29

Chapter 3 Low Density MDS Codes and Factors of

Complete Graphs

3.1 Introduction

In this chapter, we describe another new family of MDS array codes of distance 3 with
optimal update complexity. This family is called the B-Code. The B-Code is of size n x [
over an Abelian group G(q) with an addition operation +, where [= 2n or 2n+ 1, and ¢ is
size of the group G(q). As the X-Code in Chapter 2, the B-Code uses only group additions
for its encoding and decoding operations as well. The error model is also the same as that
of the X-Code: erasures (errors) are column erasures (errors). Its distance is also defined
over columns.

The novelty of this chapter is to use a graph approach to describe the code, making
the design of the code easier and more direct. Figure 3.1(a) shows Bg, the dual B-Code

of length 6. In addition to the usual representation of a code as an array of information

a1 a2 a3 G4 as a6
az+asz|a3+aq|ag+as|as+as|agt+ar|ar+a
a4+ ag |as+ay | ag+ag | ay+a3|ax+aqg| a3+ as

Figure 3.1: Bg, the dual B-Code of length 6, is a 3 x 6 MDS array code or a (6,2,5) MDS
code over G(23). The a;’s are the information bits. (a) the graph representation of Bg, (b)
a decoding path for the erasure of columns 3, 4, 5 and 6 (i.e., only columns 1 and 2 are

available).

and parity bits, the B-Code can be represented by a labeled graph in which every vertex

corresponds to an information bit and each edge represents a parity bit: each parity bit is

30

simply the sum of the two information bits that constitute the edge. The edges and vertices
of the graph are labeled with a column index: the ith column of the code consists of the
information bit a; and the parity bits with the column index 7. The same notation will be
used hereafter in this chapter. Bg has distance 5 and can therefore tolerate any erasure of
4 columns. Figure 3.1(b) shows a decoding path for the erasure of columns 3 through 6.
Use a9 (from column 2) together with parity as + ag (from column 1) to recover az. Use
the latter along with parity ag + a4 (from column 2) to recover ay4, etc. For any 4-columns
erasure, such a decoding path exists.

By using this new graph description, it will be proven in this chapter that constructing a
B-Code is equivalent to a 3-decade old graph theory problem, the perfect one-factorizations
of complete graphs[29], denoted P1F. Using results on P1F, we can construct two infinite
families of B-Codes, one of which can be shown to be the construction of [37]. In addition,
there are a number of values for which P1Fs exist that are not in the two infinite families;
these result in constructions of the B-Codes of all lengths up to 49. The existence of perfect
one-factorizations for every complete graph with an even number of nodes is a 35-year old
conjecture in graph theory. An affirmative answer to this conjecture will provide the B-Code
constructions of arbitrary length. Alternately, the construction of the B-Codes of arbitrary
odd length will provide an affirmative answer to the conjecture.

The main contributions of this chapter are:

1. proving the equivalence of the perfect one-factorization of complete graphs and the MDS
code constructions;

2. providing constructions for a new class of low-density MDS array codes;

3. proving that in general, the dual of an MDS array code is still MDS.

The chapter is organized as follows. In Section 3.2, we describe the B-Code and its
dual using a new graph representation. In Section 3.3, we reveal the relation between the
B-Code and the P1F problem. We also give efficient erasure and error decoding algorithms
for the B-Code. In Section 3.4, we further discuss the equivalence between the B-Code and

P1F. In Section 3.5, we conclude the chapter and present some future research directions.

31
3.2 B-Code and its Dual

As already described, a B-Code is an MDS code of size n x [, with distance 3. The MDS
property of the B-Code implies that out of nl bits, exactly 2n bits should be parity bits. In
this section, we describe the B-Code and its dual code using graphs. We also prove that in

general the dual of an MDS array code is also MDS.

3.2.1 Structure of the B-Code

Let B; denote the B-Code of length [, where [= 2n or 2n + 1. For By, the first n — 1 rows
are information rows, and the last row is a parity row, i.e., all the bits in the first n — 1
rows are information bits, while the 2n bits in the last row are parity bits. The structure
of Ba,41 can be derived from that of Bsg, simply by adding one more information column

as the last column. Their structures are shown in Figure 3.2.

2n 2n 1+
| | ,
n-1 Information n-1 Information n
1 Lo
1 Parity 1 Parity 0

(a) (b)
Figure 3.2: Structures of (a) Ba, and (b) Bayy1.

Intuitively, if the roles of the information and parity bits of the B-Code are exchanged,
i.e., the parity bits are placed in the entries which originally were for the information bits
and vice versa, then we get the dual code of the B-Code for length [, denoted B;. We will
soon give a more rigorous definition of the dual code for general array codes, and prove that
the dual of a general MDS array code is also MDS. In particular, the dual B-Code is also
an MDS array code; it has distance [— 1, i.e., the dual B-Code can be recovered from any

two of its columns. Figure 3.3 shows the structures of B’zn and Bgn_H.

2n 2n 1+
@ Information @ Information g
T T r
n- ll Parity n- ll Parity 't
y

(a) (b)
Figure 3.3: Structures of (a) Bo, and (b) Ba,i1

32
3.2.2 Dual Array Codes

Array codes are linear codes which can be described by parity check or generator matrices.
Consider an array code of size n x[over G(q). A codeword of this code can be represented by
a vector of length nl over G(q): it consists of [blocks, each of which includes n components.
The correspondence between the vector description and the array description is obvious:
the ¢th block of the vector corresponds to the ith column of the array, and the n components
within a block are just the n symbols within the corresponding column. A codeword c of a

2 x 4 array code is shown in both array form and vector form in Figure 3.4.

ap | a1 | a2 | a3 c:(ao po‘al pl‘ag pz‘a?, PS)
Po | D1 | P2 | P3

(@) (b)

Figure 3.4: A codeword of 2 x 4 code in (a) array form and (b) vector form

Using this vector form, an array code of size n x [with nr parity bits can be described by
its parity check matrix H, of size nr x nl, or its generator matrix G, of size n(l —r) xnl; here
7 is the number of parity (redundant) columns as if some columns consist of only parity bits.
Like for other 1-dimensional linear block codes, it is easy to observe that for a codeword ¢
of the array code and an information vector m of length n(l —r), the identities that ¢ = mG
and ¢H” = 0 still hold, or equivalently GH” = 0. In Figure 3.4, let the a;’s be information
bits and p;’s be parity bits. Specifically, when p; = a (i1 1)mods + @(i+2)mods, for i =0,1,2,3,
we get a B-Code of length 4, i.e. By, with n =2, [=4 and r = 2. Its parity check matrix

can be described as follows

0O 1|1 01 0|0 O

0 00 1|1 0|1 O
H=

1 00 0|0 1|1 O

1 0|1 0]0 0|0 1

Accordingly, its generator matrix is as follows

1 00 0]0 1|0 1

0 1|1 0(0 OO0 1
G =

0 1|]0 1(1 0j0 O

0 0j0 1(0 11 O

33

Using the vector form of array codes, we can define dual of array codes as for a conven-

tional 1-dimensional linear block code, i.e.,

Definition 3.1 (dual array code) Let C be a linear array code of size n x [over G(q), then
its dual code C* is defined as C+ = { ueG(q)™: u-v = 0 for all v € C }, where - is the

conventional dot product of vectors.

It follows that, as with 1-dimensional linear block codes, the parity check matrix of an
array code is the generator matrix of its dual code. One would expect that other properties
of dual codes that hold for 1-dimensional linear block codes also hold for array codes.
In particular, the dual of MDS array code is also MDS. ([8] gives a proof for the above
statement, but it implicitly assumes that information bits and parity bits are not mixed in
a same column.) However, for general array codes, since information and parity bits can
be mixed in the same column, it is not as obvious that this property holds as it seems to
be. Fortunately, this property can be generalized to general linear array codes, and we will

prove it here.

Theorem 3.1 The dual code of an MDS array code is also MDS.
Proof: Consider an MDS array code C of size n x [. Suppose its distance is r + 1 with
respect to columns. The parity check matrix of C' can then be written as H = (hy hg ---
hi), where h; is a submatrix of size nr x n that corresponds to the ith block in the vector
form of a codeword or to the ith column in the array (1 < ¢ <1). Since C' is MDS, any
combination of r submatrices (h;’s) is linearly independent, in terms of their columns.

Since H is the generator matrix of the dual code C'*, let a nonzero codeword ¢ € C*
have s nonzero columns, where s < [— r, thus ¢ has zero-columns in some set of r blocks
h;. Without loss of generality, let these blocks be (hy hg --- h,). Since ¢ is by definition a
linear combination of the r rows of H (this still holds for any linear array code), the nr x nr
square submatrix formed by (hy hgy - -+ h,) must be singular, which contradicts the fact that
any combination of r blocks (h;’s) are linearly independent. Thus the minimum column
weight of any codeword of C must be greater than [— r, i.e., the minimum distance of
C+ is greater than [— r. By the Singleton bound[31], this shows the dual code C* is also
MDS. O

Since 1-dimensional linear block codes are just a special case of array codes, the above

theorem certainly holds and the proof above reduces to one of many proofs for 1-dimensional

34
block codes[31].

3.2.3 A New Graph Description of the B-Code

Typically, an array code is described by its geometrical construction lines [4][5][7][15], or
by its parity check matriz [8][37]. Constructions of array codes are difficult to get using
these descriptions. In this chapter, we describe the B-Code and its dual using a new graph
approach. By relating the graph conditions for constructing the B-Code to a classical graph
problem, perfect one-factorization of complete graphs, we obtain new constructions.

For any array code, each parity bit is the sum of some information bits; for binary codes,
the addition is just the simple XOR (binary ezclusive OR) operation. If a parity bit P is the
sum of an information bit I and other information bits, then we say that the information
bit I appears in the parity bit P. Now consider the dual B-Code B;. Because of its MDS
and optimal encoding properties, each information bit must appear ezactly [—2 times in the
parity bits. Since the numbers of the total information and parity bits are 2n and nl — 2n

respectively, each parity bit must be the sum of 2:[(22)

or exactly 2 information bits. (This
is reflected in the parity check matrix by the fact that the weight of each row is exactly 3).
So if we represent an information bit as a vertex, then a parity bit can be represented by
an edge, where the parity bit is the sum of the two information bits whose vertices form
the edge. This is the key idea of describing the B-Code and its dual with graphs.

Since the construction of Bs, can be obtained from an-H simply by deleting the last
parity column, here we focus on the graph description of B2n+1. BQn+1 has 2n information
bits and n(2n — 1) parity bits, which can be represented exactly by a complete graph of 2n
vertices, Ko,, which also has exactly (%) = n(2n — 1) edges. The mapping is simple: one
information bit can be represented by one vertex, and the parity bit that is the sum of 2
information bits can be represented by the edge that links the 2 corresponding vertices. So
the only remaining problem is to define on Ks, the grouping relation that determines which
information and parity bits occupy the same column of the code. This can be thought of as
labeling the vertices and edges of the complete graph Ky, in such a way that information
bit and parity bits in the same column are labeled with the same label. Since BQn+1 has
2n 4+ 1 columns, we need 2n + 1 labels. Notice that the each of the first 2n columns has
exactly 1 information bit and n — 1 parity bits, and that the last column has n parity bits.

A formal way of describing the B2n+1 is as follows:

35

Description 3.1 Graph Description of B2n+1

Given a complete graph Ko, with 2n vertices, which are labeled with integers from 1 to
2n, find an edge labeling scheme such that

1) each edge is labeled exactly once by an integer from 1 to 2n+1

2) For any pair of vertices (i,j) and any other vertex k, where i, j,k € [1,2n], there is
always a path to k from either ¢ or j, using only the edges labeled with i or j.

3) For any vertex i and any other vertex k, where i,k € [1,2n], there is always a path

from i to k, using only the edges labeled with i or 2n + 1.

With the above description, it is easy to see that the vertex and edges with the label ¢
in the Ko, represent the information bit and parity bits in the ith column of Bgn+1. The
properties 2) and 3) ensure that any two columns of the code can recover the information
bits in all other columns, thus the code is of column distance 2n. Figure 3.5 shows such a

labeling of K4 and the corresponding Bs, where a4 through a4 are the information bits.

1 4 2
3 1
4 2 3

(a)

a a9 as a4 a; + as
a2+a3 a3+a4 a4+a1 a1+a2 a2+a4

(b)

Figure 3.5: (a) graph and (b) array representations of Bs

Naturally, if the edges of Ky, are used to represent information rather than parity bits,
and vertices to represent the parity bits, it should be expected that by using such a labeling
scheme and reindexing the edges, such a complete graph can represent Bgy,1, i.e., the B-
Code itself. And in fact this is true. In the graph representation of Bg,11, a parity bit is
the sum of all the information bits whose edges are incident with its vertex. B, can easily
be obtained from Bs,41 by setting all the information bits in the last column to zero and
then deleting them after the parity bits are changed accordingly. Bj is shown in Figure 3.6,
where the edge labeled with (6) represents the information bit ag in the 5th column. It is
also interesting to point out that Bs happens to be a perfect code too, i.e., it achieves the

Hamming Bound[31].

a as as a4 as
a3 +a4+as|ag+ag+a; |as+ay+as | ag+ag+a3 | ag

(b)

Figure 3.6: (a) graph and (b) array representations of Bj

3.3 B-Code and P1F

As already described in Section 3.2, constructing the B-Code amounts to the same problem
as designing an edge labeling scheme such as in Description 3.1 for a complete graph Ks,.
Fortunately this can be related to another graph theory problem, namely the perfect one-

factorization problem.

3.3.1 Perfect One-Factorization of Complete Graphs

Definition 3.2 [30] Let G=(V,E) be a graph. A factor or spanning subgraph of G is a
subgraph with vertex set V. In particular, a one-factor is a factor which is a regular graph
of degree 1. A factorization of G is a set of factors of G which are pairwise edge disjoint,
and whose union is all of G. A one-factorization of G is a factorization of G whose factors
are all one-factors. In particular, a one-factorization is perfect if the union of any pair of its

one-factors is a Hamilton cycle, a cycle that passes through every vertex of G.

Figure 3.7 shows a perfect one-factorization of K. A perfect one-factorization of Kg is

shown in Figure 3.8(b), where edges with the same label form a one-factor.

1 2 1 2 1 2
o—©
o———©

Figure 3.7: (a)(b)(c) are 3 one-factors, that together form a perfect one-factorization of K4

The perfect one-factorization of complete graphs has been studied for many years since

its introduction in [16]. It is now known that[30]:

37

Theorem 3.2 If p is an odd prime, then K, 1 and K, have perfect one-factorizations.

Constructions of P1F for K,,; and Ky, can be found in [2] and [29]. Additionally,
constructions of P1F for Ks,’s whose n’s are some other sporadic integers have also been

found[29][30]. However it still remains a conjecture [29][30] that:

Conjecture 3.1 For any positive integer n, Ko, has perfect one-factorization(s).

3.3.2 Equivalence between the B-Code and P1F

Let P42 be a P1F for Ko,.2. Recall that Bgn+1 has 2n 4 1 columns, and Ps, 2 also has
2n+1 one-factors. So, if we are able to find a 1-to—1 mapping between the columns and one-
factors, then we can get constructions for Bgn+1 from Py, 19, and vice versa. Luckily enough,

such a mapping does exist. The following two algorithms give such a 1-to—1 mapping.

Algorithm 3.1 Constructing B2n+1 from Poyo

Step 1. Label the vertices of Kopio with 0,1,---,2n, 00;

Step 2. If a P1F exists for Kopio, then let F; denote the one-factor which contains the
edge 01, where 1 =1,2,---,2n,00;

Step 3. In each F;, delete the two vertices 0 and oo and all the edges which are incident
with either of them; For i =1,2,---,2n, label all the remaining edges in F; with i, and label
all the remaining edges of Fyso with 2n + 1.

Figure 3.8 shows the construction of Bs from Ps, where in (a) oo is replaced with 5, and

the edges with the same label 7 form the one-factor F;.

1 4 2
3 1
4 2 3

Figure 3.8: Constructing (a) Bs from (b) Pg

38

Theorem 3.3 Algorithm 3.1 gives a graph as described in Description 3.1, i.e., a construc-

tion of B2n+1.

Proof: First observe that in a P1F of Ky, 2, each edge appears exactly once in the whole set
of the one-factors, thus step 2 is feasible. Now check the conditions of the graph description
of Bgn_H:

1) obviously holds;

2) Since Fj and F; (i,j € [1,2n]) are two one-factors of a Pay 2, their union is a Hamilton
cycle of 2n 4 2 vertices, after deleting the vertices 0 and oo and the four edges incident with
them, the Hamilton cycle breaks into two paths , covering all the remaining vertices from
1 to 2n. These paths start from ¢ or j, thus this condition holds.

3) Since F; and Fy, (i € [1,2n]) form a Hamilton cycle of 2n 4 2 vertices where Oco is
an edge, after the deletion of the vertices 0 and oo and the three edges incident with them,
the Hamilton cycle becomes one path starting from 4, thus this condition holds. O

Since Byp+1 and an-H can be described with the same complete graph Ks;,, both By, 1
and E2n+1 can be constructed from Py, 9. Additionally, By, and Bgn can be easily obtained
from B, 1 and B2n+1, so the B-Code and its dual (of size n x [) can be constructed from

the known P1F constructions of Ko, 9. In particular, from Theorem 3.2

Theorem 3.4 For any odd prime p, a B-Code and its dual code of size n X [can be con-

structed, where n is either p—;l orp—1.

When n:’%l, the corresponding B-Code is the code in [37][8]. The B-Code of n =p—1
was not known before. The next natural question is : Can we get Pa,yo from Bo,117 The

answer is yes and the following algorithm can do it.

Algorithm 3.2 Constructing Popyo from B2n+1

Step 1. If BQn+1 erists, use Description 3.1 of anH, let F; denote the set of edges
with the label 1, where 1 =1,2,---,2n, and let F., denote the set of the edges with the label
2n +1;

Step 2. Add two vertices 0 and oo to Koy ;

Step 8. Fori=1,2,---,2n and oo, add the edges i0 and koo to Fi, where k 1s integer
from 1 to 2n such that the expanded set, F;, is a one-factor of the complete graph Kopio of

vertices 0,1,2,---,2n, co.

39
Theorem 3.5 Algorithm 3.2 gives a Poy, 9.

Proof: Observe that because of the MDS and optimal encoding properties of BQnH, in
each of the first 2n columns of Bgn+1:

1) each information bit appears at most once;

2) there is exactly one bit which does not appear; also no pair of the columns miss the
same bit, since otherwise that bit can not be recovered from just these two columns;

3) in the last column, each bit appears exactly once.
Thus 2) guarantees that in Step 3, there exists a unique k. Further, 1) ensures that for any
pair of columns ¢ and j, where 4,57 = 1,2,---,2n, the two vertices ¢ and j can only be the
endpoints of the two paths in the graph description. Thus Step 3 of the above algorithm
makes the union of any pair of F; and F}, where 4,5 = 1,2,---,2n, into a Hamilton cycle.
Step 3 also makes the union of any F; (i = 1,2,---,2n) and F a Hamilton cycle. Thus
{F1,Fy,---, Fop, Fso} is a P1F of Ko, 19, i.e., it is Pypqo. O

Theorem 3.3 and Theorem 3.5 reveal a surprising result:

Theorem 3.6 Constructing B2n+1 (or equivalently Boyny1) is equivalent to constructing

Popia, i.e., Popio <= Bapyi1.

Note that the equivalence does not include the B-Codes of even length, i.e., Bo,. This
equivalence, however, already shows that any progress in P1F gives a new B-Code, and vice

versa.

3.3.3 Erasure Decoding of the B-Code

Obviously the encoding of the B-Code can be done using Algorithm 3.1. Now consider
erasure decoding for the B-Code. Recall that the dual B-Code can recover all information
bits from any two columns. Erasure decoding for the dual B-Code is almost obvious from
its graph description (Description 3.1). The two paths, starting from ¢ and j and leading
to all the other vertices in the graph, give the decoding chain used in recovering a B-Code
from its ith and jth columns. Figure 3.9 shows the decoding chain used in recovering Bs
from its 1st column and its 2nd, 3rd and 5th columns, respectively.

The B-Code can recover any two missing columns. Decoding for the B-Code itself is
almost the same as for its dual, except that the roles of edges and vertices are exchanged.

Figure 3.10 shows the decoding chains for recovering By’s 1st column and 2nd, 3rd, and 5th

40

l. 2 1 2 1 2
5
1 3 1 1
>6)
4 2 3 4 3 4 3
,2—>3—14 1—-4,3—>2 1-3—-2—-4

(@) (b) ()

Figure 3.9: Erasure decoding of Bjs: recovering from its 1st and (a) 2nd (b) 3rd and (c) 5th
columns. The decoding chains for each case are also listed. 1 through 4 are the information
bits in the corresponding columns.

columns respectively. Comparing the decoding sequences here with those of Bs, it is easy
to obverse that the decoding chains for recovering the ¢th and jth columns of B; are just
the reversed sequences of those for recovering its dual code By from its ith and jth columns.
This also shows that the two codes are dual to each other, since their graph descriptions

are dual to each other.

4 —-506)—>1—5
()

Figure 3.10: Erasure decoding of Bs: recovering its 1st and (a) 2nd (b) 3rd and (c) 5th
columns. The decoding chains for each case are also listed. 1 through 6 are the information
bits in the corresponding columns, except that 6 is also in the 5th column.

Finally, the above decoding algorithms can be summarized as follows:

Algorithm 3.3 FErasure decoding of the dual B-Code

The edges labeled © and j create two paths which span the vertex set. Starting at vertex
1 and ot verter j, use these paths, by adding a known information bit and a known parity
bit to recover a new unknown information bit. Repeating this step along each path recovers

the dual B-code from its ith and jth columns.

Algorithm 3.4 FErasure decoding of the B-Code
To recover the ith and jth columns of the B-Code, use the same paths with edges labeled
with © and j. This time, traverse the paths in the opposite directions of the corresponding

paths for the dual B-Code. Along each path, add all known information and parity bits to

41
get a new unknown information bit. Repeating this step along each path recovers the ith and

jth columns of the B-Code from the other n — 2 columns.

3.3.4 Error Decoding of the B-Code

Recall that a B-Code of size n x [is of distance 3, so it can correct one error. To do this, the
key is again to locate the error location; the error value can easily be determined once the
location is found. One way to find the error location is to make a table that maps syndromes
to single-error locations, and then do a table lookup after calculating the syndrome of a
received array. The drawbacks are 1) such a table is needed for each B-Code and 2) table
lookup is not efficient in both computation time and space (since the total number of 1-error
syndromes is 2"). Another rather straightforward algorithm is to consider the ith column
and (i+1)th column to be erasures (where i = 1,3,5,---,2n — 1 for [= 2n; if | = 2n + 1,
the [th column and the 1st column are also included), and then recover those columns. If
exactly one of the recovered columns differs from the original ones, then that discrepant
column is the error column. This algorithm can correct one error. The algorithm requires
on average % erasure decodings, each of which needs 2n(l — 3) additions, thus the average
total number of additions is n?(I — 3), which is in the order of n times of n x [. Another
shortcoming is that the algorithm will give a false decoding result if more than one error
occurs.

We present here a more efficient decoding algorithm for correcting one error. Observe the
relation between a B-Code and its dual from their graph descriptions: if an information bit
1 of a B-Code appears in a set P of parity-bit positions, then in its dual code, the elements
of P will be information bits and ¢ will be then a parity bit; further, all the elements of
P appear in the parity bit . Thus, if there is a single column error in a received array of
a B-Code, use the syndrome of this received array as the information vector of the dual
code. In the obtained dual codeword, the parity bits in the error column of the B-Code
should be zero, while other parity bits are nonzero because of the structural properties of
the B-Code observed in the proof of Theorem 3.5. This differentiates the error location

from other columns. The decoding algorithm can be described semi-formally as follows:

Algorithm 3.5 Error Decoding of the B-Code

1. Given a received array R of size n x 1, calculate its syndrome, denoted as S (which

42

is a vector of length 2n);

2. If S is a zero vector, then the received array R is a codeword of Byj; otherwise go to
next step;

3. Use S as the information vector of the dual B-Code El, encode to get a codeword C
of By;

4. If the weight of the syndrome S is even, and if there is a unique all-zero column in
C, then this is the error column of the original received array R. On the other hand, if
the weight of syndrome S is odd, and if there is a unique column whose information bit is
nonzero and whose parity bits are all zero, then this is the error column of R;

5. If the error column of R is found in the above step, regard this column as an erasure

and recover it; otherwise declare decoding failure: there are at least two error columns in R.

Notice that the above property holds only when the B-Code is defined in G(2™), i.e., each
cell of the B-Code consists of a block of m binary bits. However, this decoding algorithm
can be modified to work for the general B-Codes defined in G(¢™), where ¢ is not a power
of 2. Here we will stick to the case where ¢ =2 and m = 1.

Before we prove the correctness of the above algorithm, we show an example of it.

Example 3.1 Error-correcting for the B-Code
Consider Bg, whose graph description is shown in Fig. 3.1. (Its array description is easy
to get from either its graph description or the array description of Bg, as in Fig. 3.1.) If

two received arrays are as follows:

1{0]0(0]0]0 110(0]0]0]0
Ri={1{0|0|0|0|O0 Ry=|1]0{0|0|0|0
0/{0]0|0|0|O0O 110(0]0]0]0

Then the two syndromes are respectively:
Si=|0]1]1|1|0]1 Sy=|1[1[1[1]0]1

Since neither S or Ss is a zero vector, both R; and Ry have errors. Now use S; and Sy as

information vectors of BG, whose graph and array descriptions are shown in Fig. 3.1. We

43

get two codewords of Bg

Ol1]1(1]0]1 1{1]1]1]0]1
Ci=|ol0|1]1]1]1 Co=|0]0|1]|1]0]0
0ololo|1|0]1 ol1/0]l0l0]|1

Since the weight of Sy is even, and column 1 is the unique all-zero column in C4, column 1
is the error column of Rp; on the other hand, since the weight of S5 is odd, and column 1
is the unique column in Cy whose information bit is nonzero and whose parity bits are all
zeros, column 1 is the error column of Ry too. Once the error column of Ry (R3) is found,
the error value is easy to get. The corrected arrays of Ry and Rs are both all-zero arrays.

|

Now we prove the correctness of the decoding algorithm.

Proof: The following can be observed from the graph description of the B-Code: each
information bit appears in exactly two parity bits, and this information bit and the two
parity bits are in three different columns; in addition, two information bits from the same
column can not appear in the same parity bit, thus all possible errors in the information bits
of a single column contribute even weight to its syndrome vector. On the other hand, single
parity-bit error adds exactly one to the weight of the syndrome vector, i.e., a parity-bit
makes the weight of the syndrome odd.

Suppose there is only one error column in a received array of a B-Code. Call this column
the ith column. Consider the following two cases:

Case 1: All errors occur in information bits. Then the syndrome should be of even
weight. Now we prove that the ¢th column of the obtained codeword of the dual B-Code is
the only all-zero column:

1). The ith column is an all-zero column. This is true because of the relation between
the B-Code and its dual : in the B-Code, an information bit ¢ appears in two parity bits
P, and P», and in the dual B-Code these two bits]51 and]52 are information bits, and the
bit 7 is a parity bit such that both 151 and 152 appear in 7. Since P, = P, = 4 and 151 =]52,
+ = 0. Thus all parity bits of the ith column of the dual B-Code are zero. Additionally,
since there is no error in the parity bit of the B-Code, the information bit of the ith column

of the dual B-Code is also zero. So the entire ith column of the dual B-Code is zero.

44

2). All the other columns are nonzero columns. If there were at least one more all-zero
column in the codeword, then the weight of the codeword would be no greater than [— 2,
which contradicts the fact the minimum distance of the dual B-Code is [— 1. Here [is the
length of the codeword.

Case 2: An error also occurs in the parity bit as well. In the dual B-Code, among
all the columns which have both an information bit and parity bits (if the length of the
dual B-Code is odd, there is one column containing no information bit), by the linearity of
the dual B-Code, the ith column has a nonzero information bit, and all its parity bits are
zero. No other column can have a nonzero information bit and all zero parity bits. The
reason is as follows: the weight of the information bits in the dual B-Code is odd, and all
the information bits appear in the ith column. Since each information bit is missing from
exactly one of the columns, the number of nonzero information bits that appear in the jth
column (5 # i) is even. Thus if the information bit of the jth column is nonzero, then at
least one of its parity bits is nonzero, since each parity bit is the sum of two information
bits, and the total number of information bits which appear in the parity bits is now odd.

When multiple column errors occur, there can be multiple all-zero columns or multiple
columns with the first component nonzero and all other components zero.

This concludes the proof for the correctness of the decoding algorithm. O

The complexity of the above decoding algorithm is easy to analyze. For a received array
of size n x [, the syndrome calculation requires 2(I —2)n additions; the encoding of the dual
B-Code requires (I —2)n additions; finally, correcting one erasure requires (I —3)n additions.
This adds up to (4l —9)n additions, which is linear in the number of total bits in an array of
size n X [. The same trick used here cannot be applied directly to correct multiple errors for
the dual B-Code, since multiple errors can weave together and cannot be easily separated.
In general, it still remains a challenge to correct multiple errors efficiently (total additions

linear in total number of bits in an array) for array codes.

3.4 Further Equivalence Discussion

The equivalence between the B-Code and P1F has been shown in the above section. It is
quite clear that By, can be constructed from By, simply by shortening, namely, setting

all the information bits in the last column to zero. Similarly, Bs,, can be derived from Bgn+1

45

by puncturing, i.e., deleting the last parity row. The relations among Ps,42, By and

By, can be described as follows, where = means to lead to:
Poyi9 < Bopt+1 = By,

A further question is whether By, 11 (or B2n+1) can be constructed from a known construc-
tion of By, (or BQn), i.e., whether the last => can be replaced with <=-. Our conjecture

is yes.

Conjecture 3.2 For any positive integer n, an-H (or Baoyy1) can be constructed from By,

(or Bay) using Algorithm 3.6.

Algorithm 3.6 Constructing Bopy1 from Boy
Egztend a given Bo, by adding one more column, which contains, as parity bits, all the

unused or unlabeled edges in the graph description of Bs,,.

The B-Codes shown in Figure 3.1, Figure 3.5 and Figure 3.6 are all what we call shift

codes, and it is easy to verify Conjecture 2 is true for these examples.

Definition 3.3 (Shift Code) An array code (of size n x [) is called a shift code if any row
of its parity check matrix is just a cyclic shift of the first row, i.e., the remaining columns

of the code can be constructed by cyclically shifting the first column.

In general, for a shift B-Code, Conjecture 2 can be proven true, namely,

Theorem 3.7 For any shift B-Code, Bon1 (or Boni1) can be constructed from Bay, (or

Bsy,) using Algorithm 3.6.

Proof: Given a shift dual B-Code, Bs,, notice that the missing edges are the diagonals,
(i,i + n), (addition is modulo 2n). Indeed, if (i,i + n) were present in column j of Bg,,
then it would be included in column n + j as well, because of the shift property, making
the code non-MDS.

To complete the proof, we need to show that by using an arbitrary column, j, of Bo,
together with the diagonals (i, + n), 0 < i < n, one can recover all remaining 2n — 1

columns, i.e. we indeed have Bgn_H. Suppose that is not true. There exists a column j, in

46

which a set of edges, combined with the diagonals, form a loop:
ap+n+az+n+..+ag+n=0mod 2n

where ¢ is the number of edges involved in the loop, a;’s are their lengths and n is the length

of the diagonals. For example let n =6, g =3, a; =1, as = 2 and a3 = 3:
1+64+24+64+34+6=24=0mod 12

We will show that this cannot happen. We will show that column j +n and column j form

a loop and therefore the original code is not Bon. Using the above equation:

Because column j 4+ n is a cyclic shift of column j, it contains a set of edges of lengths

b; = a; such that A; connects to By, which in turn connects to As, etc.

q q
Zai +Zbi = 2¢gn = 0 mod 2n
i=1 i=1
There is a loop. O
If Conjecture 2 can be proven true for any arbitrary B-Code, then we can get a strong
equivalence between the B-Codes and P1F, i.e, the B-Code construction is completely equiv-

alent to the P1F construction.

3.5 Summary

In this chapter we have presented the B-Code and its dual, a new class of optimal MDS
array codes of size n x 1 (where [= 2n or 2n+1) with distance 3 (or [—1 for the dual code).
We proved an equivalence between the B-Code and perfect one-factorizations using a new
graph description of the B-Code. We also described encoding and decoding algorithms for
the B-Code and its dual based on their graph descriptions. There are a number of open
problems: (i) are the B-Code constructions strongly equivalent to perfect one-factorizations?

(ii) can the graph description of the B-Codes be extended to design optimal array codes of

47
arbitrary distance? (iii) how does one efficiently correct multiple errors for the dual B-Code
(or other array codes)? and the ultimate question, (iv) can coding theory techniques be

used to solve the P1F conjecture?

