
Characterization and Control of a Strongly-Coupled

Atom-Cavity System

Thesis by
Russell L. Miller

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

2009

(Defended May 4, 2009)



ii

c© 2009

Russell L. Miller

All rights Reserved



iii

This dissertation is dedicated to the memory of N. Barr and Virginia S. Miller.



iv

Acknowledgements
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Characterization and Control of a Strongly-Coupled Atom-Cavity System

by

Russell L. Miller

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

In recent years, remarkable advances in the science of laser cooling and trapping of atomic

samples have lead to breakthroughs in quantum optics and, in particular, in cavity quantum

electrodynamics (QED). The ability to optically trap an atom within the mode of a ultra-

high finesse cavity of small mode volume for experimentally significant periods of time

now allows for the continuous observation of fundamental quantum optical effects. This

dissertation will focus on experiments conducted to fully characterize and exert quantum

control over a strongly-coupled atom-cavity system consisting of single cesium atoms isolated

by a dipole trapping in the mode of a Fabry-Perot optical resonator.

In particular, we describe techniques developed and implemented for exerting coherent

control over the internal and quantum motional state of these atoms using stimulated Raman

processes. We also focus on the applications of this system to quantum networking and

quantum information science, particularly within the context of coherently transferring

quantum states from atom to quantum optical fields and back. Finally, we describe a series

of measurements carried out to explore the characteristic dynamics of the Jaynes-Cummings

Hamiltonian which governs the system. This includes spectroscopic measurement of the

signature vacuum Rabi splitting for strongly-coupled cavity QED as well as evidence in the

time domain for coherent Rabi nutation of excitation between atom and field on resonance.
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Chapter 1

Introduction

This chapter is intended to offer a brief introduction to cavity electrodynamics as well as to

broadly describe and to offer motivation for the research in which I’ve been involved over

the preceding six years. This work, which is the continuation of a project which was begun

just over ten years ago, is the aggregate result of the efforts of a number of generations of

graduate students and postdoctoral fellows. In order to delineate my particular involvement

in and contributions to this work, I will also attempt to provide a short, “historical” overview

of the experimental progress which we have made (the details of which will be discussed in

subsequent chapters).

1.1 Motivations

In very general terms, the subject of this thesis is the study of the coherent interaction

between a quantized electromagnetic field and a single atom. It is useful to quantify of

this type of interaction in terms of a rate g ∼
〈
Ĥint

〉
/~, where Ĥint is the Hamiltonian

describing the energy associated with the coupling between field and atom. For the case

of a single, stationary atom which is resonantly coupled to a freely propagating single

photon, this quantity is governed by the size of the intrinsic atomic moment for dipole

transitions and by magnitude of the electric field associated with the photon. Unfortunately

from an experimental viewpoint, the electric field associated with one, freely-propagating,

resonant photon is generally so small as to result in a rate of coherent coupling, g, which is

insignificant on the scale of the rates at which that quanta of excitation is irreversibly lost
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into the environment. It follows that in order to study this interaction while its coherence

persists, we are required to tailor the strength of coupling experimentally.

So as to increase the rate, g, of coherent evolution between matter and field, we are

presented two routes. First, we can seek out atoms or atom-like systems which exhibit large

intrinsic transition strengths and thereby couple more strongly to the field. This approach

is of limited usefulness - particularly when dealing with atoms because nature offers us only

a finite variety of systems from which to choose. A second, more practical approach would

be to ensure that the atom sees as large as possible an electromagnetic field per quanta

of excitation. In order to do this, we can, for example, tightly focus the field onto the

atom using a lens (an option which suffers from the diffraction limitations of real lenses

among other problems). Another, more promising possibility would be to establish a set of

boundary conditions - a cavity - that would constrain the field to exist within only a very

small volume of space, V . Governed by these boundary conditions, a simple calculation

based on the classical energy density for an electromagnetic field shows that the intracavity

electric field associated with a fixed-magnitude input field should then be proportional to

V −
1
2 . By sufficiently decreasing this physical volume we are thereby able to generate an

electric field associated with the presence of just one photon which is of sufficient magnitude

to appreciably and coherently alter the dynamics of an atomic system on timescales shorter

than the relevant incoherent decay channels in the system. This approach to the study of

atom-field interactions is known as cavity quantum electrodynamics.

The motivations for this type of research are diverse. In broad terms, the system is

appealing to a physicist from the standpoint of its inherent simplicity and fundamental

importance - the controlled study of coupled quantum systems, one excitation at a time,

offers deep insight into the dynamics of both systems as well as the quantum nature of their

coupling. From the perspective of a quantum optician, the cavity QED interaction offers

a controllable source of non-classical light which is emitted cleanly into the spatial output

mode of the cavity. Furthermore, as will be demonstrated in subsequent chapters, the study

of atomic physics at the level of single-atoms is greatly facilitated by the strong coupling

of those atoms to an optical cavity. Finally, within the context of engineering atom-cavity

systems as functional nodes in a “quantum network,” this work has been strongly motivated
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by an interplay with the nascent quantum information science community. It is my intention

that this thesis will draw from each of these diverse fields to present a context for the work

in which I’ve been engaged.

1.2 Overview of My Involvement in the Group

I joined the Caltech Quantum Optics Group during late Summer, 2003. Upon my arrival

in the group, I began work, temporarily, on a project in Lab 11a involving the generation

of an optical supercontinuum from a mode-locked Ti:Sapphire laser coupled into a photonic

crystal fiber. Continuing from where the previous student on the project, James Chou, had

left the apparatus, over the next 3 months I was able to achieve mode-locking of the laser

and generation of a broadband frequency comb spanning ∼ 900 nm. This project, which

was originally intended to provide a distributed frequency standard for integration into each

of the individual experiments being carried out within our research group, was continued

under my supervision in the Summer of 2004 by visiting undergraduate Thomas Pickles

and was subsequently adapted by the personnel in Lab 2 to interferometrically stabilize a

set of optical paths in their laboratory. This thesis includes no further discussion of this

work, however, but will instead focus on my involvement in the cavity QED experiments in

Lab 11 conducted from October, 2003 to the present.

The Fabry-Perot cavity experiment in Lab 11 first came on line in 1999 as the result

of work by post-doctoral fellow Jun Ye and graduate student David Vernooy. By way

of tremendous foresight and experimental skill in its construction, as well as meticulous

stewardship by subsequent generations of students and a bit of serendipity, this cavity (still

under original vacuum) has been in continuous use now for just under a decade with no

measurable degradation or deterioration of any integral component of the system.

The original goal of this project was to provide an experiment in which a single atom

could be trapped and strongly coupled to a high-finesse optical cavity for experimentally

significant periods of time (in contrast with all prior experiments in strong-coupling cQED,

in which a weak flux of atoms transited the cavity). The design of the vacuum chamber

and cavity [1] was done with this purpose in mind, and the first few years of research
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on the project (1999-2002) were dedicated to studying the physical properties of optical

dipole trapping potentials generated within the mode of the cavity by driving fundamental

longitudinal modes a few free spectral ranges away from the cQED resonance.[1].

Just prior to my joining the group, in early 2003, the Lab 11 subgroup (at the time

comprised of Jason McKeever, Joseph Buck, Alex Kuzmich, Hanns-Christoph Nägerl, David

Boozer and Andreea Boca) had just made a significant breakthrough in their experiment

with the demonstration of “state-insensitve” trapping and cooling of a single atom within

the mode of their optical cavity for greatly extended periods of time (∼ 3 s) [2]. Using

this technique, Jason and colleagues were able to create what they dubbed a “single-atom

laser in the regime of strong coupling.” By driving a trapped atom with light propagating

transverse to the axis of the cavity (in analogy to pumping a traditional laser wherein the

gain medium of the laser has been reduced to its conceptual limit: one-and-the-same atom),

they were able to measure manifestly non-classical photon statistics for light gathered in

the cavity output mode.

Immediately following publication of this work, in October, 2003, I joined Jason in the

laboratory and began helping him to adapt the “single-atom laser” technique to demon-

strate efficient generation of single photons from the atom-cavity system. It was with this

experiment, the details of which will be discussed much more thoroughly in Chapter 5, that

I first began working on the cavity QED project.

Throughout the subsequent five years I have been involved in a variety of projects

involving the same experimental apparatus and a group of fantastic collaborators. Following

Jason’s graduation from Caltech, Andreea Boca and I began to work together in the lab

and subsequently produced a measurement of the vacuum-Rabi spectrum for one-and-the-

same atom trapped within our cavity, and an observation of what we dubbed the “Photon

Blockade” effect. We also invested considerable time towards the implementation of a

novel scheme for driving Raman processes inside of our optical cavity which had been

developed theoretically by David Boozer. Using David’s scheme, Andreea and I were able

to demonstrate motional ground state cooling of an atom trapped within our cavity.

In 2006, following the ground state cooling result, Andreea and I were joined in the

laboratory by Tracy Northup, who had previously been working on the Lab 1 cavity project
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(by then discontinued due to technical problems). Together, we were able to explicitly

demonstrate the reversible nature of the single photon generation process that Jason and I

had worked on in late 2003. After Andreea’s graduation and departure for SpectroLab, Inc.,

Tracy and I began work on a series of projects to greatly refine our control over the degrees

of freedom in our system. The motivation for these improvements was to work towards

a measurement of atom-photon entanglement which ultimately proved to be extremely

challenging and experimental infeasable with our current apparatus. However, this work

resulted a number of interesting new techniques and measurements which will be discussed

herein.

My particular involvement in each of these projects, particularly those following the

2004 single photon generation measurements, is difficult to delineate from those of my

colleagues in the lab. As a group, we tended to not subdivide the experiment into domains

with which only one of us would have familiarity or control. In aiming for completeness,

some of the content of this thesis overlaps in the margins with the theses of former group

members. However, where relevant in each chapter, I will emphasize those innovations and

improvements in the laboratory that came largely at my suggestion or as a result of my

work.

1.3 Overview

This thesis will attempt to provide a complete summary of most of the work I’ve participated

in during my time in Lab 11, with an emphasis on the more recent projects.

In Chapter 2, I will lay out a basic theoretical framework for the discussion of the

cavity QED interaction, both for a two-state atom as well as for the more complicated (and

applicable) case of atomic cesium. I will also present a basic description of some of the

atomic physics necessary to discuss the trapping and coherent control of individual atoms

within the context of our experiment and also provide an overview of the geometry, mode

structure and QED parameters for Fabry-Perot optical resonators.

Chapter 3 provides a working description of the experimental apparatus, both as it

currently exists in Lab 11 and during its gradual evolution as we have steadily refined our
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control over the system. Here, I will describe the set of techniques we use for laser and

cavity frequency stabilization, for measurement and detection of light emitted from the

cavity, and for optical confinement of single atoms within the cavity mode.

Continuing from the discussion in the previous chapter, in Chapter 4, I will detail

a broad set of commonly used experimental methods in our lab which have facilitated

the experiments described in each of the subsequent chapters. This chapter will focus

principally on a pair of techniques which we have developed for driving coherent Raman

transitions between the 6S1/2, F = 3, 4 hyperfine ground states of cesium. Applications of

this technique include demonstration of a novel technique for Zeeman state-specific optical

pumping and cooling to the quantum ground state of motion along the cavity axis of an

atom trapped inside of that cavity.

Chapter 5 contains a discussion of experiments carried out in our lab involving the

generation, detection, characterization and coherent mapping of atomic quantum states

onto and from photonic quantum states.

Finally, in Chapter 6 I will describe a series of measurements which characterize the

atom-cavity coupling in our system. This discussion will include measurement of the sig-

nature one-atom vacuum Rabi spectrum for a single, continuously trapped atom as well as

for ensemble averages over exclusively one and exclusively two atoms present in the cavity.

I will also describe time-domain measurements of the vacuum Rabi nutation for a single

excitation in the system.

In the accompanying appendices, I will include a variety of tables and computer code

relevant to the operation of and predictive modeling of phenomena in our atom-cavity

system. Appendix A provides a complete tabular listing of the dimensionless dipole matrix

elements for atomic transitions within the cesium D2 line. In Appendix B, I will describe

the syntax and structure of the proprietary front end programming language which David

Boozer has developed and is used by us to control expermental timing with an ADWin

Gold digital I/O interface. Finally, in Appendix C, I will discuss my contributions to a

set of .m-file scripts commonly used in our group for modeling atom-cavity physics in the

MATLAB “Quantum Optics Toolbox” suite.
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Chapter 2

Theory and Formalism

The goal of this Chapter is to provide a basic theoretical understanding of the experimental

results which will follow in later Chapters. We will begin by describing the rudimentary

Jaynes-Cummings Hamiltonian for atom-field interactions and the types of dynamical be-

havior which this simple model predicts. Using these results as a foundation, we will

continue by exploring the quantum dynamics of open atom-field systems in the context of

the quantum mechanical master equation. In particular we will focus on how dissipation

necessitates the use of an optical resonator to study the atom-field interaction. Finally, we

will consider refinements to our model necessary to accommodate some of the complexities

of cavity QED with real atoms and cavities. In this context, we will describe the internal

energy level structure of the cesium D2 line so as to provide a starting point for discussions

of laser cooling and trapping, state manipulation and the internal quantum dynamics of

individual atoms which will follow in subsequent Chapters.

2.1 The Jaynes-Cummings Hamiltonian

2.1.1 The Hamiltonian

We begin by considering a model of the closed (i.e., non-dissipative), dipole interaction

between a two-state atom and a single mode of the electromagnetic field. The atom will be

assumed to exhibit two internal states, a ground state, |g〉, and excited state, |e〉, split by

energy EA = ~ωA and between which dipole transitions are allowed. The field with which
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we will concern ourselves is a single spatio-temporal mode with corresponding single photon

energy EF = ~ωF and, in general, arbitrary photon occupation number.

The Hamiltonian operator for this system can be expressed as the sum of three terms,

Ĥ0 = Ĥatom + Ĥfield + Ĥdipole. (2.1)

Here, Ĥatom, Ĥfield are the free-atom and free-field Hamiltonians respectively, and Ĥdipole

is the interaction Hamiltonian resulting from the dipole coupling between field and atom.

Substituting the well-known forms of Ĥatom, Ĥfield and a functional expression for the dipole

term, we have

Ĥ0 =
1
2

~ωAσ̂z + ~ωF
(
â†â+

1
2

)
− d̂ · Ê. (2.2)

Here we have introduced the inversion Pauli operator

σ̂z = (|e〉 〈e| − |g〉 〈g|), (2.3)

and the field raising and lowering operators

â |n〉 =
√
n |n− 1〉 (2.4)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.5)

Next, we write the atomic dipole operator, d̂, as the product of the scalar dipole matrix

element, d, and the atomic raising and lowering operators, σ̂±:

d̂ = d(|g〉 〈e|+ |e〉 〈g|)

= d(σ̂+ + σ̂−). (2.6)

Similarly, we can express the electric field operator, Ê, using the standard formalism from

second quantization theory:

Ê =
√

~ωF
2ε0Vm

ψ(~r)
(
â+ â†

)
(2.7)
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where Vm is the physical volume of the mode as defined by the boundary conditions imposed

on the problem and ψ(~r) is a dimensionless expression which describes the variations in

electric field strength as a function of atomic position, ~r. Returning to Equation (2.2), we

can write the dipole interaction Hamiltonian:

Ĥdipole =

√
~d2ωF
2ε0Vm

ψ(~r) (σ̂+ + σ̂−)
(
â+ â†

)
. (2.8)

Finally, by moving into the interaction picture and making the rotating-wave approximation

(i.e., dropping terms which oscillate at frequency ∆′ = (ωA + ωf ) in favor of terms which

oscillate at ∆ = (ωA−ωF )), we can very closely approximate the dipole Hamiltonian, again

in the Schrödinger picture, as

Ĥdipole =

√
~d2ωF
2ε0Vm

ψ(~r)
(
σ̂+â+ σ̂−â

†
)
,

= ~g(~r)
(
σ̂+â+ σ̂−â

†
)
. (2.9)

Here, we have defined a new quantity with units of frequency,

g(~r) =

√
d2ωF

2~ε0Vm
ψ(~r)

= g0ψ(~r). (2.10)

The total Hamiltonian is therefore:

Ĥ0 =
1
2

~ωAσ̂z + ~ωF
(
â†â+

1
2

)
+ ~g(~r)

(
σ̂+â+ σ̂−â

†
)
. (2.11)

This is the well-known Jaynes-Cummings Hamiltonian for describing atom-field interactions

[3].

2.1.2 Eigenvalues and Eigenvectors

In order to solve for the eigenvectors and eigenvalues of the system, we will express Ĥ0 in

matrix form over a set of basis states B0 composed of the tensor products between vectors
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spanning the atomic (|g〉 , |e〉) and field bases (i.e., Fock states):

B0 = Batom ⊗ Bfield

= {|g〉 , |e〉} ⊗ {|0〉 , |1〉 , |2〉 , |3〉 , . . .}

= {|g, 0〉 , |e, 0〉 , |g, 1〉 , |e, 1〉 , |g, 2〉 , |e, 2〉 , . . .} . (2.12)

Here we have adopted the notation |x, y〉 ≡ |x〉 ⊗ |y〉. In this basis, we can express Ĥ0 as

partitioned matrix of the form

Ĥ0 =



1
2~(ωF − ωA) 0 0 · · · 0

0 Ĥ1 0 · · · 0

0 0 Ĥ2 · · · 0
...

...
...

. . . 0

0 0 0 0 Ĥn


. (2.13)

The matrix element 〈g, 0| Ĥ0 |g, 0〉 is the sum of the vacuum energy of the field and the

(arbitrarily-defined) energy of the atomic ground state. Each of the remaining block-

diagonal elements of Ĥ0 are 2× 2 matrices of the form:

Ĥn =

 ~
(
nωF + 1

2 (ωF − ωA)
)

~g(~r)
√
n

~g(~r)
√
n ~

(
nωF − 1

2 (ωF − ωA)
)
 (2.14)

over the basis {|g, n〉 , |e, n− 1〉}.

We can diagonalize these matrices to find the eigenenergies and normalized eigenstates

of the system,

|±〉n =
~
(
−∆±

√
4ng(~r)2 + ∆2

)
√∣∣∣∣(−~∆± ~

√
4ng(~r)2 + ∆2

)2
+ 4n~2g(~r)2

∣∣∣∣
|g, n〉

+
2
√
n~g(~r)√∣∣∣∣(−~∆± ~

√
4ng(~r)2 + ∆2

)2
+ 4n~2g(~r)2

∣∣∣∣
|e, n− 1〉 (2.15)
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with associated eigenenergies:

En,± = ~
(
nωF ±

1
2

√
4ng(~r)2 + ∆2

)
. (2.16)

Here we have defined the atom-field detuning, ∆ = (ωA − ωF ).

Before moving on, it is instructive to consider the resonant case, ω ≡ ωF = ωA, (∆ = 0),

and explore the eigenvalue spectrum and temporal dynamics of the system. Equations

(2.16),(2.15) generalize to

En,± = ~(nω ±
√
ng(~r)) (2.17)

|±〉n =
1√
2

(|e, n− 1〉 ± |g, n〉) . (2.18)

The spectrum of eigenenergies is shown in Figure 2.1 for both the coupled (g(~r) > 0) and

uncoupled (g(~r) = 0) cases in order to emphasize the normal mode splitting. The states

|±〉n are commonly referred to as atom-field “dressed” states.

The characteristic property of this system is the manner in which the n-th cavity Fock

energy eigenstate is split into two energy eigenstates spaced by energy En,δ = 2~
√
ng(~r).

Note that the magnitude of this normal-mode splitting is anharmonic as a function of the

number of quanta of excitation in the system. For the special case n = 1 (i.e., for a weakly

driven system where we constrain our field basis to {|0〉 , |1〉}), we have E1,δ = 2~g(~r). This

particular feature, the direct result of the interaction of exactly one atom and one photon,

is known as the vacuum-Rabi splitting and will be discussed in an experimental context in

Chapter 6. It is also interesting to note that the eigenstates of the weakly driven system

are Bell states in the basis {|g, 1〉 , |e, 0〉} - the Jaynes-Cummings interaction maximally

entangles field and atom, though in our experiment practice this entanglement has proven

to be inaccessible.

Finally, we will explore the temporal dynamics of the system by applying the time

evolution operator,

Û(t, t0 = 0) = Û0(t) = e−
i
~
bH0t, (2.19)
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Figure 2.1: The eigenvalue spectrum for the Jaynes-Cummings Hamiltonian for both the

coupled (g(~r) > 0) and uncoupled (g(~r) = 0) cases. Note the characteristic normal-mode

splitting of each uncoupled state by an energy En,δ = 2~
√
ng(~r) in the presence of atom-field

coupling.
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to an arbitrary initial state of the system, |ψ(t = 0)〉. We will also move into an interaction

picture where the atom and field components of the total Hamiltonian are stationary and

therefore do not contribute. In this frame, we can write:

Û0(t) = exp
[
− i

~
Ĥdipolet

]
= exp

[
−ig(~r)t

(
σ̂+â+ σ̂−â

†
)]
. (2.20)

It can be shown [4] by power series expansion and by grouping terms of even and odd parity

that Û0(t) can be expressed as a sum over Pauli matrices in the atomic basis:

Û0(t) =
[
cos(g

(
~r)t
√
â†â+ 1

)
+ cos

(
g(~r)t

√
â†â
)]
Î

+
[
cos
(
g(~r)t

√
â†â+ 1

)
− cos

(
g(~r)t

√
â†â
)]
σ̂z

− i

sin
(
g(~r)t

√
â†â+ 1

)
√
â†â+ 1

â

 σ̂+

− i

sin
(
g(~r)t

√
â†â
)

√
â†â

â†

 σ̂− (2.21)

Next, we formally define an arbitrary initial state for n quanta of excitation in the system:

|ψ(t = 0)〉 = (α |e, n− 1〉+ β |g, n〉) , (2.22)

and apply (2.21):

|ψ(t)〉 = Û0(t) |ψ(t = 0)〉

=
[
α cos

(
g(~r)t

√
n
)
− iβ sin

(
g(~r)t

√
n
)]
|e, n− 1〉

+
[
−iα sin

(
g(~r)t

√
n
)

+ β cos
(
g(~r)t

√
n
)]
|g, n〉 . (2.23)

Not surprisingly, we find the frequency-domain normal-mode splitting, which was calculated

above, corresponds to a time-domain Rabi oscillation of population between states |e, n− 1〉

and |g, n〉 with the characteristic frequency Ω = En,δ/~ = 2
√
ng(~r).
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2.2 Dissipation and the Quantum Master Equation

Evaluating the behavior of a coupled atom-field system using only the Jaynes-Cummings

Hamiltonian is valuable in the sense that, although this is a very simple model, it still

manages to capture the basic quantum dynamics that we are interested in studying. That

said, from an experimental point of view it is not sufficient to treat the atom-field system

as closed - in general, both atom and field can couple to a very large, external reservoir of

states and any excitation present in the system will be dissipated over some characteristic

timescales. Understanding these dissipative mechanisms will ultimately underly the impor-

tance of studying the atom-field interaction in the presence of an electromagnetic resonator

and lead this discussion naturally into cavity quantum electrodynamics. This will be the

topic of discussion in Subsection 2.2.1.

In Subsection 2.2.2 we will construct a formal model that treats dissipation in the

particular case of an atom coupled to the mode of an electromagnetic resonator. This

discussion won’t rely heavily on the geometry or mode structure of the particular resonator,

but rather on some simple assumptions about how the resonator dissipatively couples to its

environment. There are a variety of approaches to modeling dissipation in a coupled atom-

cavity system. These include the use of Wigner-Weisskopf formalism [5] and application of

Fermi’s golden rule [6]. However our discussion will focus on what is the most general and

arguably the most useful of these methods - the quantum master equation approach. The

presentation in this Section will follow the formalism presented in the excellent two-volume

series by Howard Carmichael on statistical methods on quantum optics [7].

2.2.1 Why Cavity QED?

In this Subsection we will make some very simple assumptions about how dissipation mani-

fests itself in a coupled atom-cavity system. These assumptions will be made rigorous in the

next Subsection. For now we will assume that population in the atomic excited state decays

exponentially and irreversibly at a rate γ from the atom into modes of the field other than

that which was chosen when we constructed the Jaynes-Cummings Hamiltonian. We will

also assume that the number of photons in the field to which the atom is coupled undergoes
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a similar exponential and irreversible decay at characteristic rate κ. From our discussion of

the Jaynes-Cummings model, and because the coherent dynamics of the atom-field interac-

tion are the phenomena in which we are interested, it is important that we require of our

experiment that g0 should dominate all dissipative rates, i.e.,

g0 � (γ, κ, T−1). (2.24)

Here, in addition to the two previously discussed rates, (γ, κ), at which information escapes

irreversibly into the environment, we have also included T , the the mean lifetime of the

atom in the field (i.e., the average length of time for which g(~r) > 0). In the limit described

by (2.24), the system is said to be in the regime of strong coupling.

In order to enter this regime, we need to appropriately parameterize our system. The

two most significant degrees of freedom we have are choice of atom (which determines

γ and the atomic dipole moment, d) and choice of electromagnetic boundary conditions

(which determine κ and the mode volume, Vm). Both choices affect g0(d, Vm) ∝
√
d/Vm.

In practice, novel techniques from the world of laser cooling and trapping grant us coupling

lifetimes, T , which are more than eight orders of magnitude larger than g−1
0 . We therefore

won’t devote any discussion to the importance of T for the moment, but will instead return

to this topic in an experimental context in Chapter 3.

Nature presents us with a finite selection of atomic systems from which to choose (man-

made atom-like systems such as quantum dots [8] and Cooper-pair boxes [9, 10] offer a less

scalable alternative). The work in this dissertation involves the D2 line in atomic cesium at

852.4 nm which provides a favorably large atomic dipole moment along with an associated

transition linewidth which is proportional to the Einstein A coefficient:

γ =
d2ω3

6π~ε0c3
(2.25)

γD2 = (2π)(2.6 MHz). (2.26)

A detailed discussion of the energy level structure and calculation of the dipole matrix

elements for cesium follows in Subsection 2.3.1.
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For purpose of discussion, we begin by considering a thought experiment in “free space

QED.” We will make some very modest experimental assumptions: our electromagnetic

field is comprised of a single, freely propagating photon in the form of a traveling wave

with a planar wavefront, a TEM00 spatial mode, collimated to a spot size w0 = 25 µm and

exhibiting a Lorentzian temporal profile with halfwidth,

Γ ≡ γ−1
D2 ' 30 ns. (2.27)

This spatial wavepacket of this photon is made to intersect a two-state atom located at

(x, y, z) = 0 and which is otherwise isolated from its environment. It is straightforward to

calculate the instantaneous effective mode volume for such a photon:

Vm =
∫
V
|ψ2(~r)|d~r (2.28)

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

cos2 (2πz/λ)
(cΓ)4

(z2 + (cΓ)2)2 e
−2x

2+y2

w0 dx dy dz, (2.29)

Taking this integral for the relevant experimental parameters, it follows that Vm ≈ 2.8 ×

109 µm3 and κ ≈ γ. Solving (2.10) using the largest atomic dipole moment, d = 3.16ea0,

allowed within in the cesium D2 manifold of transitions (see Subsection 2.3.1), we calculate

the maximum single photon Rabi frequency:

g0 ≈ (2π)(87.0 kHz), (2.30)

which lies well outside the regime of strong coupling.

How, then, can we tailor the parameters of our free-space QED system to observe

strong coupling? Temporally shortening the pulse by an amount ∆Γ increases g0 by

∆g0 ∝ g0(∆Γ/2Γ +O(∆Γ2)), but also increases the effective field decay rate ∆κ = (∆Γ)−1.

Regardless of how short we make the pulse, we are guaranteed to approach the undesirable

limit κ� g0. Another avenue would be to collimate the beam to an increasingly small spot

size. However, even if we assume a diffraction-limited waist, in free space we can expect

at best g0 ∼ γ. It follows that for an experimentally reasonable set of assumptions about

a freely propagating field, g0 is insufficiently large to observe strong coupling between one
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atom and one photon.

Studying this type of interaction in free space simply won’t suffice. It is clear that we

need to introduce some sort of electromagnetic boundary conditions which constrain the

field to a much smaller volume of space. The experimental solution to this problem comes

in the form of optical cavities - objects which define modes via a set of resonance conditions

and which can be designed such that the volume subsumed by these modes is a function

of the geometry of the object. What we have arrived at is the necessity of using cavity

QED to study coherent atom-photon interactions. In Subsection 2.3.2 we will go into much

further detail describing the properties of Fabry-Perot optical cavities and how they relate

to cavity QED.

2.2.2 The Master Equation Approach

In this subsection we will formalize our discussion of dissipation of excitation from atom

and field. In particular, we want to consider coupling between our system and two distinct

environmental reservoirs. The first is a reservoir of harmonic oscillator states to which the

cavity electromagnetic field can couple, the Hamiltonian for which is:

ĤR =
∑
j

~ωj r̂†j r̂j . (2.31)

Here the operators r̂j are the raising and lowering operators for the mode associated with

frequency ωj . Likewise, we will assume that the atom is coupled to a similarly constructed

reservoir of states:

ĤR′ =
∑
~k,l

~ωlr̂†~k,lr̂~k,l, (2.32)

where ~k indicates a sum over all possible wave vectors. Both reservoirs are assumed to

be in thermal equilibrium at some temperatures, T, T ′ with associated mean occupation

numbers, n̄, n̄′. In much the same way we modeled atom-field coupling when constructing

the Jaynes-Cummings Hamiltonian in the rotating-wave approximation, we will assume
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system-reservoir interaction Hamiltonians for each of the two reservoirs are given by:

ĤSR = ~
∑
j

(
κ∗(ωj)âr̂

†
j + κ(ωj)â†r̂j

)
, (2.33)

ĤSR′ = ~
∑
~k,l

(
κ′∗(~k, ωl)σ̂−r̂

†
~k,l

+ κ′(~k, ωl)σ̂+r̂~k,l

)
. (2.34)

The total atom-field-reservoir Hamiltonian is now given by:

ĤT = Ĥ0 + ĤR + ĤSR + ĤR′ + ĤSR′ , (2.35)

where Ĥ0 is the Jaynes-Cummings Hamiltonian. Over the set of basis states for the system

and both reservoirs, S ⊗R⊗R′, we can define a global density of states operator χ̂(t) and

a density operator just for the atom-cavity system ρ̂(t) ≡ trR(trR′(χ̂(t))).

We now need to make two assumptions about the physical properties of the reservoirs.

First, we will make what is known as the Markovian approximation which assumes that

the reservoirs are “memoryless.” This can be expressed in a rigorous, mathematical sense

[7]. However it will suffice here to say that it implies that excitations migrate from system

to reservoir over time ∆t ∼ 1/ω and do not return to the system on larger timescales. In

other words, the density operator for the atom-cavity system ρ̂(t) is not a function of the

density operator at some earlier time, ρ̂(t′), t′ < t.

The second assumption is that both R and R′ are at zero temperature (i.e., n̄ = n̄′ = 0).

Because we are operating at optical frequencies, this is a very reasonable assumption to

make. In the frequency spectrum we are concerned with, the environment is everywhere

approximately in the electromagnetic vacuum state (at room temperature the population

in infrared modes of the field due to blackbody radiation are very, very small).

Using these approximations, we can use the integro-differential Schrödinger equation

for χ(t) to derive the equation of motion for ρ(t) in the interaction picture for a coupled
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atom-cavity-reservoir system:

˙̂ρ =− i

~

[
Ĥ0, ρ̂

]
+ γ (2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−)

+ κ
(

2âρ̂â† − â†âρ̂− ρ̂â†â
)
. (2.36)

This is the so-called master equation for the atom-cavity system. Here, the rates γ and

κ are defined as the products of the κ(ωj) and κ′(~k, ωl) with the densities of states g(ωj)

and g′(~k, ωl) for both reservoirs, respectively. The interaction picture Jaynes-Cummings

Hamiltonian which we will feed into the master equation is a slight generalization of (2.11):

Ĥ0 = ~∆Aσ̂z + ~∆F â
†â+ ~g(~r)

(
â†σ̂− + âσ̂+

)
+ (ε∗â+ εâ†). (2.37)

The final term in this expression now corresponds to an external source driving the cavity

mode with a coherent state of strength ε and frequency ωP . In order to obtain interesting,

non-trivial results from this equation in the presence of dissipation, it is instructive to add

this new term which deposits additional energy into the system over time. This Hamiltonian

is written in a frame rotating with ωP , such that ∆A ≡ (ωA − ωP ) and ∆F ≡ (ωF − ωP ).

I should also point out that the master equation can be re-written using the so-called

superoperator formalism as:

˙̂ρ = Lρ̂ (2.38)

where L is the Liouvillian superoperator. A superoperator is defined with respect to its

action on standard quantum operators, i.e.,

LÔ =− i

~

[
Ĥ0, Ô

]
+ γ

(
2σ̂−Ôσ̂+ − σ̂+σ̂−Ô − Ôσ̂+σ̂−

)
+ κ

(
2âÔâ† − â†âÔ − Ôâ†â

)
. (2.39)

In principle, we could stop here and use this expression to model the system under

numerical integration. However, there is quite a bit to be learned about the dynamics of

the full, dissipative system by moving a bit farther analytically. We will proceed in the weak
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driving limit (assuming that there is at most one quantum of excitation in the system at

any point in time), and re-write the density matrix as the sum of two terms corresponding

to the zero- and one-quantum subspaces of the system:

ρ̂(t) ≡ ρ̂0(t) + ρ̂1(t) (2.40)

ρ̂0(t) ≡ µ(t) |g, 0〉 〈g, 0| (2.41)

ρ̂1(t) ≡ (α(t) |g, 1〉+ β(t) |e, 0〉)(α∗(t) 〈g, 1|+ β∗(t) 〈e, 0|). (2.42)

It is straightforward to see how the Liouvillian can be partitioned in order to write “master

equations” for ρ̂0(t) and ρ̂1(t):

L ≡ L0 + L1 (2.43)

L0Ô ≡ γσ̂−Ôσ̂+ + κâÔâ† (2.44)

L1Ô ≡ −
i

~
[Ĥ0, Ô]− γ(σ̂+σ̂−Ô + Ôσ̂+σ̂−)− κ(â†âÔ + Ôâ†â) (2.45)

such that:

˙̂ρ0 = L0ρ̂1 (2.46)

˙̂ρ1 = L1ρ̂1. (2.47)

Using these equations, we can write an expression for µ(t), the time-dependent population

in the system’s ground state:

µ̇(t) = κ|α(t)|2 + γ|β(t)|2. (2.48)

Likewise, we can write a set of coupled first order differential equations for α(t) and β(t):

α̇(t) = −(κ+ i∆F )α(t)− ig(~r)β(t)− iε (2.49)

β̇(t) = −(γ + i∆A)β(t)− ig(~r)α(t). (2.50)
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We proceed by finding the steady-state solution for the system, α̇(t) = β̇(t) = 0:

αs =
−iε(γ + i∆A)

g2(~r) + (γ + i∆A)(κ+ i∆F )
(2.51)

βs =
−g(~r)ε

(γ + i∆A)(κ+ i∆F ) + g2(~r)
(2.52)

The physical significance of α(t) and β(t) can be understood by considering the expec-

tation values of the atomic and field number operators [6]:

〈â†â〉 = Tr(â†âρ̂) = |α(t)|2 (2.53)

〈σ̂z〉 = Tr(σ̂zρ̂) = |β(t)|2. (2.54)

If follows that |α(t)|2 and |β(t)2| quantify the amount of excitation in the cavity mode and

atom, respectively.

Given these relations, the steady-state transmission spectrum of the coupled system is

given by:

ns(∆A,∆F ) = |αsα∗s| =
|ε|2(γ2 + ∆2

A)
(g2(~r) + γκ−∆A∆F )2 + (γ∆F + κ∆A)2

. (2.55)

To understand the implications of this expression, we will temporarily “turn off” the atom

by setting g(~r) = γ = 0:

ns(∆A,∆F ) =
|ε|2

κ2

1
∆2
F /κ

2 + 1
. (2.56)

This is the expression for a Lorentzian with halfwidth κ as plotted in Figure 2.2a. The model

we have assumed for the coupling of the cavity to a reservoir corresponds to an exponential

decay of the intracavity intensity at a rate κ. We will return to this expression when

we introduce the classical description of Fabry-Perot electromagnetic cavities in Section

2.3.2. In this context, we will see how κ is defined in purely physical terms by the losses

and geometry of the cavity. Note that we also see that on resonance, ∆F = 0, that the

driving term we incorporated into the Hamiltonian produces an intracavity photon number

n = |ε|2/κ2.
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Figure 2.2: a. Normalized empty cavity photon number and vacuum Rabi splitting for an

atom coupled to a cavity with the coupling parameters (g, γ, κ) = (2π)(33.7, 2.6, 3.8) MHz

with no atom-cavity detuning. These values were chosen for their particular relevance to

our experiment and in order to demonstrate the characteristic spectroscopic feature of the

coupled system in the strong coupling regime, g � (γ, κ). b. Normalized intracavity photon

number for a probe field driving the empty cavity resonance (∆ = 0) as a function of g.

Returning to Equation (2.55), we will next consider the case of a shared atom-cavity

resonance ∆ ≡ ∆A = ∆F :

ns(∆) = |αsα∗s| =
|ε|2(γ2 + ∆2)

(g2(~r) + γκ−∆2)2 + ∆2(γ + κ)2
. (2.57)

As can be seen in Figure 2.2a and Figure 2.3a, this is a two-peaked structure as a function

of ∆ exhibiting maxima at ∆ = ±g(~r). Not surprisingly, the eigenvalue spectrum (Equation

(2.16)) for the system which we calculated for the dissipation-free Jaynes-Cummings model

is still valid for the master equation approach. This effect of the external reservoirs is

to broaden the the two resonances by the mean of γ and κ. Figure 2.2b shows how the

transmission of a resonant probe field is suppressed as a function of g. This signal will,

as it turns out, be important to us in the laboratory - the presence of just one strongly

coupled atom is sufficient to swing the intensity of a cavity probe signal by a few orders of

magnitude.
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In Figure 2.3b we return to Equation (2.55) and treat the case of a variable probe

frequency, ∆P , as well as a variable atom-cavity detuning ∆AC = ∆F −∆A = (ωF − ωC)

but a fixed atomic resonance frequency. The resulting signal - a so-called “avoided crossing”

- demonstrates how the vacuum Rabi splitting evolves and develops asymmetry as the atom-

cavity detuning changes. This asymmetry will be important as we discuss real atoms and the

differential atom-cavity detunings introduced via their complicated multilevel structures.

Finally, we will consider the coupled differential equations for α(t) and β(t) ((2.49)

and (2.50)) in the absence of an external probe (ε = 0), but under the initial conditions

(α(0), β(0)) = (0, 1). We want to look at the temporal evolution of the system where the

population is initially placed in a superposition of atom-cavity eigenstates (i.e., entirely in

the atomic excited state). Solving the differential equations for zero atom-cavity detuning,

we find:

n(t′) = |α(t′)α∗(t′)| = e−(κ+γ)t′ g2(~r)
g2(~r)− 1/4(κ− γ)2

sin2
[√

g2(~r)− 1/4(κ− γ)2t′
]

(2.58)

The first thing we notice about this solution is that the excitation in the system decays

at the arithmetic mean of κ and γ. Next, we notice that for values of g(~r) > 1/2|(κ − γ)|

the intracavity photon number oscillates. In the absence of damping (γ = κ = 0), it is

not surprising that we recover Equation (2.23). In Figure 2.4a, we plot the intracavity

photon number as a function of time for a system in the strong coupling regime, g � (γ, κ).

The resulting coherent oscillation at frequency 2g(~r) is the time-domain equivalent of the

vacuum Rabi splitting in the frequency-domain and corresponds to nutation between the

two eigenstates of the system. Notice that it takes a half-cycle for the initial distribution

of population (in the atomic excited state, |e, 0〉) to redistribute fully into the cavity, |g, 1〉.

From Figure 2.4b, we can clearly see that outside of the strong coupling regime, the oscil-

lation becomes indistinct and quickly washes out as dissipation occurs on timescales faster

than and comparable to the coherence.
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Figure 2.3: a. Normalized intracavity photon number (color) as a function of probe detuning

and g, for a shared atom-cavity resonance and with γ = κ. As the system enters the strong

couple regime, the empty cavity behavior near g = 0 disappears and the eigenvalue spectrum

of the coupled system becomes evident. b. Normalized intracavity photon number (color)

as a function of probe detuning and atom-cavity detuning, ∆AC = (ωF −ωC). The coupling

parameters are (g0, γ, κ) = (2π)(33.7, 2.6, 3.8) MHz.
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Figure 2.4: a. Vacuum Rabi nutation in the intracavity photon number for an atom coupled

to a cavity with (gmax, γ, κ) = (2π)(33.7, 2.6, 3.8) MHz. Note the oscillation at 2gmax. b.

Intracavity photon number (color) as a function of time for values of g ranging from gmin = 0

to gmax = 33.7 MHz. As the system enters the strong coupling regime, coherent vacuum

Rabi nutation begins to manifest itself.

2.3 Practical Considerations

So far, this chapter has focused on the interaction of a single mode of the electromagnetic

field with an idealized two-state atom. In the previous section we made an effort to model

important dissipative processes and define the constraints which those processes place upon

the parameterization and design of an experimental system. Ultimately, the motivation

for this discussion is to provide a working model for the interactions and phenomena we

measure in the laboratory, so it is necessary to make a few more refinements to the model

in order to consider the use of real, multi-state atoms and optical resonators which can, in

general, accommodate multiple near-degenerate modes.

2.3.1 Multi-State Atom: Cesium

The D2 line of cesium 133, at λD2 = 852.4 nm, was used as our atomic system for each

of the measurements described in this dissertation. Working with cesium in the context

of cavity QED has a number of benefits. As an example, in certain spin configurations
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and for coupling to light of a certain wavelength and polarization, cesium can very closely

approximate a two-state atom (i.e., it exhibits a number of cycling transitions - features

which will be discussed more thoroughly later). In these configurations, the behavior of

the coupled system is very closely approximated by the simple two-state models described

in previous sections. Additionally, the dipole matrix elements for transitions within the

full D2 manifold of transitions are relatively large and are therefore conducive to obtaining

proportionately large rates of coherent coupling, g0. Ultimately this dissertation is as much

about the atomic physics of single cesium atoms as it is about cavity QED and therefore

understanding these matrix elements as well as the spectroscopic structure of cesium is

extremely important. For further information about the D1 and D2 lines of cesium and

elaboration on the discussion in the following subsections please see [11].

Spectroscopic Structure

Cesium 133 is an alkali metal (group I, period 6) with atomic number Z = 55 and atomic

massA = 132.91 amu. Like all alkali metals, 133Cs is a hydrogen-like system in the sense that

it contains a single, unpaired valence electron (here, with ground state principle quantum

number n = 6). The spectroscopic properties of the atom are the result of transitions

between the stable 6S ground state and higher lying excited states for this outer shell

electron. The D1 and D2 lines, in particular, refer to the manifold of transitions coupling 6S

to 6P . Note that we have assumed standard spectroscopic notation wherein S corresponds

to states exhibiting orbital angular momentum L = 0 and P corresponds to L = 1.

The 6P manifold of states exhibits fine structure splitting as a result of orbital spin

coupling to intrinsic electron spin, ~J = ~L + ~S. Here, S = 1/2 is the electron spin and

therefore J ∈ {1/2, 3/2} in the 6P manifold. In the 6S manifold there is only one possible

spin-orbit configuration corresponding to J = 1/2. The set of energy levels with which

we will concern ourselves, the D2 line, encompasses transitions between singlet 6S1/2 and

triplet 6P3/2, where the subscript indicates the magnitude of J for those states (likewise,

D1 corresponds to 6S1/2 ↔ 6P1/2).

There is further splitting of each of these fine structure levels into hyperfine structure

levels which are the result of coupling to the atom’s nuclear spin, ~I. We can express the
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total spin vector for the atom, ~F = ~L + ~S + ~I. For 133Cs, I = 7/2. Therefore, 6S1/2 and

6P1/2 permit F ∈ {3, 4} while 6P3/2 permits F ∈ {2, 3, 4, 5}. The values for gross, hyperfine

and Zeeman splittings in each of the manifolds of states for the D2 line are depicted in

Figure 2.5. In particular, note that the splitting between (6S1/2, F = 3) and (6S1/2, F = 4)

is exactly ∆HF = (2π)(9 192 631 770 Hz) and is currently the international standard by

which the SI unit of time is measured.

Weak-Field Zeeman Splitting

The final complication to the 133Cs spectrum that we will consider here is the weak-field

Zeeman splitting resulting from coupling between the total atomic spin and an uniform,

externally-applied magnetic field (we need not consider the intermediate- and strong-field

Zeeman effects for purposes of this discussion as our experiment never enters these parameter

regimes). In general, the perturbative interaction term added to the atomic Hamiltonian

to account for the Zeeman effect is:

ĤZ = −µ̂ · ~B. (2.59)

Since ~B is (ideally) an experimentally-controlled parameter, it remains to calculate the

atomic magnetic moment µ̂, which is a vector operator over the spin bases for the atom:

µ̂ =
e

2me

(
gS ~S + gL~L+ gI~I

)
, (2.60)

where (gS , gL, gI) are the electron, orbital and nuclear dimensionless magnetic moments (or

“g-factors”). The values for each of these g-factors have been experimentally determined

to be (gS = 2.002 319 304 3622(15), gL = 0.999 995 87, gI = 0.000 398 853 95(52))[12, 13].

Such precision is generally not required for any of the experimental results described herein

and therefore, where necessary, we will make the approximation (gS = 2, gL = 1, gI �

(gS , gL)).

In order to evaluate µ̂, it is useful to use the quantum projection theorem [6] for an
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arbitrary spherical vector operator ~A:

〈J,m′J | ~A|J,mJ〉 =
〈J,mJ | ~J · ~A|J,mJ〉

~2J(J + 1)
〈J,m′J | ~J |J,mJ〉 . (2.61)

This definition, which is a consequence of the Wigner-Eckart Theorem, is presented here in

the ~J angular momentum basis but holds equivalently in the ~F basis.

It is useful to begin in the ~J = ~L+ ~S basis and re-write µ̂ as:

µ̂ = µ̂J + µ̂I

µJ =
e

2me

(
gL~L+ gS ~S

)
(2.62)

µI =
e

2me
gI~I (2.63)

As long as the magnitude of the perturbative term added to the Hamiltonian is small on

the scale of the fine structure splittings for a particular set of states with quantum numbers

(J,mJ) then those states, |J,mJ〉, can be treated as “good” eigenstates of the perturbed

system. Using (2.61), we can evaluate µ̂J with respect to |J,mJ〉:

〈J,m′J |µ̂J |J,mJ〉 =
e 〈J,m′J |gL~L · ~J + gS ~S · ~J |J,mJ〉

2me~2J(J + 1)
〈J,m′J | ~J |J,mJ〉 . (2.64)

The matrix elements in the numerator on the right-hand side of this expression can be

evaluated by using the spin identities:

~L · ~J =
1
2

(
~J2 + ~L2 − ~S2

)
, (2.65)

~S · ~J =
1
2

(
~J2 + ~S2 − ~L2

)
. (2.66)
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Substituting these into (2.64), gathering terms and taking expectation values, we find:

〈J,m′J |µ̂J |J,mJ〉 =
e 〈J,m′J |(gL + gS) ~J2 + (gL − gS)(~L2 − ~S2)|J,mJ〉

4me~2J(J + 1)
〈J,m′J | ~J |J,mJ〉

(2.67)

=
e

4me

(gL + gS)J(J + 1) + (gL − gS)(L(L+ 1)− S(S + 1))
J(J + 1)

〈J,m′J | ~J |J,mJ〉 .

(2.68)

Using the approximations for gS , gL:

µ̂J =
e

2me

(
1 +

J(J + 1)− L(L+ 1) + S(S + 1)
2J(J + 1)

)
~J

=
e

2me
gJ ~J. (2.69)

We have written µ̂J in terms of gJ , the spin-orbit Landé g-factor.

Using the same reasoning and in the limit where 〈HZ〉 is small compared to the hyperfine

splitting energies then |F,mF 〉 are “good” eigenstates and we can perform the same proce-

dure using the projection theorem in the ~F basis for the total magnetic moment operator,

µ̂. In analogy with (2.64):

〈F,m′F |µ̂|F,mF 〉 =
e 〈F,m′F |gJ ~J · ~F + gI~I · ~F |F,mF 〉

2me~2F (F + 1)
〈F,m′F |~F |F,mF 〉 . (2.70)

Using the identities

~J · ~F =
1
2

(~F 2 + ~J2 − ~I2), (2.71)

~I · ~F =
1
2

(~F 2 + ~I2 − ~F 2), (2.72)

and taking expectation values, we find:

µ̂ =
e

2me

(
gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
+ gI

F (F + 1)− J(J + 1) + I(I + 1)
2F (F + 1)

)
~F .

(2.73)



31

Gross State J F gJ gF (2π)(µBgF /~) (MHz/G)

6S 1/2
3 2 −1/4 −0.350

4 2 1/4 0.350

6P

1/2
3 2/3 −1/12 −0.117

4 2/3 1/12 0.117

3/2

2 4/3 −2/3 −0.933

3 4/3 0 0

4 4/3 4/15 0.373

5 4/3 2/5 0.560

Table 2.1: The values of gJ , gF and (2π)(µBgF /~) (the frequency shift per unit magnetic

field for the state |F,mF = 1〉) calculated for each of hyperfine manifolds within the cesium

D-lines.

The values of gJ for the 6S1/2 and 6P3/2 states in atomic cesium are gJ = 2 and gJ = 4/3,

respectively. Both are approximately a factor of 104 larger than the experimentally obtained

value for gI , and therefore we will ignore the second term in the expression on the right:

µ̂ =
e

2me
gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
~F

=
e

2me
gF ~F . (2.74)

We have finally arrived at an approximate expression for the total atomic spin Landé g-

factor:

gF =
(

1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)(
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

)
. (2.75)

Finally, we will orient our coordinate system such that the quantization (ẑ-) axis lies

along ~B (i.e., ~B = Bz ẑ) which will allow us to evaluate the expectation value of ĤZ for
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arbitrary |F,mF 〉:

〈F,mF |ĤZ |F,mF 〉 =
e

2me
gFBz 〈F,mF |Fz|F,mF 〉

=
e~

2me
gFBzmF = µBgFBzmF , (2.76)

where µB is the Bohr magneton, and fundamental constants give:

µB
~
' (2π)(1.399 MHz/G). (2.77)

The Zeeman effect shifts the state |F,mF 〉 by an amount ∆ωF,mF = µBgFBzmF /~.

As a reference, Table 2.1 provides gJ , gF and (2π)(µBgF /~) in units of MHz/Gauss for

each of the hyperfine manifolds within the D1 and D2 lines of cesium.

Dipole Matrix Elements

In the first section of this Chapter, we defined the scalar rate of coherent coupling between

atom and field (2.10). In order to quantify g0, we need to consider the values of the

dipole matrix elements, d, for each of the cesium |F,mF 〉 ↔ |F ′,m′F 〉 transitions. In this

notation, unprimed quantum numbers correspond to atomic ground states in the 6S1/2 fine

structure manifold and primed quantum numbers correspond to excited states in the 6P3/2

fine structure manifold. For any single transition, the expression for d which we need to

evaluate is:

d = 〈F ′,m′F |er̂|F,mF 〉 (2.78)

The operator r̂ is the spherical tensor position operator for the valence electron of cesium

and is denoted with a hat to prevent confusion with the position of the atom relative to the

electromagnetic field, ~r.

Using the Wigner-Eckart Theorem [6, 14, 15] it is straightforward to express the matrix

elements (2.78) as the product of dynamic and purely geometric terms:

〈F ′,m′F |er̂q|F,mF 〉 = 〈F ′||er̂||F 〉 〈F ′,m′F |F ; 1,mF ; q〉 . (2.79)
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Here 〈F ′||er̂||F 〉is the so-called reduced matrix element of the spherical tensor operator r̂

and q represents the index of r̂ in spherical coordinates. The second term on the right-hand

side of this expression is called the Clebsch-Gordan coefficient, and can be represented as a

Wigner 3-j symbol:

〈F ′,m′F |F ; 1,mF ; q〉 = (−1)1−F+m′F (2F ′ + 1)1/2

 1 F F ′

q mF −m′F

 (2.80)

Note that the 3-j symbol is nonzero (i.e., selection rules permit transitions between the two

states) only when q = (m′F−mF ) ∈ {0,±1} and (F ′−F ) ∈ {0,±1}. Physically, q represents

the angular momentum imparted to the atom by absorption or emission of a photon and the

conservation rule represents the fact that photons are spin-1 systems. Specifically, q = ±1

corresponds to absorption of σ±-polarized light (i.e., right- and left-circularly polarized

light with respect the quantization axis, ẑ), and q = 0 represents absorption of π-polarized

light (i.e., linearly polarized with respected to ẑ).

In order to simplify the reduced matrix element for the (F,mF ) basis, we must again

apply the Wigner-Eckart Theorem considering ~F = ~J + ~I coupling:

〈F ||er̂||F ′〉 = 〈J ′, I ′, F ′|er̂|J, I, F 〉

= (−1)1+J+I+F ′(2J ′ + 1)1/2(2F + 1)1/2

 1 J J ′

I F ′ F

 〈J ′||er̂||J〉 . (2.81)

This result is expressed in terms of a Wigner 6-j symbol and is the nontrivial consequence

of multipartite addition of angular momentum [15]. For reference, in Appendix C the

normalized geometric portions of the matrix elements 〈F ′,m′F |er̂|F,mF 〉 are calculated, in

units of 〈J ′||er̂||J〉, using (2.80) and (2.81) for each allowed transition within the D2 line.

It should be noted that for the transitions |4,±4〉 ↔ |5′,±5′〉, corresponding to absorp-

tion and emission of σ±-polarized photons, Appendix C indicates

(
〈5′,±5′|er̂|4,±4′〉
〈6P3/2||er̂||6S1/2〉

)2

= 1. (2.82)

Effectively, the branching ratio for decay of the (6P3/2, F
′ = 5) edge states to the (6S1/2, F

′ =
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4) edge states is unity. Population in these states, coupled to light of the appropriate po-

larization, remains there and the transition functions as an effective two-state atom with

respect to that electromagnetic field. These particular transitions are “closed” or “cycling”

transitions and exhibit the largest possible dipole moment, d, of any transition within the

D2 manifold.

Finally, in order to ascribe a properly dimensioned value to each total matrix element,

we must consider the reduced matrix element 〈J ′||er̂||J〉. As our experimental interest is

limited to the D2 line, we are especially concerned with D ≡ 〈6S1/2||er̂||6P3/2〉. We need

not apply another iteration of the Wigner-Eckart Theorem, however. This quantity may be

calculated using the expression for the excited state lifetime, γD2, for the 6P3/2 manifold of

states [16]:

D =

√
6π~ε0γD2c3

ω3
(2.83)

' 3.16ea0, (2.84)

Here, γD2 = (2π)(2.6 MHz) is the free-space atomic lifetime (in the cavity the lifetime

τ = 1/2γD2) discussed in the previous section and a0 is the Bohr radius. An alternative

definition can be framed in terms of the atomic saturation intensity:

D =

√
~2cε0γ2

D2

Isat
, (2.85)

where Isat is defined as:

Isat =
~ω3γD2

6πc2
(2.86)

= 1.102 mW/cm2. (2.87)

This result, the numeric value of D, when multiplied by the dimensionless, geometric

matrix elements listed in Appendix C, provides us the full dipole matrix element d for

each transition. We are now able to determine the scalar coupling rate g0, transition-by-

transition, for a given cavity geometry.
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2w0

2w0M2M1

L

ẑ

ŷ
x̂

a. b.

Figure 2.6: a. Schematic diagram of a Fabry-Perot optical cavity. Two cylindrical, concave

mirrors (M1,M2) aligned such that they are concentric. The mirrors are spaced by a

distance L, as measured from the center of one mirror surface to the other. b. The ẑ-axis

is specified along the length of the cavity, while a cross section of the fundamental (TEM00)

mode of the cavity field (taken at z = 0, in the x̂, ŷ-plane) exhibits a waist spot size w0.

2.3.2 Fabry-Perot Resonators

In Section 2.2 we arrived at the conclusion that in order to study coherent atom-field dy-

namics, placing the atom in the mode of an optical cavity was extremely beneficial. The

effect of the cavity is to significantly constrain the volume of the mode, thereby commensu-

rately increasing the maximum single photon Rabi frequency, g0. There are a wide variety

of optical resonator geometries which can be used, in principle, to enhance the coupling

between an atom and the electromagnetic field but only a few of these geometries have

been pursued experimentally in the context of cavity QED. The focus of this discussion will

be the type of cavity which was used throughout these experiments and is perhaps the most

intuitive to understand - the Fabry-Perot resonator.

Fabry-Perot Design

A Fabry-Perot cavity (Figure 2.6a) is the simplest stable optical resonator. It consists of

two spherical concave mirrors, (M1,M2), with radii of curvature (ρ1, ρ2), respectively. The
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mirrors are placed side-by-side such that the two reflective surfaces face each other and their

cylindrical substrates are concentric along the ẑ-axis. The center of the reflective surfaces

for each of the two mirrors is placed at z = (z1, z2), respectively, and the distance between

them is

L = z2 − z1. (2.88)

In general, this dissertation will concern itself with symmetric Faby-Perots, wherein ρ =

ρ1 = ρ2 and z2 = −z1 = L/2.

Mode Structure

In the planar limit (ρ → ∞), an optical field with associated wavelength λ and angular

frequency ω = 2πc/λ receives a propagation phase shift,

φ(ω) =
2ωL
c

(2.89)

as it travels from M1 to M2 and back. Here we have simplified the problem to ignore small

phase shifts imparted to the light due to finite interaction with the mirror coatings. A

particular set of optical frequencies

ωn = n
πc

L
, (2.90)

where n is a non-zero integer, satisfy the cavity resonance condition:

φ(ωn) = 2πn. (2.91)

At these specific frequencies the field returning from M2 folds neatly back upon itself and

the cavity boundary conditions support a standing wave consisting of n half-wavelengths

with field nodes at the mirror surfaces (assuming no penetration of the field into the optical

coating). These fundamental mode frequencies are spaced from each other by the free
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spectral range (FSR),

∆νFSR =
(ωn+1 − ωn)

2π
=

c

2L
. (2.92)

Determining the mode structure of resonators constructed from non-planar spherical

mirrors, however, requires a more general formalism. Importantly, the geometry of the

mirrors establishes boundary conditions dictating that the wavefront of any circulating

light must be spherical with wavefront radius of curvature ρ at the mirror surfaces. It can

be shown that for weakly divergent circulating beams, the most general solution to the

paraxial wave equations for a field with these boundary conditions ([17], Chapter 16) is a

TEMlm Hermite-Gaussian beam (expressed here in the form of a scalar wave amplitude,

ψ):

ψ(x, y, z) =

(
e2i(2l+1)ξ(z)

2ll!

)1/2(
e2i(2m+1)ξ(z)

2mm!

)1/2

Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)

× exp

[
−i

(
2πz
λ

+
π
(
x2 + y2

)
R(z)λ

)
− x2 + y2

w2(z)

]
. (2.93)

Here, ξ(z) is the Gouy phase shift term, w(z) is the beam spot size, R(z) is the wavefront

radius of curvature, and Hj is the jth order Hermite polynomial. The first three of these

terms are defined relative to the Rayleigh range, zR, for our symmetric cavity:

zR =
L

2

√
(2ρ− L)

L
. (2.94)

The Gouy phase shift, resulting whenever a beam passes through a focal region, is given

by:

ξ(z) = arctan
(
z

zR

)
. (2.95)

The local spot size, w(z), is:

w2(z) = w2
0

[
1 +

(
z

zR

)2
]

(2.96)
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where w0 is the spot size of the beam measured at the waist (z = 0):

w2
0 =

cL

ω

√
(2ρ− L)

L
. (2.97)

Finally, the radius of curvature of the wavefront at z is:

R(z) = z +
z2
R

z
. (2.98)

Rather than anticipating frequency modes which satisfy the simple planar round-trip

phase condition (2.91), we must consider a new round-trip phase which accounts for the

Gouy phase shifts present in (2.93):

φ̃(ω) =
2ωL
c
− 2(l +m+ 1)(ξ(L/2)− ξ(−L/2)) (2.99)

=
2ωL
c
− 2(l +m+ 1) arccos

[
1− L

ρ

]
. (2.100)

The resonance condition φ̃(ω) = 2πn implies resonant modes at frequencies:

ωl,m,n =
c

2L

[
2πn+ 2(l +m+ 1) arccos

[
1− L

ρ

]]
. (2.101)

As with the planar cavity, the (n + 1)th TEMlm mode is spaced from the nth by the free

spectral range, ∆νFSR. Importantly, the fundamental (TEM00) mode frequencies (Figure

2.6b) are identical to those in the planar case with the addition of a (generally) small term

resulting from the Gouy effect.

Classical Fields and Finesse

Now that we have some understanding of the spatial and temporal resonant mode structure

of a symmetric Fabry-Perot resonator, it is important that we also understand how classical

optical fields propagate in a lossy cavity. It is useful to decompose the field in and around

the cavity into four components (Figure 2.7):

• Einc, the field incident on M1,



39

Einc

Ecirc

Eref

Etran
M2M1

Figure 2.7: The electric fields coupled to and from a Fabry-Perot resonator. We can de-

compose these fields into four distinct components.

• Eref , the field reflected from M1,

• Ecirc, the field circulating between M1 and M2, and

• Etran, the field transmitted through M2.

In order for this analysis to be valuable, we must ascribe some losses to our mirrors. We

will assume that each mirror is characterized by a transmission coefficient t and a reflection

coefficient r. Using these coefficients, we can express each of Eref , Ecirc, Etran in terms of

Einc:

Eref = Einc

r − rt2e2iωL/c
∞∑
j=0

(
r2e2iωL/c

)j (2.102)

Ecirc = itEinc(eiωz/c + re−iωz/c)

 ∞∑
j=0

(
r2e−2iωL/c

)j (2.103)

Etran = −Einct2eiωL/c
∞∑
j=0

(
r2e2iωL/c

)j
. (2.104)

On an experimental level, fields are often not very practical quantities. It is more instructive

to reframe these expressions in terms of intensities, and, in particular, the fraction of the
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incident intensity reflected, transmitted and circulating in the cavity:

Iref
Iinc

=
∣∣∣∣E2

circ

E2
inc

∣∣∣∣ =
R
[
(1− (R+ T ))2 + 4(R+ T ) sin2(ωL/c)

]
(1−R)2 + 4R sin2(ωL/c)

, (2.105)

Icirc
Iinc

=
∣∣∣∣E2

circ

E2
inc

∣∣∣∣ =
T (1 +R+ 2

√
R cos(2ωz/c))

(1−R)2 + 4R sin2(ωL/c)
, (2.106)

Itran
Iinc

=
∣∣∣∣E2

tran

E2
inc

∣∣∣∣ =
T 2

(1−R)2 + 4R sin2(ωL/c)
. (2.107)

To arrive at these expressions, we have used the Taylor expansion for (1 − x)−1 and the

definitions of the mirror reflectivity, R = |r|2, and transmissivity, T = |t|2. When the loss

due to scattering and absorption from the mirror surfaces becomes comparable to the loss

due to transmission through the mirror (generally, in the limit R ≈ 1 unless you had a

really, really bad coating run) it is important to consider these losses in the above set of

equations. We can redefine the total reflectivity using conservation laws as:

R = 1− (T + l), (2.108)

where l = S + A is the total non-transmissive (i.e., scattering, S, and absorption, A) loss

per mirror. In the limit R ≈ 1, we find:

Iref
Iinc

=
∣∣∣∣E2

circ

E2
inc

∣∣∣∣ =
(l2 + 4 sin2(ωL/c))

(T + l)2 + 4 sin2(ωL/c)
, (2.109)

Icirc
Iinc

=
∣∣∣∣E2

circ

E2
inc

∣∣∣∣ =
4T sin2(ωz/c)

(T + l)2 + 4 sin2(ωL/c)
, (2.110)

Itran
Iinc

=
∣∣∣∣E2

tran

E2
inc

∣∣∣∣ =
T 2

(T + l)2 + 4 sin2(ωL/c)
. (2.111)

Equation (2.111) is a particularly useful expression. It provides the transmission spec-

trum, T , for a cavity driven by a variable detuning probe beam. In a more familiar form,

T =
(

T

T + l

)2 1
1 + 4/(T + l)2 sin2(ωL/c)

. (2.112)
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Near angular frequencies, ωn, which satisfy the resonance condition (2.91), T exhibits a

Lorentzian lineshape:

T =
(

T

T + l

)2 1

1 +
[

2L
c(T+l)

]2
(ω − ωn)2

. (2.113)

with halfwidth:

κ =
c

2L
(T + l) . (2.114)

This is the same rate κ which was discussed in 2.2 and corresponds physically to the quantum

mechanical field decay which we described earlier. The prefactor of T is the maximum

transmission coefficient,

Tmax =
(

T

T + l

)2

, (2.115)

and is a measure of the fraction of the power transmitted through the cavity as opposed to

dissipated in the mirror surfaces.

A final, particularly useful quantity is what is known as the cavity finesse, given as the

ratio of the free spectral range to the fullwidth:

F ≡ ∆ωFSR
2κ

(2.116)

=
π

T + l
. (2.117)

The finesse can be interpreted physically as the number of round trip interactions with the

cavity mirrors a circulating field undergoes before its intensity has decayed by a factor of

e−1. Not surprisingly then, the finesse tends to appear in situations where the effect of

interest scales in proportion to the number of interactions the field makes with mirrors. For

instance, the ratio of peak circulating power to input power (the cavity build-up factor, B)
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can be expressed in terms of the finesse and the maximum, on-resonance transmission:

B ≡ max
(
Pcirc
Pinc

)
= 4
√
Tmax

F
π
. (2.118)

Inside the cavity, the injected intensity is increased by a factor of the finesse and reduced by

a factor of the the square-root of the maximum cavity transmission. For very high finesse

systems with low losses, l, this build up can be quite significant. In the following subsection,

we will explore another effect which scales with the finesse.

Polarization and Birefringence

An important aspect of any real Fabry-Perot cavity which we have not yet considered is

that the mirrors can simultaneously support two, orthogonal polarization eigenmodes in the

(x, y)-plane. In an idealized model, both mirrors exhibit perfect radial symmetry and the

single, physical Fabry-Perot resonator behaves effectively as two, decoupled resonators, both

exhibiting the same spectral characteristics with respect to the (degenerate) polarization

modes.

Experimentally, it is difficult to realize this situation. If a mirror, M1, is held in a

way which is anisotropic with respect to its rotational geometry, this defect can break the

symmetry of the (x, y)-plane by inducing a small amount of stress preferentially along one

direction, l+, on the mirror’s surface. This stress does not appreciably alter the geometry of

the mirror but it does, however, induce a very small optical phase shift, ϕ, upon reflection

of an incident field linearly polarized along l̂+ (why this is the case will be discussed in

Chapter 3 when we describe the optical coatings of real mirrors).

If this mirror is configured to form a cavity with another mirror, M2, which is similarly

stressed along l̂+, these small phase shifts will build up in proportion to the cavity finesse.

To see this, we generalize Equation (2.104) to two polarization eigenmodes in the l± basis:

 E+
tran

E−tran

 = −t2e−iωL/c
∞∑
j=0

(r2e2iωL/c
) e−2iϕ 0

0 1

j E+
inc

E−inc

 . (2.119)

After a bit of algebra, and under the assumption we are driving with linearly polarized light
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along either l̂±, we arrive at:

E+
tran

E+
inc

=

[
t2e−iωL/c

1− r2e2i(ωL/c−ϕ)

]
or, (2.120)

E−tran
E−inc

=

[
t2e−iωL/c

1− r2e2iωL/c

]
. (2.121)

In terms of intensities, we have two, orthogonally polarized eigenmodes with respective

lineshapes:

T + = Tmax
1

1 + 4/(T + l)2 sin2(ωL/c− ϕ)
, (2.122)

T − = Tmax
1

1 + 4/(T + l)2 sin2(ωL/c)
. (2.123)

Note that T ± have different resonance conditions for the nth longitudinal mode:

ω+ =
2nπc
L

+
cϕ

L
and ω− =

2nπc
L

. (2.124)

The frequency spacing between these modes, as a fraction of the cavity linewidth, is there-

fore:

∆ω±

κ
=
cϕ

Lκ
=

2
π
Fϕ. (2.125)

The effect of the cavity is to enhance what is, by itself, a small single pass phase shift by

a factor of the finesse. For very high finesse cavities, even a small anisotropy in the stress

along the mirrors can result in an experimentally significant frequency splitting between the

two polarization eigenmodes. In the context of cavity QED, we must adjust our model to

treat the case of an atom coupled to two cavities, each of which has a unique atom-cavity

detuning and support for only one linear polarization.

The other significance of this effect is that it requires us to treat the cavity as a birefrin-

gent optical element, exhibiting “fast” and “slow” optical axes (referred to as l̂±, above).

While we will consistently orient our coordinate frame such that the longitudinal axis of the

cavity lies along ẑ (i.e., for purposes of atomic spin projection), cavity birefringence breaks
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the symmetry of the x̂- and ŷ-axes, which must be defined with respect to l̂±.

We should briefly mention that although we have assumed here that the birefringent

axes of both mirrors coincide with l̂±, there is no physical reason why this is necessarily the

case. In fact it can be shown with a good deal or simple algebra (or a bit more gracefully

using quaternion algebra) that regardless of how the linear birefringent axes of the mirrors

are oriented with respect to each other we can still define a single, overall set of birefringent

axes for the system. The results of this analysis are valid, regardless.

Fabry-Perot Cavity QED

Finally we return to cavity QED, now in the context of the above discussion of Fabry-Perot

resonators. Consider a single atom located at ~r with respect to the center of the cavity. We

can, in principle, observe atom-field coupling for any Hermite-Guassian (TEMl,m) mode of

our choosing so long as the cavity supports that mode with only a small detuning from

atomic resonance [18]. In practice, the additional spatial transverse mode structure associ-

ated with higher-order Gaussian beams adds unwanted complexity to the system and will

be completely avoided experimentally. We will work only with the fundamental (TEM00)

mode.

The Mode Volume

Combining equations (2.10) and (2.93), the rate of coherent coupling for this atom is given

by:

g(x, y, z) =

√
d2ω

2~ε0Vm
exp

[
−iωz

c
+
x2 + y2

w2
0

]
. (2.126)

It should be noted that we have neglected transverse phase shifts due to the local wavefront

curvature and the variations in spot size as a function of z by assuming that the cavity

is near-planar, ρ � L. Also, the boundary conditions dictate that ψ(x, y,±L/2) = 0. It

follows that for even-parity frequency modes (ω2q : q ∈ Z), g(~r) varies as sin[ωz/c] whereas

for odd-parity modes (ω2q+1 : q ∈ Z) the field goes like cos[ωz/c].
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Calculating the mode volume for the cavity is straightforward:

Vm =
∫
V
|ψ(~r)|2d~r

=
∫ +L/2

−L/2

∫ ∞
−∞

∫ ∞
−∞

cos2[ωz/c] exp
[
−2

x2 + y2

w(z)2

]
dx dy dz

=
πw2

0L

4
=
πc

4ω

√
L3(2ρ− L). (2.127)

We are now able to express g0 in terms of cavity parameters:

g0 =

√
2d2ω2

π~cε0
1

4
√
L3(2ρ− L)

. (2.128)

Note that g0 ∝ L−3/4 in the planar cavity limit (in comparison with the cavity linewidth,

κ ∝ L−1). Simply shortening the cavity length for mirrors of a given finesse will approach

the undesirable limit κ � g0. Fortunately, the cavity finesse is also a free parameter. By

using mirrors with extremely low transmission and loss coefficients we can still approach

the cavity strong coupling criterion g0 � κ by requiring:

(
κ

g0

)2

=
π2

F2

√
(2ρ− L)

L

(
πc3ε0~
8d2ω2

)
=

ωπ2

24γF2

√
(2ρ− L)

L
� 1. (2.129)

Here we have made use of equation (2.25).

We can undertake a similar analysis for the other strong coupling criterion, g0 � γ:

(
γ

g0

)2

=
√
L3(2ρ− L)

(
πcε0~
2d2ω2

)
γ2

=
γω

12c2

√
L3(2ρ− L)� 1. (2.130)

Expressing the two strong coupling criteria in this way alludes to an interesting physical

interpretation of two parameters - the critical photon (n0) and critical atom (N0) numbers.



46

Critical Parameters and Strong Coupling

The critical photon number n0 is the number of photons present in the cavity necessary

to saturate the response of the atom. This occurs when the the circulating intensity, Icirc,

of an n-photon intracavity field, |n〉, reaches the atomic saturation parameter, Isat. From

equations (2.7) and (2.86), we find:

Icirc ≡
ε0
2c
〈n|E2

circ|n〉 =
n~ω2

π

1√
L3(2ρ− L)

(2.131)

n0 ≡
πIsat
~ω2

√
L3(2ρ− L)

=
γω

6c2

√
L3(2ρ− L) =

γ2

2g2
0

(2.132)

Comparing this result with (2.129), the strong coupling criterion g0 � γ evidently corre-

sponds to n0 � 1/2. In physical terms, a strongly coupled atom-cavity system is one in

which much less than “half” of a photon is necessary to appreciably affect the dynamics of

the system.

Similarly, we can define a critical atom number, N0, which corresponds to the number of

intracavity atoms necessary to significantly alter the field state to which they are coupled.

While we won’t explore the theory of N-atom cavity QED in any detail here, the analogous

model is known as the Tavis-Cummings (as opposed to Jaynes-Cummings) Hamiltonian [19]

and the dressed state splitting scales like g0

√
N in the presence of a single, shared excitation.

In order for the atom to coherently affect the field, this splitting should be greater than or

equal to the square root of the product of the dissipative rates in the picture,
√
γκ (using a

simple argument based on our ability to spectroscopically resolve the dressed state splitting

in spite of broadening due to dissipation). Therefore, we estimate:

√
N0g0 =

√
γκ, ⇒ N0 =

γκ

g2
0

. (2.133)

Historically, N0 is defined in the context of optical bistability theory [20], and is modified
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by a factor of 2 from our estimate:

N0 =
2γκ
g2

0

(2.134)

=
ωπ

12Fc
√
L(2ρ− L). (2.135)

It follows from equation (2.130) that the strong coupling criterion g0 � κ corresponds to

N0 � γ/κ.

2.3.3 A Note on Numerical Simulations

As a final aside, the entirety of this Chapter, in conjunction with certain experimental ele-

ments taken from Chapter 3 (particularly our technique for optically confining an atom in

Fabry-Perot cavity), is distilled into a single piece of MATLAB code as described in Appendix

B. Written for use with the Quantum Optics Toolbox API, this code relies on an implemen-

tation for the complete cesium D2 line of the master equation approach described earlier

in this chapter. Periodically throughout the remainder of the dissertation, aspects of this

simulation software will be used to provide theoretical modeling of experimentally observed

phenomena.
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Chapter 3

Experimental Apparatus

In this Chapter, I will present a bottom-up view of the experimental apparatus in Lab 11.

This instrumentation has been documented elsewhere, particularly in the theses of former

group members [1, 21, 22, 23], but the ever-changing nature of the experiment requires that

thoroughly updated description accompany this thesis. It is my goal that this Chapter,

in conjunction with the descriptions of commonly-used experimental protocols detailed in

Chapter 4, will provide a point of departure for discussions in subsequent Chapters of the

experimental measurements undertaken during my time in the Kimble group.

This dissertation will not go into great detail regarding techniques for optical cavity

assembly, characterization and selection of “good” cavity mirrors, and vibration isolation

requirements for high finesse cavities. These topics have been discussed at great length in the

theses of Christina Hood [24], Teresa Lynn [25], David Vernooy [1], and Tracy Northup [26].

Assembling Fabry-Perot resonators from “scratch” requires a great deal of craftsmanship,

and I refer you to their detailed notes on these subjects.

3.1 The Physics Cavity

The central component in the experiment is an ultrahigh finesse Fabry-Perot resonator

in which we perform cavity QED measurements. The “physics cavity” was constructed

in 1998-9 by David Vernooy and Jun Ye and has remained in continuous, uninterrupted

operation since.
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4 mm

3 mm

1 mm3 mm

AR Coating

HR Coating

Figure 3.1: Schematic representation of a physics cavity mirror (to scale). The radius of

curvature, ρ = 20 cm, is large enough that the HR coated surface appears flat to the human

eye.

3.1.1 The Mirrors

The physics cavity is a symmetric Fabry-Perot resonator, comprised of two superpolished

fused silica substrates coated with a highly-reflective (HR) stack of alternating layers of

tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2), each coated λD2/4 thick. An anti-

reflective (AR) coating is applied to the reverse side of each substrate in order to facilitate

input and output coupling and to prevent unwanted interferometric effects within the sub-

strate itself. The mirrors were custom made at our group’s request to exhibit maximum

reflectivity at the Cesium D2 line by Research Electro-Optics (REO) of Boulder, CO.

The mirrors were originally coated onto a cylindrical substrate with a 7.75 mm outer

diameter (OD), then turned on a lathe to the dimensions depicted in Figure 3.1. The radius

of curvature of the polished portion of the substrate is nominally ρ = 20 cm. The HR coated

surface of the substrate is “coned” to a 1 mm OD, whereas the OD of the AR coated surface

is 3 mm. The reason for this conical structure is purely practical - the experiment requires

optical access through the side of the cavity and for spherical mirrors of large OD, this access

is obscured by unnecessary substrate material. We can quantify this by writing down an
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Aluminum

Shear PZT

Epoxy
M2 M1

Figure 3.2: Photograph (left) and schematic diagram (right) of the physics cavity assem-

bly. The physical separation between the mirrors, L = 42.2 µm, is barely visible in the

photograph.

expression for the size, d, of the aperture between the mirror surfaces:

d = L− Lmin, (3.1)

Lmin = 2ρ−
√

4ρ2 −D2. (3.2)

Here, L is the length of the cavity, D is the OD of the HR coated surface, and Lmin is the

minimum possible cavity length for a given set of mirrors (which would be attained if the

ODs of both mirrors were in direct physical contact).

3.1.2 The Cavity Assembly

The cavity assembly consists of two mirrors of the type discussed in the previous subsec-

tion, each held in place by vacuum-compatible epoxy in a solid aluminum v-block (Figure

3.2). The v-block containing the input mirror (i.e., M1, the mirror into which light is

coupled experimentally) is epoxied onto a shear-mode piezoelectric transducer (PZT). A

user-controlled voltage applied to this PZT allows us to servo the cavity length in situ (up

to a maximum bandwidth of ∼ 11 kHz). The PZT is itself epoxied onto a tension-mounted
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aluminum base assembly. The v-block containing the output mirror (i.e., M2, the mirror

from which transmitted fields are measured) is fixed in place on the same base.

This base assembly consists of two separate machined aluminum blocks held together by

a tensioned thread rod (Figure 3.3a). These blocks are milled so as to allow optical access

to the inter-mirror aperture across a 270◦ arc. One of the two mounted mirrors resides on

each of the blocks. The housing is hollow and contains a 1/2 inch cylindrical PZT which

was originally intended to provide coarse adjustment of the cavity length. After the entire

system was under vacuum, it became clear that the shear PZT provided a full free spectral

range of tunability and the cylinder was deemed unnecessary. It has remained grounded

and unused since work began on the experiment.

The aluminum housing is itself rigidly bolted onto a large, copper damping weight (Fig-

ure 3.3b). The damping weight is machined to fit in the bottom of the spherical octagon

vacuum chamber where the cavity resides under ultra-high vacuum (see Section 3.2). Under-

neath the damping weight are small pieces of viton rubber which cushion the copper weight

on the chamber and form the rest of the in-vacuum passive vibration isolation system.

3.1.3 Cavity Parameters

As was discussed in Chapter 2, Section 2.3.2, a lossy, symmetric Fabry-Perot resonator can

be effectively characterized in terms of four parameters: L, the cavity length; ρ, the mirror

radius of curvature; F , the Finesse; and ϕ, the differential birefringent phase shift. The

value ρ = 20 cm is specified by REO and measurements of the transverse mode structure of

the cavity are in good agreement with this specification. In this subsection I will describe

measurements made to determine the value of each of the other three quantities, especially

in the context of cavity QED with atomic cesium.

Cavity Length

The discussion of Fabry-Perot resonators in Section 2.3.2 treated mirror surfaces as ex-

hibiting zero-thickness and as precise antinodes of any resonant field. The cavity length

L was then uniquely determined by the maximum surface-to-surface distance between the

mirrors. In this approximation, and for planar mirrors, the resonant frequency of the mth
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a.

b.

Figure 3.3: a. Reverse angle photo of the physics cavity and aluminum mounting structure.

M1, the shear PZT-mounted mirror, is now positioned on the left. The tensioned nut

holding the baseplate assembly together is clearly visible at bottom right. b. Perspective

view of the full physics cavity assembly resting on the copper damping weight inside the

UHV chamber 3.2. From this angle, M1 is the rear mirror.
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order (TEM00) mode is given simply by the cavity resonance condition:

ωm =
mπc

L
.

In Equation (2.101) we added a correction to this expression corresponding to phase shifts

resulting from the Gouy effect:

ω′m =
c

2L

[
2πm+ 2 arccos

[
1− L

ρ

]]
.

For the nominal cavity design length, Ld = 44.6 µm, the Gouy effect provides a correction

to the effective cavity length on the order of about 3 nm, or 0.007%. While the Gouy phase

does manifest itself as an appreciable frequency shift (|ωm − ω′m| ∼ 23 GHz) and also gives

rise to transverse mode structure, its contribution to the effective cavity length is minimal

and we will therefore overlook this term.

A much more significant contribution arises from frequency-dependent phase shifts as-

sociated with penetration of the cavity mode into the dielectric HR mirror coating stack.

The frequency-dependence results from the variations from layer-to-layer of the index of

refraction, from nH = 2.0564 for the Ta2O5 layers to nL = 1.4440 for the SiO2 layers. We

can model this effect as:

ω′′m = s(ω′′m)
[
2πm+ φ(ω′′m)

]
. (3.3)

Here we have replaced the prefactor corresponding to the cavity free spectral range (FSR)

with one that accounts for the finite extent of the mode in the coating stack (an “effective

free spectral range”):

s(ω′′m) ≡ c

2L+ 2πcδφ/δω′′m
. (3.4)

We will also define an “effective cavity length”, Leff with respect to s(ω):

Leff =
c

2s(ω)
. (3.5)
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Wavelength (nm) ωm (THz) m (inferred)

827.685 (2π)(362.206) 102

835.750 (2π)(358.711) 101

852.357 (2π)(351.722) 99

935.586 (2π)(320.043) 90

945.545 (2π)(317.058) 89

Table 3.1: Resonant wavelengths and optical frequencies for TEM00 longitudinal modes

of the Lab 11 physics cavity. Uncertainty (not shown in the table) is ±0.001 nm, due to

fluctuations in Wavemeter reading.

The term φ(ω′′m) corresponds to the frequency-dependent phase shift added to the light

during its interaction with the mirror coating. It can be shown [27] that by performing a

power series expansion of φ(ω) around a frequency ωc for which the mirror reflectivity R(ω)

is locally maximal, the first derivative of the mirror phase shift near ωc is:

δφ

δω

∣∣∣∣
ωc

=
[

1
ωc(nH − nL)

]
. (3.6)

Experimental frequency resolution of a number of resonant longitudinal modes near

ωc ≈ (2π)(352 THz) provides us a direct method for determining Leff . To do this, we fix the

length of the cavity and vary the frequency of mode-matched probe light (derived from three

lasers, tuned to four distinct wavelengths). In varying the wavelengths we are in search of

cavity resonances exhibiting a TEM00 spatial profile (indicating a fundamental longitudinal

mode). When we observe resonant transmission of a probe laser, the wavelength is then

determined by redirecting a portion of the field to a Burleigh Wavemeter which resolves

it via Michelson interferometry. Experimentally measured values for these wavelengths are

presented in Table 3.1.

For optical frequencies detuned slightly from ωc with respect to R(ω) (which is first-

order insensitive to variations in ω near a local maximum), we can neglect the frequency

dependence of Leff . Under this approximation, it is possible to infer the mode order,
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m = {89, 90, 99, 101, 102}, for each of the ωm presented in Table 3.1 by assuming a linear

relationship between m and ωm. From this data we can also infer an effective (local, with

respect to the maximum of R(ω)) FSR, νFSR = 3.495 ± 0.001 THz which corresponds to

an effective length Leff = 42.89± 0.01 µm (uncertainties correspond to the 68% confidence

interval in a linear regression fit to the data).

Using Equations (3.6) and a power series expansion of (3.5) about ωc, we can derive an

expression for the surface-to-surface mirror spacing L as a function of Leff and ωc to first

order [28]:

L = Leff −
cπ

ωc

(
1

nH − nL

)
(3.7)

= Leff − 0.8165λc. (3.8)

From this relationship we can make an estimate of the physical cavity length, L = 42.19±

0.01 µm. This agrees favorably with a more detailed calculation yielding L = 42.207 ±

0.005 µm carried out by Kevin Birnbaum and described in his thesis [29].

Linewidth and Finesse

In Chapter 2, Section 2.3.2 we took note of the functional relationship between cavity

halfwidth κ and finesse F . We can generalize this relationship to consider effective, as

opposed to physical, cavity length:

κ =
c

2Leff

π

F
. (3.9)

The finesse is a function only of the transmissive and dissipative losses in the mirror. The

two are reciprocal quantities and can be inferred indirectly from the other by independent

measurement of Leff . As a practical matter, the value of κ at λD2 = 852.4 nm (with its

relative importance as a parameter in the cavity QED strong coupling criteria) is the more

experimentally relevant quantity. In this section I describe a direct measurement of the

cavity halfwidth from which I infer the finesse. For a discussion of direct measurements of

the mirror losses, see Andreea Boca’s dissertation [23].
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There are three common approaches to measuring the cavity linewidth used by our

group. The first, cavity ring-down spectroscopy, involves a time-domain measurement.

This is done by driving the fixed-length cavity on resonance with a probe field through

mirror M1 and measuring the intensity of the field transmitted through M2 as a function

of time. If the probe field is switched OFF over a timescale much shorter than κ−1, the

transmitted signal will exhibit an exponential decay as the circulating field leaks from the

cavity mirrors. The time constant of this decay is the cavity linewidth, κ. In practice, for

very short, high-finesse cavities such as the Lab 11 physics cavity, this is not an effective

method due to the rapid decay of the field.

The other two techniques involve frequency-domain measurements. In a fixed-length

cavity we can monitor the transmission spectrum T (ω) of a probe beam for which the

frequency-detuning from the cavity resonance is swept. It follows from Equation (2.113)

that (in the absence of birefringent effects) T (ω) will exhibit a Lorentzian lineshape with

halfwidth κ. This type of measurement is commonly employed in the laboratory and will

be discussed in Chapter 6. I omit discussion here as there is some experimental overhead

associated with calibrating T (ω) against beam-stearing and intensity modulation effects as

the probe detuning is varied.

The final technique, which is the one which will be used here to measure κ, involves

monitoring the transmission of a fixed-frequency probe which is injected into a cavity of

variable length, L. We are, again, sweeping the probe-cavity detuning, however we are doing

so now by varying the round-trip resonance condition of the cavity. This technique is the

most robust of the three against experimental defect and has yielded the most consistent

measurements.

To understand how the cavity length is swept it is first necessary to understand how

the length is actively stabilized. A thorough discussion of the frequency chain that leads to

the cavity lock servo loop will follow in Section 3.4. For now, it is sufficient to understand

that a frequency-stabilized laser drives the m = 101 longitudinal mode at 835.750 nm (the

probe field drives m = 99). An error signal for stabilizing the cavity is derived from the

transmission of this beam such that by changing the frequency of the laser, the cavity length

follows. To understand this effect, note that for a frequency change ∆ω101 in the laser, the



57

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

1
Pr

ob
e 

Tr
an

sm
is

si
on

, T     
(!

) (
Ar

bi
tra

ry
)

Probe−Cavity Detuning, !/2¼ (MHz)

Least Squares Fit

0.8

Figure 3.4: Transmission spectrum T (ω) (◦) of a fixed-frequency probe beam through a

variable-length physics cavity. A nonlinear least squares fit (−, fit routine in MATLAB)

yields κ = (2π)(3.76± 0.06) MHz. Uncertainty represents a 68% confidence interval for the

fit.

resulting change in wavelength (and therefore cavity length, as the servo follows the laser)

is:

∆Leff =
101
2

∆λ101 =
100πc
∆ω101

. (3.10)

As the effective cavity length changes, the resonant frequency ω99 shifts by:

∆ω99 =
99πc

∆Leff
(3.11)

=
99
101

∆ω101. (3.12)
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In order to map out the transmission spectrum for a fixed-frequency probe, it is sufficient

to scan the frequency of the locking laser and record T (ω101), then rescale the frequency

axis by a factor of 99/101.

Figure 3.4 contains an experimental measurement of T (ω) as recorded on single-photon

counting avalanche photodiodes. The vertical axis has been normalized and the frequency

axis has been properly rescaled. A nonlinear least squares fit to a Lorentzian distribution

gives κ = (2π)(3.76± 0.06) MHz, which is representative of mean linewidth measured using

this technique during my time at Caltech. Performing the same technique using heterodyne

detection in lieu of single photon counting tends to produce ∼ 25% variations in κ, however

these fits are generally of lower quality and deviate strongly from the data in the wings of

the distribution.

Based on this measurement, and using the previous result Leff = 42.89 ± 0.01 µm, we

calculate the finesse F = (4.648±0.007)×105. This corresponds to total losses in the mirror

T + l = (6.7 ± 0.03) ppm. A serious concern in atom-cavity experiments [25] is that over

time a background vapor of cesium gas might condense on the mirror surfaces, gradually

degrading the finesse. Michael Chapman and Christina Hood observed this effect in early

implementations of this type of experiment. In the context of the Lab 11 experiment,

however, we have observed no measurable degradation of the finesse or cavity linewidth

over the course of ten years. Measurements consistently yield κ ∼ (2π)(3.8) MHz with only

small variations due to measurement technique and error.

Birefringence

In Chapter 2, I described a subtle effect which manifests itself in high-finesse resonators

whereby small anisotropies in the mirror surfaces give rise to a large birefringent splitting

between orthogonally polarized cavity modes, ∆ω±. The general consensus in our group

among students who have built cavities is that the birefringence manifests itself only when

the mirrors are epoxied into the cavity assembly and is not inherent to the mirrors themselves

(i.e., not as a result of the substrate coning process, for instance). The most likely physical

mechanism for this effect is that as the epoxy cures it causes uneven stress across the mirror

surfaces which gives rise to variations in the coating stack indices of refraction, (nH , nL).
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These variations, in turn, alter the mirror phase shift (3.6) inducing a small differential

phase ϕ along the linear axis of the stress, l̂+, with respect to the unstressed axis, l̂−.

Regardless of the underlying mechanism, it is empirical fact that the Lab 11 physics

cavity exhibits a modicum of birefringent splitting. In order to obtain the cavity lineshape in

Figure 3.4, the probe field was necessarily polarized along l̂+, thereby only driving the higher

frequency of the two modes. Likewise, the output field of the cavity was directed through a

λ/2-waveplate and polarizing beamsplitter such that only transmitted light polarized along

l̂+ was detected. In the absence of these precautions, the transmitted spectrum would be

a convolution of the lineshapes for the two modes. To see why this is the case, consider

Equation (2.119) in the context of an arbitrarily polarized input field, ~Einc = E+
inc l̂++E−inc l̂−.

We are concerned with measuring the transmitted intensity along an arbitrary axis, m̂ =

cos θl̂+ + sin θl̂−. This situation can be analyzed using Jones matrix formalism:

~Etran · m̂ = Te−iωL/cR

 1 0

0 0

 1
1+Re2i(ωL/c−ϕ) 0

0 1
1+Re2iωL/c

 E+
inc

E−inc

 . (3.13)

Here we have rotated the projection matrix from the l̂+-axis to the m̂-axis using the rotation

matrix:

R =

 cos θ − sin θ

sin θ cos θ

 . (3.14)

This yields an expression for the transmitted field along m̂:

~Etran · m̂ = E+
inc

Te−iωL/c cos θ
1−Re2i(ωL/c−ϕ)

+ E−inc
Te−iωL/c sin θ
1−Re2iωL/c

(3.15)
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Figure 3.5: Theoretical normalized transmission intensity (colormap) for a circularly po-

larized probe field as a function of analyzer angle and probe detuning. In this model, the

quantity ∆ω±/κ ≈ 1.06 is the same as for the Lab 11 physics cavity. Individual Transmis-

sion spectra for θ = 0 (lower-frequency eigenmode), θ = π/4 (constructive interference),

θ = π/2 (higher-frequency eigenmode), θ = 3π/4 (destructive interference).

And, likewise the transmitted intensity for ω ∼ ωn:

Itran,m(ω) =
cε0
2
| ~Etran · m̂|2 (3.16)

=
cε0
2

(
T

T + l

)2
[
|E+

inc|
2 cos2 θ

1 + (ω−ωn−cϕ/L)2

κ2

+ |E−inc|
2 sin2 θ

1 + (ω−ωn)2

κ2

]

+ T 2 cε0 sin 2θ
4

(
|E+∗

incE
−
inc|

(1−Reiϕ)2 + 4eiϕ(L/c[ω − ωn]− ϕ/2)2
+ c.c.

)
.

The first two terms are the familiar Lorentzian lineshapes for the two polarization eigen-

modes. The third and fourth terms represent mixing between the two eigenstates when

measured and driven off eigenaxis.

Figure 3.5 reveals the dependence of the transmission spectrum on the analyzer angle.

Using the prescribed model we find that the transmission of a circular polarized probe field
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is:

~Einc =
|E|√

2

(
il̂+ + l̂−

)
, (3.17)

is monitored as a function of both θ and the detuning of the probe from resonance with

the lower frequency polarization eigenmode. For values θ+ = nπ and θ− = (n + 1)π/2,

the analyzer is aligned with l̂± and we cleanly resolve the transmission spectra for the two

eigenmodes. However for θ = nπ/4, the polarizer is oriented at a 45◦ with respect to either

eigenaxis and the transmission spectrum alternately exhibits constructive and destructive

interference.

In order to measure the magnitude of the birefringent splitting in the laboratory, the

deconstructively interfered signal is a particularly useful observable. The procedure is to

obtain a probe transmission spectrum T (ω) for an off-axis value of θ and obtain a numer-

ical fit to the model described in Equation (3.17). T (ω) exhibits birefringent effects most

prominently for analyzer angles where sin θ cos θ is at its minimum (i.e., θ = (2n+ 1)π/4).

I should quickly note that there are a variety of other experimental methods for measuring

cavity birefringence which are described in great detail in Teresa Lynn’s thesis. However the

particular technique used here is, in my experience, the most straight forward and reliable.

Figure 3.6 contains one such fit with {ϕ, θ} left as free parameters. This spectrum was

measured using the same technique as was used for Figure 3.4, with a fixed-frequency probe

field and variable-length cavity. MATLAB’s fit routine yields θ = (0.74 ± 0.05)π and

ϕ = (3.6±0.2)×10−6, with error bars representing 68% confidence intervals (the quality of

the fit reflects what was likely a probe field with a slight elliptical polarization rather than

pure circular). Recalling Equation (2.125), we can calculate the total birefringent splitting:

∆ω±

κ
=

2
π
Fϕ = 1.06± 0.03 (3.18)

∆ω± = (2π)(4.0± 0.1) MHz. (3.19)

I should quickly mention that this result is representative (see Andreea Boca’s thesis for

other measurements). During my six years in Lab 11 we have never observed significant
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Figure 3.6: Transmission intensity spectrum for a circularly polarized probe beam through

a polarizing beam splitter oriented at an angle θ ∼ 3π/4 with respect to the l̂+ cavity

eigenaxis. A numerical fit to Equation (3.17) yields ϕ = (3.6±0.2)×10−6 and a birefringent

splitting ∆ω± = (2π)(4.0± 0.1) MHz.

variation in the splitting of the QED mode. Also, it seems to be the case that the po-

larization eigenaxes are universal across longitudinal modes (this has been verified for

m ∈ {89, 90, 99, 101}) which would agree with the hypothesis that the physical mecha-

nism for the birefringence is geometric (i.e., stress planes) as opposed to spectral. The

splitting at modes other than m = 99, however, grows considerably smaller as the coating

curve rolls off (along with the finesse).

This leads to the question, “to what extent is the cavity birefringence a relevant concern

when studying cavity QED?” The answer this question, it is important to realize that

our cavity lies in a unique regime. For ∆ω± � (g0, κ, γ), we can far-detune one of the two

modes and thereby treat only the resonant one. In the other limiting case, ∆ω± = 0, the two

modes are fully degenerate and, while both polarizations are simultaneously supported, the
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cavity is not birefringent. The physics cavity, however, satisfies ∆ω± ∼ (γ, κ). Irrespective

of the atom-cavity detuning, the atom couples strongly to both modes and these modes

potentially exhibit mixing of the type predicted in Equation (3.17). Even if we probe and

measure only along eigenaxes, a strongly coupled atom will depolarize the field at a rate

close to g0 (consider transitions from excited state Zeeman levels to ground states which

satisfy ∆mF = ±1).

In Chapter 6, I will describe the series of experiments where we first began to understand

the importance of cavity birefringence in our system and even, to a certain extent, use it

advantageously to observe the photon blockade effect.

3.1.4 Summary of Cavity Parameters

Table 3.2 provides a thorough summary of the relevant parameters for the Lab 11 physics

cavity. The discussion in Chapter 2 and the previous subsections of this chapter offer

detailed explanations of how each of these quantities was either measured or deduced from

other measurables. Importantly, it should be noted that for our system (on the F = 4 ↔

F ′ = 5 transition):

(g0, κ, γ) = (2π)(33.7, 3.76, 2.61) MHz (3.20)

placing our experiment well into the regime of strong coupling.

3.2 The Vacuum Chamber and MOTs

The Lab 11 physics cavity resides under ultra high vacuum (UHV) at a pressure Plow ≈

4×10−10 Torr. There are a variety of reasons for keeping the cavity under vacuum - a UHV

environment allows us to laser cool and trap atomic samples and facilitates decoupling of an

intracavity atom from it’s environment. Both the vacuum chamber and the magneto-optical

traps which provide a source of cold atoms to the cavity have been thoroughly discussed in

other dissertations [21, 1]. I provide only a brief explanation of them here, for the sake of

completeness and in order make clear their role in the experimental timing schemes to be

discussed in Section 3.6.
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Parameter Description Value Uncertainty Units

Geometric Properties:

ρ mirror radii of curvature 20 - cm

Leff effective cavity length 42.89 0.01 µm

L physical cavity length 42.207 0.005 µm

d cavity aperture width 41.41 0.005 µm

w0 waist spot size at λD2 23.70 0.001 µm

Vm mode volume at λD2 1.893× 104 0.0007× 104 µm3

Mode Structure:

νFSR free spectral range 3.495 0.001 THz

ωT transverse mode spacing (2π)(22.9) (2π)(0.4) GHz

∆ω± peak-to-peak birefringent splitting (2π)(4.0) (2π)(0.1) MHz

F finesse 4.648× 105 0.007× 105 -

Cavity QED Parameters:

max(g0)|4,5′ maximum g0 (F = 4↔ F ′ = 5) (2π)(33.72) (2π)(0.006) MHz

max(g0)|4,4′ maximum g0 (F = 4↔ F ′ = 4) (2π)(23.03) (2π)(0.004) MHz

max(g0)|4,3′ maximum g0 (F = 4↔ F ′ = 3) (2π)(14.87) (2π)(0.003) MHz

κ cavity half width at λD2 (2π)(3.76) (2π)(0.06) MHz

γ atomic half width at λD2 (2π)(2.611) (2π)(0.003) MHz

Critical Numbers:

n0 min. critical photon number 3.00× 10−3 8× 10−6 -

N0 min. critical atom number 1.73× 10−2 2.8× 10−4 -

Table 3.2: Summary of Lab 11 physics cavity parameters. Experimentally measured quan-

tities are (Leff , κ,∆ω±, γ [11]). All others are inferred from these values.
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3.2.1 Vacuum Chamber

The overall vacuum chamber (Figure 3.7) is divided into two functionally separate chambers

- “upper” and “lower.” Both are octagonal, supporting 23
4” (11

3”) and 41
2” (23

4”) conflat

windows, respectively, on their axial (radial) ports. The lower chamber contains the physics

cavity assembly and rests freely on a stack of steel plates and viton rubber which provides

passive vibration isolation. The cavity is nominally located at the geometric center of the

chamber. The upper chamber is connected to a temperature-controlled reservoir of metallic

cesium through a series of flanges and a gate valve. Generally this reservoir is thermo-

electrically cooled but in the absence of cooling, and with the valve open, an appreciable

background pressure of cesium vapor can develop in the upper chamber.

The chambers are themselves joined by a narrow (inner diameter, 3 mm) differential

pressure tube. The tube offers a low conductance path between the two chambers, which

allows us to maintain a pressure difference of about Pup/Plow ∼ 25 between them [21]. Both

chambers are also attached to dedicated ion pumps which remain in nonstop operation.

Pressure readings on ion gauges attached to each chamber indicate Pup ∼ 1 × 10−8 Torr

and Plow ∼ 4× 10−10 Torr.

The use of a differential pressure tube between the cesium reservoir and the physics

cavity chamber has been an extremely beneficial design feature of this system as it allows

us to isolate the cavity from excessive exposure to cesium. In earlier implementations of

this type of apparatus within our group, atomic samples of cesium were laser cooled from

background gas in the same chamber as the physics cavity. Over six month to one year

time scales, the finesse of the cavity would gradually degrade as cesium slowly condensed

on the mirror surfaces and lead to significant scattering and absorption losses. The Lab 11

configuration, however, has been in operation for almost a decade now with no measurable

degradation of any cavity parameters (and with no apparent shortage of cesium gas in the

upper system, as well).
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Figure 3.7: Schematic of the Lab 11 two-chamber UHV system (not to scale). Flanges drawn

without connections lead to conflat windows. Larger conflat windows are also attached to

both sides of the lower (41
2”) and upper chambers (23

4”) in the plane of the drawing.
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3.2.2 A Source of Cold Atoms

Magneto-optical trapping (MOT) is now a broadly used technique in the atomic physics

world. Using a combination of magnetic field gradients and properly tuned laser fields,

MOTs allow for the confinement and cooling of atomic samples. They are perhaps so

prevalent because they are relatively inexpensive (relying on only modest field gradients and

low-cost diode lasers) and yet offer sub-mK atomic samples. In our experiment the physics

of the MOT, once understood and implemented, is largely superfluous to the subsequent

cavity QED physics which is the real focus of our work. To a greater or lesser extent, the

MOT serves only as source of cold atoms. Once those atoms enter the cavity mode, as

we will see in the next section, they are cooled into another kind of trap which governs

the dynamics of the atomic motion as it undergoes coupling to the cavity field. For this

reason, what follows is not intended to be a complete review of radiation pressure cooling

but rather a short overview of some MOT principles as they pertain to our work.

MOT Physics

A magneto-optical trap relies on a combination of magnetic field gradients and counter-

propagating polarized laser beams in order to create an atomic potential [30, 31]. We will

assume that the absolute magnetic field is initially null through some volume of space in

which we will form our trap. In order to generate the potential, we affect a magnetic

spherical quadrupole field in the region. Near the center of the field pattern it takes the

approximate form:

Bx′ =
∂Bx′

∂x′
· x′, By′ =

∂By′

∂y′
· y′, Bz′ =

∂Bz′

∂z′
· z′. (3.21)

I have primed the coordinates to make absolutely clear that there is no correspondence

between this coordinate frame and that set by the cavity’s longitudinal and birefringent

axes. The effect of these magnetic field gradients in the weak-field limit, as we saw in Section

2.3.1, is to induce Zeeman shifts on atomic energy eigenstates which are proportional to

those states’ spin projection quantum number, mF .

The trapping force is derived from three pairs of counter-propagating σ+- and σ−-
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Figure 3.8: One-dimensional representation of the magneto-optical trapping force.

polarized beams which are oriented in the ±ẑ′-direction and also in two, transverse, orthog-

onal directions ±x̂′,±ŷ′. These beam pairs spatially intersect the others near the center

the trapping region, (x′, y′, z′) = 0 and are each red-detuned from the (6S1/2, F = 4,mF =

0)↔ (6P3/2, F
′ = 5,m′F = 0) clock transition by a small frequency δ.

Figure 3.8 depicts a one-dimensional toy model of a MOT. At z′ = 0 the magnetic field is

nulled and all transitions |4,mF 〉 ↔ |5′,mF ± 0, 1〉 weakly scatter both left- and right-going

beams equally. If the atom moves towards z′ > 0, however, the |4,mF 〉 ↔ |5′,mF − 1〉

transition shifts closer to resonance (i.e., δ− → 0) with the σ−-polarized field which is

traveling along −ẑ′. As this resonance shifts, the atom beings scattering more of this right-

going beam than the left-going σ+-beam and a photon recoil tends to push the atom back

towards z′ = 0. Likewise, if the atom moves towards z′ < 0, the symmetric effect occurs for

the σ+-polarized field and the |4,mF 〉 ↔ |5′,mF + 1〉 transition.

We can express the total force on the atom as a sum of left and right scattering forces:

Ftot = F+ + F−

=
~~kγI
Isat

[
1

1 + I/Isat + (δ+/γ)2
− 1

1 + I/Isat + (δ−/γ)2

]
(3.22)

Here we have assumed both beams are of equal intensity and opposite wave vector, and
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have used the common expression for the free-space scattering rate of a driven atom. We

can also formally express the detunings as:

δ± = δ ∓ ~k · ~v + µB ~B · ẑ′ [2/5(mF ± 1)− 1/4mF ] . (3.23)

This one-dimensional model easily generalizes to the three-dimensional case. Ignoring

passive polarization gradient effects, the cooling limit for a MOT is the Doppler limit:

TDoppler =
~γ
kB

=
~(2π)(2.6 MHz)

kB
≈ 125 µK (3.24)

.

Two-Stage MOT

In order to deliver cold atoms to the cavity volume, we begin by collecting a MOT from

background vapor in the upper chamber. Laser beams for this MOT (total intensity I ∼ 20

mW) are directed into the upper chamber as shown in Figure 3.9. This light is tuned

δ = −7.5 MHz (red) from the |4, 0〉 ↔ |5′, 0〉 transition (the lasers from which these beams

are derived will be discussed in Section 3.4). The magnetic spherical quadrupole field is

achieved by driving current through two coils in an anti-Helmholtz configuration which

produce the desired field gradients at the midpoint between the coils. Generally the upper

MOT is allowed to form for ∼ 150 ms, during which time ∼ 107 atoms are collected. We

can, however, generate a larger upper MOT at the expense of a longer gathering time and

a slower experimental duty cycle.

Following the upper MOT interval, we switch OFF the anti-Helmholtz coils (using a

TTL-controlled flyback-buffered solid state relay) and polarization gradient (PG) cool the

remaining atoms for ∼ 10 ms (PG cooling will be be described in some detail in Section 3.3,

but is generally a technique for sub-Doppler cooling an atomic sample). All trapping beams

are then turned OFF and the newly cold atoms are allowed to undergo free fall. A fraction of

these atoms exhibit a ballistic trajectory which sends them through the differential pressure
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Figure 3.9: Schematic of the Lab 11 vacuum system in the context of MOT beams and coils

(not to scale). The MOT beam geometry is depicted in light orange. The lower chamber

coils are colored according their pairings and are marked to indicate the direction in which

current flows through them. See Table 3.3 for more information about the bias coil pairs

(i.e., red, green and blue).



71

tube and into the lower chamber. The purpose of the sub-Doppler cooling step is to reduce

the expansion of the cloud as it is released - a smaller distribution of velocities transverse

to axis of the differential pressure tube ensure more atoms pass through.

A second, lower MOT is formed from those atoms which successfully transit the tube

(generally ∼ 105 atoms). The geometry of the MOT beams and coils is similar to that

for the upper MOT (Figure 3.9, though due to the dimensions of the lower chamber, a

larger pair of anti-Helmholtz coils is required). The quadrupole field and laser beams (total

intensity, I ∼ 11 mW) for this MOT are oriented such that their intersection is ∼ 5mm

above the spacing between the two cavity mirrors. The lower MOT begins forming (fields

and beams switched ON) 180 ms after the upper MOT is released and continues to collect

atoms for a further 150 ms. After the lower MOT is formed, we once again PG cool and

release the sample (here, again, the PG cooling serves to minimize the expansion of the

cloud as it is released). The atoms again fall via gravity and a very small fraction (on the

order of 10 atoms, depending on day-to-day drifts in the relative MOT-cavity alignment)

pass through the aperture between the mirrors and into the cavity mode volume. These

atoms are now at a temperature given approximately by their ballistic kinetic energy:

T =
mgh

kB
≈ 800 µK. (3.25)

In the absence of intracavity trapping or cooling, they will transit the cavity QED mode

waist with velocity v ≈ 0.3 m/s in τtransit ≈ 150 µs.

As will be discussed in Section 3.3, we are ultimately able to slow this falling motion

and to load the atoms into an all-optical standing wave trap which will enable us to extend

these transit times by up to four orders of magnitude.

Coils and Magnetic Field Control

As previously described, both the upper and lower chambers have a set of anti-Helmholtz

coils associated with them in order to generate the MOT potential. In addition to this pair,

there are an additional three, orthogonally-oriented coil pairs per chamber which manipulate

the static magnetic bias fields in three-dimensions (the currents in these coil pairs flow in
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Axis ‘Colloquial’ Name Kepco Model Curr./Input (A/V) Bcavity/Input (G/V)

x fed-from-above BOP 20-5M 0.5 0.07

y fed-from-below BOP 20-10M 1.0 0.14

z axial BOP 20-5M 0.5 0.97

Table 3.3: Properties of the Lab 11 lower chamber bias coils. ‘Colloquial’ names are a his-

torical remnant and are written on labels and power supplies throughout the laboratory to

describe the coil pairs. Current-to-field calibrations were performed using Raman magne-

tometry as described in Chapter 4. Voltages listed are control voltages input to the Kepco,

not voltages applied across the coils.

parallel, as opposed to the anti-parallel configuration in the anti-Helmholtz pair). The bias

coils in the upper chamber are operated at continuous, fixed current and are tuned so as to

form the upper MOT at the geometric center of the chamber.

The lower chamber has three similar, orthogonally-oriented pairs of coils (Figure 3.9:

green, blue and red coil pairs) in addition to the lower anti-Helmholtz pair (orange coils).

These coil pairs serve two purposes - during the lower MOT timing interval they provide

a static magnetic field null at the location of the MOT, just above the cavity substrates

(whereas the quadrupole pair provides the field gradient). After the lower MOT is released,

the coil currents are switched to an “experimental” setting which determines the static

magnetic field at the location of the atom inside the cavity. This allows us to set manually

set a quantization axis for the atom as it undergoes cavity QED dynamics.

Only after the first set of experiments in which I was involved (in 2004) did we address the

importance of being able to switch to this “experimental” setting (all prior work was done

with the MOT setting still in place, and therefore an arbitrarily oriented static magnetic field

at the location of the cavity mode). Our solution was to replace the fixed current supplies

driving these coils with three Kepco Model BOP-20 high-current switching operational

amplifiers. In current mode, these supplies accept an analog input voltage and output a

proportional current (the constants of proportionality are a property of the Kepco model

and are given in Table 3.3). The analog voltages are derived from the D/A converter built



73

into the same ADWin Gold controller which is used to manage the overall timing for the

experiment (Section 3.6).

With slight user modification, these supplies exhibit a slew rate of 1 A/µs across a

resistive load. Across an inductive load, however, the reverse voltage spike associated with

fast current switching (i.e., V = −L dI/dt) has the proven ability to seriously damage the

power supplies (the measured inductance of each axial coil is 250 µH and the radial coils are

each about 20 µH). We therefore low-pass (time constant, τ = 3.2 ms) and unity-gain buffer

the analog signal from the ADWin in order to smooth the switching voltage and prevent

electronic feedback from the supplies damaging the computer and control circuitry.

The properties of each coil pair are given in Table 3.3. The z-axis (axial) coil pair

produces a field very well aligned with the cavity axis and we generally use these coils to

determine the quantization axis where experimentally relevant. The x- and y-axis coils are

not aligned with the cavity birefringent axes and so when transverse magnetic bias fields are

required, we must take note of this fact as needed. In Section 4.3, I will describe a technique

we have developed for performing single atom Raman magnetometry in order to (among

other things) calibrate the bias coils and use them to locally null the static magnetic field.

In Section 3.6, I will describe the timing scheme for switching coil current settings in the

context of the overall experimental timing sequence.

3.3 Intracavity Optical Dipole Trapping

With the ability to introduce cold atoms to the cavity mode as they fall from the lower

MOT, we are in principle now ready to undertake cavity QED measurements. Indeed,

there is a large body of published work regarding observations of strong coupling between

cold, freely-falling atoms and a Fabry-Perot cavity [32]. There has even been experimental

demonstrations of a weak trapping force applied to an intracavity atom by the QED field,

itself [33].

However, unlike these earlier “atom cavity microscope” experiments wherein the QED

and trapping potential were necessarily intertwined, we want to study trapped-atom cavity

QED in a fundamentally different way. By exerting a trapping force on the atom which is
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decoupled from the QED field, we are able to continuously observe strong coupling between

a single atom and the cavity for as many as four orders of magnitude longer than ever

previously recorded. In doing so, we are able to perform entire experiments on one-and-the-

same atom and to begin to exert some coherent control over the coupled system. In this

Section, I will describe the all-optical technique we employ to trap atoms inside a cavity

mode standing wave dipole trap.

3.3.1 The Optical Dipole Force

In this Subsection, I will present two pictures of the optical dipole force, classical and

quantum. Ordinarily, I would skip completely over the classical picture as it is a gross ap-

proximation to the far more relevant quantum mechanical description; however the classical

model does offer useful insight into the actual physical phenomena at work and so it worth

giving it a very brief treatment.

Classical Picture

An atom characterized by an electric polarizability, α, will produce a dipole moment

~p = α~E (3.26)

when placed in an electric field (for cesium the static polarizability is α/(4πε0) = 59.6×10−30

m3 [34]). That electric field, in turn, applies a force on the dipole:

~F = (~p · ∇) ~E (3.27)

which corresponds to a potential energy:

Udip = −~p · ~E = −α| ~E|2. (3.28)

Or, for an electromagnetic wave of spatially-varying intensity I(~r):

Udip = − 2α
cε0

I(~r). (3.29)
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This classical picture predicts two important phenomena - an electric field will distort the

outer electron shell of an atom so as to create an induced dipole moment. At the same

time, that induced dipole will interact with the field, producing a mechanical potential for

the atom which varies linearly with optical intensity. As we will see, both predictions are

accurate and the commonly used “optical tweezers” technique in biology and chemistry

relies explicitly on this model [35]. However, as we will also discover, the classical picture

neglects the important frequency dependence of the field. This dependence is made manifest

in the quantum picture as we treat the discrete set of atomic energy levels to which the

field can couple (and from which it can potentially scatter).

Two- and Three-State Quantum Picture

The quantum treatment of the dipole force follows a line of reasoning similar to the classical

description. However, rather than assuming that the field induces a linear dipole moment

in the atom, we instead will calculate the energy level shifts within the atom and explore

how they vary spatially to create a potential. We will begin (as always) with a two-state

atom for simplicity and scale the model up to the more complicated full cesium spectrum

of energy levels in the next Subsection.

The problem we want to consider is a two-state atom with energy level spacing EA = ~ωA

which is driven far-from-resonance by a field ~E(~r) = E0(x, y)ε̂ cos(kz−ωDt). We will model

the interaction between atom and field as a dipole coupling and construct a model pertur-

bative Hamiltonian in analogy with the derivation of the Jaynes-Cummings Hamiltonian in

Chapter 2 (here, however, the driving field is not treated quantum mechanically). Following

from Equation (2.14), in the {|g〉 , |e〉} basis:

Hdip =
~
2

 (ωD − ωA) Ω

Ω (ωA − ωD)

 . (3.30)

Here we have made the same assumptions that lead to the earlier equation - particularly

the rotating wave approximation. We have also defined Ω, the “classical” Rabi frequency
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(as opposed to g0, the single-photon Rabi frequency):

Ω = −
~E(~r)

~
d =

e ~E(~r)
~
〈e|r̂|g〉 . (3.31)

The eigenenergies for the system represent the dressed states splittings:

Ee′,g′ = Ee,g ∓
~
2

√
∆2 + Ω2. (3.32)

In the easily obtainable limit Ω � |∆|, Taylor-series expansion gives the AC Stark shifts

(or light shifts):

∆Eg =
~Ω2

4∆
and ∆Ee = −~Ω2

4∆
. (3.33)

Also, in the limit where |∆| � γ, we can largely ignore incoherent scattering of the classical

field and therefore the potential that the atom experiences is given by:

Ue,g(~r) = ± e2

2cε0~∆
I(~r) | 〈e|r̂|g〉 |2 (3.34)

= ± ~γ2

2∆Isat
I(~r). (3.35)

Note that the quantum theory and the classical theory agree with respect to the functional

dependence of potential energy on field intensity. The energy shifts associated with the AC

Stark splitting can be interpreted physically as a small perturbation to the shape of the

valance electron shell giving the atom a small extrinsic dipole moment.

For red (blue) detuned light, the atomic ground state sees an attractive (repulsive)

potential and the excited state sees a repulsive (attractive) potential. From an experimental

point-of-view, while it is useful that one state is trapped, this is a fundamentally undesirable

circumstance. We can circumvent this problem by adding an ancillary third energy level,

|u〉 to the atom which exhibits a dipole coupling only to state |e〉 (in a real atom with a

multiplicity of higher-lying excited states, this addition is far less ad hoc). We assume the

classical field is detuned by ∆′ with respect to the transition between |u〉 and |e〉, which

has characteristic halfwidth γ′. Following the previous derivation, the potential felt by
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Figure 3.10: Schematic illustration of the “magic” wavelength effect for a three-state atom.

By way of dipole coupling to an ancillary state |u〉, the state |e〉 sees an attractive potential

of maximum depth, −U0, which is approximately equal to the potential seen by the ground

state, |g〉.

population in state |e〉 is now:

Ue(~r) =
~
2

(
γ2

∆Isat
− γ′2

∆′I ′sat

)
I(~r). (3.36)

The ground state potential is unchanged. Therefore, for favorable parameters (∆′, γ′, Isat)

we can produce a trapping potential of equal depth for both states in which we are in-

terested. This effect is depicted graphically in Figure 3.10. Wavelengths at which this

serendipity occurs are colloquially referred to as “magic” wavelengths, and the application

of this principle to atomic cesium will be the focus of the next Subsection.

3.3.2 Cesium’s “Magic” Wavelength

The most significant difference between treating the light shifts on the three-level atom and

on a real cesium atom is that we can no longer simply fold the dipole matrix elements for

each state into the linewidth, γ. In Chapter 2 we went through the details of calculat-

ing the geometric and angular components of atomic dipole matrices via reduced matrix

elements and Wigner 3-j and 6-j symbols, so I won’t go into any detail here (for a more

thorough discussion see the excellent notes in the dissertations of David Boozer [15] and
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Jason McKeever [22]).

As an example we can calculate the light shifts on the |4,mF 〉 states which result from

coupling to the D1 and D2 transitions [22]:

U4,mF (~r) =
πc2γD2

ω3
D2

[
2 + qgFm

∆D2
+

1− qgFmF

∆D1

]
I(~r) (3.37)

where q ∈ {0,±1} corresponds to a linear, left- or right-circularly polarized classical field,

∆D1,∆D2 are the detunings of the field from the two cesium D lines and gF is the Landé g-

factor. Note that when calculating U3, the detunings differ from those for U4 by the cesium

ground state hyperfine splitting (i.e., (∆D1 + ∆HF ), (∆D2 + ∆HF ), ∆HF ∼ 9.2 GHz) which

produces a small, differential light shift between the two states:

∆U4−3,mF (~r) =
πc2γD2

ω3
D2

[
∆HF

∆D2

2 + qgFm

∆D2 + ∆HF
+

∆HF

∆D1

1− qgFmF

∆D1 + ∆HF

]
I(~r). (3.38)

Also, note that there is a linear dependence on the projection quantum number, mF , and

on q such that for an elliptically or circularly polarized classical field the effect on the atom

is to shift the Zeeman states as if they were in the presence of a uniform, weak magnetic

field along the polarization axis of the light. This magnetic “pseudo-field” effect will prove

to be important within the context of cavity birefringence.

We can generalize Equation (3.37) to states within the 6P3/2 excited state manifold by

considering couplings to nS1/2, n′D3/2 and n′D5/2 states with principle quantum numbers

n ≥ 6 and n′ ≥ 5. Similarly, we can expand (3.37) to include terms corresponding to 6S1/2 to

nP1/2 and nP3/2, n > 6. Using this model, the Stark shifts on the Zeeman substates within

the (6S1/2, F = 4) and (6P3/2, F
′ = 5) hyperfine manifolds are shown in Figure 3.11 for a

linearly-polarized classical field. Note that the (6S1/2, F = 3, 4) ground states exhibit no

mF -dependent stark shift, while the excited states generally show a quadratic dependence

of mF . A “magic” wavelength occurs where the shifts for the two states intersect and are

both negative (i.e., trapping) - for cesium this occurs near λ ∼ 935 nm.
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Figure 3.11: AC Stark shifts on all Zeeman states within the (6S1/2, F = 4) (green) and

(6P3/2, F
′ = 5) (red) hyperfine levels for linearly-polarized light. The inset view shows the

range of wavelengths over which both states see trapping potentials of approximately equal

depth. Shifts are given in units of |U0|, the magnitude of the shift on the 6S1/2, F = 4 clock

state at λF = 935.568 nm.
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3.3.3 A State-Insensitive Trap

In order to form a trap using the optical dipole force (also known as a far off-resonance

trap, or FORT) we take advantage of the physics cavity and drive a resonant mode. The

standing wave associated with that mode constitutes the classical trapping field. This has

two advantages: first, the transverse structure of the trap and the QED field are well-

overlapped (the longitudinal registration, however, is more complicated) and second, the

cavity build up factor B (Equation (2.118)) allows for a very deep trap at the expense of

very little input optical power.

The Trap

When the cavity length is locked such that mode m = 99 corresponds to resonance with

the cesium (6S1/2, F = 4) ↔ (6P3/2, F
′ = 5) transition, mode m′ = 90 is resonant at

λF = 935.568 nm which very near the cesium “magic” wavelength. As far as I know,

this was not by design - before our group implemented the “magic” wavelength technique,

FORT wavelengths of 869 nm and 906 nm were used to very little success (trapping times,

T < 100ms) [21].

At λF , the cavity mode waist is wF = 24.83 µm and the measured halfwidth is κF = 0.79

GHz. This far from the center of the mirror coating curve, the dominant loss mechanism

is transmissive (T ∼ 1.4 × 10−3) not dissipative (l ∼ 10ppm, which is largely insensitive

to wavelength). It follows that cavity finesse is FF ∼ π/T = 2.2 × 103 and the maximum

transmission coefficient for a mode-matched beam is Tmax ∼ 1. The maximum intensity of

the FORT, as a function of cavity output power, Ptran, measured at an antinode of the field

is:

I0 =
2B
πw2

F

Ptran =
8F
π2w2

F

Ptran. (3.39)

We choose to define I0 in terms of transmitted power instead of incident power because

transmission is more straightforward to measure experimentally. For this intensity, the

simple model from Equation (3.37) predicts that the trap depth for the (6S1/2, F = 4) clock
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state per milliWatt of output power is:

U ′0/Ptranh = −39.4 MHz/mW or |U ′0|/PtrankB = 1.9 mK/mW. (3.40)

The more complete picture, which includes counter-rotating terms and coupling to states

with larger principle quantum numbers, gives a small correction:

U0/Ptranh = −40.9 MHz/mW or |U0|/PtrankB = 2.0 mK/mW. (3.41)

The small differential shift between the F = 3, 4 hyperfine ground states (Equation (3.38))

is:

∆U0,4−3/|U0| = 530 Hz/MHz. (3.42)

At the trap depths we commonly use in the laboratory (U0 ∼ 40 MHz), this shift is small

but easily measurable and will be discussed in Chapter 4.

The Stark shifts on each of the Zeeman states within the 6P3/2 fine structure manifold

are calculated in Figure 3.12, again for a linearly polarized trap at λF with states projected

along the polarization axis of the field. These states lie in a ∼ 30% spread around |U0|,

which means that for a trap depth of U0 ∼ −40 MHz, the (6P3/2, F
′ = 5,mF = 0) state is

split from the edge states within the same manifold by ∼ 13 MHz. This is an important

effect, and one which any complete model of our atom-cavity system will have to consider.

I should briefly mention that for our nominal trap depth, the magnetic “pseudo-field” effect

mentioned in the previous subsection can produce differential shifts between ground and

excited state Zeeman levels in excess of 50 MHz. We have observed that for a circularly-

polarized input to the FORT mode, the laser beams generally used to load, cool and address

the atom in a linearly-polarized configuration are shifted so far away from resonance that

they have no appreciable effect on the atoms and therefore we are unable to load atoms

into the FORT in this configuration.
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The FORT mode is even-parity (m′ = 90) and so the shape of the trap is:

U(x, y, z) = U0 sin2
(ωF z

c

)
exp

[
−2

x2 + y2

wF (z)2

]
. (3.43)

While generally anharmonic, around local maxima (i.e., radially, near (x, y) = 0, and

longitudinally, near z = (n + 1/2)[πc/ωF ]) we can perform Taylor expansion of U(x, y, z)

and make a harmonic approximation. In this approximation, near the bottom of the trap,

the axial and radial oscillation frequencies are:

ωax =

√
2ω2

F |U0|
c2m

⇒ ωax
Ptran

= (2π)(530 kHz)/mW (3.44)

ωrad =

√
4|U0|
mw2

F

⇒ ωrad
Ptran

= (2π)(4.5 kHz)/mW. (3.45)

The axial vibrational frequencies are, of course, larger because the confinement along that

axis (trap dimension ∼ λF /2π) is much tighter than along the transverse axes (trap dimen-

sion ∼ wF ).

It is also possible to treat the problem of 1-dimensional motion along the cavity axis

analytically. The Shrödinger equation for the system is:

− ~2

2m
∂2

∂z2
ψ(z) + U0 sin2 [ωF z/c]ψ(z) = Eψ(z). (3.46)

We can rewrite this in the convenient form:

ψ′′(z) + (a− 2q cos [2ωF z/c]) = 0, (3.47)

where:

a = − mc2

~2ω2
F

(U0 − 2E) and q = −mc
2U0

2~2ω2
F

. (3.48)

This is the well-known Mathieu equation [36]. The eigenvalues of this equation, an, cannot

be expressed in closed form, but appear rather as an infinite recursion relation (Mathematica’s

MathieuCoefficientA routine will calculate the an for an arbitrary Floquet parameter, q).
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Figure 3.13: a. Motional energy eigenvalue spectrum a 1-D sinusoidal FORT with |U0| = 40

MHz, λF = 935.586 nm. b. Deviation from the harmonic approximation of the full Mathieu

picture (- -) as a function of motional quantum number, n. Also, axial vibrational frequency

ωax/(2π) (−) as a function of n.



85

The motional energy eigenvalue spectrum for a cesium atom in a FORT of depth |U0| =

40 MHz at λF = 935.586 nm is calculated in Figure 3.13a. For this potential, the highest

energy bound state corresponds to n = 98. Near the top of the well, the emergence of band

structure (a consequence of tunneling within the full, periodic potential) starts to become

visible.

The left-hand axis (dashed, black trace) of Figure 3.13b presents a calculation of the

deviation of the energy of the nth eigenstate of the Mathieu potential, En, from the corre-

sponding energy in the harmonic approximation, Eharm,n = ~ωax(n+ 1/2), as a fraction of

En. Over more than half of the well depth we see that the two agree to at least the level of

10%. The right-hand axis (solid, red trace) of Figure 3.13b corresponds to the approximate

vibrational frequency of the atom in the nth motional energy eigenstate (calculated by as-

suming ωax(n) = [En + |U0|]/[~(n+ 1/2)]). We can see that there’s a variation of ∼ 27% in

ωax from the bottom of the well (where it agrees very nicely with the harmonic model) to

the top.

Performing a similar analysis of the radial motion is a bit more complicated because

Gaussian potentials do not support analytic solutions to Shrödinger’s equation. One could,

in principle, perform numeric integration, use the WKB method or use variational calculus.

However, I will omit any discussion of the radial anharmonicity, as there is no further

discussion of quantized motion along these degrees of freedom in this dissertation.

Loading the FORT

The force applied to the atom by the FORT is dominantly conservative. Therefore, in order

to load an atom in the trap, we must apply some sort of initial damping force. The way

we do this in the laboratory is to address the atoms as they fall through the cavity mode

with two pairs of polarized, detuned, counter-propagating laser beams. These beams enter

the cavity through the d = 41.4 µm gap between the mirrors and affect what is known as

polarization gradient (PG) cooling.

The idea underlying PG cooling is that by counter-propagating two, orthogonally po-

larized beams (lin⊥lin, or σ+-σ−) we create a field of polarization which varies spatially on

the scale of the wavelength. An atom with zero velocity along the wave vectors, ±~k, of the
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Figure 3.14: Configuration of the cavity loading lattice “side” beams for polarization gra-

dient cooling falling atoms into the FORT. Nominally, each beam consists of light δ = +10

MHz blue detuned from both (6S1/2, F = (3, 4)) ↔ (6P3/2, F
′ = (3, 4)) transitions. The

σ+-σ− configuration of the beams is shown, at right.

beams will gradually be pumped into a dark state with respect to a quantization axis defined

relative to the local polarization vector. However an atom with a sufficiently large velocity

component along ±~k will move through the polarization gradient quickly enough that its

internal state won’t be able to adiabatically follow. Without adiabatic following, the atom

remains coupled to the light and therefore, for fields of the proper detuning, absorption and

scattering relative to movement along ±~k can apply a damping force.

In the laboratory, we have found that for loading into our FORT the slightly unusual

“grey molasses” scheme presented by the group of C. Salomon in Paris [37] is useful.

Whereas most PG cooling schemes [31] rely on detuning the cooling beams slightly red of a

F → F ′ = F+1 transition, this scheme works for light detuned blue of a F → F ′ ∈ {F, F−1}

transition. Salomon’s initial demonstration was for (6S1/2, F = 3) ↔ (6P3/2, F
′ = 2), but

we have implemented the analogous scheme for light δ = +10 MHz blue of (6S1/2, F =

(3, 4)) ↔ (6P3/2, F
′ = (3, 4)). I indicate both F = (3, 4) because, as both transitions are

not closed, we must implement a repumping field to prevent the atom from falling into an

uncoupled hyperfine ground state. What we end up with is a ‘chicken and egg’ situation
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where both the “cooling” field and the “repump” field are detuned from atomic resonance

and are σ+-σ− polarized along the cooling axis. Which beam is doing the cooling and which

is doing the repumping is entirely a matter of where the atomic population is distributed

between the hyperfine ground states.

The spatial configuration of the two PG cooling (or “lattice”) pairs is shown in Figure

3.14. Each counter-propagating pair is σ+-σ−-polarized and consists both “cooling” and

“repumping” fields. These beams are appropriately polarized and then focused through the

cavity aperture via 15 cm cylindrical lenses. The total intensity in each arm (both “cooling”

and “repumping” fields, with the power very roughly equally balanced between the two) is

∼ 200mW/cm2. In Subsection 3.5.2 I will discuss how the intensity of these side beams is

distributed in the center of the cavity following diffraction by the cavity aperture. However,

for purposes of PG cooling, this diffraction effect is not significant.

The lattice beams are switched ON for 5 ms after the release of the lower MOT in order

to damp the motion of any atoms which transit the cavity mode. This configuration, for

standard operating characteristics of our lower MOT, is sufficient to load an atom into

the FORT with, at most, probability Pl ≈ 0.1 (because of the thermal distribution of

atomic trajectories as the MOT cloud expands, the loading probabilities for 1, 2, 3 . . . atoms

(Pl,1, Pl,2, Pl,3, . . .) are very well approximated by Poissonian statistics). Estimates, to be

discussed in later Chapters, indicate that, after the cooling cycle is complete, atom remain

in the trap with mean temperature T ∼ 200 µK.

In the next Chapter, I will describe a slight modification to this scheme where we have

replaced the “repump” field (in practice it doesn’t matter which) with a very large-Rabi

frequency Raman pair which drives population directly between the F = (3, 4) ground state

manifolds. This pair has the decided advantage of repumping most strongly at locations of

maximum FORT potential and ultimately provides a much more effective loading method

(as measured by a greatly increased probability to observe a trapped atom post-MOT drop).

The first demonstration of this trapping technique [2] was in 2003, shortly before I joined

the group. A FORT potential of |U0| ≈ 50 MHz in this configuration is characterized by

trap lifetimes of Tavg = 2.4 ± 0.2s in the dark (i.e., in the absence of any near-resonant

optical fields). This is likely limited by collisions with background particles in the UHV
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chamber [21]. In the presence of near resonant driving (cavity probes, “side” beams, etc.)

the trap lifetime can, however, be considerably less than Tavg (the heating rate for any

particular configuration of these fields is governed by the atom-field dynamics).

Cavity QED in the FORT

A final consideration we must make with respect to the intracavity FORT is how the trap

affects cavity QED measurements. We have already discussed two of the most significant

effects: Zeeman state splitting as a result of the “pseudo” magnetic field produced by a

circularly-polarized trapping field and the differential shifts on Zeeman levels within ex-

cited state hyperfine manifolds, even for a linearly polarized trap. Both effects manifest

themselves as state-dependent atom-cavity detunings. The first effect can be negated by

driving the FORT mode only with light linearly-polarized along one of the cavity’s birefrin-

gent axes. The second effect is largely unavoidable and so we must include these shifts in

any model of the system, where relevant.

The third effect we need to consider is the registration of the FORT wells with respect

to the cavity QED field. There are m = 90 FORT wells in our cavity, with the (q + 1)th

well located at:

zmax(q) = (2q + 1)
λF
4
− L

2
. (3.49)

The value of ψ0(q) ≡ ψ(zmax(q), 0, 0), the dimensionless amplitude of the QED field, at

each of these FORT anti-nodes is:

ψ0(q) = cos
(

2πzmax(q)
λD2

)
= cos

(
π

(2q + 1)
2

λF
λD2

− π L

λD2

)
(3.50)

= − cos
(
π

(2q + 1)
2

λF
λD2

)
(3.51)

Therefore, each FORT well is associated with a local maximum rate of coherent coupling,

|gq| ≡ g0|ψ0(q)|. The value of |ψ0(q)| = |gq|/g0 at each of the 90 FORT well locations,

zmax(q), is shown in Figure 3.15a. The slight lateral asymmetry in this plot about z = 0 is
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Figure 3.15: a. Stem plot of the normalized rates of coherent coupling, |gq|/g0 (×) for each

of the m = 90 FORT wells as a function of well location zmax(q). b. Histogram of coupling

rate |gq|/g0 versus number of wells exhibiting that rate. Each bin is g0/25 wide.

due to the parity difference between the QED and FORT fields. Figure 3.15b. shows the

distribution of coupling rates in histogram form. There are 46 unique values of |ψ0(q)| for

this FORT-QED configuration, though they tend to be clustered.

In principle, our loading technique permits falling atoms to be cooled into any of the

FORT wells (though likely not with uniform probability). At present, we have no viable

experimental technique for measuring into which well a given atom is loaded. Especially

for measurements where we perform ensemble averaging over multiple single atom loading

events from multiple MOT drops, the distribution of atoms into well-coupled and poorly-

coupled wells is an important experimental parameter.

The final consideration we need to make is the impact of the finite axial and radial

temperatures of the atom on the QED coupling rate. Motion of an atom within a FORT

well translates into modulation of the local vacuum Rabi frequency, g(~r). In general, the

temperature of the atom during an experiment is given uniquely by the characteristics of

that experiment - for instance an atom being strongly probed on resonance will experience

rapid heating whereas an atom undergoing stimulated Raman cooling will likely exhibit

longer trap lifetimes than in the dark. We therefore can make no a priori claims about this
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effect, but instead must address it on a case-by-case basis.

3.4 Lasers and Frequency Servos

In this section I will describe the lasers and fields which are commonly used in the labo-

ratory to near-resonantly address cesium atoms. I will primarily focus on the frequency

stabilization techniques used to reference our three cesium principle lasers and how the

same system is used to actively stabilize the physics cavity length. Finally, in the interest

of space and concision, I will present a diagrammatic overview of how we derive from these

lasers the fields and beams necessary to cool, trap and manipulate intracavity atoms.

3.4.1 Cesium Lasers

There are three lasers on the Lab 11 optics bench which are tuned to drive transitions

within the cesium D2 manifold. I will refer to these three as “master”, “slave” and “re-

pumper.” The significance of these names has become largely indistinct over the past 4-5

years; however, I will maintain the terminology in the interest of consistency with other

theses and lab notebooks. The master and slave lasers are near-resonant with transitions

from the (6S1/2, F = 4) hyperfine ground state and the repumper couples transitions from

(6S1/2, F = 3). Throughout the remainder of this chapter I will refer to transitions be-

tween (6S1/2, F ) hyperfine states and (6P3/2, F
′) hyperfine states as (F ↔ F ′) transitions.

All three are diode lasers - the master and repumper are external cavity diode lasers in a

Littrow geometry and the slave is a free-running diode.

Master Laser and Transfer Cavity

The master laser optical configuration is depicted in Figure 3.16. A fraction of the total

laser output power (∼ 35 mW) is directed through an electro-optic modulator and used

to stabilize the laser frequency to the length of an independently stabilized transfer cavity.

The error signal for this lock is derived using the Pound-Drever-Hall technique in reflection

from the transfer cavity [38].

With a portion of the light from the now cavity-stabilized master laser, the length of
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Figure 3.16: Schematic drawing of the master laser beam paths and servo configuration. In

the interest of concision, this drawing does not represent the geometry of the beam paths on

the optics bench. Abbreviations are for quarter-wave plate (QWP), half-wave plate (HWP),

electro-optic modulator (EOM), acousto-optic modulator (AOM), and physics cavity (P.C.).

All cubes are polarizing beam splitters (PBS). Colored circles and letters indicate a beam

which enters another part of the apparatus as depicted schematically elsewhere in this

Chapter.
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the transfer cavity is then itself stabilized by modulation transfer spectroscopy in a small

cesium vapor cell. We choose to lock the transfer cavity to the (4 ↔ [4′, 5′]) “crossover”

resonance. Crossover resonances are a common feature of pump-probe spectroscopy on

transitions exhibiting multiple hyperfine states [39] - they are the result of the probe ad-

dressing transitions to one hyperfine level for a certain class of atomic velocities while the

counter-propagating pump beam drives transitions to a second set of states. The resonant

frequency of the crossover lies exactly midway between the resonances for each of the two

hyperfine manifolds (so the master is detuned ∆ = (2π)(125.5) MHz blue of (4 ↔ 4′) and

red of (4↔ 5′)).

As we will discuss in the next Subsection, in order to actively stabilize the physics

cavity length we need a laser which is stable with respect to our QED probe field but

detuned by 1 − 2 FSR (10 − 20 nm) from the QED transition (in order to decouple any

atomic physics from the servo). By design, the transfer cavity supports resonances over

a broad spectrum in the near-infrared and we are thereby able to transfer the stability of

its cesium-referenced lock to a laser at any wavelength within its optical bandwidth (hence

the name transfer cavity). The transfer cavity is the only system in the entire lab which

is independently stabilized with respect to a transition in cesium. The rest of the lasers

are frequency locked either with respect to the transfer cavity or injection/phase locking to

transfer cavity-stabilized beams.

As will be discussed in Section 3.5, the master laser provides the primary cavity QED

probe field (i.e., (4↔ 5′) or (4↔ 4′)) as well as other beams coupling (4↔ {3′, 4′, 5′}), as

needed.

Slave Laser

The slave laser (Figure 3.17) is a free-running diode with a maximum output power of ∼ 105

mW. It is frequency-stabilized with respect to cesium by injection lock from the master laser

[17]. A small amount of master laser power (∼ 800 µW) is frequency up-shifted by 228.0

MHz (Ω1 = 114.0 MHz-per-pass) using a double-passed acousto-optic modulator. This

light, the injection beam, is then fiber coupled and directed into the “rejection” port of an

Optics for Research-brand Faraday isolator located directly at the slave laser output. The
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Figure 3.17: Schematic drawing of the slave laser beam paths and servo configuration. In

the interest of concision, this drawing does not represent the geometry of the beam paths

on the optics bench. Colored circles and letters indicate a beam which enters another part

of the apparatus as depicted schematically elsewhere in this Chapter.

injection beam is transmitted back through the isolator and into the diode. For proper

temperature and current tuning of the slave diode, as little as ∼ 50 µW of injection power

can produce a very stable frequency lock at the injected wavelength (so for the laser in its

normal configuration, ∆ = (2π)(102.8) MHz blue of the (4 ↔ 5′) transition). Twice per

experimental cycle we switch the frequency of the double-passed AOM which generates the

injection beam to Ω2 = 99 MHz in order to quickly switch to a PG cooling setting. For

more on this aspect of the lock, see Andreea Boca’s dissertation [23].

A small portion of the laser’s output power is directed to a cesium pump-probe spec-

troscopy setup in order to verify the quality of the injection lock. This measurement is

purely diagnostic and there is no feedback to the laser from the photodiode. The remainder

of the laser’s power is distributed between MOT beams and lattice/side beams. The MOT
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path is split off and downshifted by 110 MHz to be ∆ = (2π)(7.5) MHz red of the (4↔ 5′)

transition. This beam is then divided between the upper and lower MOTs and coupled into

the vacuum chamber via polarization-maintaining single-mode optical fiber. The remaining

power is downshifted by ∼ 340 MHz (the exact value of the shift is determined by the

application of the light) to be near-resonant with the (4 ↔ 4′) transition. This light is

combined with (3↔ 3′) light from the repumper laser and directed to the vacuum chamber

via optical fiber to provide lattice (see Section 3.3.3) and cavity side beams.

Repumper Laser

The repumper laser (Figure 3.18) is a diode laser in external cavity configuration. It exhibits

a nominal output power of ∼ 30 mW. In the present configuration (since mid-2007), approx-

imately 300 µW is taken from this laser and combined with unshifted light directly from the

master laser using a 50/50 optical fiber coupler. Using a large-bandwidth New Focus 1400-

series 25 GHz photoreceiver we measure the optical beat note between the two lasers. The

laser is manually tuned (piezo/current/temperature) to a frequency near the (3 ↔ 4′) res-

onance such that the beat note is near a frequency ωbeat = ∆HF − 1/2∆4′−5′ = (2π)(9.067)

GHz. By mixing this beat note against a stable microwave source at (2π)(9.125) GHz, we

generate a signal at (2π)(58.5) MHz. This signal is then, in turn, amplified and mixed

against an RF reference also at 58.5 MHz. Finally the signal, now mixed down to DC, is

conditioned (c.f., David Boozer’s thesis [15], especially Figure 1.15) and from it an error

signal derived. This error signal is divided into two loops - a “slow” loop which feeds back

to the laser’s external cavity piezo up to ∼ 10 kHz and a “fast” loop which is directly com-

bined with the DC current to the diode via bias tee and provides feedback out to ∼ 1 MHz.

The result is an electronic lock between the phase (and therefore frequency) of the master

laser and the repumper laser, with the microwave and RF sources used as local oscillators

bridging the frequency difference.

This phase lock technique was implemented in order to address a very specific problem.

From the inception of the experiment to early 2007, this laser was locked using a basic

Pound-Drever-Hall scheme which was completely independent of the master and slave lasers.

Previously this had been acceptable because the light derived from this laser was principally
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Figure 3.18: Schematic drawing of the repumper laser beam paths and servo configuration.

In the interest of concision, this drawing does not represent the geometry of the beam

paths on the optics bench. Colored circles and letters indicate a beam which enters another

part of the apparatus as depicted schematically elsewhere in this Chapter. The photodiode

(PD) in this diagram is a specialized New Focus 1400-series 25 GHz photoreciever. The

abbreviation “50/50 NPBS” represents a non-polarizing 50/50 fiber optic coupler.
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used as a source for incoherently repumping MOTs and trapped atoms. Any small detunings

relative to the other lasers in the laboratory were irrelevant in so far as the repumper

was itself able to drive the cesium (3 ↔ 3′) transition with a reasonable Rabi frequency.

However, it became clear as we were performing measurements in order to quantify the

coherence of the atom-field state mapping process discussed in Chapter 5 that we would

need a beam resonant with (3 ↔ 3′) and phase stable with respect to the QED field and

cavity length. This beam would serve as one arm of a stimulated Raman process, and any

frequency or phase jitter with respect to the other arm would contribute significantly to

decoherence in the system. With this in mind we made the switch to the phase lock. Note

that this servo suffers from the same unfavorable noise characteristics discussed in David

Boozer’s thesis in the context of stimulated Raman processes at another wavelength. These

noise issues were much more of a concern in this other context, however, as they overlapped

almost exactly with a particular set of spectroscopic features we were hoping to measure.

Here there is no such overlap and the change in servo mechanism has proven quantifiably

beneficial.

The repumper is the only laser in the lab which couples (3 ↔ F ′) transitions, and so

it is used wherever fields at those frequencies are needed. Following a frequency downshift

of 201.0 MHz by double-passed AOM, the light (resonant with (3↔ 3′)) is coupled in free

space to the upper and lower MOTs to serve as a repumper. A fraction of the same beams

is also combined with (4 ↔ 4′) light from the slave laser in order to form the PG cooling

lattice pair.

3.4.2 Physics Cavity Stabilization

As has been alluded to throughout the chapter, the length of the physics cavity is not

passively stable enough to remain within a fraction of a linewidth of the QED transition

during the course of an ordinary experiment. It follows that we need to actively stabilize the

cavity length by feeding back to the voltage across the shear-mode piezo on which the input

mirror is fixed. The most straightforward way to do this is implement feedback derived from

photodetection of a beam transmitted through the cavity on-resonance. The cavity length

is so short that, for all but the few modes closest to the peak of the mirror coating curves,
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the bandwidth of the cavity limits the resolution of the lock. We clearly can’t use the QED

field because, first, it is necessarily very weak and, second, it is modulated strongly by the

atom-cavity coupling in a way not conducive to trapping or cavity stabilization. We choose

to drive the fundamental mode two FSR blue of the QED mode (m = 101, or λν = 835.750

nm).

The laser which drives this mode is a New Focus model 6200 Littman configuration

ECDL which offers ∼ 10 mW of total output power and is broadly tunable over a range of

nearly 30 nm. The diode’s output is split between two arms. The first arm is mode matched

into the transfer cavity through the mirror opposite to that coupling the master laser light.

By weakly modulating the current of the diode at 11 MHz we lock the carrier of the laser to

a longitudinal mode of the transfer cavity using the Pound-Drever-Hall technique [38]. This

stabilizes the frequency of the New Focus laser with respect to each of the cesium lasers in

the laboratory and, ultimately, to a spectroscopic feature in cesium itself.

In general, the frequency at which there exists a resonance in the transfer cavity for

locking the New Focus does not correspond to the resonant frequency of the m = 101

mode in the physics cavity when m = 99 corresponds to the QED transition. To bridge

this frequency difference, the second arm of the laser is directed through a traveling wave

EOM which is used to apply sidebands to the light at 500 MHz (variable, depending on

drifts in the absolute length of the transfer cavity from day-to-day and the transition in

cesium which we are attempting to use for QED). The RF source for these sidebands is

an Agilent ESG2000 signal generator. We lock the physics cavity in transmission to the

blue sideband applied to the light by the EOM, allowing us to tune the length of the cavity

into resonance with the QED field by simply adjusting the sideband frequency. On top

of this sideband, smaller sidebands are put on the light at 8 MHz (i.e., ∼ 2κ) using FM

modulation of the signal from the ESG2000. These are the sidebands which are used to

derive a Pound-Drever-Hall error signal for locking the length of the physics cavity.

The ability to tune the cavity length by varying the sideband frequency at the EOM

is a useful feature of this system. The general protocol for establishing the lock is to

manually align the system “by eye,” looking for concurrent resonances between the New

Focus sideband and the probe field derived from the master laser as the physics cavity
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length is swept. When the two are close, the New Focus laser lock to the transfer cavity is

then switched ON, the physics cavity sweep is turned off and the cavity then locked to the

New Focus laser transmission. We then manually sweep the frequency of the New Focus

sideband until we observe the QED field is exactly co-resonant in transmission (usually

to within ∼ 0.1 MHz). This type of technique is the same as was used (and very briefly

described) in Section 3.1.3 to measure the linewidth of the cavity at the QED wavelength.

There is generally on the order of 35 nW of power mode matched into the cavity from

the New Focus laser during the course of any QED experiment. Conservative estimates

suggest that the perturbation to the FORT potential from the locking light will be on the

order of 120 kHz, with a 80 kHz spread across Zeeman states in the hyperfine manifolds.

For our usual FORT depths (U0/h = 40-50 MHz), this effect is largely negligible.

3.5 Beam Paths

In this section I will describe two of the more important beam paths on our optics bench.

First will be the path used to combine, polarize and mode-match the beams at the input to

the cavity and those optics along the cavity output path which lead to a series of detectors.

The second set of paths we will consider are those available to address the atom in the

cavity through the aperture separating the mirrors. This will include the lattice beams

from Section 3.3.3 and a single, unbalanced side beam not yet mentioned.

3.5.1 Cavity Input and Output Paths

The Lab 11 physics cavity is a symmetric resonator and therefore regardless of on which

mirror input fields are incident, there will be significant transmission through both mirrors

as the field resonates. In practice, we choose to only detect light transmitted through mirror

M2 and to only drive the cavity through M1. For light generated intracavity (i.e., deposited

directly in the cavity mode by an atom), this results in an “attenuation” with respect to

our measurements of α2s = 0.50.
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λ (nm) Mode Order axis (±: l̂±) Description

852.357 99 + “bright” cavity QED probe field

852.357 99 − “dark” cavity QED probe field

835.750 101 + New Focus cavity stabilization field

935.586 90 + FORT field

935.613 90 − Raman field (FORT-Raman config.)

945.556 89 + Raman field 1 (Raman-Raman config.)

945.533 89 − Raman field 2 (Raman-Raman config.)

Table 3.4: List of fields coupled into mirror M1 of the physics cavity. Each of these fields

is nominally linearly polarized and oriented along either the l̂± axis as denoted in third

column of the table.

Input Path

The physics cavity input path is shown on the left hand side of Figure 3.19. Depending

on the nature of the experiment there can be as many as six fields simultaneously mode

matched into the cavity at any given time. The wavelengths, mode numbers, polarization

orientations with respect to cavity birefringent eigenaxes and functions of each of these fields

are described in Table 3.4. These fields are combined with fields of dissimilar frequency

along the input path using a series of short- and long-wave pass dichroic mirrors from CVI

Corporation.

The final optic before the mode-matching lense and cavity is a broadband CVI calcite

Glan-Laser polarizer (CPAD-10.0-670-1064 with a specified extinction ratio of 1 : 1000).

This polarizer is oriented and fixed in place such that light transmitted along its axis is

aligned with the higher frequency birefringent mode of the cavity, l̂+. We also inject light

into the “rejected” port of the polarizer in order to drive the l̂− mode.

Mode-matching is accomplished using a fixed 20 cm lens. Admittedly our mode matching

efficiency is very poor (< 10% for some fields). However this is generally acceptable for

most applications simply because the fields we are injecting into the cavity are derived from

lasers with ample power to compensate and produce whatever circulating intracavity field
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we specify. For applications in the future where one might wish to inject very weak states

of light (single photon states, for instance) this mode-matching efficiency would need to be

improved.

Output Path

The output path for the physics cavity is depicted schematically in the right hand side

of Figure 3.19. We collect transmission only from mirror M2. The transmitted light is

immediately directed through a half waveplate specified for operation at 852 nm followed by

a broadband infrared polarizing beamsplitter (PBS) cube. The orientation of the waveplate

is such that QED light polarized along l̂+ is reflected from the cube. The same waveplate

functions reasonably well at 836 nm and so the majority of the New Focus locking laser

signal is also reflected from the cube. The beams at 936 nm and 945 nm, however, are

highly ellipticized by the waveplate (these wavelengths sit well outside it’s design range)

and are generally transmitted and reflected in equal parts by the PBS. The transmitted

portion of the field (dominated by FORT and Raman signal) is directed to a standard New

Focus photodiode.

The light reflected from the PBS is directed through a collimation lens and to an angle-

tuned short-wave pass dichroic mirror. This mirror is designed to transmit light at 836 nm

(the New Focus locking laser signal) and reflect light at wavelengths longer than this (each

of the other beams). The portion of the field transmitted through dichroic is directed to an

avalanche photodiode which is used to derive the cavity locking error signal (Section 3.4.2).

The remainder of the output path is dedicated to stripping the remaining FORT and

Raman light (usually on the order of 0.5 mW of optical power) from the QED signal

(consisting of 1 fW to 10 pW, depending on the experiment being conducted). The filtering

optics consist of 4 long wave-pass dichroic mirrors which transmit, on average, 30% of

the incident FORT and Raman per mirror (and reflect 97% of an incident QED beam).

In addition, there are two specially coated 852.3 nm interference filters which transmit

85− 90% of an incident QED probe (dependent on angle tuning) and attenuate the FORT

and Raman pair by a factor of 1× 106. These two interference filters do the vast majority

of the spectral filtering but the dichroic mirrors serve an important purpose as well - light



101

H
W

P
@

 8
52

G
LP

LW
P

D
ic

h
ro

ic

90
/1

0
N

B
PS

SW
P

D
ic

h
ro

icLW
P

D
ic

h
ro

ic

PB
S

PD

PD

SW
P

D
ic

h
ro

ic
LW

P
D

ic
h

ro
ic

x 
4

te
le

sc
o

p
e

fib
er

50
/5

0
N

PB
S

SP
C

M
1

SP
C

M
1

N
ew

 F
o

cu
s

D
et

ec
to

r

FO
R

T/
R

am
an

D
et

ec
to

r

Q
ED

 D
et

ec
ti

o
n

85
2 

n
m

 - 
“B

ri
g

h
t”

 P
ro

b
e

85
2 

n
m

 - 
“D

ar
k”

 P
ro

b
e

83
6 

n
m

 - 
N

ew
 F

o
cu

s

93
6 

n
m

 - 
FO

R
T

94
5 

n
m

 - 
R

am
an

93
6/

94
5 

n
m

 - 
R

am
an

F
ig

ur
e

3.
19

:
P

hy
si

cs
ca

vi
ty

in
pu

t
an

d
ou

tp
ut

pa
th

s.
A

bb
re

vi
at

io
ns

ar
e

fo
r

lo
ng

-w
av

e
pa

ss
(L

W
P

)
an

d
sh

or
t-

w
av

e
pa

ss
(S

W
P

)

di
ch

ro
ic

m
ir

or
s,

no
n-

po
la

ri
zi

ng
be

am
sp

lit
te

rs
(N

P
B

S)
,p

ol
ar

iz
in

g
be

am
sp

lit
te

rs
(P

B
S)

,s
in

gl
e

ph
ot

on
co

un
ti

ng
m

od
ul

es
(S

P
C

M
),

an
d

ph
ot

od
et

ec
to

rs
(P

D
).

F
ig

ur
e

do
es

no
t

re
pr

es
en

t
th

e
ge

om
et

ry
of

th
e

be
am

pa
th

s
on

th
e

op
ti

cs
be

nc
h.



102

designed to be transmitted by the mirrors but instead reflected penetrates much farther

into the dichroic coating than does light which is designed to be reflected. The significance

of this effect is that it adds a small angular displacement between the QED signal and

the FORT/Raman at each bounce and this angular displacement can be used for spatial

filtering.

The remaining power is mode matched into a length of single mode optical fiber - the

fiber input alignment provides the spatial filter for the remaining FORT/Raman power. The

signal is then transmitted through a non-polarizing 50/50 fiber coupler which directs the

signal to two avalanche photodiode single photon counting modules (Perkin-Elmer SPCM-

AQR-14-FC). We choose to use a splitter and two detectors because the modules have an

intrinsic 50 ns “dead” time after registering a photodetection event during which the module

resets and cannot register any further photodetections. The two-detector Hanbury-Brown-

Twiss configuration allows us to perform correlation measurements in spite of this dead

time by cross-correlating data between the two SPCMs. Upon registering a photodetection

event, the module emits a TTL-compatible voltage pulse into 50Ω impedance. The quantum

efficiency for converting a photon incident upon the APD into an electronic photodetection

event is specified (and independently measured) to be αqe = 0.53 ± 0.05 at 852.4 nm.

SPCM1(2) exhibits a 60 (120) Hz rate of dark counts, or randomly distributed erroneous

photodetections caused by thermal fluctuations in the module. These modules also exhibit

a 1.2% probability, conditioned on a valid photodetection event, to generate a second,

erroneous ”after-pulsing” event a time 53 ns after the initial detection. For more information

about this effect and its pertinence to our work please see Jason McKeever’s dissertation

[22].

The quality of the spectral and spatial filtering of the FORT light is sufficient that

the contribution to the dark count rate from the FORT is indistinguishable from Poisson

fluctuation of dark counts (at this wavelength the quantum efficiency of the detectors is

∼ 30%). This corresponds to less than 0.05 fW of incident optical power from the FORT

and Raman pair. From the PBS at the cavity output to the input of the SPCM, the total

attenuation of these beams is αFORT ∼ 5× 10−15.

We have also fully characterized the efficiency with which we can detect a single photon
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Symbol Value Error Description

αe 0.65 0.09 cavity transmission coefficient

α2s 0.50 - detecting one side of a two-sided cavity

αp 0.50† 0.05 propagation losses

αqe 0.53 0.05 SPCM quantum efficiency

α 0.086 0.02 total detection efficiency

† - maximal value measured 11/16/2006

Table 3.5: Accounting of cavity output path losses and efficiencies.

from the mode of the cavity to TTL pulse. Table 3.5 offers an item-by-item breakdown

of the losses which diminish this efficiency. The cavity transmission or escape efficiency,

αe, is equal to
√
Tmax (Equation (2.115)) the one-way cavity transmission coefficient. This

represents the fraction of the circulating power transmitted through the mirrors as opposed

to dissipated in the coatings. The equal probability that the photon will escape from the

“output” mirror M2 as opposed to M1 is quantified as α2s = 0.50 (of course, for a driven

cavity the escape efficiency for the two mirrors is not equal, but we are assuming the photon

is generated inside the cavity mode and neither mirror is being actively driven). The total

efficiency with which the photon travels through the output path to the SPCM input is

given by αp. Finally, αqe is the quantum efficiency of the SPCM. This leads to a total

detection efficiency:

α = αe × α2s × αp × αqe. (3.52)

I should mention that the value for αp, the propagation efficiency, given in Table 3.5 is not

the same as that given in e.g., reference [40] or dissertations [22, 23]. We have gradually

made improvements to the output path which have increased αp by a factor of 1.5 over the

interceding years.

The final step in the photodetection process is to measure and record the arrival times

of the detection events relative to the experimental cycle. This is done using a 4-channel
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FAST ComTec P7888 Time Multiscaler board. The card accepts a single “start” input and

as many as four “stop” inputs. Discrimination of a TTL-level event on any of the “stop”

channels produces a computer data record of the arrival time of that “stop” relative to the

discrimination of an initial “start” pulse. The data record takes the form of an ASCII text

file containing a list of 32-bit numbers corresponding to the “stop” events measured for

a user-specified number of “starts.” The first two bits of the number denote the channel

on which the event was recorded and the remaining 30 bits are the relative arrival time in

nanoseconds. The card has 2 ns pulse resolution in 4-channel mode (and can be converted to

a 2-channel mode with 1 ns resolution if necessary). We generally synchronize the beginning

of the experimental cycle (see Section 3.6) with the “start” pulse and use the digital output

from the two SPCMs as “stop” channels A and B. “Stops” C and D are usually reserved

to record “time stamp” or “milestone” events so we can compare the arrival times of the

photodetections with specific timing events of interest in the experiment and which occur on

a shorter timescale than does the overall experimental timing (this eliminates any concern

over nonlinearities in the internal timebase of the P7888).

3.5.2 Cavity “Side” Beams

The cavity lattice beams were discussed in Section 3.3.3. They are two pairs of (4 ↔ 4′)

and (3 ↔ 3′) beams in a σ+-σ− counter-propagating configuration. The four beams are

each focused through the d = 41.4 µm gap between the cavity substrates in order to provide

a damping force for loading atoms into the FORT as they fall through the cavity mode.

This focus is achieved by 20 cm cylindrical locating just outside of the UHV chamber.

As we will see in later Chapters, these beams are used not only for initial cooling of the

atom, but also throughout the experiment where classical fields near these frequencies are

needed. In addition to the lattice beams, there is also one additional side beam which has

no counter-propagating equivalent. This beam can be configured to drive any of a number

of transitions within the atom via a conveniently hot-swappable optical fiber mount and is

linearly polarized either along, or at 90◦ with respect to the cavity axis.

The paths of these beams, themselves, are not very interesting. Instead, we need to be

concerned with how the intensity of the beams is distributed at the center of cavity and
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Figure 3.20: a. Fresnel diffraction pattern of the lattice and side beams by the cavity,

calculated with the plane of observation at the center of the cavity mode and in the ap-

proximation that the cavity aperture is rectangular. The Fresnel number for the system is

N = 0.96. The dashed black lines indicate the boundaries of the aperture. b. Diffraction

pattern with limits of the plot set at the positions corresponding to the locations of the two

mirror surfaces.
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whether diffraction by the cavity aperture is a concern. We will approximate the aperture

of the cavity by a rectangle. At the QED wavelength, these beams have a Fresnel number

given by:

N ≡ d2

4Dλ
(3.53)

where D = 5 × 10−4 m is the physical distance from the center of the cavity mode to the

edge of the substrate. For our cavity geometry, N = 0.96, which places the system right

at the boundary between the Fresnel and the Fraunhofer diffraction limits [17]. We should

therefore expect near-field diffraction to be a concern and that a geometric interpretation

of the intensity distribution of the beam across the cavity will not hold.

We can calculate the irradiance pattern of the beams across the cavity length (here

defined to lie along ẑ) using the Fresnel integral expression for the amplitude of the diffracted

field:

u(z) =
1√
2

(
F
[√

2N(1− z)
]
− F

[
−
√

2N(1 + z)
])

(3.54)

where F (x) is the Fresnel integral function:

F (x) ≡
∫ x

0
e
iπτ2

2 dτ. (3.55)

Performing the integrals numerically using Mathematica, the irradiance

I(z) = |u(z)u∗(z)| (3.56)

as a function of position along the cavity axis, is shown in Figure 3.20. Note that over the

length of the cavity, I(z) varies by as much as 90%. The Rabi frequencies of the lattice and

side beams depend strongly on in which well of the FORT an atom is located.

This has a few important consequences. First, it suggests that the lattice loading scheme

is likely most effective near the center of the cavity where the intensities of the four beams

are maximal. This effect would reduce the overall loading probability as those atoms which
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enter the FORT near the extrema of the cavity will be less effectively cooled. This estimate

agrees with results from the next Chapter where we replace the lattice repump field with a

field driving a resonant cavity mode exhibiting none of these spatial fluctuations.

A second, more important, consequence is that any sort of coherent process we want to

implement using side or lattice beams will be washed out if we choose to ensemble average

over multiple atoms. Each atom, at a unique position with respect to the diffraction pattern,

will experience a different Rabi frequency for the beam and will therefore undergo nutation

at a different rate. For adiabatic coherent processes, we can moderately correct for this

effect by ensuring that the asymptotic Rabi frequency for the process is sufficiently large

across the entire diffraction pattern. However, as will be discussed in the next Chapter,

preserving the coherence of non-adiabatic Raman processes is virtually impossible in this

configuration.

This result sums up the technical difficulty of experimental cavity QED in a nutshell.

In order to achieve strong atom-field coupling, the requirements on the geometry of the

system are so restrictive as to complicate tasks that would be otherwise straightforward in

free-space. In this regard, our approach over the last 6 years has been to take advantage

of the presence of the cavity whenever possible and use resonant modes other than QED

mode to carry out coherent manipulation of atom-cavity system. Chapter 4 will focus on

the set of tools we have developed for doing this.

3.6 Experimental Timing

The timing of the experiment is carried out almost exclusively with TTL-level digital logic.

Pulse sequencing is done using an ADWin Gold digital I/O controller with a custom front

end programming language written by David Boozer (see Appendix B). The ADWin system

provides 32 digital outputs and 4 16-bit analog outputs, with a minimum pulse duration of

150 ns and a timing resolution of 25 ns. The Appendix offers a complete description of the

syntax and function of the ADWin programming interface as it pertains to our work.

The laboratory’s timing is generally defined on two different scales, slow (millisecond to

microsecond) and fast (sub-microsecond). This is particularly true for experiments which
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involve very precise, iterative pulse sequences. The experimental cycle is usually as follows:

1. Intialize slow (millisecond) time-scale subsystems (∼ 10 ms)

(a) set function generator frequencies via TTL-to-IEEE 488 convertors

(b) reset MOT bias magnetic fields

2. Cavity loading protocol (∼ 500 ms)

(a) upper MOT form/drop

(b) lower MOT collect/drop

(c) PG cooling into FORT

(d) (optional) verify atom presence, reset as necessary

3. Physics (∼ 0.5− 2.0 s)

(a) delegate fast-time scale (sub-microsecond) pulse sequencing to SRS DG535

(b) trigger and time stamp FASTComTec P7888 photon counting card

(c) loop as needed

This process is repeated with a period of τexpt ∼ Tavg ≈ 1.0 - 2.0 s while data is collected.

The ADWin controller manages the overarching system timing (steps 1 and 2). When

necessary, particularly for physics measurements, the ADWin is used to trigger a series of

externally gated Stanford Research Systems DG535 delay generators. These two-channel

devices offer a nominal time resolution of 5 ps with < 25 ps edge jitter and a good deal

more flexibility on these time scales than does the ADWin. By devoting a single channel

of our photon counting card to time stamp pulses from the DG535 units we are able to

ensure that data we collect is properly registered with respect to the overall system timing

on whichever timescale the experiment requires.

I will omit a complete description of the full array of RF electronics and digital logic

circuitry necessary to run our experiment because it is both well-documented in the group’s

laboratory notebooks and not terribly interesting reading. Instead, Figure 5.5 offers a

process-level block timing diagram of the experimental cycle necessary to prepare the upper
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and lower MOTs and to load the cavity. Of course, the final timing block - the physics timing

- varies from experiment-to-experiment and will be discussed on a case-by-case basis.
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Figure 3.21: Block timing diagram for the preparation of the Lab 11 MOTs and loading of

atoms from those MOTs into the intracavity FORT. Pulses high (low) correspond to that

subsystem ON (OFF) with the exception of Bias Magnetic Field pulse which indicates switch-

ing between two discrete field settings (high: forming the lower MOT, low: establishing the

desired bias field at the physics cavity center).
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Chapter 4

Raman Transitions in an Optical Cavity

This Chapter describes a set of frequently used experimental protocols. The techniques and

methods discussed here, many of which are unique to our group, are commonly used in the

work we do in the laboratory. They form the experimental building blocks upon which the

more complex experiments described in Chapters 5 and 6 are built.

In Section 4.1, I will briefly survey the techniques at our disposal for performing state

detection on the atom-cavity system. In particular, I will focus on measuring so-called

“down-goer” events and the information about the system which can be extracted from this

signal.

The principle focus of this chapter, however, will be a technique our group has developed

for driving stimulated Raman transitions between the hyperfine ground states of single,

optically trapped atoms. The ability to coherently manipulate and measure the state of a

trapped atom, in situ and using the uniform mode structure of the physics cavity, offers a

level of control which is absolutely vital to understanding the inherent complexity of the

system.

4.1 Atomic Hyperfine State Detection

As will become clear later in this Chapter, the ability to projectively measure the internal

state of an atom bound to our cavity with high certainty is broadly useful in this type

of research. Frequently the signal of interest in one of our experiments is the amount of

atomic population in a particular cavity-coupled (or uncoupled) hyperfine ground state. We
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have three distinct methods at our disposal for performing this type of measurement in the

laboratory. Each has situational advantages and disadvantages which are discussed below.

4.1.1 “Down-goer” Detection

The most straightforward and robust technique we use relies on measuring the intensity

fluctuations in a resonant probe field as a function of atomic ground state. The probe field

is resonant in the sense that there is nominally zero detuning between the probe light, the

empty cavity resonance and a (4 ↔ N ′) atomic transition of our choosing. We should

emphasize that the probe is “nominally” resonant because, as was discussed in Chapter 3,

there can be a variety of small, differential shifts between internal atomic states within a

given hyperfine manifold. Recall Equation (2.55) which states that the cavity transmission

spectrum in the presence of dissipation for a probe field tuned to resonance (∆ = 0) with

an empty single-mode cavity and detuned from resonance with a two state atom by ∆A is

given by:

I3 ≡ I0(∆ = 0) = βIinc
κ2(γ2 + ∆2

A)
(g2(~r) + γκ)2 + (κ∆A)2

. (4.1)

Here β is a constant which describes the losses associated with coupling light through the

cavity. If the atomic population resides completely within the F = 3 hyperfine ground state

manifold, then the atom is far-detuned from resonance with the cavity (∆A = ∆HF , the

cesium hyperfine ground state splitting). Because this atom-cavity detuning is larger than

the experimental values of g(~r), κ and γ for our system by at least two orders of magnitude,

we can simplify I3 by keeping only terms of highest order in ∆HF :

I3 ≈ βIinc (4.2)

This is just the empty-cavity resonant transmission - in any of the F = 3 hyperfine states,

the atom is effectively “transparent” to a field probing the cavity and therefore a resonant

probe will exhibit high transmission.

Population in F = 4, however, exhibits generally small atom-cavity detuning, ∆A ≈ 0.
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Here, the transmission of a resonant probe field will go as:

I4 ≡ I0 ∝ Iinc
κ2γ2

(g2(~r) + γκ)2
, (4.3)

(as plotted in Figure 2.2). For our experimental values (g0, κ, γ) this model predicts I4/I3 ∼

7× 10−5. However, because the two-state model used to derive these expressions begins to

break down in the context of multi-state cesium, we typically measure I4/I3 ∼ 1 × 10−2.

Nonetheless, in the laboratory it is straightforward to distinguish between I3 and I4 using

photon counting. The suppression of cavity transmission as a function of atomic hyperfine

level (i.e., F = 3 or F = 4) serves as the basis for this state detection scheme. Because the

characteristic signal for this method is a drop in cavity transmission when coupled to an

atom it is commonly referred to as a “down-goer” signal.

It should be noted that for open atomic transitions (i.e.,, (4 ↔ 3′) or (4 ↔ 4′)) this

scheme is of limited usefulness - any atomic population in F = 4 will optically pump into

the F = 3 hyperfine manifold over short timescales and the information with which we are

concerned (the current hyperfine ground state of the atom) will be irreversibly lost. We

are therefore restricted to using this technique only in experiments which permit that the

cavity to be tuned into resonance with the closed (4↔ 5′) transition. However, even on this

transition, off-resonant scattering of a modest intensity probe field will drive population from

F = 4 to F = 3 over hundreds of microseconds. These off-resonant scattering timescales

place an upper limit on the integration times, or the amount of time we are permitted to

measure the atom in order discriminate the internal state before that state destroyed.

A slight modification of this technique to include a beam (or beams) resonant with

(3 ↔ N ′) transitions allows us to very quickly and efficiently gather information about

whether an atom is present in the cavity or not. These additional beams ensure that

the atom is quickly repumped into the cavity-coupled F = 4 hyperfine ground state if it

happens to scatter into (or begin in) decoupled F = 3. Therefore the presence of an atom

in the cavity will always result in a down-goer signal. It is common to follow a state-

detection down-goer measurement with a atom-presence down-goer measurement in order

to discriminate no-atom data from data corresponding to an atom present in the F = 3
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ground state.

A typical procedure for making a down-goer measurement begins by first preparing the

atom in whichever state is to be measured. Following this initial preparation, we apply

a resonant probe field to the cavity for a time τp. Typically τp can be as short as 100

µs, but can in principle be tailored as needed within the off-resonant pumping constraints

described above. The transmitted intensity of the probe field is measured using the single

photon counting modules described in Chapter 3 while the number of photons detected in

that interval, N(τp), is recorded to computer memory.

Figure 4.1 presents an ensemble of representative down-goer measurements in histogram

form for atoms prepared in a mixture of initial hyperfine ground states. Over 7.5×105 trials,

the probability PN to measure N(τp) photons during the integration window is plotted. The

result is the sum of two Poisson distributions. The shapes of both features are set by the

photon counting statistics of the coherent (laser) light source from which the probe field

is derived. The mean value of each feature is characteristic of either a coupled (F = 4)

or uncoupled (F = 3) atom. For this set of data, the high-transmission feature centered

near N̄3 = 33.2 is the result of atomic population in F = 3 (or, potentially, absence of an

atom within the cavity mode). The mean number of photons detected within this feature

corresponds to a steady-state probe count rate of ∼ 330 kHz, or an average intracavity

photon number of ∼ 1. The feature near N̄4 = 0.45 corresponds to the those events wherein

transmission through the cavity was suppressed by the presence of an atom in the F = 4

ground state.

We can either systematically or arbitrarily determine the discrimination thresholds n3

(n4) such that measurement of N(τp) > n3 (N(τp) < n4) photons during a detection

interval corresponds in analysis to determination of the atomic state to be F = 3 (F = 4)

with some related certainty. In recent versions of my own MATLAB-based data-analysis code,

the program pre-analyzes small chunks of data (typically 50 atoms worth of data at a time)

in order to numerically fit the bimodal probability distribution. This allows the program

to specify n3, n4 as a user-defined number of standard deviations away from the respective

centers of the two features while adapting for small fluctuations in experimental parameters.

Generally in the past, however, these values have set arbitrarily relative to the empty cavity
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Figure 4.1: Histogram of typical “down-goer” type data for atoms prepared in an initial

mixture of hyperfine ground states and measured for probe pulses of duration τ = 100

µs. Dashed vertical lines correspond to state discrimination thresholds set at n3 = 0.25Ne

and n4 = 0.75Ne, where Ne = 33.2, is the average number of photons detected during

on-resonance transmission of the probe through an empty cavity.
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transmission level, Ne, in such a way that there is only a very small probability that a given

event would be misclassified. Typical values are n3 = 0.75Ne and n4 = 0.25Ne. These

particular values were used in Figure 4.1 in order to delineate F = 3 data (green) from

F = 4 (red).

A small sample of data (∼ 4%) falls within the gap between the two thresholds and is

left unclassified (black). We are therefore able to discriminate between states in this data

set with 96% certainty. This is not a statement of our confidence in this classification (or

the error associated with the discrimination procedure). We can, however, quantify the

error associated with this procedure by exploring the overlap of the two distributions into

the opposing discrimination regions. The result varies from measurement to measurement,

but our discrimination fidelity is typically in excess of 99%.

4.1.2 “Up-goer” Detection

An alternative approach to the same problem, and along the same lines, is to probe the

cavity not at zero detuning from a shared atom-cavity resonance but at ∆ = ±g0 (i.e.,

at the vacuum-Rabi sidebands). Instead of measuring a transmission drop if the atom is

cavity-coupled, we will instead expect to see a transmission increase as the system shifts

into resonance with the probe light. Following the naming convention given the previously

described method, we refer to this technique as looking for “up-goers.”

The up-goer method is viable, but suffers a number of limitations which down-goer

detection does not. First, assuming we are driving the cavity with probe light tuned to a

transmission maximum of the vacuum-Rabi spectrum for an atom, the dynamic range of the

signal is roughly a factor of three smaller than that for down-goers. Also, and more impor-

tantly, we have seen throughout Chapter 3 that there are a variety of experimental factors

which can significantly alter the local rate of atom-cavity coupling for a particular atom.

These include differential atom-cavity detunings born from FORT-induced Zeeman state

shifts and residual magnetic fields as well as variations from measurement-to-measurement

in g(~r) as the atomic position ~r fluctuates. A series of individual measurements of the sys-

tem will each potentially correspond to different rates of coherent coupling between atom

and field. In short, the signal which one derives from up-goer measurement is generally less
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straightforward to interpret and less efficient to measure [41].

Moreover, whereas down-goers are characterized by rejection from the cavity of light

which otherwise would interact (both internally and externally) within the atom, up-goer

type measurements allow that light into the cavity mode. As a result, depending on the

frequency at which we are probing, there is the potential for so-called cavity cooling of

the atomic motion [42], but also for cavity-induced heating. As the coupling constant

changes from atom-to-atom and measurement-to-measurement, these heating and cooling

parameters also change and the result is typically shortened FORT lifetimes. In general it

is desirable to decouple motion from QED effects, and therefore up-goer measurements are

undesirable in this respect.

Up-goer measurements do have situational uses, however. For instance, up-goer detec-

tion can be useful in experiments where information about the system can be transferred

from the atom to the strength of the probe field in cavity mode. In this context, I refer the

reader to a specific example in the thesis of Andreea Boca (Reference [23], Chapter 3) where

Fourier analysis of an up-goer signal reveals modulation at the oscillation frequency of the

atom in the FORT. This measurement allowed us to visualize for the first time the distribu-

tion of vibrational frequencies, both radial and axial, for atoms trapped within our cavity.

This distribution conveys a significant amount of information about the mean temperature

of atoms trapped in our system due to the anharmonic dispersion of vibrational energies in

each FORT well. Up-goer light can also exhibit some remarkable quantum photon statistics

as will be discussed briefly in Chapter 6 and in some detail in Reference [29].

4.1.3 Photon Generation-Based Techniques

A third, more situational approach is to map the internal state of the atom onto the cavity

photon number state. Photon generation as a means for state detection will be discussed

at length in Chapter 5. I point to it in this context only to discuss its relative strengths

and weaknesses. Photon generation as a state detection method is particularly viable when

we are constrained to operate with the cavity on resonance with an open set of atomic

transitions (i.e., (4↔ 3′ or 4′). With high (near-unity) efficiency we can map population in

F = 3 onto the one-photon component of the cavity mode, |1〉. Meanwhile, population in
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F = 4 maps onto the ubiquitous cavity vacuum state |0〉. Subsequent detection of a photon

in the cavity output mode during an anticipated arrival window indicates that the atom

began in the F = 3 manifold.

The drawback of this scheme is that detection of QED light in the cavity output mode

is relatively inefficient for our system (α = 0.086 is the largest detection efficiency we have

measured, as described in Chapter 3). If the photon is attenuated anywhere along the

detection path, all information about the measurement is irreversibly lost. This places

a stringent upper limit on the certainty with which we can infer the atomic state for any

given measurement. We are also unable to directly measure population in the cavity-coupled

atomic ground state manifold, F = 4 - the corresponding signal for which is simply the de

facto vacuum state in the cavity mode. Instead, we are left to infer the average total

probabilities that the atom is in F = 4 and F = 3 from the measured probability to detect

a photon and the output path losses.

In summary, state detection by way of photon generation and detection can be effective

under circumstances when down-goer and up-goer detection are generally not. However,

due to the likelihood that the signal will be lost in the detection path, down-goer detection

is still highly preferable because it guarantees that our measurement will discriminate the

atomic state with high certainty. Photon generation as a state detection scheme is generally

avoided in the work described throughout this thesis at all but those circumstances wherein

we are not able to address closed atomic transitions.

4.2 Stimulated Raman Transitions in an Optical Cavity

As was discussed in Chapter 3, the presence of the optical cavity around the atom simulta-

neously restricts our physical access to the system (due to the small solid angle accessible

through the inter-mirror spacing) yet provides us with a unique opportunity to regain that

access through creative use of secondary cavity modes. The remainder of this Chapter will

be devoted to discussion of a technique which our group has developed for using excitation

in cavity modes other than the QED mode to drive stimulated Raman transitions between

the hyperfine ground states of a trapped atom (including between adjacent Zeeman and
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motion-coupled states). This method has proved to be a very useful tool in almost every

aspect of our work - from initial preparation, coherent control and even measurement of

the system’s degrees of freedom. In this section I will describe the theoretical mechanism

which underlies the Raman technique as well as how we go about physically implementing

the necessary beams and fields.

4.2.1 Theoretical Model

In this Section we will begin by describing Raman transitions in the context of the simplest

possible non-trivial physical system which permits them. We will then scale the description

to the full cesium atom. This discussion will follow the formalism established by David

Boozer in a related paper [43]. We begin by treating a three-state atom with two ground

states, |a〉 and |b〉 each with associated energies Eb,a ≡ ±1/2~∆HF and an ancillary excited

state |e〉 with energy Ee ≡ ~ωA (see Figure 4.2) . Raman processes are inelastic scattering

processes involving absorption and reemission of a photon which is detuned from atomic

resonance and accompanied by the transfer of atomic population from one ground state of

the atom to the other [44]. Stokes-type Raman scattering moves atomic population from

the lower-energy ground state |b〉 to the higher-energy state |a〉. As this takes place, a

photon is scattered from a virtual energy level in the atom such that the photon has lost

an amount of energy (Eb − Ea) = ~∆HF and thus conserving the amount of energy in the

atom+photon system. Anti-Stokes-type processes involve inelastic scattering where energy

is instead imparted from the atom to the photon. However, if we instead initially populate

both the Stokes and anti-Stokes modes of the “Λ” configuration shown in Figure 4.2, we

can affect what what are known as stimulated Raman transitions. As we will see, this leads

to a coherent oscillation of population between the two energy levels (these transitions are

“stimulated” in the sense that the excitation in the two Raman field modes is stimulating

the transfer of atomic population between the two coupled states).

To understand how this process takes place, we can begin by writing down a Hamiltonian
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Figure 4.2: A typical Raman Λ-type atomic energy level diagram.

for the atom in the usual way:

ĤA = ~ωA |e〉 〈e|+
1
2

~∆HF (|a〉 〈a| − |b〉 〈b|) (4.4)

= ~ωAσz +
1
2

~∆HFσ
′
z. (4.5)

Here σ′z is a Pauli matrix over the basis of the effective two-state system between |a〉 and |b〉.

We will assume that two laser fields, E±, are driving the cavity near a resonant fundamental

mode. These fields oscillate at frequencies ω± = ωL ± 1/2δR, respectively and are far-

detuned from atomic resonance, i.e., ∆ = (ωL − ωA) � ∆HF . In order to generate a

Raman pair, we require:

δR = ∆HF + δ, (4.6)

where δ � ∆HF is a small, user-controlled Raman detuning. We can write the Hamiltonian

for the interaction between atom and fields:

ĤI = ~ (Ω+ cosω+t+ Ω− cosω−t) (|e〉 (〈a|+ 〈b|) + (|a〉+ |b〉) 〈e|) (4.7)

where Ω± are single-beam “semiclassical” Rabi frequencies for E±, as defined in Chapter 2.

The total system Hamiltonian Ĥ = ĤA + ĤR can be simplified using the rotating wave
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approximation, by assuming that the Rabi frequencies Ω± are much smaller than ∆ and

by transforming the system into a frame of reference which rotates at ωA. Under these

approximations, we can rewrite the Hamiltonian:

Ĥ =
1
2

~∆HFσ
′
z + ~

(
Ω+Ω−

2∆
cos δRt−

Ω2
+ + Ω2

−
4|∆|

)
(1 + |a〉 〈b|+ |b〉 〈a|) (4.8)

=
1
2

~∆HFσ
′
z + ~ (ΩE cos δRt− VE/~) (1 + |a〉 〈b|+ |b〉 〈a|) (4.9)

In this expression, VE and ΩE cos δRt are time-indepedent and -dependent AC Stark shifts

on the energy levels |a〉 and |b〉. We can simplify the Hamiltonian by eliminating terms

which do not contribute significantly to the dynamics of the system. For instance, the

state-dependent, time-indpendent shift (VE/~[|a〉 〈b|+|b〉 〈a|]) is orders of magnitude smaller

than the hyperfine splitting, ∆HF , and may be neglected. Also, the time-dependent, state-

independent contribution to the FORT potential (ΩE cos δRt) oscillates at a frequency δR ∼

∆HF , which is typically four orders of magnitude larger than the frequency at which the

atom oscillates in the static FORT potential. This term tends to average to zero over

experimentally pertinent timescales. This allows us to write a simplified Hamiltonian in a

frame which rotates at ωA + δR:

Ĥ = −1
2

~δσ′z − VE +
1
2

~ΩE (|a〉 〈b|+ |b〉 〈a|) . (4.10)

We are left with three terms, each of which has a straightforward physical interpretation.

The first corresponds to the internal structure of the atom. The second corresponds to the

sum of two FORT-like AC Stark shifts applied to the atom by E±. This can be seen by

comparing Equation (3.33), the FORT depth for a two-state atom calculated in Chapter 3,

with the expression for VE :

VE =
~Ω2

+

4|∆|
+

~Ω2
−

4|∆|
. (4.11)

The third term, in particular, is the one with which we are interested. This is the interaction

Hamiltonian for a two-state system (|a〉 and |b〉) which is driven by a classical field with
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Rabi frequency, ΩE :

ΩE =
Ω+Ω−

2∆
. (4.12)

The dynamics of this system are well-known in the context of the optical Bloch equations

[31] and take the form of a coherent “Rabi oscillation” between the two, coupled states at

a frequency Ω′E =
√
δ2 + Ω2

E .

4.2.2 Cavity Modes and Raman Configurations

In the treatment above, we see that the effective Hamiltonian for the off-resonantly double-

driven three-state atom is the sum of terms corresponding to a FORT-like potential and a

coherent exchange of excitation between ground states. Of course, because we have gone

to great lengths to establish a state-insensitive dipole trap at a carefully chosen optical

frequency (ωF , as described in Chapter 3), the trap-like term of this Hamiltonian generally

constitutes an undesirable perturbation to our FORT potential. With this consideration in

mind, we must choose a cavity mode with which E± will be near-resonant.

FORT-Raman Configuration

One possibility is to eliminate the need to treat VE as a perturbation and instead use the

FORT, itself, as one leg of the Λ-pair (i.e., ω+ = ωF ). The second leg would then be a field

at frequency ω− = ωF − δR. This configuration, which we refer to as the FORT-Raman

configuration, will be described first. It was first proposed and discussed by David Boozer

in his dissertation [15].

As described in Chapter 3, we rely on the resonant enhancement of the cavity mode to

produce a large FORT potential. It follows that the FORT beam E+ must be resonant with

the cavity and that the Raman beam will be required to drive the cavity off-resonance by

δR ∼ (2π)(9.192 GHz). The cavity linewidth at ωF has been measured to be κF = (2π)(0.79

GHz), and so we expect the circulating power at ω− to be suppressed from its resonant value

by a factor of ∼ 400. Without going into any detail of how this scheme generalizes to the

full cesium hyperfine ground state (see Subsection 4.2.3), we can qualitatively evaluate how
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large a contribution to the trapping potential E− will make. A typical Rabi frequency we

might use in our experiments is ΩE = (2π)(100 kHz) and a typical FORT depth might be

U+/h = 40 MHz. From this we are able to calculate the ratio of the contribution to the

potential from the Raman beam to that from the FORT beam, U−/U+:

U−
U+

=
Ω2
−

Ω2
+

=
h2Ω2

E

4U2
0

≈ 1× 10−6. (4.13)

The Raman beam only negligibly perturbs the FORT potential. In practice, as will be

discussed, when we wish to turn Raman processes in this configuration OFF, we simply turn

OFF the Raman field using an acousto-optic modulator.

Finally, though our discussion has thus far neglected it, it is important to note that

the effective Rabi frequency of the Raman pair varies spatially with structure of the cavity

mode, ψR(~r), i.e.,

ΩE(~r) = ΩE |ψR(~r)|2. (4.14)

By using the FORT mode to produce a Raman pair, we are gauranteed that ψR(~r) = ψF (~r),

which is important in that it ensures that regardless of into which FORT well it is loaded,

each atom will experience a homogenous Rabi frequency (with small variations due to atomic

temperature). However, this also means that for motion near the bottom of a FORT well,

the intensity of the Raman pair necessarily varies in a manner symmetric with respect to

the potential. This has important implications, as we will see, for the types of transitions

we can drive between eigenstates of atomic motion in the FORT.

The majority of the measurements presented in this Chapter were made using the FORT-

Raman configuration. There are two principal reasons for this. First, the FORT-Raman

configuration requires us to add only one additional beam to the experiment and is therefore

a good deal more practical. Secondly, because the trapping potential and Raman pair are

registered in this configuration and because the effective Rabi frequency is uniform from

well-to-well it is considerably more straightforward to treat Raman processes in this context.

Ensemble averaging over multiple Rabi frequencies, as would be necessary for the same

experiments in Raman-Raman configuration, typically leads to unnecessary complication in
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interpreting the results of our measurements.

Raman-Raman Configuration

The second possible configuration of beams involves using a cavity mode other than that

used for the FORT. For this purpose, we need a mode which is far-detuned from both the D1

and D2 resonances and which has favorable characteristics in terms of FORT registration,

cavity finesse, and maximum effective Rabi frequency. With these considerations in mind,

we have chosen to use the n = 89 mode of the cavity, one longitudinal mode red of the

FORT. The Raman pair consists of two beams at frequencies ω± = ωR±1/2δR where ωR is

the resonant frequency of the cavity mode associated with longitudinal mode number n = 89

while the cavity length is stabilized such that the cesium transition of interest is resonant

with mode n = 99. We refer to this configuration as the Raman-Raman configuration.

As in the previous Section, we can compute the perturbation to the FORT potential from

this pair of beams. Here we are driving the cavity at λ+ = 945.533 nm and λ− = 945.556 nm,

where the cavity resonance lies midway between the two wavelengths. Each beam is detuned

from resonance by δR/2 ∼ (2π)(4.596 GHz), where the cavity linewidth is κR = (2π)(5.9

GHz). If the two fields are of equal intensity (i.e., Ω+ = Ω−) and ΩE = (2π)(100 kHz),

then we can express the perturbation to the FORT potential:

VE
U0

=
ΩE

U0
= 2.5× 10−3. (4.15)

Under these assumptions, the contribution to the FORT from Raman beams is on the order

of 0.1% of the total potential depth. Though small, this perturbation is large enough that

repeated switching of the Raman pair ON and OFF to apply rotations to the atomic state

will also apply a significant mechanical force to the atom. In order to avoid this, we have

implemented a technique which will be discussed laster in this Chapter for maintaining a

constant optical power in the cavity near the Raman wavelength (and, therefore, a constant

perturbation to the FORT) while still allowing us to still gate the Raman process.

Finally, we note that the dimensionless mode shape for the FORT potential, |ψF (~r)|2,

and the spatial dependence of the effective Rabi frequency in this configuration, |ψR(~r)|2, do
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not exhibit uniform spatial overlap due to the frequency difference between the two fields.

We can evaluate the spatial variations in ΩE(~r) from well-to-well by writing |ψR(~r)|2 in the

form:

|ψR(~r)|2 = exp
[
2
x2 + y2

w2
R

]
sin2

[ωRz
c

+ α
]

(4.16)

where α = (ωF − ωR)zr/c is the phase difference between the Raman pair and the FORT

at the bottom of the rth FORT well, located at zr.

The only experiment in this Chapter which makes use of the Raman-Raman configura-

tion is our demonstration of first-order resolved-sideband Raman cooling to the motional

ground state for atoms in the FORT potential. This will be described in Section 4.6.1.

As we will see, this application benefits uniquely from inhomogeneous phase difference, α,

between the FORT and Raman pair.

4.2.3 Generalization to Cesium

The generalization of these schemes to cesium involves more angular momentum addition

and atomic physics of the type described in Chapter 2. Rather than going into the intricate

details of these calculations, I refer the reader Reference [43] and present only the major

results.

For cesium, we can write down a Hamiltonian in analogy with Equation (4.10):

Ĥ = −1
2

~δ(P̂4 − P̂3)− V̂E +
1
2

~ΩE

(
Σ̂ + Σ̂†

)
. (4.17)

Here, P̂3,4 are projection operators onto the F = 3, 4 manifolds of states and Σ̂ + Σ̂† is an

operator which couples Zeeman states within these two manifolds. We can also calculate

ΩE and VE by considering off-resonant interaction with both cesium D lines:

VE = ~
γ2

6
I+ + I−
Isat

(
2

∆D2
+

1
∆D1

)
(4.18)

ΩE =
γ2

3

√
I+I−
Isat

(
1

∆D2
+

1
∆D1

)
. (4.19)
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Notice that, as expected, the expression for VE is just Equation (3.36) - the predicted ground

state FORT shifts for cesium. In this model, the Raman term in the Hamiltonian is a cross-

term between complex conjugates and therefore the polarization vectors of the two fields

must exhibit orthogonal components in order for the Raman coupling to be nonzero. In

the experiment, we linearly polarize the two beams along the cavity orthogonal birefringent

axes, l̂± (see Section 3.5.1) .

Most of our experiments will take place with either the low-frequency ambient magnetic

fields nulled locally at the atom or with a static magnetic bias field along the cavity axis,

which is then taken to be the quantization axis. In general, however, we can work with an

arbitrary quantization axis ẑ and in an arbitrary coordinate frame {x̂, ŷ, ẑ} with the cavity

axis oriented along, ~k = cosφ sin θx̂+sinφ sin θŷ+cos θẑ. In this frame, the Rabi frequency

for transitions between two Zeeman states in the F = 3 and F = 4 manifolds is:

ΩE(|3,mF 〉 ↔ |4,mF 〉) = Ω0(1−m2
F /16)1/2 cos θ

ΩE(|3,mF 〉 ↔ |4,mF + 1〉) =
Ω0

8
(4 +mF )1/2(5 +mF )1/2e−iφ sin θ (4.20)

ΩE(|3,mF 〉 ↔ |4,mF − 1〉) =
Ω0

8
(4−mF )1/2(5−mF )1/2eiφ sin θ

where Ω0 is the effective Rabi frequency on the (|3, 0〉 ↔ |4, 0〉) transition for atoms located

at an intensity maximum of the FORT.

4.2.4 Experimental Implementation

Regardless of which Raman pair configuration we choose (Raman-Raman or FORT-Raman),

the basic experimental tools which we need to drive Raman transitions using this technique

are two laser beams which are frequency locked δR ∼ (2π)(9.192 GHz) from one another and

then coupled into the cavity with polarizations along orthogonal cavity eigenmodes. There

are a variety of ways to modulate a laser field in order to apply sidebands at microwave

frequencies. However, these sidebands generally are emitted with uniform polarization, and

are therefore ill-suited to our needs. So rather than deriving both arms of the Raman pair

from a single laser field, we have developed techniques to frequency stabilize two lasers in

such a way that they emit light at frequencies seperated by a user-controlled microwave
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offset frequency.

Electronic Phase Lock (2004-2006)

During our early Raman measurements (from 2004-2006), our approach to this problem was

to frequency stabilize two lasers with respect to each other using direct electronic feedback

derived from an optical beatnote between the two (see Figure 4.3 for a schematic overview

of the lock circuitry). This system was the precursor to the phase lock currently used in the

laboratory to stabilize the “repumper” cesium laser with respect to the “master” cesium

laser (Chapter 3). The frequencies, ω+ and ω−, of the two external cavity lasers used to

generate the pair are tuned such that a direct beatnote between the two is measured at

a frequency near (ω+ − ω−) ≈ ωbeat ≡ ∆HF + δAOM . This beatnote signal is amplified

and mixed against a frequency reference derived from a Hewlett Packard 8672C microwave

synthesizer tuned to ωref ≡ ∆HF +δAOM−δ0. The resulting mixed-down signal component

at frequency (ωbeat − ωref ) ≈ ω′beat ≡ δ0 is again mixed against an RF reference source

at frequency δ′0. From the DC and low-frequency components of this signal, an analog

integrating circuit is used to provide piezeo (slow) and current (fast) feedback to one of the

two Raman lasers such that δ′0 − δ0 = 0. Typically in the laboratory δAOM = (2π)(85.0

MHz) and δ0 = (2π)(50.0 MHz). With the lock switched ON, the higher frequency laser

(generally the FORT, in the FORT-Raman configuration) operates at a detuning of δT =

ω+ − ω− = ∆HF + δAOM with respect to the lower frequency laser (to which the electronic

feedback is applied).

In order to set δT = δR as required for a proper Raman pair, we upshift the lower-

frequency laser using an acousto-optical modulator driven at ωAOM = δAOM + δ. The

first order shifted beam is then detuned from the higher frequency Raman laser by δT =

∆HF + δ = δR, as required. The higher frequency beam is linearly-polarized and directed

along the cavity input path such that it couples to the higher-frequency birefringent mode

of the cavity, l̂+, whereas the lower-frequency beam takes another path to the cavity input

and is linearly-polarized along l̂−. This technique can be used in principle for either the

FORT-Raman or Raman-Raman beam configurations, but in practice it was only ever used

for FORT-Raman measurements.
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Figure 4.3: Schematic of the “old” style electronic phase lock apparatus for stabilizing the

two Raman lasers.

As a diagnostic tool, we usually monitor the optical beatnote between the two lasers

on a spectrum analyzer. A typical power spectrum measurement for this frequency locking

method is shown in blue in Figure 4.4b. Characteristic of this beatnote are noisy sidebands

suppressed from a narrow carrier signal by typically 25−35 dB and detuned from the carrier

by 0.5 − 1 MHz. These sidebands are an artifact of the electronics used to servo the laser

current and their shape and position can be manipulated by varying the feedback gain in

this arm of the servo (Figure 4.4a.). Within the range of gains shown in this Figure, the

lock is typically stable. However, outside of this range the stability of the lock drops off

sharply and the lasers will not lock.

The sideband noise, though suppressed relative to the carrier, is not innocuous. As is

discussed in Section 1.9.10 of David Boozer’s thesis, for typical Rabi frequencies it provides a

sufficiently large spectral density of optical power to drive an appreciable amount of atomic

population from state-to-state if it happens to overlap with particular motional or atomic

transitions which are off-resonant with respect to a transition of interest. Effectively the

FORT laser and the noise component of the Raman laser form an “incoherent” Raman pair.
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Figure 4.4: a. Beatnote between FORT and Raman lasers using the electronic phase lock

technique with variable gain on the current arm of the feedback to the Raman laser. The

color indicates RF power in a 1 kHz bandwidth. b. Comparison of phase lock and injection

lock optical beatnotes.
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While incoherent Raman transitions have their uses (c.f., Section 4.5), the presence of this

noise substantially limits the types of coherent Raman effects we can measure and control

with the lasers locked in this way.

Direct Injection Locking (2006-Present)

After some effort to electronically filter the servo loop which was applying noise to the

Raman laser, it became clear that to eliminate the noise would require a substantial redesign

of servo electronics and the laser current controller. Rather than take that approach, we

decided to re-think how we generate the lock and to instead use diode laser injection locking.

Figure 4.5 depicts our injection locking technique schematically. We take a small fraction

of the higher-frequency Raman laser (operating at frequency ω+) and direct it via optical

fiber to an EOSpace PM-0K1-10-PFA-FFA-850-UL (S/N 73904) lithium niobate waveguide-

integrated electro-optic modulator. These modulators, due to their relatively small physical

size, allow for broadband (> 15 GHz) response with low modulation voltage requirements

(Vπ = 2.5 V is typical at DC). We modulate the EOM at ωm = ∆HF + δAOM . For an

amount of optical power injected into the EOM, Pi, the modulated signal is a comb of

frequencies (ω+, ω+±ωm, ω+± 2ωm, . . .) with the optical power in nth component given by

Pn = βPiJ
2
n(φ). (4.21)

Here, β is the transmission efficiency for the modulator, Jn is the nth order Bessel function

of the first kind and φ, the modulation index, is a function of VRF , the RMS drive voltage

provided to the EOM at ωm. The modulated light emitted from the EOM serves as our

injection light.

The lower-frequency laser in this configuration is unlike other injection-locked lasers in

our laboratory because it is external cavity-stabilized and not free-running. In fact, we rely

on the external cavity of the laser as a filter to remove frequency components of the injected

light other than that at ω+−ωm. With the external cavity tuned such that the laser is lasing

near ω− ∼ ω+ − ωm, we direct the injection light through the rejected port of a Faraday

optical isolator. For modest input powers (typically Pi = 1 mW, and P−1 = 100 µW) we can
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achieve a stable injection lock. The capture range of the lock, typically ∼ 100 MHz, is largely

power-insensitive and is given by the parameters of the external cavity. For cavity lengths

which support operation near (ω+ − ωm), the laser acquires the frequency of the injected

light. However, if the external cavity length drifts during the course of the experiment,

it begins to support laser operation at other frequencies. These frequencies beat with the

injected light to produce a characteristic comb of output frequencies which is the hallmark of

the injection lock beginning to fail. However, the optomechanics which control the external

cavity length are usually passively stable on the order of hours for fluctuations in the cavity

length of the sort necessary for the lock to fail. In order to counteract this effect, we monitor

the beatnote between the two lasers and manually correct for drifts. The injection-locked

light is directed through an acousto-optic modulator driven at ωAOM = δAOM + δ. The

up-shifted diffracted first order is sent to the cavity polarized along l̂− to complete the

Raman pair.

The optical beatnote for two Raman lasers injection locked in this way is shown as the

red curve in Figure 4.4b. Notice that noise in the wings of the signal is reduced by as much

as a factor of 30 dB relative to the same signal taken in phase locked configuration. In order

to verify that the output of the lower-frequency laser is, in fact, single mode at the desired

frequency and not injection locked to any other electro-optically modulated sideband, we

can generate a beatnote between the higher-frequency laser and the lower-frequency laser

after it is upshifted signal by acousto-optic modulation. Any spectral component of the

lower-frequency laser at the higher-frequency would appear as a beatnote at ωAOM . At this

frequency (as well as at ωm−ωAOM ) we measure nothing above shot noise, indicating that

the injection lock is single mode.

4.3 Raman as a Diagnostic Tool

The ability to drive Raman transitions between ground state hyperfine manifolds provides

a powerful diagnostic tool for measuring population distributions, temperature, ambient

magnet field and other relevant properties of our system. In this Section we will describe two

commonly-used protocols for performing diagnostics of this sort. The first is a method for
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Figure 4.5: Schematic of the injection lock-based Raman pair generation scheme. Light from

the FORT (or higher-frequency Raman laser for Raman-Raman configuration) is modulated

in an EOSpace brand in-fiber electro-optic modulator at frequency ωm. The modulated light

is injected into the lower-frequency ECDL which is manually tuned to accept the first-order

lower sideband and reject the remainder of the incident signal.
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inferring the distribution of population between Zeeman states by measuring the spectrum

of allowed Raman transitions for a given configuration of the system. The second is a related

technique for measuring and iteratively nulling the ambient magnetic field at the location

of the atom.

4.3.1 Raman Spectroscopy

We begin by preparing the atom in some distribution of Zeeman states within the F = 3

ground state manifold and with the Raman pair in FORT-Raman configuration. Following

the initial state preparation, we switch the AOM for the lower-frequency beam ON for a

period of time τR and with detuning δ. After τR, we perform state detection on the system

using the down-goer technique to measure the probability P4 that atomic population was

transferred to the F = 4 manifold of states. By ensemble averaging over a large number of

measurements of this sort and for many atoms, we can formulate a Raman spectrum - the

spectrum of transfer probability (P4) as a function of Raman detuning (δ).

In order to understand what exactly a Raman spectrum describes, we need to understand

the dynamics of the system. In the absence of any decoherence (i.e., exponential decay of

the off-diagonal terms in the two-state density matrix for the system), the effect of the

Raman pair at a fixed, resonant Raman detuning δ is to induce Rabi oscillation between

the two coupled states indefinitely at frequency ΩE . Using the optical Bloch equations [31],

we can calculate the probability P4 to find the atom in F = 4 after a fixed duration pulse

at a given detuning from a Raman resonance:

P4(ΩE , δ, τR) =
1

1 + δ2

Ω2
E

sin2

[
1
2

√
Ω2
E + δ2τR

]
. (4.22)

This is a Lorentzian envelope of width ΩE modulated by a sinusoid and should look familiar

from the master equation discussion of Chapter 2. However, as we will see in Section 4.4,

our system is not decoherence-free and the oscillation exponentially decays at a rate T ∗2 ,

averaging away the sinusoidal component of (4.22). We will explore the physical significance

of T ∗2 and the sources of decoherence in our system later, but it suffices for now to note

that after the oscillation is fully damped away that the asymptotic state of the system for
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on-resonance driving is a mixed state with equal probability P3 = P4 = 0.5 to detect the

atom in F = 3 and F = 4, respectively. As a function of detuning, the Raman spectrum

involving n Raman resonances at frequencies ωn takes the shape:

P4(δ) =
1
2

∑
n

pn
Ω2
E(n)

Ω2
E(n) + (δ − ωn)2

(4.23)

where pn is the probability that the system is initially in one of the two states coupled by

the resonance with index n.

Informed by these dynamics, we must choose a Raman pulse duration τR in order to

map a Raman spectrum. Under certain circumstances it can be useful to select a pulse

length τR = πΩ−1
0 (a so-called π-pulse) such that for the mF = 0,∆mF = 0 transition in

an axial magnetic field we have ideally transferred all of the population initially in |3, 0〉 to

|4, 0〉 when δ = 0. More generally, it is useful to choose a Raman pulse length τR � T ∗2

so as to allow the Rabi oscillation to damp away and measure the resulting asymptotic

population distribution.

In the laboratory, the protocol for measuring a Raman spectrum is as follows. Before

the experiment begins, we manually set the Raman and FORT powers to produce the

desired effective Rabi frequency. A typical range of values is Ω0 = 125-200 kHz for the

(|3, 0〉 ↔ |4, 0〉) clock transition, depending on the application. The ADWin Gold system is

programmed to readjust the frequency of the lower-frequency Raman AOM via IEEE 488

communications just prior to each attempt to load an atom into the FORT. This sets the

value of δ which will then be used for all measurements involving that particular atom. The

ADWin also sends a train of TTL-level pulses to channel D of the P7888 counting card before

the measurement begins which encodes information about the value of δ. This information

is stored on an atom-by-atom basis and is subsequently decoded in post-processing. A few

milliseconds after the ADWin is finished programming the system, the MOT sequence loads

an atom into the cavity mode and the experiment begins. Following each state preparation

event, a fixed-duration (τR = 25 µs typical) TTL pulse is used to gate ON the lower-

frequency Raman AOM at the preprogrammed frequency. A short time (typically ∼ 30 µs)

after the Raman is gated OFF, a τp = 200 µs pulse of (4 ↔ 5′) probe light is coupled
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Figure 4.6: A typical Raman spectrum for our system with a pure axial magnetic field and

no initial Zeeman state preparation.

to the cavity to perform down-goer detection. The last 100 µs of the probe sequence is

accompanied by (3 ↔ 3′) resonant light from the lattice side beams to verify the presence

of an atom in the cavity for that measurement. The experiment then starts over and again

prepares the initial state of the atom for measurement. This process is iterated between

250-1500 times per atom depending on the average trap lifetime of the atoms undergoing

measurement. The Raman spectrum is calculated by taking the average probability to find

the atom in F = 4 over all measurements involving atoms loaded into the FORT at a given

preprogrammed Raman detuning δ. A typical Raman scan involves somewhere from 5-20

atoms-per-frequency.

A typical, representative example of the type of the Raman spectrum this procedure

produces is shown in Figure 4.6. Notice that there are seven discrete resonances in this

particular spectrum and that the spectrum is symmetric in frequency (though not in am-

plitude, due to pumping effects) about δ = 0. For this measurement, the atom was initially

prepared in the F = 3 manifold but no care was taken to optically pump into a particular
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Zeeman substate. We also applied a small magnetic bias field along the cavity axis (Bz = 1.3

G). As described by equation (4.20) a magnetic field directed along the cavity axis permits

only ∆mF = 0 transitions between states (|3,mF 〉 ↔ |4,mF 〉). For this magnetic field

configuration we expect to address seven transitions corresponding to (|3,mF 〉 ↔ |4,mF 〉),

mF ∈ {0,±1,±2,±3} (these are the seven resonances shown in Figure 4.6). The resonant

frequency of each is given by the sum of the ground state hyperfine splitting ∆HF and the

magnitude of the weak-field Zeeman splitting for the pair of states involved in the transition:

ω0(mF ) = (g4 − g3)µBBzmF (4.24)

=
1
2
µBBzmF (4.25)

= (2π)(700 kHz/G)BzmF (4.26)

For the magnetic field used in this measurement we predict a resonance-to-resonance split-

ting of ∆ω = |ω0(mF ) − ω0(mF − 1)| = (2π)(930 kHz). The vertical green lines in Figure

4.6 indicate the Raman detunings which we expect should correspond to the resonant fre-

quencies of the allowed transitions in this magnetic bias field. Clearly the measurement

is in good agreement with theory. We can now generalize Equation (4.23) to this set of

experimental parameters:

P4(δ) =
1
2

3∑
mF=−3

p3(mF )
[
1 +

(δ − ω0(mF ))2

Ω2
0(1−m2

F /16)

]−1

. (4.27)

By fitting to this function we can infer the values p3(mF ) which are the amplitudes of the

atomic population in the states |3,mF 〉 following the initial state preparation procedure.

Effectively, Raman spectroscopy allows us to adapt the down-goer technique for measuring

atomic hyperfine states to also read out the distribution of Zeeman state population in the

atom.

We can observe a couple of interesting effects by narrowing the focus of our scan to just

the (|3, 0〉 ↔ |4, 0〉) transition (Figure 4.7). First, notice that there is a small oscillatory

component convolved with the Lorentzian envelope of the feature. The oscillation is the

signature of small amount of coherence left in the system even after the full pulse duration,
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Figure 4.7: High-resolution Raman spectrum of the (|3, 0〉 ↔ |4, 0〉) clock transition. The

small oscillation on the Lorentzian envelope indicates that after this particular choice of

Raman pulse duration there is still a small amount of coherence left in the system. Also

notice that the peak is shifted ∆U0,4−3 ≈ −20 kHz to the red due to the differential FORT

shift on the two ground states.
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Figure 4.8: Raman spectrum for an atom-cavity system with a strong axial magnetic field

Bz ≈ 1.3 G in addition to a weaker transverse magnetic perturbation Bx ≈ 0.7 G. Vertical

green lines indicate the expected locations of the allowed Raman transitions based on the

total magnetic field.

τR. As predicted by Equation (4.22), the frequency of this oscillation grows larger as the

Raman detuning is swept away from resonance. The second interesting feature of this

measurement is that the envelope of the transition is offset from δ = 0 by U0,4−3 = −20

kHz. This offset is the result of the small hyperfine state-dependent residual AC Stark shift

caused by the FORT and discussed in Chapter 3. This shift, as we will see in Subsection

4.4 has a very subtle and profound impact on the coherent dynamics of the system as a

whole.

The discussion thus far has focused on Raman spectra measured with a purely axial

magnetic bias field. Although the magnitudes of the magnetic fields which we can apply

along directions transverse to the cavity axis are typically an order of magnitude smaller

than that which can apply along the cavity axis, we can still induce a small perturbative

transverse magnetic field in order to observe the effect of this sort of field on the system.
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Figure 4.8 shows a partial Raman spectrum for atoms in a large axial magnetic bias field

Bz ≈ 1.3 G in addition to a smaller transverse bias field Bx ≈ 0.7 G. The total magnetic field

is | ~B| ≈ 1.5 G and the angles which specify the orientation of the cavity axis with respect

to the quantization axis are θ = 0.15π and φ = 0. Based on Equation (4.20) we expect two

types of features in the Raman spectrum for this field. The first are transitions of the sort

we have seen in previous spectra, coupling (|3,mF 〉 ↔ |4,mF 〉) with Rabi frequency

ΩE = 0.89(1−m2
F /16)1/2Ω0. (4.28)

As before, these transitions exhibit Raman resonance at detunings given by:

δ = ω0(mF ) = (2π)(700 kHz/G)| ~B|mF . (4.29)

The second type of resonance corresponds to frequency-degenerate pairs of transitions cou-

pling (|3,mF 〉 ↔ |4,mF + 1〉) and (|3,mF + 1〉 ↔ |4,mF 〉) with Rabi frequencies

ΩE(|3,mF 〉 ↔ |4,mF + 1〉) = 0.06Ω0(4 +mF )1/2(5 +mF )1/2, (4.30)

ΩE(|3,mF + 1〉 ↔ |4,mF 〉) = 0.06Ω0(3−mF )1/2(4−mF )1/2. (4.31)

The resonant detunings for these transitions are equal and given by:

ω±1(mF ) = (2π)(700 kHz/G)| ~B|
(
mF +

1
2

)
. (4.32)

The partial spectrum of transitions shown in Figure 4.8 exhibits three broad resonances

corresponding to (|3,mF 〉 ↔ |4,mF 〉), mF ∈ {0,±1} and two narrow resonances corre-

sponding to (|3, 0〉 ↔ |4,±1〉) and (|3,±1〉 ↔ |4, 0〉). The vertical green lines transposed

over the spectrum correspond to the anticipated resonant frequencies ω0,±1 of the transi-

tions and are in good agreement with the data. Notice also that the ∆mF = ±1 features

exhibit much narrower resonances than the ∆mF = 0 features. If we recall that the spec-

tral widths of these features are set by the effective Rabi frequencies for the transitions in

question, then it is clear that this effect is a result of the smaller Rabi frequencies expected
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for ∆mF = ±1 transitions in this configuration of magnetic fields.

4.3.2 Raman Magnetometry and Field Nulling

With an understanding of how the shapes of Raman spectra vary as a function of the

magnetic field applied to the system, we can use this type of measurement to perform

magnetometry with the Zeeman splitting of the atom serving as the “sensor.” Careful mea-

surement of the widths of each spectral feature in addition to their resonant frequencies

offers all of the information necessary to deduce the magnitudes of the axial and transverse

magnetic fields at the location of the atom. Determination of the direction of the transverse

field is not possible from this single measurement due to the radial symmetry of the prob-

lem. However, by applying a transverse calibration magnetic field of known magnitude and

orientation we can break this symmetry and resolve the direction of the ambient transverse

field.

In addition to being able to infer the magnetic field strength, we have also developed a

method in the laboratory for zeroing a static magnetic field at the location of the atom. To

understand how this method works, first consider a system in which the magnetic fields at

the atom are already nulled. In this system there is no magnetic field to determine a quanti-

zation axis or to introduce Zeeman splitting. All Raman transitions coupling ∆mF = 0,±1

are allowed and all are frequency degenerate. Regardless of where the atomic population

is initially distributed, the Raman spectrum for the system will manifest itself as a single

Lorentzian envelope centered at δ = 0 with height P4(0) = 0.5.

Next, consider how the system responds if an arbitrarily-oriented magnetic field is slowly

ramped on, starting from zero amplitude. The effect of this field will be to introduce a quan-

tization axis and to gradually break the frequency degeneracy between Raman resonances.

This will manifest itself in Raman spectroscopy with the initial Lorentzian distribution

at δ = 0 splitting out into the full spectrum of transitions we explored in the previous

Subsection. In the limit of a large magnetic field, the asymptotic value of the Raman

spectrum at zero detuning is given simply by the shape of the feature corresponding to

the (|3, 0〉 ↔ |4, 0〉) clock transition, or P4(0) = 0.5p3(0). Recall that p3(0) is the initial

population in |3, 0〉.
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There is also an intermediate regime wherein the magnetic field is large enough to

break the degeneracy between the transitions but the widths of the Lorentzian features

corresponding to transitions involving mF 6= 0 overlap significantly with the envelope of

the carrier. Here, the amplitude of the Raman spectrum at zero detuning is a complicated

function of the initial population distribution, the magnetic field and the Rabi frequency of

the Raman pair, but is generally 0.5 ≥ P4(0) ≥ 0.5p3(0).

This effect constitutes the mechanism for our field nulling scheme. The signal we are

concerned with is P4(0, ~B) which is P4(0) as a function of the static magnetic bias field

~B produced by the three, orthogonal pairs of current-carrying coils which surround the

chamber. Assume that there is initially a small ambient DC magnetic field ~B′ which we

want to zero by applying feedback to the coil pairs. This initial field is comprised of

components {B′x, B′y, B′z} along each of the axes {x̂, ŷ, ẑ} determined by the orientations of

the coils. We need to determine the amounts of current through each coil pair necessary

to produce a magnetic field ~B = (−B′x,−B′y,−B′z) of equal and opposite magnitude along

each of these axes such that ~B′ + ~B = 0. The way in which we do this is by looking for

maxima in P4(0, ~B) - coil settings for which the field along that axis is most nearly zeroed.

We begin by selecting a single pair of coils to determine an initial axis along which

to apply the nulling technique. Prior to the FORT loading sequence, we use the digital-

to-analog convertor built into the ADWin Gold to provide a programming voltage to the

power supply controlling the current through those coils. As described in Section 3.2.2, the

programming voltage is proportional to the steady-state current applied through the coil.

The value of this programming voltage is varied discretely from loading attempt-to-loading

attempt over a pre-determined range of values. For each coil current setting, an atom is

loaded into the FORT and typically 1 × 103 measurements are made of P4(0, ~B) for that

atom. The ADWin also sends a series of TTL pulses to channel D of the P7888 photon

counting card to identify which measurements correspond to a particular power supply

setting.

By averaging all measurements of P4(0, ~B) corresponding to a specific current through

the coil pair, we are able to determine the functional dependence and maximal value over

all programming voltages. We then fix the current through that set of coils at the value
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Figure 4.9: Measurements of P4(0, ~B) for bias fields applied along the a. x̂-, b. ŷ-, and c.

ẑ-axes. Maxima indicate null field settings. Calibrations for coil programming voltages are

given in Table 3.3. These measurements were made with ΩE ≈ 125 kHz.
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which produced the maximum and perform the same set of measurements with another coil

pair. By repeating this procedure a number of times for all three coil pairs, we gradually

converge on a set of programming voltages which null the static magnetic field at the atom.

Figure 4.9 demonstrates the results of this type of measurement for each of the coil

pairs in our system. Along all three axes we are able to clearly resolve a maximal value of

P4(0, ~B). For the step sizes in programming voltage and Rabi frequency, ΩE , used for this

particular set of measurements we are able to null the field to within | ~B′| < 1.5× 10−2 G.

These measurements are representative of the results we obtain after only 1 − 2 iterations

of the field nulling protocol. Note that the widths of each of these features are complicated

functions of ΩE and if we chose to, we could increase the resolution of the measurement by

decreasing the Rabi frequency. Finally, it should be emphasized that this procedure takes

10−15 minutes to perform in the laboratory is therefore insensitive to all but DC magnetic

fields. Any field fluctuations faster than few thousandths of a Hertz will average away over

the duration of our measurement.

4.4 Rabi Nutation and Decoherence

4.4.1 Decoherence Theory

In the previous section, in the context of Raman spectroscopy, we alluded to how the

temporal dynamics of an atom undergoing stimulated Raman transitions between hyperfine

ground states are functionally equivalent to the dynamics of a classically driven two-state

atom. We can define a density operator over the basis of hyperfine states coupled by the

Raman pair:

ρ̂ =

 ρ33 ρ34

ρ43 ρ44

 . (4.33)

Here ρ33 = P3 and ρ44 = P4 are the probabilities to measure the atom in the F = 3 or

F = 4 hyperfine states and ρ34 = ρ∗43 are coherence terms. The dynamics of the classically



144

driven system are governed by the well-known optical Bloch equations (OBEs) [31]:

dρ33

dt
=
i

2
(Ω∗E ρ̃

∗
34 − ΩE ρ̃34) (4.34)

dρ44

dt
=
i

2
(ΩE ρ̃34 − Ω∗E ρ̃

∗
34) (4.35)

dρ̃34

dt
=
i

2
Ω∗E(ρ44 − ρ33)− iδρ̃34, (4.36)

where ρ̃34 = e−iδtρ34. The OBEs follow from the equation of motion for the density matrix in

the Shrödinger picture. From conservation laws, we can also add the constraint ρ33+ρ44 = 1.

If we assume the initial conditions ρ33 = 1 and ρ44 = ρ34 = ρ43 = 0 (i.e., that we have

initialized the state of the system to F = 3), then the solutions to these equations take the

form:

ρ44(t) =
Ω2
E

Ω2
E + δ2

sin2

(
1
2

√
Ω2
E + δ2t

)
(4.37)

ρ34(t) =
ΩE

Ω2
E + δ2

sin
(

1
2

√
Ω2
E + δ2t

)[
−δ sin

(
1
2

√
Ω2
E + δ2t

)
+ i
√

Ω2
E + δ2 cos

(
1
2

√
Ω2
E + δ2t

)]
. (4.38)

Notice that the expression for ρ44(t) is equivalent to Equation (4.22) from the previous

Section.

It is particularly instructive to treat this problem in terms of what is known as the Bloch

sphere. In general, we can decompose the density operator into a sum of products between

the Pauli spin matrices σ̂i and the components of a vector ~S:

ρ̂ =
1
2

(1 + ~S · ~σ), (4.39)

where the individual components of ~S are given by:

S1 = 2Re(ρ34) (4.40)

S2 = 2Im(ρ34) (4.41)

S3 = ρ44 − ρ33. (4.42)
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Geometrically, the Bloch vector ~S represents a point on a three-dimensional unit sphere.

The projection of the vector onto the ẑ-axis corresponds to what is known as the inversion,

or the difference in population between the F = 4 and F = 3 states. The x̂- and ŷ-

components of vector correspond to the real and imaginary components of the coherence.

We can visualize the effect of the OBEs as the motion of this vector on the surface of the

sphere.

For resonant driving (δ = 0), the system undergoes coherent Rabi nutation (or, more

colorfully, “flopping”) between between the coupled states, |3,mF 〉 and |4,m′F 〉, at frequency

ΩE . This can be pictured on the Bloch sphere (Figure 4.10a) as rotation at ΩE of the Bloch

vector about a great circle in the plane of the ŷ-axis. By applying Raman pulse of finite

duration we can use this oscillation to prepare arbitrary coherent superpositions of the two

atomic states. For instance, a Raman pulse of duration τR = π/2ΩE (a “π/2-pulse”) will

generate the state |ψ〉 = 1/
√

2(|3,mF 〉+ i |4,m′F 〉) whereas a pulse of duration τR = π/ΩE

(a “π-pulse”) will completely invert the atomic population.

In the case of non-zero detuning, the state of the system oscillates at a larger frequency

Ω′E =
√
δ2 + Ω2

E but the Raman pair can only invert a fraction of the initial population.

In the Bloch vector picture, this corresponds to oscillation of the state vector on a small

circle of the Bloch sphere with radius Ω2
E/Ω

′2
E . (Figure 4.10b). For a fixed-phase Raman

pair this can also be viewed as precession about a fixed vector ~Q = (ΩE/Ω′E , 0, δ/Ω
′
E). By

introducing an optical phase difference to the Raman pair we can offset this precession in

the x̂-,ŷ-plane.

It is important to note that this treatment of the OBEs is idealized - under the current

model a driven atom will undergo Rabi nutation indefinitely. In actual practice there are

a variety mechanisms by which noise can couple to the system and significantly alter the

dynamics. A typical approach to modeling sources of noise is to tack a variety of ad hoc,

phenomenological terms onto the OBEs. Rather than begin by doing this, we will take a

slightly different approach and use the (equally ad hoc) quantum operations formalism of

Nielsen and Chuang [45]. In particular we will assume that the environment performs some

quantum operation E , a superoperator, on the atom such that the density matrix undergoes
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Figure 4.10: a. Bloch sphere representation and time-dependent Bloch vector components

for a resonantly driven (δ = 0) atom. Note the Rabi oscillation at frequency ΩE between

|3,mF 〉 and |4,m′F 〉. Geometrically, this takes the form of nutation on the Bloch sphere

along a great circle perpendicular to the ŷ-axis. b. Off-resonantly driven case (δ = ΩE). The

Bloch vector oscillates along a small circle of the Bloch sphere at frequency Ω′E =
√

Ω2
E + δ2.
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the following transformation:

ρ(t) =

 ρ33(t) ρ34(t)

ρ∗34(t) ρ44(t)

 E−→ ρ(t) =

 1− e−t/T1ρ44(t) e−t/T2ρ34(t)

e−t/T2ρ∗34(t) e−t/T1ρ44(t)

 (4.43)

This transformation encompasses two unique classes of effects. The first is an exponential

decay of the diagonal elements of ρ̂ at a rate T1 (here the nomenclature - T1 and T2 - is

a holdover from similar work in the nuclear magnetic resonance community). This type of

noise is also commonly known as “amplitude damping” (or, in the NMR literature, as the

“spin-lattice” or “longitudinal” relaxation). A particular form of amplitude damping with

which we are already familiar is spontaneous decay from one state to another as a result

of coupling between the atom and an environmental reservoir of electromagnetic vacuum

states. However spontaneous decay also exhibits the second type of noise mechanism mod-

eled in E - decay of off-diagonal elements, or coherences, at a rate T2. This type of process is

commonly known as “decoherence” (due to its effect on the coherence terms of the density

matrix) and “phase damping” (also in NMR jargon, “spin-spin” or “transverse” relaxation).

There are a variety of experimental phenomena which can potentially contribute to phase

damping. As we will discuss later, these include frequency and intensity noise on the Raman

lasers, off-resonant scattering of photons from the FORT laser, and fluctuations in ΩR and

δ as a function of atomic position and motion. The times T1 and T2 are generally discussed

in terms of ensemble averages over, for example, a large number of spins in crystal lattice.

While we deal with only one spin (and one atom) at a time in our system, the measurements

we make are typically averaged over thousands of repetitions of the experiment and can be

treated with the same formalism.

To good approximation we can ignore amplitude damping effects and omit contributions

from T1. Typical Rabi frequencies for our experiments are orders of magnitude larger than

the linewidth of the cesium hyperfine ground state and so spontaneous decay does not

contribute significantly to dynamics over the timescales in which we are interested. Instead

we will focus on dephasing, which can be seen to play a prominent role in the system.

Regardless of how phase noise affects the transient dynamics of the atom, it is clear that

at times long compared to T2, an initial pure state of the system will decay into a mixed
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Figure 4.11: Effect of phase damping on the Bloch vector of a resonantly driven system with

T2 = 5Ω−1
E . Dephasing damps out Rabi oscillation as the system asymptotically approaches

the maximally mixed state, ρ̂ = 1/2 |3,mF 〉 〈3,mF |+ 1/2 |4,m′F 〉 〈4,m′F |.

state (or classical, probabilistic mixture). In the Bloch vector representation, mixed states

correspond to points inside (as opposed to on the surface of) the Bloch Sphere.

To see how the evolution from pure to mixed state takes place, we can reformulate our

ad hoc quantum operation as either as set of new terms in the OBE or, equivalently, as a

quantum Monte Carlo simulation. Figure 4.11 shows the evolution of the phase damped

Bloch vector and its three components for T2 = 5Ω−1
E for a resonantly-driven atom. The

system undergoes damped Rabi oscillation and asymptotically approaches the maximally
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mixed state:

ρ̂ =
1
2
|3,mF 〉 〈3,mF |+

1
2
|4,m′F 〉 〈4,m′F | (4.44)

(the maximally mixed state for a system is the mixed state for which it is equally probable

to measure the system in any of its pure eigenstates). In the Bloch sphere picture, this

corresponds to nutation about the ŷ-axis as the vector spirals inward towards ~S = (0, 0, 0).

The probability to detect the atom in F = 4 after a Raman pulse of duration τR, the

observable which we measure in the laboratory, takes the functional form:

P4(τR) =
1
2

[1− e−τR/2T2 cos(ΩEτR)]. (4.45)

An important question now is whether our makeshift noise model has a phenomenolog-

ical basis in reality. To address this issue, we begin by assuming that instead of applying a

constant damping term to the density matrix coherences that the beams which are driving

the Raman transitions have either a small amount of intensity or frequency noise on them.

The effect of the optical cavity is to perform FM-to-AM conversion on transmitted light

and so the effects of both are similar. As the intensity and/or detuning from the atom of

the beams fluctuates, we can model this in terms of its effect on an arbitrary state vector

of the system:

|ψ〉 (t) = c3(t) |3,mF 〉+ c4(t) |4,m′F 〉 −→ (4.46)

|ψ′〉 (t) = c3(t) |3,mF 〉+ P(θ′, t)eiθ
′
c4(t) |4,m′F 〉 . (4.47)

Here θ′ is a random phase imparted to the atom by the Raman pair and P(θ′, t) represents

the probability that at time t that the value of the random phase will be given by θ′. If we

assume that the noise on the lasers is Gaussian distributed then we can model P(θ′, t) as

random walk with zero mean and phase diffusion which is linear in time σ2 = 2χt:

P(θ(t), t) =
1√

4πχt
e−θ

2/4χt. (4.48)
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Integrating the density matrix for this state over all possible phases θ′ yields:

ρ̂ =
∫ +∞

−∞
|ψ′〉 〈ψ′| dθ′ =

 |c3|2 e−χtc3c
∗
4

e−χtc4c
∗
3 |c4|2

 . (4.49)

Under the substitution χ = 1/T2 we have reclaimed our original, ad hoc noise model:

ρ̂ =

 ρ33 e−t/T2ρ34

e−t/T2ρ∗34 ρ44

 . (4.50)

We should note that noise on the Raman beams is not the only source of this type of

dephasing. Two other examples include: motion of an atom in the FORT effectively modu-

lating the intensity and phase of the Raman pair at the position of the atom; and mapping

magnetic field noise onto the atom via the Zeeman effect. Moreover, this is not the only

physical model of noise which can lead to decoherence. Another example is off-resonant

scattering of FORT light which causes the system to undergo a “quantum jump”. These

jumps instantaneously project the system into one of the two eigenstate and eliminate the

coherence terms in the density matrix. Averaging over an ensemble of these kinds of events,

we recover the form of Equation (4.50).

This leads us to an interesting question. Although phase noise introduced because a

particularly hot atom samples a large range of Rabi frequencies and phase noise resulting

from scattering of stray light both lead to the same functional form for the noise-coupled

density matrix, they are fundamentally different physical phenomena. In fact, there are

generally two distinct classes of phase damping mechanisms. We can make that distinction

by rewriting the spin-spin relaxation time constant as the sum of two terms:

1
T ∗2

=
1
T ′2

+
1
T2
. (4.51)

The naming convention for each term is a strange holdover from the world of NMR and

MRI, but the first term, T ∗2 , is the total effective phase damping time constant. The second,

T ′2, corresponds to reversible, or inhomogeneous, dephasing - these are types of noise which

are unique to a particular configuration of the experiment (i.e., inhomogeneous over the full,
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Figure 4.12: Rabi oscillation on the (|3, 0〉 ↔ |4, 0〉) clock transition at zero detuning and

with a. ΩE = (2π)(137 kHz) and b. ΩE = (2π)(12.3 kHz). Data is shown in blue with

statistical error and the red dashed line constitutes a fit to Equation (4.45).

ensemble of data). Inhomogeneous dephasing effects include things like slow (atom-to-atom

timescale) drifts in the power in the Raman pair, effects dependent on atomic temperature,

and slow magnetic field drifts. Under a particular set of Raman pulses known as a spin

echo, we effectively time reverse the noise and see a revival in the coherence of the system

[26]. The third term, T2, represents irreversible, or homogeneous, dephasing. These are

sources of noise which couple with uniform strength to all measurements in the ensemble.

Homogenous effects include things like the rate of incoherent scatter of FORT light and

fast-timescale Raman intensity fluctuations.

4.4.2 Measurements

This leads us finally to how we can characterize Rabi oscillation and decoherence in our

experiment. The observable to which we have convenient access by way of down-goer detec-

tion is the population in each hyperfine state of the atom. Similar to Raman spectroscopy,

we will measure P4(τR, δ), however now with variable Raman pulse duration, τR, and at

fixed detuning. This type of measurement is also only possible in the FORT-Raman con-

figuration - ensemble averaging over different phases α in the Raman-Raman configuration
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leads to a broad distribution of Rabi frequencies to which atoms can couple which, in turn,

leads to a T ∗2 far too small to observe any coherence.

The experimental protocol is similar to that for spectroscopy - we begin by using the

ADWin Gold to remotely program an SRS DG535 pulse generator to produce pulses of the

desired length, τR, when externally triggered. For each attempt to load an atom into the

FORT, that atom will interact only with Raman pulses of one, particular duration. A train

of digital pulses to the P7888 is used to provide a “stamp” indicating which pulse duration

is associated with each loading attempt. After an atom is loaded into the cavity, we iterate

500− 1500 cycles of fixed-duration Raman, down-goer state detection and down-goer atom

detection. From these measurements, an ensemble average of the total population in F = 4

as a function of τR is computed from the data. For this set of measurements there is a

uniform DC magnetic bias field applied along the cavity axis so as to split out and resolve

the individual (|3,mF 〉 ↔ |4,mF 〉), ∆mF = 0 transitions.

Figure 4.12a demonstrates resonant Rabi oscillation on the (|3, 0〉 ↔ |4, 0〉) transition

with the optical power in the Raman beam tuned such that ΩE = (2π)(137 kHz) (as

determined by a fit to the data). For this measurement a fraction p3(0) = 0.6 of the atomic

population was initially prepared in |3, 0〉 using the incoherent Raman optical pumping

protocol outlined in the next Section. Because we cannot expect to transfer more population

to |4, 0〉 than we began with in |3, 0〉, the contrast of the oscillation is diminished by a factor

of p3(0). This measurement is valuable because the two states being driven are first-order

magnetic field insensitive which removes a potential noise source from the problem. In

spite of this, it is clear that the oscillation exhibits T ∗2 -type phase damping, as described in

the previous Subsection. The dashed red line represents a least squares fit of the data to

Equation (4.45) and yields a dephasing time T ∗2 = (5.91 ± 0.97) µs. We expect a number

nR = 2T ∗2 ΩE = 1.6 of full Rabi cycles before the contrast of the fringe is reduced by a factor

of 2.

In order to understand the sources of dephasing for this measurement, a useful check

is to perform an analogous measurement at a lower Rabi frequency. We expect any noise

resulting from sources which cause the Rabi frequency to fluctuate (i.e., atomic motion

within the FORT potential or high-frequency intensity or phase noise between the lasers)
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Figure 4.13: Rabi oscillation on the (|3, 0〉 ↔ |4, 0〉) transition with ΩE = (2π)(12.3 kHz)

and a. δ = (2π)(−10 kHz) and b. δ = (2π)(+10 kHz). Notice that the red-detuned

measurement exhibits a considerably larger phase damping time constant than the blue-

detuned data.

to scale in proportion to the optical power in the two beams. Figure 4.12b shows resonant

Rabi oscillation on the clock transition with ΩE = (2π)(12.3 kHz), again deduced by fitting

to the data. For this measurement, a least squares fit gives T ∗2 = (105 ± 18) µs and

nR = 2.6. While nR is only a factor of 1.6 larger than the equivalent measurement at higher

Rabi frequency, T ∗2 is a factor of 17 larger. That the dephasing time scales inversely with

Rabi frequency strongly suggests the that dominant phase damping mechanism is either

atomic motion or laser noise.

We have also investigated the dependence of the relaxation time on detuning and dis-

covered a rather surprising effect. Figure 4.13a shows data taken for Rabi oscillations at

ΩE = (2π)(12.3 kHz) at a Raman detuning of δ = (2π)(−10 kHz) (here ΩE was determined

by first measuring Rabi nutation on resonance and fitting to that data). The measured Rabi

nutation rate in the Figure is ΩM = (2π)([15.8 ± 0.1] kHz) and is in good agreement with

theory, ΩM ≈ Ω′E =
√

Ω2
E + δ2 = (2π)(15.8 kHz). Also, the contrast of the oscillation is

diminished as is expected for off-resonant driving. Strikingly, however, the phase damping

time is now T ∗2 = (288 ± 46) µs and nR = 7.1. The analogous measurement with blue
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detuning, δ = (2π)(+10 kHz) (Figure 4.13b) yields only T ∗2 = (41 ± 16) µs and nR = 1.0.

Clearly some detuning-dependent effect is playing a very important role in the decoherence

processes for this system.

We believe the most likely culprit is a subtle effect involving the differential AC stark

shift ∆U0,4−3 between the two hyperfine ground state induced by the FORT (Section 3.3).

Recall that the slight difference in detuning, ∆HF , of the two manifolds from the atomic

excited states causes the FORT to decrease the energy splitting between the two. In a

given ensemble of measurements we can safely assume that there is a distribution of atomic

temperatures determined by whatever heating and cooling rates are present and relevant.

The “coldest” atoms in that ensemble are those with wavepackets which tend to better

overlap the highest intensity regions of the FORT (i.e., the “bottoms” of the FORT wells)

as compared to “hot” atoms. Therefore these are also the atoms which experience both

the largest differential shift ∆U0,4−3 and the smallest spread in Rabi frequency ΩE due to

their motion. “Hotter” atoms, on the other hand, will see a smaller average differential shift

and a larger spread in Rabi frequency. By detuning our Raman beams by an amount δ ∼

∆U0,4−3, we are effectively moving the “hot” atoms farther out of resonance than the “cold”

atoms. The dominant contribution to the observed Rabi oscillation is from those atoms

which are closer to resonance (we know that the amplitude of the oscillation falls off with

detuning). From this model, we therefore can predict that the same atoms which dominate

the measurement also happen to be those which experience less motion-induced dephasing.

The result, which has been confirmed to order-of-magnitude by computer simulation, is

that T ∗2 is considerably longer for an appropriately red-detuned Raman pair. This also very

strongly suggests that the principle dephasing mechanism for our system is fluctuations in

Rabi frequency as a function of atomic motion.

In summary, we are able to observe coherent Rabi oscillation induced by the FORT-

Raman configuration of beams. Although dephasing has a pronounced effect on the system,

we have been able to develop a good understanding of the sources which contribute signif-

icantly to decoherence. Beyond what we have discussed in this Subsection, there are a

number of techniques which we have also used to isolate different sources of phase damping

in our system. These include Ramsey interferometery and the so-called spin echo protocol
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which can isolate inhomogeneous from homogeneous phase damping. These measurements

are described in the thesis of Tracy Northup [26]. However, because coherence persists

long enough that nR > 1, we are able to use this technique to prepare arbitrary coherent

superpositions of the two coupled states and to perform finite rotations of the Bloch vector

for the system. This provides us a powerful tool for coherently preparing and manipulating

the internal state of the atom which, as we will see, has a diverse set of applications in the

laboratory.

4.5 Incoherent Raman Optical Pumping

In this section we will describe an application of the cavity-based Raman technique to

optical pumping of a trapped atom into a particular well-defined Zeeman state. Atomic

state preparation is an extremely important task and one which is otherwise difficult to

carry out when optical access to the atom is obscured by the presence of a cavity. Here we

describe a novel method for performing optical pumping using a slight, incoherent variation

on the coherent Raman processes described hereto. The discussion in this section follows

from and expands upon my work and contributions to Reference [46].

4.5.1 Overview

A standard method for preparing an atom in a specific internal state is optical pumping

[47, 39, 48], which involves driving the atom with light fields that couple to all but one of

its internal states; these light fields randomly scatter the atom from one internal state to

another until it falls into the uncoupled “dark” state. Various optical pumping schemes have

been analyzed and demonstrated for alkali atoms [49, 50, 51] and today are well-established

techniques. These schemes rely on dark states that are set by the polarization of the driving

field, and this imposes restrictions on the possible Zeeman states in which the atom can be

prepared. Specifically, one can prepare the atom in the mF = 0 state by using light that is

linearly polarized along the quantization axis, or in one of the edge states (mF = ±F ) by

using light that is circularly σ±-polarized along the quantization axis.

In contrast, the scheme presented in this Section allows the atom to be prepared in
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any of the Zeeman states within the lowest ground state hyperfine manifold of an alkali

atom, which in our case is the 6S1/2, F = 3 manifold of Cesium. The key component of

the scheme is the FORT-Raman technique described in the previous Sections. We apply

a magnetic bias field along the cavity axis to split out the individual Zeeman transitions,

and add broadband noise to lower-frequency Raman optical field, where the spectrum of

the noise is tailored such that all but one of the |3,mF 〉 ↔ |4,mF 〉 transitions are driven.

The two Zeeman states corresponding to the undriven transition are the dark states of the

system, and we exploit these dark states to perform optical pumping.

We verify the optical pumping procedure by measuring Raman spectra; these measure-

ments show that a fraction 0.57±0.02 of the total population is prepared in the desired state,

with the remaining population distributed fairly uniformly among the six other states. Con-

ventional optical pumping to a single Zeeman sublevel has been previously demonstrated

within a cavity [52], but we find our new method to be particularly effective given the con-

straints of our system, in which optical access to the atom is limited and we must address

the large multiplicity of Cesium sublevels. However, optical pumping via incoherent Raman

transitions has much broader applications beyond the cavity QED setting, and can be used

in a wide variety of atomic systems with hyperfine ground-state structure.

4.5.2 Experimental Configuration

For the particular set of results shown in this section, the depth of the FORT is tuned to be

U0/h = 45 MHz. The FORT-Raman beam configuration is used for these measurements,

though in principle similar results could be obtained for a Raman-Raman type arrangement.

We will prepare our system with a magnetic bias field directed along the cavity axis such

that so only the ∆mF = 0 Raman transitions are driven. For the experiments described

here, we typically set the axial bias field such that ω0(mF ) ' (2π)(910 kHz)mF , as described

by Equation (4.26).

4.5.3 Coherent vs. Incoherent Raman transitions

As we have previously described, if the FORT and Raman beams are both monochromatic,

then they drive coherent Raman transitions between pairs of Zeeman states (|3,mF 〉 ↔
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|4,mF 〉), and the atomic populations oscillate between the two states in each pair. For the

experiments described in this Section, the powers in the Raman and FORT beams are chosen

such that that Ω0 ' (2π)(120 kHz). The effective detuning for the (|3,mF 〉 ↔ |4,mF 〉)

transition is given by

δE(|3,mF 〉 ↔ |4,mF 〉) = δ − ω0(mF ). (4.52)

In addition to the already established protocols for driving coherent Raman transitions, we

can also drive incoherent Raman transitions by using a monochromatic FORT beam and a

spectrally broad Raman beam, where the spectral width is typically ∼ 10 MHz. In contrast

to coherent Raman transitions, in which the atom undergoes coherent Rabi oscillations,

for incoherent Raman transitions the atomic population decays at a constant rate from

|3,mF 〉 → |4,mF 〉 and from |4,mF 〉 → |3,mF 〉. In Subsection 4.5.6, we show that these

decay rates are proportional to S(∆HF + ω0(mF )), where S(ω) is the power spectrum of a

beat note formed between the FORT and Raman beams.

4.5.4 Population Measurement via Raman Spectroscopy

Figure 4.14 shows a Raman spectrum for the initial state of the system in the absence of

optical pumping and with comparable populations in all of the F = 3 Zeeman states. To

prepare this state, we optically deposit the atom randomly in F = 3 by alternating 7 pulses

of resonant (4↔ 4′) lattice light with 7 pulses of resonant (4↔ 4′) “unbalanced” side light

(the cavity side beam with no counter-propagating component, as described in Section 3),

where each pulse is 300 ns long. The beams that deliver the lattice and side light are those

discussed in Chapter 3.

To determine the population p3(mF ) in the Zeeman state |3,mF 〉, we return to a slightly

generalized version of Equation (4.27):

p4(δ) = pb +
1
2

∑
mF

[
1 +

(δ − ω0(mF ))2

(1−m2
F /16) Ω2

0

]−1

p3(mF ), (4.53)

where pb is a constant background. We fit the Zeeman state populations, the Rabi frequency
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Figure 4.14: Raman spectrum for a random initial state. Shown is the transfer probability

p4 versus Raman detuning δ: the points are the experimental data, the curve is a fit of p4(δ),

as given by equation (4.53), and the vertical green lines indicate the predicted frequencies

δ(|3,mF 〉 ↔ |4,mF 〉) for individual Zeeman transitions.

Ω0, and the strength of the axial bias field, and perform an independent measurement to

determine the background probability pb = 0.006. The fitted value of Ω0 agrees to within

14 % with the value we would expect based on the measured optical powers in the FORT

and Raman beams, and the fitted value of magnetic field strength agrees to within 5 %

with the value we would expect based on the known axial coil current and geometry. As

a consistency check we sum the fitted populations and obtain the result 1.10 ± 0.03, in

reasonable agreement with the expected value of 1.

4.5.5 Optical Pumping Scheme

We can prepare the atom in a specific Zeeman state by using a Raman beam whose spectrum

is tailored to incoherently drive all but one of the Zeeman transitions. As an example, Figure

4.15a shows the power spectrum of the noise used for pumping into |3, 0〉. This graph was

obtained by measuring the power spectrum of a beat note formed between the FORT and

Raman beams by mixing them on a photodetector with a non-polarizing beam splitter. For
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comparison, Figure 4.15b shows the power spectrum for a monochromatic Raman beam

tuned to Raman resonance, as would be used for driving coherent Raman transitions.

Comparing the noise spectrum shown in Figure 4.15a to the Raman spectrum shown

in Figure 4.14, we see that the noise drives incoherent Raman transitions from (|3,mF 〉 ↔

|4,mF 〉) for mF 6= 0, but because of the notch around zero detuning, the (|3, 0〉 ↔ |4, 0〉)

transition is not driven. We optically pump the atom into |3, 0〉 by first driving incoherent

Raman transitions for 10µs, then pumping the atom to F = 3 using the method discussed

in section 4.5.4, and iterating this sequence 40 times. It is straightforward to modify this

procedure so as to pump into the |3,mF 〉 Zeeman state for any mF ; we simply shift the

notch in the noise so that it overlaps with the (|3,mF 〉 ↔ |4,mF 〉) transition.

To characterize the optical pumping, we first pump the atom into a specific Zeeman

state and then measure the Raman spectrum as described in the preceding section. Figure

4.16 shows Raman spectra measured after pumping into (a) |3, 0〉 and (b) |3, 1〉. We find

that the fraction of the atomic population in the desired state is 0.57 ± 0.02 for pumping

into |3, 0〉 and 0.57±0.02 for pumping into |3, 1〉, where the remaining population is roughly

equally distributed among the other Zeeman states (these numbers are obtained using the

by fitting equation (4.53) to the data, as described in section 4.5.4). This value is likely

limited by small but significant amounts of optical power which provide Raman coupling

between the clock states in the system and result from deficiencies in how our incoherent

noise spectrum is produced. Summing the fitted populations in all the Zeeman states, we

obtain the value 1.02 ± 0.04 for (a) and 1.08 ± 0.04 for (b), in reasonable agreement with

the expected value of 1.

To generate the Raman beam used in Figure 4.15a, we start with an RF noise source,

which produces broadband noise that is spectrally flat from DC to ∼ 10 MHz. The noise

is passed through a high-pass filter at 500 kHz and a low-pass filter at 5 MHz, where both

filters roll off at 60 dB per octave. The filtered noise is then mixed against an 85 MHz local

oscillator, and the resulting RF signal is used to drive an acousto-optical modulator (AOM)

that modulates a coherent beam from the injection-locked Raman laser. The first order

diffracted beam from the AOM forms a Raman beam with the desired optical spectrum.

Note that previous work has demonstrated the use of both synthesized incoherent laser
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Figure 4.15: (a) Power spectrum of noise used for pumping into |3, 0〉. (b) Power spectrum

of coherent signal used for driving coherent Raman transitions with Ω0 = (2π)(120 kHz).

Both curves are obtained by combining the FORT and Raman beams on a photodetector and

measuring the spectrum of the photocurrent; shown is the RF power in a 3 kHz bandwidth

versus detuning from ∆HF .
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fields [53, 54], such as that used here, as well as the noise intrinsic to free-running diode

lasers [55, 56] to resonantly probe atomic spectra.

Although the scheme presented here relies on incoherent Raman transitions, it is also

possible to perform optical pumping with coherent Raman transitions. The basic principle

is the same: we simultaneously drive all but one of the Zeeman transitions, only instead of

using a spectrally broad Raman beam, we use six monochromatic Raman beams, where each

beam is tuned so as to resonantly drive a different transition. We have implemented such

a scheme, and found that it gives comparable results to the incoherent scheme described

above, but there are two advantages to the incoherent scheme. First, it is simpler to generate

a Raman beam with the necessary spectral properties for the incoherent scheme. Second,

when coherent Raman transitions are used, the six frequency components for the Raman

beam must be tuned to resonance with their respective transitions, and hence are sensitive

to the value of the axial magnetic field. When incoherent Raman transitions are used,

however, the same Raman beam can be used for a broad range of axial field values.

4.5.6 Transition Rate for Incoherent Raman Transitions

As described in Section 4.5.3, we drive incoherent Raman transitions between pairs of

Zeeman states (|3,mF 〉 ↔ |4,mF 〉) by using a monochromatic FORT beam and a spectrally

broad Raman beam. For incoherent Raman transitions the atomic population decays at a

constant rate from |3,mF 〉 → |4,mF 〉 and from |4,mF 〉 → |3,mF 〉, and in this Section we

calculate these decay rates.

We will consider a single Zeeman transition (|3,mF 〉 ↔ |4,mF 〉), so we can treat the

system as an effective two-level atom with ground state g ≡ |3,mF 〉 and excited state

e ≡ |4,mF 〉, where the energy splitting between g and e is ωA ≡ ∆HF + ω0(mF ). The

FORT-Raman pair drives this effective two-level atom with broadband noise, which we can

approximate as a comb of classical fields with optical frequencies ωk and Rabi frequencies

Ωk. Let us assume that we start in the ground state g. If we only consider the coupling of

the atom to field k, then the equation of motion for the excited state amplitude ce is

iċe =
Ωk

2
e−iδkt cg, (4.54)
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Figure 4.16: (a) Raman spectrum for optical pumping into |3, 0〉. (b) Raman spectrum

for optical pumping into |3, 1〉. Raman spectrum for a random initial state. Shown is the

transfer probability p4 versus Raman detuning δ: the points are the experimental data, the

curve is a fit of p4(δ), as given by equation (4.53), and the vertical green lines indicate the

predicted frequencies δ(|3,mF 〉 ↔ |4,mF 〉) for individual Zeeman transitions.
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where δk ≡ ωk−ωA is the detuning of the field from the atom. At small times the population

is almost entirely in the ground state, so we can make the approximation cg = 1 and integrate

equation (4.54) to obtain

ce(t) =
Ωk

2δk
(e−iδkt − 1). (4.55)

Thus, the transition rate from g to e for a single frequency ωk is

γk =
|ce(t)|2

t
=
π

4
tΩ2

kD(δkt/2), (4.56)

where

D(x) ≡ sin2 x

πx2
. (4.57)

The total decay rate is obtained by summing the decay rates for all the fields in the comb:

γ =
∑
k

γk =
π

4
t
∑
k

Ω2
kD(δkt/2). (4.58)

To evaluate this expression we need to know the distribution of Rabi frequencies Ωk. This

information can be obtained by forming a beat note between the FORT and Raman beams

on a photodetector, and measuring the power spectrum S(ω) of the photocurrent using a

spectrum analyzer. Let us first consider this measurement for a monochromatic Raman

beam, and then generalize to a spectrally broad Raman beam. If both the FORT and

Raman beams are monochromatic, with optical frequencies ωF and ωR, then the resulting

photocurrent i(t) is given by

i(t) = iF + iR + 2η cos((ωF − ωR)t)
√
iF iR, (4.59)

where iF and iR are the cycle-averaged photocurrents for the FORT and Raman beams

taken individually and η is the heterodyne efficiency. Thus, the power spectrum of the
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photocurrent has a spike at the difference frequency ∆ ≡ ωF − ωR:

Sc(ω) = Pc δ(ω −∆), (4.60)

where the integrated power Pc of the spike is proportional to iF iR. If the difference frequency

∆ is tuned to Raman resonance (∆ = ωA), then the FORT-Raman pair drives coherent

Raman transitions with a Rabi frequency Ωc that is proportional to
√
iF iR, so

Ω2
c = αPc, (4.61)

where α is a constant that depends on various calibration factors.

Now consider the case of a spectrally broad Raman beam, which results in a photocurrent

with power spectrum Si(ω). The effective Rabi frequency Ωk corresponding to comb line k

is given by

Ω2
k = αSi(ωk) δω, (4.62)

where δω is the frequency spacing between adjacent comb lines. Substituting this result

into equation (4.58), and replacing the sum with an integral, we obtain

γ =
π

4
αt

∫
Si(ω)D((ω − ωA)t/2) dω. (4.63)

If the power spectrum near ωA is flat over a bandwidth ∼ 1/t, then we can approximate D

as a delta function and perform the integral:

γ =
π

2
αSi(ωA). (4.64)

It is convenient to use equation (4.61) to eliminate the calibration factor α:

γ =
π

2
Si(ωA)
Pc

Ω2
c . (4.65)

The spectrum analyzer trace given in Figure 4.15a displays the power spectrum in terms of
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the power Pi(ν) ' 2πB Si(ω) in a bandwidth B = 3 kHz, so we can also write this as

γ =
1
4
Pi(ωA/2π)

Pc

Ω2
c

B
=

1
4

(1−m2
F /16)

Ω2
0

B

Pi((∆HF + ω0(mF ))/2π)
Pc

, (4.66)

where we have substituted Ωc = (1−m2
F /16)1/2 Ω0 and ωA = ∆HF + ω0(mF ).

We can calculate the time evolution of the atomic populations using rate equations. It

is straightforward to show that the decay rate e → g is also given by γ, and from the rate

equations one can show that the excited state population is

pe(t) =
1
2

(1− exp(−2γt)). (4.67)

We can calculate the decay rates for the noise spectrum shown in Figure 4.15. For this

noise spectrum the power Pi(ν) has roughly the same value P̄i at the frequencies of all the

m 6= 0 Zeeman transitions, so we can write the decay rates for these transitions as

γ(|3,mF 〉 → |4,mF 〉) = γ(|4,mF 〉 → |3,mF 〉) = (1−m2
F /16) Γ, (4.68)

where

Γ ≡ (1/4)(Ω2
0/B)(P̄i/Pc). (4.69)

From the power spectrum for the noise shown in Figure 4.15a we have that P̄i = −63 dBm,

and from the power spectrum for the coherent signal shown in Figure 4.15b we have that

Pc = −36 dBm, where the corresponding Rabi frequency is Ω0 = (2π)(120 kHz). Substitut-

ing these values into equation (4.69), we obtain Γ = 0.084µs−1.

4.5.7 Summary

We have measured the effectiveness of the optical pumping, and have shown that a fraction

∼ 0.57 of the atomic population can be prepared in the desired Zeeman state. Some possible

factors that could be limiting the effectiveness of the optical pumping include fluctuating

magnetic fields transverse to the cavity axis, misalignment of the cavity axis with the axial
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bias field, and slow leaking out of the dark state due to scattering from background light.

We are currently investigating these factors.

The scheme presented here operates on a fundamentally different principle from existing

optical pumping schemes, in that it relies on incoherent Raman transitions to create an

atomic dark state. Raman transitions have many different applications in atomic physics, so

there are often independent reasons for incorporating a system for driving Raman transitions

into an atomic physics laboratory; our scheme shows that such a system can also be applied

to the problem of atomic state preparation. The scheme should serve as a useful tool for

experiments in atomic physics, both in a cavity QED setting and beyond.

4.6 Motional Effects and Cooling

Recall that in Section 3.3 we described the properties of the FORT used to confine atoms

within the mode of our optical cavity. In particular, we described how for cold atoms

(with motional wavepackets localized near the “bottom” of a FORT well) we can treat the

axial and radial motion of the atom as two decoupled harmonic oscillators with oscillation

frequencies ωax and ωrad, respectively. For the geometry of our physics cavity we found

ωax/ωrad ∼ 102. Because the axial frequency is so much larger than the radial frequency

we will make the additional assumption that when describing only axial motion that the

radial position of the atom can be assumed to be fixed.

Under this assumption we can write the effective instantaneous axial vibrational fre-

quency at position (x, y):

ω′ax = ωax exp
[
−(x2 + y2)

w2
F

]
. (4.70)

The quantum harmonic oscillator potential associated with this motion is characterized by

creation and annihilation operators b̂ and b̂†:

b̂ =

√
mω′ax

2~

(
ẑ + i

p̂z
mω′ax

)
and b̂† =

√
mω′ax

2~

(
ẑ − i p̂z

mω′ax

)
. (4.71)
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Using these relations, we can write:

ẑ =
η

kF

(
b̂+ b̂†

)
(4.72)

where kF = ωF /c is the wave vector of the FORT field and η = kF
√

~/2mω′ax is called

the Lamb-Dicke parameter. Physically, η represents the ratio of the spatial extent of the

ground state wavepacket of a trapped atom to the wavelength of the FORT, λF . For our

system, assuming a FORT depth U0/h = −41.0 MHz, the maximum value of the Lamb-

Dicke parameter is ηmax = 5.6× 10−2.

Of course the FORT is not harmonic, but varies axially as sin2(kF z). For cold atoms

we can more closely approximate the FORT Hamiltonian by keeping the two lowest-order

terms of a Taylor series expansion of sin2 about a local minimum:

HF =
p̂2
z

2m
+

1
2
mω′2axz

2 − 1
6
mω′2axk

2
F ẑ

4 (4.73)

= ~ω′ax
(
b̂†b̂+ 1/2

)
− ω′ax

η2

12
(b̂+ b̂†)4. (4.74)

To first order, the harmonic oscillator Fock states {|n〉} are still “good” eigenstates of this

system. Using this approximation we can write tensor product states describing both the

internal and external state of the atom |F,mF , n〉 ≡ |F,mF 〉 ⊗ |n〉.

Now that we have a viable model Hamiltonian for the FORT potential, we can eval-

uate how Raman processes interact with motional states of the system. Recall that the

interaction Hamiltonian for the Raman pair is given by Equation (4.17), omitting VE :

Ĥ = −1
2

~δ(P̂4 − P̂3) +
1
2

~Ωrad sin2

(
ωRẑ

c
+ α

)
(Σ̂ + Σ̂†). (4.75)

Here we have made the spatial dependence of ΩE(~r) explicit by decomposing the radial

component

Ωrad = ΩE exp
(
−(x2 + y2)

w2
F

)
(4.76)

from the axial component. This expression can apply either to the FORT-Raman configu-
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ration wherein ωR = ωF and α = 0, or to the Raman-Raman configuration where ωR 6= ωF

and α can assume a different value in each FORT well. Note that because ΩE(~r) varies

with z that the Raman pair is able to couple motional states. To see this, we can use Taylor

expansion to order ẑ2 about the bottom of a FORT well to rewrite Ĥ in the form:

Ĥ = −1
2

~δ(P̂4 − P̂3) +
1
2

~Ωrad

[
cos2 α− kF sin 2αẑ − k2

F cos 2αẑ2
]

(Σ̂ + Σ̂†) (4.77)

= −1
2

~δ(P̂4 − P̂3) +
1
2

~Ωrad

[
cos2 α− η sin 2α(b̂+ b̂†)− η2 cos 2α(b̂+ b̂†)2

]
(Σ̂ + Σ̂†).

(4.78)

In order to understand how the Raman pair moves population between different motional

states, we can evaluate matrix elements of Ĥ to determine effective Rabi frequencies for

those transitions:

Ωn↔n
Ωrad

=
2 〈3,mF , n|Ĥ|4,mF , n〉

~Ωrad(|3,mF 〉 ↔ |4,mF 〉)
= cos2 α− η2(2n+ 1) cos 2α (4.79)

Ωn↔n±1

Ωrad
=

2 〈3,mF , n|Ĥ|4,mF , n± 1〉
~Ωrad(|3,mF 〉 ↔ |4,mF 〉)

= −η
√
n± 1 sin 2α (4.80)

Ωn↔n±2

Ωrad
=

2 〈3,mF , n|Ĥ|4,mF , n± 2〉
~Ωrad(|3,mF 〉 ↔ |4,mF 〉)

= −η2
√
n± 1

√
n± 2 cos 2α. (4.81)

Evidently the Rabi frequency for transitions involving ∆n = ±1 is suppressed by a factor

of η
√
n relative to transitions involving ∆n = 0 and transitions for which ∆n = 2 are

suppressed by η2n. Where permitted, these transitions manifest themselves in Raman

spectra as sidebands on spectral features corresponding to (|3,mF 〉 ↔ |4,mF 〉). These

sidebands are located near ω±z = ω0(mF ) ± δn (or, ω±z = ω0(mF ) ± 2δn) for ∆n = ±1 (or,

∆n = ±2) where δn ≡ ω′ax − η2ω′axn. The second term in the definition of δn represents a

correction for the anharmonicity of the FORT as a function of the number of vibrational

quanta in the system. The widths of the sidebands are generally dominated by the range

of values which ω′ax takes as the atom moves radially and the dispersion in δn as it samples

the anharmonicity of the FORT.
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In the FORT-Raman configuration, these expressions reduce to:

Ωn↔n
Ωrad

=
2 〈3,mF , n|Ĥ|4,mF , n〉

~Ωrad(|3,mF 〉 ↔ |4,mF 〉)
= 1 (4.82)

Ωn↔n±1

Ωrad
=

2 〈3,mF , n|Ĥ|4,mF , n± 1〉
~Ωrad(|3,mF 〉 ↔ |4,mF 〉)

= 0 (4.83)

Ωn↔n±2

Ωrad
=

2 〈3,mF , n|Ĥ|4,mF , n± 2〉
~Ωrad(|3,mF 〉 ↔ |4,mF 〉)

= −η2
√
n± 1

√
n± 2. (4.84)

It follows that any Raman pair which varies in intensity symmetrically with respect to

the FORT potential can not couple states which differ by ∆n = ±1. We can, however,

implement a Raman-Raman configuration wherein α varies from well-to-well and for which

∆n = 1 transitions are permitted in certain wells. In the next Subsection we will describe

how these type of transitions can be used to cool the motion of an atom to its quantum

ground state n = 0 and how we can use Raman spectroscopy to infer the temperature of

the atom.

4.6.1 Ground State Cooling on the First Order Sideband

This Section is adapted from Reference [57].

Using the techniques outlined above, in this Section we will describe the implementa-

tion of a Raman cooling process to cool an atom trapped in our FORT to its quantum

ground state of motion. This information is read out using standard down-goer techniques

for recording Raman spectra. From these spectra, we are able to infer that the lowest vi-

brational level n = 0 of the axial potential is occupied with probability P0 ' 0.95 for one

trapped atom.

For this set of experiments, the FORT potential was set to be U0/h = −41 MHz. Atoms

near the bottom of the FORT potential experience an axial oscillation frequency ωax =

(2π)(530 kHz) and a radial oscillation frequency ωrad = (2π)(4.5 kHz). The experiment is

tuned such that probability to load an atom into the FORT given an attempt to do so is

∼ 0.3. The Raman-Raman pair is configured as described in Section 4.2.2. We typically set

the optical power transmitted on resonance through the cavity for each of the two Raman

beams to P+ = P− = 140 µW, which gives a Rabi frequency Ω0 = (2π)(200 kHz) for atoms
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Figure 4.17: Switching apparatus for the higher-frequency of the two Raman beams in

the Raman-Raman configuration. The 0th and 1st diffracted orders from an acousto-optic

modulator are recombined at a non-polarizing splitting in such a way that the total power

reflected from the splitter is held constant.

with α = 0. Here, as usual, Ω0 is the Rabi frequency for the transition (|3, 0, 0〉 ↔ |4, 0, 0〉),

where the quantization axis is along the cavity axis. The AC Stark shift due to these Raman

beams adds a correction to the FORT potential of VE/h = 0.84 MHz.

To avoid heating the atom induced by repeated switching of VE , we have configured the

higher-frequency Raman beam to remain at constant intensity, but far-detuned (δAOM =

(2π)(85 MHz)) from Raman resonance unless being used to drive transitions. This is accom-

plished as shown in Figure 4.17. The first diffracted order of an acousto-optic modulator

at frequency ω+ is recombined with the zeroth diffracted order at ω+ − δAOM . The AOM

can be switched between two discrete settings - either maximum power in the first order

diffracted beam (Raman transitions ON) or maximum power in the zeroth order beam and

no power in the first order beam (Raman transitions OFF). The amount of power in each

of the two diffracted orders is managed using a variable attenuator such that in both con-

figurations of the AOM, the total summed power is constant. In order to map out Raman

spectra we fine-tune the frequency ω−+δ of the lower-frequency Raman beam using another

AOM.

In the harmonic limit, we can define a set of Fock states {|n〉} for the axial motion. Recall

that for transitions coupling (|3, 0〉 ↔ |4, 0〉) and to first order in η, the Rabi frequency for

an n → n transition is Ωn→n = cos2 αΩ0, while for an n → n − 1 transition, Ωn→n−1 =
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η
√
n− 1 sin 2αΩ0. For the system parameters used in this set of measurements, η = 0.056.

Note that the n → n − 1 transition is strongest for atoms with α = π/4. The spatial

dependence of the Raman coupling, together with the fact that the the axial motion of the

atom is in the Lamb-Dicke limit, allows us to implement Raman sideband cooling [58]. We

tune the Raman pair to the red axial sideband (δc = −525 kHz ' −ωax) and apply the

(4↔ 4′) lattice cooling beams (Chapter 3), which for consistency we shall refer to as Ω4. An

atom that starts in F = 3 is coherently transferred by the Raman pair to F = 4, where it is

incoherently repumped to F = 3 by Ω4. The coherent transfer lowers the axial vibrational

quantum number n by one, while the incoherent repumping usually leaves n unchanged since

n-changing transitions are Lamb-Dicke suppressed. Thus, the beams continually lower n,

cooling the atom to the axial ground state. Also, the lattice light provides Sisyphus cooling

[37] in the radial direction.

State detection and Raman spectroscopy are carried out in the usual way with τp =

100 µs pulses of (4↔ 5′) probe light serving as the source of the down-goer signal. We set

the intensity of the probe light such that on average Ne photons are detected per probing

interval with no atom in the cavity. If the number N of detected photons is such that

N < 0.25Ne, we assume an F = 4 atom is present, if N > 0.75Ne we assume an F = 4

atom is not present, otherwise the measurement is inconclusive (which happens < 2% of the

time) and we ignore the result. As usual, whenever we detect the atomic state we perform

two such measurements: the first with just probe light to measure P4(δ) and the second

with both probe and (3↔ 3′) repumper in order to detect an atom regardless of its internal

state. For loading, the total power in the four lattice beams (both (3 ↔ 3′) and (4 ↔ 4′))

is 50Isat
4 , where Isat

4 ∼ 3.8 mW/cm2. For detection, the intensity of the lattice (3 ↔ 3′)

repump field is 5Isat
4 .

We measure the Raman transfer probability P4(δ) by preparing an atom in F = 3,

applying a Raman pulse, and then detecting the atomic state using the above scheme (with

Ne ∼ 22). For each measurement cycle (or trial), we first Raman-sideband cool the atom

for an interval τc. Next, we pump it into F = 3 by alternating 1 µs pulses of (4 ↔ 4′)

lattice light with 1 µs pulses of linearly polarized resonant (4 ↔ 4′) light from the side of

the cavity (10 pulses of each). After the atom is pumped to F = 3, we apply a τR = 500 µs
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Raman pulse, which sometimes transfers it to F = 4. Finally, we measure the atomic state

and check if the atom is still present. For each atom we fix the absolute value of the Raman

detuning |δ|, and alternate trials at +|δ| with trials at −|δ| (299 trials each). By combining

data from atoms with different values of |δ|, we map out a Raman spectrum. Note that

because the initial Zeeman state of the atom is random, all allowed (|3,mF 〉 ↔ |4,mF 〉

Zeeman transitions contribute to these spectra.

Two example Raman spectra are plotted in Fig. 4.18. For the (a) curve, we cool for

τc = 250 µs, for the (b) curve for τc = 5 ms. These scans are performed after nulling

the magnetic field to within ∼ 40 mG; the widths of the peaks are set by the splitting of

different Zeeman levels due to the residual magnetic field. For the curve in panel (a), we see

peaks at the carrier (δ = 0), as well as at the blue/red sidebands (δ ' ±(2π)(530 kHz) =

±ωax). Already we note a sideband asymmetry, indicating that a significant fraction of

the population is in the n = 0 vibrational state. For the (b) data, the red sideband at

δ ' −(2π)(530 kHz) is suppressed to such an extent that it cannot be distinguished from

the background and contribution from off-resonant excitation of the carrier.

The ratio r of transfer probabilities for the red and blue sideband gives information

about the temperature of the atom. For a two-state atom in a thermal state, this ratio r0

at |δ| = ωa is related to the mean vibrational quantum number n̄ by r0 = n̄/(n̄+ 1) [58]. In

Fig. 4.18c, we plot r as a function of |δ| for the τc = 5 ms data. As shown in Fig. 4.18b, we

fit a Lorentzian curve to the carrier, then subtract its contribution from both the red and

the blue sideband data, with the result shown in panel (c). We find r0 ' n̄ = 0.01 ± 0.05,

and the ground state population P0 = 1/(n̄+ 1) = 0.99± 0.05, where the error bars reflect

fluctuations in the data around |δ| = ωa. If instead we subtract the constant background

of PB4 = 0.024 but not the carrier’s Lorentzian tail, we find r0 ' n̄ = 0.05 ± 0.04, and

P0 = 0.95± 0.04. Finally, if we use the raw data from Fig. 4.18b with no subtractions, we

obtain r0 = 0.10± 0.03, n̄ = 0.12± 0.04 and P0 = 0.89± 0.03. Note, however, that because

the atom is not a two-state system and the motional state is not known to be thermal, these

estimates are approximate.

In addition to measuring the probability of the atom in the n = 0 axial ground state

with high probability, the Raman cooling protocol was measured to significantly extend the
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Figure 4.18: Population P4 in the F = 4 state versus Raman detuning δ/2π. The (a) data

are taken with τc = 250 µs of cooling, and with an Ω4 total 4-beam intensity I4 = 5Isat
4 ;

the (b) data with τc = 5 ms of cooling, and I4 = 0.5Isat
4 (on average, about 33 atoms per

data point). The arrow marks the detuning used for sideband cooling. (c) Zoom-in on the

two sideband regions for the (b) data, with detuning axis folded around δ = 0. The red and

blue sidebands, as well as their ratio r (black), are shown after subtracting a Lorentzian fit

to the carrier (red curve in (b)).



174

0.25

0.20

0.15

0.10

0.05

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

250200150100500
Trial number

200100

15001000500

2001000
Time (ms)

 5 ms cooling
 250 μs cooling
 no cooling
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are paired.
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lifetime of atoms in the FORT. The is demonstrated in Figure 4.19 where we have plotted

the probability to measure the presence of an atom in the FORT as a function of the number

of cooling intervals applied to the system. By fitting to an exponential we can determine

the trap lifetime for τc = 250 µs cooling intervals, T = (42± 3) ms, and τc = 5 ms cooling

intervals, T = (883 ± 86) ms. In the absence of cooling the dominant heating mechanism

for the atom is likely probe-induced motion during the state- and atom-detection intervals.

The data in the absence of cooling therefore does not conform to an exponential fit. While

the lifetime in the presence of ground state cooling does not exceed the measured lifetime

“in the dark” (i.e., in the absence of any probe light), it does greatly extend the lifetime in

the presence of probing and is quite valuable for practical purposes.

The axial cooling rate and asymptotic value of n̄ depend on δc, on the Ω± Rabi frequen-

cies, and on the power and detuning of the Ω4 lattice beams. We have performed computer

simulations to help us choose optimal values for these parameters. A common feature of

both our theoretical and experimental investigations is the robustness of n̄ under variations

of the cooling parameters. As an example, in Fig. 4.20 we plot the measured sideband ratio

r0 at δc = −(2π)(500 kHz) ' −ωa as a function of (a) the detuning δc used for sideband

cooling, and (b) the recycling intensity I4. The sideband asymmetry is maintained over a

range of at least 200 kHz in detuning, and of two orders of magnitude in the intensity I4

of the Ω4 beams. The insets give results from a simple 2-state calculation of r0, displaying

similar insensitivity to the exact values of δc and I4. Unless otherwise noted, the settings

for these measurements are: I4 = 0.3Isat
4 , τc = 5 ms, δc = −(2π)(500 kHz), τR = 50 µs;

PB4 = 0.065 was subtracted before computing r0.

We use two different methods for estimating the mean energy Er for radial motion.

The first method involves adiabatically lowering the FORT depth to zero, so that only the

UR trapping potential remains, and measuring the probability that the atom survives the

process [59]. If we assume a thermal state for the radial motion, this method limits Er to

∼ 200 µK. The second method relies on the fact that radial motion would shift and/or

broaden the axial sidebands observed in our Raman spectra. By applying a small axial bias

field, we can resolve motional sidebands of transitions between specific magnetic sublevels;

the positions and widths of these sidebands also place a limit on Er of ∼ 200µK. However,
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Figure 4.20: Varying cooling parameters. The sideband ratio r0 is shown as a function of

(a) the Raman detuning δ employed for cooling and (b) the 4→ 3 repumping intensity I4.

Insets show the results from a simple calculation for a 2-state atom trapped in a FORT well

with α = π/4.

the Sisyphus cooling we use radially has been previously shown to reach temperatures of

∼ 1 µK [37], which corresponds to nrad ' 4 for an atom in our FORT. Note that the ratio

of the radial to the axial trapping frequencies (' 0.01) is such that any modulation of the

axial frequency due to radial motion would be adiabadtic. As a result, we expect that an

atom cooled to the axial ground state does not change its state due to radial motion.

In summary, we have demonstrated cooling to the ground state of axial motion for

single Cesium atoms strongly coupled to the field of a small optical resonator. Together

with existing capabilities for strong coupling of the internal degrees of freedom, control

over the external center-of-mass motion in cavity QED could possibly enable a new set of

phenomena to be explored at the light-matter interface. For example, arbitrary states of

atomic motion can be prepared from the ground state by coherent Raman transitions [58],

then mapped to the electromagnetic field by way of the strong atom-field coupling [60].

4.6.2 Cooling on the Second Order Sideband

We have also implemented a scheme for resolved sideband cooling on the second order

motional sideband in analogy to that described in the previous section. This is done by

driving ∆n = 2 motional transitions using the FORT-Raman configuration of beams. For
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Figure 4.21: Raman spectra for uncooled atoms and for atoms undergoing τc = 5 ms of

second order resolve Raman sideband cooling. Note the sideband asymmetry and the change

in sideband shape in the data with cooling.

the set of measurements described here, the intensity of the Raman beam was configured

such that Ω0 ≈ 150 kHz is the Rabi frequency for the (|3, 0, 0〉 ↔ |4, 0, 0〉) transition. The

depth of the FORT was measured to be U0/h = 45 MHz. The intensity of the Ω4 lattice

light is set to be I4 ≈ 0.5Isat4 . The timing for the experiment is the equivalent to that for

the first order sideband measurement: a Raman cooling interval of duration τc followed by

a variable detuning Raman pulse of duration τR and then 100 µs intervals of state- and

atom-detection probe light.

The Raman spectra corresponding to this measurement for τc = 0 ms and τc = 5 ms are

shown in Figure 4.21. For these measurements the magnetic fields are nulled to the level of

| ~B| ≈ 30 mG and therefore, for both pieces of data, there is a clearly resolved carrier feature

corresponding to all transitions (|3,mF , n〉 ↔ |4,mF , n〉). We can also clearly see two second

order motional sidebands located near δ = ±2ωax = ±1.2 MHz. These sidebands are much

broader than the Rabi frequency with which they are being driven (and which is suppressed

by a factor of ∼ η2n relative to the carrier) due to the anharmonic dispersion of the FORT
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vibrational energies. In the data corresponding to τc = 5 ms we see two important effects

emerge. First, there is a clear asymmetry between the red and blue motional sidebands.

This suggests a majority of the motional population resides either in the n = 0 or n = 1

states. Because we are driving ∆n = 2 transitions, neither of these states can couple to

lower-lying motional levels and both contribute to the asymmetry of the feature. Atoms

initially in cooled into a Fock state exhibiting an odd number of vibrational quanta will

cool asymptotically to n = 1 while atoms initially cooled into an even numbered Fock state

will approach n = 0.

The second notable effect is that the shape of the blue sideband has changed with

respect to the data for uncooled atoms. Recall that we expect the resonant frequency for

the sideband transitions to be:

δn ≡ ω′ax − η2ω′axn. (4.85)

As the atom gets colder and moves towards states exhibiting lower motional quantum

numbers, the center of the sideband feature should shift towards ω′ax. We can clearly see

this effect in the data - for the spectrum in which cooling has been implemented the blue

sideband has narrowed and the center shifted towards ωax.

As a matter of practical convenience, we frequently make use of second-order resolved

sideband cooling the laboratory. As was observed for first order cooling, the effect of the

second order cooling protocol is to significantly extend the trap lifetime of individual atoms

in the presence of strong probing. However second order cooling is a good deal simpler

and more efficient to set up and maintain as it requires only one beam in addition to the

FORT as opposed to two additional beams in the case of first order cooling. In Chapter

6 we will describe an experiment wherein we are able to measure the complete vacuum

Rabi spectrum for just one atom. This experiment, in which the atom undergoes prolonged

periods of probing at probe-cavity detunings which can demonstrably heat the atom from

the trap on experimentally small timescales, was made possible only by the implementation

of second order sideband cooling which kept the atoms well-localized in the FORT for the

entire duration of the measurement.
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4.7 Sisyphus Cooling with Raman Repumper

In Chapter 3 we briefly described how polarization gradient (or Sisyphus) cooling is used to

damp the falling motion of atoms from the lower MOT as they enter the FORT potential.

The configuration for this cooling scheme involves two pairs of counter-propagating σ+−σ−-

polarized “lattice” beams, each comprised of light at two distinct optical frequencies +10

MHz detuned from (3 ↔ 3′) and (4 ↔ 4′) transitions. Using this method, the typical

probability with which we can load an atom into the FORT conditioned on the release of

the lower MOT is Pl < 0.1. In mid-2006 we discovered, however, that by replacing one of

the two Sisyphus cooling beams by a large Rabi frequency (ΩE > (2π)(1.5 MHz)) resonant

Raman pair in FORT-Raman configuration, we can considerably increase Pl. We have

observed that this scheme does not produce the same effect in Raman-Raman configuration.

While we don’t have a quantitative understanding of how the combination of lattice

and Raman is more effective than lattice alone we have developed a plausible, qualitative

explanation. As we have seen in this Chapter, the effect of a coherent Raman pair is to

induce Rabi oscillation between the hyperfine ground states of the atom. For an atom

falling through the Raman beams, ΩE will vary as a function of the position of the atom.

This will lead to dephasing of the Rabi oscillation and can be modeled, like earlier, as an

incoherent Raman process with population equilibrating in the maximally mixed state for

the system.

Ordinarily, the atom undergoes PG cooling in lattice light with frequency corresponding

to the populated hyperfine ground state of the atom until it scatters a photon which deposits

the atom in the other ground state. In the lattice-lattice arrangement the atom then expe-

riences PG cooling due to the other frequency of lattice light until it, again, scatters. Each

time the atom scatters a “repump” photon (i.e., a non-PG cooling photon), there is a ran-

dom momentum kick imparted to the atom. However, in the Raman-lattice configuration

(for instance, where we have replaced the (3↔ 3′) beam with the Raman pair) the Raman

beams are acting as an “incoherent repumper” - constantly redistributing the population

between the two ground states such that the atom remains effectively coupled to the PG

cooling. There is no recoil associated with this redistribution of population. Also, because
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the Raman pair is registered with the FORT, the effectiveness of this repump mechanism

is greatest at the spatial locations of highest FORT intensity. These also happen to the

be positions corresponding to maximum potential depth. Whereas the lattice-lattice con-

figuration operates independently of the FORT potential, the Raman-lattice setup is most

effective in at those locations where the atom is most likely to be trapped. It seems likely

that the combination of registration and lack of repumper-induced recoil heating events

contribute to the Raman-lattice configuration offering more effective cooling to the atom.

Although we don’t have a numerical model, in light of experimental evidence this hypothesis

seems the most plausible explanation of observed phenomena.

This experimental evidence includes a general insensitivity of the loading probability

to small detunings and a broad range in Rabi frequencies for the Raman pair. We had

considered the possibility that the combination of lattice light and Raman was driving

motional transitions and providing second-order sideband cooling to the atoms as they pass

through the trapping region. However, we have found that there is no functional dependence

of the loading probability on the Raman pair being blue- or red-detuned relative to the field-

insensitive carrier transition. Moreover, for Rabi frequencies ΩE & (2π)(500 kHz), there

seems to be no dependence of Pl on ΩE .

We can, however, characterize the effectiveness of Raman-lattice loading versus lattice-

lattice loading. For this measurement, we repeatedly load atoms in the cavity using one

scheme or the other. The system is prepared with the magnetic fields nominally nulled at

the center of the cavity. At the end of each MOT cycle and loading interval we begin by

pumping the atoms into F = 3 and applying τR = 0.7 µs intervals of coherent Raman light

resonant with all (|3,mF 〉 ↔ |4,mF 〉) transitions followed by state and atom detection. The

amount of optical power in the FORT-Raman pair is configured such that ΩE = (2π)(140

kHz) and there is an observed dephasing time of T ∗2 ≈ 5 µs. Conditioned on the initial

detection of an atom in the cavity, we can measure the population transfer probability for

each of the different schemes. We expect that if N = 1 atom is present in the cavity that,

after the Raman pulse, we should detect the presence of that atom in F = 4 with probability

P4(τR) =
1
2

(
1− e−τR/2T ∗2 cos[ΩEτR]

)
. (4.86)
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Loading Method P ′4 N̄

Both Lattice Beams 0.17± 0.03 1.5± 0.4

Both Lattice Beams and Raman 0.15± 0.04 1.4± 0.4

Raman and 3− 3′ Lattice .41± 0.03 3.7± 0.3

Raman and 4− 4′ Lattice 0.82± 0.02 7.5± 0.2

Table 4.1: Conditioned on the presence of at least one atom in the cavity, the probability

P4(τR) to measure atomic population in F = 4 following a resonant Raman pulse of length

τR = 0.7 µs. Also the inferred number of atoms present after the loading interval, N̄ .

For this experiment, P4(τR) = 0.11. Now, if N = 2 atoms are located in the cavity,

the Raman pulse should act independently on both atoms, transferring a fraction P4(τR)

of the populations of both atoms to F = 4. Upon detection, we cannot discriminate

between one or the other (or both) atoms being in the cavity-coupled F = 4 state. If

the detection measurement projects either or both atoms into F = 4, we see a downgoer.

Therefore, the total probability to measure any population of atoms in F = 4 is given by

P ′4(N = 2) = 2P4(τR) + P 2
4 (τR). In general, for N atoms in the cavity, the probability to

measure a down-goer is given by:

P ′4(N) =
N∑
n=1

nP4(τR)N−(n−1). (4.87)

However, because P4(τR) is so much less than unity, we can ignore terms in this expression

which are nonlinear in P4(τR). We will assume that for N̄ atoms loaded into the cavity,

that P ′4(N̄) = N̄P4(τR).

Table 4.1 shows the values of P4(τR) and inferred values for N̄ for each of four different

configurations of the lattice and Raman beams. Notice that for configurations wherein

both lattice frequencies are ON, that the probability (with error bars) to detect an atom in

F = 4 is statistically consistent with the presence of just one atom in the cavity. Because

this data is conditioned on the presence of an atom, this is to be expected. However,

for configurations where only one of the two lattice frequencies is ON, we see a significant
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increase in the Raman transfer probability and therefore the number of atoms in the cavity

mode. In fact, for a properly-tuned configuration of (4 ↔ 4′) lattice light and Raman we

are loading an mean of N̄ = 7.5 atoms per attempt. This is a very significant increase which

opens the possibility for a variety of interesting measurements including the study of small

atom number cavity QED with more than one atom in the cavity.
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Chapter 5

Reversible Atom-Field State Transfer

Over the past 20 years atomic physics and quantum information science [45] have developed

hand-in-hand. It is not difficult to understand why - a tabletop experiment involving laser

cooling and trapping of small atomic samples offers one of the most accessible and potentially

scalable points of entry into the “quantum world.” [61] Atomic hyperfine ground states, in

particular, make an ideal quantum memory - they exhibit narrow linewidths, long coherence

times and can be coherently manipulated using experimentally accessible techniques (see

Chapter 4).

The challenge, then, is in how to implement controlled interactions between two physi-

cally separate quantum memories (as to, for instance, perform a quantum gate operation).

Neutral atoms exhibit only weak collisional interactions with one another, so one potential

approach is to instead singly ionize your atomic system and rely on the Coulomb repulsion

between two adjacent memories to exchange quantum information. Ion trapping experi-

ments of this sort have yielded amazing results, including demonstrations of multi-atom

quantum gates and quantum state teleportation from ion-to-ion [62, 63, 64]. The diffi-

culty, however, is in scaling these systems up. What works well for a few ions requires a

considerable bit more overhead as the number of qubits grows [65].

More recently, ion trapping groups [66, 67, 68] and groups working with multi-atom

ensembles [69, 70] have presented important results involving entanglement between an

atomic memory and a quantum optical field. Photon number and polarization states are

easily transported over long distances and, via dipole coupling, provide a robust interac-
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tion with atomic systems. While these results are extraordinarily impressive, arguably no

physical system is better suited to studying the coupling between atom and photon than is

cavity quantum electrodynamics. In fact, one of the earliest demonstrations of a quantum

gate operation came from the forbearer in the Kimble group of the experiment described in

this thesis [71].

This Chapter will focus on experiments involving the reversible mapping of quantum

information in the form of a field state to and from the hyperfine ground states of a trapped

cesium atom. Section 5.3 will briefly summarize our 2004 demonstration of a push-button

single photon source [40] using the cavity as one arm of a Raman Λ-type scheme. Following

this work, in 2007, we used the same apparatus to demonstrate the inherent reversibility of

this process by mapping the phase and amplitude of a weak coherent state of light onto a

single atom and back [72]. Section 5.4 will describe that experiment.

5.1 Quantum Networking

An important goal in quantum information science is the realization of quantum networks

for the distribution and processing of quantum information [73, 74], including for quantum

computation, communication, and metrology [75, 76, 77, 78]. Figure 5.1a presents a simple,

topological model of a quantum network. The two constituent parts of any such network

are quantum nodes (places where quantum information can be locally stored and processed)

and quantum channels (which connect adjacent quantum nodes and through which quantum

information can be transmitted). In order for any quantum network to be viable, we require

certain properties of these nodes and channels.

Figure 5.1b offers a “black box” model of a quantum node. Importantly, the node

is characterized by some sort of interface between itself and the channels to which it is

connected (as shown in red and associated with some rate of information exchange, κ). In

general we also require that our node be able to implement some user-defined quantum

algorithm or perform some quantum gate operation on the information which is stored

there. This operation can be written succinctly in terms of the interaction Hamiltonian for

that operation Ĥint, or the energy associated with that interaction χ ∼ 〈Ĥint〉 /~. In general
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we also expect that real quantum nodes will exhibit some sort of (ideally weak) coupling to

the environment which involves irreversible loss of quantum information at characteristic

rate γ. Our requirements for quantum channels are a fair bit less complex. We assume that

these channels will transport units of quantum information between two remote systems

with some (ideally) high efficiency.

In the initial proposal for the implementation of quantum networks [79], atomic internal

states with long coherence times serve as ‘stationary’ qubits, stored and locally manipu-

lated at the nodes of the network. Quantum channels between different nodes are provided

by optical fibers, which transport photons (‘flying’ qubits) over long distances by way of

quantum repeaters [80]. A crucial requirement for this and other network protocols is the

reversible mapping of quantum states between light and matter. Cavity quantum electro-

dynamics (QED) provides a promising avenue for achieving this capability by using strong

coupling for the interaction of single atoms and photons (Figure 5.1c). Within this setting,

reversible emission and absorption of one photon can be achieved by way of a dark-state pro-

cess involving an atom and the field of a high-finesse optical cavity. For classical fields, this

process, known as stimulated Raman adiabatic passage (or STIRAP) was first considered

twenty years ago [81, 82], before being adapted to quantum fields [83] and specifically to the

coherent transfer of quantum states between remote locations [79], with many extensions

since then [84]. In the next Section we will describe this technique in detail.

5.2 Stimulated Raman Adiabatic Passage (STIRAP)

5.2.1 Theoretical Description

In this section we will describe stimulated Raman adiabatic passage (STIRAP) in the con-

text of a single, three-level atomic system coupled to an ideal cavity in the regime of strong

coupling. The atomic system consists of two ground states - |g〉 and |u〉 with energies

Eg = ~ωg and Eu = ~ωu, respectively - and a single excited state |e〉 with energy Ee = ~ωe.

The cavity is coupled to the (|g〉 ↔ |e〉) transition with coupling rate g. An externally

applied field at frequency ωT drives the transition (|u〉 ↔ |e〉) with variable Rabi frequency

ΩT (t) in order to induce STIRAP. We will quantize the mode of the field resonant with
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Figure 5.1: a. Simple topological model of a quantum network. b. Functional “black

box” representation of a quantum node. Information is transmitted from node-to-node by

way of an interface between the node and channel (as shown in red). c. A cavity QED

implementation of quantum networking. Atoms trapped within optical cavities in the regime

of strong coupling serve as nodes wherein quantum information is stored and processed. The

strong atom-field coupling serves as the “network interface” by which quantum information

is transmitted from node-to-node over optical fibers (which serve as quantum channels).
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the cavity and treat the field which triggers the single photon emission as classical. First,

we construct the Hamiltonian for the system in strict analogy with the two-level Jaynes-

Cummings model in the rotating wave approximation:

Ĥ = Ĥatom + Ĥfield + Ĥu−e + Ĥg−e

= ~(ωg |g〉 〈g|+ ωu |u〉 〈u|+ ωe |e〉 〈e|) + ~ωC
(
â†â+

1
2

)
+

~
2

(ΩT e
−iωT t |e〉 〈u|+ Ω∗T e

iωT t |u〉 〈e|) + ~(gâ |e〉 〈g|+ g∗â† |g〉 〈e|) (5.1)

With a bit of algebra, we can rewrite this Hamiltonian in the interaction picture:

ĤI = ~∆ |e〉 〈e|+ ~
2

(ΩT |e〉 〈u|+ Ω∗T |u〉 〈e|) + ~(gâ |e〉 〈g|+ g∗â† |g〉 〈e|), (5.2)

where ∆ = (ωe − ωu)− ωT . We will restrict ourselves to the weak excitation limit (within

the manifolds of states exhibiting 0 and 1 excitations) and operate in a basis of uncoupled

product states |A〉 ⊗ |n〉 = {|u, 0〉 , |e, 0〉 , |g, 1〉} where |A〉 denotes atomic state and |n〉 the

cavity photon occupation state in the Fock basis. It is instructive to express the interaction

picture Hamiltonian ĤI in matrix form over this basis:

ĤI =
~
2


0 ΩT 0

Ω∗T 2∆ 2g

0 2g∗ 0

 . (5.3)

Upon diagonalization of this matrix, the eigenenergies of the system are:

E =
~
2

(0,−∆±
√

∆2 + 4g2 + Ω2
T ), (5.4)

whereas the eigenvectors are:

|a(0)〉 = − 2g
ΩT

 1√
1 + 4g2

Ω2
T

 |u, 0〉+

 1√
1 + 4g2

Ω2
T

 |g, 1〉 (5.5)
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|a(+)〉 = β

ΩT

2g
|u, 0〉 −

(∆ +
√

∆2 + 4g2 + Ω2
T )

2g
|e, 0〉+ |g, 1〉

 (5.6)

|a(−)〉 = β

ΩT

2g
|u, 0〉 −

(∆−
√

∆2 + 4g2 + Ω2
T )

2g
|e, 0〉+ |g, 1〉

 . (5.7)

Here β is a normalization constant:

β =
1√√√√(1 + Ω2

T
4g2

+

“
∆−
√

∆2+4g2+Ω2
T

”2

4g2

) . (5.8)

It is useful to define a set of mixing angles {Θ,Φ} in order to simplify the expressions for

the three eigenstates:

sin Θ = −

 1√
1 + 4g2

Ω2
T

 (5.9)

cos Θ = − 2g
ΩT

 1√
1 + 4g2

Ω2
T

 (5.10)

sin Φ = β
(∆ +

√
∆2 + 4g2 + Ω2

T )

2g
(5.11)

cos Φ = −β
(∆−

√
∆2 + 4g2 + Ω2

T )

2g
. (5.12)
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We can also express the mixing angles as:

tan Θ =
ΩT

2g

tan Φ =

√√√√√−∆ +
√

4g2 + ∆2 + Ω2
T

∆ +
√

4g2 + ∆2 + Ω2
T

=

√
4g2 + Ω2

T

∆ +
√

4g2 + ∆2 + Ω2
T

.

It follows that we can rewrite the system eigenvectors in terms of these mixing angles:

|a(0)〉 = cos Θ |u, 0〉 − sin Θ |g, 1〉 (5.13)

|a(+)〉 = cos Φ sin Θ |u, 0〉 − sin Φ |e, 0〉+ cos Φ cos Θ |g, 1〉 (5.14)

|a(−)〉 = sin Φ sin Θ |u, 0〉+ cos Φ |e, 0〉+ sin Φ cos Θ |g, 1〉 . (5.15)

From the simplified functional forms of |a(0),(+),(−)〉 it is important to note that the state

|a(0)〉 is a so-called “dark state” of the system - of the three eigenvectors of the interaction

Hamiltonian, it is the only one that has no component in the state |e, 0〉.

The STIRAP process relies on this particular dark state [85]. We begin with the system

initially in the state |u, 0〉 (i.e., with the atom pumped in the state |u〉 and with no photons

in the cavity mode). We want to implement a transformation such that the system ends up

in the state |g, 1〉, now with a single photon in the cavity mode. In order for this process

to be useful in a quantum networking setting we require that it be coherent - that the off-

diagonal terms of the density matrix for the initial state should be preserved in the density

matrix of the final state. This precludes allowing any atomic population into state |e〉 from

which (incoherent) spontaneous will quickly dephase the state of the system. From the

functional form of |a(0)〉, it is clear that we can implement this transformation if we can

adiabatically sweep the mixing angle Θ from 0 to π/2. This is where STIRAP derives its

name - it is a stimulated Raman process (with the cavity forming one arm of the Λ-pair

and the classical field forming the other) which adiabatically follows the dark state |a(0)〉 to

deposit a single photon in the cavity mode.
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From the expression for Θ, we see that in the limit 2g � ΩT (or, 2g � ΩT ) we have

|a(0)〉 ≈ |u, 0〉 (or, |a(0)〉 ≈ |g, 1〉). Our photon generation protocol will be to initialize

the atom in |u, 0〉, ensuring that at early times, g � ΩT (t), or that the strength of the

classical field is initially very weak. Note that because we will be varying ΩT (t), we again

emphasize it’s time-dependence (the atom-cavity coupling rate g is assumed to be time-

independent). We will then increase ΩT (t) at a sufficiently slow rate that the coupled

atom-cavity state vector will adiabatically (or, reversibly) follow |a(0)(t)〉 from |u, 0〉 through

a coherent superposition of states to |g, 1〉. The probability that at time t the system will

have evolved to |g, 1〉 and that there will be a single photon in the cavity mode is given by:

P (t) = | 〈g, 1|a(0)(t)〉 |2 =
Ω2
T (t)

Ω2
T (t) + 4g2

. (5.16)

In this way, as long as the adiabaticity of the process is maintained, the application of the

classical field ΩT (t) will “trigger” the generation of one-and-only-one photon. Interestingly,

this protocol also allows us to “shape” the temporal wavepacket of the single photon by

varying ΩT (t) [86].

It remains to discuss how best to restrict the experimental parameters in order to ensure

adiabaticity. The concern is that as the state of the system |Ψ(t)〉 evolves it will acquire

some component outside of |a(0)(t)〉. We can quantify this process by taking note of the

quantum adiabatic theorem [6] which dictates that a state vector which evolves according

to the Schrödinger equation and has a minimum energy gap ε = ~ω± between eigenstates

adjacent to that which is being adiabatically followed will evolve adiabatically as long as

the following condition is met:

| 〈a(±)|∂t|Ψ(t)〉 | < |ε/~|. (5.17)

Here, |a(±)〉 are the two, adjacent eigenstates and ∂t is the quantum operator for the partial

derivative with respect to time. In other words, as long as the spread in energies associated

with the state which is being followed is small compared the energy splitting between its

adjacent eignenstates, then the system will adiabatically follow its original state. Adiabatic

following can also be thought of in the Bloch vector picture, as described in [87]. In the
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context of STIRAP, the adiabatic theorem is equivalent to the statement |Θ̇| < |ε/~| [85],

or in terms of the relevant experimental parameters:

|Θ̇| =

∣∣∣∣∣ 2Ω̇T (t)g
Ω2
T (t) + 4g2

∣∣∣∣∣ <
∣∣∣∣∆ +

√
∆2 + 4g2 + Ω2

T (t)
∣∣∣∣ ⇒ (5.18)

|Ω̇T (t)| <
∣∣∣∣g−1(Ω2

T (t) + 4g2)
[
∆ +

√
∆2 + 4g2 + Ω2

T (t)
]∣∣∣∣ . (5.19)

If we consider only early times then the system is still in the initial limit 2g � ΩT and

adiabaticity requires:

ΩT (t) < 4g
∣∣∣∆ +

√
∆2 + 4g2

∣∣∣ t. (5.20)

We have thus far neglected the importance of dissipation in this system. The rate of

atomic decay from the excited state, γ, has been adiabatically eliminated from the problem

along with any population in |e〉. Decay from the cavity mode at κ, however, is still relevant

to this discussion. If excitation escapes the cavity and is detected or measured before the

complete transfer of population from atom-to-field, then the temporal shape of the photon

will be governed not by ΩT (t) but by the magnitude of κ. However, because we are in

the strong coupling regime g � κ, it follows from Equation (5.20) that we are able to

adiabatically sweep ΩT (t) over its full range in τ � 1/κ. Operation in the regime of strong

coupling guarantees that the STIRAP process is coherent and efficient.

5.2.2 Physical Implementation in Cesium

The generalization of the STIRAP scheme described in the previous Section to cesium is

straightforward. In the laboratory we can treat any two appropriately-coupled Zeeman

substates |3,mF 〉 , |4,m′F 〉 in the F = 3 and F = 4 hyperfine ground state manifolds as

states |u〉 and |g〉. Likewise, Zeeman states in any excited state hyperfine manifold which

exhibits dipole coupling to both ground states (i.e., F ′ = 3 and F ′ = 4) will function as |e〉.

In particular, we will tune the cavity near resonance with the (4 ↔ 3′) transition and use

a classical ΩT field which is near-resonant with (3↔ 4) to affect the STIRAP process. On

this transition, the maximum atom-cavity coupling constant is g0 = (2π)(14.87 MHz) (see
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¢}

g
    (t)T

Figure 5.2: Atomic level diagram. Double arrow g indicates the coherent atom-cavity

coupling, and ΩT (t) is the classical field. The cavity and Ω field are blue-detuned from

atomic resonance by ∆.

Chapter 2). The energy level diagram for this system is shown in figure 5.2.

5.3 A Deterministic Source of Single Photons

In this Section, we will very briefly review the work expanded upon in Reference [40]. This

project was the first in which I was personally involved in the Kimble group and constitutes

our group’s first experimental implementation of the STIRAP method described in Section

5.2. The goal of this measurement was to demonstrate that the STIRAP process could

be used to efficiently and deterministically generate single photons from the coupled atom-

cavity system. Our primary concern was with verifying that the state of light generated

in the cavity mode was to high degree one and only one photon. A similar demonstration

was carried out by the group of G. Rempe in 2002 using atoms falling through the mode

of the cavity [88]. However this implementation allowed for the production of on average

much less than one “signal” (as opposed to background) photon per atom passing through

the cavity mode. Because of this significant background, the emitted field did not exhibit

the sub-Poissonian photon statistics requisite to claim to that a device is a deterministic



193

source of single photons [89]. Our demonstration, by contrast, allowed for in excess of

1.4 × 105 photons per atom. Although this constitutes “old” work in that it was first

carried out in 2004, before we had developed the Raman techniques described in Chapter

4 to characterize and control the atomic system, I view this experiment as one of the most

significant and important advances our group has made with respect to cavity QED-based

quantum networking. It is therefore worth briefly mentioning here, especially in order to

set the stage for Section 5.4.

5.3.1 Overview and Results

This set of measurements was carried out before we able to independently measure and

control the DC magnetic bias fields at the location of the cavity. During the experimental

cycle the current directed through the bias coils was that necessary to null the fields at the

location of the lower MOT and was likely contributing a static bias of magnitude | ~B| ∼ 0.5

G. In order to implement the STIRAP process, we load atoms into the FORT using the

(3 ↔ 3′) and (4 ↔ 4′) lattice pair. After each loading attempt, atoms present in the

cavity are optically pumped into a state within the F = 3 ground state manifold and

then illuminated by a sequence of laser pulses which we will label by their associated Rabi

frequencies {Ω3(t),Ω4(t)}. These pulses are derived from and follow the same optical paths

as the lattice beams. The first of pulse of each pair, Ω3(t), functions as the classical field of

Rabi frequency ΩT (t) necessary to implement STIRAP. As Ω3(t) is adiabatically ramped

ON, one photon is created in the cavity mode because the atomic transition F ′ = 3′ → F = 4

is tuned near-resonance with the cavity. The emitted photon leaves the cavity as a freely

propagating, spatially Gaussian wavepacket whose temporal profile is determined by the

external field Ω3(t). The atom is then incoherently rempumped back to F = 3 by the second

laser pulse, Ω4(t), and the protocol repeated for subsequent single photon generations.

Within each photon generation trial, the first pulse Ω3(t) is 1 µs in duration and contains

light tuned 10 MHz blue of (3 ↔ 3′), which initiates the adiabatic transfer F = 3 → 4

between the ground hyperfine levels, with the emission of a photon into the cavity mode.

The second pulse Ω4(t) is turned ON 1 µs after Ω3(t) is gated OFF and is 5 µs in duration.

It is tuned 17 MHz blue of (4↔ 4′) and recycles the atom back to the F = 3 ground state
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through spontaneous decay (4′ → 3). The detuning between the (4↔ 3′) transition at ω43

and the cavity resonance ωC is ∆AC ≡ (ωC − ω43) = (2π)(9 MHz).

The lifetime for a trapped atom in the presence of the driving Ω3,4 fields is T ' 0.14

s, which should be compared to the repetition period ∆t = 10 µs for single-photon genera-

tion. The presence of an atom in the cavity is discriminated based on the rate at which we

register photodetection events. If no photodetection even is registered within the previous

500 windows during with Ω3(t) is ON then those previous 500 trials are disregarded and

the atom is assumed to have left the trap. The measured overall efficiency for photode-

tection of emitted light for this set of measurements was α = (2.4 ± 0.4)% and we infer

that each generation attempt succeeds with probability φG = 1.15 ± 0.18, where this high

success probability derives from strong coupling of atom and cavity field. This implies that

the probability with which an atom remains coupled to the cavity but fails to produce a

photodetection in 500 successive trials is (1 − α)500 ≈ 5 × 10−6. This also means that on

average, we generate (detect) about 1.4× 104 (350) single photon pulses from each trapped

atom.

In order to quantify the the quantum (or single photon) character of the emission we

measure the quantity:

R0 ≡
P 2

1

2P2
, (5.21)

where PN is the probability for N photodetection events following a single Ω3(t) pulse. We

use R0 to distinguish the photon statistics of the state of light which we are producing in

the cavity from a weak coherent state of light (i.e., with P0 ∼ 1). For an ideal single photon

source we have PN = 0, N 6= 1 which implies R0 → ∞. For an attenuated (classical) laser

field

P2 =
P 2

1

2P0
≈ P 2

1

2
(5.22)

which means R0 ≈ 1. Experimentally we measure R0 = 20.8 ± 1.8 � 1 at the location of

the detectors. We were able to isolate the principal limitation on R0 to rare events (about

3% of the successful loading attempts) in which two atoms are loaded into the trap (this
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work preceded the real-time atom detection-based loading scheme documented in Tracy

Northup’s thesis [26]). By limiting the data to photodetections registered at later times

in the trapping cycle when such two atom events are more likely to have decayed, we find

R0 & 150. As we will discuss in Subsection 5.3.2, there are some caveats associated with

characterizing a photon source in terms of R0.

An example of the pulse shape for single photon generation is shown in Figure 5.3a over

the detection window [t0, t0 + δt] within which the control field Ω3(t) is ON, where δt = 1 µs,

and t0 corresponds to the onset time of Ω3(t). Plotted is a histogram of the total counts

n(t) summed over both single photon counting avalanche photodiode modules and binned

according to their delay with respect to t0. This histogram is a sum over all repeated trials

of the generation process from all atomic trapping events. For the particular choice of Ω3(t)

employed here, single-photon pulses have duration τ ' 120 ns (FWHM).

To quantify the suppression of two-photon events, we present in Figure 5.3b,c the time

dependence of the photon statistics over the course of the Ω3(t) pulse. Figure 5.3b displays

the integrated probabilities for single P1(t) and joint P2(t) detection events for times t after

the onset t0 of the control pulse Ω3(t). More specifically, P1(t) is the fraction of trials in

which we registered only one photodetection event in the interval [0, t], where for each trial

t = 0 refers to tj0. We calculate P1(t) and P2(t) for an effective single detector without dead

time or after-pulsing, and define P1,2 ≡ P1,2(δt). Over the duration of the control pulse

0 ≤ t ≤ δt, P1(t) rises to a final value P1 = 0.0284; that is, the probability to register a single

photoelectric event in a trial is 2.84%. From Figure 5.3c we see that P2(t) reaches a limiting

value of P2 = 2.52 × 10−5, or a total probability of 0.00252% to measure a coincidence at

the photodetectors.

Figure 5.3d examines the ratio

R(t) ≡ P 2
1 (t)

2P2(t)
. (5.23)

This Figure restates the result that two-photon events are greatly suppressed relative to a

coherent state, namely R ≡ R(δt) = 15.9 ± 1.0. The background rate during the Ω3 drive

pulses is time-independent, and can be obtained from the record of photoelectric detections
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Figure 5.3: a. Histogram of photodetection times, n(t) in the window {t0, t0 + δt}. b.

Integrated probability to register one photodetection event as a function of time, P1(t).

b. Integrated probability to register two photodetection events, P2(t). c. Suppression of

two photodetection events relative to a weak coherent state, R0(t). All four traces exhibit

a minimum integration time of τd = 2 ns, set by the time resolution of the P7888 event

counting interface.
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when no atom is trapped. The measured background count probability is PB = 2.7× 10−4

for the entire window, of which PD = 0.82PB comes from detector dark counts, and the

rest from various sources of scattered light. For an ideal single photon source, coincidence

events at the two detectors in the same trial would arise only from background counts,

since the source never emits two photons in one trial. Using the known values of P1(t) and

PB, we can easily predict the background-limited value RB(t) for this idealized scenario.

We find that our measured values are lower than this prediction (RB ≡ RB(δt) = 52.5),

indicating a significant rate of excess coincidences which are explained by the significant

non-zero probability of loading two atoms into the cavity and their subsequent production

of two-photon events [40].

5.3.2 Attenuation and R

In this Section, we will briefly examine how the measured photon statistics of an arbitrary

intracavity field state |χ〉 vary as a function of inefficiencies in the optical path to our

detectors. Our goal is to determine what information the quantity R tells us about the

system and how that quantity varies as a function of attenuation in the cavity output path

for a variety of intracavity field states. In order to model these effects, we will assume that

the intracavity field, |χ〉 can be expressed as an arbitrary superposition of Fock states:

|χ〉 =
∑
n

|n〉 〈n|χ〉

=
∑
n

eiφ
√
Pn |n〉 , (5.24)

where Pn is the probability of observing n intracavity photons when measuring â†â, and

where:

∑
n

Pn = 1, (5.25)

∑
n

nPn = 〈n〉 . (5.26)

We now model our output path as shown in Figure 5.4, beginning with the intracavity
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state |χ〉 which propagates through some fixed attenuator A before arriving at an ideal

number state-resolving detector. In practice, the Hanbury-Brown-Twiss geometry of our

output path allows us to resolve only components of the field up to and including n = 2,

so we will generally limit our discussion to that basis. The effect of A is to transmit any

photon impinging on it with probability PA = (1− α) (0 ≤ α ≤ 1). It is important to note

that we treat all incident photons as statistically independent from one another - the effect

of attenuator A depends in no way on correlations between incident photons (as might be

the case if it were to contain, for example, any sort of interferometeric device). This is a

reasonable assumption for our cavity output path.

Propagation of an n-photon input state |χ〉 = |n〉in (Pn = 1) through the attenuator

will yield a state with an n-photon component which will be measured with probability

P ′n = (α)n, where the primed probability indicates measurement after A. Similarly, the

(n− 1)-photon component of the transmitted state will be measured with probability:

P ′n−1 =
(

n

n− 1

)
(1− α)αn−1,

and so on for the (n− 2)-, (n− 3)-, . . . , 1-, and 0-photon components of this state (the first

term of this expression is the binomial coefficient, n-choose-n− 1). We can generalize this

transformation to an arbitrary input state, |χ〉:

Pn
A−→ P ′n

=
∞∑
k=n

(
k

n

)
(1− α)(k−n)αnPk. (5.27)

In the previous Section we introduced the function the function R:

R ≡ P 2
1

2P2
. (5.28)
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Figure 5.4: Simple model of cavity output path for number state detection of an arbitrary

intracavity field state |χ〉.

Using Equation 5.27, we see:

R
A−→ R′

=
(P ′1)2

2P ′2

=

(∑∞
k=1 k(1− α)(k−1)Pk

)2∑∞
k=2 k(k − 1)(1− α)(k−2)Pk

. (5.29)

Note that R is not invariant under attenuation, but instead varies as a function of α and

the initial distribution of detection probabilities associated with state |χ〉.

Coherent State

Now suppose that our initial state |χ〉 is a coherent state of light [6, 87], i.e.,

Pn =
e−〈n〉 〈n〉n

n!
, (5.30)

such that:

P0 = e−〈n〉

P1 = e−〈n〉 〈n〉

P2 =
1
2
e−〈n〉 〈n〉2 =

1
2
〈n〉P1

R =
P 2

1

2P2
=

P 2
1

〈n〉P1
= e−〈n〉 = P0. (5.31)
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As expected, a weak coherent state exhibits R→ 1 as P0 → 1. The effect of attenuation on

a coherent state can be shown using Equation 5.27:

P ′n =
∞∑
k=n

(
k

n

)
(1− α)(k−n)αn

e−〈n〉 〈n〉k

k!

=
e−α〈n〉 (α 〈n〉)n

n!
. (5.32)

Comparing this result with Equation 5.30, we see that A reduces the mean photon number

of the coherent state by a factor of α (but the state remains a coherent state). This isn’t

a surprise, given how we modeled the attenuator and in consideration of how we expect a

“real” attenuator to function. Because the output of the attenuator is still a coherent state,

we know that R′ is given by:

R′ = P ′0

= e−α〈n〉 = e(1−α)〈n〉R (5.33)

such that, in general, R′ ≥ R for all values of α. As we attenuate a weak coherent state it

only gets weaker as it approaches the limit of the vacuum state and P0 = 1.

One-Photon State

We now consider the trivial case of an ideal single-photon intracavity field, |χ〉 = |1〉 (P1 =

1, Pn 6=1,n≥0 = 0). After attenuation, we have:

P ′0 = (1− α),

P ′1 = α,

and P ′n = 0 (n > 1).

Therefore, R = R′ =∞ because P2 = P ′2 = 0. Again, this is unsurprising in that we expect

this state to never exhibit a two-photon component and therefore R remains invariant.
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One-Photon State with Two-Photon Defect

A more interesting and applicable exercise is to look at an approximation of the results from

the previous Subsection. We assume that a nearly pure single-photon state is generated

in the cavity mode with a very small defect in the form of a small two-photon generation

probability δ, i.e.:

P0 = 0,

P1 = 1− δ,

P2 = δ, (δ � 1)

Pn≥3 = 0.

The source of this two photon defect is irrelevant, but could be from multiple atoms, scat-

tering or any equivalent source. For this distribution of probabilities,

R = (1− δ)2/(2δ). (5.34)

After attenuation, the photon statistics for this state are given by:

P ′0 = (1− α)(1− δ) + (1− α)2δ,

P ′1 = α(1− δ) + 2(1− α)δα,

P ′2 = α2δ,

P ′n = 0 (n ≥ 3).

So,

R′ =
(1 + 2(1− α)δ − δ)2

2δ
(5.35)

=
(1 + 2(1− α)δ − δ)2

(1− δ)2
R =

(
1 +

4(1− α)δ(1− αδ)
(1− δ)2

)
R (5.36)

Note that, in general, R′ ≥ R, and for small δ, R′ ∼ R, as expected. (Also note that

there is a singularity at α = 0, i.e., complete extinction of all incident light, such that R′ is
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undefined).

In the previous Section, we measured that α = 0.024 and R′avg = 15.9. We also measured

a value of P2 which gives δ ' 0.0312. Note that this is in good agreement with the expected

probability with which two atoms were inadvertently loaded into the cavity mode. From

this we can deduce that the intracavity value of R was R ' 14.1, such that R/R′ = 0.88.

In summary, R differs significantly from R′ only in the regime wherein δ and/or α is close

to 0. Because of our small detection efficiency, we are in the lower limit of this regime and

it is therefore important that we make the distinction between the value of R measured at

the detectors and the value of R for the state of light inside of the cavity if we wish to use

R as a means for quantifying the single-photon character of the light.

Two-Photon State

Finally, we look at the effects of an attenuator on a pure two-photon state such as that which

we might attempt to generate from two atoms trapped within our cavity. This discussion

was originally brought up in the context of attempting to use real-time discrimination of

the number of atoms coupled to the cavity mode in order to deterministically load two

atoms into the FORT and produce an optical state characterized by a preponderance of

coincidence photodetections upon measurement. Assuming that two atoms generate two

photons with unit efficiency, this is the special case δ = 1 of the previous example:

P0 = 0,

P1 = 0,

P2 = 1,

Pn≥3 = 0.
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so that:

P ′0 = (1− α)2,

P ′1 = 2α(1− α),

P ′2 = α2,

P ′n = 0 (n ≥ 3).

We therefore expect R = 0 for the unattenuated state and

R′ =
4α2(1− α)2

2α2

= 2(1− α)2. (5.37)

For the measured value of α in our experiment this would imply R′ = 1.8. This is perhaps

a counter-intuitive result. With R > 1 as a measure of the quality of a single-photon source

relative to a weak coherent state, we arrive at the conclusion that an attenuated ideal

two-photon state is a reasonably “good” single photon source.

In summary, we have described the effect of a fixed attenuator on the photon statistics

of an arbitrary linear superposition of Fock states. In particular, we have demonstrated

that R is not an invariant quantity under attenuation, but is instead a function of the

attenuation factor α and the pre-attenuation photon statistics of the light. In fact R′ is

generally larger than R. As a consequence, it is important to make a distinction between

the pre-attenuation value R and the post-attenuation R′.

In some sense, R is still an appropriate quantity for us to consider. By way of our

measurement apparatus, we have access to only 3 components of the probability distribution

for an input state of light - {P0, P1, P2} - and, at least for a coherent state, R is a function

of all three. It also serves as a quick and easy way of comparing the small moments of

the field for a given state to those of a weak coherent state. However, as we have seen,

it is also deficient in the sense that it isn’t invariant under attenuation and that it makes

no consideration of higher moment field terms. It is essential, then, that when we use the

quantity R as a parameter for characterization of an unknown field state that we take these
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considerations into account and draw only those conclusions which are warranted based on

the limitations in how R is defined.

5.4 Demonstration of Reversibility

A distinguishing aspect of the STIRAP protocol is that it is adiabatic and should therefore

also be inherently reversible. Through this process, a photon emitted from one atom-cavity

system A can be efficiently transferred to another atom-cavity system B. Furthermore, it

should be possible to map coherent superpositions reversibly from atom to field

(c0|b〉+ c1|a〉)⊗ |0〉 → |b〉 ⊗ (c0|0〉+ c1|1〉), (5.38)

and from field to atom,

|b〉 ⊗ (c0|0〉+ c1|1〉)→ (c0|b〉+ c1|a〉)⊗ |0〉. (5.39)

Here |a〉 and |b〉 are atomic states and |0〉 and |1〉 are Fock states of the cavity field. Over the

past decade, single-photons have been generated in diverse physical systems [90]; however,

most such sources are not in principle reversible, and for those that are, no experiment prior

to this had verified the reversibility of either the emission or the absorption process.

In this Section, we describe an important advance related to the interface of light and

matter by explicitly demonstrating the reversible mapping of a coherent optical field to and

from the hyperfine ground states of a single, trapped Cesium atom. This mapping could also

be demonstrated by absorbing a single-photon state, but we use a coherent state instead

because the phase information of this state allows us to verify explicitly the reversibility

of the absorption process. Specifically, we map an incident coherent state with n̄ = 1.1

photons into a coherent superposition of F = 3 and F = 4 ground states with transfer

efficiency ζ = 0.057. Because we use a coherent state rather than a coherent superposition

of n = 0, 1 Fock states, Equations 5.38, 5.39 only approximately describe our system. For

a n̄ = 0.68 coherent state (corresponding to n̄ = 1.1 at the face of the input mirror), the
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fraction of the population that lies in the n = 0, 1 subspace is:

|c0|2 + |c1|2 = (1 + n̄) e−n̄ ' 0.85. (5.40)

After the initial state transfer between field and atom, we then map the stored atomic state

back to a field state. The reversibility of the overall process is confirmed by observations

of interference between the final field state and a reference field that is phase coherent

with the original coherent state, resulting in a fringe visibility va = 0.46 ± 0.03 for the

adiabatic absorption and emission processes. We thereby provide the first verification of

the fundamental primitive upon which the quantum state-transfer protocol in described in

Section 5.1 is based.

We again refer to the atomic level diagram shown in Figure 5.2; the states used in the

current scheme include ground state manifolds F = 3 and F = 4 and excited state manifold

F = 3′, corresponding to the states |g〉, |u〉, |e〉 in the discussion of Section 5.2. The cavity

is tuned to frequency ωC = ω43 + ∆, where ω43 is the frequency of the (4↔ 3′) transition,

and ∆ = (2π)(10 MHz) is the cavity-atom detuning. A linearly polarized probe beam

drives the cavity at frequency ωC with pumping strength λ(t) and can be variably oriented

along either cavity birefringent axis l̂±. The lattice beams are again used to drive the atom

transverse to the cavity axis at frequency ωA = ω33 +∆ to provide a classical field with Rabi

frequency ΩT (t). For the measurements described in this section, we have implemented the

phase-lock between the repumper laser from which the lattice beams are derived and the

probe laser (Chapter 3), so their relative detuning δ = ωA − ωC is phase-stable and equal

to the ground-state hyperfine splitting, ∆HF .

Our experimental procedure is as follows: after loading an atom into the FORT, we

subject it to 2, 000 trials lasting a total of 360 ms, where each trial consists of eight dis-

crete measurements performed on the atom. These measurements are used to quantify the

coherence of the absorption process, as well as for calibrations and background monitoring

and are described in Table 5.1. After these trials, we check that the atom has survived in

the trap by attempting to generate 10, 000 single photons in rapid succession, which are

detected by monitoring the cavity output with the two single-photon counting avalanche
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Number Fi Ω1 λ1 λ2 θ Measurement

1 4 OFF ON OFF - incoherent absorption probability

2 4 ON ON OFF - coherent absorption probability

3 4 ON ON ON θ0 adiabatic fringe at fixed phase

4 4 ON ON ON θ adiabatic fringe at variable phase

5 3 OFF OFF OFF - generate single photon

6 4 OFF OFF OFF - check background count level

7 4 OFF ON ON θ0 incoherent fringe at fixed phase

8 4 OFF ON ON θ incoherent fringe at variable phase

Table 5.1: Table of the eight discrete measurements performed at each of the 2, 000 trials

carried out per atom. For each of the eight the pulse Ω2 is ON and used to attempt photon

generation at the end of the individual measurement. Each of these eight is described in

more detail in the accompanying text.

photodiodes. We keep only the data from atoms that have survived all the trials as indi-

cated by correlation with detection of a fraction of these photons. For most of the data

that we keep, only a single atom is present in the trap, but occasionally two or more atoms

may be loaded. From measurements performed during the 2, 000 trials, we determine that

at least 80% of the data presented here involve a single atom.

For each trial, we prepare the atom in F = 4 and then drive the system with a series

of light pulses, with timing as shown in Fig. 5.5. The classical field ΩT (t) generates pulses

Ω1,2, and the cavity probe λ(t) generates pulses λ1,2. For any given measurement within a

trial, some of these pulses are ON and the others are OFF. Pulse λ1 is the freely propagating

coherent state that is to be mapped into the atom. The strength of this pulse is set so that

there are n̄ = 1.1 mode-matched photons at the face of the input mirror. Because of mirror

losses [28], if no atom were present, this would give rise to a pulse inside the cavity with

n̄ = 0.68 photons. The falling edge of pulse Ω1 is used to perform the adiabatic absorption

of λ1 (as in Eq. 5.39). The intensity of the lattice light is such that when Ω1 is fully ON,

its Rabi frequency is ∼ 8γ, a value found to maximize the adiabatic absorption probability.



207

When the λ1 pulse is absorbed, some of the atomic population is transferred from F = 4

to F = 3. With λ2 OFF, the pulse Ω2 allows us to determine the fraction of the population

that has been transferred: if the atom is in F = 4, then Ω2 does nothing, while if the atom

is in F = 3, then the rising edge of Ω2 transfers it back to F = 4 and generates a single

photon via the mapping in Eq. 5.38. Finally, with both pulses Ω2 and λ2 ON, we verify that

λ1 was absorbed coherently. The Ω2 and λ2 pulses act together to generate a field inside

the cavity; if λ1 was absorbed coherently, then the amplitude of this field will depend on

the relative phase θ of λ1, λ2.

This dependence can be understood by considering a simple model in which Ω2 and

λ2 act independently. With λ2 OFF and Ω2 ON, the Ω2 pulse transfers the atom from a

superposition of F = 3, 4 into F = 4 by generating a field α in the cavity whose phase

depends on the phase of the atomic superposition. In turn, the phase of the original atomic

superposition is set by the phase of λ1. With λ2 ON and Ω2 OFF, the λ2 pulse generates a

field β inside the cavity whose phase is set by λ2. If Ω2 and λ2 acted independently, then

when both Ω2 and λ2 were ON, the fields α and β would combine to give a total field α+ β,

whose amplitude depends on the phase difference θ between λ1 and λ2. Because Ω2 and λ2

do not act independently, this model is only approximately correct. Nevertheless, the phase

of the final field still depends on θ for the coherent processes associated with λ1,2, Ω1,2.

We first consider a series of measurements which demonstrate that the λ1 pulse transfers

more population from F = 4 to F = 3 in the presence of the Ω1 pulse than in its absence.

We start with the atom in F = 4 and apply the λ1 pulse, either with the Ω1 pulse (Table

5.1, Measurement 2 - adiabatic absorption, which consists of both coherent and incoherent

components) or without it (Table 5.1, Measurement 1 - only incoherent absorption (4→ 3′),

with spontaneous decay to F = 3). In either case, λ1 transfers some population from F = 4

to F = 3. To quantify the population transfer, we apply Ω2 and measure the probability

that a single photon is detected within 1 µs of the rising edge of Ω2. We thereby infer the

fraction of the atomic population that was in F = 3. This involves subtracting a background

probability of 0.0025, which we determine by pumping the atom to F = 4 and applying

Ω2 (Table 5.1, Measurement 6), and dividing by the single photon generation efficiency of

0.036, which we determine by pumping the atom into F = 3 and applying Ω2 (Table 5.1,
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Figure 5.5: Timing diagram: the upper curve shows the Ω1 and Ω2 pulses; the lower curve

shows the λ1 and λ2 pulses. Each of these pulses can be turned ON/OFF independently.

Here ∆t is the delay between the falling edge of Ω1 and the rising edge of Ω2. By enabling

various combinations of these pulses, and/or varying the relative phase θ between λ1 and

λ2, we perform different measurements on the atom. Pulses Ω1,2 and λ1,2 are generated

using acousto-optic modulators (AOMs); the relative phase θ between λ1 and λ2 is set by

the phase difference of the RF pulses driving the probe AOM.

Measurement 5). For these measurements, the separation between the falling edge of Ω1 and

the rising edge of Ω2 is ∆t = 290 ns. The probe is polarized along l̂−, so that we only detect

photons that are orthogonally polarized to λ1 (where, again, we detect only light emitted

along l̂+); this is important for later measurements taken with λ2 ON in order to ensure that

the emerging signal is not dominated by the component of λ2 that is transmitted by the

cavity. For adiabatic absorption (Ω1 ON), we find that the probability pa for the atom to

be transferred from F = 4 to F = 3 by λ1 is pa = 0.063 ± 0.002, whereas for incoherent

absorption (Ω1 OFF), the probability is pi = 0.046± 0.001. The ratio of the adiabatic to the
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incoherent absorption probability is r = pa/pi = 1.38± 0.04.

For the next group of measurements we set ∆t = 2 µs and polarize the probe along

l̂+, so we only detect photons which are emitted with the same polarization as λ1. As

shown in Figure 5.6, we vary the arrival time t1 of the λ1 pulse and study the effect on

the adiabatic-to-incoherent ratio r. This ratio is maximized when λ1 is well-aligned with

the falling edge of Ω1 at t = 0 (thus enabling STIRAP). If λ1 arrives too early (t1 � 0),

then any population that it transfers from F = 4 to F = 3 is pumped back to F = 4

by Ω1. If λ1 arrives too late (t1 � 0), then Ω1 is already OFF, resulting in incoherent

transfer with r = 1. Figure 5.6 also shows the results of a computer simulation of the

absorption process. The simulation predicts values for pa and pi and therefore the ratio

r = pa/pi. The correspondence between our simulation and the actual measurements of r

vs t1 in Figure 5.6 is qualitatively reasonable (the only free parameter in the simulation is

the atom-cavity coupling g). The simulation can also be used to partition pa into a coherent

component pca and an incoherent component pia. We define the coherent component of r by

rc = pca/pi, the incoherent component of r by ri = pia/pi, and plot rc, ri vs. t1 in Fig. 5.6.

The simulation indicates that the value of t1 for which the adiabatic absorption process

is maximally coherent is roughly the value of t1 that maximizes the adiabatic transfer

probability, and suggests that for this value of t1 the adiabatic absorption process has

appreciable coherence, with rc/ri ' 1.

In Figure 5.7, we present measurements that demonstrate that the adiabatic absorption

process is indeed coherent. As before, we prepare the atom in F = 4 and apply λ1, either

with or without Ω1, followed by Ω2. But now we add the λ2 pulse, which overlaps with the

rising edge of Ω2. If the λ1 pulse is absorbed coherently, then the amplitude of the field

generated by the combined action of Ω2 and λ2 will depend on the relative phase θ of λ1

and λ2. By recording the cavity output as a function of θ and observing this dependence,

we can verify that the λ1 pulse was absorbed coherently. To accomplish this, we repeat the

above sequence for different values of θ, where for each relative phase, we measure the mean

number of photons n(θ) emitted from the cavity within a fixed detection window. Here we

again orient the probe along l̂− and detect along l̂+. We take data both with Ω1 ON (Table

5.1, Measurement 4) and OFF (Table 5.1, Measurement 8), so as to obtain results na(θ) and
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Figure 5.6: Ratio r of adiabatic transfer probability to incoherent transfer probability vs.

arrival time t1 for the incident coherent pulse λ1. Red data points (◦): r versus t1 (ex-

periment). Red solid curve: r vs. t1 (computer simulation). Black dotted curve: coherent

component rc vs. t1 (simulation). Blue dashed curve: incoherent component ri vs. t1

(simulation).

ni(θ) both for adiabatic and incoherent absorption. Figure 5.7 plots Ra(θ) = na(θ)/na(θ0)

and Ri(θ) = ni(θ)/ni(θ0), where θ0 is a fixed phase (Table 5.1, Measurements 3 and 7) .

Note that these ratios, rather than the photon numbers themselves, are employed in order

to cancel small, slow drifts in the intensity of the light beams. Significantly, we observe an

appreciable phase-dependence with visibility va = 0.46 ± 0.03 for the adiabatic absorption

curve Ra(θ), while no such variation is recorded for the incoherent absorption curve Ri(θ).

The fringe visibility is limited by the intrinsic incoherent component of the absorption

process, as well as by the mismatch in amplitudes and pulse shapes for the α, β fields. For

the results shown in Fig. 5.7, a 200 ns detection window is used around the peak of the

emission process. If we increase the detection window to 1 µs, thus degrading the pulse

shape overlap, the visibility drops to va = 0.18± 0.01.

In conclusion, we have demonstrated the reversible transfer of a classical pulse of light

to and from the internal state of a single trapped atom, which represents a significant
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Figure 5.7: Ratios Ra(θ), Ri(θ) for photon generation as a function of the relative phase

θ between the λ1,2 fields. Red data points (◦): Ra(θ) for adiabatic state transfer with Ω1

ON. Blue points (�): Ri(θ) for the incoherent process with Ω1 OFF. The full curve is a

fit to obtain the fringe visibility va ' 0.46 ± 0.03. These data are for a 200 ns detection

window, where, on average, each point represents about 130 atoms. The error bars represent

statistical fluctuations from atom to atom.

step towards the realization of quantum networks based upon interactions in cavity QED.

Explicitly, we have presented a detailed investigation of the adiabatic absorption of an

incident coherent state with n̄ = 1.1 photons. A fraction pa = 0.063 of the atomic population

has been transferred from F = 4 to F = 3, with the efficiency of the transfer being ζ ≡

pa/n̄ = 0.057. Here ζ provides an estimate of the efficiency that could be obtained if we

adiabatically absorbed a single photon state instead of a coherent state, and should be

compared to the much lower efficiencies possible in free space.

The factors that limit the transfer efficiency include the passive mirror losses [28], the

fact that our cavity mirrors have equal transmission coefficients T1 = T2 (as opposed to

T1 � T2 for a single-sided cavity), and the coupling of the atom to both polarization modes

of the cavity. Even in the ideal case without scatter and absorption losses in the mirrors, for

a three-level atom coupled to a two-sided cavity (T1 = T2) with two modes, the maximum
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possible adiabatic transfer probability would be ζ = 0.25. By implementing a single-sided

cavity with losses as achieved in Reference [91], we estimate that ζ could be improved to

ζ ∼ 0.9 for coupling schemes with a single polarization. In the longer term, a more robust

method for transferring quantum states in a quantum network would be to encode states

in polarization degrees of freedom rather than photon number. Thus, an important next

step will be to demonstrate the mapping of polarization states of light onto Zeeman states

of the atom [92].



213

Chapter 6

Experimental Atom-Cavity Dynamics

In Chapter 2 we described the eigenenergy spectra and temporal dynamics of simple, open

atom-cavity systems for two-state atoms and one-mode cavities. We also explored how this

model can be generalized to the complicated multiplicity of states associated with atomic

cesium and cavities which support multiple near-degenerate modes. In this Chapter we will

apply this theory to our experiment.

In contrast with the work in Chapter 5, we will begin in Section 6.1 by describing a

series of measurements wherein the atom is impulsively (i.e., non-adiabatically) driven. By

applying a short pulse (temporal width shorter than than ∆tg = π/2g(~r)) of an optical

field tuned to free-space resonance with the atom, we can deposit the system in an even

superposition of its two eigenstates. This is the quantum mechanical analogue of a hammer

striking one of two, coupled classical pendula. The result is an oscillation in time of the

excitation imparted to the system between the atom and the cavity field. By monitoring

the transmission of the cavity, we can gather an ensemble of photon arrival times which

exhibit this characteristic oscillation.

Shifting from time-domain measurements to frequency-domain spectroscopy, in Section

6.2 we will briefly review measurements made in 2004 and 2005 of the characteristic vacuum

Rabi spectrum for one-and-the-same atom coupled to our cavity. After this, we will also

describe a series of more recent measurements wherein we are able to measure transmission

spectra for ensembles of one and two atoms continuously coupled to the cavity mode.
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6.1 Time-Domain Measurements

Chapter 5 outlined a series of experiments wherein photons were deterministically generated

in the cavity mode by slowly and reversibly varying the Rabi frequency, ΩT , of a classical

optical field coupled directly to the atom. A feature of this STIRAP process is that as ΩT

varies, the system follows a dark state characterized by the absence of population in any

atomic excited states. In order to follow this dark state, ΩT (t) must vary slowly enough to

satisfy the adiabaticity condition:

|Ω̇T (t)| . g2
0, (6.1)

where g0 is the maximal rate of atom-cavity coupling. By taking advantage of the dark state

we ensure that the process remains coherent and suffers no dephasing due to spontaneous

emission. However, by adiabatically eliminating the atomic excited state we also preclude

the system from undergoing evolution as described by the Jaynes-Cummings Hamiltonian.

While STIRAP relies explicitly upon strong atom-field coupling, the photon generation

mechanism is itself a Raman process and does not exhibit the “hallmark” dynamics of

strong coupling cavity QED.

In this section we will explore the complimentary parameter regime, wherein the classical

field impulsively (i.e, non-adiabatically) excites the atom. By driving it with a sufficiently

short classical pulse, we can populate the excited state of the atom much faster than any

other process affecting the system (coherent or incoherent). In the limit of a pulse with a

delta function envelope at time t0, we can model the effect of a field of the proper strength

as instantaneously changing the state of the system:

|ψ(t)〉 = |g, 0〉 (t < t0) −→ |ψ(t0)〉 = |e, 0〉 (6.2)

after which the state is left to evolve freely in time. Recall that in Chapter 2 we used the

quantum master equation approach to explore this circumstance for a two-state atom and

a one-mode cavity which led to Equation (2.58), an expression for the intracavity photon

number n at zero atom-cavity detuning as a function of t′ = (t − t0), the amount of time
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after the atom was initially excited. We can generalize this formula to the case of arbitrary

atom-cavity detuning ∆AC :

n(t′) = e−(κ+γ)t′ g
2(~r)
g2
E(~r)

sin2
[
gE(~r)t′

]
(6.3)

where gE(~r) is the “effective” vacuum Rabi frequency:

gE(~r) ≡
√

1
4

(γ − κ− i∆AC)2 + g2(~r). (6.4)

In short, because our system is in the regime of strong coupling, we expect the intracavity

photon number to undergo vacuum Rabi oscillation which should manifest itself in pho-

todetection of the field emitted from the cavity following the impulse.

For real, experimental pulses, ΩT (t), of finite duration we also need to consider how the

system evolves during the short period of time during which the impulse is still driving the

atom and yet the atom-cavity dynamics are also beginning to manifest themselves. In order

to quantify the effect of the finite temporal width of the impulse we can add an interaction

term to the system Hamiltonian:

ĤI(t) = ~ΩT (t)(|e〉 〈g|+ |g〉 〈e|). (6.5)

With this term included in the Liouvillian along with the full, time-dependent form of ΩT (t),

numerical integration of the full master equation allows us to determine the state of the

intracavity field as a function of time. In the Subsection 6.1.2 we will use this approach to

model the dynamics of the full state space of the cesium D2 line coupled to a birefringent

cavity and under what circumstances this model agrees with data obtained in the laboratory.

First, however, the following Subsection will describe how we generate short pulses ΩT (t)

in the laboratory and introduce our experimental protocol for measuring this effect.

6.1.1 Resonant Vacuum Rabi Oscillation

In this Subsection we describe the experimental observation of vacuum Rabi oscillation in

the time domain for one atom strongly coupled to a cavity at nominal zero atom-cavity
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detuning, ∆AC = 0. The oscillation manifests itself in the temporal wave packet of photons

generated in the cavity mode from an atom which has been excited by a fast pulses of

resonant laser light. The shape of this wave packet is reconstructed by histogramming

the detection times of photodetection events in the cavity output mode. By averaging

over a physically reasonable distribution of values for g(~r) and numerically integrating the

quantum master equation for the system we are able to model the shape of the wave packet.

This work follows the publication of a set of similar measurements made by the group

of G. Rempe at MPQ Garching for single rubidium atoms in a cavity with characteristic

parameters (g0, κ, γ) = (2π)(5.0, 2.7, 3.0) MHz [93, 94]. These parameters sit marginally

inside of the regime of strong-coupling and therefore prohibit the direct observation of

vacuum Rabi oscillation on resonance. However Rempe’s group is still able to infer the

effective vacuum Rabi frequency near resonance by measuring the characteristic narrowing

of the photon wave packet which manifests itself even in when the system is not deep within

the strong coupling regime. Also, by introducing a fixed atom-cavity detuning, they are

able to increase the effective Rabi frequency and thereby recover the oscillatory character

of the wave form. In contrast with the work of the Garching group, we are able to clearly

resolve Rabi oscillation at zero atom-cavity detuning because our system is deep within the

regime of strong coupling.

In order to observe this effect, the length of the physics cavity was tuned into resonance

with the free space (4↔ 5′) transition. This transition exhibits the largest rate of coherent

coupling in the D2 manifold (see Table 3.2) and is therefore most likely to exhibit promi-

nent vacuum Rabi oscillation. For this configuration, the parameters of our system are

(g0, κ, γ) = (2π)(33.7, 3.9, 2.6) MHz, where g0 is given for the (|4, 4〉 ↔ |5′, 5〉) transition in

the atom. The depth of the FORT is set to U0/h ≈ 45 MHz. For the work described in this

Section the static magnetic field is nulled to the level of ∼ 40 mG at the cavity center. As

usual, we have a polarizing beamsplitter cube at the cavity output which is oriented such

that we detect only cavity emission from the higher-frequency birefringent mode.

The field corresponding to the classical pulses ΩT (t) is derived from the master laser

and shifted by acousto-optic modulation into free space resonance with the (4↔ 5′) transi-

tion. This light is coupled through an EO Space brand fiber-coupled integrated electro-optic
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Figure 6.1: Measured photodetector voltage into 50 Ω versus time for ΩT (t) pulses generated

using an EO Space MZIS as described in the text.

Mach-Zehnder interferometric switch (MZIS). This device consists of a fiber-coupled waveg-

uide configured as a two-arm Mach-Zehnder interferometer. A lithium niobate electro-optic

element is integrated into one of the two arms such that the phase shift induced by the

EO will intensity modulate the transmitted light. The MZIS has two electronic input ports

which control the voltage across the crystal: the first is a DC bias connector which allows

the user to introduce a static electro-optic phase shift to light passing through the active

element and the second is an 50 Ω impedance RF-connector which permits broadband phase

modulation with a bandwidth exceeding 10 GHz.

A constant reference voltage Vπ ≈ 2.3 V is applied to the DC port in order to maximally

extinguish transmission in the absence of an RF input signal and the MZIS has been in-

tegrated into a temperature-servoed monolithic copper heatsink in order to eliminate slow

thermal phase shifts. For a properly polarized input field, the MZIS offers a maximum

extinction ratio of 1 : 250 at DC. The optical pulses with which we drive the atom are

generated by feeding a nominal square pulse of width τT = 10 ns and amplitude VT = 4.0 V

into the RF port of the MZIS. The resulting optical waveform was measured on an amplified

photodetector with 150 MHz of gain bandwidth; the photocurrent through 50 Ω is shown
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Figure 6.2: Schematic diagram of the experiment. The classical pulses ΩT (t) are polarized

along the ẑ-axis by a polarizing beamsplitter cube and impinge upon trapped atoms at the

cavity center. Cavity emission is collected from the output mirror and directed into the

detection path.

in Figure 6.1. The small oscillation on the falling edge of the pulse is likely due to a slight

electrical impedance mismatch into the RF port of the MZIS. The short electronic pulses

which are fed into the EO are derived from an SRS DG535 delay generator which is exter-

nally triggered by TTL-level pulses from the ADWin Gold. The same pulse used to trigger

the DG535 is also used to trigger acquisition of data by the P7888 counting card in order

to reference each pulse with respect to the photodetection events to which it corresponds.

The EO Space MZIS devices we use offer very low switching voltages by integrating the

electro-optic crystal into micron-scale optical waveguides. As a result, the optical intensities

inside of the waveguide can be large enough to induce photorefractive damage in the crystal

at even modest input powers. The manufacturer recommendation is to not exceed 5 mW

CW through the device and we have generally abided by that limit. The optical loss

associated with propagation through an MZIS which is voltage biased for high-transmission

is on the order of 2.5 dB. This means that the peak optical power we can expect in a pulse

generated using the these devices is ∼ 2.5 mW.

The pulses generated by the MZIS are coupled from fiber to free-space where they are

polarized along the ẑ-axis (i.e., along the cavity axis) by a polarizing beamsplitter cube



219

(Figure 6.2). The path which this light follows is that of the “unbalanced” side beam

described in Section 3.5.2. For typical input power to the MZIS and the focal properties of

the path which steers that beam to the cavity we anticipate that the peak optical intensity

of ΩT (t) is max[IT (t)] ∼ 1500Isat which corresponds to max[ΩT (t)] ∼ (2π)(35 MHz) for the

(|4, 4〉 ↔ |5′, 5〉) transition. During the finite duration of the pulse, the effect of ΩT (t) is

to induce Rabi oscillation of atomic population between the F = 4 ground state and the

F = 5′ excited state. Ultimately, the probability with which the atom will be deposited

in the cavity-coupled excited state is a function of the “area” under the pulse envelope

(i.e., the total, integrated energy contained within each pulse). However, as described in

Chapter 3, the cavity aperture is sufficiently narrow that beams of this sort suffer significant

near-field diffraction. In practice, as we average over many measurements involving atoms

which are trapped in spatially distinct FORT wells, each atom will couple to the classical

field with a unique Rabi frequency ΩT (~r, t) (now written to emphasize the spatial as well

as temporal dependence). In the next Subsection we will model what implications this

averaging effect might have on the shape of the wave packet emitted from the cavity mode

and on the dynamics of the system as a whole.

Following each attempt to load an atom into the FORT potential, we perform 100

experimental cycles each comprised of a set of trials. The cycles begin by optically pumping

the atom into a random initial Zeeman state in the F = 4 ground state manifold using the

(3↔ 3′) lattice beams. After the initial optical pumping phase, we perform 1× 103 trials,

each consisting of a trigger pulse sent to the DG535 which drives the MZIS. These trigger

pulses (and the trials) are separated in time by ∆t = 4 µs (rate-limited by the trigger reset

delay of the DG535). At the beginning of each trial, a pulse is sent to trigger both the DG535

and to the “start” channel of the P7888 counting card in order to correlate subsequent

photodetections with the rising edge of ΩT (t). After the full set of trials is complete, we

begin a new cycle and again optically pump the atom into F = 4. The reason for these

interleaved optical pumping intervals is to prevent the atom from off-resonantly scattering

into the decoupled F = 3 ground state manifold. Note that for this set of measurements we

have elected not to employ the incoherent Raman optical pumping technique of Section 4.5

(or any other Zeeman-selective state preparation protocol) simply because doing so would
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reduce the duty cycle per-trial by more than a factor of 1×104. Motivated by our relatively

small efficiency for measuring cavity emission we have instead elected to acquire data at

a higher rate at the expense of averaging over atom-cavity coupling constants and FORT-

induced AC Stark shifts for each transition within the F = 4 manifold. In Section 6.1.4 we

will describe a similar set of measurements but with a Zeeman-state selective initialization

protocol.

Data analysis is carried out by selecting only photodetection events which fall within

a small window (∆twin = 60 ns) following the rising edge of Ω(t)T (as gated by events

registered on channel C of the P7888). If, following either the beginning of the first cycle

or any subsequent photodetection event within the detection window, there are no other

properly-windowed photodetection events in the next 2× 103 trials then there is presumed

to be no atom present in the cavity mode. Should it be determined that there is no

atom present in the cavity at any point during the first 4 × 103 trials following a loading

attempt then all data from that loading attempt is classified as containing no atom. By

contrast, if the presence of an atom is verified throughout those first 4 × 103 trials then

data taken during that loading attempt (and for which the continued presence of an atom

is verified) is classified as corresponding to the presence of an atom in the cavity. We can

then time histogram or otherwise analyze the “atom present” photodetection events during

the windowed interval in order to extract photon statistics, temporal wave packet shapes

or another accessible observable which we might have interest in. The results shown in

Subsection 6.1.3 are obtained in this manner.

6.1.2 Numerical Simulation

Before we discuss any experimental results, it is useful to briefly describe the theoretical

model which we will use to interpret the data. As mentioned earlier in the Chapter, the

approach we will take is to model the time evolution of the density matrix for the full atom-

cavity system by numerical integration of the master equation. This model is formulated

using the Quantum Optics Toolbox (QOT) package for MATLAB as described in Appendix

C. Within the context of the simulation we will write the density matrix in terms of tensor

product states in the |F,mF , na, nb〉 basis where F ∈ {4, 5′} and with the quantization



221

(ns)

Pu
ls

e 
H

ei
gh

t (
di

m
en

si
on

le
ss

)

−10 0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

normalized  data
model pulse

Figure 6.3: Shape of the model impulse function A(t) (dashed) as compared to the normal-

ized photodetector voltage for the physical pulses generated by the MZIS (solid, same as

Figure 6.2).

direction specified along the cavity axis. The states |na〉 (|nb〉) represent the Fock states

of the higher (lower) frequency birefringent cavity mode which is presumed to be oriented

along the x̂(ŷ)-axis. In order to restrict the Hilbert space associated with this calculation

to a size compatible with the memory handling capabilities of the laboratory computers,

we truncate the basis of cavity Fock states in both modes to (na, nb) ∈ {0, 1, 2}. This

is a reasonable assumption in the weak-driving limit where the contribution to the total

intracavity field from states with na,b ≥ 3 is typically less than 0.01%.

Pulse Shape

The model Hamiltonian for the system includes many of the relevant experimental param-

eters described in Chapters 2 and 3. These include the Zeeman state-dependent FORT-

induced AC Stark shifts (and associated atom-cavity detunings), state-dependent rates

of atom-cavity coupling and the cavity birefringent frequency splitting. Additionally, the

Hamiltonian includes an explicitly time-dependent term corresponding to the classical field

ΩT (t) where the shape of the impulse is approximated by the QOT pulse function. The
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envelope of ΩT (t) thereby takes the form:

ΩT (t) = Ω0A(t) (6.6)

where A(t) is given by:

A(t) = A1(t)A2(t) (6.7)

A1(t) =


0 (t < [t1 − 1

2τr])
1
2 [1 + sin(π[t− t1]/τr)] (|t− t1| ≤ 1

2τr)

1 t > [t1 + 1
2τr]

(6.8)

A2(t) =


1 (t < [t2 − 1

2τr])
1
2 [1− sin(π[t− t2]/τr)] (|t− t2| ≤ 1

2τr)

0 t > [t2 + 1
2τr]

. (6.9)

This is a pulse with rise and fall times given by τr and start (stop) times given by t1 (t2).

In order to model the pulse shown in Figure 6.1 we use the parameters τr = 10 ns, t1 = 5

ns and t2 = 15 ns (t0 = 0 corresponds to the beginning of the simulation). In Figure 6.3

the normalized photocurrent measured for MZIS-generated pulses is plotted in comparison

with A(t).

Initial Atomic State

Recall that the polarization of the classical ΩT field is oriented along the quantization axis

specified in our model. As such, this field drives ∆mF = 0 transitions in this basis. We there-

fore expect that if we could prepare the atom in a single Zeeman state, |ψ(t0)〉 = |4,mF 〉,

that the fraction of the population transferred to |5′,mF 〉 should depend on the integrated

energy in the pulse and the dimensionless dipole moment for the (|4,mF 〉 ↔ |5′,mF 〉) tran-

sition (Appendix A). Likewise, we expect the branching ratio from excited states |5,mF 〉

via emission into the cavity mode to ground states |4,mF ± 1〉 (as well as the rates of atom-

cavity coupling, g, for this process) to also be a function of the dimensionless dipole matrix

elements. These expectations are clearly in agreement with our model as borne out in the top
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Figure 6.4: Intracavity photon number in the higher-frequency cavity mode as a function

of time following an impulse of magnitude Ω0 = (2π)(35 MHz) for (top) an atom prepared

in a well-defined initial Zeeman state |F,mF 〉 with respect to the quantization axis and

(bottom) an atom prepared in the maximally mixed state. For reference, the model pulse

A(t) is plotted as well (with arbitrary amplitude).
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panel of Figure 6.4 where we have plotted n(t) = 〈â†â〉 = Tr(â†âρ̂(t)), the time-dependent

intracavity photon number in the higher-frequency mode of the cavity as predicted by inte-

gration of the master equation. This model includes an impulse of associated Rabi frequency

ΩT (t) = (2π)(35 MHz)A(t) and assumes maximal atom-cavity coupling such that for the

edge state cycling transitions, g0 = (2π)(33.7 MHz). The five traces in this plot correspond

to preparation of the system in the states |ψ(t0)〉 = {|4, 0〉 , |4,±1〉 , |4,±2〉 , |4,±3〉 , |4,±4〉}

(due to the symmetries inherent to the model, we obtain approximately equal results for

both states |ψ(t0)〉 = |4,±mF 〉).

The first thing to take note of is that regardless of initial state we predict unambiguous

vacuum Rabi nutation in n(t). Also, the magnitude of the intracavity field is dependent on

the initial state of the system in a way which agrees with the scaling of dimensionless dipole

moments for π-polarized light on this transition (starting with mF = 0 the dipole moments

grow smaller as we move towards the edge states). Smaller dipole moments mean smaller

Rabi frequencies for those transitions to which the classical impulse couples and therefore,

in the limit of weak driving, less excitation deposited in the system. Finally, the frequency

of the damped oscillation in n(t) is larger towards the atomic edge states where the dipole

moments for coupling to σ±-polarized fields (those polarizations which the cavity supports)

are largest.

As mentioned earlier, for this set of experiments there is no magnetic bias field applied

to the system and therefore no efficient protocol for Zeeman state preparation. Instead we

will assume that the initial atomic state is the maximally mixed state comprised of Zeeman

substates within the F = 4 ground state manifold:

ρ̂A(t0) =
1
9

4∑
mF=−4

|4,mF 〉 〈4,mF | . (6.10)

In the bottom panel of Figure 6.4 we have plotted n(t) for an atom initially prepared in this

state. Although this is essentially the incoherent sum of the traces from the upper panel,

vacuum Rabi oscillation is still clearly visible. We do note, however, that after the first full

cycle of the oscillation there is significant dephasing and a reduction in contrast. Given the

cavity linewidth, κ = (2π)(3.8 MHz), and the total detection efficiency for an intracavity
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field, α = 0.086, we can use this calculation to infer the total probability to experimentally

register a single photodetection event in the ∆twin = 60 ns interval following the impulse:

P1 = 2καδt
ti+∆twin∑
t′=ti

n(t′, δt). (6.11)

Here δt is the time interval used to carry out the numerical integration and ti ≡ t0 + t1 + τr

is the time at which ΩT (ti) = max[ΩT (t)]. For the parameters of the bottom trace in Figure

6.4 and experimental parameters presented in Chapter 3 we calculate P1 = 0.0070.

Averaging Effects

In the previous Subsection we alluded to the necessity for ensemble averaging over both

the range of accessible classical Rabi frequencies Ω0 due to diffraction of the side beam by

the cavity aperture and the range of accessible atom-cavity coupling rates g(~r) for atoms in

different FORT wells and at different temperatures. In a very simple approximation where

we do not consider temperature, the positions zq where atoms might be located are the

intensity maxima of the FORT:

zq =
λF
2

(2q + 1)− L

2
, (1 ≤ q ≤ 90) (6.12)

where the cavity mirrors are located at z = ±L/2. Atoms located at zq will couple to the

impulse with maximum Rabi frequency

Ω′0(z) = Ω0

√
I(zq)
I0

(6.13)

where I(z) is the distribution of side beam intensities approximated by Equation (3.56) and

I0 ≡ max[I(z)]. From Equation (3.51) we known that atom-cavity coupling rate at zq is

given by:

g(0, 0, zq) = g0

∣∣∣∣cos
(
π

(2q + 1)
2

λF
λD2

)∣∣∣∣ . (6.14)
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Figure 6.5: Calculated maximum intracavity photon number in the higher-frequency bire-

fringent mode, nmax, as a function of maximum classical pulse Rabi frequency, Ω0 for

averaging over the best-coupled a. mb = 1, b. mb = 15, c. mb = 45, and d. mb = 90

FORT wells. The solid blue traces represent an average involving only Ω′0(zq) and uniform,

maximal atom-field coupling g(~r) = g0. The dashed red traces are for averaging over both

Ω′0(zq) and g(~r) = g(0, 0, zq).
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As we will see, the principle effect of ensemble averaging over the accessible Ω0 is to diminish

the probability with which an excitation will be deposited in the cavity mode following the

impulse and to average away any coherent dynamics between the impulse and the atom

(when the system is in the strong-coupling regime). The dominant effect associated with

averaging over the range of accessible g(~r) is to dephase the optical Rabi nutation (when

the impulse is weakly driving the atom).

Figure 6.5 shows calculations of the maximum intracavity photon number in the higher-

frequency birefringent cavity mode (i.e., nmax(Ω0) ≡ max[n(t,Ω0)]) as a function of the

maximum Rabi frequency Ω0 experienced by the atom during the impulse under different

averaging conditions. We choose to consider nmax(Ω0) because, first, it is proportional to

the signal which we will collect in the laboratory and, second, it is a good measure of the

probability that the impulse will introduce an excitation to the system and that this exci-

tation will propagate from the atom to the cavity mode via QED. The red (dashed) traces

in each of the four panels correspond to averaging over the values of {Ω′0(zq), g(0, 0, zq)}

for the mb ∈ {1, 15, 45, 90} “best-coupled” FORT wells. These are the mb wells for which

g(0, 0, zq) is largest. These curves were obtained by finding nmax at each zq for atoms cou-

pled to the cavity at rate g(0, 0, zq) and to the classical impulse at frequency Ω′0(zq). We

then simply average the resulting nmax assuming the atom can be located in any of the mb

locations with equal probability. The blue (solid) curve in each panel is for comparison and

involves averaging over only Ω′0(zq) with the atom-cavity coupling rate held maximal and

constant, g(~r) = g0. This separation is somewhat contrived but allows us to quantify the

significance of averaging over atom-cavity coupling rates with respect to the the probability

for an excited atom to deposit that excitation in the cavity mode (as opposed to averaging

over Ω′0(zq), which primarily affects the probability with which the atom will be excited in

the first place).

Despite differences in the amplitudes of these curves, the shapes are relatively uniform.

Initially, as Ω0 is increased from zero, the classical impulse has the effect of exciting the

atom with increasing probability. After a brief transient, the system enters a linear regime

wherein the Rabi frequency of the impulse is roughly proportional to the probability that

a photon will be deposited in the mode of the cavity. In the limit of large Ω0, the curve
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rolls off and the probability to excite the system becomes roughly constant. To understand

this effect, consider the the case where the atom is prepared in one, well-defined Zeeman

state and the classical pulses couple to the atom with a single maximum Rabi frequency.

Here we would expect that in the “saturation” regime, we will continue to observe coherent

dynamics - the atom would undergo Rabi oscillation induced by the impulse at the same

time that the QED system is undergoing vacuum Rabi nutation. Indeed, for the trace

corresponding to mb = 1 (where we consider only one atom-field coupling rate and one

value of Ω′0(zq)), we continue to see structure even at large Ω0 (which is complicated due

to the initial mixed state of the atom). As we include more values of Ω′0(zq) in the average,

however, the atom-impulse portion of the coupled oscillation begins to dephase. Just as

in Chapter 4 where dephasing in our cavity-based Raman scheme lead to the Raman pair

depositing the system at random in one coupled state or the other, we see a similar effect

here. For an average over a large range of values Ω′0(zq), the impulse excites the system with

some uniform probability (and, as we will see later, begins decohering the QED dynamics

as well).

We can also compare the red and blue traces in each panel of Figure 6.5 with an eye

towards determining the circumstances under which it is necessary to perform averaging

over both position-dependent quantities. Recall that in the red curves we are considering

both g(~r) and Ω′0(zq) while for the blue we are holding g(~r) = g0 constant and averaging

only the impulse strength. Panel 6.5a corresponds to the single-best coupled FORT well

and not surprisingly the two curves overlap. However as we introduce more wells we begin

to see the effect which averaging the atom-field coupling rate has on the probability to

introduce an excitation into the cavity mode following excitation of the atom. For each

mb we have gmax ≥ g(~r) > gmin (mb = 15: [gmax, gmin] = (2π)[33.7, 32.6] MHz; mb = 45:

[gmax, gmin] = (2π)[33.7, 24.6] MHz; mb = 90: [gmax, gmin] = (2π)[33.7, 0.2] MHz). As long

as the full range of values g(~r) which are being included in the sum still satisfy the strong

coupling criteria then there is a significantly increased probability that an excited atom

will deposit that excitation in the cavity mode as opposed to decaying into free space (as

discussed in Chapter 2). This is particularly true in the limit of weak driving (small Ω0)

where we can closely approximate nmax(Ω0) by its value when g(~r) is held constant at g0.
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However as we begin averaging over zq which offer only weak coupling between atom and

cavity, the importance of averaging over g(~r) becomes more pronounced.

We can also explore the effect of averaging on the shape (as opposed to the maximum

value) of n(t). In order to do this, we will consider values of zq for mb = 45. In past work,

we have empirically observed (c.f., [41]) that atoms tend to survive a significant number

of experimental trials in the FORT only at positions zq which correspond to large atom-

cavity coupling (this will also become clear from the data described in the next Subsection).

Typically we expect mb ∼ 45 will correspond to laboratory data. Over a range of Ω0 we

calculate the intracavity photon number as a function of time, n(t), which is then normalized

with respect to it’s maximum, nmax:

n′(t,Ω0) =
n(t,Ω0)
nmax(Ω0)

. (6.15)

The result, n′(t), allows us to directly compare the shapes of wave packets at different Ω0.

The upper panel of Figure 6.6 shows a colormap of n′(t,Ω0) versus (t − t0) and Ω0 for an

average over g(0, 0, zq) and Ω′0(zq). Notice that the shape of n′(t,Ω0) changes abruptly near

the values of Ω0 where we predicted saturation phenomena, above. In order to quantify

the dependence of n′ on the impulse Rabi frequency we can make cuts through the data at

times ta = 32.7 ns (dashed red line) and tb = 41.8 ns (dashed green line), which roughly

correspond (in the limit of weak driving) to the minimum of the first trough and the

maximum of the second peak of the oscillation, respectively. In the bottom panel of Figure

6.6 we plot n(ta,Ω0) and n(tb,Ω0) (omitting data at very small Ω0 which exhibit artifacts

of error in the numerical integration routine). Over the full range of Ω0 there is nearly a

factor of 3 change in n(ta,Ω0) and less than a ∼ 10% change in n(tb,Ω0). However if we

confine ourselves to the limit of small Ω0, we can expect only small changes to the shape of

the pulse emitted from the cavity (and principally at the location of the first trough in the

oscillation of the wave packet) as we vary the impulse Rabi frequency. As we will see later

in this Subsection, the dominant contribution to dephasing of the vacuum Rabi oscillation

in the limit of weak driving is averaging over multiple values of g(~r) and not Ω′0(z).

The reason for this lengthy exposition on how we expect ensemble averaging to affect our
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Figure 6.6: Color map of the normalized intracavity photon number, n′(t), versus time and

maximum impulse Rabi frequency Ω0. Cuts made at ta = 32.7 ns and tb = 41.8 ns quantify

dephasing of the optical Rabi nutation due to the strength of the pulse (lower panel shows

n′(ta,Ω0) in red and n′(tb,Ω0) in green).
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experimental signal is that in the laboratory we have only an order-of-magnitude estimate

as to the optical intensity of the impulse at the location of the atom. The expression derived

in Chapter 3 for I(z) provides a very rough approximation of the diffraction pattern at the

cavity center by modeling the cavity aperture as a two-dimensional slit but ignores complex

effects resulting from the non-zero thickness of the mirrors. If the shape of the wave packet

emitted from the cavity following the impulse were very sensitive to the distribution of

intensities at the center of the cavity then it would be difficult to quantiatively model any

signals we see in the lab. However it is clear from this analysis that we can largely decouple

the average over Ω′0(z) from that over g(0, 0, z) as long as we remain in the limit of small

Ω0. As we will see in the next Section, by varying the intensity of the impulse light in

a controlled way and measuring the resulting photodetection probability we can roughly

infer the value of Ω0 for that beam. From this inference we can then perform the necessary

ensemble averaging over g(~r) and then compare n′ with normalized data from the laboratory

to demonstrate agreement between theory and experiment with respect to the shape of the

vacuum Rabi oscillation in the cavity output.

Thermal Averaging

Before we describe the data, however, we should generalize our model to include non-zero

atomic temperatures (at fixed Ω0). We will assume that the temperature of the atom is

both radially and axially given by:

T = T0
U0

kb
. (6.16)

Here T0 is the ratio between the thermal energy of the atom and the depth of the trapping

potential, U0 (however note that we have no particular evidence that in this configuration

of the experiment the atomic motion is thermal so this serves only as an approximation). In

order to carry out the average we select the values of q corresponding to the mb best-coupled

wells we wish to consider and then calculate g at all locations {x, y, z} = {r′, z} within that
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well:

gq(x, y, z) = g0

∣∣∣∣cos
(

2π
z

λD2

)
exp

(
−(x+ y)2

wD2

)∣∣∣∣ . (6.17)

Recall that λD2 and wD2 are the wavelength and waist of the cavity QED field. For all

possible locations within the qth FORT well, (zq − λF /2) ≤ z ≤ (zq + λF /2) and 0 ≤ r′ ≤

2
√
T0wF , we perform a weighted sum of the calculated intracavity photon as function of

time for that value gq(x, y, z) where the weights are given by a thermal distribution.

I have included the MATLAB script which I use to perform thermal averaging below. This

script relies on a properly-configured version of cesiumsim.m (as described in Appendix C)

where the pulse shape has been adjusted according to the parameters of our model and the

input and output variables have been properly defined.

%-------------------------------------------------------------------------

% thermalavg.m

% March 20, 2009

%-------------------------------------------------------------------------

% user-defined variables

%-------------------------------------------------------------------------

Omega0 = 35; % impulse Rabi frequency/(2 pi) [MHz]

g0 = 33.7; % maximum atom-cavity coupling/(2 pi) [MHz]

nbestwells = 35; % the number of "best" wells to consider

T = 0.15; % kbT in units of U0

lp = 852.357e-9; % probe wavelength [m]

lf = 935.586e-9; % FORT wavelength [m]

wp = 23.43e-6; % probe waist [m]

wf = 24.54e-6; % FORT waist [m]
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sigmasqz = T*lf^2/(8*pi^2); % thermal spread in axial position

sigmasqr = T*wf^2/4; % thermal spread in radial position

steps = 100; % coarseness of the average

rstep = 4*sqrt(sigmasqr)/steps;

zstep = lf*0.5/steps;

%-------------------------------------------------------------------------

% initialize dummy variables

%-------------------------------------------------------------------------

transmission = zeros(1,500);

denom = 0;

indexg = 0;

%-------------------------------------------------------------------------

% construct array of n(t) for full range of g’s

%-------------------------------------------------------------------------

for g = 0:.01:g0;

indexg = indexg+1;

% call simulation code - na, nb are photon numbers in two cavity modes

[na nb] = cesiumsim([4],[5],0,[4 5],2*pi*Omega0,2*pi*g);

glist(indexg,:) = real(na);

end

%-------------------------------------------------------------------------

% sort wells by g

%-------------------------------------------------------------------------

for well = 0:89
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%determine value of g for each FORT well

wellg(1,well+1) = cos(pi*(2*well+1)/2*lf/lp);

wellg(2,well+1) = 0.5*(2*well+1);

end

wellg=sortrows(abs(wellg)’,-1); % sort list of well g’s

%-------------------------------------------------------------------------

% perform averaging

%-------------------------------------------------------------------------

for bestwell = 1:nbestwells;

%value of z at center of well # bestwell

z0 = 0.5*lf*(wellg(bestwell,2));

for z = z0:zstep:z0+lf/2;

for r = 0:rstep:rstep*steps;

% g at (r,z) with respect to center of # bestwell

g_rz = abs(cos(2*pi*z/lp)*exp(-r^2/wp^2));

% find array index in glist corresponding to g_rz

index_glist = floor(g_rz*g0/.01)+1;

% transmission is the weighted intracavity photon number

transmission = transmission+glist(index_glist,:)*...

exp(-(z-z0)^2/(2*sigmasqz))*r*exp(-r^2/(2*sigmasqr));

% denom is used to properly weight the average

denom = denom+exp(-(z-z0)^2/(2*sigmasqz))*r*exp(-r^2/(2*sigmasqr));

end

end

end

transmission = transmission/denom;

%-------------------------------------------------------------------------

In Figure 6.7 we explore how averaging over mb and T0 affects the shape of n(t). Un-
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Figure 6.7: Color map plots of n(t) versus t and a. mb, the number of best-coupled wells

and b. T0, the atomic temperature as a fraction of the potential depth. Panels c. and

d. illustrate how n(t) changes shape as more well-coupled sites or larger temperatures are

considered in the model. These calculations were carried out with Ω0 = (2π)(35 MHz).

Averages taken over different mb are calculated with T0 = 0 and likewise averaging over T0

is done with mb = 1.
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Figure 6.8: Data points correspond to the measured probability, Pd(t) to register a pho-

todetection event in a 2 ns window of time centered at t with no atoms present in the

cavity. The red curve represents the location of the model pulse described in the previous

Subsection.

surprisingly, as we sum over a larger range of values g(~r), the Rabi oscillation present in

the intracavity wave packet begins to dephase. In particular, we note that for values of

mb & 60 and for T0 & 0.3, the oscillation starts to become indistinct. In practice, it is

difficult to predict which range of values {mB, T0} will correspond to the data observed in

the laboratory. Under very different experimental conditions we have observed in the past

that mb < 30 and T0 < 0.1 [41, 29], but predicting the heating effects and trap survival

probabilities associated with the particular interaction we are implementing here is diffi-

cult. Instead, in the next Subsection, we will use the temporal shape of the emitted wave

packet to make an inference of the temperature and position of the ensemble of atoms which

contribute to the measurements.
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6.1.3 Results and Correspondence with Theory

In order to analyze the data it is useful to begin with a baseline measurement for which no

atoms are present in the cavity (Figure 6.8). To ensure the absence of atoms from the data,

we turn off the current supplies which are used to generate the quadrupole fields necessary

to form the upper and lower MOTs. The quantity which we will evaluate is the probability

as a function of time, Pd(t), to register a photodetection event in the 2 ns time bins centered

at times t and defined by the P7888 card. For the data corresponding to no atoms, we see a

spike in Pd(t) centered near t = 38 ns. This corresponds to scatter of light from the MZIS off

the cavity substrates and into the detector. The small amount of scattered light contains two

useful pieces of information. First, it allows us to determine the arrival time of the optical

pulse at the cavity with respect to the detection trigger event (thereby accounting and

correcting for small delays in the electronics and coaxial cables used to trigger the pulse).

This in turn determines t0, or the location of the model pulse described in the previous

Subsection, and registers any theoretical calculations in time with respect to experimental

data. Secondly, this measurement allows us to determine the background probability with

which light will be scattered from the impulse into the detectors (as opposed to from the

atom and subsequently into the cavity mode). We have observed that the amount of light

scattered from the cavity mirrors into the detector path is very sensitive to the physical

alignment of the impulse beam through the cavity aperture. Significant misalignment can

increase the rate of scatter by as much as an order of magnitude. Outside of the window of

time near the impulse the background level is otherwise consistent with the cumulative rate

of dark counts from our APDs (i.e., a ∼ 200 Hz dark count rate translates into a uniform

background detection probability PB ∼ 0.4× 10−6).

Figure 6.9 shows a typical measurement of Pd(t) with the MOTs fully functioning and

with the presence of atoms in the cavity verified as described in Subsection 6.1.1. The

particular set of data shown in this Figure is an average over 647 successful FORT loading

attempts and constitutes 7.76× 104 photodetection events (with a total probability condi-

tioned on an impulse to register a photodetection event of P1 = 0.00598). Note that the

maximum of Pd(t) in the presence of atoms is a factor of 200 larger than the maximum of

baseline data from Figure 6.8. Importantly, the maximum of Pd(t) also occurs near t = 49
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Figure 6.9: Photodetection probability (◦) corresponding to the presence of an atom in the

cavity. Note that the scale is now ×10−4 as opposed to in Figure 6.8 where it was ×10−6.

The red (dashed) curve corresponds to the predicted cavity ring down exponential with time

constant 2κ for an intracavity field (in the absence of an atom) which exhibits a maximum

value of Pd(t) equivalent to that measured in this data.
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ns which is offset from the scattered light (and therefore from the arrival of the impulse at

the cavity) by 11 ns. This small delay is a strong indication that the light being detected

in cavity emission is the result of excitation in the atom gradually coupling to the cavity

mode as opposed to scattered impulse light directly reaching the detectors. We can also

compare the shape of the measured Pd(t) to the anticipated cavity decay in the absence of

a strongly-coupled atom (red, dashed line in Figure 6.9). The data clearly exhibits struc-

ture on a timescale faster than than the cavity bandwidth which is another indication of

atom-cavity dynamics manifest in the wave packet shape.

Before we discuss the correspondence between data and theory, it is useful to attempt

to infer the Rabi frequency associated with the optical pulses generated using the MZIS.

In order to do this, we measured Pd(t) using four different optical powers coupled through

the switch. The photocurrent through 50 Ω, Vmax, of the resulting pulses were measured

by detection at the same photodiode used to record Figure 6.2. The optical power asso-

ciated with these pulses was far below the saturation limit of the photodiode and so we

will assume that the response of the detector is linear. The resulting Pd(t) for each of

Vmax = (30, 65, 250, 540) mV are shown in Figure 6.10 and demonstrate the dependence

of Pd(t) on Vmax (as mentioned earlier, we choose not to use higher optical powers so as

to prevent potential photorefractive damage of the MZIS). From each of these data sets

we can determine the integrated probability P1 to register a single photodetection event

conditioned on the start of a trial. The value of P1 for each Vmax are presented in Figure

6.11 with the horizontal (Voltage) axis rescaled:

Ω0 =
√
Vmax

(2π)(56.5 MHz)√
540 mV

(6.18)

such that the data point at Vmax = 540 mV coincides with a theoretical curve derived from

the averaging techniques described in the previous Subsection. The locations of the three

remaining points are not constrained to fall on the theoretical curve but are scaled using

the same factor and show reasonable agreement with numerical simulation (red trace).

This calculation corresponds to an average taken over mb = 45 wells for atoms at zero

temperature, T0 = 0, and incorporate the measured detection efficiency α = 0.086. In
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Figure 6.10: Photodetection probability Pd(t) versus time for Vmax = (30, 65, 250, 540).
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Figure 6.11: Measured integrated photodetection probability P1 versus pulse Rabi fre-

quency. The horizontal axis of the plot has been rescaled as described in the text such that

that point corresponding to Vmax = 540 mV coincides with theory (dashed red curve). The

remaining three points are rescaled by the same factor and show reasonable agreement with

the theory.

averaging over Ω′0(zq) we have used the simple intensity pattern I(zq) from Chapter 3 (and

should therefore be considered only approximate). Nonetheless, it is clear that we are

operating in the limit of weak driving. Based on the analyses of the previous Subsection

this suggests that by rescaling the theoretically predicted wave packet shape we should be

able to closely model the shape of the measured cavity emission.

In Figure 6.12 we plot P ′d(t) which is the same set of data shown in Figure 6.9 but

normalized with respect to the maximum wave packet amplitude. We have also plotted

the full averaged and normalized solution to the master equation, P ′e(t), for mb = 54 wells

and T0 = 0.025. We have assumed a maximum impulsive Rabi frequency Ω0 = (2π)(40
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MHz). The values of mb and T0 were the only unconstrained parameters in the solution.

The master equation results are registered in time with respect to the experimental data

by centering the theoretical model pulse at the location of the scattering peak shown in

Figure 6.8 (i.e., t = 38 ns). We have chosen these particular values of the unconstrained

parameters by doing a full search of the parameter space and selecting the pair of values

for which the integrated difference between the theoretical prediction and the data was

minimized, i.e.,

{mb, T0} : min

(∑
t=td

∣∣P ′d(t)− P ′e(t,mb, T0)
∣∣) (6.19)

where the td are those values of t on which the data collection windows of the P7888 were

centered. The particular set of {mb, T0} chosen here best satisfies this criteria, but other

combinations can provide very similar results. Generally in a range 45 < mb < 60 and

T0 < 0.05 we see favorable agreement between theory and experiment. It can be seen that

there is a strong correspondence between the theoretically predicted wave packet shape and

that observed in the laboratory. Also, the shape of the emitted wave packet clearly exhibits

oscillation due to Jaynes-Cummings-type dynamics. The greatest discrepancy is between

the measured and predicted amplitudes of the third maximum in the oscillation, although

the location of that maximum is still well-predicted. This discrepancy could be due to any

of a number of phenomena such as a non-uniform distribution of FORT wells or non-thermal

distributions of atomic temperatures.

In summary, we have experimentally demonstrated Rabi nutation of excitation between

atom and field in the setting of strongly-coupled cavity QED. The Rabi oscillation manifests

itself on the temporal shape of the field emitted from the cavity mode following fast excita-

tion of the atom by pulse of resonant laser light. Unlike previous similar measurements [93],

we are able to observe an oscillatory signal even for the case of zero atom-cavity detuning.

The shape of this wave form is in good agreement with a detailed theoretical model involving

numerical integration of the master equation for the system and accounting for ensemble

averaging effects present in the measurement. As will be described in the next Subsection,

this work was carried out in the context of another project focused on demonstration of
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Figure 6.12: Normalized data (◦) plotted in comparison with the solution to the full master

equation (blue line) for the intracavity photon number averaged over the mb = 54 best-

coupled wells an a temperature of T0 = 0.025. The values of mB and T0 were the only

unconstrained parameters in the model and the pair of values chose are chosen to minimize

the integrated difference between the experimental data and theory. The arrival time of the

model impulse (red dashed line) is that measured in Figure 6.8.
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Figure 6.13: Initial state preparation procedure and schematic of decay channels for im-

pulsive excitation of atoms prepared in a well-defined Zeeman state. In the third panel,

π-polarized light is unsupported by the cavity mode and therefore decays via spontaneous

emission into spatial modes other than the QED mode.

entanglement between photons emitted from the cavity mode and the internal state of the

atom. Although we have not yet been able to measure entanglement, we have observed a

series of interesting correlations between photodetection and measurement of the atomic

Zeeman state.

6.1.4 Atom-Photon Correlation Measurements

In the previous Subsection we performed measurements wherein the static magnetic field at

the location of the cavity was nulled and the the atom was optically pumped into a random

Zeeman substate within the F = 4 hyperfine ground state manifold. This configuration was

motivated by the need to accumulate a large number of photodetection events in order to

reconstruct the temporal wave packet of the field generated in the cavity mode following an

ΩT (t) pulse (introducing optical pumping would very significantly reduce the duty cycle for

the experiment). In this Subsection we will instead explore the effect of ΩT (t) on the state

of the atom. In order to do this, we apply a static magnetic bias field, ~B = (0, 0, 1.2) G,

oriented along the axis of the cavity in order to break the degeneracy between the |F,mF 〉

ground states and establish a quantization axis.

A preliminary diagnostic measurement which we undertook was to demonstrate that

impulsive excitation of the atom following preparation in a properly-defined initial state
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transfers population from that state to adjacent spin states in a well-understood way. The

protocol for this measurement is shown in Figure 6.13. Using the incoherent Raman-based

optical pumping technique introduced in Chapter 4, we deposit a large fraction of the initial

atomic population in the state |F,mF 〉 = |3, 0〉 (typically p(3,0) ≡ p3(mF = 0) ≈ 0.65).

After the pumping protocol finishes we apply a π-pulse of Raman light (with the Raman

pair in the FORT-Raman configuration). Recall that a π-pulse is a Raman pulse of duration

τR = π/ΩE , where ΩE is the effective Rabi frequency of the Raman pair, and ideally affects

complete inversion of population between the two coupled states. The Raman pair is tuned

into free-space resonance with the (|3, 0〉 ↔ |4, 0〉) transition such that effect of the π-

pulse is to transfer a significant fraction of the population in |3, 0〉 to |4, 0〉. The efficacy

of the Raman pulse is limited by the dephasing of the resultant Rabi oscillation over τR

and is characterized by a state transfer probability pR ≈ 0.8. Following this initial step

and averaged over an ensemble of similar measurements, we have prepared an incoherent

mixture of atom population:

ρ̂A ≈
(1− p(3,0))

6

∑
mF 6=0

(|3,mF 〉 〈3,mF |) + p(3,0)(1− pR) |3, 0〉 〈3, 0|+ p(3,0)pR |4, 0〉 〈4, 0| .

(6.20)

Note that we are assuming that the last two terms in the density matrix are incoherent

because we are assuming that the defect in the π-pulse is the result of dephasing and not

because we improperly specified τR. The reason that we have decided to use a Raman

pulse to move population into the desired state in the F = 4 manifold rather than directly

pumping into that state is twofold. First, our technique for incoherent Raman-based state

preparation fails in the F = 4 manifold when only ∆mF = 0 Raman transitions are per-

mitted by the orientation of static magnetic fields in the system (the edge states are also

“dark” states of the process and population becomes trapped there). The second reason

is that by moving population directly from |3, 0〉 to |4, 0〉 we have ensured that the small

residual populations due to imperfections in the pumping process are present only in states

corresponding to mF 6= 0 in the uncoupled F = 3 manifold. Because the vast majority

of population in the coupled F = 4 manifold is driven there by the Raman π-pulse, the
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only way in which the ΩT pulse can change the state of the atom is by interacting with

population in |4, 0〉 (excluding negligibly small off-resonant interactions).

After we have prepared the system in the state described by Equation (6.20), we then

apply the classical impulse to the atom. As described in the previous subsections, the

effect of this pulse is to excite the atom with some probability pT . Recall that because

we are now applying a static magnetic field along the cavity (ẑ-) axis and because the ΩT

pulse is polarized along that direction of that field, the effect of the pulse is to transfer

population from |4, 0〉 to |5′, 0〉. From the excited state |5′, 0〉 there are three possible

decay channels. The transition |5′, 0〉 → |4, 0〉 corresponds to emission of a photon with π-

polarization relative to ẑ. This transition is not strongly-coupled to the cavity because the

cavity can only support fields polarized orthogonally to its longitudinal axis and therefore

this decay channel corresponds only to spontaneous emission into modes other than the

QED mode. The other two decay channels are |5′, 0〉 → |4,±1〉 corresponding to emission

of σ∓-polarized photons, respectively. Photons of these polarizations are cavity-supported

and therefore these transitions exhibit Jaynes-Cummings dynamics and can be emitted

from the cavity due to strong coupling (although free space decay on these transitions is

also allowed). We can express the fraction of the σ±-polarized decay which is coupled out of

the cavity as approximately pC = κ/(γ+κ) ≈ 0.59 whereas the fraction that is emitted in a

4π solid angle via spontaneous decay is (1− pC) = γ/(γ + κ). Note that pC is approximate

and depends in a limited way on g(~r).

In free space and in the absence of Zeeman state-dependent FORT AC Stark Shifts,

the branching fraction for each of the three channels is given simply by the square of the

dimensionless dipole moment for the transition in question (Appendix A). For the three

transitions described here, the probability with which the atom decays to |4, 0〉 is given by

pπ,F = 5/9 ≈ 0.55 whereas the probabilities to decay to |4,±1〉 are p±,F = 2/9 ≈ 0.22

(the two are equal due to the symmetry requirements). By introducing a cavity with a

significant rate of coherent coupling we can also induce emission into |4,±1〉 with branching

fractions p±,C , which are approximately equal. The ratio of cavity emission to free-space

emission is, again, approximately pC . If we reintroduce the FORT shifts to the problem

we must recall that those shifts to the F = 5′ excited state manifold (Figure 3.12) were
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defined with respect to a quantization axis oriented along the polarization of the FORT

(i.e., along the axis of the higher-frequency birefringent mode of the cavity, l̂+). The state

|5′, 0〉 is therefore only approximately a “good” eigenstate of the system with respect to the

basis which we have chosen and is generally a superposition of eigenstates in a basis with

ẑ oriented along l̂+. The state-dependent perturbation from the FORT thereby permits

decay from |5′, 0〉 to states other than {|4, 0〉 , |4,±1〉} and also breaks the symmetry that

results in p+,F = p−,F and p+,C = p−,C . For the typical FORT depths which we use in the

laboratory, calculations suggest this effect is a small one with only ∼ 5% of the population

in the atom moving into states with mF 6= (0,±1) in steady state.

In Chapter 3 we described how we can use Raman spectroscopy to resolve the popu-

lation in individual Zeeman states (or rather measure, as a function of Raman detuning,

the population inversion between hyperfine ground states). In Figure 6.14 we have plotted

Raman spectra with the range of the scan narrowed to focus on population in states corre-

sponding to mF = (0,±1). The blue curve is a spectrum measured immediately following

the incoherent Raman optical pumping initialization protocol. As anticipated, the abun-

dance of population initially in |3, 0〉 manifests itself as a large resonance centered on δ = 0.

Likewise we see smaller features centered near δ = (2π)(±1 MHz) corresponding to residual

population able to make the transitions (|3,±1〉 ↔ |4,±1〉). The green trace corresponds

to a spectrum measured after the Raman π-pulse has transferred population from |3, 0〉 to

|4, 0〉 but in the absence of the ΩT pulse. Here we see a constant background indicative of

the fact that a significant fraction of the atomic population now begins the measurement

in F = 4. Because the signal which we measure in the laboratory is the population in

F = 4 as a function of detuning, any population initially in a particular Zeeman substate

|4,mF 〉 will manifest itself now as a dip (as opposed to a peak, for population in F = 3)

in the spectrum at the appropriate detuning. In this spectrum we see a pronounced dip at

zero detuning corresponding to the significant fraction of the atomic population which now

begins in |4, 0〉. We also continue to observe peaks near δ = (2π)(±1 MHz), indicating that

there is a larger fraction of the population initially in |3,±1〉 than in |4,±1〉. Finally, the

red curve is a spectrum taken after the full state initialization procedure and the ΩT pulse.

This spectrum again exhibits a dip near zero detuning, however now of smaller magnitude.



248

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Po
pu

la
tio

n 
in

 F
=4

Raman Detuning                 (MHz)

Figure 6.14: Raman spectra taken at three different stages in the state preparation protocol.

Blue (◦) immediately after optical pumping in |3, 0〉, green (�) after both optical pumping

and the Raman π-pulse on (|3, 0〉 ↔ |4, 0〉) and red (×) after pumping, the π-pulse and

the ΩT pulse. Compare the red and green traces near δ = (2π)({0,±1} MHz). These

detunings correspond to the transitions (|3, 0〉 ↔ |4, 0〉) and (|3,±1〉 ↔ |4,±1〉) are the

spectroscopic features here are indicative of how ΩT changes the internal state of the atom,

moving population from |4, 0〉 to |4,±1〉.
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Because the background level remains approximately unchanged we can thereby infer that,

although there is the same amount of population initially in the F = 4 manifold, a smaller

fraction of that population is in the state |4, 0〉. We also now see small dips, as opposed to

peaks, near the frequencies corresponding to (|3,±1〉 ↔ |4,±1〉), which indicates that there

is now initially more population |4,±1〉 than in |3,±1〉. This provides evidence that the ΩT

pulse is affecting the atom as anticipated, redistributing population from |4, 0〉 into |4,±1〉.

So far this discussion has focused only on the state of the atom and traced over the field

states in the full density matrix for the system. For modes other than the two orthogonally-

polarized cavity modes this is a necessity - our experiment is not equipped to gather fluo-

rescence from the atom and photons in these modes are lost to the environment. We can,

however, collect emission from the cavity mode and so we can construct a more complete pic-

ture of the interaction by considering states in the product basis |F,mF ,±〉 ≡ |F,mF 〉⊗|±〉.

The states |±〉 correspond to the presence of a single σ±-polarized photons in the cavity

mode. Following the ΩT pulse, the density matrix in the single-excitation manifold of states

is:

ρ̂1 ≈ pRp(3,0)pT p+,CpC

(
|4, 1,−〉+ eiφ |4,−1,+〉

)(
〈4, 1,−|+ e−iφ 〈4,−1,+|

)
(6.21)

where we have assumed that p+,C = p−,C , which is approximately correct, and that the

process of decay into the cavity imparts a small differential phase φ between the two states.

Note that this product state exhibits a priori bipartite entanglement between the internal

state of the atom and the polarization state of the excitation in the cavity mode.

This type of entanglement - between the internal state of a single atomic system and

the polarization of a photon emitted from that atom - results whenever there exist multiple

decay channels from a single atomic excited state and has been experimentally observed

and verified in the context of both single atom cavity QED and with atoms in free space.

The Rempe group in Garching, using a similar apparatus and trapped rubidium atoms,

has demonstrated the ability to generate entangled photon pairs by mapping the initial

atom-photon entanglement to a second photon thereafter deposited in the cavity mode

[94, 52]. The group of Chris Monroe at the University of Maryland has successfully verified
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entanglement (and even the application of this entanglement to teleportation schemes [68])

between both atom-photon pairs [66] and atom-atom pairs [67] using a similar technique.

Analogous measurements could be made for cesium in principle. However in actual practice

these other experiments benefit from the use of atoms with relatively small nuclear spins

(I = 3/2 for 87Rb, I = 1/2 for 113,111Cd+ and for 111Yb+). For cesium we have to contend

with a veritable “jungle” of Zeeman ground states in which small amounts of population

can reside thereby leading to technical problems associated with high-efficiency optical

pumping, state readout, and the mapping of entanglement from atomic to optical states.

During my tenure at Caltech we devoted a good deal of time and effort to attempting to

verify the entanglement between atom and photon generated in this way (including novel

uses of the FORT-Raman pair to coherently mix population in the states |4,±1〉 by way of

an intermediary state |3, 0〉). The discouraging results of these efforts are well-detailed in

Chapter 5 of Tracy Northup’s dissertation and I won’t describe them in any detail here.

Although we have been unable to read out entanglement between atom and photon,

we were did perform a series of measurements which positively correlated photodetection

events in the cavity output mode with the presence of of population in |4,±1〉. The technique

we used was similar to that used to obtain the Raman spectrum in Figure 6.14, but rather

than unconditionally performing Raman spectroscopy following the ΩT pulse we conditioned

subsequent Raman-based state readout on the detection of a photon. The initial state of

the system was prepared as before, with incoherent Raman-based optical pumping and a

π−pulse on (|3, 0〉 ↔ |4, 0〉). Following the ΩT pulse, we then perform another π-pulse, on

either (|3, 0〉 ↔ |4, 0〉) or one of (|3,±1〉 ↔ |4,±1〉).

Before we explore the results, we can make simple predictions for the probabilities to

detect atomic population in F = 4 following each of these three types of π-pulse, both

conditioned on photodetection and unconditionally. We expect the atomic populations in
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each of the coupled states following the pulse to be:

〈4, 0|ρ̂A|4, 0〉 = pRp(3,0) [(1− pT ) + (1− pC)pT pπ,F ] (6.22)

〈4,±1|ρ̂A|4,±1〉 = pRp(3,0)pT [(1− pC)p±,F + pCp±,C ] (6.23)

〈3, 0|ρ̂A|3, 0〉 = p(3,0)(1− pR) (6.24)

〈3,±1|ρ̂A|3,±1〉 =
(1− p(3,0))

6
(6.25)

unconditionally and

〈4, 0|ρ̂|4, 0〉 = 0 (6.26)

〈4,±1|ρ̂|4,±1〉 =
p±,C

p+,C + p−,C
(6.27)

〈3, 0|ρ̂|3, 0〉 = 0 (6.28)

〈3,±1|ρ̂|3,±1〉 = 0 (6.29)

conditionally. The populations in F = 4 following each of the π-pulses should be:

P4(mF ) = pR 〈3,mF |ρ̂|3,mF 〉 − (1− pR) 〈4,mF |ρ̂|4,mF 〉+
∑
n6=mF

〈4, n|ρ̂|4, n〉 . (6.30)

In terms of quantities in the laboratory, pR ≈ 0.8, p(3,0) ≈ 0.7, pT ≈ 0.5, pC ≈ 0.6,

pπ,F ≈ 0.6, p±,F ≈ 0.2, and p±,C = 0.5. Here, in approximating the various pπ and p±,

we have ignored the effect of the cavity birefringence and FORT-induced shifts which is a

reasonable assumption at this level of approximation. We have also estimated the value

of pT based on numerical calculations and the intensity of the ΩT beam used for these

measurements.

Table 6.1 displays the predicted and measured probabilities, P4, to detect the presence of

an atom coupled to the cavity after the a Raman π-pulse of the type listed and conditioned

or unconditioned on the detection of a photon in the cavity output mode. Overall we see

reasonably good agreement between our predictions and the observed values, particularly

given the level of approximation we had incorporated into those predictions. The devia-

tions from the predicted value P4 = 1 for conditional measurement following no π-pulses
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P4, Unconditional P4, Conditional

Raman Configuration Predicted Measured Predicted Measured

no π-pulse 0.6 0.62 1 0.92

(|3, 0〉 ↔ |4, 0〉) 0.3 0.33 1 0.84

(|3, 1〉 ↔ |4, 1〉) 0.5 0.57 0.6 0.70

(|3,−1〉 ↔ |4,−1〉) 0.5 0.56 0.6 0.62

Table 6.1: Probabilities to detect the presence of atom in F = 4 following a Raman π-pulse

of the type listed and conditioned or unconditioned on the detection of a photon in the

cavity output mode. The predicted values shown are as calculated in the text.

and pulses on (|3, 0〉 ↔ |4, 0〉) are likely due to spurious photodetection events, decay into

the cavity supporting ∆mF 6= ±1 permitted by the FORT Stark shifts and the cavity bire-

fringence or the small probability of multiple atoms simultaneously coupled to the cavity

mode. Notice also that there seems to be an asymmetry in the measurements following Ra-

man pulses coupling (|3,±1〉 ↔ |4,±1〉). Possible explanations for this effect include cavity

birefringence ellipticizing the emitted field (recall that we are projecting the polarization

of cavity emission along a linear axis specified by a polarizer at the cavity output) or the

FORT AC Stark shifts adding asymmetry to the problem.

Of the four π-pulse configurations described here, the most striking evidence that ΩT has

moved population as anticipated is in the difference between conditional and unconditional

P4 following a π-pulse on (|3, 0〉 ↔ |4, 0〉). It is clear that the emission of a photon into the

mode of the cavity following ΩT is strongly correlated with the depopulation of |4, 0〉. We

have therefore observed distinct correlation between photodetection in cavity emission and

measurement of the internal state of the atom. This work constitutes a preliminary step

towards being able to verify the entanglement between the polarization of those photons

being detected and the internal state of the atom.
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6.2 Frequency-Domain Measurements

The ability to study optical cavity QED in the time domain, for example as discussed in

the previous section Section, is relatively novel. This type of measurement benefits from

and relies upon advances in photodetection electronics, the ease and availability of devices

for generating very short optical pulses but, most of all, from the long-lived interactions

that integration of atomic confinement protocols and high finesse optical cavities can only

recently provide. By contrast, measurement of the signature frequency-domain features of

the system (for example the two-peaked vacuum Rabi spectrum described in Chapter 2)

has long been a standard technique for characterizing atom-cavity systems. As the tools

available for studying cavity QED have grown more advanced, so too have these measure-

ments. There is a sizable literature devoted to the evolution of atom-cavity spectroscopy

- from early measurements taken with atomic beams to measurements carried out (by our

group in 2004) in which we were able to extract a full transmission spectrum from exactly

one atom. In this Section I will review the advancements made by our group at Caltech

during my tenure here with regard to measurement of vacuum Rabi spectra and present

a new set of measurements which demonstrate the nonlinear scaling in the shape of these

spectra as a function of the discrete number of atoms coupled to the cavity mode.

6.2.1 Review of Early Work

Our group has long relied on key spectroscopic features of the atom-cavity system for per-

forming atomic state measurements (i.e, up-goers and down-goers, as described in Chapter

3). However these measurements generally return a binary answer - “yes” or “no”, the

transmission at a particular detuning is above or below a particular threshold, indicating

whether the atom is coupled or uncoupled to the cavity. In general, the full transmission

spectrum obtained by probing the system the cavity with a field at variable detuning from

atom-cavity resonance can contain a considerable amount of information about the nature

of the coupling. In fact, within the cavity QED research community there has been a

long history of measuring the vacuum Rabi spectrum because observation of a well-defined

splitting is a definite hallmark of strong coupling. This work goes back to the early 1990’s
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Figure 7. Vacuum-Rabi splitting of one-and-the-same atom. The complete vacuum-Rabi
transmission spectra, T (ωp) for six atoms, selected at random from a pool of 28 such spectra.
The error bars represent statistical uncertainties. The blue trace is the solution of the master
equation for the system [77].

trials for which the empty cavity resonance at ωp = ωC1 is suppressed (i.e., those with strong
resonant absorption indicating that an atom is coupled to the cavity), we are able to obtain
the vacuum-Rabi spectrum for precisely one atom (six of which, for six separate atoms, were
randomly selected and are shown in figure 7) [77].

For comparison, also included in figure 7 is the solution to the steady-state master equation
for this system, incorporating only known experimental parameters and averaged over the top
1/3 of FORT wells for which g(r) is closest to its maximum value, g0 (i.e., g(r) � 0.87g0).
The results are in quite good agreement with the data, and the characteristic two peaked
vacuum-Rabi structure is clearly present for each atom. The asymmetric features of the
spectrum (i.e., peak heights, centroid locations) are principally the result of the small Zeeman
state-dependent ac-Stark shifts induced by the FORT in conjunction with optical pumping
effects due to the probe. In summation, these spectra contain detailed quantitative information
about g(r), indicating that atoms trapped and cooled within the FORT exist in a narrow range
of near maximal values. This result is emblematic of the type of measurement which we
expect the Raman technique to enable in the future.

5. Conclusion

We have discussed the evolution of experiments in optical cavity quantum electrodynamics,
emphasizing those recent experiments enabled by intracavity state-insensitive optical dipole
trapping. This work includes a demonstration of a one-atom laser, deterministic generation
of single photons, the capacity for driving stimulated Raman transitions between hyperfine
ground states of a trapped atom, and the observation of the vacuum-Rabi spectrum, the
hallmark of strong coupling, for one-and-the-same atom.

Figure 6.15: Red points represent measured vacuum Rabi spectra T1(ωp) for six individual

atoms trapped within our cavity. These six spectra were drawn randomly for a pool of 28

similar spectra and were measured as described in Reference [41]. Each set of data is drawn

from one-and-only-one atom. The solid blue trace represents the solution to the master

equation for the system [29].

when ultra-high finesse “super” mirrors first became available. The earliest measurements

were carried out with atomic beams of varying flux (but typically a mean intracavity atom

number N̄ ∼ 1) [95, 96, 97], and which later developed into experiments involving cold

atoms falling freely via gravity through the mode of the cavity [98]. Even with the advent

of techniques for confinement within the cavity mode, many early measurements involving

single, trapped atoms required averaging over > 103 atoms to reconstruct a full spectrum

[99].

In contrast to this earlier work, our group demonstrated in 2004 the ability to map out
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an entire vacuum Rabi spectrum for one-and-the-same atom. Upon loading an atom into

the intracavity FORT, we proceeded to sweep the frequency of a probe laser eight times

over a range of 140 MHz centered on empty cavity resonance. The intensity of the probe

laser is such that it only weakly drives system thereby restricting our measurement to the

basis of 0 and 1 excitations. At each of a series of discrete detuning values we integrated

the number of photodetection events registered in the cavity output mode. For those atoms

which were still present in the cavity mode following each of the eight sweeps we then

compiled the resultant transmission as a function of probe frequency T1(ωp), and this data

is plotted in Figure 6.15. Notice that for each atom we see a clear and well-defined splitting.

Also plotted is the steady-state solution to the full master equation to the system which

shows excellent agreement with the data. The asymmetries present between the two vacuum

Rabi peaks in this data is the result of the myriad experimental complications which have

been described throughout this thesis (cavity birefringence, FORT-induced AC Stark shifts,

optical pumping effects, etc.). For more details of these measurements please see the theses

of Andreea Boca [23] and Kevin Birnbaum [29]. It should be noted however that this is

the first true demonstration of atom-cavity spectroscopy in optical cavity QED for precisely

one atom and is demonstrative of the type of experiment that our technique for intracavity

dipole trapping can realize.

While the ability to resolve a complete vacuum Rabi spectrum for one-and-the-same

atom in the weak driving limit is arguably the “gold standard” for spectroscopic charac-

terization of strong atom-cavity coupling, this is by no means the only type of interesting

spectroscopic phenomena which can present itself in these measurements. In particular, the

Jaynes-Cummings model (and as we will see in the next Subsection, the Tavis-Cummings

model for multiple atoms) exhibit interesting nonlinearities as a function of the number

of excitations (and atoms) present in the system. Recall, for instance, that as we climb

the so-called Jaynes-Cummings “ladder” of states that the energy splitting between the

eigenstates of the system scales as
√
n, where n is the number of excitations present. These

nonlinearities are evidence of manifestly quantum phenomena and have lead to a series of

interesting results. For instance, in 2005 our group observed what is known as the photon

blockade effect (in analogy with the Coloumb blockade effect in solid state physics [100]). In
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a simple picture treating a two-state atom and one-mode cavity, the absorption of a single

excitation from a probe laser of frequency ωL = ωC + g resonantly populates one of the

two energy eigenstates of the system in the one-excitation manifold of states. Because of

the nonlinearity in the Jaynes-Cummings ladder, in order to resonantly excite population

from this manifold to the two-excitation manifold of states, the probe laser would need to

instead by tuned to ωL = ωC +
√

2g. Therefore we expect that upon absorption of a photon

into the system, the probability that any further absorption of photons from the probe field

will be off-resonantly suppressed until the system has again relaxed to the ground state.

Effectively, the absorption of one photon blocks subsequent absorption and the atom-cavity

system thereby acts as a quantum optical filter, transforming a classical, coherent input

field into a field which exhibits sub-Poissonian and antibunched photon statistics. Indeed,

we were able to observe these characteristic photon statistics in the laboratory [101] and

found them to be in good agreement with a detailed numerical model of the system [102].

While this measurement served as indirect confirmation of the nonlinearity inherent to the

eigenenergy spectrum of the Jaynes-Cummings Hamiltonian, the Rempe group has since

observed direct spectroscopic evidence of this structure [103].

6.2.2 Vacuum Rabi Spectra for One and Two Atoms

Motivated by the need for a fast and efficient method for discriminating between one or

two atoms in a cavity-coupled state, we recently measured the nonlinearity as a function of

atom number in the scaling of the vacuum Rabi spectrum. With multiple atoms present in

the cavity the simple, two-state atom picture which lead to the Jaynes-Cummings Hamil-

tonian in Chapter 2 must be replaced by what is known as the Tavis-Cummings interaction

Hamiltonian [19] for a number N of two-state atomic systems each coupled with energy ~g0

to a single mode of the electromagnetic field. The Hamiltonian takes the form

ĤI = ~g0

N∑
j=1

(
â†σ̂−j + âσ̂+

j

)
, (6.31)

where (â†, â) and (σ̂+
j , σ̂

−
j ) are the raising and lowering operators for the field and the j-th

atom, respectively. In the limit of weak driving, we truncate our cavity Fock state basis
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to {|0〉C , |1〉C} and our atomic state basis to {|0〉A , |1〉A} where |0〉A = (|0〉1 |0〉2 . . . |0〉N ),

|1〉A = 1√
N

∑N
k=1 (|0〉1 . . . |1〉k . . . |0〉N ) and (|0〉k , |1〉k) correspond to the ground and excited

states of the k-th atom, respectively. In the coupled basis, {|1〉C |0〉A , |0〉C |1〉A}, the two

dressed states of ĤI for a single excitation in the system exhibit normal-mode splitting with

corresponding energy eigenvalues E± = ±~g0

√
N .

In the work described earlier in this Section, this splitting has been measured experi-

mentally for N = 1 (where the Tavis-Cummings model reduces to the Jaynes-Cummings

model) and for N fluctuating over the duration of the measurement with Poissonian statis-

tics, but never for N > 1 and stationary. Here we report the first observation of the

normal-mode splitting for two atoms strongly coupled to an optical cavity and verify the

nonlinear scaling of the normal-mode splitting as a function of N . This result relies on a

new technique for the real-time discrimination of intracavity atom number (see Chapter 4 of

Tracy Northup’s dissertation [26]) and represents a first step towards the implementation of

more complex protocols involving controlled interactions between a small number of atoms

sharing a common coupling to a single cavity mode.

In order to measure the spectrum, the cavity is tuned such that the resonant frequency

of the high-frequency birefringent mode coincides with the (4↔ 5′) transition in cesium (for

spectroscopy we rely on this transition because it is closed and therefore requires minimal

rempumping during the course of a measurement). A laser drives the cavity with a probe

field σ+-polarized with variable detuning ∆p from the shared atom-cavity resonance such

that the average intracavity photon number for an empty cavity is n̄ = 0.2. The transmission

of the higher-frequency mode-polarized component of this field is monitored and recorded

downstream. Immediately following the release of a MOT and subsequent PG cooling, there

are typically Nload ∼ 10 atoms trapped in the FORT using the Raman-repumped loading

technique described in Chapter 4. In order to perform atom number discrimination and

selection [26], we simultaneously apply the probe field, tuned to resonance with the empty

cavity and atom (∆p = 0), and the Raman field tuned to resonance with the field-insensitive

(|3, 0〉 ↔ |4, 0〉) hyperfine ground state transition (δ = 0). Because we are in the strong

coupling regime, just one atom in the cavity-coupled F = 4 manifold of ground states is

sufficient to significantly suppress transmission of probe. Atoms in the F = 3 manifold
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Figure 6.16: Histogram of the integrated photodetection events in transmission T during a

τint = 500 µs interval versus the probability to measure that number of photocounts. This

histogram was measured after initial atom number discrimination such that the probability

of detecting N > 2 atoms in the cavity is greatly reduced. Note that there are three clearly

distinct features corresponding to the empty cavity transmission (N = 0), as well as N = 1

and N = 2 atoms.
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are uncoupled and do not affect the cavity field. We integrate photocounts from probe for

τint = 1 ms with the Raman pair effective Rabi frequency set such that ΩE � (2π)(τ−1
int ).

The effect of the Raman pair is to induce the atomic state of each atom in the trap to

oscillate rapidly between coupled and uncoupled ground states. As a result, the average

integrated photocounts will vary as the atom number,

T̄ (τint, N, n̄, α) ' 1/2N n̄τintα (6.32)

where α = 0.04 is the measured detection efficiency for this set of data. A histogram of re-

peated measurements of T is shown in Figure 6.16 and demonstrates features corresponding

to the presence of N ∈ {0, 1, 2, . . .} atom and exhibiting widths consistent with counting

statistics. This technique allows us to discriminate the presence of (0, 1, 2) atoms and to

condition the start of any subsequent experiment on the presence of the desired number of

atoms in the cavity.

To acquire an average atom-cavity transmission spectra for N atoms, T̄N (ωp), we begin

each of a series of trials by preparing Nload > 2 atoms in the FORT followed by repetition of

the atom number discrimination technique described above until we have determined that

N ≤ 2. We then repeat the following protocol a total of 200 times over τtotal = 540 ms.

First, we cool the motion of atoms within the trap by applying first order Raman sideband

cooling for a duration τcool = 2 ms with ΩE ∼ (2π)(200 kHz) (Chapter 4). Empirically this

was found to significant extend the effective lifetime of atoms within the FORT for this type

of measurement. Following each cooling interval, we drive the cavity with probe at a fixed

atom-cavity detuning ∆p, which is iterated from trial-to-trial over a range of 160 MHz in

steps of 3 MHz. The transmission of the l̂+-polarized component of the probe in photocounts

is integrated for τprobe = 100 µs and recorded. Finally, we perform atom number detection

for a duration τint = 500 µs. Based on the integrated photocounts for this interval, we are

able to discriminate the intracavity atom number on a measurement-by-measurement basis.

In order to ensure that each spectrum corresponds to exactly N atoms, those trials for

which each of the 200 cooling and measurement intervals corresponded to the detection of

N = (1, 2) atoms are kept, while those for which the measured atom number varied during
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the trial are discarded. The total, average transmission spectra T1,2(ωp) are constructed

by averaging the integrated photocounts obtained during probe intervals for every valid

trial corresponding to detuning ∆p. These spectra are then divided by a normalization

spectrum taken at each fixed value of the detuning, however with the cavity manually

tuned into resonance with the probe field at that detuning. This allows us to account and

correct for effects associated with beam pointing and intensity variations as a function of

the frequency at which the AOM used to provide the probe shifts is driven. In Figure 6.17,

we present transmission spectra T1(ωp), obtained by averaging over 1567 single-atom trials

(21 mean trials per data point), and T2(ωp), averaged over 785 two-atom trials (10 mean

trials per data point).

Both spectra exhibit a well-resolved normal-mode splitting consistent with operation

in the regime of strong coupling. Due to the extremely large size of the Hilbert space

for the full, two-atom, two-mode cavity master equation we are unable to carry out a

complete numerical simulation of this result as was done for previous measurements in this

dissertation. In fact, the requirements needed to simply generate the Liouvillian for this

system far exceed the memory handling capabilities of both MATLAB as well as the Windows

operating system. Truncation of the state space to a limited number of Zeeman states is

impossible given that our probe interval is much shorter than that necessary for the system

to enter steady state. Instead we can make some qualitative observations about the two

spectra. First, it is clear that the shapes of the spectra are similar and that the scaling is

nonlinear. By selecting clearly-resolved local maxima T2(ωmax) in the two atom spectrum

and the analogous maxima on T1(ω′max) we can calculate ωmax/ω
′
max ≈ 0.93

√
2, where

ωmax/ω
′
max =

√
2 is the scaling anticipated by the simple Tavis-Cummings model. Another

important feature to note with regard to the two spectra is that near ∆p = (2π)(−43 MHz)

there is a large, well-resolved spectroscopic difference between T1 and T2 which suggests that

in an integration time of only 100 µs we are able to resolve the number of cavity-coupled

atoms. Using the scaling in the vacuum Rabi spectrum as a signal for fast resolution of the

intracavity atom number could a potentially useful technique for performing experiments

wherein, for instance, simultaneous projective measurements on two cavity-coupled and

mutually-entangled atoms are necessary.
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Figure 6.17: Vacuum Rabi spectra for one and two atoms, T1(ωp) and T2(ωp). Data cor-

responds to 1567 trials with one atom present in the cavity and 785 trials with two atoms

present. Both spectra are divided by a normalization spectrum which corrects for beam

pointing and intensity fluctuations as a function of detuning, ∆p.
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Appendix A

Cesium D2 Dipole Matrix Elements

|3,mF 〉 ↔ |F ′,mF 〉 (π-polarization)

mF = −3 −2 −1 0 1 2 3

F ′ = 2 −
√

5
21

−
√

8
21

−
√

3
7
−
√

8
21

−
√

5
21

F ′ = 3
3
4

1
2

1
4

0 −1
4

−1
2

−3
4

F ′ = 4
√

5
48

√
5
28

√
25
112

√
5
21

√
25
112

√
5
28

√
5
48

Table A.1: Dipole matrix elements 〈F ′,m′F |er̂|3,mF 〉 in units of 〈J ′||er̂||J〉 for transitions

from the 6S1/2, F = 3 ground state which satisfy (m′F −mF ) = 0.
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|3,mF 〉 ↔ |F ′,mF + 1〉 (σ+-polarization)

mF = −3 −2 −1 0 1 2 3

F ′ = 2
√

5
7

√
10
21

√
2
7

√
1
7

√
1
21

F ′ = 3
√

3
16

√
5
16

√
3
8

√
3
8

√
5
16

√
3
16

F ′ = 4
√

5
336

√
5

112

√
5
56

√
25
168

√
25
112

√
5
16

√
5
12

Table A.2: Dipole matrix elements 〈F ′,m′F |er̂|3,mF 〉 in units of 〈J ′||er̂||J〉 for transitions

from the 6S1/2, F = 3 ground state which satisfy (m′F −mF ) = +1.

|3,mF 〉 ↔ |F ′,mF − 1〉 (σ−-polarization)

mF = −3 −2 −1 0 1 2 3

F ′ = 2
√

1
21

√
1
7

√
2
7

√
10
21

√
5
7

F ′ = 3 −
√

3
16

−
√

5
16

−
√

3
8
−
√

3
8
−
√

5
16

−
√

3
16

F ′ = 4
√

5
12

√
5
16

√
25
112

√
25
168

√
5
56

√
5

112

√
5

336

Table A.3: Dipole matrix elements 〈F ′,m′F |er̂|3,mF 〉 in units of 〈J ′||er̂||J〉 for transitions

from the 6S1/2, F = 3 ground state which satisfy (m′F −mF ) = −1.
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|4,mF 〉 ↔ |F ′,mF 〉 (π-polarization)

mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 3 −
√

7
144

−
√

1
12

−
√

5
48

−1
3
−
√

5
48

−
√

1
12

−
√

7
144

F ′ = 4
√

7
15

√
21
80

√
7
60

√
7

240
0 −

√
7

240
−
√

7
60

−
√

21
80

−
√

7
15

F ′ = 5
√

1
5

√
16
45

√
7
15

√
8
15

√
5
9

√
8
15

√
7

112

√
16
45

√
1
5

Table A.4: Dipole matrix elements 〈F ′,m′F |er̂|4,mF 〉 in units of 〈J ′||er̂||J〉 for transitions

from the 6S1/2, F = 4 ground state which satisfy (m′F −mF ) = 0.

|4,mF 〉 ↔ |F ′,mF + 1〉 (σ+-polarization)

mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 3
√

7
36

√
7
48

√
5
48

√
5
72

√
1
24

√
1
48

1
12

F ′ = 4
√

7
60

√
49
240

√
21
80

√
7
24

√
7
24

√
21
80

√
49
240

√
7
60

F ′ = 5
√

1
45

√
1
15

√
2
15

√
2
9

√
1
3

√
7
15

√
28
45

√
4
5

1

Table A.5: Dipole matrix elements 〈F ′,m′F |er̂|4,mF 〉 in units of 〈J ′||er̂||J〉 for transitions

from the 6S1/2, F = 4 ground state which satisfy (m′F −mF ) = +1.
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|4,mF 〉 ↔ |F ′,mF − 1〉 (σ−-polarization)

mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 3
1
12

√
1
48

√
1
24

√
5
72

√
5
48

√
7
48

√
7
36

F ′ = 4 −
√

7
60

−
√

49
240

−
√

21
80

−
√

7
24

−
√

7
24

−
√

21
80

−
√

49
240

−
√

7
60

F ′ = 5 1
√

4
5

√
28
45

√
7
15

√
1
3

√
2
9

√
2
15

√
1
15

√
1
45

Table A.6: Dipole matrix elements 〈F ′,m′F |er̂|4,mF 〉 in units of 〈J ′||er̂||J〉 for transitions

from the 6S1/2, F = 4 ground state which satisfy (m′F −mF ) = −1.
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Appendix B

ADWIN Gold Timing Code

In this Appendix, I will briefly layout the syntax and structure of the code which we use

to control the timing for our experiment. As mentioned in Chapter 3, the overall timing

is controlled by an ADWin-brand ADWin Gold pulse generation system using TTL-level

logic. The ADWin comes pre-packaged with control software called ADBasic which of-

fers very basic programming functions but is not conducive to generating large or complex

pulse sequences. In order to accommodate the types of timing sequences which we typi-

cally perform in the laboratory, David Boozer has coded a versatile and user-friendly pulse

compiler program in c (’pulse.c’). This compiler program has its own metalanguage which

is completely independent of the ADBasic system and which compiles timing input files

(’timing.in’) into a form which ADBasic can conveniently read (’foo.txt’).

I very strongly emphasize that the original design and coding for this system were carried

out entirely by David Boozer. I will omit the ADBasic script and compiler code necessary

to translate this section into a form which can communicate with the ADWin, and refer the

reader directly to David in order to obtain this information if interested. With that said,

however, the metalanguage in which the timing code is written is very simple to interpret,

conveys all the information about the timing of the system necessary to understand, at an

operational-level, what we are doing and has not yet been formally documented anywhere.

B.1 Syntax

The syntax for the pulse.c metalanguage is as follows:
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<cmd> --> p<name> : <cmd>

--> invert <digital channel>

--> define t<name> <time>

--> define c<name> <int>

--> define a<name> <int>

--> begin_comment <cmds> end_comment

--> [<time>, <time>] <digital channel>

--> <time> aout <analog channel> > <float>

--> <time> inline ’ <string> ’

--> <time> loop <int> { <cmds> }

<time> --> <time> + <time>

--> <time> - <time>

--> ( <time> )

--> start( p<name> )

--> stop( p<name> )

--> t<name>

--> <float>

<digial channel> --> c<name>

--> <int>

<analog channel> --> a<name>

--> <int>

Line comments are denoted by ; and block comments (i.e., omission of blocks of code from

the script) are done by inserting begin comment and end comment around the block of code.

These code block are generally then reinserted into the script by line-commenting the block

comment headers.
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B.2 Header and Preamble

;-----------------------------------------------------------------------------

; timing.in

; David Boozer

; 03 May 2006

;-----------------------------------------------------------------------------

; to load these pulses into ADwin box:

; type "C:\ADwin\ADbasic3\Inc>pulse-new timing.in" in DOS

; run ADbasic, open "C:\ADwin\ADbasic3\Programs\pulses.bas",

; press B to reboot then C to compile

;

; all time are in units of ms

;-----------------------------------------------------------------------------

; define channels

;-----------------------------------------------------------------------------

define c_umot_bfield 0 ; H/L --> field on/off

define c_lmot_bfield 4 ; H/L --> field on/off

define c_45_mot 3 ; H/L --> 4-5’ mot light on/off

define c_mot_frequency 1 ; H/L --> 4-5’ mot light pgc/doppler frequency

define c_mot_intensity 2 ; H/L --> 4-5’ mot light pgc/doppler intensity

define c_probe 5 ; H/L --> cavity probe on/off

define c_44_load 6 ; H/L --> 4-4’ load light on/off

define c_44_pump 7 ; H/L --> 4-4’ pump light on/off

define c_33_pump 29 ; H/L --> 3-3’ pumping light on/off
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define c_33_load 9 ; H/L --> 3-3’ loading light on/off

define c_33_mot 10 ; H/L --> 3-3’ mot light on/off

define c_44_side 13 ; H/L --> 4-4’ side light on/off

define c_45_side 21

define c_oldraman_a 14 ; H/L --> load Raman frequency on/off

define c_oldraman_b 17 ; H/L --> noise Raman frequency on/off

define c_oldraman_c 20 ; H/L --> misc. Raman frequency on/off

define c_oldraman_d 22 ; H/L --> misc. Raman frequency on/off

define c_oldraman_e 30 ; H/L --> misc. Raman frequency on/off

define c_probe_freq 8 ; frequency switch for probe upshift

define c_card_trig 12 ; downgoing edge triggers APD card

define c_channel_c 15 ; rising edge goes to channel C of counting card

define c_tag 27 ; falling edge goes to channel D of counting card

define c_dummy 31 ; dummy channel

;-----------------------------------------------------------------------------

; invert channels

;-----------------------------------------------------------------------------

invert c_45_mot

invert c_umot_bfield

invert c_mot_frequency
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invert c_33_pump

invert c_33_load

invert c_33_mot

invert c_44_load

invert c_44_pump

invert c_44_side

invert c_nearres_raman

invert c_probe_freq

invert c_tag

;-----------------------------------------------------------------------------

; define times

;-----------------------------------------------------------------------------

define t_umot_pgc_start 150.0

define t_umot_pgc_stop t_umot_pgc_start + 10.0

define t_lmot_catch t_umot_pgc_stop + 180.0

define t_lmot_pgc_start t_lmot_catch + 150.0

define t_lmot_pgc_stop t_lmot_pgc_start + 10.0

define t_load_start t_lmot_pgc_stop + 30.0

define t_load_end t_load_start + 5.0



271

B.3 External Device Programming

;-----------------------------------------------------------------------------

; pulse sequence

;-----------------------------------------------------------------------------

begin_comment

; c_oldraman_c

0.0 inline ’text = "cfrq:value 82.700 MHz"’

0.0 inline ’serial_out (10)’

0.0 inline ’text = "cfrq:inc 50.0 kHz"’

0.0 inline ’serial_out (10)’

end_comment

B.4 MOT and FORT Loading

; set number of times to loop, as for scans, etc.

1.0 loop 1 {

; set bias coil currents for lower mot loading

0.0 aout 1 > -1.66 ; z axial (0.5 A/V)

0.0 aout 2 > -5.68 ; x fed-from-above (0.5 A/V)

0.0 aout 3 > -6.16 ; y fed-from-below (1 A/V)

; load upper mot

[0.0, t_umot_pgc_start] c_umot_bfield

[0.0, t_umot_pgc_stop] c_45_mot

[0.0, t_umot_pgc_stop] c_33_mot
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; pg cool atoms in upper mot

[t_umot_pgc_start, t_umot_pgc_stop] c_mot_intensity

[t_umot_pgc_start, t_umot_pgc_stop] c_mot_frequency

; catch atoms in lower mot

[t_lmot_catch, t_lmot_pgc_start-5.0] c_lmot_bfield

[t_lmot_catch, t_lmot_pgc_start-5.0] c_45_mot

[t_lmot_catch, t_lmot_pgc_start-5.0] c_33_mot

; pg cool atoms in lower mot

[t_lmot_pgc_start, t_lmot_pgc_stop] c_45_mot

[t_lmot_pgc_start, t_lmot_pgc_stop] c_33_mot

[t_lmot_pgc_start, t_lmot_pgc_stop] c_mot_intensity

[t_lmot_pgc_start, t_lmot_pgc_stop] c_mot_frequency

; load an atom into the FORT using a combination of Raman and Lattice

[t_load_start, t_load_end] c_44_load

;[t_load_start, t_load_end] c_33_load

;[t_load_start, t_load_end] c_probe

[t_load_start, t_load_end] c_oldraman_a

; set bias coil currents for Raman transitions

t_load_end+5.0 aout 1 > -1.625 ; z axial (null is at -1.625) (.5 A/V)

t_load_end+5.0 aout 2 > -2.00 ; x fed-from-above (null is at -2.00) (0.5 A/V)

t_load_end+5.0 aout 3 > -5.00 ; y fed-from-below (null is at -5.00) (1 A/V)

; trigger photon counting card with downgoing edge

p_trigger_card:

[t_load_end+14.0, t_load_end+15.0] c_card_trig
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; see if we have an atom by downgoer detection

[t_load_end+15.0, t_load_end+15.1] c_probe

[t_load_end+15.0, t_load_end+15.1] c_33_load

;[t_load_end+14.0, t_load_end+14.1] c_43_probe

;[t_load_end+16.0, t_load_end+16.5] c_44_pump

; tag atom at the P7888

t_load_end+15.2 inline ’n_pulses(i,11)’

B.5 Individual Experiment Code Blocks

I have included some sample blocks of code for individual experiments which we have

performed in the laboratory.

B.5.1 STIRAP-Based Single Photon Generation

;-----------------------------------------------------------------------------

; Single Photon Generation

;-----------------------------------------------------------------------------

begin_comment

t_load_end+20 loop 50000 {

[0.000,0.001] c_channel_c

[0.000,0.001] c_33_pump

[0.002,0.006] c_44_pump

}
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end_comment

B.5.2 Reversible State Transfer Measurements

;-----------------------------------------------------------------------------

; Fringe Measurement

;-----------------------------------------------------------------------------

begin_comment

define t_start t_load_end+20.0

p_cycle:

t_start loop 2000 {

[0.000,0.001] c_channel_c

;;;;; Measurement #1: (incoherent absorbtion)

define t_1 0.020

; pump atom to F=4

[t_1+0.000, t_1+0.008] c_33_load

[t_1+0.001, t_1+0.009] c_33_side

; second 3-3’ on, first 4-3’ on

[t_1+0.0100, t_1+0.0127] c_43_veto_on

[t_1+0.0100, t_1+0.0170] c_srs_trig

[t_1+0.0124, t_1+0.0170] c_33_pump
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;;;;; Measurement #2: (coherent absorbtion)

define t_2 0.040

; pump atom to F=4

[t_2+0.000, t_2+0.008] c_33_load

[t_2+0.001, t_2+0.009] c_33_side

; first & second 3-3’ on, first 4-3’ on

[t_2+0.0100, t_2+0.0127] c_43_veto_on

[t_2+0.0100, t_2+0.0170] c_srs_trig

[t_2+0.0100, t_2+0.0170] c_33_pump

;;;;; Measurement #3: (fringe, fixed phase)

define t_3 0.060

; pump atom to F=4

[t_3+0.000, t_3+0.008] c_33_load

[t_3+0.001, t_3+0.009] c_33_side

; first & second 3-3’ on, first & second 4-3’ on

[t_3+0.0100, t_3+0.0170] c_43_veto_on

[t_3+0.0100, t_3+0.0170] c_srs_trig

[t_3+0.0100, t_3+0.0170] c_33_pump
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;;;;; Measurement #4: (fringe, vary phase)

define t_4 0.080

; pump atom to F=4

[t_4+0.000, t_4+0.008] c_33_load

[t_4+0.001, t_4+0.009] c_33_side

; first & second 3-3’ on, first & second 4-3’ on

[t_4+0.0100, t_4+0.0170] c_43_veto_on

[t_4+0.0100, t_4+0.0170] c_srs_trig

[t_4+0.0100, t_4+0.0170] c_33_pump

[t_4+0.0100, t_4+0.0127] c_which_phase

;;;;; Measurement #5: (efficiency) pump atom to F=3, second 3-3’ on

define t_5 0.100

; pump atom to F=3

[t_5+0.000, t_5+0.008] c_44_load

[t_5+0.001, t_5+0.009] c_44_side

; second 3-3’ on

[t_5+0.0100, t_5+0.0170] c_srs_trig

[t_5+0.0124, t_5+0.0170] c_33_pump
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;;;;; Measurement #6: (background) pump atom to F=4, both 3-3’ on

define t_6 0.120

; pump atom to F=4

[t_6+0.000, t_6+0.008] c_33_load

[t_6+0.001, t_6+0.009] c_33_side

; first & second 3-3’ on

[t_6+0.0100, t_6+0.0170] c_srs_trig

[t_6+0.0100, t_6+0.0170] c_33_pump

;;;;; Measurement #7: (no fringe, fixed phase)

define t_7 0.140

; pump atom to F=4

[t_7+0.000, t_7+0.008] c_33_load

[t_7+0.001, t_7+0.009] c_33_side

; second 3-3’ on, first & second 4-3’ on

[t_7+0.0100, t_7+0.0170] c_43_veto_on

[t_7+0.0100, t_7+0.0170] c_srs_trig

[t_7+0.0124, t_7+0.0170] c_33_pump
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;;;;; Measurement #8: (no fringe, vary phase)

define t_8 0.160

; pump atom to F=4

[t_8+0.000, t_8+0.008] c_33_load

[t_8+0.001, t_8+0.009] c_33_side

; second 3-3’ on, first & second 4-3’ on

[t_8+0.0100, t_8+0.0170] c_43_veto_on

[t_8+0.0100, t_8+0.0170] c_srs_trig

[t_8+0.0124, t_8+0.0170] c_33_pump

[t_8+0.0100, t_8+0.0127] c_which_phase

}

define t_atom_detect stop(p_cycle);

[t_atom_detect, t_atom_detect+0.001] c_channel_c;

p_atom_detect:

t_atom_detect+0.001 loop 10000 {

[0.000,0.001] c_33_load

[0.001,0.002] c_44_pump

}

define t_delay stop(p_atom_detect);
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[t_delay+1.0, t_delay+11.0] c_33_load;

end_comment

B.5.3 Raman Spectroscopy

;------------------------------------------------------------------------

; raman scan, FORT+Raman configuration

;-----------------------------------------------------------------------

begin_comment

p_main_loop:

t_load_end+20.0 loop 500 {

define t_raman_pump 0.000

p_pump_r:

; Incoherent Raman Optical Pumping

0.001 loop 40 {

[t_raman_pump+0.00000, t_raman_pump+0.00030] c_44_side ; 1

[t_raman_pump+0.00030, t_raman_pump+0.00060] c_44_pump

[t_raman_pump+0.00060, t_raman_pump+0.00090] c_44_side ; 2

[t_raman_pump+0.00090, t_raman_pump+0.00120] c_44_pump

[t_raman_pump+0.00120, t_raman_pump+0.00150] c_44_side ; 3

[t_raman_pump+0.00150, t_raman_pump+0.00180] c_44_pump

[t_raman_pump+0.00180, t_raman_pump+0.00210] c_44_side ; 4

[t_raman_pump+0.00210, t_raman_pump+0.00240] c_44_pump

[t_raman_pump+0.00240, t_raman_pump+0.00270] c_44_side ; 5

[t_raman_pump+0.00270, t_raman_pump+0.00300] c_44_pump

[t_raman_pump+0.00300, t_raman_pump+0.00330] c_44_side ; 6



280

[t_raman_pump+0.00330, t_raman_pump+0.00360] c_44_pump

[t_raman_pump+0.00360, t_raman_pump+0.00390] c_44_side ; 7

[t_raman_pump+0.00390, t_raman_pump+0.00420] c_44_pump

[0.00500, 0.01500] c_oldraman_b

}

define t_raman_start_r stop(p_pump_r)+0.001

define t_probe_atom_r t_raman_start_r+0.025

[t_raman_start_r, t_probe_atom_r] c_oldraman_c

[t_probe_atom_r+0.000, t_probe_atom_r+0.001] c_channel_c

[t_probe_atom_r+0.002, t_probe_atom_r+0.200] c_probe

[t_probe_atom_r+0.100, t_probe_atom_r+0.200] c_33_load

[t_probe_atom_r+0.200, t_probe_atom_r+0.205] c_dummy

}

; Step detuning remotely

stop(p_main_loop)+1.0 inline ’text = "cfrq:up"’

stop(p_main_loop)+1.0 inline ’serial_out (10)’

end_comment

B.5.4 Fast Atomic Excitation

;-----------------------------------------------------------------------------

; cavity on 4-5’, fast pulses of 4-5’ from the side

;-----------------------------------------------------------------------------
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begin_comment

define t_start t_load_end+20.0

p_cycle:

t_start loop 5000 {

[0.000,0.001] c_channel_c

[0.005,0.006] c_45_side

; pump the atom to F=4

[0.010,0.020] c_33_load

[0.010,0.020] c_33_side

}

define t_atom_detect stop(p_cycle)+20.0;

[t_atom_detect, t_atom_detect+0.001] c_channel_c

[t_atom_detect, t_atom_detect+0.100] c_probe

[t_atom_detect, t_atom_detect+0.100] c_33_load

[t_atom_detect+50.0, t_atom_detect+65.0] c_probe

[t_atom_detect+50.0, t_atom_detect+75.0] c_33_load

end_comment

}



282

Appendix C

Quantum Optics Toolbox Simulation

C.1 Introduction

Throughout my years at Caltech, a number of people have contributed to an effort to

build a numerical model of the complete cesium energy level spectrum as it undergoes

strong coupling with two, orthogonal non-degenerate cavity modes. One implementation

was described by Kevin Birnbaum in his thesis in the context of modeling the vacuum Rabi

spectrum measurements described in Chapter 6. Kevin’s code relies on the underpinnings

of Sze Tan’s MATLAB Quantum Optics Toolbox (QOT) suite to carry out numerical integra-

tion of the master equation for the full system. After Kevin’s departure departure, Tracy

Northup contributed to this set of simulation code over the interceding years.

Independently of Kevin, David Boozer also developed a similar piece of simulation code

for use with QOT. Using David’s code, which is otherwise undocumented, as a starting

point, I made a series of modifications and generalizations. The resulting m-files, which

are described in this Appendix, provide the tools necessary to model a broad array of

phenomena in our system. This code was used to obtain a variety of numerical results in

this thesis, particularly in Chapter 6.

In the following sections I present the code with comments where appropriate in order

to describe how the master equation is formulated and integrated and how the code can be

used to predict particular observables. I neglect any discussion of the QOT syntax, which

is well described in the documentation which accompanies the package.
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As a word of warning, the size of the Hilbert space necessary to include every possible

Zeeman state of the atom in the simulation will far exceed the memory handling capabilities

of most MATLAB installations. For sufficiently large Hilbert spaces, it is necessary to run this

code on a machine running MATLAB natively in a 64-bit Linux environment with > 8 GB of

available system memory.

C.2 Preamble and User-Specified Parameters

%-------------------------------------------------------------------------

% cesiumsim.m

% March 9, 2009

%-------------------------------------------------------------------------

% Simulate atom-cavity effects on any transition within

% the D2 manifold of transitions

%-------------------------------------------------------------------------

% User-specified input parameters are:

%-------------------------------------------------------------------------

% g_states: vector list of hyperfine ground states to include in

% simulation (i.e., [3 4])

% e_states: vector list of hyperfine excited states to include in

% simulation (i.e., [3 4 5])

% z_states: vector list of specific Zeeman states in which to

% initialize atom (i.e., [3,0;4,0] prepares a mixture of

% |3,0> and |4,0>

% coupled_states: specifies which transition is resonant with the

% cavity (i.e, [4 5])

% Omega: specifies the strength of whatever probe or drive

% field is used in the simulation, in MHz

% delay: passes a small, user controlled time delay for impulse

% or timed events in the code, in us
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% probe_freq: specifies the detuning of a probe or driving field

% from the cavity resonance, in MHz

%-------------------------------------------------------------------------

% Common user-specified output parameters are:

%-------------------------------------------------------------------------

% na: time-dependent (or steady state) photon number in mode a

% nb: time-dependent (or steady state) photon number in mode b

% other: any variable called within the script can be introduced

% here as an output variable if needed

%-------------------------------------------------------------------------

function [na, nb, other] = rabi_sim(g_states, e_states, z_states,

coupled_states,Omega,delay,probe_freq)

%-------------------------------------------------------------------------

% specify constant parameters for simulation

%-------------------------------------------------------------------------

gamma = 2*pi*5.2;

% atomic decay rate, fullwidth [MHz]

g = 2*pi*32.0;

% atom-cavity coupling rate [MHz]

kappa=2*pi*8.4;

% cavity linewidth, fullwidth [MHz]

splitting = 2*pi*2.1;

% ((frequency of x-mode)-(frequency of y-mode))/2, the birefringent splitting

cavity_freq = 0;

% cavity frequency relative to the user-specified transition

Delta_g = sparse(2*pi*[0 0 -9192 0]);

% ground state hyperfine splitting [MHz]

Delta_e = sparse(2*pi*[0 603.45 452.24 251.00 0]);
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% excited state hyperfine splittings [MHz]

B = 2*pi*[0.0,0.0,0.0]; % magnetic field [Bx,By,Bz] [MHz]

Le4 = 4/15; % Lande g-factor for e4

Lg4 = 1/4; % Lande g-factor for g4

Lg3 = -1/4; % Lande g-factor for g3

Le2 = -2/3; % Lande g-factor for e2

Le5 = 1; % Lande g-factor for e5

t = 0.1+delay; % duration of simulation [us]

N = 1e3; % number of points

delta = t/(N-1); % timestep [us]

tlist = linspace(0,t,N); % initialize the list of simulation

%-------------------------------------------------------------------------

% check user inputs for null values and duplicates

%-------------------------------------------------------------------------

if isempty(g_states)==1||isempty(e_states)==1

error(’Invalid atomic state spaces.’)

end

% sort and find unique elements of input state variables

e_states = unique(e_states);

g_states = unique(g_states);

%-------------------------------------------------------------------------
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% if Zeeman states are user-specified, count them

%-------------------------------------------------------------------------

if max(ismember(g_states,3))==1; Ng3 = 2*3 + 1; else Ng3 = 0; end

% enumerate the number of states in g3 manifold

if max(ismember(g_states,4))==1; Ng4 = 2*4 + 1; else Ng4 = 0; end

% enumerate the number of states in g4 manifold

if max(ismember(e_states,3))==1; Ne3 = 2*3 + 1; else Ne3 = 0; end

% enumerate the number of states in e3 manifold

if max(ismember(e_states,4))==1; Ne4 = 2*4 + 1; else Ne4 = 0; end

% enumerate the number of states in e4 manifold

if max(ismember(e_states,2))==1; Ne2 = 2*2 + 1; else Ne2 = 0; end

% enumerate the number of states in e2 manifold

if max(ismember(e_states,5))==1; Ne5 = 2*5 + 1; else Ne5 = 0; end

% enumerate the number of states in e5 manifold

Natomic = Ng3 + Ng4 + Ne3 + Ne4 + Ne2 + Ne5; % total number of atomic states

Na = 2; % number of Fock states (mode a)

Nb = 2; % number of Fock states (mode b)

C.3 Generate System Operators

C.3.1 Atomic Operators

%-------------------------------------------------------------------------

% generate full basis of atomic state vectors

%-------------------------------------------------------------------------

for k=1:Natomic

psi{k} = tensor(basis(Natomic,k),basis(Na,1),basis(Nb,1));

end
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%-------------------------------------------------------------------------

% prepare atomic dipole operators

%-------------------------------------------------------------------------

% define Clebsch-Gordan operators

% murelj is the QOT built-in function for finding dimensionless

% atomic dipole moments

[cg_4m4,cg_404,cg_4p4] = murelj(4,4);

[cg_3m4,cg_304,cg_3p4] = murelj(3,4);

[cg_4m3,cg_403,cg_4p3] = murelj(4,3);

[cg_3m3,cg_303,cg_3p3] = murelj(3,3);

[cg_3m2,cg_302,cg_3p2] = murelj(3,2);

[cg_4m5,cg_405,cg_4p5] = murelj(4,5);

% define dipole moment operators

d_4m4 = sqrt(7/12)*cg_4m4;

d_404 = sqrt(7/12)*cg_404;

d_4p4 = sqrt(7/12)*cg_4p4;

d_3m4 = sqrt(5/12)*cg_3m4;

d_304 = sqrt(5/12)*cg_304;

d_3p4 = sqrt(5/12)*cg_3p4;

d_4m3 = sqrt(1/4)*cg_4m3;

d_403 = sqrt(1/4)*cg_403;

d_4p3 = sqrt(1/4)*cg_4p3;
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d_3m3 = sqrt(3/4)*cg_3m3;

d_303 = sqrt(3/4)*cg_303;

d_3p3 = sqrt(3/4)*cg_3p3;

d_3m2 = cg_3m2;

d_302 = cg_302;

d_3p2 = cg_3p2;

d_4m5 = cg_4m5;

d_405 = cg_405;

d_4p5 = cg_4p5;

%-------------------------------------------------------------------------

% construct atomic lowering operators for specified states

%-------------------------------------------------------------------------

% lowering operators for 4 <-- 4’

if (max(ismember(g_states,4))==1)&&(max(ismember(e_states,4)==1))

g4_m_e4 = sparse(Natomic, Natomic);

g4_0_e4 = sparse(Natomic, Natomic);

g4_p_e4 = sparse(Natomic, Natomic);

g4_m_e4(index_g(4,-4):index_g(4,4),index_e(4,-4):index_e(4,4)) = d_4m4;

g4_0_e4(index_g(4,-4):index_g(4,4),index_e(4,-4):index_e(4,4)) = d_404;

g4_p_e4(index_g(4,-4):index_g(4,4),index_e(4,-4):index_e(4,4)) = d_4p4;

g4_m_e4 = tensor(qo(g4_m_e4),identity(Na),identity(Nb));

g4_0_e4 = tensor(qo(g4_0_e4),identity(Na),identity(Nb));

g4_p_e4 = tensor(qo(g4_p_e4),identity(Na),identity(Nb));
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g4_x_e4 = -sqrt(1/2)*(g4_p_e4 - g4_m_e4);

g4_y_e4 = i*sqrt(1/2)*(g4_p_e4 + g4_m_e4);

g4_z_e4 = g4_0_e4;

end

% lowering operators for 3 <-- 4’

if (max(ismember(g_states,3))==1)&&(max(ismember(e_states,4))==1)

g3_m_e4 = sparse(Natomic, Natomic);

g3_0_e4 = sparse(Natomic, Natomic);

g3_p_e4 = sparse(Natomic, Natomic);

g3_m_e4(index_g(3,-3):index_g(3,3),index_e(4,-4):index_e(4,4)) = d_3m4;

g3_0_e4(index_g(3,-3):index_g(3,3),index_e(4,-4):index_e(4,4)) = d_304;

g3_p_e4(index_g(3,-3):index_g(3,3),index_e(4,-4):index_e(4,4)) = d_3p4;

g3_m_e4 = tensor(qo(g3_m_e4),identity(Na),identity(Nb));

g3_0_e4 = tensor(qo(g3_0_e4),identity(Na),identity(Nb));

g3_p_e4 = tensor(qo(g3_p_e4),identity(Na),identity(Nb));

g3_x_e4 = -sqrt(1/2)*(g3_p_e4 - g3_m_e4);

g3_y_e4 = i*sqrt(1/2)*(g3_p_e4 + g3_m_e4);

g3_z_e4 = g3_0_e4;

end

% lowering operators for 4 <-- 3’

if (max(ismember(g_states,4))==1)&&(max(ismember(e_states,3))==1)

g4_m_e3 = sparse(Natomic, Natomic);
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g4_0_e3 = sparse(Natomic, Natomic);

g4_p_e3 = sparse(Natomic, Natomic);

g4_m_e3(index_g(4,-4):index_g(4,4),index_e(3,-3):index_e(3,3)) = d_4m3;

g4_0_e3(index_g(4,-4):index_g(4,4),index_e(3,-3):index_e(3,3)) = d_403;

g4_p_e3(index_g(4,-4):index_g(4,4),index_e(3,-3):index_e(3,3)) = d_4p3;

g4_m_e3 = tensor(qo(g4_m_e3),identity(Na),identity(Nb));

g4_0_e3 = tensor(qo(g4_0_e3),identity(Na),identity(Nb));

g4_p_e3 = tensor(qo(g4_p_e3),identity(Na),identity(Nb));

g4_x_e3 = -sqrt(1/2)*(g4_p_e3 - g4_m_e3);

g4_y_e3 = i*sqrt(1/2)*(g4_p_e3 + g4_m_e3);

g4_z_e3 = g4_0_e3;

end

% lowering operators for 3 <-- 3’

if (max(ismember(g_states,3))==1)&&(max(ismember(e_states,3))==1)

g3_m_e3 = sparse(Natomic, Natomic);

g3_0_e3 = sparse(Natomic, Natomic);

g3_p_e3 = sparse(Natomic, Natomic);

g3_m_e3(index_g(3,-3):index_g(3,3),index_e(3,-3):index_e(3,3)) = d_3m3;

g3_0_e3(index_g(3,-3):index_g(3,3),index_e(3,-3):index_e(3,3)) = d_303;

g3_p_e3(index_g(3,-3):index_g(3,3),index_e(3,-3):index_e(3,3)) = d_3p3;

g3_m_e3 = tensor(qo(g3_m_e3),identity(Na),identity(Nb));

g3_0_e3 = tensor(qo(g3_0_e3),identity(Na),identity(Nb));

g3_p_e3 = tensor(qo(g3_p_e3),identity(Na),identity(Nb));
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g3_x_e3 = -sqrt(1/2)*(g3_p_e3 - g3_m_e3);

g3_y_e3 = i*sqrt(1/2)*(g3_p_e3 + g3_m_e3);

g3_z_e3 = g3_0_e3;

end

% lowering operators for 3 <-- 2’

if (max(ismember(g_states,3))==1)&&(max(ismember(e_states,2))==1)

g3_m_e2 = sparse(Natomic, Natomic);

g3_0_e2 = sparse(Natomic, Natomic);

g3_p_e2 = sparse(Natomic, Natomic);

g3_m_e2(index_g(3,-3):index_g(3,3),index_e(2,-2):index_e(2,2)) = d_3m2;

g3_0_e2(index_g(3,-3):index_g(3,3),index_e(2,-2):index_e(2,2)) = d_302;

g3_p_e2(index_g(3,-3):index_g(3,3),index_e(2,-2):index_e(2,2)) = d_3p2;

g3_m_e2 = tensor(qo(g3_m_e2),identity(Na),identity(Nb));

g3_0_e2 = tensor(qo(g3_0_e2),identity(Na),identity(Nb));

g3_p_e2 = tensor(qo(g3_p_e2),identity(Na),identity(Nb));

g3_x_e2 = -sqrt(1/2)*(g3_p_e2 - g3_m_e2);

g3_y_e2 = i*sqrt(1/2)*(g3_p_e2 + g3_m_e2);

g3_z_e2 = g3_0_e2;

end

% lowering operators for 4 <-- 5’

if (max(ismember(g_states,4))==1)&&(max(ismember(e_states,5))==1)

g4_m_e5 = sparse(Natomic, Natomic);
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g4_0_e5 = sparse(Natomic, Natomic);

g4_p_e5 = sparse(Natomic, Natomic);

g4_m_e5(index_g(4,-4):index_g(4,4),index_e(5,-5):index_e(5,5)) = d_4m5;

g4_0_e5(index_g(4,-4):index_g(4,4),index_e(5,-5):index_e(5,5)) = d_405;

g4_p_e5(index_g(4,-4):index_g(4,4),index_e(5,-5):index_e(5,5)) = d_4p5;

g4_m_e5 = tensor(qo(g4_m_e5),identity(Na),identity(Nb));

g4_0_e5 = tensor(qo(g4_0_e5),identity(Na),identity(Nb));

g4_p_e5 = tensor(qo(g4_p_e5),identity(Na),identity(Nb));

g4_x_e5 = -sqrt(1/2)*(g4_p_e5 - g4_m_e5);

g4_y_e5 = i*sqrt(1/2)*(g4_p_e5 + g4_m_e5);

g4_z_e5 = g4_0_e5;

end

%-------------------------------------------------------------------------

% construct atomic projection operators

%-------------------------------------------------------------------------

% projection operator onto g4 manifold

if (max(ismember(g_states,4))==1)

g4_g4 = sparse(Natomic, Natomic);

g4_g4(index_g(4,-4):index_g(4,4),index_g(4,-4):index_g(4,4)) = eye(2*4+1);

g4_g4 = tensor(qo(g4_g4),identity(Na),identity(Nb));

end

% projection operator onto g3 manifold
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if (max(ismember(g_states,3))==1)

g3_g3 = sparse(Natomic, Natomic);

g3_g3(index_g(3,-3):index_g(3,3),index_g(3,-3):index_g(3,3)) = eye(2*3+1);

g3_g3 = tensor(qo(g3_g3),identity(Na),identity(Nb));

end

% projection operator onto e4 manifold

if (max(ismember(e_states,4))==1)

e4_e4 = sparse(Natomic, Natomic);

e4_e4(index_e(4,-4):index_e(4,4),index_e(4,-4):index_e(4,4)) = eye(2*4+1);

e4_e4 = tensor(qo(e4_e4),identity(Na),identity(Nb));

end

% projection operator onto e3 manifold

if (max(ismember(e_states,3))==1)

e3_e3 = sparse(Natomic, Natomic);

e3_e3(index_e(3,-3):index_e(3,3),index_e(3,-3):index_e(3,3)) = eye(2*3+1);

e3_e3 = tensor(qo(e3_e3),identity(Na),identity(Nb));

end

% projection operator onto e2 manifold

if (max(ismember(e_states,2))==1)

e2_e2 = sparse(Natomic, Natomic);

e2_e2(index_e(2,-2):index_e(2,2),index_e(2,-2):index_e(2,2)) = eye(2*2+1);

e2_e2 = tensor(qo(e2_e2),identity(Na),identity(Nb));

end
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% projection operator onto e5 manifold

if (max(ismember(e_states,5))==1)

e5_e5 = sparse(Natomic, Natomic);

e5_e5(index_e(5,-5):index_e(5,5),index_e(5,-5):index_e(5,5)) = eye(2*5+1);

e5_e5 = tensor(qo(e5_e5),identity(Na),identity(Nb));

end

C.3.2 Cavity Operators

%-------------------------------------------------------------------------

% photon destruction operators

%-------------------------------------------------------------------------

a = tensor(identity(Natomic),destroy(Na),identity(Nb));

b = tensor(identity(Natomic),identity(Na),destroy(Nb));

c_p = -sqrt(0.5)*(a + i*b);

c_m = sqrt(0.5)*(a - i*b);

C.4 Generate Decay Superoperators

%-------------------------------------------------------------------------

% construct atom and cavity decay superoperators

%-------------------------------------------------------------------------

% atomic decay e4 --> g4

if (max(ismember(g_states,4))==1)&&(max(ismember(e_states,4))==1)

L1 = 0.5*gamma*(2*spre(g4_x_e4)*spost(g4_x_e4’) + ...

2*spre(g4_y_e4)*spost(g4_y_e4’) + ...
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2*spre(g4_z_e4)*spost(g4_z_e4’) - ...

spre(g4_x_e4’*g4_x_e4) - spost(g4_x_e4’*g4_x_e4) - ...

spre(g4_y_e4’*g4_y_e4) - spost(g4_y_e4’*g4_y_e4) - ...

spre(g4_z_e4’*g4_z_e4) - spost(g4_z_e4’*g4_z_e4));

else L1=0;end;

% atomic decay e4 --> g3

if (max(ismember(g_states,3))==1)&&(max(ismember(e_states,4))==1)

L2 = 0.5*gamma*(2*spre(g3_x_e4)*spost(g3_x_e4’) + ...

2*spre(g3_y_e4)*spost(g3_y_e4’) + ...

2*spre(g3_z_e4)*spost(g3_z_e4’) - ...

spre(g3_x_e4’*g3_x_e4) - spost(g3_x_e4’*g3_x_e4) - ...

spre(g3_y_e4’*g3_y_e4) - spost(g3_y_e4’*g3_y_e4) - ...

spre(g3_z_e4’*g3_z_e4) - spost(g3_z_e4’*g3_z_e4));

else L2=0;end;

% atomic decay e3 --> g4

if (max(ismember(g_states,4))==1)&&(max(ismember(e_states,3))==1)

L3 = 0.5*gamma*(2*spre(g4_x_e3)*spost(g4_x_e3’) + ...

2*spre(g4_y_e3)*spost(g4_y_e3’) + ...

2*spre(g4_z_e3)*spost(g4_z_e3’) - ...

spre(g4_x_e3’*g4_x_e3) - spost(g4_x_e3’*g4_x_e3) - ...

spre(g4_y_e3’*g4_y_e3) - spost(g4_y_e3’*g4_y_e3) - ...

spre(g4_z_e3’*g4_z_e3) - spost(g4_z_e3’*g4_z_e3));

else L3=0;end;

% atomic decay e3 --> g3
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if (max(ismember(g_states,3))==1)&&(max(ismember(e_states,3))==1)

L4 = 0.5*gamma*(2*spre(g3_x_e3)*spost(g3_x_e3’) + ...

2*spre(g3_y_e3)*spost(g3_y_e3’) + ...

2*spre(g3_z_e3)*spost(g3_z_e3’) - ...

spre(g3_x_e3’*g3_x_e3) - spost(g3_x_e3’*g3_x_e3) - ...

spre(g3_y_e3’*g3_y_e3) - spost(g3_y_e3’*g3_y_e3) - ...

spre(g3_z_e3’*g3_z_e3) - spost(g3_z_e3’*g3_z_e3));

else L4=0;end;

% atomic decay e2 --> g3

if (max(ismember(g_states,3))==1)&&(max(ismember(e_states,2))==1)

L5 = 0.5*gamma*(2*spre(g3_x_e2)*spost(g3_x_e2’) + ...

2*spre(g3_y_e2)*spost(g3_y_e2’) + ...

2*spre(g3_z_e2)*spost(g3_z_e2’) - ...

spre(g3_x_e2’*g3_x_e2) - spost(g3_x_e2’*g3_x_e2) - ...

spre(g3_y_e2’*g3_y_e2) - spost(g3_y_e2’*g3_y_e2) - ...

spre(g3_z_e2’*g3_z_e2) - spost(g3_z_e2’*g3_z_e2));

else L5=0;end;

% atomic decay e5 --> g4

if (max(ismember(g_states,4))==1)&&(max(ismember(e_states,5))==1)

L6 = 0.5*gamma*(2*spre(g4_x_e5)*spost(g4_x_e5’) + ...

2*spre(g4_y_e5)*spost(g4_y_e5’) + ...

2*spre(g4_z_e5)*spost(g4_z_e5’) - ...

spre(g4_x_e5’*g4_x_e5) - spost(g4_x_e5’*g4_x_e5) - ...

spre(g4_y_e5’*g4_y_e5) - spost(g4_y_e5’*g4_y_e5) - ...

spre(g4_z_e5’*g4_z_e5) - spost(g4_z_e5’*g4_z_e5));

else L6=0;end;
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% cavity decay

L7 = 0.5*kappa*(2*spre(a)*spost(a’) - spre(a’*a) - spost(a’*a));

L8 = 0.5*kappa*(2*spre(b)*spost(b’) - spre(b’*b) - spost(b’*b));

C.5 Prepare Initial Density Matrix

%-------------------------------------------------------------------------

% reference unpolarized density matrices

%-------------------------------------------------------------------------

% uniform distribution in F=4

rho_unpolarized_4 = 0;

if max(ismember(g_states,4))==1

for m=-4:4

psi0 = psi{index_g(4,m)};

rho_unpolarized_4 = rho_unpolarized_4 + psi0*psi0’;

end

rho_unpolarized_4 = rho_unpolarized_4/trace(rho_unpolarized_4);

end

% uniform distribution in F=3

rho_unpolarized_3 = 0;

if max(ismember(g_states,3))==1

for m=-3:3

psi0 = psi{index_g(3,m)};

rho_unpolarized_3 = rho_unpolarized_3 + psi0*psi0’;
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end

rho_unpolarized_3 = rho_unpolarized_3/trace(rho_unpolarized_3);

end

%-------------------------------------------------------------------------

% customize initial state based on user input (z_states)

%-------------------------------------------------------------------------

rho_custom = 0;

if isscalar(z_states)==0;

num_states=size(z_states);

for m=1:1:num_states(1)

psi0 = psi{index_g(z_states(m,1),z_states(m,2))};

rho_custom = rho_custom + psi0*psi0’;

end

rho_custom = rho_custom/trace(rho_custom);

else

if z_states == 3

rho_custom = rho_unpolarized_3;

elseif z_states == 1

psi0 = 1/sqrt(2)*(psi{index_g(4,1)} + psi{index_g(4,-1)});

rho_custom = psi0*psi0’;

else rho_custom = rho_unpolarized_4;

end

end
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C.6 State-Dependent Detuning Effects

C.6.1 Magnetic Fields

%-------------------------------------------------------------------------

% magnetic field Hamiltonians

%-------------------------------------------------------------------------

% note: Le3 = 0, so e3 does not couple to magnetic fields

b2 = double(jmat(2,’x’)*B(1) + jmat(2,’y’)*B(2) + jmat(2,’z’)*B(3));

b3 = double(jmat(3,’x’)*B(1) + jmat(3,’y’)*B(2) + jmat(3,’z’)*B(3));

b4 = double(jmat(4,’x’)*B(1) + jmat(4,’y’)*B(2) + jmat(4,’z’)*B(3));

b5 = double(jmat(5,’x’)*B(1) + jmat(5,’y’)*B(2) + jmat(5,’z’)*B(3));

%generate Hamiltonians for splittings in user-specified states

Hg3 = sparse(Natomic,Natomic);

if max(ismember(g_states,3))==1

Hg3(index_g(3,-3):index_g(3,3),index_g(3,-3):index_g(3,3)) = Lg3*b3;

end

Hg4 = sparse(Natomic,Natomic);

if max(ismember(g_states,4))==1

Hg4(index_g(4,-4):index_g(4,4),index_g(4,-4):index_g(4,4)) = Lg4*b4;

end

He2 = sparse(Natomic,Natomic);

if max(ismember(e_states,2))==1

He2(index_e(2,-2):index_e(2,2),index_e(2,-2):index_e(2,2)) = Le2*b2;

end
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He4 = sparse(Natomic,Natomic);

if max(ismember(e_states,4))==1

He4(index_e(4,-4):index_e(4,4),index_e(4,-4):index_e(4,4)) = Le4*b4;

end

He5 = sparse(Natomic,Natomic);

if max(ismember(e_states,5))==1

He5(index_e(5,-5):index_e(5,5),index_e(5,-5):index_e(5,5)) = Le5*b5;

end

Hg3 = tensor(qo(Hg3),identity(Na),identity(Nb));

Hg4 = tensor(qo(Hg4),identity(Na),identity(Nb));

He2 = tensor(qo(He2),identity(Na),identity(Nb));

He4 = tensor(qo(He4),identity(Na),identity(Nb));

He5 = tensor(qo(He5),identity(Na),identity(Nb));

% the total magnetic field Hamiltonian

H_mag = Hg3 + Hg4 + He2 + He4 + He5;

C.6.2 FORT Shifts

%-------------------------------------------------------------------------

% FORT shifts

%-------------------------------------------------------------------------

% construct FORT Hamiltonian in a basis with quantization axis set along the

% axis of the (linear) polarization of the FORT

E_fort = 2 * pi * 40; % 6S_1/2, F = 4 FORT shift in MHz

% a note on the convention used here: in general, the Stark shifts on the

% 6P_3/2 Zeeman states take the form:
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% E_shift/E_fort = x + y * m^2

% where coefficients x, y depend upon which hyperfine state we are working

% with and must be calculated independently. For the details of these

% calculations see Chapter 3 of this thesis.

x = [0 0.9269 1.1117 1.0377 0.8530];

y = [0 0.0277 -0.0323 -0.0083 0.0129];

H_fort = 0;

for state = 1:length(e_states)

f = e_states(state);

for m=-f:f

psi0 = psi{index_e(f,m)};

H_fort = H_fort + E_fort * ((x(f) - 1) + y(f) * m^2) *psi0*psi0’;

end

end

%-------------------------------------------------------------------------

% rotation matrices (for moving FORT shift Hamiltonian into proper basis)

%-------------------------------------------------------------------------

R = sparse(Natomic,Natomic);

if max(ismember(g_states,3))==1

R(index_g(3,-3):index_g(3,3),index_g(3,-3):index_g(3,3)) = ...

double(expm(jmat(3,’y’)*i*pi/2));

end

if max(ismember(g_states,4))==1

R(index_g(4,-4):index_g(4,4),index_g(4,-4):index_g(4,4)) = ...
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double(expm(jmat(4,’y’)*i*pi/2));

end

if max(ismember(e_states,2))==1

R(index_e(2,-2):index_e(2,2),index_e(2,-2):index_e(2,2)) = ...

double(expm(jmat(2,’y’)*i*pi/2));

end

if max(ismember(e_states,3))==1

R(index_e(3,-3):index_e(3,3),index_e(3,-3):index_e(3,3)) = ...

double(expm(jmat(3,’y’)*i*pi/2));

end

if max(ismember(e_states,4))==1

R(index_e(4,-4):index_e(4,4),index_e(4,-4):index_e(4,4)) = ...

double(expm(jmat(4,’y’)*i*pi/2));

end

if max(ismember(e_states,5))==1

R(index_e(5,-5):index_e(5,5),index_e(5,-5):index_e(5,5)) = ...

double(expm(jmat(5,’y’)*i*pi/2));

end

R = tensor(qo(R),identity(Na),identity(Nb));

% total FORT Hamiltonian

H_fort = R’ * H_fort * R; % rotate FORT Hamiltonian into our basis

C.6.3 Cavity Effects

%-------------------------------------------------------------------------
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% Birefringent Splitting

%-------------------------------------------------------------------------

H_biref = splitting*a’*a - splitting*b’*b;

%-------------------------------------------------------------------------

% Probe Detuning Effects

%-------------------------------------------------------------------------

H_probe = 0;

for state = 1:length(e_states)

f = e_states(state);

detuning = Delta_e(max(coupled_states));

H_probe = H_probe + (Delta_e(f) - detuning - probe_freq)*...

eval([’e’ num2str(f) ’_e’ num2str(f)]);

end

H_probe = H_probe + (cavity_freq - probe_freq) * (a’ * a + b’ * b);

C.7 Interaction Hamiltonians

C.7.1 Jaynes-Cummings Hamiltonian

%-------------------------------------------------------------------------

% Jaynes-Cummings Hamiltonian H0

%-------------------------------------------------------------------------

% select the appropriate x-, y-, and z-coupled atomic raising and lowering

% operators for composing the Jaynes Cummings Hamiltonian based on the

% user-input ’coupled_states’ vector

c_op_x = eval([’g’ num2str(coupled_states(1)) ’_x_e’ num2str(coupled_states(2))]);
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c_op_y = eval([’g’ num2str(coupled_states(1)) ’_y_e’ num2str(coupled_states(2))]);

c_op_z = eval([’g’ num2str(coupled_states(1)) ’_z_e’ num2str(coupled_states(2))]);

% Jaynes Cummings Hamiltonian

H0 = g*(a’*c_op_x + a*c_op_x’) + g*(b’*c_op_y + b*c_op_y’);

C.7.2 User-Controlled Interactions

Some combination of the following sample Hamiltonians can be added to the simulation to

model relevant effects:

%-------------------------------------------------------------------------

% user-defined Hamiltonians

%-------------------------------------------------------------------------

trise = 0.006;

tfall = trise;

tstart = 0.010 - 0.5*trise;

tend = 0.010 + 0.5*trise;

%Hamiltonians for impulsive excitation from the side

H1 = 0.5*Omega*(c_op_z + c_op_z’)*fn(’pulse’,0,tstart,trise,tend,tfall);

H2 = 0.5*Omega*(c_op_z + c_op_z’)*fn(’pulse’,0,tstart + delay,trise,tend +...

delay,tfall);

% generate impulse shapes using QOT pulse function

for k=1:length(tlist)

impulse1(k) = pulse(tlist(k),tstart,trise,tend + delay,tfall);

impulse2(k) = pulse(tlist(k),tstart + delay,trise,tend + delay,tfall);

end
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% Hamiltonian for driving the atom continuously from the side

H1 = 0.5 * Omega * (c_op_z + c_op_z’);

% Hamiltonians for driving the cavity

% time-dependent driving field, linear polarization

H1 = 0.5 * sqrt(Omega) * kappa * (a + a’) *...

fn(’pulse’,0,tstart,trise,tend+delay,tfall);

% continuous-driving, linear polarization

H1 = 0.5 * sqrt(Omega) * kappa * (a + a’);

% continuous-driving, circular polarization

H1 = 0.5 * sqrt(Omega) * kappa * (c_p + c_p’);

C.8 Construct Integrate Liouvillian

%-------------------------------------------------------------------------

% Total Hamiltonian

%-------------------------------------------------------------------------

% compose the total Hamiltonian (HSS is steady-state Hamiltonian, if desired)

H = H0 + H1 + H_mag + H_biref + H_fort + H_probe;

HSS = H0 + H1 + H_mag + H_biref;

%-------------------------------------------------------------------------

% Construct Liouvillian
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%-------------------------------------------------------------------------

L = -i*(spre(H) - spost(H));

LSS = -i*(spre(HSS) - spost(HSS));

for L_index=1:1:8;

L_temp=eval([’L’ num2str(L_index)]);

if isa(L_temp,’qo’)==1;

L=L+L_temp;

LSS = LSS+L_temp;

end

end

%-------------------------------------------------------------------------

% Time Evolve System (or find steady-state)

%-------------------------------------------------------------------------

rho = integrate(L,tlist,rho_custom);

% for information about integrate() see the subroutine description, below

rho0 = rho{length(rho)};

rhoss = steady(LSS);

C.9 Calculate Observables

%-------------------------------------------------------------------------

% Evaluate Output State and Return Results

%-------------------------------------------------------------------------

na = zeros(N,1);

% number of photons in mode a of the cavity

nb = zeros(N,1);

% number of photons in mode b of the cavity
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na = expect(rho, a’*a);

nb = expect(rho, b’*b);

% probabilities for the atom to be in any of a number of hyperfine manifolds

pg3 = expect(rho, g3_g3);

pg4 = expect(rho, g4_g4);

pe4 = expect(rho, e4_e4);

pe3 = expect(rho, e3_e3);

% total intracavity photon number

n_tot = (sum(na)+sum(nb))*kappa*delta;

% probabilities for the atom to be in a Zeeman state in F=4

pz4 = zeros(9,N);

if max(ismember(g_states,4)) == 1

for m=-4:4

psi0=psi{index_g(4,m)};

temp = psi0’*rho0*psi0;

pz4(m+5,:) = expect(rho,psi0*psi0’);

disp(sprintf (’%2d, %7.4f\n’, m, double(temp)));

end

end

% probabilities for the atom to be in a Zeeman state in F=3

pz3 = zeros(7,N);

if max(ismember(g_states,3)) == 1

for m=-3:3

psi0=psi{index_g(3,m)};

temp = psi0’*rho0*psi0;
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pz3(m+4,:) = expect(rho,psi0*psi0’);

disp(sprintf (’%2d, %7.4f\n’, m, double(temp)));

end

end

% probability for the atom to be in a particular arbitrary state

psi0 = 1/sqrt(2)*(psi{index_g(4,1)} + psi{index_g(4,-1)});

p_super = expect(rho,psi0*psi0’);

C.10 Subroutines

C.10.1 Integrating the Master Equation

%-------------------------------------------------------------------------

% integrate the master equation

%-------------------------------------------------------------------------

function rho_new = integrate (L,tlist,rho_old);

options.lmm = ’ADAMS’;

options.iter = ’FUNCTIONAL’;

options.reltol = 1e-6;

options.abstol = 1e-6;

options.mxstep = 500;

ode2file (’file1.dat’, L, rho_old, tlist);

odesolve (’file1.dat’, ’file2.dat’);

fid = fopen (’file2.dat’, ’rb’);

rho_new = qoread (fid, dims(rho_old), size(tlist));

fclose (fid);
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end

C.10.2 Calculating Indices for Atomic States

%-------------------------------------------------------------------------

% subroutines to calculate index into atomic state vector array

%-------------------------------------------------------------------------

% The following routines represent "smart" indexing systems for

% assigning tensorial indices to atomic states based on arbitrary

% combinations of cesium hyperfine states specified by the user.

% index_g begins indexing the user-specified ground state manifolds

function n = index_g(F,m)

n=0; % zero index

if (max(ismember(F, g_states)) == 1)

% verify that the requested index is part of the user-specified state space

for loop_n = 1:length(g_states);

% loops through all user-specified hyperfine manifolds,

% from smallest F-value to largest

if g_states(loop_n)<F

% for all specified manifolds with F-value (= F’)

% smaller than input variable F

n = n + 2*g_states(loop_n)+1; % add (2F + 1) to the present index

else

if g_states(loop_n) == F

n = n + m + F +1;

end

end

end
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else error(’Error: Indexing state not specified in user input.’)

end

end

function n = index_e(F,m)

n=0;

if (max(ismember(F, e_states)) == 1)

for loop_n = 1:length(g_states);

n = n + (2*g_states(loop_n) + 1);

end

for loop_n = 1:length(e_states);

if e_states(loop_n)<F

n = n + 2*e_states(loop_n)+1;

else

if e_states(loop_n) == F

n = n + m + F +1;

end

end

end

else error(’Error: Indexing state not specified in user input.’)

end

end

function y = pulse (t, tstart, trise, tend, tfall)

if (t <= tstart - 0.5*trise)

y = 0.0;
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elseif (t > tstart - 0.5*trise && t < tstart + 0.5*trise)

y = 0.5*(1 + sin(pi*(t - tstart)/trise));

elseif (t >= tstart + 0.5*trise && t <= tend - 0.5*tfall)

y = 1.0;

elseif (t > tend - 0.5*tfall && t < tend + 0.5*tfall)

y = 0.5*(1 - sin(pi*(t - tend)/tfall));

else

y = 0.0;

end

end

end
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