectively. The total time the client needs to wait is 1.85 msecs, which is

worse than in the previous example. O

So in the above examples, with the above data delivery time model, a (6,5) system may

give the best performance. What is the proper redundancy when the total number of the

10
servers is given? Or when n is given, what is the best k£ so as to achieve the best system
performance? This is the so-called data distribution problem at the server side, which will
be investigated in this thesis.
Once a data distribution scheme is decided at the server side, the client should choose
a way of reading data from the servers that optimizes the performance of the client-server
system. This is called data acquisition at the client side. This problem cannot be found in

current literatures either. The following example gives a flavor of this problem.

Example 1.7 Data acquisition schemes of a (6,4) system

A client requests 12 Kbytes of data from a (6,4) system. Again, use the (6,4,3) B-Code
in Table 1.8 and the same delivery time model in the above two examples. Now each server
stores 3 Kbytes of data. The client has two options to read the 12 Kbytes of data from the
servers: 1) request 2 Kbytes of data from each of 6 servers, i.e., the 12 original data symbols
in the top 2 rows in Table 1.8. In this case the client needs to gather data from all 6 servers;
2) request all 3 Kbytes of data from all of the servers, then the client only needs to wait for
data from any 4 servers. Suppose the data delivery times of 2 Kbytes and 3 Kbytes of data
from each server are the same as in the above two examples. The client needs 1.75 msecs
if it chooses option 1 and 1.85 msecs if it chooses option 2. So in this case, option 1 gives

better performance. O

All the examples in this section suggest that proper data redundancy based on error-
correcting codes should be actively introduced to storage systems to improve the perfor-

mance.

1.3 Main Contributions of the Thesis

This thesis consists of two parts. The first part deals with the design of MDS array codes
that are computationally efficient. Such codes can be used as general MDS error-correcting
codes, and are particularly suitable for distributed storage systems. The second part shows
that the performance of data server and storage systems can be improved significantly by
the proper use of redundant data based on error-correcting codes, particularly the MDS
array codes developed in the first part.

Two new classes of MDS array codes are presented, called the X-Code and the B-Code.

11

The encoding operations of both codes are optimal, i.e., their update complexity achieves
the theoretical lower bound. The key to achieving this lower bound is by distributing parity
bits over all the columns rather than concentrating them on some parity columns. This
idea which was discovered in late 1970’s and largely ignored since then [37], is stated much
more clearly and directly in this thesis. As with other array codes, the error model for
both codes is this: if a column has at least one bit erasure (error), then this column is
considered as an erasure (error) column. (Frequently, the word column will be dropped,
and they will be simply called erasures or errors.) Both codes are of distance 3, i.e., they can
either: correct two erasures, detect two errors or correct one error. In addition to encoding
algorithms, efficient decoding algorithms are proposed, both for erasure-correcting and for
error-correcting. In fact, the erasure-correcting algorithms are also optimal in terms of
computation complexity.

The X-Code has a very simple geometrical structure: the parity bits are constructed
along two groups of parallel parity lines of slopes 1 and —1. This is the origin of the name X-
Code. This simple geometrical structure allows simple erasure-decoding and error-decoding
algorithms, using only XORs and vector cyclic-shift operations.

The significance of the B-Code not only includes all its optimality properties: MDS,
optimal encoding and optimal decoding, but also its relation with a 3-decade old graph
theory problem. It is proven in this thesis that constructing a B-Code of odd length is
exactly equivalent to constructing a perfect one-factorization (or P1F) of a complete graph.
Constructing a P1F of an arbitrary complete graph has remained a conjecture since the
early 1960’s. Though the P1F conjecture remains unsolved, the B-Code as the first real
application of the P1F problem will hopefully spur more research on it. It is also conjectured
in this thesis that constructing a B-Code of any length, even or odd, is equivalent to
constructing a P1F of a complete graph. An efficient error-correcting algorithm for the
B-Code is also presented, which is based on the relations between the B-Code and its dual.
The algorithm might give a hint of how to develop efficient decoding algorithms for other
codes.

While it is intuitive that redundancy can bring reliability to a system, this thesis gives
another direction: using redundancy actively to improve performance (efficiency) of dis-
tributed data systems. The results in this direction are both theoretical and experimental.

System models are extracted from experiments in real practical systems; analytical results

12

are derived using these and are then fed back to experiments for verification.

In this thesis, a novel deterministic voting scheme that uses error-correcting codes is
proposed. The voting scheme generalizes all known simple deterministic voting algorithms.
The main contributions related to the voting scheme include: (i) using the correcting ca-
pability in addition to the detecting capability of codes (only the detection was used in
known schemes) to drastically reduce the chances of retransmission of the whole local result
of each node, thus reducing the communication complexity of the voting, (ii) a proof that
the scheme correctly reaches the same voting result as the naive voting algorithm in which
every module broadcasts its local result to all other modules, and (iii) a method of tuning
the scheme for optimal average case communication complexity by choosing the parameters
of the error-correcting code, thus making the voting scheme adaptive to various application
environments with different error rates.

Two problems are identified to improve the performance of general data server systems,
namely the data distribution problem and the data acquisition problem. Solutions to these
are proposed, as are general analytical results on performance of (n, k) systems. A simple
service time model of a practical disk-based distributed server system is given. This model,
which is based on experimental results, is a starting point for data distribution and data
acquisition schemes. These results, both experimental and analytical, can be further used
for more sophisticated scheduling schemes to optimize or improve the performance of data
server systems that serve multiple clients simultaneously.

Most of the results in this thesis have been published or submitted to journals and
conferences. The results related to the X-Code are in [33]. The B-Code and related issues
are discussed in detail in [34]. The new voting scheme is presented in [35], and efficiency

issues in data server systems are investigated in [36].

1.4 Organization

The rest of the thesis is organized as follows: Chapter 2 gives results about the X-Code,
and the B-Code is discussed in Chapter 3. A generalized deterministic voting scheme using
codes is presented in Chapter 4. Various issues of improving performance of data server
systems using codes are addressed in Chapter 5. Chapter 6 concludes the thesis and gives

some future research directions.

13

Chapter 2 X-Code: MDS Array Codes with Optimal

Encoding

2.1 Introduction

As stated in Chapter 1, array codes have important applications in storage systems[6] [12]
and have been studied extensively[4][5][7][8][15]. A common property of these codes is that
the encoding and decoding procedures use only simple X OR and cyclic shift operations, and
thus are more efficient than Reed-Solomon codes in terms of computation complexity [6].
In this chapter, we describe the X-Code, a new class of array codes of size n X n over any
Abelian group G(¢) with an addition operation 4, where ¢ is the size of the group. When
q = 2™, the addition operation is just the usual bit-wise XOR operation. Similar to the
codes in [4][7], the error model of the X-Code is that errors or erasures are columns of
the array, i.e., if one symbol of a column is an error or erasure, then the whole column is
considered to be an error or erasure. The same model is also used for the B-Code in the
next chapter. As usual, the dimension of the code is defined to be k = logy» N, where N is
the number of its codewords. The code can also be viewed as an (n, k,d) code over G(q").
Its distance is defined over G(q¢"), i.e., over the columns of the array. The X-Code is an
MDS (Mazimum Distance Separable) code of distance d = 3, i.e., k = n — 2, which meets
the Singleton bound[19]: d =n — k + 1.

Although it was shown[37][8] that for general array codes of distance 3, the lower bound
2 of update complexity is achievable, the code in [37] and later its clearer form [8] are
described by parity check matriz and not directly as array codes. The new family of array
codes, called the X-Codes, has a much simpler and direct geometrical structure and has an
update complexity of exactly 2.

Both the X-Codes and the codes in [37] and [8] combine information and parity symbols
within columns in order to achieve optimal update complexity. The redundancy of the
X-Code is obtained by adding two parity rows rather than two parity columns, which
results in a nice property that updating one information symbol affects only two parity

symbols, i.e., the update complexity is always two. In addition, the number of operations for

14

computing parity symbols is the same for every column, namely, the computational load is
evenly distributed among all the columns, and thus the bottleneck effects of repeated write
operations are naturally overcome.

In summary, the main contribution of this chapter is a construction for the X-Code, a
new class of MDS array codes of distance 3, with the properties of optimal update complexity
and balanced computations. The simple geometrical structure of the the X-Code makes its
decoding very efficient, both for two erasures and for one error.

This chapter is organized as follows. In Section 2.2, the encoding scheme of the X-Code
is described, and a proof of its MDS property is presented. In Section 2.3, an efficient
decoding algorithm for correcting two erasures and an efficient algorithm for correcting one
error are provided. Section 2.4 concludes the chapter and presents some future research

directions.

2.2 X-Code Description

In the X-Code, information symbols are placed in an array of size (n — 2) x n. Like other
array codes [4][5][7][15], parity symbols are constructed by adding (with the group addition
operation +) the information symbols along several parity check lines or diagonals of some
given slopes. But instead of being put in separate columns, the parity symbols of the X-
Code are placed in two additional rows. So the coded array is of size n x n, with the
first n — 2 rows containing information symbols, and the last two rows containing parity
symbols. Notice that each column has information symbols as well as parity symbols, i.e.,
information symbols and parity symbols are mixed in each column. By the structure of
the code, if two columns are erased, the number of remaining symbols is n(n — 2), which is
equal to the number of original information symbols, making it possible to recover the two

column erasures, i.e., missing columns.

2.2.1 Encoding Procedure

Let C;; be the symbol at the ith row and jth column. The parity symbols of the X-Code

are constructed according to the following encoding rules:

n—3

Cn—2i=Y_ Ch(ith+2)
k=0

15

n—3
Cn1i=Y_ Chii—k-2, (2.1)
k=0

where ¢ = 0,1,---,n — 1, and (z), = z mod n. Geometrically speaking, the two parity
rows are just the checksums along diagonals of slopes 1 and —1 respectively. The following

example gives a construction of the X-Code of size 5 x 5.

Example 2.1 X-Code of size 5 X §
The first parity row is calculated along the diagonals of slope 1, with the last row being

an imaginary 0-row, as follows:

AN SIRVERVEN 110]0]1]1
ANA S| OO 0/1(0|1]1
(VAN JVARN NRe 0(0|1]0]|1
1V | & A| & | <1st parity check row— |0 [0 |1[1]0
S OO | M| A| +imaginary O-row — |[0[0[0|0|0

The second parity row is calculated along the diagonals of slope —1, as follows:

VAR JIRCERVEN 1{0f0]|1]1
L JRCERVAR WA 0j1]0]1]1
SO M| A& 0(0]1]0]|1
QI d|A|&| | «2nd parity check row— |11]0 (1|1
cMA S OO +imaginary O-row— 0[0(0]01|0

Then the complete codeword is

110(0(1]1
0O(1j0]1(1
0j0]1]0]|1
010(1]1|0
1]1]0(1]1

From the construction of the X-Code, it is easy to see that the two parity rows are ob-

tained independently; more specifically, each information symbol affects exactly one parity

16

symbol in each parity row. All parity symbols depend only on information symbols, not
on each other. So, updating one information symbol results in updating only two parity
symbols. Thus the X-Code has the optimal encoding (or update) property, i.e., its update
complexity of 2 matches the lower bound for any code of distance 3.

It is also easy to see that the X-Code is a cyclic code in terms of columns, i.e., cyclically
shifting columns of a codeword of the X-Code results in another codeword of the X-Code.

In addition, notice that each column has two parity symbols, each of which is the
checksum of n — 2 information symbols. Thus computing parity symbols at each column
needs 2(n — 3) group additions. This balanced computation property of the X-Code is very

useful in applications that require evenly distributed computations.

2.2.2 The MDS Property

In this section, we state and prove the MDS property of the X-Code.

Theorem 2.1 (MDS Property)

The X-Code has column distance of 3, i.e., it is MDS, if and only if n is a prime number.

Proof: Let us start with the sufficient condition, namely, prove that for any prime number
n, the X-Code is MDS.

First observe that the X-Code is a linear code, thus proving that the code has distance
of 3 is equivalent to proving that the code has minimum column weight wp, of 3, i.e., a
valid codeword of the X-Code has at least 3 nonzero columns. (A column is called a nonzero
column if at least one symbol in the column is nonzero.) We will prove this by contradiction.

From the construction of the X-Code, checksums are obtained along diagonals of slope
1 or slope —1, so it is impossible to have only one nonzero column, thus w,;, > 1.

Now suppose wp,in = 2. Without loss of generality, we can assume the nonzero columns
are the Oth and kth columns where 1 < k < n — 1, because of the column cyclic property of
the X-Code. Denote the ith symbol of the Oth and kth columns a; and b; respectively.

Observe that any one diagonal of slope 1 or —1 only traverses n— 1 columns, then among
the diagonals of slope 1, the diagonal crossing a,, 1 does not cross any symbol of the kth
column, and the diagonal crossing by_; does not cross any symbol of the Oth column, so
an-1- = 0 and b1 = 0. Because the diagonals of slope —1 have the same property, we

can also get a1 =0and b, | =0 (or b1 =0ifk=1).

17
Starting from a1 = 0, we get bog,_1 = 0, since they are in the same diagonal of slope
1; then we get a3r_1 = 0, since it is on the same diagonal of slope 1 with by 1, - -+, and so

on, we have

Ak—1 = 31 = Apk—1 = *** = A(p_g)p—1 = 0

and

bok—1 = bak—1 = beg—1 =+ = bp_1)p—1 =0

where all indices are mod n.

Similarly, starting from a,_1_; = 0, we have

Ap—1—k = Gp—1-3k =" =0y 1 (n-2)k = 0

and

bn—1-2k =bn—1-apk =---=bp 1 (n 1)k =0

again, all indices above are mod n.

We can describe the above 4 sets of entries in the array as follows. Let Ay = {((2m +
Dk—1), :m=0,1,---, 23} and A; = {{n — 2+ 1)k —1), : 1 =0,1,---, 253} let By =
{@mk—1), :m=1,2,---, 21} and By = {(n —2lk—1),, : | =1,2,---, 251} notice that
none of the sets includes n — 1, since n is prime. This can also be seen from the construction
of the X-Code, since the (n — 1)th row is just an imaginary all-0 row and it does not need

to be considered. An illustration of the above sets for n = 5 and k = 2 is as follows:

Ao B,
Ag By
Ay By
Ay By

Since n is prime, for any 1 <k <n—1, ged(n, k) = 1, [|Ag|| = ||A1]| = %5, and if there

were m and [such that

2m+1)k—1=n—(2l+ 1)k —1modn (2.2)

18
then,
2(m+1+ 1)k =0modn (2.3)

but 1 <m+Il+1<n—-2gedim+1+1,n)=1,ged(2k,n) =1, so it is impossible to have
such a pair of m and [, i.e., ||Ag N A1]| = 0. Notice that n — 1 = (2252 + 1)k — 1 mod n, so

AOUA1:{0,1,"',7’L—2}

Similarly,

BOUBlz{O,l,-'-,’rL—Q}

So all the first n — 1 symbols in the Oth and the kth columns are 0’s, obviously the last
symbols in the Oth and the kth columns should be also 0’s. This is a contradiction. Thus,
Wmin > 3, but it is easy to see there is a codeword of column weight 3, so wy,;, = 3. This
concludes the proof for the sufficient condition.

On the other hand, from the equation Eq. (2.3), if n were not a prime number, then
it could be factored into two factors n; and ng. Thus we got a solution (k,l,m) for the
equation Eq. (2.3) or Eq. (2.2), where k = ny, and m+1+1 =mng, and 2 < k <n — 1.
This means there is a codeword of weight 2, or equivalently the distance of the code is no
greater than 2. This contradicts the fact that the code is of distance 3. So n being a prime

number is also a necessary condition to the MDS property of the X-Code. O

Remarks:

1. For the sufficient condition, we can always find a diagonal of one slope which traverses
only one of the two columns. Thus the traversed symbol must be 0. Starting from
this 0-symbol and using the diagonal of the other slope crossing this symbol, we can
determine that the symbol crossed by the diagonal in the other column must be also
0. So this saw-like recursive procedure can proceed until it hits a parity symbol at one
of the two columns, since a parity symbol can only lie in one diagonal. We call this
saw-like recursion a decoding chain. Since there are four parity symbols in the two
columns, there are at most four decoding chains. (A simple calculation can show that
there are two decoding chains when k£ = 1 and four decoding chains otherwise.) If n

is prime, the procedure of getting the decoding chains will stop with all the symbols

19

in the two columns being 0s. Since this procedure is deterministic once the positions

of the two columns are given, it also provides an efficient erasure decoding algorithm.

2. In the code construction above, we use diagonals of slope 1 and —1. This choice of

slopes is not unique. In fact, fors=1,---, "T_l, codes constructed by the pair of slopes
(s,—s) are MDS if and only if n is prime. The proof is similar to the case where the
slope pair is (1,—1). It seems that other slope pairs do not provide advantages over

(1,—1), so in this paper we will focus on the X-Codes generated by the slope (1,—1).

2.3 Efficient Decoding Algorithms

In this section, we present decoding algorithms for correcting two erasures or one error of
the X-Code. Neither the encoding algorithm of the code or decoding algorithms require
any finite field operations. Instead, the only operations needed are additions and cyclic
shifts, both of which can be implemented very efficiently in software and/or hardware. It
is clear how to correct one erasure, since the erasure can be easily recovered along one of

the diagonals. So we will proceed with correcting two erasures.

2.3.1 Correcting Two Erasures

First notice that in an array of size n x n, if two columns are erasures, then the key unknown
symbols of the two erased columns are the information symbols. So the number of unknown
symbols is 2(n — 2). On the other hand, in the remaining array, there are 2(n — 2) parity
symbols that include all the 2(n — 2) unknown symbols. Hence, correcting the two erasures
is only a problem of solving for 2(n — 2) unknowns from 2(n — 2) linear equations. Since the
X-Code is of distance 3, it can correct two erasures; thus the 2(n — 2) linear equations must
be linearly independent, i.e., the linear equations are solvable. Now notice that a parity
symbol can not be affected by more than one information symbol in the same column, so
each equation has at most two unknown symbols, with some having only one unknown
symbol. This drastically reduces the complexity of solving the equations.

Suppose the erasure columns are the ith and jth (0 <7 < 7 <n — 1) columns. Since
each diagonal traverses only n — 1 columns, if a diagonal crosses a column at the last row,
no symbols of that column are included in this diagonal. This determines the position of

the parity symbol that includes only one symbol from the two erasure columns, thus this

20
symbol can be immediately recovered from a simple checksum along this diagonal. From
this symbol, we can get a decoding chain as discussed in Remark 1 in Section 2.2. Using
this decoding chain and the other one (if j —i = 1) or three (if j —¢ > 1), all unknown
symbols can be recovered.

Now let us calculate the starting parity symbols of the decoding chains. First consider
the diagonals of slope 1. Suppose the zth symbol of the ith column is the only unknown
symbol in a diagonal. This diagonal hits the jth column at the (n — 1)th row, and hits the
first parity row at the yth column, i.e., the three points (x,7),(n — 1,7) and (n — 2,y) are

on the same diagonal of slope 1, thus the following equations hold:

(n—1)—xz=j—imodn

m—1)—(n—2)=j—ymodn

Sincel <j—i<n-—1,and 0 <j—1<n—2, the solutions for z and y are

z=(n-1)—-(G-1)ln=m—-1)—(—1)

y=0—-1n=7-1

So from the parity symbol Cj,_2 1, we can immediately get the symbol C,_1)_(;_); in
the sth column. Similarly, the symbol C;_;_y ; in the jth column can be solved directly
from the parity symbol C}, 5 ; 1y, -

Symmetrically with the diagonals of slope —1, the symbol C;_;_; ; in the ith column
can be solved from the parity symbol Cy,_y (j11),, and the symbol C(, _1y_(;_;) ; in the jth
column can be solved from the parity symbol Cp,_1 ;1.

A formal algorithm for correcting the two erasures ith and jth (0 < i < j < n—1)

columns of the X-Code can be described as follows:

Algorithm 2.1 (Correcting Two Erasures)

Use each of the four parity symbols Cn_2j-1, Cp_3 (i—1),» Cne1,(j+1y, 9nd Cla_1)—(j—i),;
as the starting point of a decoding chain; in each decoding chain use the saw-like recursion
method to recover unknown symbols until o parity symbol at one of the two erasure columns
s hit, then start a new decoding chain, as discussed in Section 2.2.

A pseudo-code description of the algorithm is as follows:

1. Init_Slope Set = { 1,1, -1, —1 }

21
Init_Par_Col_Set = {j —1,{(i — 1), (§ + 1)p,i + 1};
Init_Sym_Col_Set = {i, j,i,j};
Init_-Sym_Row_-Set ={(n—1)— (j —14),(j —9) - L, (-4 —1,(n—=1)—(j —4)};
1= —1;
1+
If i == 4 Then
Compute Pyli], Py[j], P1[i], P1[j] according to the encoding rule Eq. (2.1);
Stop;
Else
Slope = Init_Slope_Set[i];
Par_Col = Init_Par_Col_Set[i];
Sym_Col = Init_Sym_Col_Set[il;
Sym_Row = Init_Sym_Row_Set[i];
End If
. If Par_Col ==1i Or Par_Col == j Then
Goto 2;
Else
If Slope == 1 Then
CSym_Row,5ym_col = Po[Par_Col] + Zz;g,k;,gsym_mw Chk,(Par _Col+k+2)n}
Else
CSym_Row,5ym_col = Pi[Par_Col] + ZZ;S’,k?gsym_Row Chk (Par _Col—k—2)n}
End If
End If
. Slope = —Slope;
Par_Col = (Sym_Col — Slope * (Sym_Row + 2)),;
If Sym_Col ==+ Then

Sym_Col = j;
Else

Sym_Col = i;
End If

Sym_Row = (n — 2 — Slope x (Par_Col — Sym_Col))p;
Goto 3;

22

|

Step 1 of the algorithm computes those positions of the four parity symbols that con-
tain only one unknown symbol. Steps 2 through 4 include the saw-like recursive procedure
described above. Step 3 is just the checksum calculation along a diagonal of slope Slope
crossing the parity symbol Py[Par_Col] (or Pi[Par_Col]). This recovers the unknown sym-
bol Csym_Row,sym_cor if the parity symbol is not in one of the erasure columns; otherwise,
it just restarts with another parity symbol obtained in Step 1. Step 4 uses the symbol that
was just found to calculate the position of the next unknown symbol.

The correctness of the algorithm can be deduced from the proof of Theorem 1 and
Remark 1 in Section 2.2. The complexity of the algorithm is easy to analyze. Each iteration
solves one unknown symbol and requires (n—3) additions. So to correct two erasure columns,
the decoding algorithm needs 2n(n — 3) additions, just the same as that of the encoding
algorithm.

The following is a simple example to show how the decoding algorithm works. To be

more general, we use symbols rather than numerical values.

Example 2.2 Correcting Two Erasures of a 5 X 5 X-Code

Without loss of generality, we assume the last (i.e., the 4th) column is one of the erasures,
and because of the symmetry of the code, we only need to examine the cases where the
other erasure is the 3rd or the 2nd column.

Case 1. i = 8,5 =/

Then the remaining array is:

ag ay as ?(as3) | ?(aq)
bo by by ?(b3) | ?(bg)
o c1 o ?(e3) | 7(cq)
do=as+bs+cg|di=a3+by+cy|do=as+by+cy|7(ds) | 7(dy)
ep=ag+betci|er=ar+bs+ca|ea=ap+bs+cs| ?(es) | ?(es)

After omitting the obvious checksum calculations, the decoding chain for the erasures would

be as follows:
a4(d2) — b3(61) — C4(d0)

a3(60) — b4(d1) — 03(62)

23
Each chain above represents a recursion starting from a parity symbol, and in each term
of the chain, z(y) means that the symbol z can be recovered from the parity symbol y.
Obviously, ds, d4, e3 and e4 can be easily computed after all others are known.
Case 2. i = 2,5 = /4

Then the remaining array is follows:

ap ay ?(as as ay
bo b1 7(bo bs 7(by
Cp C1 ? ?

do=as+bs+cs|di=a3+bis+cy|da)|dzs=ap+bi+c2| ?(ds

63:a1+b0+64 ?64

(a2) (a4)
(b2) (b4)
(c2) c3 (ca)
(d2) (d4)
(e2) (€4)

60:a3+b2+61 61:a4+b3+62 ?62

Now the decoding chain becomes:

e2(d3) — aa(er)
ba(ds)

ba(eo)
(e3)

€1
cyles) — ag(do)

Again, do, d4, e5 and e4 are easy to get after all other symbols are obtained.

|

2.3.2 Correcting One Error

To correct one error, the key is to locate the error position. This can be done by computing
two syndrome vectors from the two parity rows. Since the error is a column error, it is
natural to compute the syndromes with respect to columns rather than with respect to
rows as in the encoding procedure. Once the error location is found, the value of the error
can be easily computed along the diagonals of either slope.

Suppose R = [’f‘i,j]ogi,jgn_l is the error-corrupted array. Construct two arrays U =

[t jlo<ij<n—1 and V' = [v; jlo<ij<n—1 from R, where for 0 < j <n —1,

uij = vij ="rij, 0<1<n-—3 (2.4)

Un—2,j = Tn—2,j>Vn—2,j = Tn—1,j (2.5)

Un—1,j = Vn-1,j =0

24

(2.6)

i.e., U and V are constructed by copying the n — 1 information rows and parity rows

accordingly from R, then adding an imaginary O-row at the last row. From U and V,

compute two syndrome vectors Sy and S as follows:

all indices above are mod n.

n—1
Soli] =) wiskp
=0

n—1
Sili] = vickk
k=0

It is easy to see that the two syndrome vectors are the column checksums along the

diagonals of slope 1 and —1 respectively, and that they should be all-zero vectors if there is

no error in the array R. If there is one error column in the array R, then the two syndromes

are just cyclicly-shifted versions of the error vector with respect to the position of the

error column. Thus the location of the error column can be determined simply by a cyclic

equivalence test, which tests if one vector is equal to some cyclic shift of another vector.

The following example shows how a single error column is reflected in two syndromes for

an X-Code of size 5.

Example 2.3 Syndrome Computation for a 5 x 5 X-Code

Suppose the 3rd column is an error column, then the two syndrome vectors (Sy and Sy

respectively) and their corresponding error arrays are as in Fig. 2.1.

So S1
0100 €0 0 €3 0{0]0 €0 0 €9
0/0]0|e |0} O 0[{0{0]|er |0 es
0/0[0|e2| 0| eo 0/0(0]|e2|0] O
0]0]0|es |0 eg 0/0[0]|es|0] eg
0]10]010 |0 ez 0{0{0|0[0]eg

Figure 2.1: Syndrome computation for a 5 x 5 X-Code

The two syndromes are actually just the original error column vector (cyclic-)shifted in

two different directions for the same number of positions. When they are shifted back, they

25

differ in at most one position; the number of the positions shifted gives the location of the

error column. O

The above example almost gives the decoding algorithm for one error correction. A

formal algorithm for correcting one error is

Algorithm 2.2 Correcting One Error
Compute two syndrome vectors Sy and S1 from the possibly-error-corrupted array R
according to the equations Eq. (2.4) through Eq. (2.8). If the two syndromes are both all-
zero vectors, then there is no error in the array R; otherwise if there exists such an i that
after cyclically down-shifting Soby i positions and cyclically up-shifting S1 by i positions,
the first n — 2 components of the two shifted vectors are equal and the last components of
both are zeros then the ith column of the array R is an error column. If no such an i exists,
then there is more than one error column in the array R.
A pseudo-code description of the algorithm is as follows:
1. Compute two syndrome vectors Sy and S from the possibly-error-corrupted array R
according to the equations Eq. (2.4) through Eq. (2.8);
2.1=0;
3. If Sp[0..n — 3] == S1[0..n — 3] And Sp[n — 1] == Si[n — 1] == 0 Then
The error position is the ¢th column, and the error value is
B = (So[0], So[1], -+, So[n — 3], So[n — 2], S1[n — 1]);
Else If : == n Then
Declare decoding failure : more than one error occurred;
Else
Sp=S51,8 = st
i+ +;
Goto 3;
End If

|

In the above algorithm, for a vector V', denote its transpose V''; let

V= (V0L V1], Vn—1))7,

26

then V() (or V(=Y) is the down- (or up-) shifted vector from V/, i.e.,

v = (V[n -1, V[0],- -, Vn —2))7,

and

also VO = (VE=D)(1D) y(=i) = (y=G=1)(=D),

Before proving the correctness of the algorithm, we give a numerical example.

Example 2.4 Correcting One Error of a 5 x 5 X-Code

Suppose the possibly-error-corrupted array R is :

then U and V', the two constructed arrays from R, and their corresponding syndromes Sy

and S; are shown in Fig. 2.2.

U So |4 S1
0j0j0|1(01 0/0]0]1]0|0
0]0]0]0(0|O0O 0/0]0]0]0|0
010]0|0(01 0/0]0]0]0|0
0]0]0]1(0|O0 0]0]0]0 101
0/0]0]0(0|O0 0/0]0]0]0|0

Figure 2.2: Correcting one error of a 5 x 5 X-Code

Repeat Step 3 of the algorithm until 4 = 3, then we get S = (1,0,0,1,0)" and S; =
(1,0,0,0,0)T, so S5[0..2] equals to S1[0..2], and Sp[4] = S1[4] = 0. Thus we declare that
the error occurs at the 3rd column and that the error value is £ = (1,0,0,1,0), i.e., the

uncorrupted array should be an all-zero array. O

Now we give a correctness proof of the algorithm.

27

Proof: If one error occurs at the ith column, and its value is e = (e[0], ¢e[1],-- -, e[n —

2],e[n —1])7, then the two syndromes (Eq. (2.4) through Eq. (2.7)) are:

So = ((e[0],--,e[n —3],e[n—2],0)7) (2.9)
S1 = ((e[0],---,e[n—3],e[n—1],0)7)® (2.10)
thus
S = (e[0],-- -, e[n — 3], e[n — 2],0)" (2.11)
S = (e[0], -, e[n — 3], e[n — 1],0)T (2.12)

Since the X-Code is an MDS code of column distance 3, it can correct one error, which
means the location of a single column error can always be found unambiguously. A unique
1 can be found such that the two shifted syndrome vectors may differ only in the second
last component, and their last components are both 0 (Eq. (2.11) and Eq. (2.12)). Once
the error location 4 is found, the error value is obtained directly from Eq. (2.11) and Eq.
(2.12). O

The above algorithm needs 2n(n — 2) additions to compute the two syndrome vectors,

and on average n cyclic equivalence test operations to get the error location.

2.4 Summary

The X-Code, a new class of n x n MDS array codes of distance 3, is presented in this
chapter. The significant difference of these codes from all other known array codes is that
the parity (redundancy) symbols are placed in two independent rows rather than columns.
Additionally, the X-Code has a very simple geometrical structure. Encoding and decoding
of the code may be accomplished using only additions (XORs). We have proven that the
X-Code is MDS if and only if n is prime. For all prime numbers n, the X-Code achieves the
lower bound of the update complexity. It also has balanced computation at each column,
which might be very helpful in storage systems and distributed computing systems. Finally
decoding algorithms for correcting two erasures or one error are given.

One future research problem is to find new MDS codes with optimal update complexity

1) for each positive integer length rather than only for prime lengths, and 2) for distance

28
greater than 3. Our preliminary research shows that only for a few lengths n can the X-
Code be easily extended to have larger distance by simply using more parity rows and taking
more slopes; in general this is not the case. Extended diagonals, i.e., a set of symbols not
necessarily on a straight line of some fixed slope, might be helpful in extending the X-Code

to both more general lengths and distances.

29

Chapter 3 Low Density MDS Codes and Factors of

Complete Graphs

3.1 Introduction

In this chapter, we describe another new family of MDS array codes of distance 3 with
optimal update complexity. This family is called the B-Code. The B-Code is of size n x [
over an Abelian group G(q) with an addition operation +, where [= 2n or 2n+ 1, and ¢ is
size of the group G(q). As the X-Code in Chapter 2, the B-Code uses only group additions
for its encoding and decoding operations as well. The error model is also the same as that
of the X-Code: erasures (errors) are column erasures (errors). Its distance is also defined
over columns.

The novelty of this chapter is to use a graph approach to describe the code, making
the design of the code easier and more direct. Figure 3.1(a) shows Bg, the dual B-Code

of length 6. In addition to the usual representation of a code as an array of information

a1 a2 a3 G4 as a6
az+asz|a3+aq|ag+as|as+as|agt+ar|ar+a
a4+ ag |as+ay | ag+ag | ay+a3|ax+aqg| a3+ as

Figure 3.1: Bg, the dual B-Code of length 6, is a 3 x 6 MDS array code or a (6,2,5) MDS
code over G(23). The a;’s are the information bits. (a) the graph representation of Bg, (b)
a decoding path for the erasure of columns 3, 4, 5 and 6 (i.e., only columns 1 and 2 are

available).

and parity bits, the B-Code can be represented by a labeled graph in which every vertex

corresponds to an information bit and each edge represents a parity bit: each parity bit is

30

simply the sum of the two information bits that constitute the edge. The edges and vertices
of the graph are labeled with a column index: the ith column of the code consists of the
information bit a; and the parity bits with the column index 7. The same notation will be
used hereafter in this chapter. Bg has distance 5 and can therefore tolerate any erasure of
4 columns. Figure 3.1(b) shows a decoding path for the erasure of columns 3 through 6.
Use a9 (from column 2) together with parity as + ag (from column 1) to recover az. Use
the latter along with parity ag + a4 (from column 2) to recover ay4, etc. For any 4-columns
erasure, such a decoding path exists.

By using this new graph description, it will be proven in this chapter that constructing a
B-Code is equivalent to a 3-decade old graph theory problem, the perfect one-factorizations
of complete graphs[29], denoted P1F. Using results on P1F, we can construct two infinite
families of B-Codes, one of which can be shown to be the construction of [37]. In addition,
there are a number of values for which P1Fs exist that are not in the two infinite families;
these result in constructions of the B-Codes of all lengths up to 49. The existence of perfect
one-factorizations for every complete graph with an even number of nodes is a 35-year old
conjecture in graph theory. An affirmative answer to this conjecture will provide the B-Code
constructions of arbitrary length. Alternately, the construction of the B-Codes of arbitrary
odd length will provide an affirmative answer to the conjecture.

The main contributions of this chapter are:

1. proving the equivalence of the perfect one-factorization of complete graphs and the MDS
code constructions;

2. providing constructions for a new class of low-density MDS array codes;

3. proving that in general, the dual of an MDS array code is still MDS.

The chapter is organized as follows. In Section 3.2, we describe the B-Code and its
dual using a new graph representation. In Section 3.3, we reveal the relation between the
B-Code and the P1F problem. We also give efficient erasure and error decoding algorithms
for the B-Code. In Section 3.4, we further discuss the equivalence between the B-Code and

P1F. In Section 3.5, we conclude the chapter and present some future research directions.

31
3.2 B-Code and its Dual

As already described, a B-Code is an MDS code of size n x [, with distance 3. The MDS
property of the B-Code implies that out of nl bits, exactly 2n bits should be parity bits. In
this section, we describe the B-Code and its dual code using graphs. We also prove that in

general the dual of an MDS array code is also MDS.

3.2.1 Structure of the B-Code

Let B; denote the B-Code of length [, where [= 2n or 2n + 1. For By, the first n — 1 rows
are information rows, and the last row is a parity row, i.e., all the bits in the first n — 1
rows are information bits, while the 2n bits in the last row are parity bits. The structure
of Ba,41 can be derived from that of Bsg, simply by adding one more information column

as the last column. Their structures are shown in Figure 3.2.

2n 2n 1+
| | ,
n-1 Information n-1 Information n
1 Lo
1 Parity 1 Parity 0

(a) (b)
Figure 3.2: Structures of (a) Ba, and (b) Bayy1.

Intuitively, if the roles of the information and parity bits of the B-Code are exchanged,
i.e., the parity bits are placed in the entries which originally were for the information bits
and vice versa, then we get the dual code of the B-Code for length [, denoted B;. We will
soon give a more rigorous definition of the dual code for general array codes, and prove that
the dual of a general MDS array code is also MDS. In particular, the dual B-Code is also
an MDS array code; it has distance [— 1, i.e., the dual B-Code can be recovered from any

two of its columns. Figure 3.3 shows the structures of B’zn and Bgn_H.

2n 2n 1+
@ Information @ Information g
T T r
n- ll Parity n- ll Parity 't
y

(a) (b)
Figure 3.3: Structures of (a) Bo, and (b) Ba,i1

32
3.2.2 Dual Array Codes

Array codes are linear codes which can be described by parity check or generator matrices.
Consider an array code of size n x[over G(q). A codeword of this code can be represented by
a vector of length nl over G(q): it consists of [blocks, each of which includes n components.
The correspondence between the vector description and the array description is obvious:
the ¢th block of the vector corresponds to the ith column of the array, and the n components
within a block are just the n symbols within the corresponding column. A codeword c of a

2 x 4 array code is shown in both array form and vector form in Figure 3.4.

ap | a1 | a2 | a3 c:(ao po‘al pl‘ag pz‘a?, PS)
Po | D1 | P2 | P3

(@) (b)

Figure 3.4: A codeword of 2 x 4 code in (a) array form and (b) vector form

Using this vector form, an array code of size n x [with nr parity bits can be described by
its parity check matrix H, of size nr x nl, or its generator matrix G, of size n(l —r) xnl; here
7 is the number of parity (redundant) columns as if some columns consist of only parity bits.
Like for other 1-dimensional linear block codes, it is easy to observe that for a codeword ¢
of the array code and an information vector m of length n(l —r), the identities that ¢ = mG
and ¢H” = 0 still hold, or equivalently GH” = 0. In Figure 3.4, let the a;’s be information
bits and p;’s be parity bits. Specifically, when p; = a (i1 1)mods + @(i+2)mods, for i =0,1,2,3,
we get a B-Code of length 4, i.e. By, with n =2, [=4 and r = 2. Its parity check matrix

can be described as follows

0O 1|1 01 0|0 O

0 00 1|1 0|1 O
H=

1 00 0|0 1|1 O

1 0|1 0]0 0|0 1

Accordingly, its generator matrix is as follows

1 00 0]0 1|0 1

0 1|1 0(0 OO0 1
G =

0 1|]0 1(1 0j0 O

0 0j0 1(0 11 O

33

Using the vector form of array codes, we can define dual of array codes as for a conven-

tional 1-dimensional linear block code, i.e.,

Definition 3.1 (dual array code) Let C be a linear array code of size n x [over G(q), then
its dual code C* is defined as C+ = { ueG(q)™: u-v = 0 for all v € C }, where - is the

conventional dot product of vectors.

It follows that, as with 1-dimensional linear block codes, the parity check matrix of an
array code is the generator matrix of its dual code. One would expect that other properties
of dual codes that hold for 1-dimensional linear block codes also hold for array codes.
In particular, the dual of MDS array code is also MDS. ([8] gives a proof for the above
statement, but it implicitly assumes that information bits and parity bits are not mixed in
a same column.) However, for general array codes, since information and parity bits can
be mixed in the same column, it is not as obvious that this property holds as it seems to
be. Fortunately, this property can be generalized to general linear array codes, and we will

prove it here.

Theorem 3.1 The dual code of an MDS array code is also MDS.
Proof: Consider an MDS array code C of size n x [. Suppose its distance is r + 1 with
respect to columns. The parity check matrix of C' can then be written as H = (hy hg ---
hi), where h; is a submatrix of size nr x n that corresponds to the ith block in the vector
form of a codeword or to the ith column in the array (1 < ¢ <1). Since C' is MDS, any
combination of r submatrices (h;’s) is linearly independent, in terms of their columns.

Since H is the generator matrix of the dual code C'*, let a nonzero codeword ¢ € C*
have s nonzero columns, where s < [— r, thus ¢ has zero-columns in some set of r blocks
h;. Without loss of generality, let these blocks be (hy hg --- h,). Since ¢ is by definition a
linear combination of the r rows of H (this still holds for any linear array code), the nr x nr
square submatrix formed by (hy hgy - -+ h,) must be singular, which contradicts the fact that
any combination of r blocks (h;’s) are linearly independent. Thus the minimum column
weight of any codeword of C must be greater than [— r, i.e., the minimum distance of
C+ is greater than [— r. By the Singleton bound[31], this shows the dual code C* is also
MDS. O

Since 1-dimensional linear block codes are just a special case of array codes, the above

theorem certainly holds and the proof above reduces to one of many proofs for 1-dimensional

34
block codes[31].

3.2.3 A New Graph Description of the B-Code

Typically, an array code is described by its geometrical construction lines [4][5][7][15], or
by its parity check matriz [8][37]. Constructions of array codes are difficult to get using
these descriptions. In this chapter, we describe the B-Code and its dual using a new graph
approach. By relating the graph conditions for constructing the B-Code to a classical graph
problem, perfect one-factorization of complete graphs, we obtain new constructions.

For any array code, each parity bit is the sum of some information bits; for binary codes,
the addition is just the simple XOR (binary ezclusive OR) operation. If a parity bit P is the
sum of an information bit I and other information bits, then we say that the information
bit I appears in the parity bit P. Now consider the dual B-Code B;. Because of its MDS
and optimal encoding properties, each information bit must appear ezactly [—2 times in the
parity bits. Since the numbers of the total information and parity bits are 2n and nl — 2n

respectively, each parity bit must be the sum of 2:[(22)

or exactly 2 information bits. (This
is reflected in the parity check matrix by the fact that the weight of each row is exactly 3).
So if we represent an information bit as a vertex, then a parity bit can be represented by
an edge, where the parity bit is the sum of the two information bits whose vertices form
the edge. This is the key idea of describing the B-Code and its dual with graphs.

Since the construction of Bs, can be obtained from an-H simply by deleting the last
parity column, here we focus on the graph description of B2n+1. BQn+1 has 2n information
bits and n(2n — 1) parity bits, which can be represented exactly by a complete graph of 2n
vertices, Ko,, which also has exactly (%) = n(2n — 1) edges. The mapping is simple: one
information bit can be represented by one vertex, and the parity bit that is the sum of 2
information bits can be represented by the edge that links the 2 corresponding vertices. So
the only remaining problem is to define on Ks, the grouping relation that determines which
information and parity bits occupy the same column of the code. This can be thought of as
labeling the vertices and edges of the complete graph Ky, in such a way that information
bit and parity bits in the same column are labeled with the same label. Since BQn+1 has
2n 4+ 1 columns, we need 2n + 1 labels. Notice that the each of the first 2n columns has
exactly 1 information bit and n — 1 parity bits, and that the last column has n parity bits.

A formal way of describing the B2n+1 is as follows:

35

Description 3.1 Graph Description of B2n+1

Given a complete graph Ko, with 2n vertices, which are labeled with integers from 1 to
2n, find an edge labeling scheme such that

1) each edge is labeled exactly once by an integer from 1 to 2n+1

2) For any pair of vertices (i,j) and any other vertex k, where i, j,k € [1,2n], there is
always a path to k from either ¢ or j, using only the edges labeled with i or j.

3) For any vertex i and any other vertex k, where i,k € [1,2n], there is always a path

from i to k, using only the edges labeled with i or 2n + 1.

With the above description, it is easy to see that the vertex and edges with the label ¢
in the Ko, represent the information bit and parity bits in the ith column of Bgn+1. The
properties 2) and 3) ensure that any two columns of the code can recover the information
bits in all other columns, thus the code is of column distance 2n. Figure 3.5 shows such a

labeling of K4 and the corresponding Bs, where a4 through a4 are the information bits.

1 4 2
3 1
4 2 3

(a)

a a9 as a4 a; + as
a2+a3 a3+a4 a4+a1 a1+a2 a2+a4

(b)

Figure 3.5: (a) graph and (b) array representations of Bs

Naturally, if the edges of Ky, are used to represent information rather than parity bits,
and vertices to represent the parity bits, it should be expected that by using such a labeling
scheme and reindexing the edges, such a complete graph can represent Bgy,1, i.e., the B-
Code itself. And in fact this is true. In the graph representation of Bg,11, a parity bit is
the sum of all the information bits whose edges are incident with its vertex. B, can easily
be obtained from Bs,41 by setting all the information bits in the last column to zero and
then deleting them after the parity bits are changed accordingly. Bj is shown in Figure 3.6,
where the edge labeled with (6) represents the information bit ag in the 5th column. It is
also interesting to point out that Bs happens to be a perfect code too, i.e., it achieves the

Hamming Bound[31].

a as as a4 as
a3 +a4+as|ag+ag+a; |as+ay+as | ag+ag+a3 | ag

(b)

Figure 3.6: (a) graph and (b) array representations of Bj

3.3 B-Code and P1F

As already described in Section 3.2, constructing the B-Code amounts to the same problem
as designing an edge labeling scheme such as in Description 3.1 for a complete graph Ks,.
Fortunately this can be related to another graph theory problem, namely the perfect one-

factorization problem.

3.3.1 Perfect One-Factorization of Complete Graphs

Definition 3.2 [30] Let G=(V,E) be a graph. A factor or spanning subgraph of G is a
subgraph with vertex set V. In particular, a one-factor is a factor which is a regular graph
of degree 1. A factorization of G is a set of factors of G which are pairwise edge disjoint,
and whose union is all of G. A one-factorization of G is a factorization of G whose factors
are all one-factors. In particular, a one-factorization is perfect if the union of any pair of its

one-factors is a Hamilton cycle, a cycle that passes through every vertex of G.

Figure 3.7 shows a perfect one-factorization of K. A perfect one-factorization of Kg is

shown in Figure 3.8(b), where edges with the same label form a one-factor.

1 2 1 2 1 2
o—©
o———©

Figure 3.7: (a)(b)(c) are 3 one-factors, that together form a perfect one-factorization of K4

The perfect one-factorization of complete graphs has been studied for many years since

its introduction in [16]. It is now known that[30]:

37

Theorem 3.2 If p is an odd prime, then K, 1 and K, have perfect one-factorizations.

Constructions of P1F for K,,; and Ky, can be found in [2] and [29]. Additionally,
constructions of P1F for Ks,’s whose n’s are some other sporadic integers have also been

found[29][30]. However it still remains a conjecture [29][30] that:

Conjecture 3.1 For any positive integer n, Ko, has perfect one-factorization(s).

3.3.2 Equivalence between the B-Code and P1F

Let P42 be a P1F for Ko,.2. Recall that Bgn+1 has 2n 4 1 columns, and Ps, 2 also has
2n+1 one-factors. So, if we are able to find a 1-to—1 mapping between the columns and one-
factors, then we can get constructions for Bgn+1 from Py, 19, and vice versa. Luckily enough,

such a mapping does exist. The following two algorithms give such a 1-to—1 mapping.

Algorithm 3.1 Constructing B2n+1 from Poyo

Step 1. Label the vertices of Kopio with 0,1,---,2n, 00;

Step 2. If a P1F exists for Kopio, then let F; denote the one-factor which contains the
edge 01, where 1 =1,2,---,2n,00;

Step 3. In each F;, delete the two vertices 0 and oo and all the edges which are incident
with either of them; For i =1,2,---,2n, label all the remaining edges in F; with i, and label
all the remaining edges of Fyso with 2n + 1.

Figure 3.8 shows the construction of Bs from Ps, where in (a) oo is replaced with 5, and

the edges with the same label 7 form the one-factor F;.

1 4 2
3 1
4 2 3

Figure 3.8: Constructing (a) Bs from (b) Pg

38

Theorem 3.3 Algorithm 3.1 gives a graph as described in Description 3.1, i.e., a construc-

tion of B2n+1.

Proof: First observe that in a P1F of Ky, 2, each edge appears exactly once in the whole set
of the one-factors, thus step 2 is feasible. Now check the conditions of the graph description
of Bgn_H:

1) obviously holds;

2) Since F; and F; (i,j € [1,2n]) are two one-factors of a Pay 2, their union is a Hamilton
cycle of 2n 4 2 vertices, after deleting the vertices 0 and oo and the four edges incident with
them, the Hamilton cycle breaks into two paths , covering all the remaining vertices from
1 to 2n. These paths start from ¢ or j, thus this condition holds.

3) Since F; and Fy, (i € [1,2n]) form a Hamilton cycle of 2n 4 2 vertices where Oco is
an edge, after the deletion of the vertices 0 and oo and the three edges incident with them,
the Hamilton cycle becomes one path starting from 4, thus this condition holds. O

Since Byp+1 and an-H can be described with the same complete graph Ks;,, both By, 1
and E2n+1 can be constructed from Py, 9. Additionally, By, and Bgn can be easily obtained
from B, 1 and B2n+1, so the B-Code and its dual (of size n x [) can be constructed from

the known P1F constructions of Ko, 9. In particular, from Theorem 3.2

Theorem 3.4 For any odd prime p, a B-Code and its dual code of size n X [can be con-

structed, where n is either p—;l orp—1.

When n:’%l, the corresponding B-Code is the code in [37][8]. The B-Code of n =p—1
was not known before. The next natural question is : Can we get Pa,yo from Bo,117 The

answer is yes and the following algorithm can do it.

Algorithm 3.2 Constructing Popyo from B2n+1

Step 1. If BQn+1 erists, use Description 3.1 of anH, let F; denote the set of edges
with the label 1, where 1 =1,2,---,2n, and let F., denote the set of the edges with the label
2n +1;

Step 2. Add two vertices 0 and oo to Koy ;

Step 8. Fori=1,2,---,2n and oo, add the edges i0 and koo to Fi, where k 1s integer
from 1 to 2n such that the expanded set, F;, is a one-factor of the complete graph Kopio of

vertices 0,1,2,---,2n, co.

39
Theorem 3.5 Algorithm 3.2 gives a Poy, 9.

Proof: Observe that because of the MDS and optimal encoding properties of BQnH, in
each of the first 2n columns of Bgn+1:

1) each information bit appears at most once;

2) there is exactly one bit which does not appear; also no pair of the columns miss the
same bit, since otherwise that bit can not be recovered from just these two columns;

3) in the last column, each bit appears exactly once.
Thus 2) guarantees that in Step 3, there exists a unique k. Further, 1) ensures that for any
pair of columns ¢ and j, where 4,57 = 1,2,---,2n, the two vertices ¢ and j can only be the
endpoints of the two paths in the graph description. Thus Step 3 of the above algorithm
makes the union of any pair of F; and F}, where 4,5 = 1,2,---,2n, into a Hamilton cycle.
Step 3 also makes the union of any F; (i = 1,2,---,2n) and F a Hamilton cycle. Thus
{F1,Fy,---, Fop, Fso} is a P1F of Ko, 19, i.e., it is Pypqo. O

Theorem 3.3 and Theorem 3.5 reveal a surprising result:

Theorem 3.6 Constructing B2n+1 (or equivalently Boyny1) is equivalent to constructing

Popia, i.e., Popio <= Bapyi1.

Note that the equivalence does not include the B-Codes of even length, i.e., Bo,. This
equivalence, however, already shows that any progress in P1F gives a new B-Code, and vice

versa.

3.3.3 Erasure Decoding of the B-Code

Obviously the encoding of the B-Code can be done using Algorithm 3.1. Now consider
erasure decoding for the B-Code. Recall that the dual B-Code can recover all information
bits from any two columns. Erasure decoding for the dual B-Code is almost obvious from
its graph description (Description 3.1). The two paths, starting from ¢ and j and leading
to all the other vertices in the graph, give the decoding chain used in recovering a B-Code
from its ith and jth columns. Figure 3.9 shows the decoding chain used in recovering Bs
from its 1st column and its 2nd, 3rd and 5th columns, respectively.

The B-Code can recover any two missing columns. Decoding for the B-Code itself is
almost the same as for its dual, except that the roles of edges and vertices are exchanged.

Figure 3.10 shows the decoding chains for recovering By’s 1st column and 2nd, 3rd, and 5th

40

l. 2 1 2 1 2
5
1 3 1 1
>6)
4 2 3 4 3 4 3
,2—>3—14 1—-4,3—>2 1-3—-2—-4

(@) (b) ()

Figure 3.9: Erasure decoding of Bjs: recovering from its 1st and (a) 2nd (b) 3rd and (c) 5th
columns. The decoding chains for each case are also listed. 1 through 4 are the information
bits in the corresponding columns.

columns respectively. Comparing the decoding sequences here with those of Bs, it is easy
to obverse that the decoding chains for recovering the ¢th and jth columns of B; are just
the reversed sequences of those for recovering its dual code By from its ith and jth columns.
This also shows that the two codes are dual to each other, since their graph descriptions

are dual to each other.

4 —-506)—>1—5
()

Figure 3.10: Erasure decoding of Bs: recovering its 1st and (a) 2nd (b) 3rd and (c) 5th
columns. The decoding chains for each case are also listed. 1 through 6 are the information
bits in the corresponding columns, except that 6 is also in the 5th column.

Finally, the above decoding algorithms can be summarized as follows:

Algorithm 3.3 FErasure decoding of the dual B-Code

The edges labeled © and j create two paths which span the vertex set. Starting at vertex
1 and ot verter j, use these paths, by adding a known information bit and a known parity
bit to recover a new unknown information bit. Repeating this step along each path recovers

the dual B-code from its ith and jth columns.

Algorithm 3.4 FErasure decoding of the B-Code
To recover the ith and jth columns of the B-Code, use the same paths with edges labeled
with © and j. This time, traverse the paths in the opposite directions of the corresponding

paths for the dual B-Code. Along each path, add all known information and parity bits to

41
get a new unknown information bit. Repeating this step along each path recovers the ith and

jth columns of the B-Code from the other n — 2 columns.

3.3.4 Error Decoding of the B-Code

Recall that a B-Code of size n x [is of distance 3, so it can correct one error. To do this, the
key is again to locate the error location; the error value can easily be determined once the
location is found. One way to find the error location is to make a table that maps syndromes
to single-error locations, and then do a table lookup after calculating the syndrome of a
received array. The drawbacks are 1) such a table is needed for each B-Code and 2) table
lookup is not efficient in both computation time and space (since the total number of 1-error
syndromes is 2"). Another rather straightforward algorithm is to consider the ith column
and (i+1)th column to be erasures (where i = 1,3,5,---,2n — 1 for [= 2n; if | = 2n + 1,
the [th column and the 1st column are also included), and then recover those columns. If
exactly one of the recovered columns differs from the original ones, then that discrepant
column is the error column. This algorithm can correct one error. The algorithm requires
on average % erasure decodings, each of which needs 2n(l — 3) additions, thus the average
total number of additions is n?(I — 3), which is in the order of n times of n x [. Another
shortcoming is that the algorithm will give a false decoding result if more than one error
occurs.

We present here a more efficient decoding algorithm for correcting one error. Observe the
relation between a B-Code and its dual from their graph descriptions: if an information bit
1 of a B-Code appears in a set P of parity-bit positions, then in its dual code, the elements
of P will be information bits and ¢ will be then a parity bit; further, all the elements of
P appear in the parity bit . Thus, if there is a single column error in a received array of
a B-Code, use the syndrome of this received array as the information vector of the dual
code. In the obtained dual codeword, the parity bits in the error column of the B-Code
should be zero, while other parity bits are nonzero because of the structural properties of
the B-Code observed in the proof of Theorem 3.5. This differentiates the error location

from other columns. The decoding algorithm can be described semi-formally as follows:

Algorithm 3.5 Error Decoding of the B-Code

1. Given a received array R of size n x 1, calculate its syndrome, denoted as S (which

42

is a vector of length 2n);

2. If S is a zero vector, then the received array R is a codeword of Byj; otherwise go to
next step;

3. Use S as the information vector of the dual B-Code El, encode to get a codeword C
of By;

4. If the weight of the syndrome S is even, and if there is a unique all-zero column in
C, then this is the error column of the original received array R. On the other hand, if
the weight of syndrome S is odd, and if there is a unique column whose information bit is
nonzero and whose parity bits are all zero, then this is the error column of R;

5. If the error column of R is found in the above step, regard this column as an erasure

and recover it; otherwise declare decoding failure: there are at least two error columns in R.

Notice that the above property holds only when the B-Code is defined in G(2™), i.e., each
cell of the B-Code consists of a block of m binary bits. However, this decoding algorithm
can be modified to work for the general B-Codes defined in G(¢™), where ¢ is not a power
of 2. Here we will stick to the case where ¢ =2 and m = 1.

Before we prove the correctness of the above algorithm, we show an example of it.

Example 3.1 Error-correcting for the B-Code
Consider Bg, whose graph description is shown in Fig. 3.1. (Its array description is easy
to get from either its graph description or the array description of Bg, as in Fig. 3.1.) If

two received arrays are as follows:

1{0]0(0]0]0 110(0]0]0]0
Ri={1{0|0|0|0|O0 Ry=|1]0{0|0|0|0
0/{0]0|0|0|O0O 110(0]0]0]0

Then the two syndromes are respectively:
Si=|0]1]1|1|0]1 Sy=|1[1[1[1]0]1

Since neither S or Ss is a zero vector, both R; and Ry have errors. Now use S; and Sy as

information vectors of BG, whose graph and array descriptions are shown in Fig. 3.1. We

43

get two codewords of Bg

Ol1]1(1]0]1 1{1]1]1]0]1
Ci=|ol0|1]1]1]1 Co=|0]0|1]|1]0]0
0ololo|1|0]1 ol1/0]l0l0]|1

Since the weight of Sy is even, and column 1 is the unique all-zero column in C4, column 1
is the error column of Rp; on the other hand, since the weight of S5 is odd, and column 1
is the unique column in Cy whose information bit is nonzero and whose parity bits are all
zeros, column 1 is the error column of Ry too. Once the error column of Ry (R3) is found,
the error value is easy to get. The corrected arrays of Ry and Rs are both all-zero arrays.

|

Now we prove the correctness of the decoding algorithm.

Proof: The following can be observed from the graph description of the B-Code: each
information bit appears in exactly two parity bits, and this information bit and the two
parity bits are in three different columns; in addition, two information bits from the same
column can not appear in the same parity bit, thus all possible errors in the information bits
of a single column contribute even weight to its syndrome vector. On the other hand, single
parity-bit error adds exactly one to the weight of the syndrome vector, i.e., a parity-bit
makes the weight of the syndrome odd.

Suppose there is only one error column in a received array of a B-Code. Call this column
the ith column. Consider the following two cases:

Case 1: All errors occur in information bits. Then the syndrome should be of even
weight. Now we prove that the ¢th column of the obtained codeword of the dual B-Code is
the only all-zero column:

1). The ith column is an all-zero column. This is true because of the relation between
the B-Code and its dual : in the B-Code, an information bit ¢+ appears in two parity bits
P, and P», and in the dual B-Code these two bits]51 and]52 are information bits, and the
bit 7 is a parity bit such that both 151 and 152 appear in 7. Since P, = P, = 4 and 151 =]52,
+ = 0. Thus all parity bits of the ith column of the dual B-Code are zero. Additionally,
since there is no error in the parity bit of the B-Code, the information bit of the ith column

of the dual B-Code is also zero. So the entire ith column of the dual B-Code is zero.

44

2). All the other columns are nonzero columns. If there were at least one more all-zero
column in the codeword, then the weight of the codeword would be no greater than [— 2,
which contradicts the fact the minimum distance of the dual B-Code is [— 1. Here [is the
length of the codeword.

Case 2: An error also occurs in the parity bit as well. In the dual B-Code, among
all the columns which have both an information bit and parity bits (if the length of the
dual B-Code is odd, there is one column containing no information bit), by the linearity of
the dual B-Code, the ith column has a nonzero information bit, and all its parity bits are
zero. No other column can have a nonzero information bit and all zero parity bits. The
reason is as follows: the weight of the information bits in the dual B-Code is odd, and all
the information bits appear in the ith column. Since each information bit is missing from
exactly one of the columns, the number of nonzero information bits that appear in the jth
column (5 # i) is even. Thus if the information bit of the jth column is nonzero, then at
least one of its parity bits is nonzero, since each parity bit is the sum of two information
bits, and the total number of information bits which appear in the parity bits is now odd.

When multiple column errors occur, there can be multiple all-zero columns or multiple
columns with the first component nonzero and all other components zero.

This concludes the proof for the correctness of the decoding algorithm. O

The complexity of the above decoding algorithm is easy to analyze. For a received array
of size n x [, the syndrome calculation requires 2(I —2)n additions; the encoding of the dual
B-Code requires (I —2)n additions; finally, correcting one erasure requires (I —3)n additions.
This adds up to (4l —9)n additions, which is linear in the number of total bits in an array of
size n X [. The same trick used here cannot be applied directly to correct multiple errors for
the dual B-Code, since multiple errors can weave together and cannot be easily separated.
In general, it still remains a challenge to correct multiple errors efficiently (total additions

linear in total number of bits in an array) for array codes.

3.4 Further Equivalence Discussion

The equivalence between the B-Code and P1F has been shown in the above section. It is
quite clear that By, can be constructed from By, simply by shortening, namely, setting

all the information bits in the last column to zero. Similarly, Bs,, can be derived from Bgn+1

45

by puncturing, i.e., deleting the last parity row. The relations among Ps,42, By and

By, can be described as follows, where = means to lead to:
Poyi9 < Bopt+1 = By,

A further question is whether By, 11 (or B2n+1) can be constructed from a known construc-
tion of By, (or BQn), i.e., whether the last => can be replaced with <=-. Our conjecture

is yes.

Conjecture 3.2 For any positive integer n, an-H (or Baoyy1) can be constructed from By,

(or Bay) using Algorithm 3.6.

Algorithm 3.6 Constructing Bopy1 from Boy
Egztend a given Bo, by adding one more column, which contains, as parity bits, all the

unused or unlabeled edges in the graph description of Bs,,.

The B-Codes shown in Figure 3.1, Figure 3.5 and Figure 3.6 are all what we call shift

codes, and it is easy to verify Conjecture 2 is true for these examples.

Definition 3.3 (Shift Code) An array code (of size n x [) is called a shift code if any row
of its parity check matrix is just a cyclic shift of the first row, i.e., the remaining columns

of the code can be constructed by cyclically shifting the first column.

In general, for a shift B-Code, Conjecture 2 can be proven true, namely,

Theorem 3.7 For any shift B-Code, Bon1 (or Boni1) can be constructed from Bay, (or

Bsy,) using Algorithm 3.6.

Proof: Given a shift dual B-Code, Bs,, notice that the missing edges are the diagonals,
(i,i + n), (addition is modulo 2n). Indeed, if (i,i + n) were present in column j of Bg,,
then it would be included in column n + j as well, because of the shift property, making
the code non-MDS.

To complete the proof, we need to show that by using an arbitrary column, j, of Bo,
together with the diagonals (i, + n), 0 < i < n, one can recover all remaining 2n — 1

columns, i.e. we indeed have Bgn_H. Suppose that is not true. There exists a column j, in

46

which a set of edges, combined with the diagonals, form a loop:
ap+n+az+n+..+ag+n=0mod 2n

where ¢ is the number of edges involved in the loop, a;’s are their lengths and n is the length

of the diagonals. For example let n =6, g =3, a; =1, as = 2 and a3 = 3:
1+64+24+64+34+6=24=0mod 12

We will show that this cannot happen. We will show that column j +n and column j form

a loop and therefore the original code is not Bon. Using the above equation:

Because column j 4+ n is a cyclic shift of column j, it contains a set of edges of lengths

b; = a; such that A; connects to By, which in turn connects to As, etc.

q q
Zai +Zbi = 2¢gn = 0 mod 2n
i=1 i=1
There is a loop. O
If Conjecture 2 can be proven true for any arbitrary B-Code, then we can get a strong
equivalence between the B-Codes and P1F, i.e, the B-Code construction is completely equiv-

alent to the P1F construction.

3.5 Summary

In this chapter we have presented the B-Code and its dual, a new class of optimal MDS
array codes of size n x 1 (where [= 2n or 2n+1) with distance 3 (or [—1 for the dual code).
We proved an equivalence between the B-Code and perfect one-factorizations using a new
graph description of the B-Code. We also described encoding and decoding algorithms for
the B-Code and its dual based on their graph descriptions. There are a number of open
problems: (i) are the B-Code constructions strongly equivalent to perfect one-factorizations?

(ii) can the graph description of the B-Codes be extended to design optimal array codes of

47
arbitrary distance? (iii) how does one efficiently correct multiple errors for the dual B-Code
(or other array codes)? and the ultimate question, (iv) can coding theory techniques be

used to solve the P1F conjecture?

48

Chapter 4 Efficient Deterministic Voting in Distributed

Systems

4.1 Introduction

In distributed storage systems, particularly for distributed file systems, voting can be used
to keep replicated data consistent. Distributed voting is itself an important problem in the
creation of fault-tolerant computing systems, e.g., it can be used to keep distributed data
consistent and to provide mutual exclusion in distributed systems. In an N Modular Re-
dundant (NMR) system, when the N computational modules execute identical tasks, they
need to be synchronized periodically by voting on the current computation state (or result,
and they will be used interchangeably hereafter), and then all modules set their current
computation state to the majority one. If there is no majority result, then other compu-
tations are needed, e.g., all modules recompute from the previous result. This technique is
also an essential tool for task-duplication-based checkpointing[38].

Many aspects of voting algorithms have been studied, e.g., data approximation, re-
configurable voting, dynamic modification of voting weights, and metadata-based dynamic
voting[9][18][24]. In this chapter, we focus on the communication complexity of the vot-
ing problem. Several voting algorithms have been proposed to reduce the communication
complezity[10][20]. These algorithms are nondeterministic because they perform voting on
signatures (hash functions) of local computation results. Recently, a majority voting scheme
based on error-control codes[21] was proposed: each module first encodes its local result
into a codeword of a designed error-detecting code and sends part of the codeword. By
using the error-detecting code, discrepancies of the local results can be detected with some
probability, and then by retransmitting the full local results, a majority voting decision can
be made. Though the scheme drastically reduces the average case communication complex-
ity, it can still fail to detect some discrepancies of the local results and might reach a false
voting result, i.e., the algorithm is still a probabilistic one. In addition, this scheme uses
only the error-detecting capabilities of codes. As this chapter will show, in general, using

only error-detecting codes (EDC) does not help to reduce the communication complexity of

49
a deterministic voting algorithm. Though they have been used in many applications such as
reliable distributed data replication[1], error-correcting codes (ECC) have not been applied
to the voting problem.

For many applications[38], deterministic voting schemes are needed to provide more
accurate voting results. In this chapter, we propose a novel deterministic voting scheme that
uses error-correcting codes. The voting scheme generalizes all known simple deterministic
voting algorithms. Our main contributions related to the voting scheme include: (i) using
the correcting capability in addition to the detecting capability of codes (only the detection
was used in known schemes) to drastically reduce the chances of retransmission of the whole
local result of each node, thus reducing the communication complexity of the voting, (ii)
a proof that our scheme reaches the same voting result as the naive voting algorithm in
which every module broadcasts its local result to all the other modules, and (iii) a method
of tuning the scheme for optimal average case communication complexity by choosing the
parameters of the error-correcting code, thus making the voting scheme adaptive to various
application environments with different error rates.

The chapter is organized as follows: in Section 4.2, we describe the majority voting
problem in NMR systems. Our voting algorithm together with its correctness proof are
described in Section 4.3. Section 4.4 analyzes both the worst case and the average case
communication complexity of the algorithm. Section 4.5 presents experimental results of
the performance of the proposed voting algorithm, as well as the performance of two other

simple voting algorithms for comparison. Section 4.6 concludes the chapter.

4.2 The Problem Definition

In this section, we define the model of the NMR system and its communication complexity.

Then we address the voting problem in terms of the communication complexity.

4.2.1 NMR System Model

An NMR system consists of N computational modules which are connected via a com-
munication medium. For a given computational task, each module executes a same set
of instructions with independent computational error probability p. The communication

medium could be a bus, a shared memory, a point-to-point network or a broadcast network.

50
Here we consider the communication medium as a reliable broadcast network, i.e., each
module can send its computational result to all the other modules with only one error-free
communication operation. The system evolution is considered to be synchronous, i.e., the

voting process is round-based.

4.2.2 Communication Complexity

The communication complezity of a task in an NMR system is defined as the total number
of bits that are sent through the communication medium during the whole execution of the
task. In a broadcast network, let m;; be the number of the bits that the ith module sends at
the jth round of the execution of a task, then the communication complexity of the task is
>N E]K:1 m;j, where N is the number of the modules in the system, and K is the number

of rounds needed to complete the task.

4.2.3 The Voting Problem

Now consider the voting function in an NMR system. In order to get a final result for a
given task in an NMR system, each module completes its own computation separately, then
it must be synchronized with the other modules by voting on the result. Let X; denote the

local computational result of the ith module. The majority function is defined as follows:

o X if {1<i<N}:X;=X|>24H
Majority(Xy, -, Xn) 1=
¢ otherwise

where in general, N is an odd natural number, and ¢ is any predefined value different from

all possible computing results.

Example 4.1 Majority voting
If X; = 0000, Xy = 0001, X3 = 0100, X4 = 0000, X5 = 0000, then

Majority(Xl, XQ, X3, X4, X5) = 0000;
If X5 changes to 0010, and the other X's remain unchanged, then

Ma’jority(XlaX27X37X47X5) = ¢

o1

|

The result of voting in an NMR system is that each module gets Majority(Xy,---,Xn) as
its final result , where X; (i =1,---,N) is the local computation result of the ith module.

One obvious algorithm for the voting problem is that after each module computes the
task, it broadcasts its own result to all the other modules. When a module receives all the
other modules’ results, it simply performs the majority voting locally to get the result. The

algorithm can be described as follows:

Algorithm 4.1 Send-All Voting

For Module P;, i € [1: N
Broadcast(X;);
Wait Until Receive All X;, 7 € [1: N\ 4
X := Majority(Xy, -+, Xn);
Return(X);

This algorithm is simple: each module only needs one communication (i.e., broadcast)
operation, but apparently its communication complexity is too high. If the result for the
task has m bits, then the communication complexity of the algorithm is Nm bits. In most
cases, the probability of a module having a computational error is rather low, namely at
most times all modules have the same result, thus each module only needs to broadcast
part of its result. If all the results are identical, then each module agrees with that result.
If not, then the modules can use Algorithm 4.1. In other words, we can improve the voting

algorithm as follows:
Algorithm 4.2 Simple Send-Part Voting

For Module P;, i € [1: NJ:
Partition the local result X; into N symbols: X;[1 : NJ;
Broadcast(X;[7]);
Wait Until Receive All X;[j], 7 € [1: N]\ 4;
X = Xq[1] % -+ % Xy[N];
Fi= (X = Xi);
Broadcast(F;);

52

If Majority(Fy,---,Fy) =TRUE(1)
Return(X);

Else
Broadcast(X;[j]), 7 € [1 : N]\ ¢;
Wait Until Receive All X;, j € [1: N]\3;
Return(Majority(Xy,---, XnN));

In the above algorithm, * is a concatenation operation of strings, e.g., 000100 = 000100;

and = is an equality evaluation:

TRUE(1) ifX equals Y
FALSE(0) otherwise

(X=Y):=

Some padding may be needed if the length of the local result is not an exact multiple of N.

The following example demonstrates a rough comparison of the two algorithms.

Example 4.2 Comparison of the voting algorithms

Let X1 = X9 = X3 = X4 = 00000 and X5 = 10000, Algorithm 4.1 requires 1 round
of communication, and transmits a total of 25 bits. On the other hand, with Algorithm
4.2, all P’s (i = 1,---,5) broadcast 0, and X = 00000. Thus (Fy,---,F5) = 11110, so
Majority(Fy,---,F5) = 1, and X is the majority voting result. In this case, 2 rounds of
communication are used, and 10 bits (5 bits for X and 5 bits for F) are transmitted.

If X5 = 00001, and all the other X;’s remain same, then with Algorithm 4.2, X = 00001,
which results in (Fi,---, F5) = 00001. Thus Majority(Fy,---,F5) = 0, and the Else part
of the algorithm is executed. Finally, the majority voting result is obtained by voting on
all the X;’s, i.e., X = Majority(Xy,---,X5) = 00000. Now 3 rounds of communication are

needed, and in total, 30 bits (25 bits for the X;’s and 5 bits for F') are transmitted. O

From the above example, it can be observed that
1. Algorithm 4.1 always requires only 1 round of communication, and Algorithm 4.2
requires 2 or 3 rounds of communication;

2. The Else part of Algorithm 4.2 is actually Algorithm 4.1;

53

3. The communication complexity of Algorithm 4.1 is always Nm, but the communica-
tion complexity of Algorithm 4.2 may be m + N or Nm + N, depending on the X;’s;

4. In Algorithm 4.2, by broadcasting and voting on the voting flags, i.e., F;’s, the chance
for getting a false voting result is eliminated.

If the Else part of Algorithm 4.2, i.e., Algorithm 4.1, is not executed too often, then the
communication complexity can be reduced from Nm to m+N, and in most cases, m > N,
thus m + N = m. So the key idea to reduce the communication complexity is to reduce the
probability of executing Algorithm 4.1. In most computing environments, each module has
a low computational error probability p, thus with high probability either (1) all modules
get the same result or (2) only few of them get different results from the rest. In case
(1), Algorithm /.2 has low communication complexity, but in case (2), Algorithm 4.1 is
actually used and the communication complexity is high (i.e., Nm + N). If we can detect
and correct these few inconsistent results, then the FElse part of the Algorithm 4.2 does not
need to be executed, and so the communication complexity can still be low. This detecting

and correcting capability can be achieved by using error-correcting codes.

4.3 The Solution Based on Error-Correcting Codes

Error-correcting codes (ECC) can be used in the voting problem to reduce the communica-
tion complexity. The basic idea is that instead of broadcasting its own computation result
X; directly, the ith module, P;, first encodes its result X; into a codeword Y; of some code,
and then broadcasts one symbol of the codeword to all the other modules. After receiving
all the other symbols of the codeword, it reassembles them into a vector. If all the modules
have the same result, i.e., all the X;’s are equal, then the received vector is the codeword
of the result, thus it can be decoded to retrieve the result. If a majority result exists, i.e.,
Magjority(X1, -+, Xn) # ¢, and there are ¢ (¢ < |5]) modules whose results are different
from the majority result X, then the symbols from all these modules can be regarded as error
symbols with respect to the majority result. As long as the code is designed to correct up
to t errors, these error symbols can be corrected to get the codeword corresponding to the
majority result, thus Algorithm 4.1 does not need to be executed. When the code length
is less than Nm, the communication complexity is reduced compared to Algorithm 4.1. On

the other hand, if only error-detecting codes are used, once errors are detected, Algorithm

54
4.1 still needs to be executed, and thus increases the whole communication complexity of
the voting. Thus error-correcting codes are preferable to error-detecting codes for voting.
By properly choosing the error-correcting codes, the communication complexity can always
be lowered below that of Algorithm 4.1.
But it is possible that no majority result exists, i.e., Majority(Xy,---, Xn) = ¢, yet the
vector that each module gets can still be decoded. As in the example above, introducing

voting flags can avoid this false result.

4.3.1 A Voting Algorithm with ECC

With a properly designed error-correcting code, which can detect up to d error symbols and
correct up to t error symbols (0 < t < d), a complete voting algorithm using this code is as

follows:

Algorithm 4.3 ECC Voting
For Module P;, i € [1: NJ:
Y; := Encode(Xj;), partition Y; into N symbols: Y;[1 : NJ;
Broadcast(Y;[]);
Wait Until Receive All Yj[j],5 € [1: N]\4;
Y :=Yi[1] *--- x YN[N];
If Y is undecodable
Execute Algorithm 4.1 ;
Else
X := Decode(Y);
Fi = (X = X;);
Broadcast(F;);
If Majority(Fy,---,Fy) =TRUE(1)
Return(X);
Else
Execute Algorithm 4.1 ;

Notice that to execute Algorithm 4.1, each module P; does not need to send its whole

result X;. It only needs to send additional N — (d+1t) — 1 symbols of its codeword Y;. Since

55
the code is designed to detect up to d and correct up to t symbols, it can correct up to
d+t erasures, thus the unsent d+t symbols of Y; can be regarded as erasures and recovered;
hence the original X; can be decoded from Y;.
The flow chart of the algorithm given in Figure 4.1 shows the algorithm more clearly.

and the following example shows how the algorithm works.

Yi:= Encode(xi), partitionY
into N symbols

Broadcast(Yj(i)), wait until get
the reassembled vector Y

IsY Decodable ?

X := Decode(Y), F := (X =X)
Broadcast(F)

Majority(F, , ..., Fy) =17 No @

EY (2

Return(X) Execute "Send-All Voting"

Figure 4.1: Flow chart of Algorithm 4.3

Example 4.3 Voting Algorithm 4.3

There are 5 modules in an NMR system, and the task result has 6 bits, i.e., N =5 and
m = 6. Here the EVENODD code[4] is used which divides 6-bit information into 3 symbols
and encode information symbols into a 5-symbol codeword. This code can correct 1 error
symbol, i.e., d =1t = 1.

Now if X; = 000000, 7 = 1,2,3,4, and X5 = 000011, then with the EVENODD code,
Y; = 0000000000, 7 = 1,2,3,4, and Y5 = 0000111101. After each module broadcasts
1 symbol (i.e., 2 bits) of its codeword, the reassembled vector is Y=0000000001. Since
Y has only 1 error symbol, it can be decoded into X=000000. From the flow chart of the
algorithm, we can see that F; = 1,i = 1,2, 3,4, and F5 = 0, thus Majority(Fy,---,F5) =1,

56
so X=000000 is the majority voting result.

In this case, there are 2 rounds of communication, and the communication complexity
is 15 bits. As a comparison, Algorithm 4.1 needs 1 round of communication, and its com-
munication complexity is 30 bits; Algorithm 4.2 needs 3 rounds of communication, and its
communication complexity is 35 bits. In this example, the EVENODD code is used, but
the specific code itself does not affect the communication complexity as long as it has same

properties as the EVENODD code, namely, it is an MDS code withd =¢t=1. O

As can be seen in the flow chart of the algorithm, introducing voting on the F;’s ensures
that it is impossible to reach a false voting result, and going to the Send-All Voting in
the worst case guarantees that the modules reach the majority result if it exists. Thus
the algorithm gives a correct majority voting result. A rigorous correctness proof of the

algorithm follows.

4.3.2 Correctness of the Algorithm

Theorem 4.1 Algorithm 4.3 gives Majority(Xy,---,Xn) for a given set of local compu-
tational results X;’s (i =1,---,N).

Proof: From the flow chart of the algorithm, it is easy to see that the algorithm terminates
in the following two cases:

1. Executing the Send-All Voting algorithm: the correct majority voting result is cer-
tainly reached;

2. Returning an X: in this case, since Majority(Fy,---,Fy) = TRUE(1), i.e., majority
of the X's are equal to X, the correct majority voting result is also reached: X is the
majority result. O

To see how the algorithm works for various instances of the local results X;’s (i =
1,---,N), we give two stronger observations about the algorithm, which also help to analyze

the communication complexity of the algorithm.

Observation 4.1 If Majority(Xy,---,Xn) = ¢, then Algorithm 4.3 outputs ¢, i.e., Al-
gorithm 4.3 never gives a false voting result.

Proof: It is easy to see from the flow chart that after the first round of communication,
each module gets the same voting vector Y. According to the decodability of Y, there are

two cases:

57
1. If Y is undecodable, then the Send-All Voting algorithm is executed, and the output
will be ¢;
2. If Y is decodable, the decoded result X now can be used as a reference result. But
since there does not exist a majority voting result, a majority of the X;’s are not equal to
the X, i.e., Majority(Fy,---,Fn) = FALSE, so the Send-All Voting algorithm is executed,

and the output again will be ¢. O

Observation 4.2 If Majority(Xy,---,Xn) = X(# ¢), then Algorithm 4.3’s output is

exactly X, i.e., Algorithm 3 will not miss the majority voting result.

Proof: Suppose there are e modules whose local results are different from the majority
result X, then e < L%J

1. If e < t, then there are e error symbols in the voting vector Y with respect to the
corresponding codeword of the majority result X, so Y can be correctly decoded into X.
A majority of the X;’s are equal to X, i.e., a majority of the F;’s are 1, hence the correct
majority result X is outputted.

2. If e > t, then Y is either undecodable or incorrectly decoded into another X', where
X' # X. In either case, the Send-All voting algorithm is executed and the correct majority

result X is reached. O

4.3.3 Proper Code Design

In order to reduce the communication complexity, we need an error-correcting code that
can be used in practice for Algorithm 4.3. Consider a block code of length M. Because of
the symmetry among the N modules, M needs to be a multiple of N, i.e., each codeword
consists of N symbols, and each symbol has k bits, thus M = Nk. If the minimum distance
of the code is dyip, then dpip > (d+t)k+ 1, where 0 <t <d < L%J, since the code should
be able to detect up to d error symbols and correct up to ¢ error symbols[19]. Recall that

the final voting result has m bits, the code to design is a (Nk,m, (d + t)k 4+ 1) block code.

To get the smallest value for k, by the Singleton Bound in coding theory[19],
Nk—m+1>(d+t)k+1 (4.1)

we get

o8
Equality holds for all MDS Codes[19].

So, given a specified (d, t), the smallest value for £ is |VN—?(§+t)—|' If N—?}H—t) is an integer,

all MDS Codes can achieve this lower bound of k. One class of commonly used MDS codes

N{(@FD

any (Nk,m, (d + t)k + 1) block code can be used, where k = [m] One example of

this is the BCH code, which can also have arbitrary distances[19]. The exact parameters

for arbitrary distances is the Reed-Solomon code[19]. If is not an integer, then

(k,d,t) can be achieved by shortening (i.e., setting some information symbols to zeros) or
puncturing (deleting some parity symbols) proper codes[19].

Notice that 0 < t < d < %, thus 7 < & < m. In most applications, N < m, thus
the N bits of Fj’s can be neglected, and k£ is approximately the number of the bits that
each module needs to send to get final voting result, so the communication complexity of
Algorithm 4.3 is always lower than that of Algorithm 4.1.

In this chapter, only the communication complexity of voting is considered, since in
many systems, computations for encoding and decoding on individual nodes are much faster
than reliable communications among these nodes; the latter requires rather complicated
data management in different communication stacks and retransmission of packets between
distributed nodes when packet loss occurs. However, in real applications, design of proper
codes should also make the encoding and decoding of the codes as computationally efficient
as possible. When the distances of codes are relatively small, as in most applications when
the error probability p is relatively low, more computationally-efficient MDS codes should

be used, such as the X-Code or the B-Code discussed in the previous chapters.

4.4 Communication Complexity Analysis

4.4.1 Main Results

From the flow chart of Algorithm 4.3, we can see if the algorithm terminates in Branch 1,
i.e., the algorithm gets a majority result, then the communication complexity is N(k + 1);
if it terminates in Branch 2, then the communication complexity is N (m + 1); finally if the
algorithm terminates in Branch 3, the communication complexity is Nm. Thus the worst
case communication complexity Cy, is N(m + 1). When m > 1, C, ® Nm.

Let C, denote the average case communication complexity of Algorithm 4.3, and define

the average reduction factor « as the ratio of C, over the communication complexity of the

99

Co
Nm

Send-All Voting algorithm, i.e. o = . The following theorem gives the relation between

« and the parameters of both an NMR system and the corresponding code:

Theorem 4.2 For an NMR system with N modules, each of which executes an identical
task whose result is m-bits long. Assume each module has computational error probability
p, independent of other modules’ activities. If Algorithm 4.3 uses an ECC which can detect
up to d and correct up to t error symbols, and m > N > 1, then the following relation holds

for the average reduction factor of Algorithm 4.3:

P 1
- 1 - P — 4.3
a<N—(d+t)+(1)+m (4.3)
where
t N))
r=1 |pPa-p" (4.4)
i=0)

Proof: To get the average case communication complexity C, of Algorithm 4.3, we need
to analyze the probability F; of the algorithm terminating in the Branch 4, 1 = 1,2,3. First
assume that if a module has an erroneous result X;, then it contributes an error symbol
to the voting vector Y. From the proof of Observation 2, if the algorithm terminates in
Branch 1, then at most ¢ modules have computational errors; the probability of this event
is exactly P;. The event that the algorithm reaches Branch 2 corresponds to the decoder

error event of a code with minimum distance of d+t+1, thus[19]

5]

N
Po= Y A) Py (4.5)
k=0

i=d+t+1
where {A4;} is the weight distribution of the code being used, and Pj is the probability that
a received vector Y is exactly Hamming distance k away from a weight-i (binary) codeword
of the code. More precisely,

k - .
) N —1) . .)
= " T PR -)N (4.6)

60

If the weight distribution of the code is unknown, P, can be approximately bounded by

|4t)
- N 7 N—i
B<1-3 | |p(l-p) (4.7)
=0 2

since the second term in the right side of the inequality above is just the probability of event

that correctable errors occur. Finally Ps is the probability of the decoder failure event,
Ps=1-P - P (4.8)

Now notice that a module with an erroneous result can also contribute a correct symbol to

the voting vector, so the average case communication complexity is
Ca S PlN(k‘+ 1) +P2N(m+ 1) +P3N’ITL (49)

and the average reduction factor is

k P+ P
a< Sp 4 (1—P)+ 1t (4.10)
m m

By noticing that k& = [W], and P; + P, < 1, we get the result of Eq. (4.3). O

Remarks on the theorem : From Eq. (4.3), we can see the relation between the average
reduction factor « and each branch of Algorithm 4.3. The first term relates to the first
branch, whose reduction factor is %, or m when m is large enough relative to IV that
the round-off error can be neglected; P; is the probability of that branch. One would expect
this term to be the dominant one for «, since with a properly designed code tuned to the
system, the algorithm is supposed to terminate at Branch 1 in most cases. The second term
is simply the probability that the algorithm terminates at either Branch 2 or Branch 3; in
this case the reduction factor is 1 (i.e., there is no communication reduction since all the
local results are transmitted), without considering the 1 bit for F;’s in Branch 2. The last

term is due to the 1 bit for voting on F;’s. When the local result size is large enough, i.e.,

m > 1, this 1 bit can be neglected in our model. Thus in most applications, the assumption

61

that m > 1 is quite reasonable, and the result of the theorem can be simplified to

~ P

From the above theorem and its proof, it can be seen that for a given NMR system (i.e.,
N and p), P is only a function of . Once ¢ is chosen, it is easy to see from Eq. (4.3) or
Eq. (4.11) that o decreases monotonically as d decreases. Recall that 0 < ¢ < d, thus for a
fixed ¢, setting d = ¢t minimizes o when m > 1. Even though it is not straightforward to
get a closed form solution for the value of ¢ which minimizes «, it is almost trivial to get
such an optimal £ by numerical calculation.

Figure 4.2 shows relationship between « and (¢,p, N). Figure 4.2(a) and Figure 4.2(b)
show how « (using Eq. (4.11)) changes with ¢ for some fixed (N,p) and d = ¢. It is
easy to see that for small p and reasonable N, a small ¢ (e.g., t < 2, for N < 51 with
p = 0.01) can achieve minimal cr. These results show that for a highly reliable NMR system
(e.g., p < 0.01), adding a small amount of redundancy to the local results and applying
error-correcting codes to them can drastically reduce the communication complexity of the
majority voting. Since the majority result is m bits long, and each module gets an identical
result after voting, the communication complexity of the voting problem is at least m bits,

1

thus a > %, i.e., % is a lower bound of . Figure 4.2c shows how close Algorithm 4.3 comes

to achieving the theoretical lower bound of a.

(a) a vs. t for different p with fixed N =31 (b) « vs. t for different N with fixed p = 0.01 (¢) Minimum « vs. N

=11 | L
=31 x x p=00
=51 p=.01

O lower bound
5

Figure 4.2: Relations between « and (¢, p, N)

62
4.4.2 More Observations

From the above results, we can see that the communication complexity of Algorithm 4.3 is
determined by the code design parameters (d,t). In an NMR system with N modules, we
only need to consider the case where at most L%J modules have local results different from
the majority result, thus the only constraint of (d,t) is 0 <t <d < L%J For some specific
values of (d,t), the algorithm reduces to the following cases:

1. Whend =1t = %, i.e., a repetition code is used, the algorithm becomes Algorithm
4.1. Since a repetition code is always the worst code in terms of redundancy, it should
always be avoided for reducing the communication complexity of voting. On the other
hand, when d=t=0: the algorithm becomes Algorithm 4.2, and from Figure 4.2, we can
see that for small enough p and reasonable N, e.g., p = 1075 and N = 31, Algorithm 4.2
actually is the best solution of the majority voting problem in terms of the communication
complexity. In addition, Algorithm 4.2 has low computational complexity since it does not
need any complex encoding or decoding operations. Thus the ECC voting algorithm is a
generalized voting algorithm, and its communication complexity is determined by the code
chosen.

2. t = 0, then the code only has detecting capability, but if m > N, then the analysis
above shows increasing d actually makes « increase. Thus, when m > N, it is not good
to add redundancy to the local results just for error detecting, i.e., using only EDCs (error
detecting codes) does not help to reduce the communication complexity of voting. The
scheme proposed in [21] (d = [4]) falls under this category.

3. d= L%J as above, it is not good in general to have d > t in terms of «, since
increasing d will increase « for fixed t. But in this case, Algorithm 4.3 has a special property:
Branch 2 of the algorithm can declare there is no majority result directly, without executing
the Send-All Voting algorithm, because the code now can detect up to L%J errors. So if
there was a majority result, then Y (refer to Figure 4.1) can have at most | 4] erroneous
modules, and since Y is decodable, the majority of the local results should agree with the
decoded result X, i.e., Majority(Fy,---,Fn) = TRUE(1). This differs from the actual
Magjority(Fy,---, Fxn), so there is no majority result. By setting d to L%J, Algorithm 4.3
always has 2 rounds of communication and the worst case communication complexity is thus

Nm instead of N(m + 1). This achieves the lower bound of the worst case communication

63

complexity of the distributed majority voting problem[21].

4.5 Experimental Results

In this section, we show some experimental results of the three voting algorithms discussed
above. The experiments are performed on a cluster of Intel Pentium/Linux-2.0.7 nodes
connected via a 100 Mbps Ethernet. Reliable communication is implemented by a simple
improved UDP scheme: whenever there is a packet loss, the voting operation is considered a
failure and is redone from the beginning. By choosing suitable packet size, there is virtually
no packet loss using UDP.

To examine the real performance of the above three voting algorithms, N nodes vote on
a result of length m using all three voting algorithms. For the ECC Voting algorithm, an
EVENODD Code is used, which corrects 1 error symbol, i.e., d = t = 1. Random errors
are added to local computing results with a preassigned error probability p, independent of
results at other nodes in the NMR system. The performance is evaluated by two parameters
for each algorithm: the total time to complete the voting operation 7' and the communica-
tion time for the voting operation C'. The maximum 7" and C of the whole NMR system are
chosen from among all the local T”s and C's,, since if the voting operation is considered a
collective operation, the system’s performance is determined by the worst local performance
in the system. For each set of NMR system parameters (N nodes and error probability p),
each voting operation is done 200 times, and random computation errors in each run are
independent of those in other runs. The arithmetic average of C’s and 7T”s are regarded as
the performance parameters for the tested NMR system.

Experimental results are shown in Figures 4.3 through 4.5. Figure 4.3 compares the
experimental average reduction factors of the voting algorithms with the theoretical results
in the previous section, for an NMR system of 5 nodes. Figure 4.4 shows the performance (T
and C) of the voting algorithms. Detailed communication patterns of the voting algorithms
are shown in Figure 4.5 to provide some deeper insight into the voting algorithms.

Figure 4.3(a) and Figure 4.3(b) show the experimental average reduction factors of
the voting communication time (C) for the Simple Send-Part Voting algorithm and the
ECC Voting algorithm. Figure 4.3(a) and Figure 4.3(b) also show the theoretical average
reduction factors of the Algorithm 4.2 and 4.3 as computed from Eq. (4.11). Notice that the

64
average communication time reduction factors a of both Algorithm 4.2 and Algorithm 4.3 are
below 1 for all the result sizes greater than 1 Kbyte, Also notice that as the computational

result size increases, the reduction factor approaches the theoretical bound.

(a) error probability p = 0.01 (b) error probability p = 0.1

18

16

141 —C2 el

—=—C(3) \ ——c@
o(2) \

12 1 a3)

—=—C(3)

o(2)

(3)

average reduction factor o
average reduction factor o

v\ _oe—a 02

N

02 | hd

1 10 100 1000 1 1000

10 100
. . computing result size m (Kbtye
computing result size m (Kbyte) puting (Kbtye)

Figure 4.3: Average reduction factors

(C(7) is the experimental average reduction factor of communication time for voting using algorithm 4.1, and a(i)
is the theoretical bound of the average communication reduction factor using algorithm 4.1, i = 2, 3)

Figure 4.4 shows the performance of each voting algorithm applied to an NMR system
of 5 nodes. Figure 4.4(a)(b) show the total voting time 7" and Figure 4.4(c)(d) show the
communication time C for voting. The only different parameter of the NMR systems
related to Figures (a) and (b) (symmetrically (c) and (d)) is the error probability p: p = 0.1
in Figures (a) and (c), while p = 0.01 in Figures (b) and (d). It is easy to see from the
figures that for Algorithm 4.1 (Send-All Voting), T and C are the same, since there is no
local computation other than communication. Figures 4.4(a)(b) show that Algorithms 4.2
(Simple Send-Part Voting) and 4.3 (ECC Voting) perform better than the Algorithm 4.1
(Send-All Voting) in terms of the total voting time 7. On the other hand, Figures 4.4(c)(d)
show that, in terms of the communication complexity C', the ECC Voting algorithm is better
than the Simple Send-Part Voting algorithm when the error probability is relatively large
(Figure 4.4(c)) and worse than the Simple Send-Part Voting algorithm when the error
probability is relatively small (Figure 4.4(d)), which is consistent with the analysis results

in the previous section.

65

In the analysis in the previous section, the size m of local computing result does not
show up as a variable in the average reduction factor function «, since the communication
complexity is considered to be only proportional to the size of the messages that need to
be broadcast. But practically, communication time is not proportional to message size,
since startup time of communication also needs to be included. More specifically, in the
Ethernet environment, since the maximum packet size of each physical send (broadcast)
operation is limited by the physical ethernet, communication completion time becomes a
more complicated function of the message size. Thus from the experimental results, it
can be seen that for a computing result of small size, e.g., 1 Kbyte, the Send-All Voting
algorithm actually performs best in terms of both C and T, since the startup time dominates
the performance of communication. Also, the communication time for broadcasting the
1-bit wvoting flags cannot be neglected as analyzed in the previous section, particularly
for a computational result of small size. This can also be seen from the detailed voting
communication time pattern in Figures 4.5(a)(b): round 2 of the communication is for the
1-bit wvoting flag; even though it finishes in much more shorter time than round 1, it is
still not negligibly small. This explains the fact that for small size computing results, the
average communication time reduction factors of Algorithm 4.2 and Algorithm 4.3 are quite
different from their theoretical bound.

Further examination of the detailed communication time pattern of voting provides a
deeper insight into Algorithm 4.3. From Figures 4.5(c)(d), it is easy to see that in the
first round of communication, Algorithm 4.2 needs less time than Algorithm 4.3, since the
size of the message to be broadcast is smaller for Algorithm 4.2. Also, the first round of
communication time does not vary with the error probability p for the either algorithm.
The real difference between the two algorithms lies in the third round of communication.
From Figure 4.5(c), this time is small for the both algorithms since the error probability
p is small (0.01). But as the error probability p increases to 0.1, as shown in Figure
4.5(d), for Algorithm 4.2, the third round time increases to more than the first round time,
since it has no error-correcting capability. Once a full message needs to be broadcast, the
message size is much bigger than that in the first round. On the other hand, though the
communication time for the third round also increases for Algorithm 4.3, it is still much
smaller than in the first round; this comes from the error-correcting codes that Algorithm

4.8 uses, which can correct the most frequently occurring error pattern: errors at a single

66
computing node. Thus, even though the computation error probability is high, in most
cases, the most expensive third round of communication can be avoided. Thus Algorithm
4.3 performs better (in terms of communication complexity or time) than Algorithm 4.2 in

high error probability systems, just as the analysis in the previous section predicted.

4.6 Summary

We have proposed a deterministic distributed voting algorithm using error-correcting codes
to reduce the communication complexity of the voting problem in NMR systems. We have
also given a detailed theoretical analysis of the algorithm. By choosing the design param-
eters (d,t) of the error-correcting code, the algorithm can achieve a low communication
complexity, which is quite close to its theoretical lower bound. We have also implemented
the voting algorithm over a network of workstations, and the experimental performance re-
sults match the theoretical analysis well. The algorithm proposed here needs 2 or 3 rounds
of communication. It is left as an open problem whether there is an algorithm for the
distributed majority voting problem with average case communication complexity less than

Nm using only 1 round of communication.

voiting time (sec)

67

(a) error probability p = 0.01 (b) error probability p = 0.1
10 10
1]
n n
D D
w w
f<5) <5
£ £ oa
= =
= g
g g
0.01 +
0.001 0.001
1 10 . 100 1000 1 10 100
computing result size m (Kbyte) computing result size m (Kbyte)
(c) error probability p =0.01 (d) error probability p = 0.1

10

1000

10

voting time (sec)

0.001

0.001

10 100 1000 1 10 100
computing result size m (Kbyte) computing result size m (Kbyte)

Figure 4.4: Experimental voting performance of 5-node NMR system

(T () and C(i) are the total and communication time for voting using algorithm 4.i respectively, i = 1,2, 3)

1000

voting time (sec)

voting time (sec)

0.1

0.001

0.0001

0.001

0.0001

(a) error probability p = 0.01

—— R1(3)
—=— R2(3)

e R1(2)

R2(2)

(c) error probability p = 0.01

10 100
computing result size m (Kbyte)

1000

—— R1(3)
—=— R3(3)
e R1(2)
R3(2)

J

VAN

1

o 100
computing result size m (Kbyte)

1000

68

voting time (sec)

voting time (sec)

0.1

0.001 —+—

0.0001

0.1

0.01 -~

0.001

0.0001

(b) error probability p = 0.1

—— R1(3)
—=— R2(3)
— R1(2)
R2(2)

10 100
computing result size m (Kbyte)

(d) error probability p = 0.1

1000

—~— R1(3)
—=— R3(3)
e R1(2)

R3(2)

10 100
computing result size m (Kbyte)

Figure 4.5: Detailed communication time pattern of voting

(Ri(k) is the communication time in round 7 using the voting algorithm 4.k, i = 1,2,3, and k = 2, 3)

1000

69

Chapter 5 Improving the Performance of Data Servers

5.1 Introduction

It has become common to use a cluster of distributed computing nodes in server systems,
such as image servers, video servers, multimedia servers, and web servers, all of which can
be regarded as specific kinds of the more general concept of data servers. Distributed server
systems can improve both data reliability (or availability) and performance (or efficiency,
i.e., data throughput) of the system. Much research, such as the well known k-out-of-n
systems|[3], has been done to improve reliability by introducing data redundancy or infor-
mation dispersity[27] into systems.

In a real system, although the redundant data enables the system to provide continuous
service when certain failures (communication link failures, server node failures) occur, most
of the time the system works in a normal mode, i.e., there is no failure in the system; in
this case data redundancy can be used to improve the performance of the system. It was
first shown in [11] that redundant data can make packet routing more efficient by reducing
the mean and variance of the routing delay. Recently, more scalable and efficient reliable
multicast schemes have also been proposed based on data redundancy in the messages to
be multicast[14].

In this chapter, we propose a method based on error-correcting codes for improving
the performance of services in general data server systems. Our system setup is shown in
Figure 5.1: a cluster of servers is connected via some reliable communication network. In
addition, broadcast is supported over the network, so that a client can broadcast its request
for certain data to some or all of the n servers in the system. The data is distributed over
the servers in such a way that a client can recover the complete requested data after it gets
data from at least &k of the n servers and this is true for any k servers. Such a distributed
data server system is called an (n, k) server system in this chapter. Again, such (n,k)

systems can be implemented by using error-correcting codes, particularly MDS array codes.

For a data server system, since the I/O speed of the local disks is much slower than

70

Client

Reliable
Communication

Network

[

Server 1 Server 2 Server k Server n

Figure 5.1: An (n, k) server system

the CPU speed of the servers, the whole performance of the system is dominated by the
bottleneck of the disks. Distributing data over multiple servers can help overcome this
bottleneck and improve the data throughput of the whole system, since the data can be
accessed in parallel from multiple servers at the same time. For a server system with
n servers, the system performance can be further improved by introducing proper data
redundancy into the system, i.e., an (n,k) system should be properly chosen instead of
naively distributing the raw data over all the n servers. This was shown in Example 1.5 and
Example 1.6 in Chapter 1. What is the proper redundancy when the total number of the
servers is given? Or how should k be determined when n is given, in order to achieve the
best system performance? This is the so-called data distribution problem at the server side,
which will be discussed in detail later in this chapter. Also, as already discussed in Example
1.7 in Chapter 1, there is another problem called the data acquisition at the client side: that
once data redundancy is properly distributed among the servers, how should matching read
approaches be chosen to optimize the mean service time? This problem will be also explored
in this chapter. The main contribution of this chapter is to propose data distribution and
acquisition schemes for a given server system that improve the system performance.

This chapter is organized as follows. Section 5.2 first describes a probability model of
distributed server systems, then gives analytical results about the service time of a general
distributed data server system. In Section 5.3, experimental results are used to create a
probability model for service time in a practical disk-based data server system. The data
distribution and data acquisition schemes are discussed in more detail in Section 5.4. Section

5.5 concludes the chapter and proposes a future research direction.

71

5.2 Preliminary Analysis

Before we consider other problems, we first define a server system model we will be using.
Then we give some basic analytical results that can be used further to solve the data

distribution and data acquisition problems.

5.2.1 System Model

In this chapter, a distributed server system consists of n servers. A client can broadcast
its request for certain data to all the servers. All communications among the client and
servers are reliable, i.e., there is no packet loss, order change or content corruption. Each
server stores a portion of the requested data in such a way that the client can recover its
requested data after it receives data from at least k (k < n) out of the n servers. Define the
service time T; of the server 7 (1 <14 < n) to be the elapsed time from when the client sends
its request to the server ¢+ to when it receives data from the server 7. Notice that T; does
not include the time needed at the client side to do any necessary computations to recover
the final data, since here we assume that the computations are rather simple and thus
take much less time than does the data delivery through communication media. We model
T; as a continuous random variable with probability density function (pdf) f;(¢)[23]. For
simplicity of analysis, we assume that all T;s are i.i.d (independent, identically distributed)

random variables, i.e., fi(t) = f(t), 1 <i < mn.

5.2.2 Analysis Results

Let Fj(t) be the cumulative distribution function (cdf) of T;, i.e.[23],
t
Fi(t) = Probability(T; < t) = / fi(x)dz
0

Now let T'(n, k) be the elapsed time from when the client broadcasts its data request to the
servers to when it receives data from at least k out of the n servers. Then T'(n, k) is another

random variable and is a simple function of all the T;s:
T(n,k) >T;, where |[{i}| >k

In the above equation, ||.S|| is the number of the elements in the set S.

72
Let fnk)(t) and F, ;y(t) be the pdf and cdf of T'(n, k) respectively, then it is easy to
relate Fi,, 1)(t) and f(,) (t) to F(t) and f(t) [11]:

n

Fup () =) () F@)'[L = F@)"™ (5.1)
i=k
or [11][32]:
Fnan(®) = T _ oy paye 11— B0 (5.2

The mean of T'(n, k), E[T (n, k)], is a good measurement of the server system’s performance.

It can be calculated once the f(,)(t) is known:

E[T(n, k)] = /0 o (D)t (5.3)

5.2.3 Properties of Mean Service Time

Though it is usually hard to get a clean closed form of E[T'(n, k)] for a general pdf f(t), it
is still possible to get some of its properties with respect to n and k. Intuitively, for a fixed
pdf f(¢), a bigger n and/or a smaller k leads to a smaller E[T'(n, k)] and this can be proven
mathematically.

Before we discuss properties of the E[T(n, k)], we give a lemma which can be used to

prove the properties.

Lemma 5.1 Let two continuous random variables X and Y be defined on [a,b] with cdf’s
Fx(t) and Fy(t) respectively. If Fx(t) > Fy(t), for all t, a <t < b, and Fx # Fy, i.e.,
the pdf of X is left of that of Y, then E[X]| < E[Y]. O

Proof: Notice that Fx(b) = Fy (b) = 1 and Fx(a) = Fy(a) =0, then
E[X] = B[Y] = [, tdFx (1) = [} tdFy (t) = [tFx (1) = [} Fx ())dt] = [tFy (D) — [, Fy (t)dt]
= t[Fx(t) = Fy ()]} — [J[Fx (£) = Fy (8)]dt = — [, (Fx (t) = Fy (£))dt < 0. D
It has been shown in [27] that

Lemma 5.2 For a random variable T with o fized pdf f(t), the following inequalities hold
for 1 <k <n and for 0 < F(t) < 1:

1. Fn g (t) < Flngmp)(t), for m > 1;

73
2. Flupy(t) > Fprm) (1), for m > 1;

3. F(n,k) (t) > F(n—l—m,k—l—m) (t)7 form >1;
4o Fijy(#) < Fp(t), if n > 1 and k < j, equality holds only when n =i and k = j;

5. F(i,j)(t) > F(n,lc)(t)7 fn>1, k>7andn—k<i—j.

Using the two lemmas, it is straight forward to get the following properties of the mean

of the service time:

Theorem 5.1 For a random variable T with a fized pdf f(t), the following inequalities hold
for 1 <k <n:

1. E[T(n,k)] > E[T(n 4+ m,k)], form > 1;

2. E[T(n,k)] < E[T(n,k +m)], form > 1;

3. E[T(n,k)] < E[T(n+ m,k+m)], form>1;

4. E[T(i,7)] > E[T(n,k)], if n >4 and k < j, equality holds only when n =i and k = j;

5. E[T(i,7)] < E[T(n, k)], ifn >4, k>jandn—k<i—j.

We will use these properties as guidelines in Section 5.4 for the data distribution. One
would hope that the variances of random variables also had the similar properties. Unfor-
tunately, however, the above properties do not hold for the variances. We will show one

example about the variances and one more property of the E[T(n, k)].

Lemma 5.3 Let two continuous random variables X and Y be defined on [a,b] with pdf’s
f(t) and g(t), respectively. If f(t) = gla+b—t), for allt, a <t <b, i.e., f(t) is the reflection
of g(t) about the line t = £ then E(X) =a+b— E(Y), and Var(X) = Var(Y), where
Var(X) and Var(Y) are the variances of X and Y. O

Proof: Straight forward, omitted.

74
Lemma 5.4 If the pdf f(t) of a random variable T defined on [a,b] is symmetric or self-
reflective about the linet = X2 i.e., f(t) = f(a+b—t), then fne)®) = frnng1—k)(a+b—1).

a

Proof: First, it is easy to show that if f(¢) = f(a + b —t), then

Ft)=1—F(a+b—1t) (5.4)
Using Eq.(5.2), Eq.(5.4) and the identity & (}) = (n + 1 — k) (nﬁ—k)v we can get
fomir—ry(@a+b—1) = (n+1—k) (o, 7_4) Fla+b—8)""*[1 = Fla+b—1)]*"f(a+b—1)

ie.,

Fnnti-my(a+b—1) =k @) [L = FOI" " F@&)* 1 (t) = finm ()

This lemma shows that if T’s pdf is symmetric, then there is also symmetry between
T(n,k) and T(n,n+ 1 —k): their pdfs are reflections of each other. The above two lemmas

lead to following theorem:

Theorem 5.2 If the pdf f(t) of a random variable T, defined on [a,b] is symmetric about
the line t = 2t i.e., f(t) = f(a+b—1), then E[T(n,n+1—k)] = a+b— E[T(n,k)], and
Var[T(n, k)] =VarT(n,n+1—k)]. O

Here we see an example where the monotonicity of E[T'(n, k)] with respect to n or k does

not hold for Var[T(n, k)].

5.3 Server Performance Model

From Eq.(5.2) and Eq.(5.3), E[T'(n, k)] is a function of the pdf f(¢) of an individual server’s
data service time. The goal of the data distribution and data acquisition problem is to
reduce E[T(n,k)] under various conditions. Before we analyze the data distribution and

data acquisition problem, it is necessary to establish some model of f(t).

75

5.3.1 Abstraction from Experiments

The data service time T depends on many factors in a practical server system, such as
computing power (i.e., CPU speed) of the servers and the client, local disk I/O speed of
the servers and bandwidth and latency of the communication medium (usually including
a reliable communication software layer) connecting the servers and the client. A model
considering all the factors will be fairly complex. In this chapter, we will try to model the
data service time as a simple probability distribution, that can be analyzed rather easily,
and yet can approximate the real data service time closely. Such a model will be abstracted
from experimental results of a real data server system.

Our experimental server system consists of several servers, which are PCs running Linux.
Each server has data stored on its local hard disk. Data is accessed via the Linux file system.
The client is also a PC running the same Linux. The nodes are connected via Myrinet
switches. A sliding window protocol is used to ensure reliable communication. Experiments
are conducted in such a real system to measure the service time for data of different sizes.
The procedure of the experiment is as follows: (1) the client sends a request for a certain
amount of data to a server; (2) the server reads the data from its local disk and sends
it to the client through the reliable communication layer; (3) the data is delivered to the
client through the reliable communication layer. The data service time is measured from
the instant that the client finishes sending its request to the instant that the client gets the
data. We run the above procedure a few thousand times for data of a given size, and get the
service time pdf according to the observed frequencies of different ranges of service time.
Figure 5.2 shows empirical service time pdfs for data sizes (a) 32 Kbytes, (b) 320 Kbytes
and (c) 3200 Kbytes.

The effective data bandwidths in this experiments are quite low, since they are the
concatenation of the local disk bandwidth and the reliable communication layer bandwidth.
But the shapes of the bandwidth pdfs are more interesting. The experiment results show
that the shapes of empirical pdfs of different data size can be approximated by the same
distribution. A closer look shows that the width of the distribution base is approximately
proportional to the data size. More complex distributions, such as the Gamma distribution
or the Beta distribution, might give more accuracy. But to simplify the analysis, that

follows, we will regard the data service time T as a random variable defined on [a,b] (a

76

1600)
1400)
1200]
1000
5
|3
800
600

40

20

‘g“‘“ \ 1000)
\ 80

\ g o)
\ 0

0

\

\
\
\

/ \
/ \

— I I I i

L

00155

(a) data size = 32Kbytes

L
0016

I I
00165 0017 00175
Senvice Time (secs)

Figure 5.2: Empirical pdfs of service time for data of different sizes

0“124 0145 015 01285 0126 01265 0127 01275 0128

Senvice Time (secs)

(b) data size = 320K bytes

160

140

10

/

/

/
|

\
\

\
\
L

\

P

I I
i‘lB 1165 12 1205 120 1215 12 125 128 1235 14
Senvice Time (secs)

(c) data size = 3200K bytes

and b are two parameters of a real system), which follows a triangular distribution, denoted

Trla,b|:

ot astsep
e <t<h

2(t—a)? a+b

(b—a)2 a S t S 2
Z(bft)Q a+b

1 b Z <t<b

(5.5)

(5.6)

One explanation for this model is as follows: in a real system, data is delivered in

packets of some small size. The delivery time of the ith packet is a random variable ¢;,

whose probability distribution can be characterized by a uniform distribution over some

time span; the t;’s are assumed to be i.i.d. random variables. Then the service time T of

the whole data is: T" = s + >, t;, where s is another uniform random variable describing

the setup (or overhead) time for sending a certain amount of data. Thus the pdf of T is a

Gaussian-like function, whose base width is approximately proportional to the number of

the packets in the data, which in turn is proportional to the data size. For simplicity, we

approximate the Gaussian-like function by a suitable triangular function. The distributions

are shown in Figure 5.3.

77

Figure 5.3: Probability distributions of data service time of (a) single packet, (b) the whole
data, (c) the approximation with 7'r[a, b]

5.3.2 Verification with T(n,1)

Intuitively, having more servers should provide better performance when the amount of data
stored on each server is fixed, i.e., E[T(n, k)] decreases as n increases and/or k decreases.
We can get pdfs of the T'(n, k) for a data server system by evaluating Eq.(5.2) for the service
time distribution in Eq.(5.5) and Eq.(5.6). Figure 5.4(a) shows the pdfs of T'(n, 1), where
1 <n <3 and T is of the triangular distribution 7'r[1,2]. Here we can see the pdf of T'(n, k)
shifts left as n increases.

To further verify the properties of E[T'(n, k)], simple experiments to measure T'(n,1)
were done on the experimental server system described in previous subsection. The system
consists of three servers. In order to remove other factors that also affect data service time,
such as contention in the communication medium (including the reliable communication
layer, which is a bottleneck if we use a single client which communicates with the three
servers), we use three clients, each of which is served by a separate server. Conceptually
the three clients are regarded as a single client, thus the whole data service time is the
minimum of the three individual service time of the server-client pairs. Figure 5.4(b) shows
the service times (T4, T5, and T3) of the three individual server-client pairs for 3200 Kbytes
data each. Since the variance among the three pairs is bigger than the variance within each

pair, the whole service time (7},;,), which is the minimum of the three, is determined by

78

2.5

0.5 —

160 —

120 —

100 -

pof

60 —

20 —

0o+
0o+

120 |-
B 100 |-
80 -
60 [

a0

=
L 6w¢®ﬁam?\®mmmm@mmmm
1.2 1.205 1.21 1.215 1.22 1.225 1.23 1.235 1.24

Figure 5.4: pdfs of T'(n,1): (a) analytical result, where the pdf of T" is T'r[1, 2], and experi-
mental service time for data of size 3200 Kbytes, where (b) no other loads on the servers,
and (c) other random loads on the servers

79

the service time of the best client-server pair as can be seen in the experimental results. In
this case, the pdf of T}y, is very close to that of 7. To make the experimental results more
interesting, some random loads are added to each server, so that the variance among the
three client-server pairs is less than the variance within each pair, i.e., each pair behaves
more similarly. The service times of three individual pairs (71,75, and T3) and the whole
service time (T),;,) are shown in Figure 5.4(c). Of those four pdfs (Ty,in, 11,12 and T3),
that of T}y, is the leftmost, which supports the analytical properties of T'(n, k) and the pdf
model of T'.

5.4 Design An Efficient System

The performance of a server system with redundancy can be improved in two dimensions:
(1) given the total number of the servers in the system, data can be distributed wisely
among the servers so that the overall service time servers is minimized. This is the data
distribution problem, which consists of determining k& and choosing proper MDS array codes
accordingly; (2) once the data distribution is set, data should be read from servers wisely
so that the whole service time is minimized. This is the data acquisition problem.

The data distribution problem is at the servers’ side, while the data acquisition prob-
lem is at the client’s side. Because of the properties of E[T'(n, k)], the two problems are

uncorrelated, thus they can be dealt with separately.

5.4.1 Data Distribution Scheme

In a server system, with a given total number of servers, n, we need to determine the number
k of the servers which store the raw data in order to maximize the performance of the whole
system (i.e., to minimize the mean service time of client’s data request); given k, the rest
of the servers can store the redundant data. When n and the pdf f(t) are fixed, E[T(n, k)]
decreases monotonically as k decreases. This means that in order to make E[T'(n, k)] small,
k should be as small as possible. On the other hand, however, the smaller k is, the more
data needs to be stored on each server, since the total amount of the data a client needs is
always fixed; this means higher service time from each server. Our goal is to find such a &
that when both sides of the problem are considered, E[T'(n, k)] is minimized.

After the parameter k is determined, in order to achieve optimal performance in terms

80
of E[T(n, k)], we can use MDS array codes to distribute the redundant data so that data
from any k servers can be assembled to form the whole of the requested data, as was
shown in the introduction. Now the remaining problem is to determine k£ to minimize
E[T(n,k)]. Applying the pdf model of each server’s service time, T', and using MDS codes
for distributing the redundant data, we get that if the pdf of T" is T'r[a, b] when k=1, then for
general k, the corresponding pdfis T'r[¢, %], since the base width of the pdf is proportional

to the data size. Theoretically, the optimal k£ can be calculated as follows:
Emin = argmink/ k() F@)F 1 — F@)] " tf(t)dt (5.7)
0

where f(t) and F(t) are as in Eq.(5.5) and Eq.(5.6), except that a and b should be replaced
by % and % respectively. Notice that ky,;, is a function of the entire pdf f(¢), not only the
mean E(T) and the variance Var[T].

Even for a simple pdf such as T'r[a,], the above equation can not be solved in closed
form. But in practice, the system parameters a and b can be determined by experiments,
then the above equation can be solved numerically. Figure 5.5 gives several examples of
solving the above equation. In the examples, ¢« = 1 and b = 5. For n = 10, 20, and 40,
E[T(n,k)] is calculated for 1 < k < n. The results are shown in Figure5.5(a)(b)(c), where
(b) and (c) only show the last few values for k, since for small k, E[T(n,k)] decreases
monotonically as k increases. From the results, we can see (a) ki, = 10, when n = 10, (b)
Emin = 19, when n = 20, and (c) kpin = 37, when n = 40.

Even though the above examples use specific pdfs, the same method also apply with
other pdfs by plugging suitable f(¢) into Eq.(5.7). Thus, for a given server system, such a
Emin can always be found. Proper MDS array codes can then be used based on the (n, k)

pair. Thus we get an optimal data distribution scheme for a given server system.

5.4.2 Data Acquisition Scheme

Once the data distribution scheme is set, i.e., k is determined and the proper MDS array
code is chosen, the client needs to decide how to request (or read) data. In general, a client
should send its request to as many servers as possible and also make the amount of data
it needs from each server as small as possible, since the properties of E[T'(n, k)] show that

more redundancy brings better performance. For a specific distribution scheme, the client

81

E[T(10,K)] (Mean of Service Time)

0.245)
024
F 0.235)
]
2

5
§
90z

M

E[T(20,1)] (Mean o

0215)

021]

0.205)

0118

0.117]

e Time)

8o119

an of Servi

£0115

EIT(40.K)] (Me:

0113

0112

0111

I I I I I I I I I
NN ¥ OB X B B ¥ B WM
K

(¢c) n =40

Figure 5.5: E[T'(n, k)] vs. k for different n, where a = 1 and b =5

needs to calculate the pdfs of all possible data read schemes, and then choose an optimal
read scheme. Since the read schemes are closely related to the MDS array code being used,
here we will give an example using a specific code to show the guidelines for choosing an
optimal read scheme.

In this example, the server system has 2n servers, and the data that the client requests
can be assembled from any 2n — 2 servers, i.e., this is a (2n,2n — 2) system. The B-Code in
Chapter 3 can be used to implement this system. The data distribution using the B-Code
is as follows: (1) the whole raw (information) data is partitioned into 2n(n — 1) blocks of
equal size (some paddings are added if necessary); (2) each of the 2n servers stores n — 1
blocks of the data; (3) 2n blocks of redundant (or parity) data are calculated according to
the encoding rules of the B-Code, i.e., each parity block is an XOR of suitable 2n — 2 raw
data blocks, and then each server stores 1 parity block. The structure of the B-Code is
shown in Figure 3.2 in Chapter 3.

The MDS property of the B-Code gives 3 schemes for reconstructing the whole raw data
from the data stored on 2n servers, each of which has n — 1 blocks of raw data and 1 block
of parity data: (1) read from all of the 2n servers, each of which sends its n — 1 blocks of
raw data; (2) read from any 2n — 2 servers, each of which sends all of its n blocks of data

(including raw and parity data); (3) read from all of the 2n servers, each of which sends all

82
of its n blocks of data. The 3 schemes are shown in Figure 5.6, where the shaded parts are

the data to read.

2n 2n-2 2 2n

o e s —
B | —
o e s —

(a) Scheme 1 (b) Scheme 2 (c) Scheme 3

Figure 5.6: Three read schemes using the B-Code

Notice that there is no redundant data in scheme (1) or scheme (2), so the client must
wait until it receives all the data from all the servers. But in scheme (3), there is redundant
data, then the client only needs to receive data from any 2n — 2 of the 2n requested servers.
Let E[T(2n,2n)|,—1, E[T(2n — 2,2n — 2)],, and E[T(2n,2n — 2)], denote the mean data
service time of the three schemes respectively. From Property 1 of Theorem 5.1, E[T(2n —
2,2n — 2)], > E[T(2n,2n — 2)],. But the relation between E[T(2n,2n)],—1 and either
E[T(2n —2,2n — 2)], or E[T(2n,2n — 2)], is not so obvious, since in scheme (1) the client
needs to wait for more servers, but needs less data (thus less service time) from each server.
So to determine which scheme is best scheme for a given system, we need to calculate the
pdf of the whole service time for all possible the schemes, which are scheme (1) and scheme
(3) in this case.

Assume that the pdf of the time T for each server to send n blocks of data to the client
is T'r[a, b]; then the pdf of T' in scheme (1) is Tr["T_la, ”T_lb], since each server only needs
to send n — 1 blocks of data, and the pdf of T in scheme (2) or (3) is T'r[a, b]. Now the pdfs
of the whole service time in the different schemes can be calculated according to Eq.(5.2),
Eq.(5.5) and Eq.(5.6). Figure 5.7 shows the pdfs for different values of n, where ¢ = 1 and
b = 10.

Using Eq.(5.3), the mean of the whole service time of different schemes can be calculated.
These means are listed in Table 5.1, for ¢ = 1 and b = 10.

The above calculations show that the performance of the three schemes depends on the
system parameter n (when a and b are fixed). In a small server system, scheme (1) is the
best. As n increases, scheme (3) becomes better. For a system of 6 servers (n = 3), scheme

(1) is the best, but for systems of 14 servers (n = 7) and 20 servers (n = 10), scheme (3) is

83

n 3 7 10
E[T(2n,2n)]n-1 5.2195 | 7.3128 | 7.8857

E[T(2n —2,2n —2)], | 7.4089 | 8.4207 | 8.6976
E[T(2n,2n —2)], | 5.8910 | 7.2466 | 7.6786

Table 5.1: Mean service time of different data read schemes, where a = 1, and b = 10

the best.

Though quite simple, the above example shows that after the data distribution is set
at the server side, the client has different ways of reading data from the servers. For a
given system (i.e., a certain the pdf of T', a fixed (n, k) pair and a particular code), there
always exists an optimal read scheme for the client. Finding this scheme requires careful
calculation. Since the read schemes are highly related to the codes used, exploring codes

that offer more read choices is an interesting research problem.

84

Q%0
Q%0
WNE

paf

o
]

T
00
080
WNE

0

0
|

paf
0

0
it
&

Q%0

Q%0

WNRF
0
0

pdf
o]
S
T
0
1

Figure 5.7: PDFs of different data read scheme, where ¢ = 1, b = 10; 1, 2 and 3 represent
scheme (1), (2) and (3) respectively.

85

5.5 Summary

We have explored options for improving the performance of data server systems by intro-
ducing data redundancy based on array codes. We have proposed methods of achieving
better performance at both the server side and the client side of systems, namely finding
an optimal data distribution scheme and an optimal data acquisition scheme. We have
also given a simple probability model for a real data server system, based on experimental
results. Our additional experimental results also verify qualitatively our analysis results.
In this chapter, the system model is rather simple: data requests from one client or
multiple clients are processed sequentially, i.e., at one time, and each server only handles
one data request. But in a more practical system, such as a web server system, multiple
data requests can come according to some stochastic process, and they can be processed
by the servers in a parallel fashion such that the number of requests processed per unit
time is maximized. Optimizing such systems is an interesting and useful research problem
that might require that the servers use some sophisticated scheduling schemes, based on

the results in this chapter.

86

Chapter 6 Conclusions and Future Directions

6.1 Conclusions

This thesis deals with two issues in highly available distributed storage systems: reliability
and efficiency. To achieve reliability, two new families of MDS array codes are presented,
whose optimal encoding operations are optimal. To improve efficiency (performance) of
general distributed data systems, including storage systems, two problems and their solu-
tions are proposed, namely the data distribution problem and data acquisition problem. A
new efficient deterministic voting algorithm for distributed data is also presented.

The two new classes of MDS array codes of distance 3, the X-code and the B-Code,
are the first two classes of array codes that place parity and information bits in the same
column. The two codes are still systematic in the sense that all information bits can be
directly obtained from their codewords without any computation. The encoding operations
of both codes are optimal, i.e., their update complexity achieves the lower bound. In
addition to encoding algorithms to these array codes, efficient decoding algorithms, both
for erasure-correcting and for error-correcting, are also proposed.

The X-Code has a very simple geometrical structure, namely the parity bits are con-
structed along two groups of parallel parity lines of slopes 1 and —1 respectively, where its
name comes from. This simple geometrical structure enables simple erasure-decoding and
error-decoding algorithms, using only XORs and vector cyclic-shift operations.

The B-Code is related to a 3-decade old graph theory problem. It is proven in this
thesis that constructing a B-Code of odd length is exactly equivalent to constructing a
perfect one-factorization (or P1F) of a complete graph. Thus if the P1F conjecture is
solved, then B-Codes of arbitrary length can be constructed. On the other hand, B-Codes
of new lengths can lead to constructions of P1F of new complete graphs. An efficient
error-correcting algorithm for the B-Code is also presented, based on the relations between
the B-Code and its dual; this algorithm might give a hint of developing efficient decoding
algorithms for other codes.

To show that in distributed systems, data redundancy should be actively introduced to

87
improve system performance, a novel deterministic voting scheme that uses error-correcting
codes is proposed, which generalizes all known simple deterministic voting algorithms. The
new voting scheme greatly reduces communication complexity while still providing the cor-
rect deterministic voting result. The scheme can be tuned for optimal average case com-
munication complexity by choosing the parameters of the error-correcting code, thus it is
very adaptive to various application environments with different error rates.

It is also shown that in general distributed storage systems, proper data redundancy
can improve the performance of the systems. Two problems are identified to improve the
performance of general data server systems, namely the data distribution problem and
the data acquisition problem. Solutions are proposed, as are general analytical results on
the performance of (n,k) systems. A simple service time model of a practical disk-based
distributed server system is given based on experimental results, which is used as a starting
point for data distribution and data acquisition schemes. These results can be used in more
sophisticated scheduling schemes that optimize or improve the performance of data server

systems that serve multiple clients at the same time.

6.2 Future Directions

Much research still needs to be done to improve the availability of distributed storage
systems. More error-correcting codes with low computational overhead that provide flexible
reliability need to be designed. Array codes are a good class of codes that should get more
researchers’ attention. Distributed storage systems can become popular only with matching
distributed file systems. Many issues in distributed file systems, such as efficiently reaching
consistency of distributed data, maintaining data integrity in the presence of transient faults,
and achieving graceful performance degradation while faulty parts of systems are replaced,
should be solved. Also distributed storage systems should be easy to scale, easy to manage
and easy to maintain. In short, there are many research problems to solve in order to build
highly available distributed storage systems.

Many open problems directly related to the topics in the thesis have been already raised

in the previous chapters. We summarize some important ones here:

e More MDS array codes: here more has many meanings. We need to find codes

with distances greater than 3. X-like codes may be a solution. We also need to

88
find codes with more lengths, ideally, arbitrary lengths. Codes that have parity bits
mixed with information bits in the same column are typically difficult to shorten,
thus one solution to this problem is to find more codes with more lengths. While
they have optimal encoding operations and optimal erasure-decoding in terms of the
total number of operations, the X-Code and the B-Code are not optimal in decoding
in number of decoding steps if parallel decoding is used. Since in distributed storage
systems, parallel decoding means reading data in parallel, more codes with fewer
parallel decoding steps can improve the data-read performance of many applications.
The lower bound of parallel erasure-decoding steps for a given code is not even known

yet.

e The B-Code: it still needs to be proven that the B-Code of length 2n + 1 can always
be constructed from the B-Code of length 2n, thus the B-Code is totally equivalent
to the P1F. Also how to construct a new B-Code from the known B-Codes is very
useful, since this gives new P1F construction methods, in addition to more codes that

can be obtained.

e Voting: the efficient voting algorithm in Chapter 4 uses 2 or 3 rounds. It is an open
problem whether there is a voting scheme that always uses only 1 round, but can still
reduce average communication complexity. Also the voting schemes discussed use a
broadcast model, another interesting problem is how to reduce average communication

complexity if a point-to-point communication model is used.

e General data servers: Chapter 5 deals with the case of only one client at a time. But
in practical data server systems, it is common to have multiple clients at the same
time or a group of requests that are already queued. How to schedule the processing

of these multiple data requests is an interesting and difficult research problem.

We conclude this thesis by two more problems related to codes that can be used in

distributed storage systems to improve availability.

6.2.1 Reed-Solomon Codes as Array Codes

Reed-Solomon codes are more flexible in lengths and distances. Their only shortcoming

is their relatively complex encoding and decoding operations which use finite field opera-

89
tions. Since array codes are 2-dimensional, they are generalizations of 1-dimensional codes,
and this generalization applies to any arbitrary 1-dimensional code. Thus Reed-Solomon
codes can also be described as array codes. The following example shows an array code

representation of a (7,2,6) Reed-Solomon code.

Example 6.1 Array representation of (7,2,6) Reed-Solomon code
Let « be a root of the primitive binary polynomial > 4+ = + 1 that generates the Galois
field GF(8). Using 1, a and o? as a basis, the 8 elements of GF(8) can be represented as

vectors:

0 « a2 | | at|a® | ab 1

000 | 010 { 001 | 110 | 011 | 111 | 101 | 100

Now a (7,2,6) Reed-Solomon code can be constructed using the following generator
polynomial [19]:
g(z) = (z + a)(z + a®)(z +) (z + o) (z + o°)

ie.,

glz) =2+ + 1+) + (1 + Pz’ + (a+)z +a

Any information to be encoded can be represented by an information polynomial of degree
1, i.e.,

m(x) = (a1 + a2 + a3a2)x + (b1 + by + b3a2)

where the information bits, the a;’s and the b;’s, are in GF(2), i.e., they are binary. The

above information polynomial can then be described as an array of size 3 x 2 over GF(2):

ai | by
az | by
a3 | bs

The code polynomial is then of degree 6:

c(x) = m(x)g(x)

After calculating and simplifying c¢(z), a codeword of the (7,2,6) Reed-Solomon code can

then be represented by an array of size 3 x 7, in a way similar to the representation of the

90

information polynomial:

ai az + b a1 +asz + b2 a1+ a2 +b1+bs | az+as+bi + b as + bz + b3 bs

az | az+a3+bx | ai +a2+a3+bx+bs | ag+ b1+ b2+ b3 a1 + a2 + bs ar+az+by+b2 | b1 +b3

a3 | a1 + a3+ b3 as +as + b1 +bs a1+ ba + b3 a1 +az+as+b1 | ax+bi +b2+ b3 b

Table 6.1: An array representation of a (7,2,6) Reed-Solomon code. Total number of addi-
tions: 39.

|

Representing Reed-Solomon codes using arrays alone does not simplify encoding opera-
tions. Further simplifications need to be done. For the (7,2,6) Reed-Solomon code in Table
6.1, the last column certainly can be simplified to (b3, b1, b2) instead of (b3, by + b3, bo), with-
out changing the code’s MDS property, since the two vectors span the same space. We can
simplify all other columns in a similar way, so that the density of each column is reduced
to its minimum while the space spanned by the column remains unchanged. The following
array is a simplified form of the (7,2,6) Reed-Solomon code, derived from its array form in

the above example:

aq as + by a1+ a3+by |as+a3+by|as+az+b+by| as+by+bg|bs
as | ao + az + by ao + b3 a1+ ag + by a1+ as + b3 a1+ by +b3 | by
as a1+a3+b3 a3+b1 a1+b2—l—b3 al+b2 (11+(12+b2 bg

Table 6.2: A simplified array representation of a (7,2,6) Reed-Solomon code. Total number
of additions: 27.

Though the above array form has been simplified a lot, i.e., its encoding operation
is simpler than the original Reed-Solomon code, it can be further simplified as in Table
6.3 without changing the update complexity, i.e., some intermediate parity bits (s;’s) are
calculated once and then reused in calculating other parity bits.

So this gives a way to design more MDS array codes with more choices of length and
distance, based on Reed-Solomon codes. Of course, this method should apply with any
other linear code that is not MDS, i.e., any linear code can be described by a simplified
array code with simple encoding operations.

Even though the array in Table 6.3 has been simplified a lot, it is still not clear whether it

is the optimal form in terms of encoding operations, since we can simplify multiple columns

91

aq S9 a1+ s3|az+ 85| So+ 83| by + s3 | by
az | as + s3 S5 a1+ 84| az+s1 | b1 +s1 | b
as | as + 81 Sq by + s S as + sg | b

Table 6.3: A further simplified array representation of a (7,2,6) Reed-Solomon code, where
s1 = a1+ b3, so =ao + b1, s3 =as+ by, s4 = az + b1, S5 = as + b3, and sg = a1 + by. Total
number of additions: 17.

at the same time as long as these columns span the same space. There are many research
problems to solve, related to representing arbitrary codes as array codes. To name a few:
1) given a linear code, what is its optimal array code representation in terms of encoding
complexity? or, how does one determine whether an array description is optimal in terms
of its component density, i.e., total number of information bits appearing? 2) how does
one design an efficient erasure-correcting algorithm once an array code is derived from a
Reed-Solomon code or from another code? 3) how does one design efficient multiple error-

correcting algorithms for an array code?

6.2.2 Strong MDS Codes

For an MDS (Lk) array code of size n x [, its MDS property means that the nk original
information bits can be recovered from any k columns with each containing n bits. As
shown in Chapter 5, if an (I,k) MDS array code is used in a data distribution scheme, a
matching data acquisition scheme may read nk bits from m (m > k) servers, with the ith
server sending a; bits such that > ;" a; = nk, where of course 0 < a; <mand 1 <i < m.
Mapping to array codes, this leads to a new MDS property, which is called the strong MDS

property, as defined as follows:

Definition 6.1 (strong MDS property) An array code of size n x [with nk raw information
bits has the strong MDS property, if, for any given m columns and any given series of
positive integers a;, where k < m <[, 0 < a; < n, 1 < i < mand Y ;2 a; = nk,
there always exist a; bits from the ith column such that the nk row information bits can be

reconstructed from these nk bits from the m columns.

The interested reader can verify that the Reed-Solomon code in Table 6.2 has the strong

MDS property. For example, if m = 3, and we are given the first 3 columns, let a1 = a2 =

92

as = 2, then we can choose either of the following 6 bits from the the 3 columns with 2 bits

from each column:

al as + b1 as + b3 al as + b1 as + b3

as | ao + a3+ by | a3+ by a3 | ao+ a3+ by | a3+ by

Codes with the strong MDS property can provide more choices of which data to read
from multiple servers in an optimal data acquisition scheme. They can also provide more
flexibility between redundancy and efficiency when distributing data. So codes with the
strong MDS property will have useful roles in many applications in distributed storage
systems. From the definition, any code with the strong MDS property is of course MDS.

A final question is how to construct codes with the strong MDS property? Since any
code can be represented in array form, we answer this question by the following conjecture

and conclude this thesis:

Conjecture 6.1 (Strong MDS Conjecture)
All MDS codes have the strong MDS property.

93

Bibliography

[1]

K.A.S. Abdel-Ghaffar and A. El Abbadi, “An Optimal Strategy for Computing File
Copies,” IEEE Trans. on Parallel and Distributed Systems, 5(1), Jan. 1994.

B. A. Anderson, “Symmetry Groups of Some Perfect 1-Factorizations of Complete

Graphs,” Discrete Mathematics, 18, 227-234, 1977.

A. Behr and L. Camarinopoulos, “Two Formulas for Computing the Reliability of
Incomplete k-out-of-n:G Systems,” IEEE Trans. on Reliability, 46(3), 421-429, Sep.
1997.

M. Blaum, J. Brady, J. Bruck and J. Menon, “EVENODD: An Efficient Scheme for
Tolerating Double Disk Failures in RAID Architectures,” IEEE Trans. on Computers,
44(2), 192-202, Feb. 1995.

M. Blaum, J. Bruck, A. Vardy, “MDS Array Codes with Independent Parity Symbols,”
IEEE Trans. on Information Theory, 42(2), 529-542, March 1996.

M. Blaum, P. G. Farrell and H. C. A. van Tilborg, “Chapter on Array Codes”, Hand-
book of Coding Theory, edited by V. S. Pless and W. C. Huffman, to appear.

M. Blaum, R. M. Roth, “New Array Codes for Multiple Phased Burst Correction,”
IEEE Trans. on Information Theory, 39(1), 66-77, Jan. 1993.

M. Blaum, R. M. Roth, “On Lowest-Density MDS Codes,” IEEE Trans. on Information
Theory, 45(1), 46-59, Jan. 1999.

D. M. Blough and G. F. Sullivan, “Voting Using Predispositions,” IEEE Trans. on
Reliability, 43(4), 604-616, 1994.

K. Echtle, “Fault-Masking with Reduced Redundant Communication,” 16th Annual

International Symp. on Fault-Tolerant Computing Systems, vol.16, 178-183, 1986.

M. N. Frank, “Dispersity Routing in Store-and-Forward Networks,” Ph.D. thesis, Uni-

versity of Pennsylvania, 1975.

[12]

[13]

[14]

[15]

[16]

22]

[23]

[24]

94
P. G. Farrell, “A Survey of Array Error Control Codes,” ETT , 3(5), 441-454, 1992.

R. G. Gallager, “Low-Density Parity-Check Codes,” MIT Press, Cambridge, Mas-
sachusetts, 1963.

J. Gemmell, “Scalable Reliable Multicast Using Erasuring-Correcting Re-Sends,” Tech-
nical Report MSR-TR-97-20, Microsoft Research, June, 1997.

R. M. Goodman, R. J. McEliece and M. Sayano, “Phased Burst Error Correcting
Arrays Codes,” IEEE Trans. on Information Theory, 39, 684-693,1993.

A. Kotzig, “Hamilton Graphs and Hamilton Circuits,” Theory of Graphs and Its Ap-

plications (Proc. Sympos. Smolenice), 63-82, 1963.

T. Krol, “(N,K) Concept Fault Tolerance,” IEEE Trans. on Computers, 35(4), 339-349,
April 1986.

Darrell D.E. Long and Jehan-Frangois Paris, “Voting Without Version Numbers,” Pro-
ceedings of the International Conference on Performance, Computing, and Communi-

cations, 139-145, Feb. 1997.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, Ams-
terdam: North-Holland, 1977.

J. F. Nebus, “Parallel Data Compression for Fault Tolerance,” Computer Design, 127-
134, Apr. 1983.

G. Noubir and H. J. Nussbaumer, “Using Error Control Codes to Reduce the communi-
cation Complexity of Voting in NMR Systems,” Technical Report, Dept. of Computer
Science, Swiss Federal Institute of Technology in Lausanne(EPFL), 1995.

Norman K. Ouchi, “System for Recovering Data Stored in Failed Memory Unit,” US
Patent 4092732, May 30, 1978.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd Edition,
McGraw-Hill, Inc., 1984.

B. Parhami, “Voting Algorithms,” IEEE Trans. on Reliability, 43(4):617-629, 1994.

[25]

[32]

[33]

[34]

[35]

[36]

95
D. A. Patterson, G. A. Gibson and R. H. Katz, “A Case for Redundant Arrays of
Inexpensive Disks,” Proc. SIGMOD Int. Conf. Data Management, 109-116, Chicago,
IL, 1988.

C. A. Polyzois, A. Bhide and D. M. Dias, “Disk Mirroring with Alternating Deferred
Updates”, Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993.

H. M. Sun and S. P. Shieh, “Optimal Information-Dispersal for Increasing the Re-
liability of a Distributed Service,” IEEE Trans. on Reliability, 46(4), 462-466, Dec.
1997.

R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans. on
Information Theory, 27(5), 533-547, Sep. 1981.

D. G. Wagner, “On the Perfect One-Factorization Conjecture,” Discrete Mathematics,

104, 211-215, 1992.
W. D. Wallis, One-Factorizations, Kluwer Academic Publisher, 1997.

Stephen B. Wicker, Error Control Systems for Digital Communication and Storage,
Prentice-Hall Inc., 1995.

Samuel S. Wilks, Mathematical Statistics, John Wiley & Sons, Inc., 1963.

L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal Encoding,” IEEFE
Trans. on Information Theory, 45(1), 272-276, Jan., 1999.

L. Xu, V. Bohossian, J. Bruck and D. Wagner, “Low Density MDS Codes and Factors
of Complete Graphs,” Proceedings of 1998 IEEE Symposium on Information Theory,
Aug., 1998; Revised version to appear in IEEE Trans. on Information Theory.

L. Xu and J. Bruck, “Deterministic Voting in Distributed Systems Using Error-
Correcting Codes,” IEEE Trans. on Parallel and Distributed Systems, 9(8), 813-824,
Aug., 1998.

L. Xu and J. Bruck, “Improving the Performance of Data Servers Using Array Codes,”
submitted to the 8th International Symposium on High Performance Distributed Com-

puting, Redondo Beach, CA, USA, August 3-6, 1999.

96
[37] G. V. Zaitsev, V. A. Zinov‘ev, and N. V. Semakov, “Minimum-Check-Density Codes

for Correcting Bytes of Errors, Erasures, Or Defects,” Problems of Information Trans-

mission, 19(3), 197-204, 1983.

[38] A. Ziv and J. Bruck, “Checkpointing in Parallel and Distributed Systems,” Parallel
and Distributed Computing Handbook, 274-302, McGraw-Hill, 1996.

