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Chapter 4 Efficient Deterministic Voting in Distributed

Systems

4.1 Introduction

In distributed storage systems, particularly for distributed file systems, voting can be used
to keep replicated data consistent. Distributed voting is itself an important problem in the
creation of fault-tolerant computing systems, e.g., it can be used to keep distributed data
consistent and to provide mutual exclusion in distributed systems. In an N Modular Re-
dundant (NMR) system, when the N computational modules execute identical tasks, they
need to be synchronized periodically by voting on the current computation state (or result,
and they will be used interchangeably hereafter), and then all modules set their current
computation state to the majority one. If there is no majority result, then other compu-
tations are needed, e.g., all modules recompute from the previous result. This technique is
also an essential tool for task-duplication-based checkpointing[38].

Many aspects of voting algorithms have been studied, e.g., data approximation, re-
configurable voting, dynamic modification of voting weights, and metadata-based dynamic
voting[9][18][24]. In this chapter, we focus on the communication complexity of the vot-
ing problem. Several voting algorithms have been proposed to reduce the communication
complezity[10][20]. These algorithms are nondeterministic because they perform voting on
signatures (hash functions) of local computation results. Recently, a majority voting scheme
based on error-control codes[21] was proposed: each module first encodes its local result
into a codeword of a designed error-detecting code and sends part of the codeword. By
using the error-detecting code, discrepancies of the local results can be detected with some
probability, and then by retransmitting the full local results, a majority voting decision can
be made. Though the scheme drastically reduces the average case communication complex-
ity, it can still fail to detect some discrepancies of the local results and might reach a false
voting result, i.e., the algorithm is still a probabilistic one. In addition, this scheme uses
only the error-detecting capabilities of codes. As this chapter will show, in general, using

only error-detecting codes (EDC) does not help to reduce the communication complexity of
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a deterministic voting algorithm. Though they have been used in many applications such as
reliable distributed data replication[1], error-correcting codes (ECC) have not been applied
to the voting problem.

For many applications[38], deterministic voting schemes are needed to provide more
accurate voting results. In this chapter, we propose a novel deterministic voting scheme that
uses error-correcting codes. The voting scheme generalizes all known simple deterministic
voting algorithms. Our main contributions related to the voting scheme include: (i) using
the correcting capability in addition to the detecting capability of codes (only the detection
was used in known schemes) to drastically reduce the chances of retransmission of the whole
local result of each node, thus reducing the communication complexity of the voting, (ii)
a proof that our scheme reaches the same voting result as the naive voting algorithm in
which every module broadcasts its local result to all the other modules, and (iii) a method
of tuning the scheme for optimal average case communication complexity by choosing the
parameters of the error-correcting code, thus making the voting scheme adaptive to various
application environments with different error rates.

The chapter is organized as follows: in Section 4.2, we describe the majority voting
problem in NMR systems. Our voting algorithm together with its correctness proof are
described in Section 4.3. Section 4.4 analyzes both the worst case and the average case
communication complexity of the algorithm. Section 4.5 presents experimental results of
the performance of the proposed voting algorithm, as well as the performance of two other

simple voting algorithms for comparison. Section 4.6 concludes the chapter.

4.2 The Problem Definition

In this section, we define the model of the NMR system and its communication complexity.

Then we address the voting problem in terms of the communication complexity.

4.2.1 NMR System Model

An NMR system consists of N computational modules which are connected via a com-
munication medium. For a given computational task, each module executes a same set
of instructions with independent computational error probability p. The communication

medium could be a bus, a shared memory, a point-to-point network or a broadcast network.
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Here we consider the communication medium as a reliable broadcast network, i.e., each
module can send its computational result to all the other modules with only one error-free
communication operation. The system evolution is considered to be synchronous, i.e., the

voting process is round-based.

4.2.2 Communication Complexity

The communication complezity of a task in an NMR system is defined as the total number
of bits that are sent through the communication medium during the whole execution of the
task. In a broadcast network, let m;; be the number of the bits that the ith module sends at
the jth round of the execution of a task, then the communication complexity of the task is
>N E]K:1 m;j, where N is the number of the modules in the system, and K is the number

of rounds needed to complete the task.

4.2.3 The Voting Problem

Now consider the voting function in an NMR system. In order to get a final result for a
given task in an NMR system, each module completes its own computation separately, then
it must be synchronized with the other modules by voting on the result. Let X; denote the

local computational result of the ith module. The majority function is defined as follows:

o X if {1<i<N}:X;=X|>24H
Majority(Xy, -, Xn) 1=
¢ otherwise

where in general, N is an odd natural number, and ¢ is any predefined value different from

all possible computing results.

Example 4.1 Majority voting
If X; = 0000, Xy = 0001, X3 = 0100, X4 = 0000, X5 = 0000, then

Majority(Xl, XQ, X3, X4, X5) = 0000;
If X5 changes to 0010, and the other X's remain unchanged, then

Ma’jority(XlaX27X37X47X5) = ¢
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The result of voting in an NMR system is that each module gets Majority(Xy,---,Xn) as
its final result , where X; (i =1,---,N) is the local computation result of the ith module.

One obvious algorithm for the voting problem is that after each module computes the
task, it broadcasts its own result to all the other modules. When a module receives all the
other modules’ results, it simply performs the majority voting locally to get the result. The

algorithm can be described as follows:

Algorithm 4.1 Send-All Voting

For Module P;, i € [1: N
Broadcast(X;);
Wait Until Receive All X;, 7 € [1: N\ 4
X := Majority(Xy, -+, Xn);
Return(X);

This algorithm is simple: each module only needs one communication (i.e., broadcast)
operation, but apparently its communication complexity is too high. If the result for the
task has m bits, then the communication complexity of the algorithm is Nm bits. In most
cases, the probability of a module having a computational error is rather low, namely at
most times all modules have the same result, thus each module only needs to broadcast
part of its result. If all the results are identical, then each module agrees with that result.
If not, then the modules can use Algorithm 4.1. In other words, we can improve the voting

algorithm as follows:
Algorithm 4.2 Simple Send-Part Voting

For Module P;, i € [1: NJ:
Partition the local result X; into N symbols: X;[1 : NJ;
Broadcast(X;[7]);
Wait Until Receive All X;[j], 7 € [1: N]\ 4;
X = Xq[1] % -+ % Xy[N];
Fi= (X = Xi);
Broadcast(F;);
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If Majority(Fy,---,Fy) =TRUE(1)
Return(X);

Else
Broadcast(X;[j]), 7 € [1 : N]\ ¢;
Wait Until Receive All X;, j € [1: N]\3;
Return(Majority(Xy,---, XnN));

In the above algorithm, * is a concatenation operation of strings, e.g., 000100 = 000100;

and = is an equality evaluation:

TRUE(1) ifX equals Y
FALSE(0) otherwise

(X=Y):=

Some padding may be needed if the length of the local result is not an exact multiple of N.

The following example demonstrates a rough comparison of the two algorithms.

Example 4.2 Comparison of the voting algorithms

Let X1 = X9 = X3 = X4 = 00000 and X5 = 10000, Algorithm 4.1 requires 1 round
of communication, and transmits a total of 25 bits. On the other hand, with Algorithm
4.2, all P’s (i = 1,---,5) broadcast 0, and X = 00000. Thus (Fy,---,F5) = 11110, so
Majority(Fy,---,F5) = 1, and X is the majority voting result. In this case, 2 rounds of
communication are used, and 10 bits (5 bits for X and 5 bits for F) are transmitted.

If X5 = 00001, and all the other X;’s remain same, then with Algorithm 4.2, X = 00001,
which results in (Fi,---, F5) = 00001. Thus Majority(Fy,---,F5) = 0, and the Else part
of the algorithm is executed. Finally, the majority voting result is obtained by voting on
all the X;’s, i.e., X = Majority(Xy,---,X5) = 00000. Now 3 rounds of communication are

needed, and in total, 30 bits ( 25 bits for the X;’s and 5 bits for F) are transmitted. O

From the above example, it can be observed that
1. Algorithm 4.1 always requires only 1 round of communication, and Algorithm 4.2
requires 2 or 3 rounds of communication;

2. The Else part of Algorithm 4.2 is actually Algorithm 4.1;
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3. The communication complexity of Algorithm 4.1 is always Nm, but the communica-
tion complexity of Algorithm 4.2 may be m + N or Nm + N, depending on the X;’s;

4. In Algorithm 4.2, by broadcasting and voting on the voting flags, i.e., F;’s, the chance
for getting a false voting result is eliminated.

If the Else part of Algorithm 4.2, i.e., Algorithm 4.1, is not executed too often, then the
communication complexity can be reduced from Nm to m+N, and in most cases, m > N,
thus m + N = m. So the key idea to reduce the communication complexity is to reduce the
probability of executing Algorithm 4.1. In most computing environments, each module has
a low computational error probability p, thus with high probability either (1) all modules
get the same result or (2) only few of them get different results from the rest. In case
(1), Algorithm /.2 has low communication complexity, but in case (2), Algorithm 4.1 is
actually used and the communication complexity is high (i.e., Nm + N). If we can detect
and correct these few inconsistent results, then the FElse part of the Algorithm 4.2 does not
need to be executed, and so the communication complexity can still be low. This detecting

and correcting capability can be achieved by using error-correcting codes.

4.3 The Solution Based on Error-Correcting Codes

Error-correcting codes (ECC) can be used in the voting problem to reduce the communica-
tion complexity. The basic idea is that instead of broadcasting its own computation result
X; directly, the ith module, P;, first encodes its result X; into a codeword Y; of some code,
and then broadcasts one symbol of the codeword to all the other modules. After receiving
all the other symbols of the codeword, it reassembles them into a vector. If all the modules
have the same result, i.e., all the X;’s are equal, then the received vector is the codeword
of the result, thus it can be decoded to retrieve the result. If a majority result exists, i.e.,
Magjority(X1, -+, Xn) # ¢, and there are ¢ (¢ < |5 ]) modules whose results are different
from the majority result X, then the symbols from all these modules can be regarded as error
symbols with respect to the majority result. As long as the code is designed to correct up
to t errors, these error symbols can be corrected to get the codeword corresponding to the
majority result, thus Algorithm 4.1 does not need to be executed. When the code length
is less than Nm, the communication complexity is reduced compared to Algorithm 4.1. On

the other hand, if only error-detecting codes are used, once errors are detected, Algorithm
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4.1 still needs to be executed, and thus increases the whole communication complexity of
the voting. Thus error-correcting codes are preferable to error-detecting codes for voting.
By properly choosing the error-correcting codes, the communication complexity can always
be lowered below that of Algorithm 4.1.
But it is possible that no majority result exists, i.e., Majority(Xy,---, Xn) = ¢, yet the
vector that each module gets can still be decoded. As in the example above, introducing

voting flags can avoid this false result.

4.3.1 A Voting Algorithm with ECC

With a properly designed error-correcting code, which can detect up to d error symbols and
correct up to t error symbols (0 < t < d), a complete voting algorithm using this code is as

follows:

Algorithm 4.3 ECC Voting
For Module P;, i € [1: NJ:
Y; := Encode(Xj;), partition Y; into N symbols: Y;[1 : NJ;
Broadcast(Y;[]);
Wait Until Receive All Yj[j],5 € [1: N]\4;
Y :=Yi[1] *--- x YN[N];
If Y is undecodable
Execute Algorithm 4.1 ;
Else
X := Decode(Y);
Fi = (X = X;);
Broadcast(F;);
If Majority(Fy,---,Fy) =TRUE(1)
Return(X);
Else
Execute Algorithm 4.1 ;

Notice that to execute Algorithm 4.1, each module P; does not need to send its whole

result X;. It only needs to send additional N — (d+1t) — 1 symbols of its codeword Y;. Since
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the code is designed to detect up to d and correct up to t symbols, it can correct up to
d+t erasures, thus the unsent d+t symbols of Y; can be regarded as erasures and recovered;
hence the original X; can be decoded from Y;.
The flow chart of the algorithm given in Figure 4.1 shows the algorithm more clearly.

and the following example shows how the algorithm works.

Yi:= Encode(xi ), partitionY
into N symbols

Broadcast(Yj(i)), wait until get
the reassembled vector Y

IsY Decodable ?

X := Decode(Y), F := (X =X )
Broadcast(F )

Majority(F, , ..., Fy ) =17 No @

EY (2

Return(X) Execute "Send-All Voting"

Figure 4.1: Flow chart of Algorithm 4.3

Example 4.3 Voting Algorithm 4.3

There are 5 modules in an NMR system, and the task result has 6 bits, i.e., N =5 and
m = 6. Here the EVENODD code[4] is used which divides 6-bit information into 3 symbols
and encode information symbols into a 5-symbol codeword. This code can correct 1 error
symbol, i.e., d =1t = 1.

Now if X; = 000000, 7 = 1,2,3,4, and X5 = 000011, then with the EVENODD code,
Y; = 0000000000, 7 = 1,2,3,4, and Y5 = 0000111101. After each module broadcasts
1 symbol (i.e., 2 bits) of its codeword, the reassembled vector is Y=0000000001. Since
Y has only 1 error symbol, it can be decoded into X=000000. From the flow chart of the
algorithm, we can see that F; = 1,i = 1,2, 3,4, and F5 = 0, thus Majority(Fy,---,F5) =1,
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so X=000000 is the majority voting result.

In this case, there are 2 rounds of communication, and the communication complexity
is 15 bits. As a comparison, Algorithm 4.1 needs 1 round of communication, and its com-
munication complexity is 30 bits; Algorithm 4.2 needs 3 rounds of communication, and its
communication complexity is 35 bits. In this example, the EVENODD code is used, but
the specific code itself does not affect the communication complexity as long as it has same

properties as the EVENODD code, namely, it is an MDS code withd =¢t=1. O

As can be seen in the flow chart of the algorithm, introducing voting on the F;’s ensures
that it is impossible to reach a false voting result, and going to the Send-All Voting in
the worst case guarantees that the modules reach the majority result if it exists. Thus
the algorithm gives a correct majority voting result. A rigorous correctness proof of the

algorithm follows.

4.3.2 Correctness of the Algorithm

Theorem 4.1 Algorithm 4.3 gives Majority(Xy,---,Xn) for a given set of local compu-
tational results X;’s (i =1,---,N).

Proof: From the flow chart of the algorithm, it is easy to see that the algorithm terminates
in the following two cases:

1. Executing the Send-All Voting algorithm: the correct majority voting result is cer-
tainly reached;

2. Returning an X: in this case, since Majority(Fy,---,Fy) = TRUE(1), i.e., majority
of the X's are equal to X, the correct majority voting result is also reached: X is the
majority result. O

To see how the algorithm works for various instances of the local results X;’s (i =
1,---,N), we give two stronger observations about the algorithm, which also help to analyze

the communication complexity of the algorithm.

Observation 4.1 If Majority(Xy,---,Xn) = ¢, then Algorithm 4.3 outputs ¢, i.e., Al-
gorithm 4.3 never gives a false voting result.

Proof: It is easy to see from the flow chart that after the first round of communication,
each module gets the same voting vector Y. According to the decodability of Y, there are

two cases:



57
1. If Y is undecodable, then the Send-All Voting algorithm is executed, and the output
will be ¢;
2. If Y is decodable, the decoded result X now can be used as a reference result. But
since there does not exist a majority voting result, a majority of the X;’s are not equal to
the X, i.e., Majority(Fy,---,Fn) = FALSE, so the Send-All Voting algorithm is executed,

and the output again will be ¢. O

Observation 4.2 If Majority(Xy,---,Xn) = X(# ¢), then Algorithm 4.3’s output is

exactly X, i.e., Algorithm 3 will not miss the majority voting result.

Proof: Suppose there are e modules whose local results are different from the majority
result X, then e < L%J

1. If e < t, then there are e error symbols in the voting vector Y with respect to the
corresponding codeword of the majority result X, so Y can be correctly decoded into X.
A majority of the X;’s are equal to X, i.e., a majority of the F;’s are 1, hence the correct
majority result X is outputted.

2. If e > t, then Y is either undecodable or incorrectly decoded into another X', where
X' # X. In either case, the Send-All voting algorithm is executed and the correct majority

result X is reached. O

4.3.3 Proper Code Design

In order to reduce the communication complexity, we need an error-correcting code that
can be used in practice for Algorithm 4.3. Consider a block code of length M. Because of
the symmetry among the N modules, M needs to be a multiple of N, i.e., each codeword
consists of N symbols, and each symbol has k bits, thus M = Nk. If the minimum distance
of the code is dyip, then dpip > (d+t)k+ 1, where 0 <t <d < L%J, since the code should
be able to detect up to d error symbols and correct up to ¢ error symbols[19]. Recall that

the final voting result has m bits, the code to design is a (Nk,m, (d + t)k 4+ 1) block code.

To get the smallest value for k, by the Singleton Bound in coding theory[19],
Nk—m+1>(d+t)k+1 (4.1)

we get
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Equality holds for all MDS Codes[19].

So, given a specified (d, t), the smallest value for £ is |VN—?(§+t)—|' If N—?}H—t) is an integer,

all MDS Codes can achieve this lower bound of k. One class of commonly used MDS codes

N{(@FD

any (Nk,m, (d + t)k + 1) block code can be used, where k = [m] One example of

this is the BCH code, which can also have arbitrary distances[19]. The exact parameters

for arbitrary distances is the Reed-Solomon code[19]. If is not an integer, then

(k,d,t) can be achieved by shortening (i.e., setting some information symbols to zeros) or
puncturing (deleting some parity symbols ) proper codes[19].

Notice that 0 < t < d < %, thus 7 < & < m. In most applications, N < m, thus
the N bits of Fj’s can be neglected, and k£ is approximately the number of the bits that
each module needs to send to get final voting result, so the communication complexity of
Algorithm 4.3 is always lower than that of Algorithm 4.1.

In this chapter, only the communication complexity of voting is considered, since in
many systems, computations for encoding and decoding on individual nodes are much faster
than reliable communications among these nodes; the latter requires rather complicated
data management in different communication stacks and retransmission of packets between
distributed nodes when packet loss occurs. However, in real applications, design of proper
codes should also make the encoding and decoding of the codes as computationally efficient
as possible. When the distances of codes are relatively small, as in most applications when
the error probability p is relatively low, more computationally-efficient MDS codes should

be used, such as the X-Code or the B-Code discussed in the previous chapters.

4.4 Communication Complexity Analysis

4.4.1 Main Results

From the flow chart of Algorithm 4.3, we can see if the algorithm terminates in Branch 1,
i.e., the algorithm gets a majority result, then the communication complexity is N(k + 1);
if it terminates in Branch 2, then the communication complexity is N (m + 1); finally if the
algorithm terminates in Branch 3, the communication complexity is Nm. Thus the worst
case communication complexity Cy, is N(m + 1). When m > 1, C, ® Nm.

Let C, denote the average case communication complexity of Algorithm 4.3, and define

the average reduction factor « as the ratio of C, over the communication complexity of the
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Send-All Voting algorithm, i.e. o = . The following theorem gives the relation between

« and the parameters of both an NMR system and the corresponding code:

Theorem 4.2 For an NMR system with N modules, each of which executes an identical
task whose result is m-bits long. Assume each module has computational error probability
p, independent of other modules’ activities. If Algorithm 4.3 uses an ECC which can detect
up to d and correct up to t error symbols, and m > N > 1, then the following relation holds

for the average reduction factor of Algorithm 4.3:

P 1
- 1 - P — 4.3
a<N—(d+t)+( 1)+m (4.3)
where
t N ) )
r=1 |pPa-p" (4.4)
i=0 )

Proof: To get the average case communication complexity C, of Algorithm 4.3, we need
to analyze the probability F; of the algorithm terminating in the Branch 4, 1 = 1,2,3. First
assume that if a module has an erroneous result X;, then it contributes an error symbol
to the voting vector Y. From the proof of Observation 2, if the algorithm terminates in
Branch 1, then at most ¢ modules have computational errors; the probability of this event
is exactly P;. The event that the algorithm reaches Branch 2 corresponds to the decoder

error event of a code with minimum distance of d+t+1, thus[19]

5]

N
Po= Y A ) Py (4.5)
k=0

i=d+t+1
where {A4;} is the weight distribution of the code being used, and Pj is the probability that
a received vector Y is exactly Hamming distance k away from a weight-i (binary) codeword
of the code. More precisely,

k - .
) N —1 ) . . )
= " T PR - )N (4.6)
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If the weight distribution of the code is unknown, P, can be approximately bounded by

|4t )
- N 7 N—i
B<1-3 | |p(l-p) (4.7)
=0 2

since the second term in the right side of the inequality above is just the probability of event

that correctable errors occur. Finally Ps is the probability of the decoder failure event,
Ps=1-P - P (4.8)

Now notice that a module with an erroneous result can also contribute a correct symbol to

the voting vector, so the average case communication complexity is
Ca S PlN(k‘+ 1) +P2N(m+ 1) +P3N’ITL (49)

and the average reduction factor is

k P+ P
a< Sp 4 (1—P)+ 1t (4.10)
m m

By noticing that k& = [W], and P; + P, < 1, we get the result of Eq. (4.3). O

Remarks on the theorem : From Eq. (4.3), we can see the relation between the average
reduction factor « and each branch of Algorithm 4.3. The first term relates to the first
branch, whose reduction factor is %, or m when m is large enough relative to IV that
the round-off error can be neglected; P; is the probability of that branch. One would expect
this term to be the dominant one for «, since with a properly designed code tuned to the
system, the algorithm is supposed to terminate at Branch 1 in most cases. The second term
is simply the probability that the algorithm terminates at either Branch 2 or Branch 3; in
this case the reduction factor is 1 (i.e., there is no communication reduction since all the
local results are transmitted), without considering the 1 bit for F;’s in Branch 2. The last

term is due to the 1 bit for voting on F;’s. When the local result size is large enough, i.e.,

m > 1, this 1 bit can be neglected in our model. Thus in most applications, the assumption
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that m > 1 is quite reasonable, and the result of the theorem can be simplified to

~ P

From the above theorem and its proof, it can be seen that for a given NMR system (i.e.,
N and p), P is only a function of . Once ¢ is chosen, it is easy to see from Eq. (4.3) or
Eq. (4.11) that o decreases monotonically as d decreases. Recall that 0 < ¢ < d, thus for a
fixed ¢, setting d = ¢t minimizes o when m > 1. Even though it is not straightforward to
get a closed form solution for the value of ¢ which minimizes «, it is almost trivial to get
such an optimal £ by numerical calculation.

Figure 4.2 shows relationship between « and (¢,p, N). Figure 4.2(a) and Figure 4.2(b)
show how « (using Eq. (4.11)) changes with ¢ for some fixed (N,p) and d = ¢. It is
easy to see that for small p and reasonable N, a small ¢ (e.g., t < 2, for N < 51 with
p = 0.01) can achieve minimal cr. These results show that for a highly reliable NMR system
(e.g., p < 0.01), adding a small amount of redundancy to the local results and applying
error-correcting codes to them can drastically reduce the communication complexity of the
majority voting. Since the majority result is m bits long, and each module gets an identical
result after voting, the communication complexity of the voting problem is at least m bits,

1

thus a > %, i.e., % is a lower bound of . Figure 4.2c shows how close Algorithm 4.3 comes

to achieving the theoretical lower bound of a.

(a) a vs. t for different p with fixed N =31  (b) « vs. t for different N with fixed p = 0.01 (¢) Minimum « vs. N

=11 | L
=31 x  x  p=00
=51 p=.01

O lower bound
5

Figure 4.2: Relations between « and (¢, p, N)
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4.4.2 More Observations

From the above results, we can see that the communication complexity of Algorithm 4.3 is
determined by the code design parameters (d,t). In an NMR system with N modules, we
only need to consider the case where at most L%J modules have local results different from
the majority result, thus the only constraint of (d,t) is 0 <t <d < L%J For some specific
values of (d,t), the algorithm reduces to the following cases:

1. Whend =1t = %, i.e., a repetition code is used, the algorithm becomes Algorithm
4.1. Since a repetition code is always the worst code in terms of redundancy, it should
always be avoided for reducing the communication complexity of voting. On the other
hand, when d=t=0: the algorithm becomes Algorithm 4.2, and from Figure 4.2, we can
see that for small enough p and reasonable N, e.g., p = 1075 and N = 31, Algorithm 4.2
actually is the best solution of the majority voting problem in terms of the communication
complexity. In addition, Algorithm 4.2 has low computational complexity since it does not
need any complex encoding or decoding operations. Thus the ECC voting algorithm is a
generalized voting algorithm, and its communication complexity is determined by the code
chosen.

2. t = 0, then the code only has detecting capability, but if m > N, then the analysis
above shows increasing d actually makes « increase. Thus, when m > N, it is not good
to add redundancy to the local results just for error detecting, i.e., using only EDCs (error
detecting codes) does not help to reduce the communication complexity of voting. The
scheme proposed in [21] (d = [4]) falls under this category.

3. d= L%J as above, it is not good in general to have d > t in terms of «, since
increasing d will increase « for fixed t. But in this case, Algorithm 4.3 has a special property:
Branch 2 of the algorithm can declare there is no majority result directly, without executing
the Send-All Voting algorithm, because the code now can detect up to L%J errors. So if
there was a majority result, then Y (refer to Figure 4.1) can have at most | 4] erroneous
modules, and since Y is decodable, the majority of the local results should agree with the
decoded result X, i.e., Majority(Fy,---,Fn) = TRUE(1). This differs from the actual
Magjority(Fy,---, Fxn), so there is no majority result. By setting d to L%J, Algorithm 4.3
always has 2 rounds of communication and the worst case communication complexity is thus

Nm instead of N(m + 1). This achieves the lower bound of the worst case communication
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complexity of the distributed majority voting problem[21].

4.5 Experimental Results

In this section, we show some experimental results of the three voting algorithms discussed
above. The experiments are performed on a cluster of Intel Pentium/Linux-2.0.7 nodes
connected via a 100 Mbps Ethernet. Reliable communication is implemented by a simple
improved UDP scheme: whenever there is a packet loss, the voting operation is considered a
failure and is redone from the beginning. By choosing suitable packet size, there is virtually
no packet loss using UDP.

To examine the real performance of the above three voting algorithms, N nodes vote on
a result of length m using all three voting algorithms. For the ECC Voting algorithm, an
EVENODD Code is used, which corrects 1 error symbol, i.e., d = t = 1. Random errors
are added to local computing results with a preassigned error probability p, independent of
results at other nodes in the NMR system. The performance is evaluated by two parameters
for each algorithm: the total time to complete the voting operation 7' and the communica-
tion time for the voting operation C'. The maximum 7" and C of the whole NMR system are
chosen from among all the local T”s and C's,, since if the voting operation is considered a
collective operation, the system’s performance is determined by the worst local performance
in the system. For each set of NMR system parameters (N nodes and error probability p),
each voting operation is done 200 times, and random computation errors in each run are
independent of those in other runs. The arithmetic average of C’s and 7T”s are regarded as
the performance parameters for the tested NMR system.

Experimental results are shown in Figures 4.3 through 4.5. Figure 4.3 compares the
experimental average reduction factors of the voting algorithms with the theoretical results
in the previous section, for an NMR system of 5 nodes. Figure 4.4 shows the performance (T
and C) of the voting algorithms. Detailed communication patterns of the voting algorithms
are shown in Figure 4.5 to provide some deeper insight into the voting algorithms.

Figure 4.3(a) and Figure 4.3(b) show the experimental average reduction factors of
the voting communication time (C) for the Simple Send-Part Voting algorithm and the
ECC Voting algorithm. Figure 4.3(a) and Figure 4.3(b) also show the theoretical average
reduction factors of the Algorithm 4.2 and 4.3 as computed from Eq. (4.11). Notice that the
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average communication time reduction factors a of both Algorithm 4.2 and Algorithm 4.3 are
below 1 for all the result sizes greater than 1 Kbyte, Also notice that as the computational

result size increases, the reduction factor approaches the theoretical bound.

(a) error probability p = 0.01 (b) error probability p = 0.1
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Figure 4.3: Average reduction factors

(C(7) is the experimental average reduction factor of communication time for voting using algorithm 4.1, and a(i)
is the theoretical bound of the average communication reduction factor using algorithm 4.1, i = 2, 3)

Figure 4.4 shows the performance of each voting algorithm applied to an NMR system
of 5 nodes. Figure 4.4(a)(b) show the total voting time T and Figure 4.4(c)(d) show the
communication time C for voting. The only different parameter of the NMR systems
related to Figures (a) and (b) (symmetrically (c) and (d)) is the error probability p: p = 0.1
in Figures (a) and (c), while p = 0.01 in Figures (b) and (d). It is easy to see from the
figures that for Algorithm 4.1 (Send-All Voting), T and C are the same, since there is no
local computation other than communication. Figures 4.4(a)(b) show that Algorithms 4.2
(Simple Send-Part Voting) and 4.3 (ECC Voting) perform better than the Algorithm 4.1
(Send-All Voting ) in terms of the total voting time 7. On the other hand, Figures 4.4(c)(d)
show that, in terms of the communication complexity C', the ECC Voting algorithm is better
than the Simple Send-Part Voting algorithm when the error probability is relatively large
(Figure 4.4(c)) and worse than the Simple Send-Part Voting algorithm when the error
probability is relatively small (Figure 4.4(d)), which is consistent with the analysis results

in the previous section.
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In the analysis in the previous section, the size m of local computing result does not
show up as a variable in the average reduction factor function «, since the communication
complexity is considered to be only proportional to the size of the messages that need to
be broadcast. But practically, communication time is not proportional to message size,
since startup time of communication also needs to be included. More specifically, in the
Ethernet environment, since the maximum packet size of each physical send (broadcast)
operation is limited by the physical ethernet, communication completion time becomes a
more complicated function of the message size. Thus from the experimental results, it
can be seen that for a computing result of small size, e.g., 1 Kbyte, the Send-All Voting
algorithm actually performs best in terms of both C and T, since the startup time dominates
the performance of communication. Also, the communication time for broadcasting the
1-bit wvoting flags cannot be neglected as analyzed in the previous section, particularly
for a computational result of small size. This can also be seen from the detailed voting
communication time pattern in Figures 4.5(a)(b): round 2 of the communication is for the
1-bit wvoting flag; even though it finishes in much more shorter time than round 1, it is
still not negligibly small. This explains the fact that for small size computing results, the
average communication time reduction factors of Algorithm 4.2 and Algorithm 4.3 are quite
different from their theoretical bound.

Further examination of the detailed communication time pattern of voting provides a
deeper insight into Algorithm 4.3. From Figures 4.5(c)(d), it is easy to see that in the
first round of communication, Algorithm 4.2 needs less time than Algorithm 4.3, since the
size of the message to be broadcast is smaller for Algorithm 4.2. Also, the first round of
communication time does not vary with the error probability p for the either algorithm.
The real difference between the two algorithms lies in the third round of communication.
From Figure 4.5(c), this time is small for the both algorithms since the error probability
p is small (0.01). But as the error probability p increases to 0.1, as shown in Figure
4.5(d), for Algorithm 4.2, the third round time increases to more than the first round time,
since it has no error-correcting capability. Once a full message needs to be broadcast, the
message size is much bigger than that in the first round. On the other hand, though the
communication time for the third round also increases for Algorithm 4.3, it is still much
smaller than in the first round; this comes from the error-correcting codes that Algorithm

4.8 uses, which can correct the most frequently occurring error pattern: errors at a single
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computing node. Thus, even though the computation error probability is high, in most
cases, the most expensive third round of communication can be avoided. Thus Algorithm
4.3 performs better (in terms of communication complexity or time) than Algorithm 4.2 in

high error probability systems, just as the analysis in the previous section predicted.

4.6 Summary

We have proposed a deterministic distributed voting algorithm using error-correcting codes
to reduce the communication complexity of the voting problem in NMR systems. We have
also given a detailed theoretical analysis of the algorithm. By choosing the design param-
eters (d,t) of the error-correcting code, the algorithm can achieve a low communication
complexity, which is quite close to its theoretical lower bound. We have also implemented
the voting algorithm over a network of workstations, and the experimental performance re-
sults match the theoretical analysis well. The algorithm proposed here needs 2 or 3 rounds
of communication. It is left as an open problem whether there is an algorithm for the
distributed majority voting problem with average case communication complexity less than

Nm using only 1 round of communication.
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Figure 4.4: Experimental voting performance of 5-node NMR system

(T () and C(i) are the total and communication time for voting using algorithm 4.i respectively, i = 1,2, 3)
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Figure 4.5: Detailed communication time pattern of voting

(Ri(k) is the communication time in round 7 using the voting algorithm 4.k, i = 1,2,3, and k = 2, 3)
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