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Chapter 6 Conclusions and Future Directions

6.1 Conclusions

This thesis deals with two issues in highly available distributed storage systems: reliability
and efficiency. To achieve reliability, two new families of MDS array codes are presented,
whose optimal encoding operations are optimal. To improve efficiency (performance) of
general distributed data systems, including storage systems, two problems and their solu-
tions are proposed, namely the data distribution problem and data acquisition problem. A
new efficient deterministic voting algorithm for distributed data is also presented.

The two new classes of MDS array codes of distance 3, the X-code and the B-Code,
are the first two classes of array codes that place parity and information bits in the same
column. The two codes are still systematic in the sense that all information bits can be
directly obtained from their codewords without any computation. The encoding operations
of both codes are optimal, i.e., their update complexity achieves the lower bound. In
addition to encoding algorithms to these array codes, efficient decoding algorithms, both
for erasure-correcting and for error-correcting, are also proposed.

The X-Code has a very simple geometrical structure, namely the parity bits are con-
structed along two groups of parallel parity lines of slopes 1 and —1 respectively, where its
name comes from. This simple geometrical structure enables simple erasure-decoding and
error-decoding algorithms, using only XORs and vector cyclic-shift operations.

The B-Code is related to a 3-decade old graph theory problem. It is proven in this
thesis that constructing a B-Code of odd length is exactly equivalent to constructing a
perfect one-factorization (or P1F) of a complete graph. Thus if the P1F conjecture is
solved, then B-Codes of arbitrary length can be constructed. On the other hand, B-Codes
of new lengths can lead to constructions of P1F of new complete graphs. An efficient
error-correcting algorithm for the B-Code is also presented, based on the relations between
the B-Code and its dual; this algorithm might give a hint of developing efficient decoding
algorithms for other codes.

To show that in distributed systems, data redundancy should be actively introduced to
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improve system performance, a novel deterministic voting scheme that uses error-correcting
codes is proposed, which generalizes all known simple deterministic voting algorithms. The
new voting scheme greatly reduces communication complexity while still providing the cor-
rect deterministic voting result. The scheme can be tuned for optimal average case com-
munication complexity by choosing the parameters of the error-correcting code, thus it is
very adaptive to various application environments with different error rates.

It is also shown that in general distributed storage systems, proper data redundancy
can improve the performance of the systems. Two problems are identified to improve the
performance of general data server systems, namely the data distribution problem and
the data acquisition problem. Solutions are proposed, as are general analytical results on
the performance of (n,k) systems. A simple service time model of a practical disk-based
distributed server system is given based on experimental results, which is used as a starting
point for data distribution and data acquisition schemes. These results can be used in more
sophisticated scheduling schemes that optimize or improve the performance of data server

systems that serve multiple clients at the same time.

6.2 Future Directions

Much research still needs to be done to improve the availability of distributed storage
systems. More error-correcting codes with low computational overhead that provide flexible
reliability need to be designed. Array codes are a good class of codes that should get more
researchers’ attention. Distributed storage systems can become popular only with matching
distributed file systems. Many issues in distributed file systems, such as efficiently reaching
consistency of distributed data, maintaining data integrity in the presence of transient faults,
and achieving graceful performance degradation while faulty parts of systems are replaced,
should be solved. Also distributed storage systems should be easy to scale, easy to manage
and easy to maintain. In short, there are many research problems to solve in order to build
highly available distributed storage systems.

Many open problems directly related to the topics in the thesis have been already raised

in the previous chapters. We summarize some important ones here:

e More MDS array codes: here more has many meanings. We need to find codes

with distances greater than 3. X-like codes may be a solution. We also need to
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find codes with more lengths, ideally, arbitrary lengths. Codes that have parity bits
mixed with information bits in the same column are typically difficult to shorten,
thus one solution to this problem is to find more codes with more lengths. While
they have optimal encoding operations and optimal erasure-decoding in terms of the
total number of operations, the X-Code and the B-Code are not optimal in decoding
in number of decoding steps if parallel decoding is used. Since in distributed storage
systems, parallel decoding means reading data in parallel, more codes with fewer
parallel decoding steps can improve the data-read performance of many applications.
The lower bound of parallel erasure-decoding steps for a given code is not even known

yet.

e The B-Code: it still needs to be proven that the B-Code of length 2n + 1 can always
be constructed from the B-Code of length 2n, thus the B-Code is totally equivalent
to the P1F. Also how to construct a new B-Code from the known B-Codes is very
useful, since this gives new P1F construction methods, in addition to more codes that

can be obtained.

e Voting: the efficient voting algorithm in Chapter 4 uses 2 or 3 rounds. It is an open
problem whether there is a voting scheme that always uses only 1 round, but can still
reduce average communication complexity. Also the voting schemes discussed use a
broadcast model, another interesting problem is how to reduce average communication

complexity if a point-to-point communication model is used.

e General data servers: Chapter 5 deals with the case of only one client at a time. But
in practical data server systems, it is common to have multiple clients at the same
time or a group of requests that are already queued. How to schedule the processing

of these multiple data requests is an interesting and difficult research problem.

We conclude this thesis by two more problems related to codes that can be used in

distributed storage systems to improve availability.

6.2.1 Reed-Solomon Codes as Array Codes

Reed-Solomon codes are more flexible in lengths and distances. Their only shortcoming

is their relatively complex encoding and decoding operations which use finite field opera-
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tions. Since array codes are 2-dimensional, they are generalizations of 1-dimensional codes,
and this generalization applies to any arbitrary 1-dimensional code. Thus Reed-Solomon
codes can also be described as array codes. The following example shows an array code

representation of a (7,2,6) Reed-Solomon code.

Example 6.1 Array representation of (7,2,6) Reed-Solomon code
Let « be a root of the primitive binary polynomial > 4+ = + 1 that generates the Galois
field GF(8). Using 1, a and o? as a basis, the 8 elements of GF(8) can be represented as

vectors:

0 « a2 | | at|a® | ab 1

000 | 010 { 001 | 110 | 011 | 111 | 101 | 100

Now a (7,2,6) Reed-Solomon code can be constructed using the following generator
polynomial [19]:
g(z) = (z + a)(z + a®)(z + ) (z + o) (z + o°)

ie.,

glz) =2+ + 1+ ) + (1 + Pz’ + (a+ )z +a

Any information to be encoded can be represented by an information polynomial of degree
1, i.e.,

m(x) = (a1 + a2 + a3a2)x + (b1 + by + b3a2)

where the information bits, the a;’s and the b;’s, are in GF(2), i.e., they are binary. The

above information polynomial can then be described as an array of size 3 x 2 over GF(2):

ai | by
az | by
a3 | bs

The code polynomial is then of degree 6:

c(x) = m(x)g(x)

After calculating and simplifying c¢(z), a codeword of the (7,2,6) Reed-Solomon code can

then be represented by an array of size 3 x 7, in a way similar to the representation of the
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information polynomial:

ai az + b a1 +asz + b2 a1+ a2 +b1+bs | az+as+bi + b as + bz + b3 bs

az | az+a3+bx | ai +a2+a3+bx+bs | ag+ b1+ b2+ b3 a1 + a2 + bs ar+az+by+b2 | b1 +b3

a3 | a1 + a3+ b3 as +as + b1 +bs a1+ ba + b3 a1 +az+as+b1 | ax+bi +b2+ b3 b

Table 6.1: An array representation of a (7,2,6) Reed-Solomon code. Total number of addi-
tions: 39.

|

Representing Reed-Solomon codes using arrays alone does not simplify encoding opera-
tions. Further simplifications need to be done. For the (7,2,6) Reed-Solomon code in Table
6.1, the last column certainly can be simplified to (b3, b1, b2) instead of (b3, by + b3, bo), with-
out changing the code’s MDS property, since the two vectors span the same space. We can
simplify all other columns in a similar way, so that the density of each column is reduced
to its minimum while the space spanned by the column remains unchanged. The following
array is a simplified form of the (7,2,6) Reed-Solomon code, derived from its array form in

the above example:

aq as + by a1+ a3+by |as+a3+by|as+az+b+by| as+by+bg|bs
as | ao + az + by ao + b3 a1+ ag + by a1+ as + b3 a1+ by +b3 | by
as a1+a3+b3 a3+b1 a1+b2—l—b3 al+b2 (11+(12+b2 bg

Table 6.2: A simplified array representation of a (7,2,6) Reed-Solomon code. Total number
of additions: 27.

Though the above array form has been simplified a lot, i.e., its encoding operation
is simpler than the original Reed-Solomon code, it can be further simplified as in Table
6.3 without changing the update complexity, i.e., some intermediate parity bits (s;’s) are
calculated once and then reused in calculating other parity bits.

So this gives a way to design more MDS array codes with more choices of length and
distance, based on Reed-Solomon codes. Of course, this method should apply with any
other linear code that is not MDS, i.e., any linear code can be described by a simplified
array code with simple encoding operations.

Even though the array in Table 6.3 has been simplified a lot, it is still not clear whether it

is the optimal form in terms of encoding operations, since we can simplify multiple columns
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aq S9 a1+ s3|az+ 85| So+ 83| by + s3 | by
az | as + s3 S5 a1+ 84| az+s1 | b1 +s1 | b
as | as + 81 Sq by + s S as + sg | b

Table 6.3: A further simplified array representation of a (7,2,6) Reed-Solomon code, where
s1 = a1+ b3, so =ao + b1, s3 =as+ by, s4 = az + b1, S5 = as + b3, and sg = a1 + by. Total
number of additions: 17.

at the same time as long as these columns span the same space. There are many research
problems to solve, related to representing arbitrary codes as array codes. To name a few:
1) given a linear code, what is its optimal array code representation in terms of encoding
complexity? or, how does one determine whether an array description is optimal in terms
of its component density, i.e., total number of information bits appearing? 2) how does
one design an efficient erasure-correcting algorithm once an array code is derived from a
Reed-Solomon code or from another code? 3) how does one design efficient multiple error-

correcting algorithms for an array code?

6.2.2 Strong MDS Codes

For an MDS (Lk) array code of size n x [, its MDS property means that the nk original
information bits can be recovered from any k columns with each containing n bits. As
shown in Chapter 5, if an (I,k) MDS array code is used in a data distribution scheme, a
matching data acquisition scheme may read nk bits from m (m > k) servers, with the ith
server sending a; bits such that > ;" a; = nk, where of course 0 < a; <mand 1 <i < m.
Mapping to array codes, this leads to a new MDS property, which is called the strong MDS

property, as defined as follows:

Definition 6.1 (strong MDS property) An array code of size n x [ with nk raw information
bits has the strong MDS property, if, for any given m columns and any given series of
positive integers a;, where k < m <[, 0 < a; < n, 1 < i < mand Y ;2 a; = nk,
there always exist a; bits from the ith column such that the nk row information bits can be

reconstructed from these nk bits from the m columns.

The interested reader can verify that the Reed-Solomon code in Table 6.2 has the strong

MDS property. For example, if m = 3, and we are given the first 3 columns, let a1 = a2 =
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as = 2, then we can choose either of the following 6 bits from the the 3 columns with 2 bits

from each column:

al as + b1 as + b3 al as + b1 as + b3

as | ao + a3+ by | a3+ by a3 | ao+ a3+ by | a3+ by

Codes with the strong MDS property can provide more choices of which data to read
from multiple servers in an optimal data acquisition scheme. They can also provide more
flexibility between redundancy and efficiency when distributing data. So codes with the
strong MDS property will have useful roles in many applications in distributed storage
systems. From the definition, any code with the strong MDS property is of course MDS.

A final question is how to construct codes with the strong MDS property? Since any
code can be represented in array form, we answer this question by the following conjecture

and conclude this thesis:

Conjecture 6.1 (Strong MDS Conjecture)
All MDS codes have the strong MDS property.



