69

Chapter 5 Improving the Performance of Data Servers

5.1 Introduction

It has become common to use a cluster of distributed computing nodes in server systems,
such as image servers, video servers, multimedia servers, and web servers, all of which can
be regarded as specific kinds of the more general concept of data servers. Distributed server
systems can improve both data reliability (or availability) and performance (or efficiency,
i.e., data throughput) of the system. Much research, such as the well known k-out-of-n
systems|[3], has been done to improve reliability by introducing data redundancy or infor-
mation dispersity[27] into systems.

In a real system, although the redundant data enables the system to provide continuous
service when certain failures (communication link failures, server node failures) occur, most
of the time the system works in a normal mode, i.e., there is no failure in the system; in
this case data redundancy can be used to improve the performance of the system. It was
first shown in [11] that redundant data can make packet routing more efficient by reducing
the mean and variance of the routing delay. Recently, more scalable and efficient reliable
multicast schemes have also been proposed based on data redundancy in the messages to
be multicast[14].

In this chapter, we propose a method based on error-correcting codes for improving
the performance of services in general data server systems. Our system setup is shown in
Figure 5.1: a cluster of servers is connected via some reliable communication network. In
addition, broadcast is supported over the network, so that a client can broadcast its request
for certain data to some or all of the n servers in the system. The data is distributed over
the servers in such a way that a client can recover the complete requested data after it gets
data from at least &k of the n servers and this is true for any k servers. Such a distributed
data server system is called an (n, k) server system in this chapter. Again, such (n,k)

systems can be implemented by using error-correcting codes, particularly MDS array codes.

For a data server system, since the I/O speed of the local disks is much slower than

70

Client

Reliable
Communication

Network

[

Server 1 Server 2 Server k Server n

Figure 5.1: An (n, k) server system

the CPU speed of the servers, the whole performance of the system is dominated by the
bottleneck of the disks. Distributing data over multiple servers can help overcome this
bottleneck and improve the data throughput of the whole system, since the data can be
accessed in parallel from multiple servers at the same time. For a server system with
n servers, the system performance can be further improved by introducing proper data
redundancy into the system, i.e., an (n,k) system should be properly chosen instead of
naively distributing the raw data over all the n servers. This was shown in Example 1.5 and
Example 1.6 in Chapter 1. What is the proper redundancy when the total number of the
servers is given? Or how should k be determined when n is given, in order to achieve the
best system performance? This is the so-called data distribution problem at the server side,
which will be discussed in detail later in this chapter. Also, as already discussed in Example
1.7 in Chapter 1, there is another problem called the data acquisition at the client side: that
once data redundancy is properly distributed among the servers, how should matching read
approaches be chosen to optimize the mean service time? This problem will be also explored
in this chapter. The main contribution of this chapter is to propose data distribution and
acquisition schemes for a given server system that improve the system performance.

This chapter is organized as follows. Section 5.2 first describes a probability model of
distributed server systems, then gives analytical results about the service time of a general
distributed data server system. In Section 5.3, experimental results are used to create a
probability model for service time in a practical disk-based data server system. The data
distribution and data acquisition schemes are discussed in more detail in Section 5.4. Section

5.5 concludes the chapter and proposes a future research direction.

71

5.2 Preliminary Analysis

Before we consider other problems, we first define a server system model we will be using.
Then we give some basic analytical results that can be used further to solve the data

distribution and data acquisition problems.

5.2.1 System Model

In this chapter, a distributed server system consists of n servers. A client can broadcast
its request for certain data to all the servers. All communications among the client and
servers are reliable, i.e., there is no packet loss, order change or content corruption. Each
server stores a portion of the requested data in such a way that the client can recover its
requested data after it receives data from at least k (k < n) out of the n servers. Define the
service time T; of the server 7 (1 <14 < n) to be the elapsed time from when the client sends
its request to the server ¢+ to when it receives data from the server 7. Notice that T; does
not include the time needed at the client side to do any necessary computations to recover
the final data, since here we assume that the computations are rather simple and thus
take much less time than does the data delivery through communication media. We model
T; as a continuous random variable with probability density function (pdf) f;(¢)[23]. For
simplicity of analysis, we assume that all T;s are i.i.d (independent, identically distributed)

random variables, i.e., fi(t) = f(t), 1 <i < mn.

5.2.2 Analysis Results

Let Fj(t) be the cumulative distribution function (cdf) of T;, i.e.[23],
t
Fi(t) = Probability(T; < t) = / fi(x)dz
0

Now let T'(n, k) be the elapsed time from when the client broadcasts its data request to the
servers to when it receives data from at least k out of the n servers. Then T'(n, k) is another

random variable and is a simple function of all the T;s:
T(n,k) >T;, where |[{i}| >k

In the above equation, ||.S|| is the number of the elements in the set S.

72
Let fnk)(t) and F, ;y(t) be the pdf and cdf of T'(n, k) respectively, then it is easy to
relate Fi,, 1)(t) and f(,) (t) to F(t) and f(t) [11]:

n

Fup () =) () F@)'[L = F@)"™ (5.1)
i=k
or [11][32]:
Fnan(®) = T _ oy paye 11— B0 (5.2

The mean of T'(n, k), E[T (n, k)], is a good measurement of the server system’s performance.

It can be calculated once the f(,)(t) is known:

E[T(n, k)] = /0 o (D)t (5.3)

5.2.3 Properties of Mean Service Time

Though it is usually hard to get a clean closed form of E[T'(n, k)] for a general pdf f(t), it
is still possible to get some of its properties with respect to n and k. Intuitively, for a fixed
pdf f(¢), a bigger n and/or a smaller k leads to a smaller E[T'(n, k)] and this can be proven
mathematically.

Before we discuss properties of the E[T(n, k)], we give a lemma which can be used to

prove the properties.

Lemma 5.1 Let two continuous random variables X and Y be defined on [a,b] with cdf’s
Fx(t) and Fy(t) respectively. If Fx(t) > Fy(t), for all t, a <t < b, and Fx # Fy, i.e.,
the pdf of X is left of that of Y, then E[X]| < E[Y]. O

Proof: Notice that Fx(b) = Fy (b) = 1 and Fx(a) = Fy(a) =0, then
E[X] = B[Y] = [, tdFx (1) = [} tdFy (t) = [tFx (1) = [} Fx ())dt] = [tFy (D) — [, Fy (t)dt]
= t[Fx(t) = Fy ()]} — [J[Fx (£) = Fy (8)]dt = — [, (Fx (t) = Fy (£))dt < 0. D
It has been shown in [27] that

Lemma 5.2 For a random variable T with o fized pdf f(t), the following inequalities hold
for 1 <k <n and for 0 < F(t) < 1:

1. Fn g (t) < Flngmp)(t), for m > 1;

73
2. Flupy(t) > Fprm) (1), for m > 1;

3. F(n,k) (t) > F(n—l—m,k—l—m) (t)7 form >1;
4o Fijy(#) < Fp(t), if n > 1 and k < j, equality holds only when n =i and k = j;

5. F(i,j)(t) > F(n,lc)(t)7 fn>1, k>7andn—k<i—j.

Using the two lemmas, it is straight forward to get the following properties of the mean

of the service time:

Theorem 5.1 For a random variable T with a fized pdf f(t), the following inequalities hold
for 1 <k <n:

1. E[T(n,k)] > E[T(n 4+ m,k)], form > 1;

2. E[T(n,k)] < E[T(n,k +m)], form > 1;

3. E[T(n,k)] < E[T(n+ m,k+m)], form>1;

4. E[T(i,7)] > E[T(n,k)], if n >4 and k < j, equality holds only when n =i and k = j;

5. E[T(i,7)] < E[T(n, k)], ifn >4, k>jandn—k<i—j.

We will use these properties as guidelines in Section 5.4 for the data distribution. One
would hope that the variances of random variables also had the similar properties. Unfor-
tunately, however, the above properties do not hold for the variances. We will show one

example about the variances and one more property of the E[T(n, k)].

Lemma 5.3 Let two continuous random variables X and Y be defined on [a,b] with pdf’s
f(t) and g(t), respectively. If f(t) = gla+b—t), for allt, a <t <b, i.e., f(t) is the reflection
of g(t) about the line t = £ then E(X) =a+b— E(Y), and Var(X) = Var(Y), where
Var(X) and Var(Y) are the variances of X and Y. O

Proof: Straight forward, omitted.

74
Lemma 5.4 If the pdf f(t) of a random variable T defined on [a,b] is symmetric or self-
reflective about the linet = X2 i.e., f(t) = f(a+b—t), then fne)®) = frnng1—k)(a+b—1).

a

Proof: First, it is easy to show that if f(¢) = f(a + b —t), then

Ft)=1—F(a+b—1t) (5.4)
Using Eq.(5.2), Eq.(5.4) and the identity & (}) = (n + 1 — k) (nﬁ—k)v we can get
fomir—ry(@a+b—1) = (n+1—k) (o, 7_4) Fla+b—8)""*[1 = Fla+b—1)]*"f(a+b—1)

ie.,

Fnnti-my(a+b—1) =k @) [L = FOI" " F@&)* 1 (t) = finm ()

This lemma shows that if T’s pdf is symmetric, then there is also symmetry between
T(n,k) and T(n,n+ 1 —k): their pdfs are reflections of each other. The above two lemmas

lead to following theorem:

Theorem 5.2 If the pdf f(t) of a random variable T, defined on [a,b] is symmetric about
the line t = 2t i.e., f(t) = f(a+b—1), then E[T(n,n+1—k)] = a+b— E[T(n,k)], and
Var[T(n, k)] =VarT(n,n+1—k)]. O

Here we see an example where the monotonicity of E[T'(n, k)] with respect to n or k does

not hold for Var[T(n, k)].

5.3 Server Performance Model

From Eq.(5.2) and Eq.(5.3), E[T'(n, k)] is a function of the pdf f(¢) of an individual server’s
data service time. The goal of the data distribution and data acquisition problem is to
reduce E[T(n,k)] under various conditions. Before we analyze the data distribution and

data acquisition problem, it is necessary to establish some model of f(t).

75

5.3.1 Abstraction from Experiments

The data service time T depends on many factors in a practical server system, such as
computing power (i.e., CPU speed) of the servers and the client, local disk I/O speed of
the servers and bandwidth and latency of the communication medium (usually including
a reliable communication software layer) connecting the servers and the client. A model
considering all the factors will be fairly complex. In this chapter, we will try to model the
data service time as a simple probability distribution, that can be analyzed rather easily,
and yet can approximate the real data service time closely. Such a model will be abstracted
from experimental results of a real data server system.

Our experimental server system consists of several servers, which are PCs running Linux.
Each server has data stored on its local hard disk. Data is accessed via the Linux file system.
The client is also a PC running the same Linux. The nodes are connected via Myrinet
switches. A sliding window protocol is used to ensure reliable communication. Experiments
are conducted in such a real system to measure the service time for data of different sizes.
The procedure of the experiment is as follows: (1) the client sends a request for a certain
amount of data to a server; (2) the server reads the data from its local disk and sends
it to the client through the reliable communication layer; (3) the data is delivered to the
client through the reliable communication layer. The data service time is measured from
the instant that the client finishes sending its request to the instant that the client gets the
data. We run the above procedure a few thousand times for data of a given size, and get the
service time pdf according to the observed frequencies of different ranges of service time.
Figure 5.2 shows empirical service time pdfs for data sizes (a) 32 Kbytes, (b) 320 Kbytes
and (c) 3200 Kbytes.

The effective data bandwidths in this experiments are quite low, since they are the
concatenation of the local disk bandwidth and the reliable communication layer bandwidth.
But the shapes of the bandwidth pdfs are more interesting. The experiment results show
that the shapes of empirical pdfs of different data size can be approximated by the same
distribution. A closer look shows that the width of the distribution base is approximately
proportional to the data size. More complex distributions, such as the Gamma distribution
or the Beta distribution, might give more accuracy. But to simplify the analysis, that

follows, we will regard the data service time T as a random variable defined on [a,b] (a

76

1600)
1400)
1200]
1000
5
|3
800
600

40

20

‘g“‘“ \ 1000)
\ 80

\ g o)
\ 0

0

\

\
\
\

/ \
/ \

— I I I i

L

00155

(a) data size = 32Kbytes

L
0016

I I
00165 0017 00175
Senvice Time (secs)

Figure 5.2: Empirical pdfs of service time for data of different sizes

0“124 0145 015 01285 0126 01265 0127 01275 0128

Senvice Time (secs)

(b) data size = 320K bytes

160

140

10

/

/

/
|

\
\

\
\
L

\

I

I I
i‘lB 1165 12 1205 120 1215 12 125 128 1235 14
Senvice Time (secs)

(c) data size = 3200K bytes

and b are two parameters of a real system), which follows a triangular distribution, denoted

Trla,b|:

ot astsep
e <t<h

2(t—a)? a+b

(b—a)2 a S t S 2
Z(bft)Q a+b

1 b Z <t<b

(5.5)

(5.6)

One explanation for this model is as follows: in a real system, data is delivered in

packets of some small size. The delivery time of the ith packet is a random variable ¢;,

whose probability distribution can be characterized by a uniform distribution over some

time span; the t;’s are assumed to be i.i.d. random variables. Then the service time T of

the whole data is: T" = s + >, t;, where s is another uniform random variable describing

the setup (or overhead) time for sending a certain amount of data. Thus the pdf of T is a

Gaussian-like function, whose base width is approximately proportional to the number of

the packets in the data, which in turn is proportional to the data size. For simplicity, we

approximate the Gaussian-like function by a suitable triangular function. The distributions

are shown in Figure 5.3.

77

Figure 5.3: Probability distributions of data service time of (a) single packet, (b) the whole
data, (c) the approximation with 7'r[a, b]

5.3.2 Verification with T(n,1)

Intuitively, having more servers should provide better performance when the amount of data
stored on each server is fixed, i.e., E[T(n, k)] decreases as n increases and/or k decreases.
We can get pdfs of the T'(n, k) for a data server system by evaluating Eq.(5.2) for the service
time distribution in Eq.(5.5) and Eq.(5.6). Figure 5.4(a) shows the pdfs of T'(n, 1), where
1 <n <3 and T is of the triangular distribution 7'r[1,2]. Here we can see the pdf of T'(n, k)
shifts left as n increases.

To further verify the properties of E[T'(n, k)], simple experiments to measure T'(n,1)
were done on the experimental server system described in previous subsection. The system
consists of three servers. In order to remove other factors that also affect data service time,
such as contention in the communication medium (including the reliable communication
layer, which is a bottleneck if we use a single client which communicates with the three
servers), we use three clients, each of which is served by a separate server. Conceptually
the three clients are regarded as a single client, thus the whole data service time is the
minimum of the three individual service time of the server-client pairs. Figure 5.4(b) shows
the service times (T4, T5, and T3) of the three individual server-client pairs for 3200 Kbytes
data each. Since the variance among the three pairs is bigger than the variance within each

pair, the whole service time (7},;,), which is the minimum of the three, is determined by

78

2.5

0.5 —

160 —

120 —

100 -

pof

60 —

20 —

0o+
0o+

120 |-
B 100 |-
80 -
60 [

a0

=
L 6w¢®ﬁam?\®mmmm@mmmm
1.2 1.205 1.21 1.215 1.22 1.225 1.23 1.235 1.24

Figure 5.4: pdfs of T'(n,1): (a) analytical result, where the pdf of T" is T'r[1, 2], and experi-
mental service time for data of size 3200 Kbytes, where (b) no other loads on the servers,
and (c) other random loads on the servers

79

the service time of the best client-server pair as can be seen in the experimental results. In
this case, the pdf of T}y, is very close to that of 7. To make the experimental results more
interesting, some random loads are added to each server, so that the variance among the
three client-server pairs is less than the variance within each pair, i.e., each pair behaves
more similarly. The service times of three individual pairs (71,75, and T3) and the whole
service time (T),;,) are shown in Figure 5.4(c). Of those four pdfs (Ty,in, 11,12 and T3),
that of T}y, is the leftmost, which supports the analytical properties of T'(n, k) and the pdf
model of T'.

5.4 Design An Efficient System

The performance of a server system with redundancy can be improved in two dimensions:
(1) given the total number of the servers in the system, data can be distributed wisely
among the servers so that the overall service time servers is minimized. This is the data
distribution problem, which consists of determining k& and choosing proper MDS array codes
accordingly; (2) once the data distribution is set, data should be read from servers wisely
so that the whole service time is minimized. This is the data acquisition problem.

The data distribution problem is at the servers’ side, while the data acquisition prob-
lem is at the client’s side. Because of the properties of E[T'(n, k)], the two problems are

uncorrelated, thus they can be dealt with separately.

5.4.1 Data Distribution Scheme

In a server system, with a given total number of servers, n, we need to determine the number
k of the servers which store the raw data in order to maximize the performance of the whole
system (i.e., to minimize the mean service time of client’s data request); given k, the rest
of the servers can store the redundant data. When n and the pdf f(t) are fixed, E[T(n, k)]
decreases monotonically as k decreases. This means that in order to make E[T'(n, k)] small,
k should be as small as possible. On the other hand, however, the smaller k is, the more
data needs to be stored on each server, since the total amount of the data a client needs is
always fixed; this means higher service time from each server. Our goal is to find such a &
that when both sides of the problem are considered, E[T'(n, k)] is minimized.

After the parameter k is determined, in order to achieve optimal performance in terms

80
of E[T(n, k)], we can use MDS array codes to distribute the redundant data so that data
from any k servers can be assembled to form the whole of the requested data, as was
shown in the introduction. Now the remaining problem is to determine k£ to minimize
E[T(n,k)]. Applying the pdf model of each server’s service time, T', and using MDS codes
for distributing the redundant data, we get that if the pdf of T" is T'r[a, b] when k=1, then for
general k, the corresponding pdfis T'r[¢, %], since the base width of the pdf is proportional

to the data size. Theoretically, the optimal k£ can be calculated as follows:
Emin = argmink/ k() F@)F 1 — F@)] " tf(t)dt (5.7)
0

where f(t) and F(t) are as in Eq.(5.5) and Eq.(5.6), except that a and b should be replaced
by % and % respectively. Notice that ky,;, is a function of the entire pdf f(¢), not only the
mean E(T) and the variance Var[T].

Even for a simple pdf such as T'r[a,], the above equation can not be solved in closed
form. But in practice, the system parameters a and b can be determined by experiments,
then the above equation can be solved numerically. Figure 5.5 gives several examples of
solving the above equation. In the examples, ¢« = 1 and b = 5. For n = 10, 20, and 40,
E[T(n,k)] is calculated for 1 < k < n. The results are shown in Figure5.5(a)(b)(c), where
(b) and (c) only show the last few values for k, since for small k, E[T(n,k)] decreases
monotonically as k increases. From the results, we can see (a) ki, = 10, when n = 10, (b)
Emin = 19, when n = 20, and (c) kpin = 37, when n = 40.

Even though the above examples use specific pdfs, the same method also apply with
other pdfs by plugging suitable f(¢) into Eq.(5.7). Thus, for a given server system, such a
Emin can always be found. Proper MDS array codes can then be used based on the (n, k)

pair. Thus we get an optimal data distribution scheme for a given server system.

5.4.2 Data Acquisition Scheme

Once the data distribution scheme is set, i.e., k is determined and the proper MDS array
code is chosen, the client needs to decide how to request (or read) data. In general, a client
should send its request to as many servers as possible and also make the amount of data
it needs from each server as small as possible, since the properties of E[T'(n, k)] show that

more redundancy brings better performance. For a specific distribution scheme, the client

81

E[T(10,K)] (Mean of Service Time)

0.245)
024
F 0.235)
]
2

5
§
90z

M

E[T(20,1)] (Mean o

0215)

021]

0.205)

0118

0.117]

e Time)

8o119

an of Servi

£0115

EIT(40.K)] (Me:

0113

0112

0111

I I I I I I I I I
NN ¥ OB X B B ¥ B WM
K

(¢c) n =40

Figure 5.5: E[T'(n, k)] vs. k for different n, where a = 1 and b =5

needs to calculate the pdfs of all possible data read schemes, and then choose an optimal
read scheme. Since the read schemes are closely related to the MDS array code being used,
here we will give an example using a specific code to show the guidelines for choosing an
optimal read scheme.

In this example, the server system has 2n servers, and the data that the client requests
can be assembled from any 2n — 2 servers, i.e., this is a (2n,2n — 2) system. The B-Code in
Chapter 3 can be used to implement this system. The data distribution using the B-Code
is as follows: (1) the whole raw (information) data is partitioned into 2n(n — 1) blocks of
equal size (some paddings are added if necessary); (2) each of the 2n servers stores n — 1
blocks of the data; (3) 2n blocks of redundant (or parity) data are calculated according to
the encoding rules of the B-Code, i.e., each parity block is an XOR of suitable 2n — 2 raw
data blocks, and then each server stores 1 parity block. The structure of the B-Code is
shown in Figure 3.2 in Chapter 3.

The MDS property of the B-Code gives 3 schemes for reconstructing the whole raw data
from the data stored on 2n servers, each of which has n — 1 blocks of raw data and 1 block
of parity data: (1) read from all of the 2n servers, each of which sends its n — 1 blocks of
raw data; (2) read from any 2n — 2 servers, each of which sends all of its n blocks of data

(including raw and parity data); (3) read from all of the 2n servers, each of which sends all

82
of its n blocks of data. The 3 schemes are shown in Figure 5.6, where the shaded parts are

the data to read.

2n 2n-2 2 2n

o e s —
B | —
o e s —

(a) Scheme 1 (b) Scheme 2 (c) Scheme 3

Figure 5.6: Three read schemes using the B-Code

Notice that there is no redundant data in scheme (1) or scheme (2), so the client must
wait until it receives all the data from all the servers. But in scheme (3), there is redundant
data, then the client only needs to receive data from any 2n — 2 of the 2n requested servers.
Let E[T(2n,2n)|,—1, E[T(2n — 2,2n — 2)],, and E[T(2n,2n — 2)], denote the mean data
service time of the three schemes respectively. From Property 1 of Theorem 5.1, E[T(2n —
2,2n — 2)], > E[T(2n,2n — 2)],. But the relation between E[T(2n,2n)],—1 and either
E[T(2n —2,2n — 2)], or E[T(2n,2n — 2)], is not so obvious, since in scheme (1) the client
needs to wait for more servers, but needs less data (thus less service time) from each server.
So to determine which scheme is best scheme for a given system, we need to calculate the
pdf of the whole service time for all possible the schemes, which are scheme (1) and scheme
(3) in this case.

Assume that the pdf of the time T for each server to send n blocks of data to the client
is T'r[a, b]; then the pdf of T' in scheme (1) is Tr["T_la, ”T_lb], since each server only needs
to send n — 1 blocks of data, and the pdf of T in scheme (2) or (3) is T'r[a, b]. Now the pdfs
of the whole service time in the different schemes can be calculated according to Eq.(5.2),
Eq.(5.5) and Eq.(5.6). Figure 5.7 shows the pdfs for different values of n, where ¢ = 1 and
b = 10.

Using Eq.(5.3), the mean of the whole service time of different schemes can be calculated.
These means are listed in Table 5.1, for ¢ = 1 and b = 10.

The above calculations show that the performance of the three schemes depends on the
system parameter n (when a and b are fixed). In a small server system, scheme (1) is the
best. As n increases, scheme (3) becomes better. For a system of 6 servers (n = 3), scheme

(1) is the best, but for systems of 14 servers (n = 7) and 20 servers (n = 10), scheme (3) is

83

n 3 7 10
E[T(2n,2n)]n-1 5.2195 | 7.3128 | 7.8857

E[T(2n —2,2n —2)], | 7.4089 | 8.4207 | 8.6976
E[T(2n,2n —2)], | 5.8910 | 7.2466 | 7.6786

Table 5.1: Mean service time of different data read schemes, where a = 1, and b = 10

the best.

Though quite simple, the above example shows that after the data distribution is set
at the server side, the client has different ways of reading data from the servers. For a
given system (i.e., a certain the pdf of T', a fixed (n, k) pair and a particular code), there
always exists an optimal read scheme for the client. Finding this scheme requires careful
calculation. Since the read schemes are highly related to the codes used, exploring codes

that offer more read choices is an interesting research problem.

84

Q%0
Q%0
WNE

paf

o
]

T
00
080
WNE

0

0
|

paf
0

0
it
&

Q%0

Q%0

WNRF
0
0

pdf
o]
S
T
0
1

Figure 5.7: PDFs of different data read scheme, where ¢ = 1, b = 10; 1, 2 and 3 represent
scheme (1), (2) and (3) respectively.

85

5.5 Summary

We have explored options for improving the performance of data server systems by intro-
ducing data redundancy based on array codes. We have proposed methods of achieving
better performance at both the server side and the client side of systems, namely finding
an optimal data distribution scheme and an optimal data acquisition scheme. We have
also given a simple probability model for a real data server system, based on experimental
results. Our additional experimental results also verify qualitatively our analysis results.
In this chapter, the system model is rather simple: data requests from one client or
multiple clients are processed sequentially, i.e., at one time, and each server only handles
one data request. But in a more practical system, such as a web server system, multiple
data requests can come according to some stochastic process, and they can be processed
by the servers in a parallel fashion such that the number of requests processed per unit
time is maximized. Optimizing such systems is an interesting and useful research problem
that might require that the servers use some sophisticated scheduling schemes, based on

the results in this chapter.

